Science.gov

Sample records for burkholderia pseudomallei melioidosis

  1. Melioidosis caused by Burkholderia pseudomallei in drinking water, Thailand, 2012.

    PubMed

    Limmathurotsakul, Direk; Wongsuvan, Gumphol; Aanensen, David; Ngamwilai, Sujittra; Saiprom, Natnaree; Rongkard, Patpong; Thaipadungpanit, Janjira; Kanoksil, Manas; Chantratita, Narisara; Day, Nicholas P J; Peacock, Sharon J

    2014-02-01

    We identified 10 patients in Thailand with culture-confirmed melioidosis who had Burkholderia pseudomallei isolated from their drinking water. The multilocus sequence type of B. pseudomallei from clinical specimens and water samples were identical for 2 patients. This finding suggests that drinking water is a preventable source of B. pseudomallei infection.

  2. Melioidosis Caused by Burkholderia pseudomallei in Drinking Water, Thailand, 2012

    PubMed Central

    Wongsuvan, Gumphol; Aanensen, David; Ngamwilai, Sujittra; Saiprom, Natnaree; Rongkard, Patpong; Thaipadungpanit, Janjira; Kanoksil, Manas; Chantratita, Narisara; Day, Nicholas P.J.; Peacock, Sharon J.

    2014-01-01

    We identified 10 patients in Thailand with culture-confirmed melioidosis who had Burkholderia pseudomallei isolated from their drinking water. The multilocus sequence type of B. pseudomallei from clinical specimens and water samples were identical for 2 patients. This finding suggests that drinking water is a preventable source of B. pseudomallei infection. PMID:24447771

  3. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis

    PubMed Central

    Limmathurotsakul, Direk; Golding, Nick; Dance, David AB; Messina, Jane P; Pigott, David M; Moyes, Catherine L; Rolim, Dionne B; Bertherat, Eric; Day, Nicholas PJ; Peacock, Sharon J; Hay, Simon I

    2016-01-01

    Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia1,2. Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods3. The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%4,5. The importation of infected animals has, in the past, spread melioidosis to non-endemic areas6,7. The global distribution of B. pseudomallei and burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases, and the presence of environmental B. pseudomallei, and combine this in a formal modelling framework8-10 to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, of which 89,000 (36,000-227,000) die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is likely endemic in a further 34 countries which have never reported the disease. The large numbers of estimated cases and fatalities emphasise that the disease warrants renewed attention from public health officials and policy makers. PMID:26877885

  4. Burkholderia pseudomallei: First case of melioidosis in Portugal

    PubMed Central

    Pelerito, Ana; Nunes, Alexandra; Coelho, Susana; Piedade, Cátia; Paixão, Paulo; Cordeiro, Rita; Sampaio, Daniel; Vieira, Luís; Gomes, João Paulo; Núncio, Sofia

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacillus and the causative agent of melioidosis, a serious infection associated with high mortality rate in humans. It can be naturally found as an environmental saprophyte in soil or stagnant water, and rice paddies that predominate in regions of endemicity such as Northeast Thailand. B. pseudomallei is a Biosafety Level 3 organism due to risks of aerosolization and severe disease and is now included in formal emergency preparedness plans and guidelines issued by various authorities in the United States and Europe. Here, we report the first case of imported melioidosis in Portugal. B. pseudomallei was isolated from the patient's blood as well as from a left gluteal abscess pus. The isolate strain showed the unusual resistance profile to first-line eradication therapy trimethroprim/sulfamethoxazole. Whole genome sequencing revealed its similarity with isolates from Southeast Asia, suggesting the Thai origin of this Portuguese isolate, which is in agreement with a recent patient's travel to Thailand. PMID:26962474

  5. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei

    PubMed Central

    Holden, Matthew T. G.; Titball, Richard W.; Peacock, Sharon J.; Cerdeño-Tárraga, Ana M.; Atkins, Timothy; Crossman, Lisa C.; Pitt, Tyrone; Churcher, Carol; Mungall, Karen; Bentley, Stephen D.; Sebaihia, Mohammed; Thomson, Nicholas R.; Bason, Nathalie; Beacham, Ifor R.; Brooks, Karen; Brown, Katherine A.; Brown, Nat F.; Challis, Greg L.; Cherevach, Inna; Chillingworth, Tracy; Cronin, Ann; Crossett, Ben; Davis, Paul; DeShazer, David; Feltwell, Theresa; Fraser, Audrey; Hance, Zahra; Hauser, Heidi; Holroyd, Simon; Jagels, Kay; Keith, Karen E.; Maddison, Mark; Moule, Sharon; Price, Claire; Quail, Michael A.; Rabbinowitsch, Ester; Rutherford, Kim; Sanders, Mandy; Simmonds, Mark; Songsivilai, Sirirurg; Stevens, Kim; Tumapa, Sarinna; Vesaratchavest, Monkgol; Whitehead, Sally; Yeats, Corin; Barrell, Bart G.; Oyston, Petra C. F.; Parkhill, Julian

    2004-01-01

    Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species. PMID:15377794

  6. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei.

    PubMed

    Holden, Matthew T G; Titball, Richard W; Peacock, Sharon J; Cerdeño-Tárraga, Ana M; Atkins, Timothy; Crossman, Lisa C; Pitt, Tyrone; Churcher, Carol; Mungall, Karen; Bentley, Stephen D; Sebaihia, Mohammed; Thomson, Nicholas R; Bason, Nathalie; Beacham, Ifor R; Brooks, Karen; Brown, Katherine A; Brown, Nat F; Challis, Greg L; Cherevach, Inna; Chillingworth, Tracy; Cronin, Ann; Crossett, Ben; Davis, Paul; DeShazer, David; Feltwell, Theresa; Fraser, Audrey; Hance, Zahra; Hauser, Heidi; Holroyd, Simon; Jagels, Kay; Keith, Karen E; Maddison, Mark; Moule, Sharon; Price, Claire; Quail, Michael A; Rabbinowitsch, Ester; Rutherford, Kim; Sanders, Mandy; Simmonds, Mark; Songsivilai, Sirirurg; Stevens, Kim; Tumapa, Sarinna; Vesaratchavest, Monkgol; Whitehead, Sally; Yeats, Corin; Barrell, Bart G; Oyston, Petra C F; Parkhill, Julian

    2004-09-28

    Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species.

  7. What Drives the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Domestic Gardens?

    PubMed Central

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D.; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J.

    2015-01-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei. PMID:25803046

  8. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    PubMed

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J

    2015-03-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei.

  9. Landscape Changes Influence the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Soil in Northern Australia

    PubMed Central

    Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Ward, Linda; Watt, Felicity; Hill, Jason V.; Cheng, Allen C.; Currie, Bart J.

    2009-01-01

    Background The soil-dwelling saprophyte bacterium Burkholderia pseudomallei is the cause of melioidosis, a severe disease of humans and animals in southeast Asia and northern Australia. Despite the detection of B. pseudomallei in various soil and water samples from endemic areas, the environmental habitat of B. pseudomallei remains unclear. Methodology/Principal Findings We performed a large survey in the Darwin area in tropical Australia and screened 809 soil samples for the presence of these bacteria. B. pseudomallei were detected by using a recently developed and validated protocol involving soil DNA extraction and real-time PCR targeting the B. pseudomallei–specific Type III Secretion System TTS1 gene cluster. Statistical analyses such as multivariable cluster logistic regression and principal component analysis were performed to assess the association of B. pseudomallei with environmental factors. The combination of factors describing the habitat of B. pseudomallei differed between undisturbed sites and environmentally manipulated areas. At undisturbed sites, the occurrence of B. pseudomallei was found to be significantly associated with areas rich in grasses, whereas at environmentally disturbed sites, B. pseudomallei was associated with the presence of livestock animals, lower soil pH and different combinations of soil texture and colour. Conclusions/Significance This study contributes to the elucidation of environmental factors influencing the occurrence of B. pseudomallei and raises concerns that B. pseudomallei may spread due to changes in land use. PMID:19156200

  10. The Concentrations of Ambient Burkholderia Pseudomallei during Typhoon Season in Endemic Area of Melioidosis in Taiwan

    PubMed Central

    Yang, Chun-Yuh; Lee, Min Sheng; Ho, Chi-Kung; Mena, Kristina D.; Wang, Peng-Yau; Chen, Pei-Shih

    2014-01-01

    Background Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei with a high case-fatality rate. Epidemiological and animal studies show the possibility of inhalation transmission. However, no B. pseudomallei concentrations in ambient air have been researched. Here, we developed a method to quantify ambient B. pseudomallei and then measured concentrations of ambient B. pseudomallei during the typhoon season and the non-typhoon season to determine the factors influencing ambient B. pseudomallei levels. Methods We quantified ambient B. pseudomallei by using a filter/real-time qPCR method in the Zoynan Region in Kaohsiung, southern Taiwan. Twenty-four hour samples were collected at a sampling rate of 20 L/min every day from June 11 to December 21, 2012 including during the typhoon season (June to September) and reference season (October to December). Results We successfully developed a filtration/real-time qPCR method to quantify ambient B. pseudomallei. To our knowledge, this is the first report describing concentrations of ambient B. pseudomallei. Ambient B. pseudomallei were only detected during the typhoon season when compared to the reference season. For the typhoons affecting the Zoynan Region, the positive rates of ambient B. pseudomallei were very high at 80% to 100%. During June to December, rainfall was positively correlated with ambient B. pseudomallei with a statistical significance. Sediment at a nearby pond significantly influenced the concentration of ambient B. pseudomallei. During the typhoon month, the typhoon was positively correlated with ambient B. pseudomallei whereas wind speed was reversely correlated with ambient B. pseudomallei. Conclusions Our data suggest the possibility of transmission of B. pseudomallei via inhalation during the typhoon season. PMID:24874950

  11. Association of the Melioidosis Agent Burkholderia pseudomallei with Water Parameters in Rural Water Supplies in Northern Australia ▿

    PubMed Central

    Draper, A. D. K.; Mayo, M.; Harrington, G.; Karp, D.; Yinfoo, D.; Ward, L.; Haslem, A.; Currie, B. J.; Kaestli, M.

    2010-01-01

    We analyzed water parameters and the occurrence of the melioidosis agent Burkholderia pseudomallei in 47 water bores in Northern Australia. B. pseudomallei was associated with soft, acidic bore water of low salinity but high iron levels. This finding aids in identifying water supplies at risk of contamination with this pathogenic bacterium. PMID:20543039

  12. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia.

    PubMed

    Kaestli, Mirjam; Schmid, Michael; Mayo, Mark; Rothballer, Michael; Harrington, Glenda; Richardson, Leisha; Hill, Audrey; Hill, Jason; Tuanyok, Apichai; Keim, Paul; Hartmann, Anton; Currie, Bart J

    2012-08-01

    Melioidosis is an emerging infectious disease of humans and animals in the tropics caused by the soil bacterium Burkholderia pseudomallei. Despite high fatality rates, the ecology of B.pseudomallei remains unclear. We used a combination of field and laboratory studies to investigate B.pseudomallei colonization of native and exotic grasses in northern Australia. Multivariable and spatial analyses were performed to determine significant predictors for B.pseudomallei occurrence in plants and soil collected longitudinally from field sites. In plant inoculation experiments, the impact of B.pseudomallei upon these grasses was studied and the bacterial load semi-quantified. Fluorescence in situ hybridization and confocal laser scanning microscopy were performed to localize the bacteria in plants. Burkholderia pseudomallei was found to inhabit not only the rhizosphere and roots but also aerial parts of specific grasses. This raises questions about the potential spread of B.pseudomallei by grazing animals whose droppings were found to be positive for these bacteria. In particular, B.pseudomallei readily colonized exotic grasses introduced to Australia for pasture. The ongoing spread of these introduced grasses creates new habitats suitable for B.pseudomallei survival and may be an important factor in the evolving epidemiology of melioidosis seen both in northern Australia and elsewhere globally.

  13. Out of the Ground: Aerial and Exotic Habitats of the Melioidosis Bacterium Burkholderia pseudomallei in Grasses in Australia

    PubMed Central

    Kaestli, Mirjam; Schmid, Michael; Mayo, Mark; Rothballer, Michael; Harrington, Glenda; Richardson, Leisha; Hill, Audrey; Hill, Jason; Tuanyok, Apichai; Keim, Paul; Hartmann, Anton; Currie, Bart J.

    2011-01-01

    Summary Melioidosis is an emerging infectious disease of humans and animals in the tropics caused by the soil bacterium Burkholderia pseudomallei. Despite high fatality rates, the ecology of B. pseudomallei remains unclear. We used a combination of field and laboratory studies to investigate B. pseudomallei colonization of native and exotic grasses in northern Australia. Multivariable and spatial analyses were performed to determine significant predictors for B. pseudomallei occurrence in plants and soil collected longitudinally from field sites. In plant inoculation experiments, the impact of B. pseudomallei upon these grasses was studied and the bacterial load semi-quantified. Fluorescence-in-situ-hybridization and confocal laser-scanning microscopy were performed to localize the bacteria in plants. B. pseudomallei was found to inhabit not only the rhizosphere and roots but also aerial parts of specific grasses. This raises questions about the potential spread of B. pseudomallei by grazing animals whose droppings were found to be positive for these bacteria. In particular, B. pseudomallei readily colonized exotic grasses introduced to Australia for pasture. The ongoing spread of these introduced grasses creates new habitats suitable for B. pseudomallei survival and may be an important factor in the evolving epidemiology of melioidosis seen both in northern Australia and elsewhere globally. PMID:22176696

  14. Phylogenomic Analysis Reveals an Asian Origin for African Burkholderia pseudomallei and Further Supports Melioidosis Endemicity in Africa

    PubMed Central

    Garin, Benoit; De Smet, Birgit; Kaestli, Mirjam; Mayo, Mark; Vandamme, Peter; Jacobs, Jan; Lompo, Palpouguini; Tahita, Marc C.; Tinto, Halidou; Djaomalaza, Innocente; Currie, Bart J.

    2016-01-01

    ABSTRACT Burkholderia pseudomallei, an environmental bacterium that causes the deadly disease melioidosis, is endemic in northern Australia and Southeast Asia. An increasing number of melioidosis cases are being reported in other tropical regions, including Africa and the Indian Ocean islands. B. pseudomallei first emerged in Australia, with subsequent rare dissemination event(s) to Southeast Asia; however, its dispersal to other regions is not yet well understood. We used large-scale comparative genomics to investigate the origins of three B. pseudomallei isolates from Madagascar and two from Burkina Faso. Phylogenomic reconstruction demonstrates that these African B. pseudomallei isolates group into a single novel clade that resides within the more ancestral Asian clade. Intriguingly, South American strains reside within the African clade, suggesting more recent dissemination from West Africa to the Americas. Anthropogenic factors likely assisted in B. pseudomallei dissemination to Africa, possibly during migration of the Austronesian peoples from Indonesian Borneo to Madagascar ~2,000 years ago, with subsequent genetic diversity driven by mutation and recombination. Our study provides new insights into global patterns of B. pseudomallei dissemination and adds to the growing body of evidence of melioidosis endemicity in Africa. Our findings have important implications for melioidosis diagnosis and management in Africa. IMPORTANCE Sporadic melioidosis cases have been reported in the African mainland and Indian Ocean islands, but until recently, these regions were not considered areas where B. pseudomallei is endemic. Given the high mortality rate of melioidosis, it is crucial that this disease be recognized and suspected in all regions of endemicity. Previous work has shown that B. pseudomallei originated in Australia, with subsequent introduction into Asia; however, the precise origin of B. pseudomallei in other tropical regions remains poorly understood

  15. The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis

    PubMed Central

    Lin, Chi Ho; Karuturi, R. Krishna M.; Wuthiekanun, Vanaporn; Tuanyok, Apichai; Chua, Hui Hoon; Ong, Catherine; Paramalingam, Sivalingam Suppiah; Tan, Gladys; Tang, Lynn; Lau, Gary; Ooi, Eng Eong; Woods, Donald; Feil, Edward; Peacock, Sharon J.; Tan, Patrick

    2008-01-01

    Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence. PMID:18927621

  16. Rapid and Sensitive Multiplex Detection of Burkholderia pseudomallei-Specific Antibodies in Melioidosis Patients Based on a Protein Microarray Approach

    PubMed Central

    Kohler, Christian; Dunachie, Susanna J.; Müller, Elke; Kohler, Anne; Jenjaroen, Kemajittra; Teparrukkul, Prapit; Baier, Vico; Ehricht, Ralf; Steinmetz, Ivo

    2016-01-01

    Background The environmental bacterium Burkholderia pseudomallei causes the infectious disease melioidosis with a high case-fatality rate in tropical and subtropical regions. Direct pathogen detection can be difficult, and therefore an indirect serological test which might aid early diagnosis is desirable. However, current tests for antibodies against B. pseudomallei, including the reference indirect haemagglutination assay (IHA), lack sensitivity, specificity and standardization. Consequently, serological tests currently do not play a role in the diagnosis of melioidosis in endemic areas. Recently, a number of promising diagnostic antigens have been identified, but a standardized, easy-to-perform clinical laboratory test for sensitive multiplex detection of antibodies against B. pseudomallei is still lacking. Methods and Principal Findings In this study, we developed and validated a protein microarray which can be used in a standard 96-well format. Our array contains 20 recombinant and purified B. pseudomallei proteins, previously identified as serodiagnostic candidates in melioidosis. In total, we analyzed 196 sera and plasmas from melioidosis patients from northeast Thailand and 210 negative controls from melioidosis-endemic and non-endemic regions. Our protein array clearly discriminated between sera from melioidosis patients and controls with a specificity of 97%. Importantly, the array showed a higher sensitivity than did the IHA in melioidosis patients upon admission (cut-off IHA titer ≥1:160: IHA 57.3%, protein array: 86.7%; p = 0.0001). Testing of sera from single patients at 0, 12 and 52 weeks post-admission revealed that protein antigens induce either a short- or long-term antibody response. Conclusions Our protein array provides a standardized, rapid, easy-to-perform test for the detection of B. pseudomallei-specific antibody patterns. Thus, this system has the potential to improve the serodiagnosis of melioidosis in clinical settings. Moreover, our

  17. Pathogenesis of percutaneous infection of goats with Burkholderia pseudomallei: clinical, pathologic, and immunological responses in chronic melioidosis

    PubMed Central

    Soffler, Carl; Bosco-Lauth, Angela M; Aboellail, Tawfik A; Marolf, Angela J; Bowen, Richard A

    2014-01-01

    Melioidosis is a severe suppurative to granulomatous infection caused by Burkholderia pseudomallei. The disease is endemic to South-East Asia and Northern Australasia and is also of interest as a potential biological weapon. Natural infection can occur by percutaneous inoculation, inhalation or ingestion, but the relative importance of each route is unknown. Experimental infection models using mice have shown inhalation to be the most lethal route of exposure, but few studies have examined the pathogenesis of percutaneous infection despite its presumptive importance in natural disease. Caprine models are useful in the study of melioidosis because goats are susceptible to natural infection by B. pseudomallei, display similar epizootiology/epidemiology to that of humans within the endemic range and develop similar pathologic lesions. Percutaneous inoculation with 104 CFU of B. pseudomallei produced disease in all experimental animals with rapid dissemination to the lungs, spleen and kidneys. Initial fever was brief, but temperatures did not return to pre-infection levels until day 18, concurrent with a dramatic lymphocytosis and the transition to chronic disease. Distribution and appearance of gross pathologic and radiographic lesions in goats were similar to caprine aerosol infection and to reported human disease. The similarities seen despite different routes of infection suggest that host or bacterial factors may be more important than the route of infection in disease pathogenesis. The nature of melioidosis in goats makes it amenable for modelling additional risk factors to produce acute clinical disease, which is important to the study of human melioidosis. PMID:24571408

  18. Unprecedented Melioidosis Cases in Northern Australia Caused by an Asian Burkholderia pseudomallei Strain Identified by Using Large-Scale Comparative Genomics.

    PubMed

    Price, Erin P; Sarovich, Derek S; Smith, Emma J; MacHunter, Barbara; Harrington, Glenda; Theobald, Vanessa; Hall, Carina M; Hornstra, Heidie M; McRobb, Evan; Podin, Yuwana; Mayo, Mark; Sahl, Jason W; Wagner, David M; Keim, Paul; Kaestli, Mirjam; Currie, Bart J

    2015-11-25

    Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia.

  19. Unprecedented Melioidosis Cases in Northern Australia Caused by an Asian Burkholderia pseudomallei Strain Identified by Using Large-Scale Comparative Genomics

    PubMed Central

    Smith, Emma J.; MacHunter, Barbara; Harrington, Glenda; Theobald, Vanessa; Hall, Carina M.; Hornstra, Heidie M.; McRobb, Evan; Podin, Yuwana; Mayo, Mark; Sahl, Jason W.; Wagner, David M.; Keim, Paul; Kaestli, Mirjam; Currie, Bart J.

    2015-01-01

    Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia. PMID:26607593

  20. Cloning, expression and purification of outer membrane protein (OmpA) of Burkholderia pseudomallei and evaluation of its potential for serodiagnosis of melioidosis.

    PubMed

    Arora, Sonia; Thavaselvam, Duraipandian; Kumar, Ashu; Prakash, Archana; Barua, Anita; Sathyaseelan, Kannusamy

    2015-02-01

    Melioidosis is an emerging infectious disease in India and caused by gram-negative, soil saprophyte bacteria Burkholderia pseudomallei. This disease is endemic in Southeast Asia and northern Australia, and sporadic cases of melioidosis are also reported from southern states of India. The present study reports the cloning, expression, and purification of recombinant protein outer membrane protein A (OmpA) of B. pseudomallei and its evaluation in indirect enzyme-linked immunosorbent assay (ELISA) format with 87 serum samples collected from Manipal, Karnataka, India. Twenty-three samples from culture confirmed cases (n=23) of melioidosis, 25 serum samples from patients of other febrile illness and pyrexia of unknown origin (n=25), and 39 serum samples from healthy blood donors (n=39) from Kasturba Medical College, Manipal, were tested in this assay format. The assay showed sensitivity of 82.6% and specificity of 93.75%. The recombinant OmpA based indirect ELISA will be a useful tool for serodiagnosis of melioidosis in large scale rapid screening of clinical samples.

  1. Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells

    PubMed Central

    Dando, Samantha J.; Ipe, Deepak S.; Batzloff, Michael; Sullivan, Matthew J.; Crossman, David K.; Crowley, Michael; Strong, Emily; Kyan, Stephanie; Leclercq, Sophie Y.; Ekberg, Jenny A. K.; St. John, James

    2016-01-01

    Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs. PMID:27091931

  2. Analysis of the prevalence, secretion and function of a cell cycle-inhibiting factor in the melioidosis pathogen Burkholderia pseudomallei.

    PubMed

    Pumirat, Pornpan; Broek, Charles Vander; Juntawieng, Niramol; Muangsombut, Veerachat; Kiratisin, Pattarachai; Pattanapanyasat, Kovit; Stevens, Joanne M; Stevens, Mark P; Korbsrisate, Sunee

    2014-01-01

    Enteropathogenic and enterohaemorrhagic Escherichia coli express a cell cycle-inhibiting factor (Cif), that is injected into host cells via a Type III secretion system (T3SS) leading to arrest of cell division, delayed apoptosis and cytoskeletal rearrangements. A homologue of Cif has been identified in Burkholderia pseudomallei (CHBP; Cif homologue in B. pseudomallei; BPSS1385), which shares catalytic activity, but its prevalence, secretion and function are ill-defined. Among 43 available B. pseudomallei genome sequences, 33 genomes (76.7%) harbor the gene encoding CHBP. Western blot analysis using antiserum raised to a synthetic CHBP peptide detected CHBP in 46.6% (7/15) of clinical B. pseudomallei isolates from the endemic area. Secretion of CHBP into bacterial culture supernatant could not be detected under conditions where a known effector (BopE) was secreted in a manner dependent on the Bsa T3SS. In contrast, CHBP could be detected in U937 cells infected with B. pseudomallei by immunofluorescence microscopy and Western blotting in a manner dependent on bsaQ. Unlike E. coli Cif, CHBP was localized within the cytoplasm of B. pseudomallei-infected cells. A B. pseudomallei chbP insertion mutant showed a significant reduction in cytotoxicity and plaque formation compared to the wild-type strain that could be restored by plasmid-mediated trans-complementation. However, there was no defect in actin-based motility or multinucleated giant cell formation by the chbP mutant. The data suggest that the level or timing of CHBP secretion differs from a known Bsa-secreted effector and that CHBP is required for selected virulence-associated phenotypes in vitro.

  3. Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains.

    PubMed Central

    Brett, P. J.; Deshazer, D.; Woods, D. E.

    1997-01-01

    Previous reports in the literature suggest that Burkholderia pseudomallei strains can be differentiated on the basis of animal virulence. Twenty environmentally and clinically derived isolates of Burkholderia pseudomallei were examined for the production of exoenzymes, morphological and biochemical phenotypes and virulence for Syrian golden hamsters. The partial sequence of the 16S ribosomal RNA [rRNA] genes from a number of these strains was also determined. Based upon these observations, it is suggested that highly virulent Burkholderia pseudomallei strains are true Burkholderia pseudomallei strains. The DNA sequences of the 16S rRNA genes of the true Burkholderia pseudomallei strains were identical to the published sequences for Burkholderia pseudomallei while differences were revealed between the published sequences and those of the lowly virulent strains. Thus, these latter strains have been designated as Burkholderia pseudomallei-like organisms since they demonstrate significant differences in exoenzyme production, hamster virulence and 16S rRNA gene sequences. PMID:9129590

  4. Burkholderia pseudomallei: A potential zoonosis in the southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burkholderia pseudomallei, the causative agent of melioidosis, is an underreported zoonosis in many countries where environmental conditions may be favorable for B. pseudomallei. This soil saprophyte is most often detected in tropical areas such as Southeast Asia and Northern Australia where the cas...

  5. Prevalence of Burkholderia pseudomallei in Guangxi, China.

    PubMed

    Ma, G; Zheng, D; Cai, Q; Yuan, Z

    2010-01-01

    Melioidosis, an infectious disease caused by the Gram-negative bacterium Burkholderia pseudomallei, is now recognized as an important public health problem in Southeast Asia and tropical northern Australia. Although B. pseudomallei has been detected in various water and soil samples in southeast China, the enviromental distribution of B. pseudomallei in China is unclear. In the winter months of 2007, 154 and 130 soil and water samples, respectively, were collected from several locations in Guangxi, China. The samples were screened for B. pseudomallei by bacterial culture and identification and confirmed by PCR for species-specific 16S rDNA and flagellin genes. B. pseudomallei was detected in 8.4% of the soil samples but in none of the water samples. All positive samples were confined to a single low-lying region from rice paddy fields. Counts of B. pseudomallei ranged from 23 to 521 c.f.u./g soil. This is the first geographical distribution survey of B. pseudomallei in soil in Guangxi, China, and the data are of importance for further evaluating the impact of this pathogen on melioidosis in this region.

  6. Development of Vaccines Against Burkholderia Pseudomallei

    PubMed Central

    Patel, Natasha; Conejero, Laura; De Reynal, Melanie; Easton, Anna; Bancroft, Gregory J.; Titball, Richard W.

    2011-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium which is the causative agent of melioidosis, a disease which carries a high mortality and morbidity rate in endemic areas of South East Asia and Northern Australia. At present there is no available human vaccine that protects against B. pseudomallei, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. This review considers the multiple elements of melioidosis vaccine research including: (i) the immune responses required for protective immunity, (ii) animal models available for preclinical testing of potential candidates, (iii) the different experimental vaccine strategies which are being pursued, and (iv) the obstacles and opportunities for eventual registration of a licensed vaccine in humans. PMID:21991263

  7. Tandem Repeat Regions within the Burkholderia pseudomallei Genome and their Application for High-Resolution Genotyping

    DTIC Science & Technology

    2007-03-30

    BioMed CentralBMC Microbiology ssOpen AcceResearch article Tandem repeat regions within the Burkholderia pseudomallei genome and their application...facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Large tandem repeat regions within the Burkholderia pseudomallei genome and their

  8. Burkholderia pseudomallei isolates in 2 pet iguanas, California, USA.

    PubMed

    Zehnder, Ashley M; Hawkins, Michelle G; Koski, Marilyn A; Lifland, Barry; Byrne, Barbara A; Swanson, Alexandra A; Rood, Michael P; Gee, Jay E; Elrod, Mindy Glass; Beesley, Cari A; Blaney, David D; Ventura, Jean; Hoffmaster, Alex R; Beeler, Emily S

    2014-02-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection.

  9. Burkholderia pseudomallei Data Gap Analysis

    DTIC Science & Technology

    2015-11-01

    alcoholics, kava users (Australia), chronic drug users, or diabetic . However, HIV does not seem to be a factor. Table 2-1. Published melioidosis... Diabetic rats are also common since they are acutely susceptible to B. pseudomallei and often die within 48hrs [Patel, 2011]. Non-human primate (NHP

  10. Environmental Isolates of Burkholderia pseudomallei in Ceará State, Northeastern Brazil▿

    PubMed Central

    Rolim, Dione B.; Rocha, Marcos F. G.; Brilhante, Raimunda S. N.; Cordeiro, Rossana A.; Leitão-Junior, Natanael P.; Inglis, Timothy J. J.; Sidrim, José J. C.

    2009-01-01

    Melioidosis has been considered an emerging disease in Brazil since the first cases were reported to occur in the northeast region. This study investigated two municipalities in Ceará state where melioidosis cases have been confirmed to occur. Burkholderia pseudomallei was isolated in 26 (4.3%) of 600 samples in the dry and rainy seasons. PMID:19098219

  11. Whole-Genome Sequences of 80 Environmental and Clinical Isolates of Burkholderia pseudomallei

    PubMed Central

    Baker, Anthony L.; Chain, Patrick S.; Currie, Bart J.; Daligault, Hajnalka E.; Davenport, Karen W.; Davis, Christopher B.; Inglis, Timothy J. J.; Kaestli, Mirjam; Koren, Sergey; Mayo, Mark; Merritt, Adam J.; Sarovich, Derek S.; Warner, Jeffrey

    2015-01-01

    Here, we present the draft genome sequences of 80 isolates of Burkholderia pseudomallei. The isolates represent clinical cases of melioidosis and environmental isolates from regions in Australia and Papua New Guinea where B. pseudomallei is endemic. The genomes provide further context for the diversity of the pathogen. PMID:25676747

  12. Whole-Genome Sequences of 80 Environmental and Clinical Isolates of Burkholderia pseudomallei.

    PubMed

    Johnson, Shannon L; Baker, Anthony L; Chain, Patrick S; Currie, Bart J; Daligault, Hajnalka E; Davenport, Karen W; Davis, Christopher B; Inglis, Timothy J J; Kaestli, Mirjam; Koren, Sergey; Mayo, Mark; Merritt, Adam J; Price, Erin P; Sarovich, Derek S; Warner, Jeffrey; Rosovitz, M J

    2015-02-12

    Here, we present the draft genome sequences of 80 isolates of Burkholderia pseudomallei. The isolates represent clinical cases of melioidosis and environmental isolates from regions in Australia and Papua New Guinea where B. pseudomallei is endemic. The genomes provide further context for the diversity of the pathogen.

  13. Whole-Genome Sequences of Burkholderia pseudomallei Isolates Exhibiting Decreased Meropenem Susceptibility.

    PubMed

    Price, Erin P; Smith, Melissa Laird; Paxinos, Ellen E; Tallon, Luke J; Sadzewicz, Lisa; Sengamalay, Naomi; Baird, Robert W; Currie, Bart J; Sarovich, Derek S

    2017-04-06

    We report here paired isogenic Burkholderia pseudomallei genomes obtained from three patients receiving intravenous meropenem for melioidosis treatment, with post-meropenem isolates developing decreased susceptibility. Two genomes were finished, and four were drafted to improved high-quality standard. These genomes will be used to identify meropenem resistance mechanisms in B. pseudomallei.

  14. Whole-Genome Sequences of Burkholderia pseudomallei Isolates Exhibiting Decreased Meropenem Susceptibility

    PubMed Central

    Smith, Melissa Laird; Paxinos, Ellen E.; Tallon, Luke J.; Sadzewicz, Lisa; Sengamalay, Naomi; Baird, Robert W.; Currie, Bart J.

    2017-01-01

    ABSTRACT We report here paired isogenic Burkholderia pseudomallei genomes obtained from three patients receiving intravenous meropenem for melioidosis treatment, with post-meropenem isolates developing decreased susceptibility. Two genomes were finished, and four were drafted to improved high-quality standard. These genomes will be used to identify meropenem resistance mechanisms in B. pseudomallei. PMID:28385830

  15. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  16. Global and regional dissemination and evolution of Burkholderia pseudomallei.

    PubMed

    Chewapreecha, Claire; Holden, Matthew T G; Vehkala, Minna; Välimäki, Niko; Yang, Zhirong; Harris, Simon R; Mather, Alison E; Tuanyok, Apichai; De Smet, Birgit; Le Hello, Simon; Bizet, Chantal; Mayo, Mark; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Phetsouvanh, Rattanaphone; Spratt, Brian G; Corander, Jukka; Keim, Paul; Dougan, Gordon; Dance, David A B; Currie, Bart J; Parkhill, Julian; Peacock, Sharon J

    2017-01-23

    The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia and East Asia. Repeated reintroductions were observed within the Malay Peninsula and between countries bordered by the Mekong River. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those over-represented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted.

  17. Comparison of Mast Burkholderia Cepacia, Ashdown + Gentamicin, and Burkholderia Pseudomallei Selective Agar for the Selective Growth of Burkholderia Spp.

    PubMed

    Edler, Carola; Derschum, Henri; Köhler, Mirko; Neubauer, Heinrich; Frickmann, Hagen; Hagen, Ralf Matthias

    2017-03-01

    Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and nontarget organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars. Colony morphology did not allow unambiguous discrimination. While the assessed selective media reliably allowed the growth of a wide range of B. pseudomallei strains, growth of other Burkholderia spp. is only partially ensured. Growth of various nontarget organisms has to be considered. Therefore, the assessed media can only be used in combination with other confirmative tests in the diagnostic procedure for the screening for melioidosis or glanders.

  18. Comparison of Mast Burkholderia Cepacia, Ashdown + Gentamicin, and Burkholderia Pseudomallei Selective Agar for the Selective Growth of Burkholderia Spp.

    PubMed Central

    Edler, Carola; Derschum, Henri; Köhler, Mirko; Neubauer, Heinrich; Frickmann, Hagen; Hagen, Ralf Matthias

    2017-01-01

    Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and nontarget organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars. Colony morphology did not allow unambiguous discrimination. While the assessed selective media reliably allowed the growth of a wide range of B. pseudomallei strains, growth of other Burkholderia spp. is only partially ensured. Growth of various nontarget organisms has to be considered. Therefore, the assessed media can only be used in combination with other confirmative tests in the diagnostic procedure for the screening for melioidosis or glanders. PMID:28386468

  19. Lack of Utility of Nasopharyngeal Swabs for Diagnosis of Burkholderia pseudomallei Pneumonia in Paediatric Patients

    PubMed Central

    Turner, Claudia; Suy, Kuong; Soeng, Sona; Day, Nicholas P. J.; Turner, Paul

    2016-01-01

    Diagnosis of Burkholderia pseudomallei pneumonia in children is challenging. We investigated the utility of nasopharyngeal swabs taken from 194 paediatric patients on admission with radiologically proven pneumonia. Melioidosis was proven in 0.5% of samples tested and only in a third of those known to be bacteraemic with B. pseudomallei. It appears unlikely that culture of nasopharyngeal secretions is helpful to confirm B. pseudomallei pneumonia in paediatric patients. PMID:26874977

  20. Strategies toward vaccines against Burkholderia mallei and Burkholderia pseudomallei

    PubMed Central

    Bondi, Sara K; Goldberg, Joanna B

    2009-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative, rod-shaped bacteria, and are the causative agents of the diseases glanders and melioidosis, respectively. These bacteria have been recognized as important pathogens for over 100 years, yet a relative dearth of available information exists regarding their virulence determinants and immunopathology. Infection with either of these bacteria presents with nonspecific symptoms and can be either acute or chronic, impeding rapid diagnosis. The lack of a vaccine for either bacterium also makes them potential candidates for bioweaponization. Together with their high rate of infectivity via aerosols and resistance to many common antibiotics, both bacteria have been classified as category B priority pathogens by the US NIH and US CDC, which has spurred a dramatic increase in interest in these microorganisms. Attempts have been made to develop vaccines for these infections, which would not only benefit military personnel, a group most likely to be targeted in an intentional release, but also individuals who may come in contact with glanders-infected animals or live in areas where melioidosis is endemic. This review highlights some recent attempts of vaccine development for these infections and the strategies used to improve the efficacy of vaccine approaches. PMID:18980539

  1. Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia

    PubMed Central

    Chapple, Stephanie N. J.; Price, Erin P.; Sarovich, Derek S.; McRobb, Evan; Mayo, Mark; Kaestli, Mirjam; Spratt, Brian G.; Currie, Bart J.

    2016-01-01

    Melioidosis is a tropical disease of high mortality caused by the environmental bacterium, Burkholderia pseudomallei. We have collected clinical isolates from the highly endemic Northern Territory of Australia routinely since 1989, and animal and environmental B. pseudomallei isolates since 1991. Here we provide a complete record of all B. pseudomallei multilocus sequence types (STs) found in the Northern Territory to date, and distribution maps of the eight most common environmental STs. We observed surprisingly restricted geographic distributions of STs, which is contrary to previous reports suggesting widespread environmental dissemination of this bacterium. Our data suggest that B. pseudomallei from soil and water does not frequently disperse long distances following severe weather events or by migration of infected animals. PMID:26526925

  2. Development of Burkholderia mallei and pseudomallei vaccines.

    PubMed

    Silva, Ediane B; Dow, Steven W

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  3. Clinical Definitions of Melioidosis

    PubMed Central

    Cheng, Allen C.; Currie, Bart J.; Dance, David A. B.; Funnell, Simon G. P.; Limmathurotsakul, Direk; Simpson, Andrew J. H.; Peacock, Sharon J.

    2013-01-01

    Clinical definitions of melioidosis and inhalation-acquired melioidosis (Burkholderia pseudomallei infection) are described together with the evidence used to develop these definitions. Such definitions support accurate public health reporting, preparedness planning for deliberate B. pseudomallei release, design of experimental models, and categorization of naturally acquired melioidosis. PMID:23468355

  4. Burkholderia humptydooensis sp. nov., a New Species Related to Burkholderia thailandensis and the Fifth Member of the Burkholderia pseudomallei Complex

    PubMed Central

    Tuanyok, Apichai; Mayo, Mark; Scholz, Holger; Hall, Carina M.; Allender, Christopher J.; Kaestli, Mirjam; Ginther, Jennifer; Spring-Pearson, Senanu; Bollig, Molly C.; Stone, Joshua K.; Settles, Erik W.; Busch, Joseph D.; Sidak-Loftis, Lindsay; Sahl, Jason W.; Thomas, Astrid; Kreutzer, Lisa; Georgi, Enrico; Gee, Jay E.; Bowen, Richard A.; Ladner, Jason T.; Lovett, Sean; Koroleva, Galina; Palacios, Gustavo; Wagner, David M.; Currie, Bart J.

    2016-01-01

    ABSTRACT During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43T, MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown's selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis, they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization–time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei, based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43T, MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43T (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382). IMPORTANCE Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species

  5. Functional Characterization of Burkholderia pseudomallei Trimeric Autotransporters

    PubMed Central

    Campos, Cristine G.; Byrd, Matthew S.

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent and the causative agent of melioidosis, a severe and often fatal disease with symptoms ranging from acute pneumonia and septic shock to a chronic infection characterized by abscess formation in the lungs, liver, and spleen. Autotransporters (ATs) are exoproteins belonging to the type V secretion system family, with many playing roles in pathogenesis. The genome of B. pseudomallei strain 1026b encodes nine putative trimeric AT proteins, of which only four have been described. Using a bioinformatic approach, we annotated putative domains within each trimeric AT protein, excluding the well-studied BimA protein, and found short repeated sequences unique to Burkholderia species, as well as an unexpectedly large proportion of ATs with extended signal peptide regions (ESPRs). To characterize the role of trimeric ATs in pathogenesis, we constructed disruption or deletion mutations in each of eight AT-encoding genes and evaluated the resulting strains for adherence to, invasion of, and plaque formation in A549 cells. The majority of the ATs (and/or the proteins encoded downstream) contributed to adherence to and efficient invasion of A549 cells. Using a BALB/c mouse model of infection, we determined the contributions of each AT to bacterial burdens in the lungs, liver, and spleen. At 48 h postinoculation, only one strain, Bp340::pDbpaC, demonstrated a defect in dissemination and/or survival in the liver, indicating that BpaC is required for wild-type virulence in this model. PMID:23716608

  6. Pleuropulmonary melioidosis with osteomyelitis rib

    PubMed Central

    Neliyathodi, Suhail; Thazhathethil, Abdul Nazar; Pallivalappil, Lisha; Balakrishnan, Deepu

    2015-01-01

    Melioidosis is a multiorgan infectious disease caused by Burkholderia pseudomallei. Few cases have been reported from south India. This is a case report of pleuropulmonary melioidosis with rib osteomyelitis. PMID:25624602

  7. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    DOE PAGES

    D’haeseleer, Patrik; Johnson, Shannon L.; Davenport, Karen W.; ...

    2016-06-30

    We present the draft genome sequence ofBurkholderia pseudomalleiPHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. This draft genome consists of 39 contigs and is 7,322,181 bp long.

  8. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    PubMed Central

    Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P.; Peña, José; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  9. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    SciTech Connect

    D’haeseleer, Patrik; Johnson, Shannon L.; Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P.; Peña, José; Branda, Steven S.; El-Etr, Sahar

    2016-06-30

    We present the draft genome sequence ofBurkholderia pseudomalleiPHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. This draft genome consists of 39 contigs and is 7,322,181 bp long.

  10. Burkholderia pseudomallei is frequently detected in groundwater that discharges to major watercourses in northern Australia.

    PubMed

    Baker, Anthony L; Warner, Jeffrey M

    2016-07-01

    Burkholderia pseudomallei is the environmental bacterium that causes the serious disease melioidosis. Recently, a high prevalence of viable B. pseudomallei was reported from natural groundwater seeps around Castle Hill, a clinical focus of melioidosis in Townsville, Australia. This study sought to expand previous findings to determine the extent of B. pseudomallei in more diverse natural groundwater seeps in northern Queensland to ascertain if the presence of the organism in groundwater on Castle Hill was an isolated occurrence. Analysis of water samples (n = 26) obtained from natural groundwater seeps following an intensive rainfall event in the Townsville region determined the presence of B. pseudomallei DNA in duplicates of 18 samples (69.2 % [95 % CI, 51.5 to 87.0]). From 26 water samples, a single isolate of B. pseudomallei was recovered despite plating of both pre-enriched samples and original water samples onto selective media, indicating that the sensitivity of these molecular techniques far exceeds culture-based methods. Furthermore, the identification of new environments endemic for melioidosis may be more effectively determined by analysing surface groundwater seeps than by the analysis of random soil samples. This study suggests that a higher incidence of melioidosis following monsoonal rains may be partially the result of exposure to groundwater sources carrying B. pseudomallei, and that modifications to public health messages in endemic regions may be warranted. Moreover, these findings have implications for predictive models of melioidosis, effective models requiring consideration of topographical and surface hydrological data.

  11. Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Moore, Richard A; Reckseidler-Zenteno, Shauna; Kim, Heenam; Nierman, William; Yu, Yan; Tuanyok, Apichai; Warawa, Jonathan; DeShazer, David; Woods, Donald E

    2004-07-01

    Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts.

  12. Burkholderia pseudomallei: Its Detection in Soil and Seroprevalence in Bangladesh

    PubMed Central

    Robayet, Jamshedul Alam Mohammad; Mohiuddin, Md.; Hasan, Md. Rokib

    2016-01-01

    Background Melioidosis, caused by Burkholderia pseudomallei, is an endemic disease in Bangladesh. No systematic study has yet been done to detect the environmental source of the organism and its true extent in Bangladesh. The present study attempted to isolate B. pseudomallei in soil samples and to determine its seroprevalence in several districts in Bangladesh. Methodology and Results Soil samples were collected from rural areas of four districts of Bangladesh from where culture confirmed melioidosis cases were detected earlier. Multiple soil samples, collected from 5–7 sampling points of 3–5 sites of each district, were cultured in Ashdown selective media. Suspected colonies of B. pseudomallei were identified by biochemical and serological test, and by polymerase chain reaction (PCR) using 16s rRNA specific primers. Blood samples were collected from 940 healthy individuals of four districts to determine anti- B. pseudomallei IgG antibody levels by indirect enzyme linked immunosorbent assay (ELISA) using sonicated crude antigen. Out of 179 soil samples, B. pseudomallei was isolated from two samples of Gazipur district which is located 58 km north of capital Dhaka city. Both the isolates were phenotypically identical, arabinose negative and showed specific 550bp band in PCR. Out of 940 blood samples, anti- B. pseudomallei IgG antibody, higher than the cut-off value (>0.8), was detected in 21.5% individuals. Seropositivity rate was 22.6%-30.8% in three districts from where melioidosis cases were detected earlier, compared to 9.8% in a district where no melioidosis case was either detected or reported (p<0.01). Seropositivity increased with the advancement of age from 5.3% to 30.4% among individuals aged 1–10 years and > 50 years respectively. The seropositivity rates were 26.0% and 20.6% in male and female respectively, while it was 20–27% among different occupational groups. No significant association was observed with gender (χ2 = 3.441, p = 0.064) or any

  13. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models.

    PubMed

    Weehuizen, Tassili A F; Prior, Joann L; van der Vaart, Thomas W; Ngugi, Sarah A; Nepogodiev, Sergey A; Field, Robert A; Kager, Liesbeth M; van 't Veer, Cornelis; de Vos, Alex F; Wiersinga, W Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis.

  14. Melioidosis in New Caledonia.

    PubMed

    Le Hello, Simon; Currie, Bart J; Godoy, Daniel; Spratt, Brian G; Mikulski, Marc; Lacassin, Flore; Garin, Benoit

    2005-10-01

    Recognized melioidosis-endemic areas are widening. In the South Pacific, melioidosis is endemic in New Caledonia, northern Australia, and Papua New Guinea. We report the first 4 documented cases of human melioidosis from New Caledonia. Molecular typing of 2 Burkholderia pseudomallei isolates suggests a link to Australian strains.

  15. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    DOE PAGES

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; ...

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number ofmore » B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for

  16. Disinfection of Burkholderia pseudomallei in potable water.

    PubMed

    Howard, Kay; Inglis, Timothy J J

    2005-03-01

    The effect of chlorine, monochloramine and UV disinfection on the water-borne pathogen Burkholderia pseudomallei was assessed. Persistence of B. pseudomallei was verified by MPN involving a one-step recovery procedure. Chlorine proved the most effective disinfectant with a 99.99% reduction of a 10(6) CFU/mL pure bacterial culture followed by 99.9% reduction by monochloramine and 99% reduction by UV. Co-culture of B. pseudomallei with Acanthamoeba astronyxis was found to greatly enhance survival of B. pseudomallei in the presence of all disinfecting agents tested. For example, when amoebae were present 100 times more monochloramine was required to maintain the disinfectant efficacy. Given the results obtained from these co-culture experiments, more research is needed to investigate the role of amoeba and biofilms in survival of B. pseudomallei in potable water.

  17. Burkholderia pseudomallei isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides.

    PubMed

    Podin, Yuwana; Sarovich, Derek S; Price, Erin P; Kaestli, Mirjam; Mayo, Mark; Hii, KingChing; Ngian, Hieung; Wong, SeeChang; Wong, IngTien; Wong, JinShyan; Mohan, Anand; Ooi, MongHow; Fam, TemLom; Wong, Jack; Tuanyok, Apichai; Keim, Paul; Giffard, Philip M; Currie, Bart J

    2014-01-01

    Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.

  18. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  19. Molecular identification and typing of Burkholderia pseudomallei and Burkholderia mallei: when is enough enough?

    PubMed

    Antonov, Valery A; Tkachenko, Galina A; Altukhova, Viktoriya V; Savchenko, Sergey S; Zinchenko, Olga V; Viktorov, Dmitry V; Zamaraev, Valery S; Ilyukhin, Vladimir I; Alekseev, Vladimir V

    2008-12-01

    Burkholderia mallei and B. pseudomallei are highly pathogenic microorganisms for both humans and animals. Moreover, they are regarded as potential agents of bioterrorism. Thus, rapid and unequivocal detection and identification of these dangerous pathogens is critical. In the present study, we describe the use of an optimized protocol for the early diagnosis of experimental glanders and melioidosis and for the rapid differentiation and typing of Burkholderia strains. This experience with PCR-based identification methods indicates that single PCR targets (23S and 16S rRNA genes, 16S-23S intergenic region, fliC and type III secretion gene cluster) should be used with caution for identification of B. mallei and B. pseudomallei, and need to be used alongside molecular methods such as gene sequencing. Several molecular typing procedures have been used to identify genetically related B. pseudomallei and B. mallei isolates, including ribotyping, pulsed-field gel electrophoresis and multilocus sequence typing. However, these methods are time consuming and technically challenging for many laboratories. RAPD, variable amplicon typing scheme, Rep-PCR, BOX-PCR and multiple-locus variable-number tandem repeat analysis have been recommended by us for the rapid differentiation of B. mallei and B. pseudomallei strains.

  20. Human Melioidosis, Malawi, 2011

    PubMed Central

    Katangwe, Thembi; Purcell, Janet; Bar-Zeev, Naor; Denis, Brigitte; Montgomery, Jacqui; Alaerts, Maaike; Heyderman, Robert Simon; Dance, David A.B.; Kennedy, Neil; Feasey, Nicholas

    2013-01-01

    A case of human melioidosis caused by a novel sequence type of Burkholderia pseudomallei occurred in a child in Malawi, southern Africa. A literature review showed that human cases reported from the continent have been increasing. PMID:23735189

  1. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  2. Workshop on Treatment of and Postexposure Prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010

    PubMed Central

    Garges, Susan; Aurigemma, Rosemarie; Baccam, Prasith; Blaney, David D.; Cheng, Allen C.; Currie, Bart J.; Dance, David; Gee, Jay E.; Larsen, Joseph; Limmathurotsakul, Direk; Morrow, Meredith G.; Norton, Robert; O’Mara, Elizabeth; Peacock, Sharon J.; Pesik, Nicki; Rogers, L. Paige; Schweizer, Herbert P.; Steinmetz, Ivo; Tan, Gladys; Tan, Patrick; Wiersinga, W. Joost; Wuthiekanun, Vanaporn; Smith, Theresa L.

    2012-01-01

    The US Public Health Emergency Medical Countermeasures Enterprise convened subject matter experts at the 2010 HHS Burkholderia Workshop to develop consensus recommendations for postexposure prophylaxis against and treatment for Burkholderia pseudomallei and B. mallei infections, which cause melioidosis and glanders, respectively. Drugs recommended by consensus of the participants are ceftazidime or meropenem for initial intensive therapy, and trimethoprim/sulfamethoxazole or amoxicillin/clavulanic acid for eradication therapy. For postexposure prophylaxis, recommended drugs are trimethoprim/sulfamethoxazole or co-amoxiclav. To improve the timely diagnosis of melioidosis and glanders, further development and wide distribution of rapid diagnostic assays were also recommended. Standardized animal models and B. pseudomallei strains are needed for further development of therapeutic options. Training for laboratory technicians and physicians would facilitate better diagnosis and treatment options. PMID:23171644

  3. Melioidosis in Traveler from Africa to Spain

    PubMed Central

    Quereda, Carmen; Gil, Horacio; Anda, Pedro; Núñez-Murga, María; Cantón, Rafael; López-Vélez, Rogelio

    2013-01-01

    The worldwide epidemiology of melioidosis is changing. We describe a case of acute melioidosis in Spain in a patient who had traveled to Africa. A novel sequence type of Burkholderia pseudomallei was identified in this patient. Clinicians should be aware of the possibility of melioidosis in travelers returning from melioidosis-nonendemic regions. PMID:24047798

  4. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  5. Variability of Burkholderia pseudomallei strain sensitivities to chlorine disinfection.

    PubMed

    O'Connell, Heather A; Rose, Laura J; Shams, Alicia; Bradley, Meranda; Arduino, Matthew J; Rice, Eugene W

    2009-08-01

    Burkholderia pseudomallei is a select agent and the causative agent of melioidosis. Variations in previously reported chlorine and monochloramine concentration time (Ct) values for disinfection of this organism make decisions regarding the appropriate levels of chlorine in water treatment systems difficult. This study identified the variation in Ct values for 2-, 3-, and 4-log(10) reductions of eight environmental and clinical isolates of B. pseudomallei in phosphate-buffered water. The greatest calculated Ct values for a 4-log(10) inactivation were 7.8 mg.min/liter for free available chlorine (FAC) at pH 8 and 5 degrees C and 550 mg.min/liter for monochloramine at pH 8 and 5 degrees C. Ionic strength of test solutions, culture hold times in water, and cell washing were ruled out as sources of the differences in prior observations. Tolerance to FAC was correlated with the relative amount of extracellular material produced by each isolate. Solid-phase cytometry analysis using an esterase-cleaved fluorochrome assay detected a 2-log(10)-higher level of organisms based upon metabolic activity than did culture, which in some cases increased Ct values by fivefold. Despite strain-to-strain variations in Ct values of 17-fold for FAC and 2.5-fold for monochloramine, standard FAC disinfection practices utilized in the United States should disinfect planktonic populations of these B. pseudomallei strains by 4 orders of magnitude in less than 10 min at the tested temperatures and pH levels.

  6. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection

    PubMed Central

    Massey, Shane; Yeager, Linsey A.; Blumentritt, Carla A.; Vijayakumar, Sudhamathi; Sbrana, Elena; Peterson, Johnny W.; Brasel, Trevor; LeDuc, James W.; Endsley, Janice J.; Torres, Alfredo G.

    2014-01-01

    Melioidosis is an endemic disease caused by the bacterium Burkholderia pseudomallei. Concerns exist regarding B. pseudomallei use as a potential bio-threat agent causing persistent infections and typically manifesting as severe pneumonia capable of causing fatal bacteremia. Development of suitable therapeutics against melioidosis is complicated due to high degree of genetic and phenotypic variability among B. pseudomallei isolates and lack of data establishing commonly accepted strains for comparative studies. Further, the impact of strain variation on virulence, disease presentation, and mortality is not well understood. Therefore, this study evaluate and compare the virulence and disease progression of B. pseudomallei strains K96243 and HBPUB10303a, following aerosol challenge in a standardized BALB/c mouse model of infection. The natural history analysis of disease progression monitored conditions such as weight, body temperature, appearance, activity, bacteremia, organ and tissue colonization (pathological and histological analysis) and immunological responses. This study provides a detailed, direct comparison of infection with different B. pseudomallei strains and set up the basis for a standardized model useful to test different medical countermeasures against Burkholderia species. Further, this protocol serves as a guideline to standardize other bacterial aerosol models of infection or to define biomarkers of infectious processes caused by other intracellular pathogens. PMID:24603493

  7. Experimental Phage Therapy for Burkholderia pseudomallei Infection

    PubMed Central

    Leang-Chung, Choh; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Li-Yen, Chang; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections. PMID:27387381

  8. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia.

    PubMed

    Ginther, Jennifer L; Mayo, Mark; Warrington, Stephanie D; Kaestli, Mirjam; Mullins, Travis; Wagner, David M; Currie, Bart J; Tuanyok, Apichai; Keim, Paul

    2015-01-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.

  9. Survival of Burkholderia pseudomallei on Environmental Surfaces.

    PubMed

    Shams, Alicia M; Rose, Laura J; Hodges, Lisa; Arduino, Matthew J

    2007-12-01

    The survival of the biothreat agent Burkholderia pseudomallei on the surfaces of four materials was measured by culture and esterase activity analyses. The culture results demonstrated that this organism persisted for <24 h to <7 days depending on the material, bacterial isolate, and suspension medium. The persistence determined by analysis of esterase activity, as measured with a ScanRDI solid-phase cytometer, was always longer than the persistence determined by culture analysis.

  10. Within-Host Evolution of Burkholderia pseudomallei during Chronic Infection of Seven Australasian Cystic Fibrosis Patients.

    PubMed

    Viberg, Linda T; Sarovich, Derek S; Kidd, Timothy J; Geake, James B; Bell, Scott C; Currie, Bart J; Price, Erin P

    2017-04-11

    Cystic fibrosis (CF) is a genetic disorder characterized by progressive lung function decline. CF patients are at an increased risk of respiratory infections, including those by the environmental bacterium Burkholderia pseudomallei, the causative agent of melioidosis. Here, we compared the genomes of B. pseudomallei isolates collected between ~4 and 55 months apart from seven chronically infected CF patients. Overall, the B. pseudomallei strains showed evolutionary patterns similar to those of other chronic infections, including emergence of antibiotic resistance, genome reduction, and deleterious mutations in genes involved in virulence, metabolism, environmental survival, and cell wall components. We documented the first reported B. pseudomallei hypermutators, which were likely caused by defective MutS. Further, our study identified both known and novel molecular mechanisms conferring resistance to three of the five clinically important antibiotics for melioidosis treatment. Our report highlights the exquisite adaptability of microorganisms to long-term persistence in their environment and the ongoing challenges of antibiotic treatment in eradicating pathogens in the CF lung. Convergent evolution with other CF pathogens hints at a degree of predictability in bacterial evolution in the CF lung and potential targeted eradication of chronic CF infections in the future.IMPORTANCEBurkholderia pseudomallei, the causative agent of melioidosis, is an environmental opportunistic bacterium that typically infects immunocompromised people and those with certain risk factors such as cystic fibrosis (CF). Patients with CF tend to develop chronic melioidosis infections, for reasons that are not well understood. This report is the first to describe B. pseudomallei evolution within the CF lung during chronic infection. We show that the pathways by which B. pseudomallei adapts to the CF lung are similar to those seen in better-studied CF pathogens such as Pseudomonas

  11. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India.

    PubMed

    Peddayelachagiri, Bhavani V; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H; Batra, Harsh V

    2016-09-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  12. Soil Nutrient Depletion Is Associated with the Presence of Burkholderia pseudomallei

    PubMed Central

    Rongkard, Patpong; Oyuchua, Malinee; Amornchai, Premjit; Wuthiekanun, Vanaporn

    2016-01-01

    ABSTRACT Burkholderia pseudomallei is a soil-dwelling bacterium and the cause of melioidosis, which kills an estimated 89,000 people per year worldwide. Agricultural workers are at high risk of infection due to repeated exposure to the bacterium. Little is known about the soil physicochemical properties associated with the presence or absence of the organism. Here, we evaluated the soil physicochemical properties and presence of B. pseudomallei in 6,100 soil samples collected from 61 rice fields in Thailand. The presence of B. pseudomallei was negatively associated with the proportion of clay, proportion of moisture, level of salinity, percentage of organic matter, presence of cadmium, and nutrient levels (phosphorus, potassium, calcium, magnesium, and iron). The presence of B. pseudomallei was not associated with the level of soil acidity (P = 0.54). In a multivariable logistic regression model, the presence of B. pseudomallei was negatively associated with the percentage of organic matter (odds ratio [OR], 0.06; 95% confidence interval [CI], 0.01 to 0.47; P = 0.007), level of salinity (OR, 0.06; 95% CI, 0.01 to 0.74; P = 0.03), and percentage of soil moisture (OR, 0.81; 95% CI, 0.66 to 1.00; P = 0.05). Our study suggests that B. pseudomallei thrives in rice fields that are nutrient depleted. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount of B. pseudomallei bacteria in affected areas. IMPORTANCE Burkholderia pseudomallei is an environmental Gram-negative bacillus and the cause of melioidosis. Humans acquire the disease following skin inoculation, inhalation, or ingestion of the bacterium in the environment. The presence of B. pseudomallei in soil defines geographic regions where humans and livestock are at risk of melioidosis, yet little is known about the soil properties associated with the presence of the organism. We evaluated the soil properties and presence of B. pseudomallei in 61 rice fields in

  13. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    PubMed Central

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Wong, Kum Thong

    2017-01-01

    Background During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. Methods We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. Results TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. Conclusion B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection. PMID:28045926

  14. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis.

    PubMed

    Nieves, Wildaliz; Petersen, Hailey; Judy, Barbara M; Blumentritt, Carla A; Russell-Lodrigue, Kasi; Roy, Chad J; Torres, Alfredo G; Morici, Lisa A

    2014-05-01

    The environmental Gram-negative encapsulated bacillus Burkholderia pseudomallei is the causative agent of melioidosis, a disease associated with high morbidity and mortality rates in areas of Southeast Asia and northern Australia in which the disease is endemic. B. pseudomallei is also classified as a tier I select agent due to the high level of lethality of the bacterium and its innate resistance to antibiotics, as well as the lack of an effective vaccine. Gram-negative bacteria, including B. pseudomallei, secrete outer membrane vesicles (OMVs) which are enriched with multiple protein, lipid, and polysaccharide antigens. Previously, we demonstrated that immunization with multivalent B. pseudomallei-derived OMVs protects highly susceptible BALB/c mice against an otherwise lethal aerosol challenge. In this work, we evaluated the protective efficacy of OMV immunization against intraperitoneal challenge with a heterologous strain because systemic infection with phenotypically diverse environmental B. pseudomallei strains poses another hazard and a challenge to vaccine development. We demonstrated that B. pseudomallei OMVs derived from strain 1026b afforded significant protection against septicemic infection with B. pseudomallei strain K96243. OMV immunization induced robust OMV-, lipopolysaccharide-, and capsular polysaccharide-specific serum IgG (IgG1, IgG2a, and IgG3) and IgM antibody responses. OMV-immune serum promoted bacterial killing in vitro, and passive transfer of B. pseudomallei OMV immune sera protected naive mice against a subsequent challenge. These results indicate that OMV immunization provides antibody-mediated protection against acute, rapidly lethal sepsis in mice. B. pseudomallei-derived OMVs may represent an efficacious multivalent vaccine strategy against melioidosis.

  15. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei

    PubMed Central

    Kessler, Bianca; Rinchai, Darawan; Kewcharoenwong, Chidchamai; Nithichanon, Arnone; Biggart, Rachael; Hawrylowicz, Catherine M.; Bancroft, Gregory J.; Lertmemongkolchai, Ganjana

    2017-01-01

    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3− CD14+ monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis. PMID:28216665

  16. Genetic Control of Weight Loss During Pneumonic Burkholderia pseudomallei Infection

    PubMed Central

    Emery, Felicia D.; Parvathareddy, Jyothi; Pandey, Ashutosh K.; Cui, Yan; Williams, Robert W.; Miller, Mark A.

    2014-01-01

    Burkholderia pseudomallei (Bp) is the causal agent of a high morbidity/mortality disease syndrome known as melioidosis. This syndrome can range from acute fulminate disease to chronic, local, and disseminated infections that are often difficult to treat because Bp exhibits resistance to many antibiotics. Bp is a prime candidate for use in biological warfare/terrorism and is classified as a Tier-1 Select Agent by HHS and APHIS. It is known that inbred mouse strains display a range of susceptibility to Bp and that the murine infection model is ideal for studying acute melioidosis. Here we exploit a powerful mouse genetics resource that consists of a large family of BXD type recombinant inbred strains, to perform genome-wide linkage analysis of the weight loss phenotype following pneumonic infection with Bp. We infected parental mice and 32 BXD strains with 50-100 CFU of Bp (strain 1026b) and monitored weight retention each day over an eleven-day time course. Using the computational tools in GeneNetwork, we performed genome-wide linkage analysis to identify an interval on chromosome 12 that appears to control the weight retention trait. We then analysed and ranked positional candidate genes in this interval, several of which have intriguing connections with innate immunity, calcium homeostasis, lipid transport, host cell growth and development, and autophagy. PMID:24687986

  17. Fatal Burkholderia pseudomallei Infection Initially Reported as a Bacillus Species, Ohio, 2013

    PubMed Central

    Doker, Thomas J.; Quinn, Celia L.; Salehi, Ellen D.; Sherwood, Joshua J.; Benoit, Tina J.; Elrod, Mindy Glass; Gee, Jay E.; Shadomy, Sean V.; Bower, William A.; Hoffmaster, Alex R.; Walke, Henry T.; Blaney, David D.; DiOrio, Mary S.

    2014-01-01

    A fatal case of melioidosis was diagnosed in Ohio one month after culture results were initially reported as a Bacillus species. To identify a source of infection and assess risk in patient contacts, we abstracted patient charts; interviewed physicians and contacts; genetically characterized the isolate; performed a Burkholderia pseudomallei antibody indirect hemagglutination assay on household contacts and pets to assess seropositivity; and collected household plant, soil, liquid, and insect samples for culturing and real-time polymerase chain reaction testing. Family members and pets tested were seronegative for B. pseudomallei. Environmental samples were negative by real-time polymerase chain reaction and culture. Although the patient never traveled internationally, the isolate genotype was consistent with an isolate that originated in Southeast Asia. This investigation identified the fifth reported locally acquired non-laboratory melioidosis case in the contiguous United States. Physicians and laboratories should be aware of this potentially emerging disease and refer positive cultures to a Laboratory Response Network laboratory. PMID:25092821

  18. Computational discovery and RT-PCR validation of novel Burkholderia conserved and Burkholderia pseudomallei unique sRNAs

    PubMed Central

    2012-01-01

    Background The sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts. Results By integrating several proven sRNA prediction programs into a computational pipeline, available Burkholderia spp. genomes were screened to identify sRNA gene candidates. Orthologous sRNA candidates were then identified via comparative analysis. From the total prediction, 21 candidates were found to have Rfam homologs. RT-PCR and sequencing of candidate sRNA genes of unknown functions revealed six putative sRNAs which were highly conserved in Burkholderia spp. and two that were unique to B. pseudomallei present in a normal culture conditions transcriptome. The validated sRNAs include potential cis-acting elements associated with the modulation of methionine metabolism and one B. pseudomallei-specific sRNA that is expected to bind to the Hfq protein. Conclusions The use of the pipeline developed in this study and subsequent comparative analysis have successfully aided in the discovery and shortlisting of sRNA gene candidates for validation. This integrated approach identified 29 B. pseudomallei sRNA genes - of which 21 have Rfam homologs and 8 are novel. PMID:23282220

  19. Melioidosis, Northeastern Brazil

    PubMed Central

    Rolim, Dionne Bezerra; Vilar, Dina Cortez Feitosa Lima; Sousa, Anastacio Queiroz; Miralles, Iracema Sampaio; Almeida de Oliveira, Diana Carmen; Harnett, Gerry; O'Reilly, Lyn; Howard, Kay; Sampson, Ian

    2005-01-01

    Melioidosis was first recognized in northeastern Brazil in 2003. Confirmation of additional cases from the 2003 cluster in Ceará, more recent cases in other districts, environmental isolation of Burkholderia pseudomallei, molecular confirmation and typing results, and positive serosurveillance specimens indicate that melioidosis is more widespread in northeastern Brazil than previously thought. PMID:16229782

  20. Environmental Free-Living Amoebae Isolated from Soil in Khon Kaen, Thailand, Antagonize Burkholderia pseudomallei

    PubMed Central

    Noinarin, Parumon; Chareonsudjai, Pisit; Wangsomnuk, Pinich; Wongratanacheewin, Surasak

    2016-01-01

    Presence of Burkholderia pseudomallei in soil and water is correlated with endemicity of melioidosis in Southeast Asia and northern Australia. Several biological and physico-chemical factors have been shown to influence persistence of B. pseudomallei in the environment of endemic areas. This study was the first to evaluate the interaction of B. pseudomallei with soil amoebae isolated from B. pseudomallei-positive soil site in Khon Kaen, Thailand. Four species of amoebae, Paravahlkampfia ustiana, Acanthamoeba sp., Naegleria pagei, and isolate A-ST39-E1, were isolated, cultured and identified based on morphology, movement and 18S rRNA gene sequence. Co-cultivation combined with a kanamycin-protection assay of B. pseudomallei with these amoebae at MOI 20 at 30°C were evaluated during 0–6 h using the plate count technique on Ashdown’s agar. The fate of intracellular B. pseudomallei in these amoebae was also monitored by confocal laser scanning microscopy (CLSM) observation of the CellTracker™ Orange-B. pseudomallei stained cells. The results demonstrated the ability of P. ustiana, Acanthamoeba sp. and isolate A-ST39-E1 to graze B. pseudomallei. However, the number of internalized B. pseudomallei substantially decreased and the bacterial cells disappeared during the observation period, suggesting they had been digested. We found that B. pseudomallei promoted the growth of Acanthamoeba sp. and isolate A-ST39-E1 in co-cultures at MOI 100 at 30°C, 24 h. These findings indicated that P. ustiana, Acanthamoeba sp. and isolate A-ST39-E1 may prey upon B. pseudomallei rather than representing potential environmental reservoirs in which the bacteria can persist. PMID:27898739

  1. PCR-based Methodologies Used to Detect and Differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis.

    PubMed

    Lowe, Woan; March, Jordon K; Bunnell, Annette J; O'Neill, Kim L; Robison, Richard A

    2014-01-01

    Methods for the rapid detection and differentiation of the Burkholderia pseudomallei complex comprising B. pseudomallei, B. mallei, and B. thailandensis, have been the topic of recent research due to the high degree of phenotypic and genotypic similarities of these species. B. pseudomallei and B. mallei are recognized by the CDC as tier 1 select agents. The high mortality rates of glanders and melioidosis, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Although B. thailandensis is generally avirulent in mammals, this species displays very similar phenotypic characteristics to that of B. pseudomallei. Optimal identification of these species remains problematic, due to the difficulty in developing a sensitive, selective, and accurate assay. The development of PCR technologies has revolutionized diagnostic testing and these detection methods have become popular due to their speed, sensitivity, and accuracy. The purpose of this review is to provide a comprehensive overview and evaluation of the advancements in PCR-based detection and differentiation methodologies for the B. pseudomallei complex, and examine their potential uses in diagnostic and environmental testing.

  2. Soil Nutrient Depletion Is Associated with the Presence of Burkholderia pseudomallei.

    PubMed

    Hantrakun, Viriya; Rongkard, Patpong; Oyuchua, Malinee; Amornchai, Premjit; Lim, Cherry; Wuthiekanun, Vanaporn; Day, Nicholas P J; Peacock, Sharon J; Limmathurotsakul, Direk

    2016-12-15

    Burkholderia pseudomallei is a soil-dwelling bacterium and the cause of melioidosis, which kills an estimated 89,000 people per year worldwide. Agricultural workers are at high risk of infection due to repeated exposure to the bacterium. Little is known about the soil physicochemical properties associated with the presence or absence of the organism. Here, we evaluated the soil physicochemical properties and presence of B. pseudomallei in 6,100 soil samples collected from 61 rice fields in Thailand. The presence of B. pseudomallei was negatively associated with the proportion of clay, proportion of moisture, level of salinity, percentage of organic matter, presence of cadmium, and nutrient levels (phosphorus, potassium, calcium, magnesium, and iron). The presence of B. pseudomallei was not associated with the level of soil acidity (P = 0.54). In a multivariable logistic regression model, the presence of B. pseudomallei was negatively associated with the percentage of organic matter (odds ratio [OR], 0.06; 95% confidence interval [CI], 0.01 to 0.47; P = 0.007), level of salinity (OR, 0.06; 95% CI, 0.01 to 0.74; P = 0.03), and percentage of soil moisture (OR, 0.81; 95% CI, 0.66 to 1.00; P = 0.05). Our study suggests that B. pseudomallei thrives in rice fields that are nutrient depleted. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount of B. pseudomallei bacteria in affected areas.

  3. Structure of a Burkholderia pseudomallei Trimeric Autotransporter Adhesin Head

    PubMed Central

    Edwards, Thomas E.; Phan, Isabelle; Abendroth, Jan; Dieterich, Shellie H.; Masoudi, Amir; Guo, Wenjin; Hewitt, Stephen N.; Kelley, Angela; Leibly, David; Brittnacher, Mitch J.; Staker, Bart L.; Miller, Samuel I.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.

    2010-01-01

    Background Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region. Methodology/Principal Findings Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 Å resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs. Conclusions/Significance The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics. PMID:20862217

  4. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    SciTech Connect

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.; Badger, Jonathan H.

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what

  5. An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing.

    PubMed

    Van Zandt, Kristopher E; Tuanyok, Apichai; Keim, Paul S; Warren, Richard L; Gelhaus, H Carl

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs), the high mortality rates associated with melioidosis raises significant ethical issues concerning treating individuals with new compounds with unknown efficacies. The US Food and Drug Administration (FDA) has formulated a set of guidelines for the licensure of new MCMs to treat diseases in which it would be unethical to test the efficacy of these drugs in humans. The FDA "Animal Rule" 21 CFR 314 calls for consistent, well-characterized B. pseudomallei strains to be used as challenge material in animal models. In order to facilitate the efficacy testing of new MCMs for melioidosis using animal models, we intend to develop a well-characterized panel of strains for use. This panel will comprise of strains that were isolated from human cases, have a low passage history, are virulent in animal models, and are well-characterized phenotypically and genotypically. We have reviewed published and unpublished data on various B. pseudomallei strains to establish an objective method for selecting the strains to be included in the panel of B. pseudomallei strains with attention to five categories: animal infection models, genetic characterization, clinical and passage history, and availability of the strain to the research community. We identified 109 strains with data in at least one of the five categories, scored each strain based on the gathered data and identified six strains as candidate for a B. pseudomallei strain panel.

  6. Liver abscess caused by Burkholderia pseudomallei in a young man: A case report and review of literature

    PubMed Central

    Pal, Partha; Ray, Sayantan; Moulick, Avijit; Dey, Subhasis; Jana, Anirban; Banerjee, Kokila

    2014-01-01

    Pyogenic liver abscess is a common entity in Indian subcontinent and is mostly caused by gram negative bacteria. Melioidosis is not commonly seen in India and only a few cases are reported. It can give rise to multiple abscesses at different sites including liver. We report a case of isolated liver abscess caused by Burkholderia pseudomallei (B. pseudomallei) in a 29-year-old recently diagnosed diabetic, immunocompetent male. Diagnosis was made by imaging and culture of pus aspirated from the abscess and he was treated with percutaneous pigtail catheter drainage followed by antibiotics (meropenem and trimethoprim-sulphmethoxazole). Melioidosis is an emerging infection in India and has high mortality rate, so early diagnosis and prompt management is warranted which requires clinical vigilance and an intensive microbiological workup. Clinicians should be aware of isolated liver abscess caused by B. pseudomallei in appropriate clinical settings. PMID:25325075

  7. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells

    PubMed Central

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei. This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  8. Within-Host Evolution of Burkholderia pseudomallei during Chronic Infection of Seven Australasian Cystic Fibrosis Patients

    PubMed Central

    Kidd, Timothy J.; Geake, James B.; Bell, Scott C.; Currie, Bart J.

    2017-01-01

    ABSTRACT Cystic fibrosis (CF) is a genetic disorder characterized by progressive lung function decline. CF patients are at an increased risk of respiratory infections, including those by the environmental bacterium Burkholderia pseudomallei, the causative agent of melioidosis. Here, we compared the genomes of B. pseudomallei isolates collected between ~4 and 55 months apart from seven chronically infected CF patients. Overall, the B. pseudomallei strains showed evolutionary patterns similar to those of other chronic infections, including emergence of antibiotic resistance, genome reduction, and deleterious mutations in genes involved in virulence, metabolism, environmental survival, and cell wall components. We documented the first reported B. pseudomallei hypermutators, which were likely caused by defective MutS. Further, our study identified both known and novel molecular mechanisms conferring resistance to three of the five clinically important antibiotics for melioidosis treatment. Our report highlights the exquisite adaptability of microorganisms to long-term persistence in their environment and the ongoing challenges of antibiotic treatment in eradicating pathogens in the CF lung. Convergent evolution with other CF pathogens hints at a degree of predictability in bacterial evolution in the CF lung and potential targeted eradication of chronic CF infections in the future.

  9. Antimicrobial activity of Tachyplesin 1 against Burkholderia pseudomallei: an in vitro and in silico approach

    PubMed Central

    Lee, Lyn-Fay; Mariappan, Vanitha; Vellasamy, Kumutha Malar

    2016-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many conventional antibiotics. Therefore, alternative antimicrobial agents such as antimicrobial peptides (AMPs) are extensively studied to combat this issue. Our study aims to identify and understand the mode of action of the potential AMP(s) that are effective against B. pseudomallei in both planktonic and biofilm state as well as to predict the possible binding targets on using in vitro and in silico approaches. In the in vitro study, 11 AMPs were tested against 100 B. pseudomallei isolates for planktonic cell susceptibility, where LL-37, and PG1, demonstrated 100.0% susceptibility and TP1 demonstrated 83% susceptibility. Since the B. pseudomallei activity was reported on LL-37 and PG1, TP1 was selected for further investigation. TP1 inhibited B. pseudomallei cells at 61.69 μM, and membrane blebbing was observed using scanning electron microscopy. Moreover, TP1 inhibited B. pseudomallei cell growth, reaching bactericidal endpoint within 2 h post exposure as compared to ceftazidime (CAZ) (8 h). Furthermore, TP1 was shown to suppress the growth of B. pseudomallei cells in biofilm state at concentrations above 221 μM. However, TP1 was cytotoxic to the mammalian cell lines tested. In the in silico study, molecular docking revealed that TP1 demonstrated a strong interaction to the common peptide or inhibitor binding targets for lipopolysaccharide of Escherichia coli, as well as autolysin, pneumolysin, and pneumococcal surface protein A (PspA) of Streptococcus pneumoniae. Homology modelled B. pseudomallei PspA protein (YDP) also showed a favourable binding with a strong electrostatic contribution and nine hydrogen bonds. In conclusion, TP1 demonstrated a good potential as an anti-B. pseudomallei agent. PMID:27812400

  10. Development of Immunoassays for Burkholderia pseudomallei Typical and Atypical Lipopolysaccharide Strain Typing

    PubMed Central

    Nualnoi, Teerapat; Norris, Michael H.; Tuanyok, Apichai; Brett, Paul J.; Burtnick, Mary N.; Keim, Paul S.; Settles, Erik W.; Allender, Christopher J.; AuCoin, David P.

    2017-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a severe infection endemic to many tropical regions. Lipopolysaccharide (LPS) is recognized as an important virulence factor used by B. pseudomallei. Isolates of B. pseudomallei have been shown to express one of four different types of LPS (typical LPS, atypical LPS types B and B2, and rough LPS) and in vitro studies have demonstrated that LPS types may impact disease severity. The association between LPS types and clinical manifestations, however, is still unknown, in part because an effective method for LPS type identification is not available. Thus, we developed antigen capture immunoassays capable of distinguishing between the LPS types. Mice were injected with B or B2 LPS for atypical LPS–specific monoclonal antibody (mAb) isolation; only two mAbs (3A2 and 5B4) were isolated from mice immunized with B2 LPS. Immunoblot analysis and surface plasmon resonance demonstrated that 3A2 and 5B4 are reactive with both B2 and B LPS where 3A2 was shown to possess higher affinity. Assays were then developed using capsular polysaccharide–specific mAb 4C4 for bacterial capture and 4C7 (previously shown to bind typical LPS) or 3A2 mAbs for typical or atypical LPS strain detection, respectively. The evaluations performed with 197 strains of Burkholderia and non-Burkholderia species showed that the assays are reactive to B. pseudomallei and Burkholderia mallei strains and have an accuracy of 98.8% (zero false positives and two false negatives) for LPS typing. The results suggest that the assays are effective and applicable for B. pseudomallei LPS typing. PMID:27994103

  11. Biogeography of Burkholderia pseudomallei in the Torres Strait Islands of Northern Australia

    PubMed Central

    Baker, Anthony; Mayo, Mark; Owens, Leigh; Burgess, Graham; Norton, Robert; McBride, William John Hannan; Currie, Bart J.

    2013-01-01

    It has been hypothesized that biogeographical boundaries are a feature of Burkholderia pseudomallei ecology, and they impact the epidemiology of melioidosis on a global scale. This study examined the relatedness of B. pseudomallei sourced from islands in the Torres Strait of Northern Australia to determine if the geography of isolated island communities is a determinant of the organisms' dispersal. Environmental sampling on Badu Island in the Near Western Island cluster recovered a single clone. An additional 32 clinical isolates from the region were sourced. Isolates were characterized using multilocus sequence typing and a multiplex PCR targeting the flagellum gene cluster. Gene cluster analysis determined that 69% of the isolates from the region encoded the ancestral Burkholderia thailandensis-like flagellum and chemotaxis gene cluster, a proportion significantly lower than that reported from mainland Australia and consistent with observations of isolates from southern Papua New Guinea. A goodness-of-fit test indicated that there was geographic localization of sequence types throughout the archipelago, with the exception of Thursday Island, the economic and cultural hub of the region. Sequence types common to mainland Australia and Papua New Guinea were identified. These findings demonstrate for the first time an environmental reservoir for B. pseudomallei in the Torres Strait, and multilocus sequence typing suggests that the organism is not randomly distributed throughout this region and that seawater may provide a barrier to dispersal of the organism. Moreover, these findings support an anthropogenic dispersal hypothesis for the spread of B. pseudomallei throughout this region. PMID:23698533

  12. Biogeography of Burkholderia pseudomallei in the Torres Strait Islands of Northern Australia.

    PubMed

    Baker, Anthony; Mayo, Mark; Owens, Leigh; Burgess, Graham; Norton, Robert; McBride, William John Hannan; Currie, Bart J; Warner, Jeffrey

    2013-08-01

    It has been hypothesized that biogeographical boundaries are a feature of Burkholderia pseudomallei ecology, and they impact the epidemiology of melioidosis on a global scale. This study examined the relatedness of B. pseudomallei sourced from islands in the Torres Strait of Northern Australia to determine if the geography of isolated island communities is a determinant of the organisms' dispersal. Environmental sampling on Badu Island in the Near Western Island cluster recovered a single clone. An additional 32 clinical isolates from the region were sourced. Isolates were characterized using multilocus sequence typing and a multiplex PCR targeting the flagellum gene cluster. Gene cluster analysis determined that 69% of the isolates from the region encoded the ancestral Burkholderia thailandensis-like flagellum and chemotaxis gene cluster, a proportion significantly lower than that reported from mainland Australia and consistent with observations of isolates from southern Papua New Guinea. A goodness-of-fit test indicated that there was geographic localization of sequence types throughout the archipelago, with the exception of Thursday Island, the economic and cultural hub of the region. Sequence types common to mainland Australia and Papua New Guinea were identified. These findings demonstrate for the first time an environmental reservoir for B. pseudomallei in the Torres Strait, and multilocus sequence typing suggests that the organism is not randomly distributed throughout this region and that seawater may provide a barrier to dispersal of the organism. Moreover, these findings support an anthropogenic dispersal hypothesis for the spread of B. pseudomallei throughout this region.

  13. [A case of melioidosis in Argentina].

    PubMed

    Almuzara, Marisa; Barberis, Claudia; Bravo, Martín; Pisarevsky, Andrea; Petrucci, Enrique; Famiglietti, Angela; Lasala, María; Vay, Carlos

    2011-01-01

    We describe a case of 17-year- old man native of Dominican Republic, with Hodgkin's lymphoma, who presented soft espontaneous draining nodules. In the clinical samples grew Burkholderia pseudomallei; the etiological agent of melioidosis. He received antimicrobial treatment with imipenem and amoxicillin/clavulanic with very good clinical evolution of the infectious process. Melioidosis diagnosis could be underestimated due to the low incidence of Burkholderia pseudomallei in our continent. The definitive diagnosis depends of the isolation and identification in the clinical sample.

  14. Genomic Diversity of Burkholderia pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia mallei-Specific Prophage in B. pseudomallei 1026b

    DTIC Science & Technology

    2004-06-01

    Burkholderia strains used in this study included Burkholderia cepacia LMG 1222 (44), Burkholderia multivorans C5568, B. multivorans LMG 18823 (44...and experimentally useful panel of strains from the Burkholderia cepacia complex. J. Clin. Microbiol. 38:910–913. 45. Manzeniuk, O. I., N. V... Burkholderia pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia mallei-Specific Prophage in B. pseudomallei 1026b David

  15. Genomic Diversity of Burkholderia pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia mallei-Specific Propage in B. pseudomallei 1026b

    DTIC Science & Technology

    2004-06-01

    in this study included Burkholderia cepacia LMG 1222 (44), Burkholderia multivorans C5568, B. multivorans LMG 18823 (44), Burkholderia cenocepacia... Burkholderia cepacia complex. J. Clin. Microbiol. 38:910–913. 45. Manzeniuk, O. I., N. V. Volozhantsev, and E. A. Svetoch. 1994. Identification of Pseudomonas...diversity of Burkholderia pseudomallei clinical isolates: subtractive hybridization reveals a Burkholderia mallei-specific prophage in B. pseudomallei 1026b

  16. Global Map of Growth-Regulated Gene Expression in Burkholderia pseudomallei, the Causative Agent of Melioidosis▿

    PubMed Central

    Rodrigues, Fiona; Sarkar-Tyson, Mitali; Harding, Sarah V.; Sim, Siew Hoon; Chua, Hui Hoon; Lin, Chi Ho; Han, Xu; Karuturi, R. Krishna M.; Sung, Ken; Yu, Kun; Chen, Wei; Atkins, Timothy P.; Titball, Richard W.; Tan, Patrick

    2006-01-01

    Many microbial pathogens express specific virulence traits at distinct growth phases. To understand the molecular pathways linking bacterial growth to pathogenicity, we have characterized the growth transcriptome of Burkholderia pseudomallei, the causative agent of melioidosis. Using a fine-scale sampling approach, we found approximately 17% of all B. pseudomallei genes displaying regulated expression during growth in rich medium, occurring as broad waves of functionally coherent gene expression tightly associated with distinct growth phases and transition points. We observed regulation of virulence genes across all growth phases and identified serC as a potentially new virulence factor by virtue of its coexpression with other early-phase virulence genes. serC-disrupted B. pseudomallei strains were serine auxotrophs and in mouse infection assays exhibited a dramatic attenuation of virulence compared to wild-type B. pseudomallei. Immunization of mice with serC-disrupted B. pseudomallei also conferred protection against subsequent challenges with different wild-type B. pseudomallei strains. At a genomic level, early-phase genes were preferentially localized on chromosome 1, while stationary-phase genes were significantly biased towards chromosome 2. We detected a significant level of chromosomally clustered gene expression, allowing us to predict ∼100 potential operons in the B. pseudomallei genome. We computationally and experimentally validated these operons by showing that genes in these regions are preferentially transcribed in the same 5′→3′ direction, possess significantly shorter intergenic lengths than the overall genome, and are expressed as a common mRNA transcript. The availability of this transcriptome map provides an important resource for understanding the transcriptional architecture of B. pseudomallei. PMID:16997946

  17. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application.

    PubMed

    Lankelma, Jacqueline M; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W; Trentelman, Jos J A; Weehuizen, Tassili A F; Ersöz, Jasmin; Roelofs, Joris J T H; Hovius, Joppe W; Wiersinga, W Joost; Bins, Adriaan D

    2017-03-21

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination against B. pseudomallei flagellin for protection against respiratory challenge. We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads, cytokine responses, inflammation and microscopic lesions. A construct encoding a cellular secretion signal resulted in the most effective protection against melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine responses were significantly diminished and strong reductions in markers for distant organ damage were observed. A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute mass vaccination is indicated and warrants further testing.

  18. Development and Validation of Burkholderia pseudomallei-Specific Real-Time PCR Assays for Clinical, Environmental or Forensic Detection Applications

    PubMed Central

    Price, Erin P.; Dale, Julia L.; Cook, James M.; Sarovich, Derek S.; Seymour, Meagan L.; Ginther, Jennifer L.; Kaufman, Emily L.; Beckstrom-Sternberg, Stephen M.; Mayo, Mark; Kaestli, Mirjam; Glass, Mindy B.; Gee, Jay E.; Wuthiekanun, Vanaporn; Warner, Jeffrey M.; Baker, Anthony; Foster, Jeffrey T.; Tan, Patrick; Tuanyok, Apichai; Limmathurotsakul, Direk; Peacock, Sharon J.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Pearson, Talima

    2012-01-01

    The bacterium Burkholderia pseudomallei causes melioidosis, a rare but serious illness that can be fatal if untreated or misdiagnosed. Species-specific PCR assays provide a technically simple method for differentiating B. pseudomallei from near-neighbor species. However, substantial genetic diversity and high levels of recombination within this species reduce the likelihood that molecular signatures will differentiate all B. pseudomallei from other Burkholderiaceae. Currently available molecular assays for B. pseudomallei detection lack rigorous validation across large in silico datasets and isolate collections to test for specificity, and none have been subjected to stringent quality control criteria (accuracy, precision, selectivity, limit of quantitation (LoQ), limit of detection (LoD), linearity, ruggedness and robustness) to determine their suitability for environmental, clinical or forensic investigations. In this study, we developed two novel B. pseudomallei specific assays, 122018 and 266152, using a dual-probe approach to differentiate B. pseudomallei from B. thailandensis, B. oklahomensis and B. thailandensis-like species; other species failed to amplify. Species specificity was validated across a large DNA panel (>2,300 samples) comprising Burkholderia spp. and non-Burkholderia bacterial and fungal species of clinical and environmental relevance. Comparison of assay specificity to two previously published B. pseudomallei-specific assays, BurkDiff and TTS1, demonstrated comparable performance of all assays, providing between 99.7 and 100% specificity against our isolate panel. Last, we subjected 122018 and 266152 to rigorous quality control analyses, thus providing quantitative limits of assay performance. Using B. pseudomallei as a model, our study provides a framework for comprehensive quantitative validation of molecular assays and provides additional, highly validated B. pseudomallei assays for the scientific research community. PMID:22624061

  19. Development and validation of Burkholderia pseudomallei-specific real-time PCR assays for clinical, environmental or forensic detection applications.

    PubMed

    Price, Erin P; Dale, Julia L; Cook, James M; Sarovich, Derek S; Seymour, Meagan L; Ginther, Jennifer L; Kaufman, Emily L; Beckstrom-Sternberg, Stephen M; Mayo, Mark; Kaestli, Mirjam; Glass, Mindy B; Gee, Jay E; Wuthiekanun, Vanaporn; Warner, Jeffrey M; Baker, Anthony; Foster, Jeffrey T; Tan, Patrick; Tuanyok, Apichai; Limmathurotsakul, Direk; Peacock, Sharon J; Currie, Bart J; Wagner, David M; Keim, Paul; Pearson, Talima

    2012-01-01

    The bacterium Burkholderia pseudomallei causes melioidosis, a rare but serious illness that can be fatal if untreated or misdiagnosed. Species-specific PCR assays provide a technically simple method for differentiating B. pseudomallei from near-neighbor species. However, substantial genetic diversity and high levels of recombination within this species reduce the likelihood that molecular signatures will differentiate all B. pseudomallei from other Burkholderiaceae. Currently available molecular assays for B. pseudomallei detection lack rigorous validation across large in silico datasets and isolate collections to test for specificity, and none have been subjected to stringent quality control criteria (accuracy, precision, selectivity, limit of quantitation (LoQ), limit of detection (LoD), linearity, ruggedness and robustness) to determine their suitability for environmental, clinical or forensic investigations. In this study, we developed two novel B. pseudomallei specific assays, 122018 and 266152, using a dual-probe approach to differentiate B. pseudomallei from B. thailandensis, B. oklahomensis and B. thailandensis-like species; other species failed to amplify. Species specificity was validated across a large DNA panel (>2,300 samples) comprising Burkholderia spp. and non-Burkholderia bacterial and fungal species of clinical and environmental relevance. Comparison of assay specificity to two previously published B. pseudomallei-specific assays, BurkDiff and TTS1, demonstrated comparable performance of all assays, providing between 99.7 and 100% specificity against our isolate panel. Last, we subjected 122018 and 266152 to rigorous quality control analyses, thus providing quantitative limits of assay performance. Using B. pseudomallei as a model, our study provides a framework for comprehensive quantitative validation of molecular assays and provides additional, highly validated B. pseudomallei assays for the scientific research community.

  20. Monoclonal Antibody-Based Immunofluorescence Microscopy for the Rapid Identification of Burkholderia pseudomallei in Clinical Specimens

    PubMed Central

    Tandhavanant, Sarunporn; Wongsuvan, Gumphol; Wuthiekanun, Vanaporn; Teerawattanasook, Nittaya; Day, Nicholas P. J.; Limmathurotsakul, Direk; Peacock, Sharon J.; Chantratita, Narisara

    2013-01-01

    The diagnosis of melioidosis depends on the culture of Burkholderia pseudomallei, which takes at least 48 hours. We used a polyclonal-FITC-based immunofluorescence microscopic assay (Pab-IFA) on clinical samples to provide a rapid presumptive diagnosis. This has limitations including photobleaching and batch-to-batch variability. This study evaluated an IFA based on a monoclonal antibody specific to B. pseudomallei (Mab-IFA) and Alexa Fluor 488. A diagnostic evaluation was performed on a prospective cohort of 951 consecutive patients with suspected melioidosis. A total of 1,407 samples were tested. Test accuracy was defined against culture as the gold standard, and was also compared against Pab-IFA. A total of 88 samples from 64 patients were culture positive for B. pseudomallei. The diagnostic sensitivity and specificity of the Mab-IFA was comparable to the Pab-IFA (48.4% versus 45.3% for sensitivity, and 99.8% versus 98.8% for specificity). We have incorporated the Mab-IFA into our routine practice. PMID:23716405

  1. In vivo Distribution and Clearance of Purified Capsular Polysaccharide from Burkholderia pseudomallei in a Murine Model

    PubMed Central

    Nualnoi, Teerapat; Kirosingh, Adam; Pandit, Sujata G.; Thorkildson, Peter; Brett, Paul J.; Burtnick, Mary N.; AuCoin, David P.

    2016-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a severe infection prominent in northern Australia and Southeast Asia. The “gold standard” for melioidosis diagnosis is bacterial isolation, which takes several days to complete. The resulting delay in diagnosis leads to delayed treatments, which could result in death. In an attempt to develop better methods for early diagnosis of melioidosis, B. pseudomallei capsular polysaccharide (CPS) was identified as an important diagnostic biomarker. A rapid lateral flow immunoassay utilizing CPS-specific monoclonal antibody was developed and tested in endemic regions worldwide. However, the in vivo fate and clearance of CPS has never been thoroughly investigated. Here, we injected mice with purified CPS intravenously and determined CPS concentrations in serum, urine, and major organs at various intervals. The results indicate that CPS is predominantly eliminated through urine and no CPS accumulation occurs in the major organs. Immunoblot analysis demonstrated that intact CPS was excreted through urine. To understand how a large molecule like CPS was eliminated without degradation, a 3-dimenational structure of CPS was modeled. The predicted CPS structure has a rod-like shape with a small diameter that could allow it to flow through the glomerulus of the kidney. CPS clearance was determined using exponential decay models and the corrected Akaike Information Criterion. The results show that CPS has a relatively short serum half-life of 2.9 to 4.4 hours. Therefore, the presence of CPS in the serum and/or urine suggests active melioidosis infection and provides a marker to monitor treatment of melioidosis. PMID:27941991

  2. In vivo Distribution and Clearance of Purified Capsular Polysaccharide from Burkholderia pseudomallei in a Murine Model.

    PubMed

    Nualnoi, Teerapat; Kirosingh, Adam; Pandit, Sujata G; Thorkildson, Peter; Brett, Paul J; Burtnick, Mary N; AuCoin, David P

    2016-12-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a severe infection prominent in northern Australia and Southeast Asia. The "gold standard" for melioidosis diagnosis is bacterial isolation, which takes several days to complete. The resulting delay in diagnosis leads to delayed treatments, which could result in death. In an attempt to develop better methods for early diagnosis of melioidosis, B. pseudomallei capsular polysaccharide (CPS) was identified as an important diagnostic biomarker. A rapid lateral flow immunoassay utilizing CPS-specific monoclonal antibody was developed and tested in endemic regions worldwide. However, the in vivo fate and clearance of CPS has never been thoroughly investigated. Here, we injected mice with purified CPS intravenously and determined CPS concentrations in serum, urine, and major organs at various intervals. The results indicate that CPS is predominantly eliminated through urine and no CPS accumulation occurs in the major organs. Immunoblot analysis demonstrated that intact CPS was excreted through urine. To understand how a large molecule like CPS was eliminated without degradation, a 3-dimenational structure of CPS was modeled. The predicted CPS structure has a rod-like shape with a small diameter that could allow it to flow through the glomerulus of the kidney. CPS clearance was determined using exponential decay models and the corrected Akaike Information Criterion. The results show that CPS has a relatively short serum half-life of 2.9 to 4.4 hours. Therefore, the presence of CPS in the serum and/or urine suggests active melioidosis infection and provides a marker to monitor treatment of melioidosis.

  3. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin

    PubMed Central

    Nithichanon, Arnone; Rinchai, Darawan; Gori, Alessandro; Lassaux, Patricia; Peri, Claudio; Conchillio-Solé, Oscar; Ferrer-Navarro, Mario; Gourlay, Louise J.; Nardini, Marco; Vila, Jordi; Daura, Xavier; Colombo, Giorgio; Bolognesi, Martino; Lertmemonkolchai, Ganjana

    2015-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components. PMID:26222657

  4. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays

    PubMed Central

    Welkos, Susan L.; Klimko, Christopher P.; Kern, Steven J.; Bearss, Jeremy J.; Bozue, Joel A.; Bernhards, Robert C.; Trevino, Sylvia R.; Waag, David M.; Amemiya, Kei; Worsham, Patricia L.; Cote, Christopher K.

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  5. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays.

    PubMed

    Welkos, Susan L; Klimko, Christopher P; Kern, Steven J; Bearss, Jeremy J; Bozue, Joel A; Bernhards, Robert C; Trevino, Sylvia R; Waag, David M; Amemiya, Kei; Worsham, Patricia L; Cote, Christopher K

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  6. Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase.

    PubMed

    Plumley, Brooke A; Martin, Kevin H; Borlee, Grace I; Marlenee, Nicole L; Burtnick, Mary N; Brett, Paul J; AuCoin, David P; Bowen, Richard A; Schweizer, Herbert P; Borlee, Bradley R

    2017-03-01

    Burkholderia pseudomallei, a tier 1 select agent and the etiological agent of melioidosis, transitions from soil and aquatic environments to infect a variety of vertebrate and invertebrate hosts. During the transition from an environmental saprophyte to a mammalian pathogen, B. pseudomallei encounters and responds to rapidly changing environmental conditions. Environmental sensing systems that control cellular levels of cyclic di-GMP promote pathogen survival in diverse environments. Cyclic di-GMP controls biofilm production, virulence factors, and motility in many bacteria. This study is an evaluation of cyclic di-GMP-associated genes that are predicted to metabolize and interact with cyclic di-GMP as identified from the annotated genome of B. pseudomallei 1026b. Mutants containing transposon disruptions in each of these genes were characterized for biofilm formation and motility at two temperatures that reflect conditions that the bacteria encounter in the environment and during the infection of a mammalian host. Mutants with transposon insertions in a known phosphodiesterase (cdpA) and a predicted hydrolase (Bp1026b_I2285) gene exhibited decreased motility regardless of temperature. In contrast, the phenotypes exhibited by mutants with transposon insertion mutations in a predicted diguanylate cyclase gene (Bp1026b_II2523) were strikingly influenced by temperature and were dependent on a conserved GG(D/E)EF motif. The transposon insertion mutant exhibited enhanced biofilm formation at 37°C but impaired biofilm formation at 30°C. These studies illustrate the importance of studying behaviors regulated by cyclic di-GMP under varied environmental conditions in order to better understand cyclic di-GMP signaling in bacterial pathogens.IMPORTANCE This report evaluates predicted cyclic di-GMP binding and metabolic proteins from Burkholderia pseudomallei 1026b, a tier 1 select agent and the etiologic agent of melioidosis. Transposon insertion mutants with disruptions in

  7. Environmental Attributes Influencing the Distribution of Burkholderia pseudomallei in Northern Australia

    PubMed Central

    Baker, Anthony L.; Ezzahir, Jessica; Gardiner, Christopher; Shipton, Warren; Warner, Jeffrey M.

    2015-01-01

    Factors responsible for the spatial and temporal clustering of Burkholderia pseudomallei in the environment remain to be elucidated. Whilst laboratory based experiments have been performed to analyse survival of the organism in various soil types, such approaches are strongly influenced by alterations to the soil micro ecology during soil sanitisation and translocation. During the monsoonal season in Townsville, Australia, B. pseudomallei is discharged from Castle Hill (an area with a very high soil prevalence of the organism) by groundwater seeps and is washed through a nearby area where intensive sampling in the dry season has been unable to detect the organism. We undertook environmental sampling and soil and plant characterisation in both areas to ascertain physiochemical and macro-floral differences between the two sites that may affect the prevalence of B. pseudomallei. In contrast to previous studies, the presence of B. pseudomallei was correlated with a low gravimetric water content and low nutrient availability (nitrogen and sulphur) and higher exchangeable potassium in soils favouring recovery. Relatively low levels of copper, iron and zinc favoured survival. The prevalence of the organism was found to be highest under the grasses Aristida sp. and Heteropogon contortus and to a lesser extent under Melinis repens. The findings of this study indicate that a greater variety of factors influence the endemicity of melioidosis than has previously been reported, and suggest that biogeographical boundaries to the organisms’ distribution involve complex interactions. PMID:26398904

  8. BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei.

    PubMed

    Chan, Y Y; Tan, T M C; Ong, Y M; Chua, K L

    2004-04-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to a wide range of antimicrobial agents, including beta-lactams, aminoglycosides, macrolides, and polymyxins. An operon, bpeR-bpeA-bpeB-oprB, which encodes a putative repressor, a membrane fusion protein, an inner membrane protein, and an outer membrane protein, respectively, of a multidrug efflux pump of the resistance-nodulation-division family was identified in B. pseudomallei. The divergently transcribed bpeR gene encodes a putative repressor protein of the TetR family which probably regulates the expression of the bpeAB-oprB gene cluster. Comparison of the MICs and minimal bactericidal concentrations of antimicrobials for bpeAB deletion mutant KHW Delta bpeAB and its isogenic wild-type parent, KHW, showed that the B. pseudomallei BpeAB-OprB pump is responsible for the efflux of the aminoglycosides gentamicin and streptomycin, the macrolide erythromycin, and the dye acriflavine. Antibiotic efflux by the BpeAB-OprB pump was dependent on a proton gradient and differs from that by the AmrAB-OprA pump in that it did not efflux the aminoglycoside spectinomycin or the macrolide clarithromycin. The broad-spectrum efflux pump inhibitor MC-207,110 did not potentiate the effectiveness of the antimicrobials erythromycin and streptomycin in B. pseudomallei.

  9. BpeAB-OprB, a Multidrug Efflux Pump in Burkholderia pseudomallei

    PubMed Central

    Chan, Y. Y.; Tan, T. M. C.; Ong, Y. M.; Chua, K. L.

    2004-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to a wide range of antimicrobial agents, including β-lactams, aminoglycosides, macrolides, and polymyxins. An operon, bpeR-bpeA-bpeB-oprB, which encodes a putative repressor, a membrane fusion protein, an inner membrane protein, and an outer membrane protein, respectively, of a multidrug efflux pump of the resistance-nodulation-division family was identified in B. pseudomallei. The divergently transcribed bpeR gene encodes a putative repressor protein of the TetR family which probably regulates the expression of the bpeAB-oprB gene cluster. Comparison of the MICs and minimal bactericidal concentrations of antimicrobials for bpeAB deletion mutant KHWΔbpeAB and its isogenic wild-type parent, KHW, showed that the B. pseudomallei BpeAB-OprB pump is responsible for the efflux of the aminoglycosides gentamicin and streptomycin, the macrolide erythromycin, and the dye acriflavine. Antibiotic efflux by the BpeAB-OprB pump was dependent on a proton gradient and differs from that by the AmrAB-OprA pump in that it did not efflux the aminoglycoside spectinomycin or the macrolide clarithromycin. The broad-spectrum efflux pump inhibitor MC-207,110 did not potentiate the effectiveness of the antimicrobials erythromycin and streptomycin in B. pseudomallei. PMID:15047512

  10. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India

    PubMed Central

    Peddayelachagiri, Bhavani V.; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H.; Batra, Harsh V.

    2016-01-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  11. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    PubMed

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients.

  12. Porin Involvement in Cephalosporin and Carbapenem Resistance of Burkholderia pseudomallei

    PubMed Central

    Aunkham, Anuwat; Schulte, Albert; Winterhalter, Mathias; Suginta, Wipa

    2014-01-01

    Background Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes frequently lethal melioidosis, with a particularly high prevalence in the north and northeast of Thailand. Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins. Principal Findings Microbiological assays showed that the clinical Bps strain was resistant to most antimicrobial agents and sensitive only to ceftazidime and meropenem. An E. coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. Channel recordings of BpsOmp38 reconstituted in a planar black lipid membrane (BLM) suggested that the higher permeability of BpsOmp38Y119A was caused by widening of the pore interior through removal of the bulky side chain. In contrast, the lower permeability of BpsOmp38Y119F was caused by introduction of the hydrophobic side chain (Phe), increasing the ‘greasiness’ of the pore lumen. Significantly, liposome swelling assays showed no permeation through the BpsOmp38 channel by antimicrobial agents to which Bps is resistant (cefoxitin, cefepime, and doripenem). In contrast, high permeability to ceftazidime and meropenem was observed, these being agents to which Bps is sensitive. Conclusion/Significance Our results, from both in vivo and in vitro studies, demonstrate that membrane permeability associated with BpsOmp38 expression correlates well with the antimicrobial susceptibility of the virulent bacterium B. pseudomallei, especially to carbapenems and cephalosporins. In addition, substitution of the residue Tyr119 affects

  13. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei

    PubMed Central

    Hall, Carina M.; Busch, Joseph D.; Shippy, Kenzie; Allender, Christopher J.; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W.; Schupp, James M.; Colman, Rebecca E.; Keim, Paul; Currie, Bart J.; Wagner, David M.

    2015-01-01

    The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States. PMID:26600238

  14. Colony Morphology Variation of Burkholderia pseudomallei Is Associated with Antigenic Variation and O-Polysaccharide Modification

    PubMed Central

    Wikraiphat, Chanthiwa; Saiprom, Natnaree; Tandhavanant, Sarunporn; Heiss, Christian; Azadi, Parastoo; Wongsuvan, Gumphol; Tuanyok, Apichai; Holden, Matthew T. G.; Burtnick, Mary N.; Brett, Paul J.; Peacock, Sharon J.

    2015-01-01

    Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns. PMID:25776750

  15. Burkholderia pseudomallei Colony Morphotypes Show a Synchronized Metabolic Pattern after Acute Infection

    PubMed Central

    Steinmetz, Ivo; Lalk, Michael

    2016-01-01

    Background Burkholderia pseudomallei is a water and soil bacterium and the causative agent of melioidosis. A characteristic feature of this bacterium is the formation of different colony morphologies which can be isolated from environmental samples as well as from clinical samples, but can also be induced in vitro. Previous studies indicate that morphotypes can differ in a number of characteristics such as resistance to oxidative stress, cellular adhesion and intracellular replication. Yet the metabolic features of B. pseudomallei and its different morphotypes have not been examined in detail so far. Therefore, this study aimed to characterize the exometabolome of B. pseudomallei morphotypes and the impact of acute infection on their metabolic characteristics. Methods and Principal Findings We applied nuclear magnetic resonance spectroscopy (1H-NMR) in a metabolic footprint approach to compare nutrition uptake and metabolite secretion of starvation induced morphotypes of the B. pseudomallei strains K96243 and E8. We observed gluconate production and uptake in all morphotype cultures. Our study also revealed that among all morphotypes amino acids could be classified with regard to their fast and slow consumption. In addition to these shared metabolic features, the morphotypes varied highly in amino acid uptake profiles, secretion of branched chain amino acid metabolites and carbon utilization. After intracellular passage in vitro or murine acute infection in vivo, we observed a switch of the various morphotypes towards a single morphotype and a synchronization of nutrient uptake and metabolite secretion. Conclusion To our knowledge, this study provides first insights into the basic metabolism of B. pseudomallei and its colony morphotypes. Furthermore, our data suggest, that acute infection leads to the synchronization of B. pseudomallei colony morphology and metabolism through yet unknown host signals and bacterial mechanisms. PMID:26943908

  16. Within-Host Evolution of Burkholderia pseudomallei over a Twelve-Year Chronic Carriage Infection

    PubMed Central

    Price, Erin P.; Sarovich, Derek S.; Mayo, Mark; Tuanyok, Apichai; Drees, Kevin P.; Kaestli, Mirjam; Beckstrom-Sternberg, Stephen M.; Babic-Sternberg, James S.; Kidd, Timothy J.; Bell, Scott C.; Keim, Paul; Pearson, Talima; Currie, Bart J.

    2013-01-01

    ABSTRACT Burkholderia pseudomallei causes the potentially fatal disease melioidosis. It is generally accepted that B. pseudomallei is a noncommensal bacterium and that any culture-positive clinical specimen denotes disease requiring treatment. Over a 23-year study of melioidosis cases in Darwin, Australia, just one patient from 707 survivors has developed persistent asymptomatic B. pseudomallei carriage. To better understand the mechanisms behind this unique scenario, we performed whole-genome analysis of two strains isolated 139 months apart. During this period, B. pseudomallei underwent several adaptive changes. Of 23 point mutations, 78% were nonsynonymous and 43% were predicted to be deleterious to gene function, demonstrating a strong propensity for positive selection. Notably, a nonsense mutation inactivated the universal stress response sigma factor RpoS, with pleiotropic implications. The genome underwent substantial reduction, with four deletions in chromosome 2 resulting in the loss of 221 genes. The deleted loci included genes involved in secondary metabolism, environmental survival, and pathogenesis. Of 14 indels, 11 occurred in coding regions and 9 resulted in frameshift mutations that dramatically affected predicted gene products. Disproportionately, four indels affected lipopolysaccharide biosynthesis and modification. Finally, we identified a frameshift mutation in both P314 isolates within wcbR, an important component of the capsular polysaccharide I locus, suggesting virulence attenuation early in infection. Our study illustrates a unique clinical case that contrasts a high-consequence infectious agent with a long-term commensal infection and provides further insights into bacterial evolution within the human host. PMID:23860767

  17. Phylogenetic analysis of Ara+ and Ara- Burkholderia pseudomallei isolates and development of a multiplex PCR procedure for rapid discrimination between the two biotypes.

    PubMed

    Dharakul, T; Tassaneetrithep, B; Trakulsomboon, S; Songsivilai, S

    1999-06-01

    A Burkholderia pseudomallei-like organism has recently been identified among some soil isolates of B. pseudomallei in an area with endemic melioidosis. This organism is almost identical to B. pseudomallei in terms of morphological and biochemical profiles, except that it differs in ability to assimilate L-arabinose. These Ara+ isolates are also less virulent than the Ara- isolates in animal models. In addition, clinical isolates of B. pseudomallei available to date are almost exclusively Ara-. These features suggested that these two organisms may belong to distinctive species. In this study, the 16S rRNA-encoding genes from five clinical (four Ara- and one Ara+) and nine soil isolates (five Ara- and four Ara+) of B. pseudomallei were sequenced. The nucleotide sequences and phylogenetic analysis indicated that the 16S rRNA-encoding gene of the Ara+ biotype was similar to but distinctively different from that of the Ara- soil isolates, which were identical to the classical clinical isolates of B. pseudomallei. The nucleotide sequence differences in the 16S rRNA-encoding gene appeared to be specific for the Ara+ or Ara- biotypes. The differences were, however, not sufficient for classification into a new species within the genus Burkholderia. A simple and rapid multiplex PCR procedure was developed to discriminate between Ara- and Ara+ B. pseudomallei isolates. This new method could also be incorporated into our previously reported nested PCR system for detecting B. pseudomallei in clinical specimens.

  18. Imported melioidosis, Israel, 2008.

    PubMed

    Cahn, Avivit; Koslowsky, Benjamin; Nir-Paz, Ran; Temper, Violeta; Hiller, Nurit; Karlinsky, Alla; Gur, Itzhak; Hidalgo-Grass, Carlos; Heyman, Samuel N; Moses, Allon E; Block, Colin

    2009-11-01

    In 2008, melioidosis was diagnosed in an agricultural worker from Thailand in the southern Jordan Valley in Israel. He had newly diagnosed diabetes mellitus, fever, multiple abscesses, and osteomyelitis. Burkholderia pseudomallei was isolated from urine and blood. Four of 10 laboratory staff members exposed to the organism received chemoprophylaxis, 3 of whom had adverse events.

  19. Use of a Safe, Reproducible, and Rapid Aerosol Delivery Method to Study Infection by Burkholderia pseudomallei and Burkholderia mallei in Mice

    PubMed Central

    Lafontaine, Eric R.; Zimmerman, Shawn M.; Shaffer, Teresa L.; Michel, Frank; Gao, Xiudan; Hogan, Robert J.

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 102, 103 and 104 organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 103 and 104 B. pseudomallei cells, animals infected with 102 organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate with those

  20. Emergence of Melioidosis in Indonesia.

    PubMed

    Tauran, Patricia M; Sennang, Nurhayana; Rusli, Benny; Wiersinga, W Joost; Dance, David; Arif, Mansyur; Limmathurotsakul, Direk

    2015-12-01

    Melioidosis is known to be highly endemic in parts of southeast Asia and northern Australia; however, cases are rarely reported in Indonesia. Here we report three cases of melioidosis in Makassar, South Sulawesi, Indonesia occurring between 2013 and 2014. Two patients died and the other was lost to follow-up. Burkholderia pseudomallei isolates from all three cases were identified by the VITEK2 Compact installed in the hospital in 2012. None of the three patients reported received antimicrobials recommended for melioidosis because of the delayed recognition of the organism. We reviewed the literature and found only seven reports of melioidosis in Indonesia. Five were reported before 1960. We suggest that melioidosis is endemic throughout Indonesia but currently under-recognized. Training on how to identify B. pseudomallei accurately and safely in all available microbiological facilities should be provided, and consideration should be given to making melioidosis a notifiable disease in Indonesia.

  1. Emergence of Melioidosis in Indonesia

    PubMed Central

    Tauran, Patricia M.; Sennang, Nurhayana; Rusli, Benny; Wiersinga, W. Joost; Dance, David; Arif, Mansyur; Limmathurotsakul, Direk

    2015-01-01

    Melioidosis is known to be highly endemic in parts of southeast Asia and northern Australia; however, cases are rarely reported in Indonesia. Here we report three cases of melioidosis in Makassar, South Sulawesi, Indonesia occurring between 2013 and 2014. Two patients died and the other was lost to follow-up. Burkholderia pseudomallei isolates from all three cases were identified by the VITEK2 Compact installed in the hospital in 2012. None of the three patients reported received antimicrobials recommended for melioidosis because of the delayed recognition of the organism. We reviewed the literature and found only seven reports of melioidosis in Indonesia. Five were reported before 1960. We suggest that melioidosis is endemic throughout Indonesia but currently under-recognized. Training on how to identify B. pseudomallei accurately and safely in all available microbiological facilities should be provided, and consideration should be given to making melioidosis a notifiable disease in Indonesia. PMID:26458777

  2. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei

    PubMed Central

    Hongsing, Nuttaya; Thammawithan, Saengrawee; Daduang, Sakda; Klaynongsruang, Sompong; Tuanyok, Apichai; Patramanon, Rina

    2016-01-01

    Silver nanoparticles (AgNPs) have a strong antimicrobial activity against a variety of pathogenic bacteria. The killing mechanism of AgNPs involves direct physical membrane destruction and subsequent molecular damage from both AgNPs and released Ag+. Burkholderia pseudomallei is the causative agent of melioidosis, an endemic infectious disease primarily found in northern Australia and Southeast Asia. B. pseudomallei is intrinsically resistant to most common antibiotics. In this study, the antimicrobial activity and mechanism of AgNPs (10–20 nm) against B. pseudomallei were investigated. The MIC and MBC for nine B. pseudomallei strains ranged from 32–48 μg/mL and 96–128 μg/mL, respectively. Concentrations of AgNPs less than 256 μg/mL were not toxic to human red blood cells. AgNPs exhibited a two-phase mechanism: cell death induction and ROS induction. The first phase was a rapid killing step within 5 min, causing the direct damage of the cytoplasmic membrane of the bacterial cells, as observed by a time-kill assay and fluorescence microscopy. During the period of 5–30 min, the cell surface charge was rapidly neutralized from -8.73 and -7.74 to 2.85 and 2.94 mV in two isolates of B. pseudomallei, as revealed by zeta potential measurement. Energy-dispersive X-ray (EDX) spectroscopy showed the silver element deposited on the bacterial membrane, and TEM micrographs of the AgNP-treated B. pseudomallei cells showed severe membrane damage and cytosolic leakage at 1/5 MIC and cell bursting at MBC. During the killing effect the released Ag+ from AgNPs was only 3.9% from the starting AgNPs concentration as observed with ICP-OES experiment. In the second phase, the ROS induction occurred 1–4 hr after the AgNP treatment. Altogether, we provide direct kinetic evidence of the AgNPs killing mechanism, by which cell death is separable from the ROS induction and AgNPs mainly contributes in the killing action. AgNPs may be considered a potential candidate to develop a

  3. Identification of the conserved hypothetical protein BPSL0317 in Burkholderia pseudomallei K96243

    NASA Astrophysics Data System (ADS)

    Yusoff, Nur Syamimi; Damiri, Nadzirah; Firdaus-Raih, Mohd

    2014-09-01

    Burkholderia pseudomallei K96243 is the causative agent of melioidosis, a disease which is endemic in Northern Australia and Southeastern Asia. The genome encodes several essential proteins including those currently annotated as hypothetical proteins. We studied the conservation and the essentiality of expressed hypothetical proteins in normal and different stress conditions. Based on the comparative genomics, we identified a hypothetical protein, BPSL0317, a potential essential gene that is being expressed in all normal and stress conditions. BPSL0317 is also phylogenetically conserved in the Burkholderiales order suggesting that this protein is crucial for survival among the order's members. BPSL0317 therefore has a potential to be a candidate antimicrobial drug target for this group of bacteria.

  4. Antibiotic Resistance Markers in Strain Bp1651 of Burkholderia pseudomallei Identified by Genome Sequence Analysis.

    PubMed

    Bugrysheva, Julia V; Sue, David; Gee, Jay E; Elrod, Mindy G; Hoffmaster, Alex R; Randall, Linnell B; Chirakul, Sunisa; Tuanyok, Apichai; Schweizer, Herbert P; Weigel, Linda M

    2017-04-10

    Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis including β-lactams such as penicillins (amoxicillin/clavulanic acid), cephalosporins (ceftazidime), carbapenems (imipenem and meropenem), as well as tetracyclines and sulfonamides. We sequenced, assembled, and annotated the Bp1651 genome, and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A β-lactamase and was previously implicated in resistance to β-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance, and T147A contributed to amoxicillin/clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely due to a frame shift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis.

  5. Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei

    PubMed Central

    Randall, Linnell B.; Dobos, Karen; Papp-Wallace, Krisztina M.; Bonomo, Robert A.

    2015-01-01

    Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose. PMID:26711764

  6. Characterization of BcaA, a putative classical autotransporter protein in Burkholderia pseudomallei.

    PubMed

    Campos, Cristine G; Borst, Luke; Cotter, Peggy A

    2013-04-01

    Burkholderia pseudomallei is a tier 1 select agent, and the causative agent of melioidosis, a disease with effects ranging from chronic abscesses to fulminant pneumonia and septic shock, which can be rapidly fatal. Autotransporters (ATs) are outer membrane proteins belonging to the type V secretion system family, and many have been shown to play crucial roles in pathogenesis. The open reading frame Bp1026b_II1054 (bcaA) in B. pseudomallei strain 1026b is predicted to encode a classical autotransporter protein with an approximately 80-kDa passenger domain that contains a subtilisin-related domain. Immediately 3' to bcaA is Bp11026_II1055 (bcaB), which encodes a putative prolyl 4-hydroxylase. To investigate the role of these genes in pathogenesis, large in-frame deletion mutations of bcaA and bcaB were constructed in strain Bp340, an efflux pump mutant derivative of the melioidosis clinical isolate 1026b. Comparison of Bp340ΔbcaA and Bp340ΔbcaB mutants to wild-type B. pseudomallei in vitro demonstrated similar levels of adherence to A549 lung epithelial cells, but the mutant strains were defective in their ability to invade these cells and to form plaques. In a BALB/c mouse model of intranasal infection, similar bacterial burdens were observed after 48 h in the lungs and liver of mice infected with Bp340ΔbcaA, Bp340ΔbcaB, and wild-type bacteria. However, significantly fewer bacteria were recovered from the spleen of Bp340ΔbcaA-infected mice, supporting the idea of a role for this AT in dissemination or in survival in the passage from the site of infection to the spleen.

  7. Characterization of BcaA, a Putative Classical Autotransporter Protein in Burkholderia pseudomallei

    PubMed Central

    Campos, Cristine G.; Borst, Luke

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent, and the causative agent of melioidosis, a disease with effects ranging from chronic abscesses to fulminant pneumonia and septic shock, which can be rapidly fatal. Autotransporters (ATs) are outer membrane proteins belonging to the type V secretion system family, and many have been shown to play crucial roles in pathogenesis. The open reading frame Bp1026b_II1054 (bcaA) in B. pseudomallei strain 1026b is predicted to encode a classical autotransporter protein with an approximately 80-kDa passenger domain that contains a subtilisin-related domain. Immediately 3′ to bcaA is Bp11026_II1055 (bcaB), which encodes a putative prolyl 4-hydroxylase. To investigate the role of these genes in pathogenesis, large in-frame deletion mutations of bcaA and bcaB were constructed in strain Bp340, an efflux pump mutant derivative of the melioidosis clinical isolate 1026b. Comparison of Bp340ΔbcaA and Bp340ΔbcaB mutants to wild-type B. pseudomallei in vitro demonstrated similar levels of adherence to A549 lung epithelial cells, but the mutant strains were defective in their ability to invade these cells and to form plaques. In a BALB/c mouse model of intranasal infection, similar bacterial burdens were observed after 48 h in the lungs and liver of mice infected with Bp340ΔbcaA, Bp340ΔbcaB, and wild-type bacteria. However, significantly fewer bacteria were recovered from the spleen of Bp340ΔbcaA-infected mice, supporting the idea of a role for this AT in dissemination or in survival in the passage from the site of infection to the spleen. PMID:23340315

  8. Burkholderia pseudomallei Rapidly Infects the Brain Stem and Spinal Cord via the Trigeminal Nerve after Intranasal Inoculation

    PubMed Central

    St. John, James A.; Walkden, Heidi; Nazareth, Lynn; Beagley, Kenneth W.; Batzloff, Michael R.

    2016-01-01

    Infection with Burkholderia pseudomallei causes melioidosis, a disease with a high mortality rate (20% in Australia and 40% in Southeast Asia). Neurological melioidosis is particularly prevalent in northern Australian patients and involves brain stem infection, which can progress to the spinal cord; however, the route by which the bacteria invade the central nervous system (CNS) is unknown. We have previously demonstrated that B. pseudomallei can infect the olfactory and trigeminal nerves within the nasal cavity following intranasal inoculation. As the trigeminal nerve projects into the brain stem, we investigated whether the bacteria could continue along this nerve to penetrate the CNS. After intranasal inoculation of mice, B. pseudomallei caused low-level localized infection within the nasal cavity epithelium, prior to invasion of the trigeminal nerve in small numbers. B. pseudomallei rapidly invaded the trigeminal nerve and crossed the astrocytic barrier to enter the brain stem within 24 h and then rapidly progressed over 2,000 μm into the spinal cord. To rule out that the bacteria used a hematogenous route, we used a capsule-deficient mutant of B. pseudomallei that does not survive in the blood and found that it also entered the CNS via the trigeminal nerve. This suggests that the primary route of entry is via the nerves that innervate the nasal cavity. We found that actin-mediated motility could facilitate initial infection of the olfactory epithelium. Thus, we have demonstrated that B. pseudomallei can rapidly infect the brain and spinal cord via the trigeminal nerve branches that innervate the nasal cavity. PMID:27382023

  9. Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence.

    PubMed

    Sahl, Jason W; Allender, Christopher J; Colman, Rebecca E; Califf, Katy J; Schupp, James M; Currie, Bart J; Van Zandt, Kristopher E; Gelhaus, H Carl; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.

  10. A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens

    PubMed Central

    Felgner, Philip L.; Kayala, Matthew A.; Vigil, Adam; Burk, Chad; Nakajima-Sasaki, Rie; Pablo, Jozelyn; Molina, Douglas M.; Hirst, Siddiqua; Chew, Janet S. W.; Wang, Dongling; Tan, Gladys; Duffield, Melanie; Yang, Ron; Neel, Julien; Chantratita, Narisara; Bancroft, Greg; Lertmemongkolchai, Ganjana; Davies, D. Huw; Baldi, Pierre; Peacock, Sharon; Titball, Richard W.

    2009-01-01

    Understanding the way in which the immune system responds to infection is central to the development of vaccines and many diagnostics. To provide insight into this area, we fabricated a protein microarray containing 1,205 Burkholderia pseudomallei proteins, probed it with 88 melioidosis patient sera, and identified 170 reactive antigens. This subset of antigens was printed on a smaller array and probed with a collection of 747 individual sera derived from 10 patient groups including melioidosis patients from Northeast Thailand and Singapore, patients with different infections, healthy individuals from the USA, and from endemic and nonendemic regions of Thailand. We identified 49 antigens that are significantly more reactive in melioidosis patients than healthy people and patients with other types of bacterial infections. We also identified 59 cross-reactive antigens that are equally reactive among all groups, including healthy controls from the USA. Using these results we were able to devise a test that can classify melioidosis positive and negative individuals with sensitivity and specificity of 95% and 83%, respectively, a significant improvement over currently available diagnostic assays. Half of the reactive antigens contained a predicted signal peptide sequence and were classified as outer membrane, surface structures or secreted molecules, and an additional 20% were associated with pathogenicity, adaptation or chaperones. These results show that microarrays allow a more comprehensive analysis of the immune response on an antigen-specific, patient-specific, and population-specific basis, can identify serodiagnostic antigens, and contribute to a more detailed understanding of immunogenicity to this pathogen. PMID:19666533

  11. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection

    PubMed Central

    Lim, Mei-Perng; Firdaus-Raih, Mohd; Nathan, Sheila

    2016-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators. PMID:27672387

  12. Development of Real-Time PCR Assays and Evaluation of Their Potential Use for Rapid Detection of Burkholderia pseudomallei in Clinical Blood Specimens▿

    PubMed Central

    Supaprom, Chonthida; Wang, Dongling; Leelayuwat, Chanvit; Thaewpia, Wisansanee; Susaengrat, Wattanachai; Koh, Victor; Ooi, Eng Eong; Lertmemongkolchai, Ganjana; Liu, Yichun

    2007-01-01

    The early initiation of appropriate antimicrobial therapy is critical for improving the prognosis of patients with septicemic melioidosis. Thus, the use of a rapid molecular diagnosis may affect the outcome of this disease, which has a high mortality rate. We report the development of two TaqMan real-time PCR assays (designated 8653 and 9438) that detect the presence of two novel genes unique to Burkolderia pseudomallei. The analytical sensitivity and specificity of the assays were assessed with 91 different B. pseudomallei isolates, along with 96 isolates and strains representing 28 other bacterial species, including the closely related Burkholderia/Ralstonia. The two assays performed equally well with both purified DNA and crude cell lysates, with 100% analytical specificity for the detection of B. pseudomallei. The limit of detection was 50 fg of DNA (equivalent to six bacterial genomes) per PCR for both assay 8563 and 9438. We also evaluated these assays with DNA extracted from blood specimens taken from 45 patients with culture-confirmed septicemic melioidosis or other septicemias. Of the 28 melioidosis blood specimens, assays 8653 and 9438 gave sensitivities of 71% (20/28) and 54% (15/28), respectively. Effectively, all fatal cases of septicemic melioidosis were detected by 8653. For the 17 non-melioidosis blood specimens, specificities of 82% (14/17) and 88% (15/17) were obtained for assays 8653 and 9438, respectively. The real-time PCR assays developed in this study provide alternative, rapid molecular tools for the specific detection of B. pseudomallei, and this may be of particular use in the early diagnosis and treatment of septicemic melioidosis. PMID:17634296

  13. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

    PubMed Central

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  14. Functional characterization of OXA-57, a class D beta-lactamase from Burkholderia pseudomallei.

    PubMed

    Keith, Karen E; Oyston, Petra C; Crossett, Ben; Fairweather, Neil F; Titball, Richard W; Walsh, Timothy R; Brown, Katherine A

    2005-04-01

    Class D beta-lactamase OXA-57 was identified in a range of isolates of Burkholderia pseudomallei and Burkholderia thailandensis. Comparative kinetic analyses of wild-type and mutant forms of B. pseudomallei OXA-57 are reported. Implications of these data for beta-lactam resistance and the proposed role of Ser-104 in beta-lactam hydrolysis are discussed.

  15. Functional Characterization of OXA-57, a Class D β-Lactamase from Burkholderia pseudomallei

    PubMed Central

    Keith, Karen E.; Oyston, Petra C.; Crossett, Ben; Fairweather, Neil F.; Titball, Richard W.; Walsh, Timothy R.; Brown, Katherine A.

    2005-01-01

    Class D β-lactamase OXA-57 was identified in a range of isolates of Burkholderia pseudomallei and Burkholderia thailandensis. Comparative kinetic analyses of wild-type and mutant forms of B. pseudomallei OXA-57 are reported. Implications of these data for β-lactam resistance and the proposed role of Ser-104 in β-lactam hydrolysis are discussed. PMID:15793160

  16. Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR.

    PubMed

    Podnecky, Nicole L; Elrod, Mindy G; Newton, Bruce R; Dauphin, Leslie A; Shi, Jianrong; Chawalchitiporn, Sutthinan; Baggett, Henry C; Hoffmaster, Alex R; Gee, Jay E

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is endemic in northern Australia and Southeast Asia and can cause severe septicemia that may lead to death in 20% to 50% of cases. Rapid detection of B. pseudomallei infection is crucial for timely treatment of septic patients. This study evaluated seven commercially available DNA extraction kits to determine the relative recovery of B. pseudomallei DNA from spiked EDTA-containing human whole blood. The evaluation included three manual kits: the QIAamp DNA Mini kit, the QIAamp DNA Blood Mini kit, and the High Pure PCR Template Preparation kit; and four automated systems: the MagNAPure LC using the DNA Isolation Kit I, the MagNAPure Compact using the Nucleic Acid Isolation Kit I, and the QIAcube using the QIAamp DNA Mini kit and the QIAamp DNA Blood Mini kit. Detection of B. pseudomallei DNA extracted by each kit was performed using the B. pseudomallei specific type III secretion real-time PCR (TTS1) assay. Crossing threshold (C T ) values were used to compare the limit of detection and reproducibility of each kit. This study also compared the DNA concentrations and DNA purity yielded for each kit. The following kits consistently yielded DNA that produced a detectable signal from blood spiked with 5.5×10(4) colony forming units per mL: the High Pure PCR Template Preparation, QIAamp DNA Mini, MagNA Pure Compact, and the QIAcube running the QIAamp DNA Mini and QIAamp DNA Blood Mini kits. The High Pure PCR Template Preparation kit yielded the lowest limit of detection with spiked blood, but when this kit was used with blood from patients with confirmed cases of melioidosis, the bacteria was not reliably detected indicating blood may not be an optimal specimen.

  17. Draft Genome Sequences of Burkholderia pseudomallei and Staphylococcus aureus, Isolated from a Patient with Chronic Rhinosinusitis

    PubMed Central

    Cottrell, Kyra; Cervin, Anders

    2015-01-01

    Here, we report the draft genome sequences of Burkholderia pseudomallei and Staphylococcus aureus causing chronic rhinosinusitis. Whole-genome sequencing determined the B. pseudomallei as sequence type (ST) 1381 and the S. aureus as ST8. B. pseudomallei possessed the blaOXA-59 gene. This study illustrates the potential emergence of B. pseudomallei in cases of chronic rhinosinusitis. PMID:26430027

  18. Imaging spectrum of thoracic melioidosis.

    PubMed

    Ko, Sheung-Fat; Kung, Chia-Te; Lee, Yi-Wei; Ng, Shu-Hang; Huang, Chung Cheng; Lee, Chen-Hsiang

    2013-05-01

    Melioidosis is predominantly a tropical disease caused by Burkholderia pseudomallei, a soil-dwelling gram-negative, aerobic bacillus that is distributed primarily in southeast Asia and northern Australia. In this pictorial essay, we provide an illustrated review and conceptual framework of the protean imaging features of this infection, along with a brief description of its clinical manifestations and demographic features.

  19. A Burkholderia pseudomallei Colony Variant Necessary for Gastric Colonization

    PubMed Central

    Austin, C. R.; Goodyear, A. W.; Bartek, I. L.; Stewart, A.; Sutherland, M. D.; Silva, E. B.; Zweifel, A.; Vitko, N. P.; Tuanyok, A.; Highnam, G.; Mittelman, D.; Keim, P.; Schweizer, H. P.; Vázquez-Torres, A.; Dow, S. W. C.

    2015-01-01

    ABSTRACT  Diverse colony morphologies are a hallmark of Burkholderia pseudomallei recovered from infected patients. We observed that stresses that inhibit aerobic respiration shifted populations of B. pseudomallei from the canonical white colony morphotype toward two distinct, reversible, yet relatively stable yellow colony variants (YA and YB). As accumulating evidence supports the importance of B. pseudomallei enteric infection and gastric colonization, we tested the response of yellow variants to hypoxia, acidity, and stomach colonization. Yellow variants exhibited a competitive advantage under hypoxic and acidic conditions and alkalized culture media. The YB variant, although highly attenuated in acute virulence, was the only form capable of colonization and persistence in the murine stomach. The accumulation of extracellular DNA (eDNA) was a characteristic of YB as observed by 4′,6-diamidino-2-phenylindole (DAPI) staining of gastric tissues, as well as in an in vitro stomach model where large amounts of eDNA were produced without cell lysis. Transposon mutagenesis identified a transcriptional regulator (BPSL1887, designated YelR) that when overexpressed produced the yellow phenotype. Deletion of yelR blocked a shift from white to the yellow forms. These data demonstrate that YB is a unique B. pseudomallei pathovariant controlled by YelR that is specifically adapted to the harsh gastric environment and necessary for persistent stomach colonization. PMID:25650400

  20. Promethazine improves antibiotic efficacy and disrupts biofilms of Burkholderia pseudomallei.

    PubMed

    Sidrim, José Júlio Costa; Vasconcelos, David Caldas; Riello, Giovanna Barbosa; Guedes, Glaucia Morgana de Melo; Serpa, Rosana; Bandeira, Tereza de Jesus Pinheiro Gomes; Monteiro, André Jalles; Cordeiro, Rossana de Aguiar; Castelo-Branco, Débora de Souza Collares Maia; Rocha, Marcos Fábio Gadelha; Brilhante, Raimunda Sâmia Nogueira

    2017-01-01

    Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l(-1), while the minimum biofilm elimination concentration (MBEC) was 780-3,120 mg l(-1). Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.

  1. Effects of Colonization of the Roots of Domestic Rice (Oryza sativa L. cv. Amaroo) by Burkholderia pseudomallei.

    PubMed

    Prasertsincharoen, Noppadol; Constantinoiu, Constantin; Gardiner, Christopher; Warner, Jeffrey; Elliman, Jennifer

    2015-07-01

    Burkholderia pseudomallei is a saprophytic bacterium that causes melioidosis and is often isolated from rice fields in Southeast Asia, where the infection incidence is high among rice field workers. The aim of this study was to investigate the relationship between this bacterium and rice through growth experiments where the effect of colonization of domestic rice (Oryza sativa L. cv Amaroo) roots by B. pseudomallei could be observed. When B. pseudomallei was exposed to surface-sterilized seeds, the growth of both the root and the aerosphere was retarded compared to that in controls. The organism was found to localize in the root hairs and endodermis of the plant. A biofilm formed around the root and root structures that were colonized. Growth experiments with a wild rice species (Oryza meridionalis) produced similar retardation of growth, while another domestic cultivar (O. sativa L. cv Koshihikari) did not show retarded growth. Here we report B. pseudomallei infection and inhibition of O. sativa L. cv Amaroo, which might provide insights into plant interactions with this important human pathogen.

  2. Recovery of Burkholderia pseudomallei and B. cepacia from drinking water.

    PubMed

    Zanetti, F; De Luca, G; Stampi, S

    2000-07-25

    Samples of drinking water were examined in order to evaluate the occurrence of two gram-negative bacteria: Burkholderia pseudomallei and B. cepacia. A total of 85 samples were collected from public and private buildings in the province of Bologna (Italy). Other bacteriological indicators (heterotrophic plate count at 22 and 36 degrees C) were also examined, together with physical and chemical parameters (temperature, pH, residual chlorine, total hardness and chemical oxygen demand (COD)). High levels of B. pseudomallei were recovered (mean value = 578 cfu/100 ml) in about 7% of samples, while B. cepacia was recovered in 3.5% (mean value = < 1) of the samples. The two microorganisms were found to correlate positively with heterotrophic plate counts at 22 and 36 degrees C, but not with the physical and chemical parameters taken into consideration.

  3. Glibenclamide impairs responses of neutrophils against Burkholderia pseudomallei by reduction of intracellular glutathione

    PubMed Central

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Nithichanon, Arnone; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2016-01-01

    The major risk factor for melioidosis, an infectious disease caused by B. pseudomallei, is diabetes mellitus. More than half of diabetic melioidosis patients in Thailand were prescribed glibenclamide. Recent evidence demonstrates that glibenclamide reduces pro-inflammatory cytokine production by polymorphonuclear neutrophils (PMNs) of diabetic individuals in response to this bacterial infection. However, the mechanisms by which glibenclamide affects cytokine production are unknown. We found that PMNs from glibenclamide-treated diabetic individuals infected with live B. pseudomallei in vitro showed lower free glutathione (GSH) levels compared with those of healthy individuals. Glibenclamide decreased GSH levels and glutathione peroxidase (GPx) of PMNs after exposed to live B. pseudomallei. Moreover, glibenclamide reduced cytokine production and migration capacity of infected PMNs, whereas GSH could restore these functions. Taken together, our data show a link between the effect of glibenclamide on GSH and PMN functions in response to B. pseudomallei that may contribute to the susceptibility of diabetic individuals to B. pseudomallei infection. PMID:27713554

  4. Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei.

    PubMed

    López, Carolina M; Rholl, Drew A; Trunck, Lily A; Schweizer, Herbert P

    2009-10-01

    Burkholderia pseudomallei is the etiologic agent of melioidosis, a rare but serious tropical disease. In the United States, genetic research with this select agent bacterium is strictly regulated. Although several select agent compliant methods have been developed for allelic replacement, all of them suffer from some drawbacks, such as a need for specific host backgrounds or use of minimal media. Here we describe a versatile select agent compliant allele replacement system for B. pseudomallei based on a mobilizable vector, pEXKm5, which contains (i) a multiple cloning site within a lacZalpha gene for facile cloning of recombinant DNA fragments, (ii) a constitutively expressed gusA indicator gene for visual detection of merodiploid formation and resolution, and (iii) elements required for resolution of merodiploids using either I-SceI homing endonuclease-stimulated recombination or sacB-based counterselection. The homing endonuclease-based allele replacement system is completed by pBADSce, which contains an araC-P(BAD)-I-sceI expression cassette for arabinose-inducible I-SceI expression and a temperature-sensitive pRO1600 replicon for facile plasmid curing. Complementing these systems is the improved Deltaasd Escherichia coli mobilizer strain RHO3. This strain is susceptible to commonly used antibiotics and allows nutritional counterselection on rich media because of its diaminopimelic acid auxotrophy. The versatility of the I-SceI- and sacB-based methods afforded by pEXKm5 in conjunction with E. coli RHO3 was demonstrated by isolation of diverse deletion mutants in several clinical, environmental, and laboratory B. pseudomallei strains. Finally, sacB-based counterselection was employed to isolate a defined chromosomal fabD(Ts) allele that causes synthesis of a temperature-sensitive FabD, an essential fatty acid biosynthesis enzyme.

  5. Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps.

    PubMed

    Sirijant, Nopphasul; Sermswan, Rasana W; Wongratanacheewin, Surasakdi

    2016-11-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has been found to increase its resistance to antibiotics when growing as a biofilm. The resistance is related to several mechanisms. One of the possible mechanisms is the efflux pump. Using bioinformatics analysis, it was found that BPSL1661, BPSL1664 and BPSL1665 were orthologous genes of the efflux transporter encoding genes for biofilm-related antibiotic resistance, PA1874-PA1877 genes in Pseudomonas aeruginosa strain PAO1. Expression of selected encoding genes for the efflux transporter system during biofilm formation were investigated. Real-time reverse transcriptase PCR expression of amrB, cytoplasmic membrane protein of AmrAB-OprA efflux transporter encoding gene, was slightly increased, while BPSL1665 was significantly increased during growth of bacteria in biofilm formation. Minimum biofilm inhibition concentration and minimum biofilm eradication concentration (MBEC) of ceftazidime (CTZ), doxycycline (DOX) and imipenem were found to be 2- to 1024-times increased when compared to their MICs for of planktonic cells. Inhibition of the efflux transporter by adding phenylalanine arginine β-napthylamide (PAβN), a universal efflux inhibitor, decreased 2 to 16 times as much as MBEC in B. pseudomallei biofilms with CTZ and DOX. When the intracellular accumulation of antibiotics was tested to reveal the pump inhibition, only the concentrations of CTZ and DOX increased in PAβN treated biofilm. Taken together, these results indicated that BPSL1665, a putative precursor of the efflux pump gene, might be related to the adaptation of B. pseudomallei in biofilm conditions. Inhibition of efflux pumps may lead to a decrease of resistance to CTZ and DOX in biofilm cells.

  6. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection

    PubMed Central

    Eng, Su-Anne; Nathan, Sheila

    2015-01-01

    The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst

  7. Evaluation of Molecular Methods To Improve the Detection of Burkholderia pseudomallei in Soil and Water Samples from Laos

    PubMed Central

    Knappik, Michael; Dance, David A. B.; Rattanavong, Sayaphet; Pierret, Alain; Ribolzi, Olivier; Davong, Viengmon; Silisouk, Joy; Vongsouvath, Manivanh; Newton, Paul N.

    2015-01-01

    Burkholderia pseudomallei is the cause of melioidosis, a severe and potentially fatal disease of humans and animals. It is endemic in northern Australia and Southeast Asia and is found in soil and surface water. The environmental distribution of B. pseudomallei worldwide and within countries where it is endemic, such as the Lao People's Democratic Republic (Laos), remains unclear. However, this knowledge is important to our understanding of the ecology and epidemiology of B. pseudomallei and to facilitate public health interventions. Sensitive and specific methods to detect B. pseudomallei in environmental samples are therefore needed. The aim of this study was to compare molecular and culture-based methods for the detection of B. pseudomallei in soil and surface water in order to identify the optimal approach for future environmental studies in Laos. Molecular detection by quantitative real-time PCR (qPCR) was attempted after DNA extraction directly from soil or water samples or after an overnight enrichment step. The positivity rates obtained by qPCR were compared to those obtained by different culture techniques. The rate of detection from soil samples by qPCR following culture enrichment was significantly higher (84/100) than that by individual culture methods and all culture methods combined (44/100; P < 0.001). Similarly, qPCR following enrichment was the most sensitive method for filtered river water compared with the sensitivity of the individual methods and all individual methods combined. In conclusion, molecular detection following an enrichment step has proven to be a sensitive and reliable approach for B. pseudomallei detection in Lao environmental samples and is recommended as the preferred method for future surveys. PMID:25819969

  8. Oropharyngeal Aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c Mice

    PubMed Central

    Schully, Kevin L.; Bell, Matthew G.; Ward, Jerrold M.; Keane-Myers, Andrea M.

    2014-01-01

    Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure. PMID:25503969

  9. Molecular Investigations of PenA-mediated β-lactam Resistance in Burkholderia pseudomallei

    PubMed Central

    Rholl, Drew A.; Papp-Wallace, Krisztina M.; Tomaras, Andrew P.; Vasil, Michael L.; Bonomo, Robert A.; Schweizer, Herbert P.

    2011-01-01

    Burkholderia pseudomallei is the etiological agent of melioidosis. Because of the bacterium’s intrinsic resistance and propensity to establish latent infections, melioidosis therapy is complicated and prolonged. Newer generation β-lactams, specifically ceftazidime, are used for acute phase therapy, but resistance to this cephalosporin has been observed. The chromosomally encoded penA gene encodes a putative twin arginine translocase (TAT)-secreted β-lactamase, and penA mutations have been implicated in ceftazidime resistance in clinical isolates. However, the role of PenA in resistance has not yet been systematically studied in isogenetic B. pseudomallei mutant backgrounds. We investigated the effects of penA deletion, point mutations, and up-regulation, as well as tat operon deletion and PenA TAT-signal sequence mutations. These experiments were made possible by employing a B. pseudomallei strain that is excluded from Select Agent regulations. Deletion of penA significantly (>4-fold) reduced the susceptibility to six of the nine β-lactams tested and ≥16-fold for ampicillin, amoxicillin, and carbenicillin. Overexpression of penA by single-copy, chromosomal expression of the gene under control of the inducible Ptac promoter, increased resistance levels for all β-lactams tested 2- to 10-fold. Recreation of the C69Y and P167S PenA amino acid substitutions previously observed in resistant clinical isolates increased resistance to ceftazidime by ≥85- and 5- to 8-fold, respectively. Similarly, a S72F substitution resulted in a 4-fold increase in resistance to amoxicillin and clavulanic acid. Susceptibility assays with PenA TAT-signal sequence and ΔtatABC mutants, as well as Western blot analysis, confirmed that PenA is a TAT secreted enzyme and not periplasmic but associated with the spheroplastic cell fraction. Lastly, we determined that two LysR-family regulators encoded by genes adjacent to penA do not play a role in transcriptional regulation of pen

  10. Complete Genome Sequence of a Burkholderia pseudomallei Strain Isolated from a Pet Green Iguana in Prague, Czech Republic

    PubMed Central

    Thomas, Prasad; El-Adawy, Hosny; Mertens, Katja; Melzer, Falk; Hnizdo, Jan; Stamm, Ivonne

    2017-01-01

    ABSTRACT Burkholderia pseudomallei was isolated from pus from an abscess of a pet iguana living in a private household in Prague, Czech Republic. This paper presents the complete genome sequence of B. pseudomallei strain VB976100. PMID:28280033

  11. Genome-Wide Analysis Reveals Loci Encoding Anti-Macrophage Factors in the Human Pathogen Burkholderia pseudomallei K96243

    PubMed Central

    Dowling, Andrea J.; Wilkinson, Paul A.; Holden, Matthew T. G.; Quail, Michael A.; Bentley, Stephen D.; Reger, Julia; Waterfield, Nicholas R.; Titball, Richard W.; ffrench-Constant, Richard H.

    2010-01-01

    Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin ‘tails’ and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle. PMID:21203527

  12. Disarming Burkholderia pseudomallei: Structural and Functional Characterization of a Disulfide Oxidoreductase (DsbA) Required for Virulence In Vivo

    PubMed Central

    McMahon, Róisín M.; Marshall, Laura E.; Halili, Maria; Furlong, Emily; Tay, Stephanie; Sarkar-Tyson, Mitali

    2014-01-01

    Abstract Aims: The intracellular pathogen Burkholderia pseudomallei causes the disease melioidosis, a major source of morbidity and mortality in southeast Asia and northern Australia. The need to develop novel antimicrobials is compounded by the absence of a licensed vaccine and the bacterium's resistance to multiple antibiotics. In a number of clinically relevant Gram-negative pathogens, DsbA is the primary disulfide oxidoreductase responsible for catalyzing the formation of disulfide bonds in secreted and membrane-associated proteins. In this study, a putative B. pseudomallei dsbA gene was evaluated functionally and structurally and its contribution to infection assessed. Results: Biochemical studies confirmed the dsbA gene encodes a protein disulfide oxidoreductase. A dsbA deletion strain of B. pseudomallei was attenuated in both macrophages and a BALB/c mouse model of infection and displayed pleiotropic phenotypes that included defects in both secretion and motility. The 1.9 Å resolution crystal structure of BpsDsbA revealed differences from the classic member of this family Escherichia coli DsbA, in particular within the region surrounding the active site disulfide where EcDsbA engages with its partner protein E. coli DsbB, indicating that the interaction of BpsDsbA with its proposed partner BpsDsbB may be distinct from that of EcDsbA-EcDsbB. Innovation: This study has characterized BpsDsbA biochemically and structurally and determined that it is required for virulence of B. pseudomallei. Conclusion: These data establish a critical role for BpsDsbA in B. pseudomallei infection, which in combination with our structural characterization of BpsDsbA will facilitate the future development of rationally designed inhibitors against this drug-resistant organism. Antioxid. Redox Signal. 20, 606–617. PMID:23901809

  13. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state

    SciTech Connect

    Buchko, G.W.; Robinson, H.; Abendroth, J.; Staker, B. L.; Myler, P. J.

    2010-04-16

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 {angstrom} resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP{sub bd}) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 {angstrom}. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.

  14. A rare cause of septic arthritis: melioidosis.

    PubMed

    Caldera, Aruna Sanjeewa; Kumanan, Thirunavukarasu; Corea, Enoka

    2013-10-01

    Melioidosis is a pyogenic infection with high mortality caused by the bacterium Burkholderia pseudomallei. As the clinical presentation is not distinctive, a high index of clinical suspicion is required for diagnosis. We present a case of a 50-year-old farmer who was diabetic and a chronic alcoholic, who presented to us with pneumonia, followed by septic arthritis. He was ultimately diagnosed as having melioidosis.

  15. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK.

    PubMed

    Gourlay, Louise J; Thomas, Rachael J; Peri, Claudio; Conchillo-Solé, Oscar; Ferrer-Navarro, Mario; Nithichanon, Arnone; Vila, Jordi; Daura, Xavier; Lertmemongkolchai, Ganjana; Titball, Richard; Colombo, Giorgio; Bolognesi, Martino

    2015-04-01

    Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a potentially fatal infection that is endemic in Southeast Asia and Northern Australia that is poorly controlled by antibiotics. Research efforts to identify antigenic components for a melioidosis vaccine have led to the identification of several proteins, including subunits forming the flagella that mediate bacterial motility, host colonization, and virulence. This study focuses on the B. pseudomallei flagellar hook-associated protein (FlgK(Bp)), and provides the first insights into the 3D structure of FlgK proteins as targets for structure-based antigen engineering. The FlgK(Bp) crystal structure (presented here at 1.8-Å resolution) reveals a multidomain fold, comprising two small β-domains protruding from a large elongated α-helical bundle core. The evident structural similarity to flagellin, the flagellar filament subunit protein, suggests that, depending on the bacterial species, flagellar hook-associated proteins are likely to show a conserved, elongated α-helical bundle scaffold coupled to a variable number of smaller domains. Furthermore, we present immune serum recognition data confirming, in agreement with previous findings, that recovered melioidosis patients produce elevated levels of antibodies against FlgK(Bp), in comparison with seronegative and seropositive healthy subjects. Moreover, we show that FlgK(Bp) has cytotoxic effects on cultured murine macrophages, suggesting an important role in bacterial pathogenesis. Finally, computational epitope prediction methods applied to the FlgK(Bp) crystal structure, coupled with in vitro mapping, allowed us to predict three antigenic regions that locate to discrete protein domains. Taken together, our results point to FlgK(Bp) as a candidate for the design and production of epitope-containing subunits/domains as potential vaccine components.

  16. Melioidosis as a Consequence of Sporting Activity

    PubMed Central

    Hill, Audrey A.; Mayo, Mark; Kaestli, Mirjam; Price, Erin P.; Richardson, Leisha J.; Godoy, Daniel; Spratt, Brian G.; Currie, Bart J.

    2013-01-01

    In the tropical city of Darwin, Northern Territory, Australia, dry season soil sampling cultured Burkholderia pseudomallei from 7 (70%) of 10 sports fields. However, during the 23 years of the Darwin Prospective Melioidosis Study, only 5 (0.6%) of 785 melioidosis cases have been attributed to infection from sports fields. In one soccer player with cutaneous melioidosis, B. pseudomallei cultured from the player was identical by multilocus sequence typing and multilocus variable-number tandem repeat analysis with an isolate recovered from soil at the location on the sports field where he was injured. Melioidosis is uncommon in otherwise healthy sports persons in melioidosis-endemic regions but still needs consideration in persons with abrasion injuries that involve contact with soil. PMID:23732257

  17. Analyses of the Distribution Patterns of Burkholderia pseudomallei and Associated Phages in Soil Samples in Thailand Suggest That Phage Presence Reduces the Frequency of Bacterial Isolation

    PubMed Central

    Withatanung, Patoo; Chantratita, Narisara; Muangsombut, Veerachat; Saiprom, Natnaree; Lertmemongkolchai, Ganjana; Klumpp, Jochen; Clokie, Martha R. J.; Galyov, Edouard E.

    2016-01-01

    Background Burkholderia pseudomallei is a soil saprophytic bacterium that causes melioidosis. The infection occurs through cutaneous inoculation, inhalation or ingestion. Bacteriophages (phages) in the same ecosystem may significantly impact the biology of this bacterium in the environment, and in their culturability in the laboratory. Methods/Principal Findings The soil samples were analysed for the presence of bacteria using culture methods, and for phages using plaque assays on B. pseudomallei strain 1106a lawns. Of the 86 soil samples collected from northeastern Thailand, B. pseudomallei was cultured from 23 (26.7%) samples; no phage capable of infecting B. pseudomallei was detected in these samples. In contrast, phages capable of infecting B. pseudomallei, but no bacteria, were present in 10 (11.6%) samples. B. pseudomallei and their phages were co-isolated from only 3 (3.5%) of soil samples. Since phage capable of infecting B. pseudomallei could not have appeared in the samples without the prior presence of bacteria, or exposure to bacteria nearby, our data suggest that all phage-positive/bacteria-negative samples have had B. pseudomallei in or in a close proximity to them. Taken together, these findings indicate that the presence of phages may influence the success of B. pseudomallei isolation. Transmission electron microscopy revealed that the isolated phages are podoviruses. The temperate phages residing in soil-isolated strains of B. pseudomallei that were resistant to the dominant soil borne phages could be induced by mitomycin C. These induced-temperate phages were closely related, but not identical, to the more dominant soil-isolated phage type. Conclusion/Significance The presence of podoviruses capable of infecting B. pseudomallei may affect the success of the pathogen isolation from the soil. The currently used culture-based methods of B. pseudomallei isolation appear to under-estimate the bacterial abundance. The detection of phage capable of

  18. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    SciTech Connect

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  19. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles

    PubMed Central

    Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  20. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles.

    PubMed

    Nandi, Tannistha; Holden, Matthew T G; Holden, Mathew T G; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J; Titball, Richard; Chen, Swaine L; Parkhill, Julian; Tan, Patrick

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.

  1. Cutaneous Melioidosis Cluster Caused by Contaminated Wound Irrigation Fluid

    PubMed Central

    Merritt, Adam J.; Peck, Mariani; Gayle, Dionne; Levy, Avram; Ler, Yi-Horng; Raby, Edward; Gibbs, Tristan M.

    2016-01-01

    Melioidosis usually occurs after environmental exposure to Burkholderia pseudomallei in the tropics. A cluster of 5 cutaneous melioidosis cases occurred in suburban southwest Australia after an earlier case in January 2012. We collected environmental samples at the first patient’s home in January 2012 and from a nearby health center in December 2013 after 2 new cases occurred in the same postal district. We isolated genotypically identical B. pseudomallei from the first patient and 5 other patients in the district. Environmental sampling implicated an opened bottle of saline wound irrigation fluid containing >106 B. pseudomallei/mL. The bottle included instructions to discard within 24 hours of opening. No further cases of B. pseudomallei infection occurred after removing the contaminated bottle. This cutaneous melioidosis cluster demonstrates that B. pseudomallei can survive and disseminate in widely used medical fluids beyond its known geographic distribution, highlighting a need to use these products according to manufacturers’ instructions. PMID:27438887

  2. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing

    PubMed Central

    2012-01-01

    Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than

  3. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains.

    PubMed

    Mongkolrob, Rungrawee; Taweechaisupapong, Suwimol; Tungpradabkul, Sumalee

    2015-11-01

    Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro-colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.

  4. Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei[S

    PubMed Central

    McLean, Christopher J.; Marles-Wright, Jon; Custodio, Rafael; Lowther, Jonathan; Kennedy, Amanda J.; Pollock, Jacob; Clarke, David J.; Brown, Alan R.; Campopiano, Dominic J.

    2017-01-01

    Sphingolipids (SLs) are ubiquitous elements in eukaryotic membranes and are also found in some bacterial and viral species. As well as playing an integral structural role, SLs also act as potent signaling molecules involved in numerous cellular pathways and have been linked to many human diseases. A central SL signaling molecule is sphingosine-1-phosphate (S1P), whose breakdown is catalyzed by S1P lyase (S1PL), a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the cleavage of S1P to (2E)-hexadecenal (2E-HEX) and phosphoethanolamine. Here, we show that the pathogenic bacterium, Burkholderia pseudomallei K96243, encodes two homologous proteins (S1PL2021 and S1PL2025) that display moderate sequence identity to known eukaryotic and prokaryotic S1PLs. Using an established MS-based methodology, we show that recombinant S1PL2021 is catalytically active. We also used recombinant human fatty aldehyde dehydrogenase to develop a spectrophotometric enzyme-coupled assay to detect 2E-HEX formation and measure the kinetic constants of the two B. pseudomallei S1PL isoforms. Furthermore, we determined the X-ray crystal structure of the PLP-bound form of S1PL2021 at 2.1 Å resolution revealing that the enzyme displays a conserved structural fold and active site architecture comparable with known S1PLs. The combined data suggest that B. pseudomallei has the potential to degrade host SLs in a S1PL-dependent manner. PMID:27784725

  5. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection.

    PubMed

    Nieves, Wildaliz; Asakrah, Saja; Qazi, Omar; Brown, Katherine A; Kurtz, Jonathan; Aucoin, David P; McLachlan, James B; Roy, Chad J; Morici, Lisa A

    2011-10-26

    Burkholderia pseudomallei, and other members of the Burkholderia, are among the most antibiotic-resistant bacterial species encountered in human infection. Mortality rates associated with severe B. pseudomallei infection approach 50% despite therapeutic treatment. A protective vaccine against B. pseudomallei would dramatically reduce morbidity and mortality in endemic areas and provide a safeguard for the U.S. and other countries against biological attack with this organism. In this study, we investigated the immunogenicity and protective efficacy of B. pseudomallei-derived outer membrane vesicles (OMVs). Vesicles are produced by Gram-negative and Gram-positive bacteria and contain many of the bacterial products recognized by the host immune system during infection. We demonstrate that subcutaneous (SC) immunization with OMVs provides significant protection against an otherwise lethal B. pseudomallei aerosol challenge in BALB/c mice. Mice immunized with B. pseudomallei OMVs displayed OMV-specific serum antibody and T-cell memory responses. Furthermore, OMV-mediated immunity appears species-specific as cross-reactive antibody and T cells were not generated in mice immunized with Escherichia coli-derived OMVs. These results provide the first compelling evidence that OMVs represent a non-living vaccine formulation that is able to produce protective humoral and cellular immunity against an aerosolized intracellular bacterium. This vaccine platform constitutes a safe and inexpensive immunization strategy against B. pseudomallei that can be exploited for other intracellular respiratory pathogens, including other Burkholderia and bacteria capable of establishing persistent infection.

  6. Burkholderia pseudomallei type III secreted protein BipC: role in actin modulation and translocation activities required for the bacterial intracellular lifecycle

    PubMed Central

    Kang, Wen Tyng; Vellasamy, Kumutha Malar; Rajamani, Lakshminarayanan; Beuerman, Roger W.

    2016-01-01

    Melioidosis, an infection caused by the facultative intracellular pathogen Burkholderia pseudomallei, has been classified as an emerging disease with the number of patients steadily increasing at an alarming rate. B. pseudomalleipossess various virulence determinants that allow them to invade the host and evade the host immune response, such as the type III secretion systems (TTSS). The products of this specialized secretion system are particularly important for the B. pseudomallei infection. Lacking in one or more components of the TTSS demonstrated different degrees of defects in the intracellular lifecycle of B. pseudomallei. Further understanding the functional roles of proteins involved in B. pseudomallei TTSS will enable us to dissect the enigma of B. pseudomallei-host cell interaction. In this study, BipC (a translocator), which was previously reported to be involved in the pathogenesis of B. pseudomallei, was further characterized using the bioinformatics and molecular approaches. The bipCgene, coding for a putative invasive protein, was first PCR amplified from B. pseudomallei K96243 genomic DNA and cloned into an expression vector for overexpression in Escherichia coli. The soluble protein was subsequently purified and assayed for actin polymerization and depolymerization. BipC was verified to subvert the host actin dynamics as demonstrated by the capability to polymerize actin in vitro. Homology modeling was also attempted to predict the structure of BipC. Overall, our findings identified that the protein encoded by the bipC gene plays a role as an effector involved in the actin binding activity to facilitate internalization of B. pseudomalleiinto the host cells. PMID:28028452

  7. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    DTIC Science & Technology

    2005-10-01

    1 Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...risk. There is currently no real - time PCR assay for detection of both of these pathogens. Primers and probes corresponding to specific genomic regions

  8. Burkholderia pseudomallei-induced expression of a negative regulator, sterile-alpha and Armadillo motif-containing protein, in mouse macrophages: a possible mechanism for suppression of the MyD88-independent pathway.

    PubMed

    Pudla, M; Limposuwan, K; Utaisincharoen, P

    2011-07-01

    Burkholderia pseudomallei, a causative agent of melioidosis, is a Gram-negative facultative intracellular bacterium that can survive and multiply in macrophages. Previously, we demonstrated that B. pseudomallei failed to activate gene expression downstream of the MyD88-independent pathway, particularly the expression of beta interferon (IFN-β) and inducible nitric oxide synthase (iNOS), leading to the inability of macrophages to kill this bacterium. In the present report, we extended our study to show that B. pseudomallei was able to activate sterile-α and Armadillo motif (SARM)-containing protein, a known negative regulator of the MyD88-independent pathway. Both live B. pseudomallei and heat-killed B. pseudomallei were able to upregulate SARM expression in a time-dependent manner in mouse macrophage cell line RAW 264.7. The expression of SARM required bacterial internalization, as it could be inhibited by cytochalasin D. In addition, the intracellular survival of B. pseudomallei was suppressed in SARM-deficient macrophages. Increased expression of IFN-β and iNOS and degradation of IκBα correlated with enhanced macrophage killing capability. These results demonstrated that B. pseudomallei modulated macrophage defense mechanisms by upregulating SARM, thus leading to the suppression of IFN-β and iNOS needed for bacterial elimination.

  9. Burkholderia pseudomallei Type III Secretion System Cluster 3 ATPase BsaS, a Chemotherapeutic Target for Small-Molecule ATPase Inhibitors

    PubMed Central

    Gong, Lan; Lai, Shu-Chin; Treerat, Puthayalai; Prescott, Mark; Adler, Ben

    2015-01-01

    Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis. PMID:25605762

  10. Proteomic analysis of colony morphology variants of Burkholderia pseudomallei defines a role for the arginine deiminase system in bacterial survival

    PubMed Central

    Chantratita, Narisara; Tandhavanant, Sarunporn; Wikraiphat, Chanthiwa; Trunck, Lily A.; Rholl, Drew A.; Thanwisai, Aunchalee; Saiprom, Natnaree; Limmathurotsakul, Direk; Korbsrisate, Sunee; Day, Nicholas P.J.; Schweizer, Herbert P.; Peacock, Sharon J.

    2012-01-01

    Colony morphology variation of Burkholderia pseudomallei is a notable feature of a proportion of primary clinical cultures from patients with melioidosis. Here, we examined the hypothesis that colony morphology switching results in phenotypic changes associated with enhanced survival under adverse conditions. We generated isogenic colony morphology types II and III from B. pseudomallei strain 153 type I, and compared their protein expression profiles using 2D gel electrophoresis. Numerous proteins were differentially expressed, the most prominent of which were flagellin, arginine deiminase (AD) and carbamate kinase (CK), which were over-expressed in isogenic types II and III compared with parental type I. AD and CK (encoded by arcA and arcC) are components of the arginine deiminase system (ADS) which facilitates acid tolerance. Reverse transcriptase PCR of arcA and arcC mRNA expression confirmed the proteomic results. Transcripts of parental type I strain 153 arcA and arcC were increased in the presence of arginine, in a low oxygen concentration and in acid. Comparison of wild type with arcA and arcC defective mutants demonstrated that the B. pseudomallei ADS was associated with survival in acid, but did not appear to play a role in intracellular survival or replication within the mouse macrophage cell line J774A.1. These data provide novel insights into proteomic alterations that occur during the complex process of morphotype switching, and lend support to the idea that this is associated with a fitness advantage in vivo. PMID:22062159

  11. The In vitro Antibiotic Tolerant Persister Population in Burkholderia pseudomallei is Altered by Environmental Factors.

    PubMed

    Nierman, William C; Yu, Yan; Losada, Liliana

    2015-01-01

    Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 h high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100-500 times higher than P. aeruginosa. When challenged with at least a 10X minimum inhibitory concentration (MIC) 24 h exposure to three different antibiotics with different modes of action we found that in B. pseudomallei Bp82 each of the tree antibiotics revealed different persister fractions at each of two different growth states. This observation suggests that our assay is detecting heterogeneous persister subpopulations. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant to 100XMIC cefotaxime. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count in the same cefotaxime assay. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests diversity within the persister population revealed by

  12. Atypical presentations of melioidosis as emerging threat: a case report.

    PubMed

    Mukhopadhyay, Chiranjoy; Dey, Arindam; Bairy, Indira

    2007-10-01

    We report two atypical presentations of melioidosis as mediastinal lymphadenitis and prostatic abscess with Burkholderia pseudomallei, the emerging category 2 organism which led to diagnostic and therapeutic dilemma and thereby, delay in appropriate management. Any similar presentation should always be supported by microbiological opinion without any delay, which can help in instituting proper antibiotics with successful outcome.

  13. Prevalence of melioidosis in patients with suspected pulmonary tuberculosis and sputum smear negative for acid-fast bacilli in northeast Thailand.

    PubMed

    Suntornsut, Pornpan; Kasemsupat, Kriangsak; Silairatana, Santi; Wongsuvan, Gumphol; Jutrakul, Yaowaruk; Wuthiekanun, Vanaporn; Day, Nicholas P J; Peacock, Sharon J; Limmathurotsakul, Direk

    2013-11-01

    The clinical and radiological features of pulmonary melioidosis can mimic tuberculosis. We prospectively evaluated 118 patients with suspected pulmonary tuberculosis who were acid-fast bacilli (AFB) smear negative at Udon Thani Hospital, northeast Thailand. Culture of residual sputum from AFB testing was positive for Burkholderia pseudomallei in three patients (2.5%; 95% confidence interval [CI] 0.5-7.3%). We propose that in melioidosis-endemic areas, residual sputum from AFB testing should be routinely cultured for B. pseudomallei.

  14. Evaluation of Surrogate Animal Models of Melioidosis

    PubMed Central

    Warawa, Jonathan Mark

    2010-01-01

    Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant models including mammalian and invertebrate hosts. This review seeks to summarize published findings related to established animal models of melioidosis, with an aim to compare and contrast the virulence of B. pseudomallei in these models. The effect of the route of delivery on disease is also discussed for intravenous, intraperitoneal, subcutaneous, intranasal, aerosol, oral, and intratracheal infection methodologies, with a particular focus on how they relate to modeling clinical melioidosis. The importance of the translational validity of the animal models used in B. pseudomallei research is highlighted as these studies have become increasingly therapeutic in nature. PMID:21772830

  15. Eukaryotic pathways targeted by the type III secretion system effector protein, BipC, involved in the intracellular lifecycle of Burkholderia pseudomallei

    PubMed Central

    Kang, Wen-Tyng; Vellasamy, Kumutha Malar; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host’s internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei. PMID:27634329

  16. Utility of a Lateral Flow Immunoassay (LFI) to Detect Burkholderia pseudomallei in Soil Samples

    PubMed Central

    Rongkard, Patpong; Hantrakun, Viriya; Dittrich, Sabine; Srilohasin, Prapaporn; Amornchai, Premjit; Langla, Sayan; Lim, Cherry; Day, Nicholas P. J.; AuCoin, David; Wuthiekanun, Vanaporn

    2016-01-01

    . Conclusions/Significance The LFI can be used to detect B. pseudomallei in soil samples, and to select which samples should be sent to reference laboratories or proceed further for bacterial isolation and confirmation. This could considerably decrease laboratory workload and assist the development of a risk map for melioidosis in resource-limited settings. PMID:27973567

  17. Non-septicemic melioidosis presenting as cardiac tamponade.

    PubMed

    Chung, Hsing-Chun; Lee, Ching-Tai; Lai, Chung-Hsu; Huang, Chun-Kai; Lin, Jiun-Nong; Liang, Shiou-Haur; Lin, Hsi-Hsun

    2008-09-01

    Melioidosis is endemic in Taiwan. It is caused by infection with Burkholderia pseudomallei. A prolonged course of oral eradication therapy to avoid relapse after an intensive intravenous therapy is recommended to treat melioidosis. Melioidosis with cardiac involvement is rare and is often combined with septicemia, for which the mortality rate is 20-60%. The initial clinical presentations of melioidosis mimic Mycobacterium tuberculosis infection, which is the most common etiology of bacterial pericarditis in Taiwan. We present a case of non-septicemic melioidosis that presented as non-suppurative cardiac tamponade and left subcarinal lymphadenopathy. Underlying diseases included hepatitis B-related liver cirrhosis and hepatocellular carcinoma. The patient was successfully treated with 2 weeks of intravenous ceftazidime and 12 weeks of oral doxycycline, trimethoprim-sulfamethoxazole, and amoxicillin/clavulanate. Melioidosis-related pericarditis should be considered in the differential diagnoses of bacterial pericarditis in Taiwan.

  18. Burkholderia pseudomallei kills Caenorhabditis elegans through virulence mechanisms distinct from intestinal lumen colonization

    PubMed Central

    Ooi, Soon-Keat; Lim, Tian-Yeh; Lee, Song-Hua; Nathan, Sheila

    2012-01-01

    The nematode Caenorhabditis elegans is hypersusceptible to Burkholderia pseudomallei infection. However, the virulence mechanisms underlying rapid lethality of C. elegans upon B. pseudomallei infection remain poorly defined. To probe the host-pathogen interaction, we constructed GFP-tagged B. pseudomallei and followed bacterial accumulation within the C. elegans intestinal lumen. Contrary to slow-killing by most bacterial pathogens, B. pseudomallei caused fairly limited intestinal lumen colonization throughout the period of observation. Using grinder-defective mutant worms that allow the entry of intact bacteria also did not result in full intestinal lumen colonization. In addition, we observed a significant decline in C. elegans defecation and pharyngeal pumping rates upon B. pseudomallei infection. The decline in defecation rates ruled out the contribution of defecation to the limited B. pseudomallei colonization. We also demonstrated that the limited intestinal lumen colonization was not attributed to slowed host feeding as bacterial loads did not change significantly when feeding was stimulated by exogenous serotonin. Both these observations confirm that B. pseudomallei is a poor colonizer of the C. elegans intestine. To explore the possibility of toxin-mediated killing, we examined the transcription of the C. elegans ABC transporter gene, pgp-5, upon B. pseudomallei infection of the ppgp-5::gfp reporter strain. Expression of pgp-5 was highly induced, notably in the pharynx and intestine, compared with Escherichia coli-fed worms, suggesting that the host actively thwarted the pathogenic assaults during infection. Collectively, our findings propose that B. pseudomallei specifically and continuously secretes toxins to overcome C. elegans immune responses. PMID:23076282

  19. A preliminary X-ray study of 3-deoxy-D-manno-oct-2-ulosonic acid 8-phosphate phosphatase (YrbI) from Burkholderia pseudomallei.

    PubMed

    Park, Jimin; Lee, Daeun; Kim, Mi Sun; Kim, Dae Yong; Shin, Dong Hae

    2015-06-01

    3-Deoxy-D-manno-oct-2-ulosonic acid 8-phosphate phosphatase (YrbI), the third enzyme in the pathway for the biosynthesis of 3-deoxy-D-manno-oct-2-ulosonic acid (KDO), hydrolyzes KDO 8-phosphate to KDO and inorganic phosphate. YrbI belongs to the haloacid dehalogenase (HAD) superfamily, which is a large family of magnesium-dependent phosphatase/phosphotransferase enzymes. In this study, YrbI from Burkholderia pseudomallei, the causative agent of melioidosis, has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 2.25 Å resolution. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 63.7, b = 97.5, c = 98.0 Å. A full structural determination is in progress to elucidate the structure-function relationship of this protein.

  20. Unravelling the Molecular Epidemiology and Genetic Diversity among Burkholderia pseudomallei Isolates from South India Using Multi-Locus Sequence Typing

    PubMed Central

    Shaw, Tushar; KE, Vandana; Kumar, Subodh; Bhat, Vinod; Mukhopadhyay, Chiranjay

    2016-01-01

    There is a slow but steady rise in the case detection rates of melioidosis from various parts of the Indian sub-continent in the past two decades. However, the epidemiology of the disease in India and the surrounding South Asian countries remains far from well elucidated. Multi-locus sequence typing (MLST) is a useful epidemiological tool to study the genetic relatedness of bacterial isolates both with-in and across the countries. With this background, we studied the molecular epidemiology of 32 Burkholderia pseudomallei isolates (31 clinical and 1 soil isolate) obtained during 2006–2015 from various parts of south India using multi-locus sequencing typing and analysis. Of the 32 isolates included in the analysis, 30 (93.7%) had novel allelic profiles that were not reported previously. Sequence type (ST) 1368 (n = 15, 46.8%) with allelic profile (1, 4, 6, 4, 1, 1, 3) was the most common genotype observed. We did not observe a genotypic association of STs with geographical location, type of infection and year of isolation in the present study. Measure of genetic differentiation (FST) between Indian and the rest of world isolates was 0.14413. Occurrence of the same ST across three adjacent states of south India suggest the dispersion of B.pseudomallei across the south western coastal part of India with limited geographical clustering. However, majority of the STs reported from the present study remained as “outliers” on the eBURST “Population snapshot”, suggesting the genetic diversity of Indian isolates from the Australasian and Southeast Asian isolates. PMID:27992477

  1. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE

    PubMed Central

    Treerat, Puthayalai; Alwis, Priyangi; D’Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2015-01-01

    Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness. PMID:26624293

  2. Acute melioidosis outbreak in Western Australia.

    PubMed

    Inglis, T J; Garrow, S C; Adams, C; Henderson, M; Mayo, M; Currie, B J

    1999-12-01

    A cluster of acute melioidosis cases occurred in a remote, coastal community in tropical Western Australia. Molecular typing of Burkholderia pseudomallei isolates from culture-confirmed cases and suspected environmental sources by pulsed-field gel electrophoresis (PFGE) of XbaI chromosomal DNA digests showed that a single PFGE type was responsible for five cases of acute infection in a community of around 300 during a 5 week period. This temporal and geographical clustering of acute melioidosis cases provided a unique opportunity to investigate the environmental factors contributing to this disease. B. pseudomallei isolated from a domestic tap at the home of an asymptomatic seroconverter was indistinguishable by PFGE. Possible contributing environmental factors included an unusually acid communal water supply, unrecordable chlorine levels during the probable exposure period, a nearby earth tremor, and gusting winds during the installation of new water and electricity supplies. The possible role of the potable water supply as a source of B. pseudomallei was investigated further.

  3. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    SciTech Connect

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  4. Survival, sublethal injury, and recovery of environmental Burkholderia pseudomallei in soil subjected to desiccation.

    PubMed

    Larsen, Eloise; Smith, James J; Norton, Robert; Corkeron, Maree

    2013-04-01

    Environmental Burkholderia pseudomallei isolated from sandy soil at Castle Hill, Townsville, in the dry tropic region of Queensland, Australia, was inoculated into sterile-soil laboratory microcosms subjected to variable soil moisture. Survival and sublethal injury of the B. pseudomallei strain were monitored by recovery using culture-based methods. Soil extraction buffer yielded higher recoveries as an extraction agent than sterile distilled water. B. pseudomallei was not recoverable when inoculated into desiccated soil but remained recoverable from moist soil subjected to 91 days' desiccation and showed a growth response to increased soil moisture over at least 113 days. Results indicate that endemic dry tropic soil may act as a reservoir during the dry season, with an increase in cell number and potential for mobilization from soil into water in the wet season.

  5. A Review of Melioidosis Cases in the Americas.

    PubMed

    Benoit, Tina J; Blaney, David D; Doker, Thomas J; Gee, Jay E; Elrod, Mindy G; Rolim, Dionne B; Inglis, Timothy J J; Hoffmaster, Alex R; Bower, William A; Walke, Henry T

    2015-12-01

    Melioidosis is a bacterial infection caused by Burkholderia pseudomallei, a gram-negative saprophytic bacillus. Cases occur sporadically in the Americas with an increasing number of cases observed among people with no travel history to endemic countries. To better understand the incidence of the disease in the Americas, we reviewed the literature, including unpublished cases reported to the Centers for Disease Control and Prevention. Of 120 identified human cases, occurring between 1947 and June 2015, 95 cases (79%) were likely acquired in the Americas; the mortality rate was 39%. Burkholderia pseudomallei appears to be widespread in South, Central, and North America.

  6. Review Article: A Review of Melioidosis Cases in the Americas

    PubMed Central

    Benoit, Tina J.; Blaney, David D.; Doker, Thomas J.; Gee, Jay E.; Elrod, Mindy G.; Rolim, Dionne B.; Inglis, Timothy J. J.; Hoffmaster, Alex R.; Bower, William A.; Walke, Henry T.

    2015-01-01

    Melioidosis is a bacterial infection caused by Burkholderia pseudomallei, a gram-negative saprophytic bacillus. Cases occur sporadically in the Americas with an increasing number of cases observed among people with no travel history to endemic countries. To better understand the incidence of the disease in the Americas, we reviewed the literature, including unpublished cases reported to the Centers for Disease Control and Prevention. Of 120 identified human cases, occurring between 1947 and June 2015, 95 cases (79%) were likely acquired in the Americas; the mortality rate was 39%. Burkholderia pseudomallei appears to be widespread in South, Central, and North America. PMID:26458779

  7. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia

    PubMed Central

    Panchadcharam, Chandrawathani; Zakaria, Zunita; Abdul Aziz, Saleha

    2016-01-01

    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00–1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05–1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15–2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent’s biological processes and clay retains water and nutrients. PMID:27635652

  8. Innate Immune Responses of Pulmonary Epithelial Cells to Burkholderia pseudomallei Infection

    PubMed Central

    Sim, Siew Hoon; Liu, Yichun; Wang, Dongling; Novem, Vidhya; Sivalingam, Suppiah Paramalingam; Thong, Tuck Weng; Ooi, Eng Eong; Tan, Gladys

    2009-01-01

    Background Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells against B. pseudomallei. Methodology and Principal Findings Using a murine lung epithelial cell line, primary lung epithelial cells and an inhalational murine infection model, we characterized the types of innate immunity proteins and peptides produced upon B. pseudomallei infection. Among a wide panel of immune components studied, increased levels of major pro-inflammatory cytokines IL-6 and TNFα, chemokine MCP-1, and up-regulation of secretory leukocyte protease inhibitor (SLPI) and chemokine (C-C motif) ligand 20 (CCL20) were observed. Inhibition assays using specific inhibitors suggested that NF-κB and p38 MAPK pathways were responsible for these B. pseudomallei-induced antimicrobial peptides. Conclusions Our findings indicate that the respiratory epithelial cells, which form the majority of the cells lining the epithelial tract and the lung, have important roles in the innate immune response against B. pseudomallei infection. PMID:19806192

  9. Burkholderia pseudomallei suppresses Caenorhabditis elegans immunity by specific degradation of a GATA transcription factor.

    PubMed

    Lee, Song-Hua; Wong, Rui-Rui; Chin, Chui-Yoke; Lim, Tian-Yeh; Eng, Su-Anne; Kong, Cin; Ijap, Nur Afifah; Lau, Ming-Seong; Lim, Mei-Perng; Gan, Yunn-Hwen; He, Fang-Lian; Tan, Man-Wah; Nathan, Sheila

    2013-09-10

    Burkholderia pseudomallei is a Gram-negative soil bacterium that infects both humans and animals. Although cell culture studies have revealed significant insights into factors contributing to virulence and host defense, the interactions between this pathogen and its intact host remain to be elucidated. To gain insights into the host defense responses to B. pseudomallei infection within an intact host, we analyzed the genome-wide transcriptome of infected Caenorhabditis elegans and identified ∼6% of the nematode genes that were significantly altered over a 12-h course of infection. An unexpected feature of the transcriptional response to B. pseudomallei was a progressive increase in the proportion of down-regulated genes, of which ELT-2 transcriptional targets were significantly enriched. ELT-2 is an intestinal GATA transcription factor with a conserved role in immune responses. We demonstrate that B. pseudomallei down-regulation of ELT-2 targets is associated with degradation of ELT-2 protein by the host ubiquitin-proteasome system. Degradation of ELT-2 requires the B. pseudomallei type III secretion system. Together, our studies using an intact host provide evidence for pathogen-mediated host immune suppression through the destruction of a host transcription factor.

  10. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice

    PubMed Central

    Bearss, Jeremy J.; Hunter, Melissa; Dankmeyer, Jennifer L.; Fritts, Kristen A.; Klimko, Christopher P.; Weaver, Chris H.; Shoe, Jennifer L.; Quirk, Avery V.; Toothman, Ronald G.; Webster, Wendy M.; Fetterer, David P.; Bozue, Joel A.; Worsham, Patricia L.; Welkos, Susan L.; Amemiya, Kei; Cote, Christopher K.

    2017-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a Gram negative bacterium designated as a Tier 1 threat. This bacterium is known to be endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. Inhalational melioidosis has been associated with monsoonal rains in endemic areas and is also a significant concern in the biodefense community. There are currently no effective vaccines for B. pseudomallei and antibiotic treatment can be hampered by non-specific symptomology and also the high rate of naturally occurring antibiotic resistant strains. Well-characterized animal models will be essential when selecting novel medical countermeasures for evaluation prior to human clinical trials. Here, we further characterize differences between the responses of BALB/c and C57BL/6 mice when challenged with low doses of a low-passage and well-defined stock of B. pseudomallei K96243 via either intraperitoneal or aerosol routes of exposure. Before challenge, mice were implanted with a transponder to collect body temperature readings, and daily body weights were also recorded. Mice were euthanized on select days for pathological analyses and determination of the bacterial burden in selected tissues (blood, lungs, liver, and spleen). Additionally, spleen homogenate and sera samples were analyzed to better characterize the host immune response after infection with aerosolized bacteria. These clinical, pathological, and immunological data highlighted and confirmed important similarities and differences between these murine models and exposure routes. PMID:28235018

  11. Evaluation of azithromycin, trovafloxacin and grepafloxacin as prophylaxis for experimental murine melioidosis.

    PubMed

    Kenny, Dermot J; Sefton, Armine M; Brooks, Timothy J G; Laws, Thomas R; Simpson, Andrew J H; Atkins, Helen S

    2010-07-01

    The efficacies of the azalide azithromycin and the fluoroquinolones trovafloxacin and grepafloxacin for pre- and post-exposure prophylaxis of infection with high or low challenge doses of Burkholderia pseudomallei strain 576 were assessed in an experimental mouse model. Trovafloxacin and grepafloxacin afforded significant levels of protection, whereas azithromycin was ineffective and potentially detrimental. Overall, the data suggest that some fluoroquinolones may have potential utility in prophylaxis of melioidosis and suggest that azithromycin would not be effective in prophylaxis of B. pseudomallei infection.

  12. Seroprevalence of Burkholderia pseudomallei among Adults in Coastal Areas in Southwestern India

    PubMed Central

    Vandana, Kalwaje Eshwara; Mukhopadhyay, Chiranjay; Tellapragada, Chaitanya; Kamath, Asha; Tipre, Meghan; Bhat, Vinod; Sathiakumar, Nalini

    2016-01-01

    Background Although melioidosis, is an important disease in many Southeast Asian countries and Australia, there is limited data on its prevalence and disease burden in India. However, an increase in case reports of melioidosis in recent years indicates its endemicity in India. Aims and methods A population-based cross-sectional seroprevalence study was undertaken to determine the seroprevalence of B. pseudomallei by indirect haemagglutination assay and to investigate the associated risk determinants. Subjects were 711 adults aged 18 to 65 years residing in Udupi district, located in south-western coast of India. Key results Overall, 29% of the study subjects were seropositive (titer ≥20). Females were twice as likely to be seropositive compared to males. Rates of seroprevalence were similar in farmers and non-farmers. Besides gardening, other factors including socio-demographic, occupational and environmental factors did not show any relationship with seropositive status. Major conclusions There is a serological evidence of exposure to B. pseudomallei among adults in India. While the bacterium inhabits soil, exposure to the agent is not limited to farmers. Non-occupational exposure might play an important role in eliciting antibody response to the bacterium and may also be an important factor in disease causation. PMID:27078156

  13. Towards a rapid molecular diagnostic for melioidosis: comparison of DNA extraction methods from clinical specimens

    PubMed Central

    Richardson, Leisha J; Kaestli, Mirjam; Mayo, Mark; Bowers, Jolene R; Tuanyok, Apichai; Schupp, Jim; Engelthaler, David; Wagner, David M; Keim, Paul S; Currie, Bart J

    2011-01-01

    Optimising DNA extraction from clinical samples for Burkholderia pseudomallei Type III secretion system real-time PCR in suspected melioidosis patients confirmed that urine and sputum are useful diagnostic samples. Direct testing on blood remains problematic; testing DNA extracted from plasma was superior to DNA from whole blood or buffy coat. PMID:22108495

  14. Endemic Melioidosis in Residents of Desert Region after Atypically Intense Rainfall in Central Australia, 2011

    PubMed Central

    Yip, Teem-Wing; Hewagama, Saliya; Mayo, Mark; Price, Erin P.; Sarovich, Derek S.; Bastian, Ivan; Baird, Robert W.; Spratt, Brian G.

    2015-01-01

    After heavy rains and flooding during early 2011 in the normally arid interior of Australia, melioidosis was diagnosed in 6 persons over a 4-month period. Although the precise global distribution of the causal bacterium Burkholderia pseudomallei remains to be determined, this organism can clearly survive in harsh and even desert environments outside the wet tropics. PMID:25988301

  15. Endemic melioidosis in residents of desert region after atypically intense rainfall in central Australia, 2011.

    PubMed

    Yip, Teem-Wing; Hewagama, Saliya; Mayo, Mark; Price, Erin P; Sarovich, Derek S; Bastian, Ivan; Baird, Robert W; Spratt, Brian G; Currie, Bart J

    2015-06-01

    After heavy rains and flooding during early 2011 in the normally arid interior of Australia, melioidosis was diagnosed in 6 persons over a 4-month period. Although the precise global distribution of the causal bacterium Burkholderia pseudomallei remains to be determined, this organism can clearly survive in harsh and even desert environments outside the wet tropics.

  16. Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei.

    PubMed

    Choi, Kyoung-Hee; Mima, Takehiko; Casart, Yveth; Rholl, Drew; Kumar, Ayush; Beacham, Ifor R; Schweizer, Herbert P

    2008-02-01

    Because of Burkholderia pseudomallei's classification as a select agent in the United States, genetic manipulation of this bacterium is strictly regulated. Only a few antibiotic selection markers, including gentamicin, kanamycin, and zeocin, are currently approved for use with this bacterium, but wild-type strains are highly resistant to these antibiotics. To facilitate routine genetic manipulations of wild-type strains, several new tools were developed. A temperature-sensitive pRO1600 broad-host-range replicon was isolated and used to construct curable plasmids where the Flp and Cre recombinase genes are expressed from the rhamnose-regulated Escherichia coli P(BAD) promoter and kanamycin (nptI) and zeocin (ble) selection markers from the constitutive Burkholderia thailandensis ribosomal P(S12) or synthetic bacterial P(EM7) promoter. Flp and Cre site-specific recombination systems allow in vivo excision and recycling of nptII and ble selection markers contained on FRT or loxP cassettes. Finally, expression of Tn7 site-specific transposase from the constitutive P1 integron promoter allowed development of an efficient site-specific chromosomal integration system for B. pseudomallei. In conjunction with a natural transformation method, the utility of these new tools was demonstrated by isolating an unmarked delta(amrRAB-oprA) efflux pump mutant. Exploiting natural transformation, chromosomal DNA fragments carrying this mutation marked with zeocin resistance were transferred between the genomes of two different B. pseudomallei strains. Lastly, the deletion mutation was complemented by a chromosomally integrated mini-Tn7 element carrying the amrAB-oprA operon. The new tools allow routine select-agent-compliant genetic manipulations of B. pseudomallei and other Burkholderia species.

  17. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei.

    PubMed

    Boottanun, Patcharaporn; Potisap, Chotima; Hurdle, Julian G; Sermswan, Rasana W

    2017-12-01

    Bacillus species are Gram-positive bacteria found in abundance in nature and their secondary metabolites were found to possess various potential activities, notably antimicrobial. In this study, Bacillus amyloliquefaciens N2-4 and N3-8 were isolated from soil and their metabolites could kill Burkholderia pseudomallei, a Gram-negative pathogenic bacterium also found in soil in its endemic areas. Moreover, the metabolites were able to kill drug resistant isolates of B. pseudomallei and also inhibit other pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Acinetobacter baumannii but not the non-pathogenic Burkholderia thailandensis, which is closely related to B. pseudomallei. Since the antimicrobial activity of N3-8 was not partially decreased or abolished when treated with proteolytic enzymes or autoclaved, but N2-4 was, these two strains should have produced different compounds. The N3-8 metabolites with antimicrobial activity consisted of both protein and non-protein compounds. The inhibition spectrum of the precipitated proteins compared to the culture supernatant indicated a possible synergistic effect of the non-protein and peptide compounds of N3-8 isolates against other pathogens. When either N2-4 or N3-8 isolates was co-cultured with B. pseudomallei the numbers of the bacteria decreased by 5 log10 within 72 h. Further purification and characterization of the metabolites is required for future use of the bacteria or their metabolites as biological controls of B. pseudomallei in the environment or for development as new drugs for problematic pathogenic bacteria.

  18. Melioidosis

    MedlinePlus

    ... disease, is an infectious disease that can infect humans or animals. The disease is caused by the bacterium Burkholderia ... contaminated water and soil. It is spread to humans and animals through direct contact with the contaminated source. Specimens ...

  19. Laboratory diagnosis of melioidosis: Past, present and future

    PubMed Central

    Lau, Susanna KP; Sridhar, Siddharth; Ho, Chi-Chun; Chow, Wang-Ngai; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung

    2015-01-01

    Melioidosis is an emerging, potentially fatal disease caused by Burkholderia pseudomallei, which requires prolonged antibiotic treatment to prevent disease relapse. However, difficulties in laboratory diagnosis of melioidosis may delay treatment and affect disease outcomes. Isolation of B. pseudomallei from clinical specimens has been improved with the use of selective media. However, even with positive cultures, identification of B. pseudomallei can be difficult in clinical microbiology laboratories, especially in non-endemic areas where clinical suspicion is low. Commercial identification systems may fail to distinguish between B. pseudomallei and closely related species such as Burkholderia thailandensis. Genotypic identification of suspected isolates can be achieved by sequencing of gene targets such as groEL which offer higher discriminative power than 16S rRNA. Specific PCR-based identification of B. pseudomallei has also been developed using B. pseudomallei-specific gene targets such as Type III secretion system and Tat-domain protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolutionary technique for pathogen identification, has been shown to be potentially useful for rapid identification of B. pseudomallei, although existing databases require optimization by adding reference spectra for B. pseudomallei. Despite these advances in bacterial identification, diagnostic problems encountered in culture-negative cases remain largely unresolved. Although various serological tests have been developed, they are generally unstandardized “in house” assays and have low sensitivities and specificities. Although specific PCR assays have been applied to direct clinical and environmental specimens, the sensitivities for diagnosis remain to be evaluated. Metabolomics is an uprising tool for studying infectious diseases and may offer a novel approach for exploring potential diagnostic biomarkers. The metabolomics profiles of B

  20. Nasal Acai Polysaccharides Potentiate Innate Immunity to Protect against Pulmonary Francisella tularensis and Burkholderia pseudomallei Infections

    PubMed Central

    Skyberg, Jerod A.; Rollins, MaryClare F.; Holderness, Jeff S.; Marlenee, Nicole L.; Schepetkin, Igor A.; Goodyear, Andrew; Dow, Steven W.; Jutila, Mark A.; Pascual, David W.

    2012-01-01

    Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens. PMID:22438809

  1. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia - implications for vaccines against melioidosis and Cepacia Complex in Cystic Fibrosis

    PubMed Central

    Musson, Julie A.; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen KY; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M.; Robinson, John H.

    2014-01-01

    Burkholderia pseudomallei (Bp), is the causative agent of melioidosis, characterized by pneumonia and fatal septicemia and prevalent in SE Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The Bp flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed Bp FliC peptide binding affinity to multiple HLA class II alleles, then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between Bp and the related Burkholderia species associated with Cepacia Complex CF. Bp FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in Bp-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic Bp FliC epitope also cross-reacted with orthologous FliC sequences from B. multivorans and B. cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II antigen presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in Bp endemic regions as well as CF patients. PMID:25392525

  2. Evaluating the role of phage-shock protein A in Burkholderia pseudomallei.

    PubMed

    Southern, Stephanie J; Male, Abigail; Milne, Timothy; Sarkar-Tyson, Mitali; Tavassoli, Ali; Oyston, Petra C F

    2015-11-01

    The phage-shock protein (Psp) response is an extracytoplasmic response system that is vital for maintenance of the cytoplasmic membrane when the cell encounters stressful conditions. The paradigm of the Psp response has been established in Escherichia coli. The response has been shown to be important for survival during the stationary phase, maintenance of the proton motive force across membranes and implicated in virulence. In this study, we identified a putative PspA homologue in Burkholderia pseudomallei, annotated as BPSL2105. Similar to the induction of PspA in E. coli, the expression of B. pseudomallei BPSL2105 was induced by heat shock. Deletion of BPSL2105 resulted in a survival defect in the late stationary phase coincident with dramatic changes in the pH of the culture medium. The B. pseudomallei BPSL2105 deletion mutant also displayed reduced survival in macrophage infection - the first indication that the Psp response plays a role during intracellular pathogenesis in this species. The purified protein formed large oligomeric structures similar to those observed for the PspA protein of E. coli, and PspA homologues in Bacillus, cyanobacteria and higher plants, providing further evidence to support the identification of BPSL2105 as a PspA-like protein in B. pseudomallei.

  3. Mycotic aneurysm caused by Burkholderia pseudomallei in a previously healthy returning traveller

    PubMed Central

    Bodilsen, Jacob; Vammen, Sten; Fuursted, Kurt; Hjort, Ulla

    2014-01-01

    Burkholderia pseudomallei is a common cause of serious, difficult to treat infections in South-East Asia and Northern Australia, but is a rare imported pathogen in the USA and Europe. We report a case of a patient with a mycotic aneurysm caused by B. pseudomallei in a previously healthy returning traveller. The patient presented with 4 weeks of abdominal pain and intermittent fever after a brief vacation in Thailand. The aneurysm was excised and replaced by an autologous deep vein graft, and the patient was treated for 6 months with antibiotics adjusted according to postoperative renal impairment. Twenty-four months after surgery the patient is well and without relapse. PMID:25246454

  4. Two stable variants of Burkholderia pseudomallei strain MSHR5848 express broadly divergent in vitro phenotypes associated with their virulence differences

    PubMed Central

    Cote, C. K.; Chase, C. J.; Koehler, J. W.; Klimko, C. P.; Ladner, J. T.; Rozak, D. A.; Wolcott, M. J.; Fetterer, D. P.; Kern, S. J.; Koroleva, G. I.; Lovett, S. P.; Palacios, G. F.; Toothman, R. G.; Bozue, J. A.; Worsham, P. L.; Welkos, S. L.

    2017-01-01

    Burkholderia pseudomallei (Bp), the agent of melioidosis, causes disease ranging from acute and rapidly fatal to protracted and chronic. Bp is highly infectious by aerosol, can cause severe disease with nonspecific symptoms, and is naturally resistant to multiple antibiotics. However, no vaccine exists. Unlike many Bp strains, which exhibit random variability in traits such as colony morphology, Bp strain MSHR5848 exhibited two distinct and relatively stable colony morphologies on sheep blood agar plates: a smooth, glossy, pale yellow colony and a flat, rough, white colony. Passage of the two variants, designated “Smooth” and “Rough”, under standard laboratory conditions produced cultures composed of > 99.9% of the single corresponding type; however, both could switch to the other type at different frequencies when incubated in certain nutritionally stringent or stressful growth conditions. These MSHR5848 derivatives were extensively characterized to identify variant-associated differences. Microscopic and colony morphology differences on six differential media were observed and only the Rough variant metabolized sugars in selective agar. Antimicrobial susceptibilities and lipopolysaccharide (LPS) features were characterized and phenotype microarray profiles revealed distinct metabolic and susceptibility disparities between the variants. Results using the phenotype microarray system narrowed the 1,920 substrates to a subset which differentiated the two variants. Smooth grew more rapidly in vitro than Rough, yet the latter exhibited a nearly 10-fold lower lethal dose for mice than Smooth. Finally, the Smooth variant was phagocytosed and replicated to a greater extent and was more cytotoxic than Rough in macrophages. In contrast, multiple locus sequence type (MLST) analysis, ribotyping, and whole genome sequence analysis demonstrated the variants’ genetic conservation; only a single consistent genetic difference between the two was identified for further

  5. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species.

    PubMed

    Suttisunhakul, Vichaya; Pumpuang, Apinya; Ekchariyawat, Peeraya; Wuthiekanun, Vanaporn; Elrod, Mindy G; Turner, Paul; Currie, Bart J; Phetsouvanh, Rattanaphone; Dance, David A B; Limmathurotsakul, Direk; Peacock, Sharon J; Chantratita, Narisara

    2017-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for rapid bacterial identification. Studies of Burkholderia pseudomallei identification have involved small isolate numbers drawn from a restricted geographic region. There is a need to expand the reference database and evaluate B. pseudomallei from a wider geographic distribution that more fully captures the extensive genetic diversity of this species. Here, we describe the evaluation of over 650 isolates. Main spectral profiles (MSP) for 26 isolates of B. pseudomallei (N = 5) and other Burkholderia species (N = 21) were added to the Biotyper database. MALDI-TOF MS was then performed on 581 B. pseudomallei, 19 B. mallei, 6 B. thailandensis and 23 isolates representing a range of other bacterial species. B. pseudomallei originated from northeast and east Thailand (N = 524), Laos (N = 12), Cambodia (N = 14), Hong Kong (N = 4) and Australia (N = 27). All 581 B. pseudomallei were correctly identified, with 100% sensitivity and specificity. Accurate identification required a minimum inoculum of 5 x 107 CFU/ml, and identification could be performed on spiked blood cultures after 24 hours of incubation. Comparison between a dendrogram constructed from MALDI-TOF MS main spectrum profiles and a phylogenetic tree based on recA gene sequencing demonstrated that MALDI-TOF MS distinguished between B. pseudomallei and B. mallei, while the recA tree did not. MALDI-TOF MS is an accurate method for the identification of B. pseudomallei, and discriminates between this and other related Burkholderia species.

  6. Parietal bone osteomyelitis in melioidosis

    PubMed Central

    Shetty, Hariprasad Sadanand; Mallela, Ajay Raj; Shastry, Barkur Ananthakrishna; Acharya, Vasudeva

    2015-01-01

    We report a case of a 55-year-old man with uncontrolled diabetes who presented with pneumonia. During his hospital stay his clinical status worsened and he had a focal seizure. MRI showed central nervous system involvement and parietal bone osteomyelitis. As the patient's blood culture and endotracheal aspirate grew Burkholderia pseudomallei, melioidosis was diagnosed. He was treated with meropenem after failure to respond to ceftazidime. He gradually improved over a period of 4 weeks and was discharged. Early diagnosis and therapy resulted in improved outcome. PMID:25725029

  7. Antibiotic resistance in Burkholderia species.

    PubMed

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.

  8. Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243

    NASA Astrophysics Data System (ADS)

    Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus

    2015-09-01

    Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.

  9. Calprotectin as a Biomarker for Melioidosis Disease Progression and Management.

    PubMed

    Natesan, Mohan; Corea, Enoka; Krishnananthasivam, Shivankari; Sathkumara, Harindra Darshana; Dankmeyer, Jennifer L; Dyas, Beverly K; Amemiya, Kei; De Silva, Aruna Dharshan; Ulrich, Robert G

    2017-04-01

    Melioidosis is a neglected tropical disease that is caused by the bacterium Burkholderia pseudomallei and is underreported in many countries where the disease is endemic. A long and costly administration of antibiotics is needed to clear infections, and there is an unmet need for biomarkers to guide antibiotic treatment and increase the number of patients that complete therapy. We identified calprotectin as a lead biomarker of B. pseudomallei infections and examined correlations between this serum protein and the antibiotic treatment outcomes of patients with melioidosis. Serum levels of calprotectin and C-reactive protein were significantly higher in patients with melioidosis and nonmelioidosis sepsis than in healthy controls. Median calprotectin levels were higher in patients with melioidosis than in those with nonmelioidosis sepsis, whereas C-reactive protein levels were similar in both groups. Notably, intensive intravenous antibiotic treatment of patients with melioidosis resulted in lower levels of calprotectin and C-reactive protein (P < 0.0001), coinciding with recovery. The median percent reduction of calprotectin and C-reactive protein was 71% for both biomarkers after antibacterial therapy. In contrast, we found no significant differences in calreticulin levels between the two melioidosis treatment phases. Thus, reductions in serum calprotectin levels were linked to therapeutic responses to antibiotics. Our results suggest that calprotectin may be a sensitive indicator of melioidosis disease activity and illustrate the potential utility of this biomarker in guiding the duration of antibiotic therapy.

  10. Sri Lankan National Melioidosis Surveillance Program Uncovers a Nationwide Distribution of Invasive Melioidosis.

    PubMed

    Corea, Enoka M; Merritt, Adam J; Ler, Yi-Horng; Thevanesam, Vasanthi; Inglis, Timothy J J

    2016-02-01

    The epidemiologic status of melioidosis in Sri Lanka was unclear from the few previous case reports. We established laboratory support for a case definition and started a nationwide case-finding study. Suspected Burkholderia pseudomallei isolates were collated, identified by polymerase chain reaction assay, referred for Matrix Assisted Laser Desorption Ionization-Time of Flight analysis and multilocus sequence typing (MLST), and named according to the international MLST database. Between 2006 and early 2014, there were 32 patients with culture-confirmed melioidosis with an increasing annual total and a falling fatality rate. Patients were predominantly from rural communities, diabetic, and male. The major clinical presentations were sepsis, pneumonia, soft tissue and joint infections, and other focal infection. Burkholderia pseudomallei isolates came from all parts of Sri Lanka except the Sabaragamuwa Province, the south central hill country, and parts of northern Sri Lanka. Bacterial isolates belonged to 18 multilocus sequence types, one of which (ST 1137) was associated with septicemia and a single-organ focus (Fisher's exact, P = 0.004). Melioidosis is an established endemic infection throughout Sri Lanka, and is caused by multiple genotypes of B. pseudomallei, which form a distinct geographic group based upon related sequence types (BURST) cluster at the junction of the southeast Asian and Australasian clades.

  11. Sri Lankan National Melioidosis Surveillance Program Uncovers a Nationwide Distribution of Invasive Melioidosis

    PubMed Central

    Corea, Enoka M.; Merritt, Adam J.; Ler, Yi-Horng; Thevanesam, Vasanthi; Inglis, Timothy J. J.

    2016-01-01

    The epidemiologic status of melioidosis in Sri Lanka was unclear from the few previous case reports. We established laboratory support for a case definition and started a nationwide case-finding study. Suspected Burkholderia pseudomallei isolates were collated, identified by polymerase chain reaction assay, referred for Matrix Assisted Laser Desorption Ionization-Time of Flight analysis and multilocus sequence typing (MLST), and named according to the international MLST database. Between 2006 and early 2014, there were 32 patients with culture-confirmed melioidosis with an increasing annual total and a falling fatality rate. Patients were predominantly from rural communities, diabetic, and male. The major clinical presentations were sepsis, pneumonia, soft tissue and joint infections, and other focal infection. Burkholderia pseudomallei isolates came from all parts of Sri Lanka except the Sabaragamuwa Province, the south central hill country, and parts of northern Sri Lanka. Bacterial isolates belonged to 18 multilocus sequence types, one of which (ST 1137) was associated with septicemia and a single-organ focus (Fisher's exact, P = 0.004). Melioidosis is an established endemic infection throughout Sri Lanka, and is caused by multiple genotypes of B. pseudomallei, which form a distinct geographic group based upon related sequence types (BURST) cluster at the junction of the southeast Asian and Australasian clades. PMID:26621560

  12. Expression and refolding of Omp38 from Burkholderia pseudomallei and Burkholderia thailandensis, and its function as a diffusion porin

    PubMed Central

    2004-01-01

    In the present paper, we describe cloning and expression of two outer membrane proteins, BpsOmp38 (from Burkholderia pseudomallei) and BthOmp38 (from Burkholderia thailandensis) lacking signal peptide sequences, using the pET23d(+) expression vector and Escherichia coli host strain Origami(DE3). The 38 kDa proteins, expressed as insoluble inclusion bodies, were purified, solubilized in 8 M urea, and then subjected to refolding experiments. As seen on SDS/PAGE, the 38 kDa band completely migrated to ∼110 kDa when the purified monomeric proteins were refolded in a buffer system containing 10% (w/v) Zwittergent® 3-14, together with a subsequent heating to 95 °C for 5 min. CD spectroscopy revealed that the 110 kDa proteins contained a predominant β-sheet structure, which corresponded completely to the structure of the Omp38 proteins isolated from B. pseudomallei and B. thailandensis. Immunoblot analysis using anti-BpsOmp38 polyclonal antibodies and peptide mass analysis by MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS confirmed that the expressed proteins were BpsOmp38 and BthOmp38. The anti-BpsOmp38 antibodies considerably exhibited the inhibitory effects on the permeation of small sugars through the Omp38-reconstituted liposomes. A linear relation between relative permeability rates and Mr of neutral sugars and charged antibiotics suggested strongly that the in vitro re-assembled Omp38 functioned fully as a diffusion porin. PMID:15329048

  13. Therapeutic Administration of a Monoclonal Anti-Il-1β Antibody Protects Against Experimental Melioidosis

    PubMed Central

    Weehuizen, Tassili A. F.; Lankelma, Jacqueline M.; De Jong, Hanna K.; De Boer, Onno J.; Roelofs, Joris J. T. H.; Day, Nicholas P.; Gram, Hermann; De Vos, Alex F.; Wiersinga, W. Joost

    2016-01-01

    ABSTRACT Background: Melioidosis, caused by the gram-negative bacterium Burkholderia pseudomallei, is a common cause of community-acquired sepsis in Southeast Asia and Northern Australia. The NLRP3 inflammasome and its downstream product interleukin-1 beta (IL-1β) have been proposed to play crucial roles in melioidosis. In this study, we characterized the role of IL-1β more closely and we assessed its therapeutic potential. Methods: mRNA expression of inflammasome components was determined in isolated leukocytes of 32 healthy controls and 34 patients with sepsis caused by B pseudomallei. Wild-type (WT), NLRP3-deficient (Nlrp3−/−), and Asc−/− mice were infected with B pseudomallei. In additional experiments, infected WT mice were treated with an anti-IL-1β antibody. After 24, 48, and 72 hours (h) mice were sacrificed and organs were harvested. Furthermore, survival studies were performed. Results: Patients with melioidosis exhibited lower mRNA levels of caspase-1, NLRP3, and ASC. Bacterial dissemination and organ damage were increased in B pseudomallei-infected Nlrp3−/− and Asc−/− mice, together with a reduced pulmonary cell influx. Anti-IL-1β treatment of B pseudomallei challenged mice resulted in strongly reduced bacterial counts, organ damage, and pulmonary granulocyte influx together with reduced mortality. Postponement of anti-IL-1β treatment for 24 h postinfection still protected mice during melioidosis. Conclusion: Expression of caspase-1, NLRP3, and ASC is altered in melioidosis patients. In mice, both NLRP3 and ASC contribute to the host defense against melioidosis. Anti-IL-1β treatment protects mice against B pseudomallei infection and might be a novel treatment strategy in melioidosis. PMID:27219859

  14. Development of a Prototype Lateral Flow Immunoassay (LFI) for the Rapid Diagnosis of Melioidosis

    PubMed Central

    Houghton, Raymond L.; Reed, Dana E.; Hubbard, Mark A.; Dillon, Michael J.; Chen, Hongjing; Currie, Bart J.; Mayo, Mark; Sarovich, Derek S.; Theobald, Vanessa; Limmathurotsakul, Direk; Wongsuvan, Gumphol; Chantratita, Narisara; Peacock, Sharon J.; Hoffmaster, Alex R.; Duval, Brea; Brett, Paul J.; Burtnick, Mary N.; AuCoin, David P.

    2014-01-01

    Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the “gold standard” for the diagnosis of melioidosis; results can take 3–7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation. PMID:24651568

  15. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis.

    PubMed

    Houghton, Raymond L; Reed, Dana E; Hubbard, Mark A; Dillon, Michael J; Chen, Hongjing; Currie, Bart J; Mayo, Mark; Sarovich, Derek S; Theobald, Vanessa; Limmathurotsakul, Direk; Wongsuvan, Gumphol; Chantratita, Narisara; Peacock, Sharon J; Hoffmaster, Alex R; Duval, Brea; Brett, Paul J; Burtnick, Mary N; Aucoin, David P

    2014-03-01

    Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the "gold standard" for the diagnosis of melioidosis; results can take 3-7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.

  16. Imported Case of Melioidosis in Oman: Case Report

    PubMed Central

    Tamtami, Nada AL; Khamis, Faryal; Al-Jardani, Amina

    2017-01-01

    Melioidosis is an infectious disease caused by the bacterium Burkholderia pseudomallei. It is most commonly described in Southeast Asia and Northern Australia and some imported cases in non-endemic areas. We describe the case of a 55-year-old Omani man with fulminant sepsis who worked in Laos, Cambodia. B. pseudomallei was isolated from the patient’s blood and was identified by means of microbiological and biochemical tests. We highlight the importance of careful attention to non-fermentative gram-negative rods in a septic patients who have worked or travelled to Southeast Asia. PMID:28042405

  17. Chronic melioidosis presenting with multiple abscesses

    PubMed Central

    Goel, Anshul; Bansal, Rahul; Sharma, Shweta; Singhal, Suman; Kumar, Ashok

    2016-01-01

    Melioidosis is common in Australia and Southeast Asia and is increasingly recognized in India. It presents in various forms which are difficult to identify and often mimics suppurative infections, tuberculosis, fungal infections, malignancy and systemic rheumatic diseases. Presentation may vary from local disease to disseminated abscesses, pneumonia and sepsis. Disease is common and severe in diabetics. We describe a case of diabetic man presenting with fever, septic shock, peri-articular nodules, lung opacities and multiple abscesses in muscles for the past 3 months remaining undiagnosed. Autoimmune conditions were ruled out and infection with Burkholderia pseudomallei was suspected. Burkholderia pseudomallei was isolated from blood cultures, confirming the diagnosis. Prolonged treatment with intravenous ceftazidime followed by oral cotrimoxazole led to complete recovery. Awareness of this infection is required by clinicians and microbiologists unfamiliar with the condition to diagnose the disease early to prevent mortality. PMID:27822380

  18. Sterile-α- and armadillo motif-containing protein inhibits the TRIF-dependent downregulation of signal regulatory protein α to interfere with intracellular bacterial elimination in Burkholderia pseudomallei-infected mouse macrophages.

    PubMed

    Baral, Pankaj; Utaisincharoen, Pongsak

    2013-09-01

    Burkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-type B. pseudomallei inhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators of Toll-like receptor signaling. In contrast, the less virulent lipopolysaccharide (LPS) mutant of B. pseudomallei is unable to exhibit these features and is susceptible to macrophage killing. However, the functional relationship of these two negative regulators in the evasion of macrophage defense has not been elucidated. We demonstrated here that SIRPα downregulation was observed after inhibition of SARM expression by small interfering RNA in wild-type-infected macrophages, indicating that SIRPα downregulation is regulated by SARM. Furthermore, this downregulation requires activation of the TRIF signaling pathway, as we observed abrogation of SIRPα downregulation as well as restricted bacterial growth in LPS mutant-infected TRIF-depleted macrophages. Although inhibition of SARM expression is correlated to SIRPα downregulation and iNOS upregulation in gamma interferon-activated wild-type-infected macrophages, these phenomena appear to bypass the TRIF-dependent pathway. Similar to live bacteria, the wild-type LPS is able to upregulate SARM and to prevent SIRPα downregulation, implying that the LPS of B. pseudomallei may play a crucial role in regulating the expression of these two negative regulators. Altogether, our findings show a previously unrecognized role of B. pseudomallei-induced SARM in inhibiting SIRPα downregulation-mediated iNOS upregulation, facilitating the ability of the bacterium to multiply in macrophages.

  19. Delineating the importance of serum opsonins and the bacterial capsule in affecting the uptake and killing of Burkholderia pseudomallei by murine neutrophils and macrophages.

    PubMed

    Mulye, Minal; Bechill, Michael P; Grose, William; Ferreira, Viviana P; Lafontaine, Eric R; Wooten, R Mark

    2014-08-01

    Infection of susceptible hosts by the encapsulated Gram-negative bacterium Burkholderia pseudomallei (Bp) causes melioidosis, with septic patients attaining mortality rates ≥ 40%. Due to its high infectivity through inhalation and limited effective therapies, Bp is considered a potential bioweapon. Thus, there is great interest in identifying immune effectors that effectively kill Bp. Our goal is to compare the relative abilities of murine macrophages and neutrophils to clear Bp, as well as determine the importance of serum opsonins and bacterial capsule. Our findings indicate that murine macrophages and neutrophils are inherently unable to clear either unopsonized Bp or the relatively-avirulent acapsular bacterium B. thailandensis (Bt). Opsonization of Bp and Bt with complement or pathogen-specific antibodies increases macrophage-uptake, but does not promote clearance, although antibody-binding enhances complement deposition. In contrast, complement opsonization of Bp and Bt causes enhanced uptake and killing by neutrophils, which is linked with rapid ROS induction against bacteria exhibiting a threshold level of complement deposition. Addition of bacteria-specific antibodies enhances complement deposition, but antibody-binding alone cannot elicit neutrophil clearance. Bp capsule provides some resistance to complement deposition, but is not anti-phagocytic or protective against reactive oxygen species (ROS)-killing. Macrophages were observed to efficiently clear Bp only after pre-activation with IFNγ, which is independent of serum- and/or antibody-opsonization. These studies indicate that antibody-enhanced complement activation is sufficient for neutrophil-clearance of Bp, whereas macrophages are ineffective at clearing serum-opsonized Bp unless pre-activated with IFNγ. This suggests that effective immune therapies would need to elicit both antibodies and Th1-adaptive responses for successful prevention/eradication of melioidosis.

  20. Mapping epigenetic changes to the host cell genome induced by Burkholderia pseudomallei reveals pathogen-specific and pathogen-generic signatures of infection

    PubMed Central

    Cizmeci, Deniz; Dempster, Emma L.; Champion, Olivia L.; Wagley, Sariqa; Akman, Ozgur E.; Prior, Joann L.; Soyer, Orkun S.; Mill, Jonathan; Titball, Richard W.

    2016-01-01

    The potential for epigenetic changes in host cells following microbial infection has been widely suggested, but few examples have been reported. We assessed genome-wide patterns of DNA methylation in human macrophage-like U937 cells following infection with Burkholderia pseudomallei, an intracellular bacterial pathogen and the causative agent of human melioidosis. Our analyses revealed significant changes in host cell DNA methylation, at multiple CpG sites in the host cell genome, following infection. Infection induced differentially methylated probes (iDMPs) showing the greatest changes in DNA methylation were found to be in the vicinity of genes involved in inflammatory responses, intracellular signalling, apoptosis and pathogen-induced signalling. A comparison of our data with reported methylome changes in cells infected with M. tuberculosis revealed commonality of differentially methylated genes, including genes involved in T cell responses (BCL11B, FOXO1, KIF13B, PAWR, SOX4, SYK), actin cytoskeleton organisation (ACTR3, CDC42BPA, DTNBP1, FERMT2, PRKCZ, RAC1), and cytokine production (FOXP1, IRF8, MR1). Overall our findings show that pathogenic-specific and pathogen-common changes in the methylome occur following infection. PMID:27484700

  1. Epidemiological tracking and population assignment of the non-clonal bacterium, Burkholderia pseudomallei.

    PubMed

    Dale, Julia; Price, Erin P; Hornstra, Heidie; Busch, Joseph D; Mayo, Mark; Godoy, Daniel; Wuthiekanun, Vanaporn; Baker, Anthony; Foster, Jeffrey T; Wagner, David M; Tuanyok, Apichai; Warner, Jeffrey; Spratt, Brian G; Peacock, Sharon J; Currie, Bart J; Keim, Paul; Pearson, Talima

    2011-12-01

    Rapid assignment of bacterial pathogens into predefined populations is an important first step for epidemiological tracking. For clonal species, a single allele can theoretically define a population. For non-clonal species such as Burkholderia pseudomallei, however, shared allelic states between distantly related isolates make it more difficult to identify population defining characteristics. Two distinct B. pseudomallei populations have been previously identified using multilocus sequence typing (MLST). These populations correlate with the major foci of endemicity (Australia and Southeast Asia). Here, we use multiple Bayesian approaches to evaluate the compositional robustness of these populations, and provide assignment results for MLST sequence types (STs). Our goal was to provide a reference for assigning STs to an established population without the need for further computational analyses. We also provide allele frequency results for each population to enable estimation of population assignment even when novel STs are discovered. The ability for humans and potentially contaminated goods to move rapidly across the globe complicates the task of identifying the source of an infection or outbreak. Population genetic dynamics of B. pseudomallei are particularly complicated relative to other bacterial pathogens, but the work here provides the ability for broad scale population assignment. As there is currently no independent empirical measure of successful population assignment, we provide comprehensive analytical details of our comparisons to enable the reader to evaluate the robustness of population designations and assignments as they pertain to individual research questions. Finer scale subdivision and verification of current population compositions will likely be possible with genotyping data that more comprehensively samples the genome. The approach used here may be valuable for other non-clonal pathogens that lack simple group-defining genetic characteristics

  2. Synthesis of the Tetrasaccharide Repeating Unit of the β-Kdo-Containing Exopolysaccharide from Burkholderia pseudomallei and B. cepacia Complex.

    PubMed

    Laroussarie, Anaïs; Barycza, Barbara; Andriamboavonjy, Hanitra; Tamigney Kenfack, Marielle; Blériot, Yves; Gauthier, Charles

    2015-10-16

    The synthesis of the repeating unit of the immunogenic β-Kdo-containing exopolysaccharide produced by Burkholderia pseudomallei and bacteria of the B. cepacia complex is described. The target tetrasaccharide was synthesized via stereoselective 1,2-cis- and 1,2-trans-galactosylations and β-Kdosylation. A [3 + 1] coupling reaction between a trigalactosyl N-phenyl-2,2,2-trifluoroacetimidate donor and a Kdo acceptor has been successfully achieved for the assembly of the tetrasaccharide skeleton.

  3. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt–29 biosensor

    PubMed Central

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host’s attempt to clear bacterial toxic molecules. One of these genes, ugt–29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt–29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt–29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT–29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt–29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  4. Increased Von Willebrand factor, decreased ADAMTS13 and thrombocytopenia in melioidosis

    PubMed Central

    Löwenberg, Ester C.; Meijers, Joost C. M.; Maude, Rapeephan R.; Day, Nicholas P. J.; Peacock, Sharon J.; van der Poll, Tom; Wiersinga, W. Joost

    2017-01-01

    Background Melioidosis, caused by bioterror treat agent Burkholderia pseudomallei, is an important cause of community-acquired Gram-negative sepsis in Southeast Asia and Northern Australia. New insights into the pathogenesis of melioidosis may help improve treatment and decrease mortality rates from this dreadful disease. We hypothesized that changes in Von Willebrand factor (VWF) function should occur in melioidosis, based on the presence of endothelial stimulation by endotoxin, pro-inflammatory cytokines and thrombin in melioidosis, and investigated whether this impacted on outcome. Methods/Principal findings We recruited 52 controls and 34 culture-confirmed melioidosis patients at Sappasithiprasong Hospital in Ubon Ratchathani, Thailand. All subjects were diabetic. Platelet counts in melioidosis patients were lower compared to controls (p = 0.0001) and correlated with mortality (p = 0.02). VWF antigen levels were higher in patients (geometric mean, 478 U/dl) compared to controls (166 U/dL, p<0.0001). The high levels of VWF in melioidosis appeared to be due to increased endothelial stimulation (VWF propeptide levels were elevated, p<0.0001) and reduced clearance (ADAMTS13 reduction, p<0.0001). However, VWF antigen levels did not correlate with platelet counts implying that thrombocytopenia in acute melioidosis has an alternative cause. Conclusions/Significance Thrombocytopenia is a key feature of melioidosis and is correlated with mortality. Additionally, excess VWF and ADAMTS13 deficiency are features of acute melioidosis, but are not the primary drivers of thrombocytopenia in melioidosis. Further studies on the role of thrombocytopenia in B. pseudomallei infection are needed. PMID:28296884

  5. A Quadruplex Real-Time PCR Assay for the Rapid Detection and Differentiation of the Most Relevant Members of the B. pseudomallei Complex: B. mallei, B. pseudomallei, and B. thailandensis

    PubMed Central

    Lowe, Chinn-Woan; Thiriot, Joseph D.; Heder, Michael J.; March, Jordon K.; Drake, David S.; Lew, Cynthia S.; Bunnell, Annette J.; Moore, Emily S.; O'Neill, Kim L.; Robison, Richard A.

    2016-01-01

    The Burkholderia pseudomallei complex classically consisted of B. mallei, B. pseudomallei, and B. thailandensis, but has now expanded to include B. oklahomensis, B. humptydooensis, and three unassigned Burkholderia clades. Methods for detecting and differentiating the B. pseudomallei complex has been the topic of recent research due to phenotypic and genotypic similarities of these species. B. mallei and B. pseudomallei are recognized as CDC Tier 1 select agents, and are the causative agents of glanders and melioidosis, respectively. Although B. thailandensis and B. oklahomensis are generally avirulent, both display similar phenotypic characteristics to that of B. pseudomallei. B. humptydooensis and the Burkholderia clades are genetically similar to the B. pseudomallei complex, and are not associated with disease. Optimal identification of these species remains problematic, and PCR-based methods can resolve issues with B. pseudomallei complex detection and differentiation. Currently, no PCR assay is available that detects the major species of the B. pseudomallei complex. A real-time PCR assay in a multiplex single-tube format was developed to simultaneously detect and differentiate B. mallei, B. pseudomallei, and B. thailandensis, and a common sequence found in B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis. A total of 309 Burkholderia isolates and 5 other bacterial species were evaluated. The assay was 100% sensitive and specific, demonstrated sensitivity beyond culture and GC methods for the isolates tested, and is completed in about an hour with a detection limit between 2.6pg and 48.9pg of gDNA. Bioinformatic analyses also showed the assay is likely 100% specific and sensitive for all 84 fully sequenced B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis strains currently available in GenBank. For these reasons, this assay could be a rapid and sensitive tool in the detection and differentiation for those species of the B

  6. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  7. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif)

    PubMed Central

    Ng, Mei Ying; Wang, Mei; Casey, Patrick J.; Gan, Yunn-Hwen; Hagen, Thilo

    2017-01-01

    Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways. PMID:28166272

  8. Novel Pan-Genomic Analysis Approach in Target Selection for Multiplex PCR Identification and Detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia Complex Species: a Proof-of-Concept Study▿

    PubMed Central

    Ho, Chi-Chun; Lau, Candy C. Y.; Martelli, Paolo; Chan, San-Yuen; Tse, Cindy W. S.; Wu, Alan K. L.; Yuen, Kwok-Yung; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2011-01-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and the Burkholderia cepacia complex differ greatly in pathogenicity and epidemiology. Yet, they are occasionally misidentified by biochemical profiling, and even 16S rRNA gene sequencing may not offer adequate discrimination between certain species groups. Using the 23 B. pseudomallei, four B. thailandensis, and 16 B. cepacia complex genome sequences available, we identified gene targets specific to each of them (a Tat domain protein, a 70-kDa protein, and a 12-kDa protein for B. pseudomallei, B. thailandensis, and the B. cepacia complex, respectively), with an in-house developed algorithm. Using these targets, we designed a robust multiplex PCR assay useful for their identification and detection from soil and simulated sputum samples. For all 43 B. pseudomallei, seven B. thailandensis, and 20 B. cepacia complex (B. multivorans, n = 6; B. cenocepacia, n = 3; B. cepacia, n = 4; B. arboris, n = 2; B. contaminans, B. anthina, and B. pyrrocinia, n = 1 each; other unnamed members, n = 2) isolates, the assay produced specific products of predicted size without false positives or negatives. Of the 60 soil samples screened, 19 (31.6%) and 29 (48.3%) were positive for B. pseudomallei and the B. cepacia complex, respectively, and in four (6.7%) soil samples, the organisms were codetected. DNA sequencing confirmed that all PCR products originated from their targeted loci. This novel pan-genomic analysis approach in target selection is simple, computationally efficient, and potentially applicable to any species that harbors species-specific genes. A multiplex PCR assay for rapid and accurate identification and detection of B. pseudomallei, B. thailandensis, and the B. cepacia complex was developed and verified. PMID:21177905

  9. Establishment of a novel whole animal HTS technology platform for melioidosis drug discovery.

    PubMed

    Lakshmanan, Umayal; Yap, Amelia; Fulwood, Justina; Yichun, Li; Hoon, Sim Siew; Lim, Jolander; Ting, Audrey; Sem, Xiao Hui; Kreisberg, Jason F; Tan, Patrick; Tan, Gladys; Flotow, Horst

    2014-01-01

    Melioidosis is a serious emerging endemic infectious disease caused by Burkholderia pseudomallei, a gram-negative pathogen. Septicemic melioidosis has a mortality rate of 50% even with treatment. Like other gram-negative bacteria, B. pseudomallei is resistant to a number of antibiotics and multi-drug resistant B. pseudomallei is beginning to be encountered in hospitals. There is a clear medical need to develop new treatment options to manage this disease. We used Burkholderia thailandensis (a BSL-2 class organism) to infect Caenorhabditis elegans and set up a surrogate whole animal infection model of melioidosis that we could run in a 384 microtitre plate and establish a whole animal HTS assay. We have optimized and validated this assay in a fluorescence-based format that can be run on our automated screening platforms. This assay has now been used to screen over 300,000 compounds from our small molecule library and we are in the process of characterizing the hits obtained and select compounds for further studies. We have thus established a biologically relevant assay technology platform to screen for antibacterial compounds and used this platform to identify new compounds that may find application in treating melioidosis infections.

  10. [Melioidosis in a Danish tourist returning from North-eastern Thailand].

    PubMed

    Leth, Steffen; Wang, Mikala; Deutch, Susanna

    2014-06-09

    Melioidosis, an infectious disease caused by Burkholderia pseudomallei, is endemic in South East Asia and Northern Australia. It has a wide clinical diversity, spanning from asymptomatic cases to rapid septic shock and death. We present a case of pulmonary melioidosis in a Danish tourist returning from North-eastern Thailand. The patient was treated with intravenous ceftazidime followed by oral therapy with trimethoprim/sulfamethoxazole and subsequently switched to doxycycline due to abnormal liver function tests and eosinophilia, with no sign of relapse two months after antibiotic cessation.

  11. Distinct human antibody response to the biological warfare agent Burkholderia mallei.

    PubMed

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B

    2012-10-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.

  12. Efficacy of post exposure administration of doxycycline in a murine model of inhalational melioidosis.

    PubMed

    Gelhaus, H Carl; Anderson, Michael S; Fisher, David A; Flavin, Michael T; Xu, Ze-Qi; Sanford, Daniel C

    2013-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis. Treatment of melioidosis is suboptimal and developing improved melioidosis therapies requires animal models. In this report, we exposed male BALB/c mice to various amounts of aerosolized B. pseudomallei 1026b to determine lethality. After establishing a median lethal dose (LD(50)) of 2,772 colony forming units (cfu)/animal, we tested the ability of doxycycline administered 6 hours after exposure to a uniformly lethal dose of ~20 LD(50) to prevent death and eliminate bacteria from the lung and spleens. Tissue bacterial burdens were examined by PCR analysis. We found that 100% of mice treated with doxycycline survived and B. pseudomallei DNA was not amplified from the lungs or spleens of most surviving mice. We conclude the BALB/c mouse is a useful model of melioidosis. Furthermore, the data generated in this mouse model indicate that doxycycline is likely to be effective in post-exposure prophylaxis of melioidosis.

  13. Comparison of the susceptibilities of Burkholderia pseudomallei to meropenem and ceftazidime by conventional and intracellular methods.

    PubMed

    Inglis, T J J; Rodrigues, F; Rigby, P; Norton, R; Currie, B J

    2004-08-01

    The effect of the two antibiotics ceftazidime and meropenem on a collection of 46 Burkholderia pseudomallei isolates representing clinical and environmental sources across northern Australia was investigated by using a series of in vitro test methods. The susceptibility testing methods used included Kirby-Bauer disk diffusion, Etest MIC, broth microdilution MIC, and a modification of the microdilution method in which Acanthamoeba cells were added to simulate the effect of a professional phagocytic cell on test outcome. In a semiquantitative validation coculture series, the majority of bacteria were intracellular up to a multiplicity of infection of 10 bacteria to one ameba. The optical density and bacterial count (log10 CFU/ml) correlated across the range tested (r2 = 0.77; P < 0.0001). Susceptibility test results were compared against clinical outcomes. The MICs of ceftazidime were consistently higher than those of meropenem by all three methods. The MICs of both agents were significantly higher when Acanthamoeba trophozoites were added to the broth microdilution method. Conventional and intracellular MIC results were consistent for clinical isolates from the Western Australian outbreak cluster despite the wide variety of clinical outcomes. Further development of the intracellular MIC method is expected to help assess the efficacy of antimicrobial agents on this bacterial species in an intracellular setting.

  14. Burkholderia pseudomallei Antibodies in Individuals Living in Endemic Regions in Northeastern Brazil

    PubMed Central

    Rolim, Dionne Bezerra; Vilar, Dina Cortez F. L.; de Góes Cavalcanti, Luciano Pamplona; Freitas, Liara B. N.; Inglis, Timothy J. J.; Nobre Rodrigues, Jorge Luiz; Nagao-Dias, Aparecida Tiemi

    2011-01-01

    A seroepidemiological investigation was conducted among the population of two municipalities in Northeastern Brazil. Immunoglobulin M (IgM) and IgG antibodies to Burkholderia pseudomallei were positive in 51.27% (161 in 317 samples) and 58.49% (186), respectively. IgM titers were higher in children than in adults. On the contrary, IgG increased progressively with age. We observed a significant association between agricultural occupation and raised IgM titers (P < 0.005) and IgG titers (P < 0.001), and between construction workers and raised IgG titers (P = 0.005). Antibody IgG avidities did not correlate with age. The highest titers of antibodies (1/800) showed the highest antibody avidity indexes (P < 0.01). Most of the serum samples recognized 45-kDa and 200-kDa bands by IgG1 and IgG2 subclasses. Our study showed a high seropositivity among individuals living in endemic regions of the state of Ceará, and highlights the need for further surveillance close to water courses such as dams and rivers in Northeastern Brazil. PMID:21292903

  15. Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria.

    PubMed

    Diggle, Stephen P; Lumjiaktase, Putthapoom; Dipilato, Francesca; Winzer, Klaus; Kunakorn, Mongkol; Barrett, David A; Chhabra, Siri Ram; Cámara, Miguel; Williams, Paul

    2006-07-01

    Pseudomonas aeruginosa synthesizes diverse 2-alkyl-4(1H)-quinolones (AHQs), including the signaling molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), via the pqsABCDE locus. By examining the genome databases, homologs of the pqs genes were identified in other bacteria. However, apart from P. aeruginosa, only Burkholderia pseudomallei and B. thailandensis contained a complete pqsA-E operon (termed hhqA-E). By introducing the B. pseudomallei hhqA and hhqE genes into P. aeruginosa pqsA and pqsE mutants, we show that they are functionally conserved and restore virulence factor and PQS production. B. pseudomallei, B. thailandensis, B. cenocepacia, and P. putida each produced 2-heptyl-4(1H)-quinolone (HHQ), but not PQS. Mutation of hhqA in B. pseudomallei resulted in the loss of AHQ production, altered colony morphology, and enhanced elastase production, which was reduced to parental levels by exogenous HHQ. These data reveal a role for AHQs in bacterial cell-to-cell communication beyond that seen in P. aeruginosa.

  16. Growth-related changes in intracellular spermidine and its effect on efflux pump expression and quorum sensing in Burkholderia pseudomallei.

    PubMed

    Chan, Ying Ying; Chua, Kim Lee

    2010-04-01

    The Burkholderia pseudomallei BpeAB-OprB resistance-nodulation-division (RND) family pump effluxes aminoglycoside and macrolide antibiotics as well as acylhomoserine lactones (AHLs) involved in quorum sensing. Expression of bpeA-lacZ was cell density-dependent and was inducible in the presence of these compounds. Intracellular levels of spermidine and N-acetylspermidine increased with cell density in wild-type B. pseudomallei KHW, but were always lower in the bpeAB pump mutant at all growth phases. The significance of changes in intracellular spermidine on efflux pump expression was demonstrated by the disruption of the binding of the BpeR repressor protein to the bpeABoprB regulatory region in vitro in the presence of increasing spermidine concentrations. This was supported by dose-dependent activation of bpeA-lacZ transcription in vivo in the presence of exogenous spermidine and N-acetylspermidine, thus implicating the involvement of the BpeAB-OprB pump in spermidine homeostasis in B. pseudomallei. Consequently, inhibition of intracellular spermidine synthesis reduced the efflux of AHLs by BpeAB-OprB. Other potential therapeutic applications of spermidine synthase inhibitors include the reduction of swimming motility and biofilm formation by B. pseudomallei.

  17. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by Use of Laser Light Scattering Technology

    PubMed Central

    Lascols, Christine; Sue, David; Weigel, Linda M.

    2016-01-01

    Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei. Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in <4 h for B. anthracis and <6 h for Y. pestis and B. pseudomallei. One exception was B. pseudomallei in the presence of ceftazidime, which required >10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods. PMID:26984973

  18. Melioidosis: A Rare Cause of Liver Abscess

    PubMed Central

    Teh, Catherine S. C.; Casupang, Ma. Amornetta J.

    2016-01-01

    Case Presentation. This is a case of a 44-year-old male, farmer, known to be diabetic, presenting with two-week history of vague abdominal pain associated with high grade fever. Abdominal CT scan showed localized liver abscess at segment 8 measuring 7.5 × 6.8 × 6.1 cm. Patient subsequently underwent laparoscopic ultrasound guided pigtail insertion for drainage of abscess. Culture studies showed moderate growth of Burkholderia pseudomallei in which the patient completed seven days of IV Meropenem. On follow-up after 12 weeks of oral Sulfamethoxazole/Trimethoprim, taken twice a day, the patient remained asymptomatic with no residual findings based on the abdominal ultrasound. Discussion. Diagnosis of melioidosis, a known “great masquerader,” relies heavily on culture studies. Consensus with regard to the management of liver abscess caused by Burkholderia pseudomallei has not yet been established due to the rarity of cases. Surgical intervention through either a percutaneous or open drainage has shown good outcomes compared to IV antibiotics alone. In Philippines, the possibility of underreporting is highly plausible. This write-up serves not only to report a rare presentation of melioidosis but also to add to the number of cases reported in the country, possibly indicative of disease emergence. PMID:27529039

  19. Increasing incidence of human melioidosis in Northeast Thailand.

    PubMed

    Limmathurotsakul, Direk; Wongratanacheewin, Surasakdi; Teerawattanasook, Nittaya; Wongsuvan, Gumphol; Chaisuksant, Seksan; Chetchotisakd, Ploenchan; Chaowagul, Wipada; Day, Nicholas P J; Peacock, Sharon J

    2010-06-01

    Melioidosis is a serious community-acquired infectious disease caused by the Gram-negative environmental bacterium Burkholderia pseudomallei. A prospective cohort study identified 2,243 patients admitted to Sappasithiprasong Hospital in northeast Thailand with culture-confirmed melioidosis between 1997 and 2006. These data were used to calculate an average incidence rate for the province of 12.7 cases of melioidosis per 100,000 people per year. Incidence increased incrementally from 8.0 (95% confidence interval [CI] = 7.2-10.0) in 2000 to 21.3 (95% CI = 19.2-23.6) in 2006 (P < 0.001; chi(2) test for trend). Male sex, age >/= 45 years, and either known or undiagnosed diabetes were independent risk factors for melioidosis. The average mortality rate from melioidosis over the study period was 42.6%. The minimum estimated population mortality rate from melioidosis in 2006 was 8.63 per 100,000 people (95% CI = 7.33-10.11), the third most common cause of death from infectious diseases in northeast Thailand after human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and tuberculosis.

  20. Melioidosis: Epidemiology, Pathophysiology, and Management

    PubMed Central

    Cheng, Allen C.; Currie, Bart J.

    2005-01-01

    Melioidosis, caused by the gram-negative saprophyte Burkholderia pseudomallei, is a disease of public health importance in southeast Asia and northern Australia that is associated with high case-fatality rates in animals and humans. It has the potential for epidemic spread to areas where it is not endemic, and sporadic case reports elsewhere in the world suggest that as-yet-unrecognized foci of infection may exist. Environmental determinants of this infection, apart from a close association with rainfall, are yet to be elucidated. The sequencing of the genome of a strain of B. pseudomallei has recently been completed and will help in the further identification of virulence factors. The presence of specific risk factors for infection, such as diabetes, suggests that functional neutrophil defects are important in the pathogenesis of melioidosis; other studies have defined virulence factors (including a type III secretion system) that allow evasion of killing mechanisms by phagocytes. There is a possible role for cell-mediated immunity, but repeated environmental exposure does not elicit protective humoral or cellular immunity. A vaccine is under development, but economic constraints may make vaccination an unrealistic option for many regions of endemicity. Disease manifestations are protean, and no inexpensive, practical, and accurate rapid diagnostic tests are commercially available; diagnosis relies on culture of the organism. Despite the introduction of ceftazidime- and carbapenem-based intravenous treatments, melioidosis is still associated with a significant mortality attributable to severe sepsis and its complications. A long course of oral eradication therapy is required to prevent relapse. Studies exploring the role of preventative measures, earlier clinical identification, and better management of severe sepsis are required to reduce the burden of this disease. PMID:15831829

  1. Natural Infection of Burkholderia pseudomallei in an Imported Pigtail Macaque (Macaca nemestrina) and Management of the Exposed Colony

    PubMed Central

    Johnson, Crystal H; Skinner, Brianna L; Dietz, Sharon M; Blaney, David; Engel, Robyn M; Lathrop, George W; Hoffmaster, Alex R; Gee, Jay E; Elrod, Mindy G; Powell, Nathaniel; Walke, Henry

    2013-01-01

    Identification of the select agent Burkholderia pseudomallei in macaques imported into the United States is rare. A purpose-bred, 4.5-y-old pigtail macaque (Macaca nemestrina) imported from Southeast Asia was received from a commercial vendor at our facility in March 2012. After the initial acclimation period of 5 to 7 d, physical examination of the macaque revealed a subcutaneous abscess that surrounded the right stifle joint. The wound was treated and resolved over 3 mo. In August 2012, 2 mo after the stifle joint wound resolved, the macaque exhibited neurologic clinical signs. Postmortem microbiologic analysis revealed that the macaque was infected with B. pseudomallei. This case report describes the clinical evaluation of a B. pseudomallei-infected macaque, management and care of the potentially exposed colony of animals, and protocols established for the animal care staff that worked with the infected macaque and potentially exposed colony. This article also provides relevant information on addressing matters related to regulatory issues and risk management of potentially exposed animals and animal care staff. PMID:24326230

  2. Genomic Patterns of Pathogen Evolution Revealed by Comparison of Burkholderia pseudomallei, the Causative Agent of Melioidosis, to Avirulent Burkholderia thailandensis

    DTIC Science & Technology

    2006-05-26

    representing less than 15% of all genes in Bp. The identification of Bt- spe - cific genetic elements was also not addressed in that report, which...nt) 1177 1325 1139 1228 %G + C content 67.7% 68.5% 67.3% 68% tRNA 53 8 52 6 rRNA 9 3 9 3 No. of Specific genes 484 370 312 339 No. of conserved genes ...Bp, V) effects of species- spe - cific genes on metabolism and virulence, and VI) evidence that the cis-transcriptional regulatory machineries of Bp and

  3. Transverse myelitis secondary to Melioidosis; A case report

    PubMed Central

    2012-01-01

    Background Melioidosis has become an emerging infection in Sri Lanka; a country which is considered non endemic for it. Paraplegia due to Burkholderia pseudomallei is a very rare entity encountered even in countries where the disease is endemic. There are no reported cases of transverse myelitis due to melioidosis in Sri Lankan population thus we report the first case. Case presentation A 21 year old farmer presented with sudden onset bi lateral lower limb weakness, numbness and urine retention. Examination revealed flaccid areflexic lower limbs with a sensory loss of all modalities and a sensory level at T10 together with sphincter involvement. MRI of the thoracolumbar spine showed extensive myelitis of the thoracic spine complicating left psoas abscess without definite extension to the spinal cord or cord compression. Burkholderia pseudomallei was isolated from the psoas abscess pus cultures and the diagnosis of melioidosis was confirmed with high titers of Burkholderia pseudomallei antibodies and positive PCR. He was treated with high doses of IV ceftazidime and oral cotrimoxazole for one month with a plan to continue cotrimoxazole and doxycycline till one year. Patient’s general condition improved but the residual neurological problems persisted. Conclusion The exact pathogenesis of spinal cord melioidosis is not quite certain except in the cases where there is direct microbial invasion, which does not appear to be the case in our patient. We postulate our patient’s presentation could be due to ischemia of the spinal cord following septic embolisation or thrombosis of spinal artery due to the abscess nearby. A neurotrophic exotoxin causing myelitis or post infectious immunological demyelination is yet another possibility. This emphasizes the necessity of further studies to elucidate the exact pathogenesis in this type of presentations. Health care professionals in Sri Lanka, where this is an emerging infection, need to improve their knowledge regarding

  4. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei

    PubMed Central

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-01-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. PMID:25044501

  5. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei.

    PubMed

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-10-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages.

  6. Melioidosis with a Pericardial Effusion, which Relapsed as a Chest Wall Abscess: A Rare Presentation

    PubMed Central

    Mathai K., Rashmi Teresa; Bhat, K. Sundara; Ashraf, Mohammed; Sarawag, Mayank; K.P., Kumar

    2013-01-01

    Melioidosis, which is caused by a soil saprophyte, Burkholderia pseudomallei, is most prevalent in the south–west coast of India. Although it is frequently seen in immunocompromised patients, melioidosis can occur in apparently normal individuals. Melioidosis can involve almost any organ. A relapse of melioidosis is usually associated with a poor adherence to the eradication therapy, a multifocal involvement and bacteraemia. A relapsing melioidosis is usually known to follow a similar pattern of organ involvement in the first and second episodes of the infection. We are discussing here, a rare case of melioidosis in a 38-year-old construction-worker, with no risk factors, who presented initially with a pericardial effusion. It relapsed 6 months after he completed the prescribed eradication therapy for 3 months, as an anterior chest wall abscess. The author recommends a high index of suspicion for the relapsed melioidosis cases, inspite of the primary episode being non-bacteraemic and compliant with the recommended therapy, in order to avoid further complications. PMID:23730667

  7. Melioidosis and Aboriginal seasons in northern Australia.

    PubMed

    Cheng, Allen C; Jacups, Susan P; Ward, Linda; Currie, Bart J

    2008-12-01

    Melioidosis, an infection due to the environmental bacterium Burkholderia pseudomallei, is endemic to Southeast Asia and northern Australia, with cases strongly correlated with the monsoonal wet season. We hypothesized that seasonal variation in the mode of acquisition, informed by traditional knowledge, would result in variations in disease characteristics as well as disease incidence. We explored the seasonal variation in acute, culture-confirmed melioidosis using local Aboriginal definitions of seasons in presentations to the Royal Darwin Hospital, the referral centre for the Top End of the Northern Territory, Australia. In 387 patients, we observed an increased proportion of patients with pneumonia (60%) and severe sepsis (25%) associated with presentations in the wet seasons Gunumeleng (October-December) and Gudjewg (January-March) compared with the drier seasons Wurrgeng (June August) and Gurrung (August-October) (pneumonia 26%, severe sepsis 13%). This observation supports the hypothesis that in the wet seasons there may be changes in the mode and/or magnitude of exposure to B. pseudomallei, with a shift from percutaneous inoculation to aerosol inhalation, for instance.

  8. Melioidosis in animals: a review on epizootiology, diagnosis and clinical presentation.

    PubMed

    Sprague, L D; Neubauer, H

    2004-09-01

    Melioidosis, an infectious disease caused by Burkholderia pseudomallei is an emerging disease with high impact on animals and man. In different animal species, the clinical course varies and delayed diagnosis poses risks for the dissemination of the agent in non-endemic areas. Not only migration and transport of animals around the world but also tourism increases the risk that melioidosis can leave its endemic boundaries and establish itself elsewhere. Detection of the agent is a major challenge, as the agent has to be handled in laboratories of biosafety level 3 and test kits are not yet commercially available. Veterinarians and doctors should be aware of melioidosis not only as an agent of public interest but also in terms of a bioterrorist attack. The aim of this review is to describe the agent, its aetiology, the manifestation in a variety of animal species as well as to describe diagnostic procedures, typing techniques and countermeasures.

  9. Consensus on the Development of Vaccines against Naturally Acquired Melioidosis

    PubMed Central

    Funnell, Simon G.P.; Torres, Alfredo G.; Morici, Lisa A.; Brett, Paul J.; Dunachie, Susanna; Atkins, Timothy; Altmann, Daniel M.; Bancroft, Gregory; Peacock, Sharon J.

    2015-01-01

    Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism’s known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis. PMID:25992835

  10. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the ‘open’ state

    PubMed Central

    Buchko, Garry W.; Robinson, Howard; Abendroth, Jan; Staker, Bart L.; Myler, Peter J.

    2010-01-01

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drugs therapies against infectious bacterial agents. Here we report the 2.1 Å resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease meliodosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATPbd) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 Å. These two BpAdk conformations may represent ‘open’ Adk sub-states along the preferential pathway to the ‘closed’ substrate-bound state. PMID:20331978

  11. Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase.

    PubMed

    Neckles, Carla; Eltschkner, Sandra; Cummings, Jason E; Hirschbeck, Maria; Daryaee, Fereidoon; Bommineni, Gopal R; Zhang, Zhuo; Spagnuolo, Lauren; Yu, Weixuan; Davoodi, Shabnam; Slayden, Richard A; Kisker, Caroline; Tonge, Peter J

    2017-04-04

    There is growing awareness of the link between drug-target residence time and in vivo drug activity, and there are increasing efforts to determine the molecular factors that control the lifetime of a drug-target complex. Rational alterations in the drug-target residence time require knowledge of both the ground and transition states on the inhibition reaction coordinate, and we have determined the structure-kinetic relationship for 22 ethyl- or hexyl-substituted diphenyl ethers that are slow-binding inhibitors of bpFabI1, the enoyl-ACP reductase FabI1 from Burkholderia pseudomallei. Analysis of enzyme inhibition using a two-dimensional kinetic map demonstrates that the ethyl and hexyl diphenyl ethers fall into two distinct clusters. Modifications to the ethyl diphenyl ether B ring result in changes to both on and off rates, where residence times of up to ∼700 min (∼11 h) are achieved by either ground state stabilization (PT444) or transition state destabilization (slower on rate) (PT404). By contrast, modifications to the hexyl diphenyl ether B ring result in residence times of 300 min (∼5 h) through changes in only ground state stabilization (PT119). Structural analysis of nine enzyme:inhibitor complexes reveals that the variation in structure-kinetic relationships can be rationalized by structural rearrangements of bpFabI1 and subtle changes to the orientation of the inhibitor in the binding pocket. Finally, we demonstrate that three compounds with residence times on bpFabI1 from 118 min (∼2 h) to 670 min (∼11 h) have in vivo efficacy in an acute B. pseudomallei murine infection model using the virulent B. pseudomallei strain Bp400.

  12. The Burkholderia pseudomallei BpeAB-OprB Efflux Pump: Expression and Impact on Quorum Sensing and Virulence

    PubMed Central

    Chan, Ying Ying; Chua, Kim Lee

    2005-01-01

    BpeAB-OprB is a multidrug efflux pump of the bacterial pathogen Burkholderia pseudomallei and is responsible for conferring antimicrobial resistance to aminoglycosides and macrolides. Expression of bpeAB-oprB is inducible by its substrate erythromycin and upon entry into stationary phase. BpeR, a member of the TetR family, functions as a repressor of the bpeAB-oprB operon. bpeR expression was similarly induced at stationary phase but lagged behind the induction of bpeAB-oprB expression. The induction of bpeAB-oprB expression could be advanced to the early exponential phase by exogenous addition of the B. pseudomallei autoinducers N-octanoyl-homoserine lactone (C8HSL) and N-decanoyl-homoserine lactone (C10HSL), suggesting that the bpeAB-oprB operon may be quorum regulated. On the other hand, acyl-homoserine lactone (acyl-HSL) production was undetectable in the bpeAB-null mutant and strains which overexpress bpeR. The failure of these strains to produce acyl-HSLs seemed to be at the level of synthesis of acyl-HSLs, as growth-phase-dependent expression of the autoinducer synthase BpsI was abolished in the bpeAB-null mutant. bpsI expression remained growth phase dependent in the bpeR mutant which had functional BpeAB-OprB. BpeAB-OprB function is likewise necessary for optimal production of quorum-sensing-controlled virulence factors such as siderophore and phospholipase C and for biofilm formation. Cell invasion and cytotoxicity towards human lung epithelial (A549) and human macrophage (THP-1) cells were also significantly attenuated in both the bpeAB mutant and bpeR-overexpressing strains, thus suggesting the possibility of attenuating B. pseudomallei virulence using inhibitors of the BpeAB-OprB efflux pump. PMID:15995185

  13. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence.

    PubMed

    Chan, Ying Ying; Chua, Kim Lee

    2005-07-01

    BpeAB-OprB is a multidrug efflux pump of the bacterial pathogen Burkholderia pseudomallei and is responsible for conferring antimicrobial resistance to aminoglycosides and macrolides. Expression of bpeAB-oprB is inducible by its substrate erythromycin and upon entry into stationary phase. BpeR, a member of the TetR family, functions as a repressor of the bpeAB-oprB operon. bpeR expression was similarly induced at stationary phase but lagged behind the induction of bpeAB-oprB expression. The induction of bpeAB-oprB expression could be advanced to the early exponential phase by exogenous addition of the B. pseudomallei autoinducers N-octanoyl-homoserine lactone (C8HSL) and N-decanoyl-homoserine lactone (C10HSL), suggesting that the bpeAB-oprB operon may be quorum regulated. On the other hand, acyl-homoserine lactone (acyl-HSL) production was undetectable in the bpeAB-null mutant and strains which overexpress bpeR. The failure of these strains to produce acyl-HSLs seemed to be at the level of synthesis of acyl-HSLs, as growth-phase-dependent expression of the autoinducer synthase BpsI was abolished in the bpeAB-null mutant. bpsI expression remained growth phase dependent in the bpeR mutant which had functional BpeAB-OprB. BpeAB-OprB function is likewise necessary for optimal production of quorum-sensing-controlled virulence factors such as siderophore and phospholipase C and for biofilm formation. Cell invasion and cytotoxicity towards human lung epithelial (A549) and human macrophage (THP-1) cells were also significantly attenuated in both the bpeAB mutant and bpeR-overexpressing strains, thus suggesting the possibility of attenuating B. pseudomallei virulence using inhibitors of the BpeAB-OprB efflux pump.

  14. Treatment and prophylaxis of melioidosis

    PubMed Central

    Dance, David

    2014-01-01

    Melioidosis, infection with Burkholderia pseudomallei, is being recognised with increasing frequency and is probably more common than currently appreciated. Treatment recommendations are based on a series of clinical trials conducted in Thailand over the past 25 years. Treatment is usually divided into two phases: in the first, or acute phase, parenteral drugs are given for ≥10 days with the aim of preventing death from overwhelming sepsis; in the second, or eradication phase, oral drugs are given, usually to complete a total of 20 weeks, with the aim of preventing relapse. Specific treatment for individual patients needs to be tailored according to clinical manifestations and response, and there remain many unanswered questions. Some patients with very mild infections can probably be cured by oral agents alone. Ceftazidime is the mainstay of acute-phase treatment, with carbapenems reserved for severe infections or treatment failures and amoxicillin/clavulanic acid (co-amoxiclav) as second-line therapy. Trimethoprim/sulfamethoxazole (co-trimoxazole) is preferred for the eradication phase, with the alternative of co-amoxiclav. In addition, the best available supportive care is needed, along with drainage of abscesses whenever possible. Treatment for melioidosis is unaffordable for many in endemic areas of the developing world, but the relative costs have reduced over the past decade. Unfortunately there is no likelihood of any new or cheaper options becoming available in the immediate future. Recommendations for prophylaxis following exposure to B. pseudomallei have been made, but the evidence suggests that they would probably only delay rather than prevent the development of infection. PMID:24613038

  15. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    NASA Astrophysics Data System (ADS)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  16. Survey of antimicrobial resistance in clinical Burkholderia pseudomallei isolates over two decades in Northeast Thailand.

    PubMed

    Wuthiekanun, Vanaporn; Amornchai, Premjit; Saiprom, Natnaree; Chantratita, Narisara; Chierakul, Wirongrong; Koh, Gavin C K W; Chaowagul, Wipada; Day, Nicholas P J; Limmathurotsakul, Direk; Peacock, Sharon J

    2011-11-01

    A 21-year survey conducted in northeast Thailand of antimicrobial resistance to parenteral antimicrobial drugs used to treat melioidosis identified 24/4,021 (0.6%) patients with one or more isolates resistant to ceftazidime (n = 8), amoxicillin-clavulanic acid (n = 4), or both drugs (n = 12). Two cases were identified at admission, and the remainder were detected a median of 15 days after starting antimicrobial therapy. Resistance to carbapenem drugs was not detected. These findings support the current prescribing recommendations for melioidosis.

  17. Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis.

    PubMed

    Gutierrez, Maria G; Yoder-Himes, Deborah R; Warawa, Jonathan M

    2015-01-01

    Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory

  18. In vitro activities of amoxicillin-clavulanate, doxycycline, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole against biofilm of Brazilian strains of Burkholderia pseudomallei.

    PubMed

    Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, Camila Alencar; Brilhante, Raimunda Sâmia Nogueira; Castelo-Branco, Débora de Souza Collares Maia; Neto, Manoel Paiva de Araújo; Cordeiro, Rossana de Aguiar; Rodrigues, Terezinha de Jesus Santos; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2013-11-01

    This study aimed at investigating the in vitro activities of amoxicillin-clavulanate, doxycycline, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole against Burkholderia pseudomallei in planktonic and biofilm forms, through broth microdilution and resazurin-based viability staining, respectively. In planktonic growth, the strains were susceptible to the drugs, while in biofilm growth, significantly higher antimicrobial concentrations were required, especially for ceftazidime and imipenem, surpassing the resistance breakpoints. These results highlight the importance of the routine evaluation of biofilm antimicrobial susceptibility.

  19. In Vitro Activities of Amoxicillin-Clavulanate, Doxycycline, Ceftazidime, Imipenem, and Trimethoprim-Sulfamethoxazole against Biofilm of Brazilian Strains of Burkholderia pseudomallei

    PubMed Central

    Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, Camila Alencar; Castelo-Branco, Débora de Souza Collares Maia; Neto, Manoel Paiva de Araújo; Cordeiro, Rossana de Aguiar; Rodrigues, Terezinha de Jesus Santos; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2013-01-01

    This study aimed at investigating the in vitro activities of amoxicillin-clavulanate, doxycycline, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole against Burkholderia pseudomallei in planktonic and biofilm forms, through broth microdilution and resazurin-based viability staining, respectively. In planktonic growth, the strains were susceptible to the drugs, while in biofilm growth, significantly higher antimicrobial concentrations were required, especially for ceftazidime and imipenem, surpassing the resistance breakpoints. These results highlight the importance of the routine evaluation of biofilm antimicrobial susceptibility. PMID:24002089

  20. The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species.

    PubMed

    Toesca, Isabelle J; French, Christopher T; Miller, Jeff F

    2014-04-01

    Pseudomallei group Burkholderia species are facultative intracellular parasites that spread efficiently from cell to cell by a mechanism involving the fusion of adjacent cell membranes. Intercellular fusion requires the function of the cluster 5 type VI secretion system (T6SS-5) and its associated valine-glycine repeat protein, VgrG5. Here we show that VgrG5 alleles are conserved and functionally interchangeable between Burkholderia pseudomallei and its relatives B. mallei, B. oklahomensis, and B. thailandensis. We also demonstrate that the integrity of the VgrG5 C-terminal domain is required for fusogenic activity, and we identify sequence motifs, including two hydrophobic segments, that are important for fusion. Mutagenesis and secretion experiments using B. pseudomallei strains engineered to express T6SS-5 in vitro show that the VgrG5 C-terminal domain is dispensable for T6SS-mediated secretion of Hcp5, demonstrating that the ability of VgrG5 to mediate membrane fusion can be uncoupled from its essential role in type VI secretion. We propose a model in which a unique fusogenic activity at the C terminus of VgrG5 facilitates intercellular spread by B. pseudomallei and related species following injection across the plasma membranes of infected cells.

  1. Transient In Vivo Resistance Mechanisms of Burkholderia pseudomallei to Ceftazidime and Molecular Markers for Monitoring Treatment Response

    PubMed Central

    Cummings, Jason E.; Slayden, Richard A.

    2017-01-01

    Much is known about the mode of action of drugs and resistance mechanisms under laboratory growth conditions, but research on the bacterial transcriptional response to drug pressure in vivo or efficacious mode of action and transient resistance mechanisms of clinically employed drugs is limited. Accordingly, to assess active alternative metabolism and transient resistance mechanisms, and identify molecular markers of treatment response, the in vivo transcriptional response of Burkholderia pseudomallei 1026b to treatment with ceftazidime in infected lungs was compared to the in vitro bacterial response in the presence of drug. There were 1,688 transcriptionally active bacterial genes identified that were unique to in vivo treated conditions. Of the in vivo transcriptionally active bacterial genes, 591 (9.4% coding capacity) genes were differentially expressed by ceftazidime treatment. In contrast, only 186 genes (2.7% coding capacity) were differentially responsive to ceftazidime treatment under in vitro culturing conditions. Within the genes identified were alternative PBP proteins that may compensate for target inactivation and transient resistance mechanisms, such as β-lactamses that may influence the potency of ceftazidime. This disparate observation is consistent with the thought that the host environment significantly alters the bacterial metabolic response to drug exposure compared to the response observed under in vitro growth. Notably, this study revealed 184 bacterial genes and ORFs that were unique to in vivo ceftazidime treatment and thus provide candidate molecular markers for treatment response. This is the first report of the unique transcriptional response of B. pseudomallei from host tissues in an animal model of infection and elucidates the in vivo metabolic vulnerabilities, which is important in terms of defining the efficacious mode of action and transient resistance mechanisms of a frontline meliodosis chemotherapeutic, and biomarkers for

  2. Melioidosis presenting as lymphadenitis: a case report

    PubMed Central

    2014-01-01

    Background Melioidosis is an infection caused by the facultative intracellular gram-negative bacterium; Burkholderia pseudomallei. It gives rise to protean clinical manifestations and has a varied prognosis. Although it was rare in Sri Lanka increasing numbers of cases are being reported with high morbidity and mortality. Here we report a case of melioidosis presenting with lymphadenitis which was diagnosed early and treated promptly with a good outcome. Case presentation A 53-year-old Sinhalese woman with diabetes presented with fever and left sided painful inguinal lymphadenitis for one month. She had undergone incision and drainage of a thigh abscess three months previously and had been treated with a short course of antibiotics. There was no record that abscess material was tested microbiologically. She had neutrophil leukocytosis and elevated inflammatory markers. Initial pus culture revealed a scanty growth of “Pseudomonas sp.” and Escherichia coli which were sensitive to ceftazidime and resistant to gentamicin. Due to the history of diabetes, recurrent abscess formation and the suggestive sensitivity pattern of the bacterial isolates, we actively investigated for melioidosis. The bacterial isolate was subsequently identified as B. pseudomallei by polymerase chain reaction and antibodies to melioidin antigen were found to be raised at a titre of 1:160. The patient was treated with high dose intravenous ceftazidime for four weeks followed by eradication therapy with cotrimoxazole and doxycycline. As the patient was intolerant to cotrimoxazole, the antibiotics were changed to a combination of co-amoxyclav and doxycycline and continued for 12 weeks. The patient was well after 6 months without any relapse. Conclusions Melioidosis is an emerging infection in South Asia. It may present with recurrent abscesses. Therefore it is very important to send pus for culture whenever an abscess is drained. However, it should be noted that the reporting laboratory may

  3. Clinically lesser known entity in India: A Report of two cases of Melioidosis.

    PubMed

    Barman, Purabi; Kaur, Ravneet; Kumar, Kamlesh

    2013-01-01

    Melioidosis is endemic in the South Asian regions, like Thailand, Singapore Malaysia and Australia. The disease is more pronounced in the southern part of the country. It is caused by Burkholderia pseudomallei which causes systemic involvement, morbidity and mortality associated with the disease is high. Due to highly varied clinical presentation, and low general awareness this infection is largely underdiagnosed and under reported in our country. Most laboratories in the country still rely on conventional culturing methods with their low sensitivity, adding to the under reporting. To enhance physician awareness we describe here two cases who presented to our institute after months of misdiagnosis.

  4. Comparative experimental subcutaneous glanders and melioidosis in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Salguero, Francisco J; Dean, Rachel E; Ngugi, Sarah A; Smither, Sophie J; Atkins, Timothy P; Lever, Mark S

    2014-12-01

    Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures.

  5. Comparative experimental subcutaneous glanders and melioidosis in the common marmoset (Callithrix jacchus)

    PubMed Central

    Nelson, Michelle; Salguero, Francisco J; Dean, Rachel E; Ngugi, Sarah A; Smither, Sophie J; Atkins, Timothy P; Lever, Mark S

    2014-01-01

    Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 108 cfu Burkholderia pseudomallei within 22–85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 102 cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 102 cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures. PMID:25477002

  6. Efficient Inactivation of Burkholderia pseudomallei or Francisella tularensis in infected Cells for Safe Removal from Biosafety Level 3 Containment Laboratories

    PubMed Central

    Emery, Felicia D.; Stabenow, Jennifer M.; Miller, Mark A.

    2014-01-01

    Working with infectious agents that require BSL-3 level containment agents offers many challenges for researchers. BSL-3 containment laboratories are usually not equipped with expensive specialty equipment that is needed for studies such as flow cytometric analysis, microscopy, and proteomic analyses. Therefore, for most researchers that are working with BSL-3 level infectious agents, removal of samples from BSL-3 labs for these types of studies is necessary, and methods for complete and dependable inactivation of the samples are required. In this report we have done a thorough characterization of the effectiveness of paraformaldehyde fixation for inactivation of cell samples infected with the intracellular bacterial agents Burkholderia pseudomallei (Bp) and Francisella tularensis (Ft), both of which are Tier 1 select agent pathogens that require BSL-3 containment. We have demonstrated that cells infected with these pathogens are completely inactivated via 5-minute treatment with 4% paraformaldehyde. Moreover, a 15-minute treatment with 2% paraformaldehyde completely sterilized both Bp- and Ft-infected cells. These studies also revealed that Bp is significantly more sensitive to paraformaldehyde treatment than Ft. Our findings have clearly demonstrated that a 15-minute treatment of Bp- or Ft-infected cells with 4% paraformaldehyde solution will allow for safe removal of the cell samples from BSL-3 labs for downstream studies. PMID:24449562

  7. Redefining the PF06864 Pfam Family Based on Burkholderia pseudomallei PilO2Bp S-SAD Crystal Structure

    PubMed Central

    Manjasetty, Babu A.; Yero, Daniel; Perletti, Lucia; Belrhali, Hassan; Daura, Xavier; Gourlay, Louise J.; Bolognesi, Martino

    2014-01-01

    Type IV pili are surface-exposed filaments and bacterial virulence factors, represented by the Tfpa and Tfpb types, which assemble via specific machineries. The Tfpb group is further divided into seven variants, linked to heterogeneity in the assembly machineries. Here we focus on PilO2Bp, a protein component of the Tfpb R64 thin pilus variant assembly machinery from the pathogen Burkholderia pseudomallei. PilO2Bp belongs to the PF06864 Pfam family, for which an improved definition is presented based on newly derived Hidden Markov Model (HMM) profiles. The 3D structure of the N-terminal domain of PilO2Bp (N-PilO2Bp), here reported, is the first structural representative of the PF06864 family. N-PilO2Bp presents an actin-like ATPase fold that is shown to be present in BfpC, a different variant assembly protein; the new HMM profiles classify BfpC as a PF06864 member. Our results provide structural insight into the PF06864 family and on the Type IV pili assembly machinery. PMID:24728008

  8. The Bacterial Gene IfpA Influences the Potent Induction of Calcitonin Receptor and Osteoclast-Related Genes in Burkholderia Pseudomallei-Induced TRAP-Positive Multinucleated Giant Cells

    DTIC Science & Technology

    2006-06-13

    Gluconolactonase ZP_00283124 48 (32) 306 Coxiella burnetti Hypothetical protein NP_820769 48 (31) 302 Bacillus clausii Gluconolactonase YP_176297 48 (30...extremophiles (Thermo- plasma volcanium and Sulfolobus tokodaii) and the genus Bacillus have a separate ancestry compared with the other prokaryotic... blood cul- tures in patients with severe, acute melioidosis (Dance et al., 1990). Also, in an acute infection model using SWISS mice, B. pseudomallei was

  9. Whole-genome sequencing of a quarter-century melioidosis outbreak in temperate Australia uncovers a region of low-prevalence endemicity

    PubMed Central

    Chapple, Stephanie N. J.; Sarovich, Derek S.; Holden, Matthew T. G.; Peacock, Sharon J.; Buller, Nicky; Golledge, Clayton; Mayo, Mark; Currie, Bart J.

    2016-01-01

    Melioidosis, caused by the highly recombinogenic bacterium Burkholderia pseudomallei, is a disease with high mortality. Tracing the origin of melioidosis outbreaks and understanding how the bacterium spreads and persists in the environment are essential to protecting public and veterinary health and reducing mortality associated with outbreaks. We used whole-genome sequencing to compare isolates from a historical quarter-century outbreak that occurred between 1966 and 1991 in the Avon Valley, Western Australia, a region far outside the known range of B. pseudomallei endemicity. All Avon Valley outbreak isolates shared the same multilocus sequence type (ST-284), which has not been identified outside this region. We found substantial genetic diversity among isolates based on a comparison of genome-wide variants, with no clear correlation between genotypes and temporal, geographical or source data. We observed little evidence of recombination in the outbreak strains, indicating that genetic diversity among these isolates has primarily accrued by mutation. Phylogenomic analysis demonstrated that the isolates confidently grouped within the Australian B. pseudomallei clade, thereby ruling out introduction from a melioidosis-endemic region outside Australia. Collectively, our results point to B. pseudomallei ST-284 being present in the Avon Valley for longer than previously recognized, with its persistence and genomic diversity suggesting long-term, low-prevalence endemicity in this temperate region. Our findings provide a concerning demonstration of the potential for environmental persistence of B. pseudomallei far outside the conventional endemic regions. An expected increase in extreme weather events may reactivate latent B. pseudomallei populations in this region. PMID:28348862

  10. Contribution of the BacT/Alert MB Mycobacterium Bottle to Bloodstream Infection Surveillance in Thailand: Added Yield for Burkholderia pseudomallei

    PubMed Central

    Higdon, Melissa; Kaewpan, Anek; Makprasert, Sirirat; Yuenprakhon, Somkhit; Tawisaid, Kittisak; Dejsirilert, Surang; Whistler, Toni; Baggett, Henry C.

    2015-01-01

    Community-acquired bloodstream infections cause substantial morbidity and mortality worldwide, but microbiology capacity and surveillance limitations have challenged good descriptions of pathogen distribution in many regions, including Southeast Asia. Active surveillance for bloodstream infections has been conducted in two rural Thailand provinces for >7 years. Blood specimens were divided into two culture bottles, one optimized for aerobic growth (F bottle) and a second for enhanced growth of mycobacteria (MB bottle), and processed with the BactT/Alert 3D system. Because the routine use of MB culture bottles is resource intensive (expensive and requires prolonged incubation), we assessed the added yield of MB bottles by comparing the proportion of pathogens detected by MB versus that by F bottles from 2005 to 2012. Of 63,066 blood cultures, 7,296 (12%) were positive for at least one pathogen; the most common pathogens were Escherichia coli (28%), Burkholderia pseudomallei (11%), Klebsiella pneumoniae (9%), and Staphylococcus aureus (6%). Two bottles improved the yield overall, but the added yield attributable to the MB bottles was limited to a few pathogens. In addition to the detection of mycobacteria and some fungi, MB bottles improved the detection of B. pseudomallei (27% [MB] versus 8% [F]; P < 0.0001), with added benefit if therapy was initiated prior to the blood culture. The targeted use of MB bottles is warranted for patients at risk for mycobacterial and fungal infections and for infection with B. pseudomallei, a common cause of septicemia in Thailand. PMID:25588650

  11. Protection against Experimental Melioidosis with a Synthetic manno-Heptopyranose Hexasaccharide Glycoconjugate

    PubMed Central

    2016-01-01

    Melioidosis is an emerging infectious disease caused by Burkholderia pseudomallei and is associated with high morbidity and mortality rates in endemic areas. Antibiotic treatment is protracted and not always successful; even with appropriate therapy, up to 40% of individuals presenting with melioidosis in Thailand succumb to infection. In these circumstances, an effective vaccine has the potential to have a dramatic impact on both the scale and the severity of disease. Currently, no vaccines are licensed for human use. A leading vaccine candidate is the capsular polysaccharide consisting of a homopolymer of unbranched 1→3 linked 2-O-acetyl-6-deoxy-β-d-manno-heptopyranose. Here, we present the chemical synthesis of this challenging antigen using a novel modular disaccharide assembly approach. The resulting hexasaccharide was coupled to the nontoxic Hc domain of tetanus toxin as a carrier protein to promote recruitment of T-cell help and provide a scaffold for antigen display. Mice immunized with the glycoconjugate developed IgM and IgG responses capable of recognizing native capsule, and were protected against infection with over 120 × LD50 of B. pseudomallei strain K96243. This is the first report of the chemical synthesis of an immunologically relevant and protective hexasaccharide fragment of the capsular polysaccharide of B. pseudomallei and serves as the rational starting point for the development of an effective licensed vaccine for this emerging infectious disease. PMID:27124182

  12. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization.

    PubMed

    Nieves, Wildaliz; Heang, Julie; Asakrah, Saja; Höner zu Bentrup, Kerstin; Roy, Chad J; Morici, Lisa A

    2010-12-17

    Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection.

  13. Involvement of the MyD88-independent pathway in controlling the intracellular fate of Burkholderia pseudomallei infection in the mouse macrophage cell line RAW 264.7.

    PubMed

    Tangsudjai, S; Pudla, M; Limposuwan, K; Woods, D E; Sirisinha, S; Utaisincharoen, P

    2010-05-01

    Burkholderia pseudomallei is a facultative intracellular Gram-negative bacterium which is capable of surviving and multiplying inside macrophages. B. pseudomallei strain SRM117, a LPS mutant which lacks the O-antigenic polysaccharide moiety, is more susceptible to macrophage killing during the early phase of infection than is its parental wild type strain (1026b). In this study, it was shown that the wild type is able to induce expression of genes downstream of the MyD88-dependent (ikappabzeta, il-6 and tnf-alpha), but not of the MyD88-independent (inos, ifn-beta and irg-1), pathways in the mouse macrophage cell line RAW 264.7. In contrast, LPS mutant-infected macrophages were able to express genes downstream of both pathways. To elucidate the significance of activation of the MyD88-independent pathway in B. pseudomallei-infected macrophages, the expression of TBK1, an essential protein in the MyD88-independent pathway, was silenced prior to the infection. The results showed that silencing the tbk1 expression interferes with the gene expression profile in LPS mutant-infected macrophages and allows the bacteria to replicate intracellularly, thus suggesting that the MyD88-independent pathway plays an essential role in controlling intracellular survival of the LPS mutant. Moreover, exogenous IFN-gamma upregulated gene expression downstream of the MyD88-independent pathway, and interfered with intracellular survival in both wild type and tbk1-knockdown macrophages infected with either the wild type or the LPS mutant. These results suggest that gene expression downstream of the MyD88-independent pathway is essential in regulating the intracellular fate of B. pseudomallei, and that IFN-gamma regulates gene expression through the TBK1-independent pathway.

  14. Spectroscopic and kinetic investigation of the reactions of peroxyacetic acid with Burkholderia pseudomallei catalase-peroxidase, KatG.

    PubMed

    Ivancich, Anabella; Donald, Lynda J; Villanueva, Jacylyn; Wiseman, Ben; Fita, Ignacio; Loewen, Peter C

    2013-10-15

    Catalase-peroxidases or KatGs can utilize organic peroxyacids and peroxides instead of hydrogen peroxide to generate the high-valent ferryl-oxo intermediates involved in the catalase and peroxidase reactions. In the absence of peroxidatic one-electron donors, the ferryl intermediates generated with a low excess (10-fold) of peroxyacetic acid (PAA) slowly decay to the ferric resting state after several minutes, a reaction that is demonstrated in this work by both stopped-flow UV-vis absorption measurements and EPR spectroscopic characterization of Burkholderia pseudomallei KatG (BpKatG). EPR spectroscopy showed that the [Fe(IV)═O Trp330(•+)], [Fe(IV)═O Trp139(•)], and [Fe(IV)═O Trp153(•)] intermediates of the peroxidase-like cycle of BpKatG ( Colin, J. Wiseman, B. Switala, J. Loewen, P. C. Ivancich, A. ( 2009 ) J. Am. Chem. Soc. 131 , 8557 - 8563 ), formed with a low excess of PAA at low temperature, are also generated with a high excess (1000-fold) of PAA at room temperature. However, under high excess conditions, there is a rapid conversion to a persistent [Fe(IV)═O] intermediate. Analysis of tryptic peptides of BpKatG by mass spectrometry before and after treatment with PAA showed that specific tryptophan (including W330, W139, and W153), methionine (including Met264 of the M-Y-W adduct), and cysteine residues are either modified with one, two, or three oxygen atoms or could not be identified in the spectrum because of other undetermined modifications. It was concluded that these oxidized residues were the source of electrons used to reduce the excess of PAA to acetic acid and return the enzyme to the ferric state. Treatment of BpKatG with PAA also caused a loss of catalase activity towards certain substrates, consistent with oxidative disruption of the M-Y-W adduct, and a loss of peroxidase activity, consistent with accumulation of the [Fe(IV)═O] intermediate and the oxidative modification of the W330, W139, and W153. PAA, but not H2O2 or tert

  15. Adjunctive granulocyte colony-stimulating factor for treatment of septic shock due to melioidosis.

    PubMed

    Cheng, Allen C; Stephens, Dianne P; Anstey, Nicholas M; Currie, Bart J

    2004-01-01

    Melioidosis, caused by the intracellular pathogen Burkholderia pseudomallei, is endemic in northern Australia and Southeast Asia. Risk factors for this infection have also been associated with functional neutrophil defects. Because of this, granulocyte colony-stimulating factor (G-CSF) was adopted for use in patients with septic shock due to melioidosis in December 1998. We compared the mortality rates from before and after the introduction of G-CSF therapy at the Royal Darwin Hospital (Darwin, Australia) during the period of 1989-2002. The mortality rate decreased from 95% to 10% after the introduction of G-CSF. Risk factors, the duration of illness before presentation, and the severity of illness were similar in both groups. A smaller decrease in mortality among patients in the intensive care unit who did not have melioidosis was observed, suggesting that other changes in management did not account for the magnitude of the benefit seen. We conclude that G-CSF may have contributed to the reduction in the mortality rate among patients with septic shock due to melioidosis.

  16. Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    PubMed Central

    Lubell, Yoel; Koh, Gavin C. K. W.; White, Lisa J.; Day, Nicholas P. J.; Titball, Richard W.

    2012-01-01

    Background Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates. Methods and Findings Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion, but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the most important risk factor. Conclusion Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis. PMID:22303489

  17. The structure of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei reveals a zinc binding site at the heart of the active site.

    PubMed

    Harmer, Nicholas J

    2010-07-16

    Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into D-glycero-D-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.

  18. Comparison of Five Commercial Nucleic Acid Extraction Kits for the PCR-based Detection of Burkholderia Pseudomallei DNA in Formalin-Fixed, Paraffin-Embedded Tissues.

    PubMed

    Obersteller, Sonja; Neubauer, Heinrich; Hagen, Ralf Matthias; Frickmann, Hagen

    2016-09-29

    The extraction and further processing of nucleic acids (NA) from formalin-fixed paraffin-embedded (FFPE) tissues for microbiological diagnostic polymerase chain reaction (PCR) approaches is challenging. Here, we assessed the effects of five different commercially available nucleic acid extraction kits on the results of real-time PCR. FFPE samples from organs of Burkholderia pseudomallei-infected Swiss mice were subjected to processing with five different extraction kits from QIAGEN (FFPE DNA Tissue Kit, EZ1 DNA Tissue Kit, DNA Mini Kit, DNA Blood Mini Kit, and FlexiGene DNA Kit) in combination with three different real-time PCRs targeting B. pseudomallei-specific sequences of varying length after 16 years of storage. The EZ1 DNA Tissue Kit and the DNA Mini Kit scored best regarding the numbers of successful PCR reactions. In case of positive PCR, differences regarding the cycle-threshold (Ct) values were marginal. The impact of the applied extraction kits on the reliability of PCR from FFPE material seems to be low. Interfering factors like the quality of the dewaxing procedure or the sample age appear more important than the selection of specialized FFPE kits.

  19. [Melioidosis: a tropical time bomb that is spreading].

    PubMed

    Perret, J L

    1997-01-01

    Melioidosis, an infectious disease that affects many mammals, was first identified in Burma by Whitmore in 1912. It is caused by Burkholderia pseudomallei, a gram negative bacillus of the Pseudomonas family, which is found in soil and water. Long present in Southeast Asia and numerous tropical areas, melioidosis has recently appeared in temperate zones including mainland France. The incidence in endemic areas is between 6% and 20% of the population and short period of exposure is sufficient to be contaminated. In man the contamination occurs mainly through skin wounds and the disease can be clinically inapparent. Diabetes, renal disease, and various forms of immunodepression are triggering factors for the onset of a variety of symptoms ranging from acute septicemia to abscesses involving almost any organ in the body. Ceftazidime alone or a combination of clavulanate and amoxicilline is the treatment of choice but the mortality rate in patients with acute forms is still 40% and relapse can occur if treatment is stopped too soon. Bacteriologic and serologic tests can fail and awareness of a history of geographic exposure is an important diagnostic criteria for this disease which has been expanded with the growth of international travel.

  20. Environmental management procedures following fatal melioidosis in a captive chimpanzee (Pan troglodytes).

    PubMed

    Sommanustweechai, Angkana; Kasantikul, Tanit; Somsa, Wachirawit; Wongratanacheewin, Surasakdi; Sermswan, Rasana W; Kongmakee, Piyaporn; Thomas, Warissara; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Bush, Mitchell; Banlunara, Wijit

    2013-06-01

    A 40-yr-old male captive chimpanzee (Pan troglodytes) presented with depression and anorexia for 7 days. The tentative diagnosis, following a physical examination under anesthesia, was pneumonia with sepsis. Despite antibiotic treatment and supportive care the chimpanzee died a week following presentation. Gross pathology confirmed severe purulent pneumonia and diffuse hepatosplenic abscesses. Detected in serum at the time of the initial examination, the melioidosis serum antibody titer was elevated (> 1:512). Soil samples were collected from three sites in the exhibit at three depths of 5, 15, and 30 cm. By direct and enrichment culture, positive cultures for Burkholderia pseudomallei were found at 5 and 15 cm in one site. The other two sites were positive by enrichment culture at the depth of 5 cm. To prevent disease in the remaining seven troop members, they were relocated to permit a soil treatment with calcium oxide. The exhibit remained empty for approximately 1 yr before the chimpanzees were returned. During that period, the soil in the exhibit area was again cultured as before and all samples were negative for B. pseudomallei. Following the soil treatment in the exhibit, all chimpanzees have remained free of clinical signs consistent with melioidosis.

  1. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources.

    PubMed

    De Smet, Birgit; Mayo, Mark; Peeters, Charlotte; Zlosnik, James E A; Spilker, Theodore; Hird, Trevor J; LiPuma, John J; Kidd, Timothy J; Kaestli, Mirjam; Ginther, Jennifer L; Wagner, David M; Keim, Paul; Bell, Scott C; Jacobs, Jan A; Currie, Bart J; Vandamme, Peter

    2015-07-01

    Nine Burkholderia cepacia complex (Bcc) bacteria were isolated during environmental surveys for the ecological niche of Burkholderia pseudomallei, the aetiological agent of melioidosis, in the Northern Territory of Australia. They represented two multi-locus sequence analysis-based clusters, referred to as Bcc B and Bcc L. Three additional environmental and clinical Bcc B isolates were identified upon deposition of the sequences in the PubMLST database. Analysis of the concatenated nucleotide sequence divergence levels within both groups (1.4 and 1.9%, respectively) and towards established Bcc species (4.0 and 3.9%, respectively) demonstrated that the two taxa represented novel Bcc species. All 12 isolates were further characterized using 16S rRNA and recA gene sequence analysis, RAPD analysis, DNA base content determination, fatty acid methyl ester analysis and biochemical profiling. Analysis of recA gene sequences revealed a remarkable diversity within each of these taxa, but, together, the results supported the affiliation of the two taxa to the Bcc. Bcc B strains can be differentiated from most other Bcc members by the assimilation of maltose. Bcc L strains can be differentiated from other Bcc members by the absence of assimilation of N-acetylglucosamine. The names Burkholderia stagnalis sp. nov. with type strain LMG 28156(T) ( = CCUG 65686(T)) and Burkholderia territorii sp. nov. with type strain LMG 28158(T) ( = CCUG 65687(T)) are proposed for Bcc B and Bcc L bacteria, respectively.

  2. Retrospective Study on Fatal Melioidosis in Captive Zoo Animals in Thailand.

    PubMed

    Kasantikul, T; Sommanustweechai, A; Polsrila, K; Kongkham, W; Chaisongkram, C; Sanannu, S; Kongmakee, P; Narongwanichgarn, W; Bush, M; Sermswan, R W; Banlunara, W

    2016-10-01

    Melioidosis is caused by Burkholderia pseudomallei and is an important zoonotic infectious disease causing high mortality from fulminant septicaemia in humans and a wide variety of animal species. The incidence of fatal melioidosis in zoo animals has been significant in many Thai zoos. A total number of 32 cases were evaluated throughout the Thai zoo animal populations. The highest prevalence of disease has been reported from the north-eastern region followed by the zoos in the southern part of the country, approximately 47% and 38%, respectively, while the other zoos reported sporadic infections. Herbivores and non-human primates were the most commonly affected animals with incidences of 59% and 28%, respectively. This appears to be a seasonal correlation with the highest incidence of melioidosis in zoo animals reported in the rainy season (44%) or subdivided monthly in June (19%) followed by September and November (16% and 12%, respectively). The route of infection and the incubation period still remain unclear. This retrospective study examined the clinical presentation in various zoo species, pathological findings and epidemiological data as well as conducting an in depth literature review.

  3. In vivo manipulation of γ9(+) T cells in the common marmoset (Callithrix Jacchus) with phosphoantigen and effect on the progression of respiratory melioidosis.

    PubMed

    Laws, Thomas R; Nelson, Michelle; Bonnafous, Cecile; Sicard, Helene; Taylor, Christopher; Salguero, Francisco Javier; Atkins, Timothy P; Oyston, Petra C F; Rowland, Caroline A

    2013-01-01

    Burkholderia pseudomallei is a dangerous human pathogen. Phosphoantigens specifically the target primate specific γ9(+)δ2(+) T cells subset and some have been developed as potential immunotherapeutics. Previously, we demonstrated that, when stimulated with the phosphoantigen CHDMAPP, γ9(+)δ2(+) T cells aid in the killing of intracellular B. pseudomallei bacteria. Moreover, we found that common marmoset (Callithrix Jacchus) γ9(+) T cells increase in frequency and respond to the phosphoantigen CHDMAPP and/or B. pseudomallei, in combination with IL-2, in a similar manner to human γ9(+)δ2(+) T cells. Here we evaluate the efficacy of the phosphoantigen CHDMAPP, in combination with IL-2, as a therapy against B. pseudomallei infection, in vivo. We found that the previous studies predicted the in vivo responsiveness of γ9(+) T cells to the CHDMAPP+IL-2 treatment and significant expansion of the numbers of peripheral and splenic γ9(+) T cells were observed. This effect was similar to those reported in other primate species treated with phosphoantigen. Furthermore, splenocytes were retrieved 7 days post onset of treatment, restimulated with CHDMAPP or heat-killed B. pseudomallei and the cultured γ9(+) T cells demonstrated no reduction in IFN-γ response when CHDMAPP+IL-2 animals were compared to IL-2 only treated animals. Using an established model of B. pseudomallei infection in the marmoset, we assessed the potential for using phosphoantigen as a novel immunotherapy. The CHDMAPP treatment regime had no effect on the progression of respiratory melioidosis and this was despite the presence of elevated numbers of γ9(+) T cells in the spleen, liver and lung and an increased proportion of IFN-γ(+) cells in response to infection. We therefore report that the common marmoset has proven a good model for studying the effect in vivo of γ9(+) T cell stimulation; however, γ9(+) T cells have little or no effect on the progression of lethal, respiratory B. pseudomallei

  4. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis.

    PubMed

    Andreae, Clio A; Titball, Richard W; Butler, Clive S

    2014-01-01

    Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.

  5. AFN-1252 is a potent inhibitor of enoyl-ACP reductase from Burkholderia pseudomallei—Crystal structure, mode of action, and biological activity

    PubMed Central

    Narasimha Rao, Krishnamurthy; Lakshminarasimhan, Anirudha; Joseph, Sarah; Lekshmi, Swathi U; Lau, Ming-Seong; Takhi, Mohammed; Sreenivas, Kandepu; Nathan, Sheila; Yusof, Rohana; Abd Rahman, Noorsaadah; Ramachandra, Murali; Antony, Thomas; Subramanya, Hosahalli

    2015-01-01

    Melioidosis is a tropical bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei; Bpm), a Gram-negative bacterium. Current therapeutic options are largely limited to trimethoprim-sulfamethoxazole and β-lactam drugs, and the treatment duration is about 4 months. Moreover, resistance has been reported to these drugs. Hence, there is a pressing need to develop new antibiotics for Melioidosis. Inhibition of enoyl-ACP reducatase (FabI), a key enzyme in the fatty acid biosynthesis pathway has shown significant promise for antibacterial drug development. FabI has been identified as the major enoyl-ACP reductase present in B. pseudomallei. In this study, we evaluated AFN-1252, a Staphylococcus aureus FabI inhibitor currently in clinical development, for its potential to bind to BpmFabI enzyme and inhibit B. pseudomallei bacterial growth. AFN-1252 stabilized BpmFabI and inhibited the enzyme activity with an IC50 of 9.6 nM. It showed good antibacterial activity against B. pseudomallei R15 strain, isolated from a melioidosis patient (MIC of 2.35 mg/L). X-ray structure of BpmFabI with AFN-1252 was determined at a resolution of 2.3 Å. Complex of BpmFabI with AFN-1252 formed a symmetrical tetrameric structure with one molecule of AFN-1252 bound to each monomeric subunit. The kinetic and thermal melting studies supported the finding that AFN-1252 can bind to BpmFabI independent of cofactor. The structural and mechanistic insights from these studies might help the rational design and development of new FabI inhibitors. PMID:25644789

  6. Barriers and Recommended Interventions to Prevent Melioidosis in Northeast Thailand: A Focus Group Study Using the Behaviour Change Wheel

    PubMed Central

    Suntornsut, Pornpan; Wongsuwan, Nittayasee; Malasit, Mayura; Kitphati, Rungreung; Michie, Susan; Peacock, Sharon J.

    2016-01-01

    Background Melioidosis, an often fatal infectious disease in Northeast Thailand, is caused by skin inoculation, inhalation or ingestion of the environmental bacterium, Burkholderia pseudomallei. The major underlying risk factor for melioidosis is diabetes mellitus. Recommendations for melioidosis prevention include using protective gear such as rubber boots and gloves when in direct contact with soil and environmental water, and consuming bottled or boiled water. Only a small proportion of people follow such recommendations. Methods Nine focus group discussions were conducted to evaluate barriers to adopting recommended preventive behaviours. A total of 76 diabetic patients from northeast Thailand participated in focus group sessions. Barriers to adopting the recommended preventive behaviours and future intervention strategies were identified using two frameworks: the Theoretical Domains Framework and the Behaviour Change Wheel. Results Barriers were identified in the following five domains: (i) knowledge, (ii) beliefs about consequences, (iii) intention and goals, (iv) environmental context and resources, and (v) social influence. Of 76 participants, 72 (95%) had never heard of melioidosis. Most participants saw no harm in not adopting recommended preventive behaviours, and perceived rubber boots and gloves to be hot and uncomfortable while working in muddy rice fields. Participants reported that they normally followed the behaviour of friends, family and their community, the majority of whom did not wear boots while working in rice fields and did not boil water before drinking. Eight intervention functions were identified as relevant for the intervention: (i) education, (ii) persuasion, (iii) incentivisation, (iv) coercion, (v) modeling, (vi) environmental restructuring, (vii) training, and (viii) enablement. Participants noted that input from role models in the form of physicians, diabetic clinics, friends and families, and from the government via mass media

  7. Development of an acute model of inhalational melioidosis in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Dean, Rachel E; Salguero, Francisco J; Taylor, Christopher; Pearce, Peter C; Simpson, Andrew J H; Lever, Mark S

    2011-12-01

    Studies of inhalational melioidosis were undertaken in the common marmoset (Callithrix jacchus). Following exposure to an inhaled challenge with aerosolized Burkholderia pseudomallei, lethal infection was observed in marmosets challenged with doses below 10 cfu; a precise LD(50) determination was not possible. The model was further characterized using a target challenge dose of approximately 10(2) cfu. A separate pathogenesis time-course experiment was also conducted. All animals succumbed, between 27 and 78 h postchallenge. The challenge dose received and the time to the humane endpoint (1 °C below normal body temperature postfever) were correlated. The first indicator of disease was an increased core body temperature (T(c) ), at 22 h postchallenge. This coincided with bacteraemia and bacterial dissemination. Overt clinical signs were first observed 3-5 h later. A sharp decrease (typically within 3-6 h) in the T(c) was observed prior to humanely culling the animals in the lethality study. Pathology was noted in the lung, liver and spleen. Disease progression in the common marmoset appears to be consistent with human infection in terms of bacterial spread, pathology and physiology. The common marmoset can therefore be considered a suitable animal model for further studies of inhalational melioidosis.

  8. Exposing a β-Lactamase “Twist”: the Mechanistic Basis for the High Level of Ceftazidime Resistance in the C69F Variant of the Burkholderia pseudomallei PenI β-Lactamase

    PubMed Central

    Becka, Scott A.; Taracila, Magdalena A.; Winkler, Marisa L.; Gatta, Julian A.; Rholl, Drew A.; Schweizer, Herbert P.

    2015-01-01

    Around the world, Burkholderia spp. are emerging as pathogens highly resistant to β-lactam antibiotics, especially ceftazidime. Clinical variants of Burkholderia pseudomallei possessing the class A β-lactamase PenI with substitutions at positions C69 and P167 are known to demonstrate ceftazidime resistance. However, the biochemical basis for ceftazidime resistance in class A β-lactamases in B. pseudomallei is largely undefined. Here, we performed site saturation mutagenesis of the C69 position and investigated the kinetic properties of the C69F variant of PenI from B. pseudomallei that results in a high level of ceftazidime resistance (2 to 64 mg/liter) when expressed in Escherichia coli. Surprisingly, quantitative immunoblotting showed that the steady-state protein levels of the C69F variant β-lactamase were ∼4-fold lower than those of wild-type PenI (0.76 fg of protein/cell versus 4.1 fg of protein/cell, respectively). However, growth in the presence of ceftazidime increases the relative amount of the C69F variant to greater than wild-type PenI levels. The C69F variant exhibits a branched kinetic mechanism for ceftazidime hydrolysis, suggesting there are two different conformations of the enzyme. When incubated with an anti-PenI antibody, one conformation of the C69F variant rapidly hydrolyzes ceftazidime and most likely contributes to the higher levels of ceftazidime resistance observed in cell-based assays. Molecular dynamics simulations suggest that the electrostatic characteristics of the oxyanion hole are altered in the C69F variant. When ceftazidime was positioned in the active site, the C69F variant is predicted to form a greater number of hydrogen-bonding interactions than PenI with ceftazidime. In conclusion, we propose “a new twist” for enhanced ceftazidime resistance mediated by the C69F variant of the PenI β-lactamase based on conformational changes in the C69F variant. Our findings explain the biochemical basis of ceftazidime resistance in

  9. Melioidosis: the tip of the iceberg?

    PubMed Central

    Dance, D A

    1991-01-01

    For nearly 80 years clinical melioidosis has been considered a rare disease. This bacterial infection is caused by Pseudomonas pseudomallei, a saprophyte found in soil and surface water of endemic areas. Consequently, those who have most contact with soil, the rural poor, are likely to be at greatest risk of infection. Since the diversity of clinical manifestations necessitates the isolation and identification of the causative organism for a definitive diagnosis of melioidosis and the population at greatest risk within endemic areas rarely have access to an appropriate level of health care, the disease has probably been underrecognized. Melioidosis is now known to be an important cause of human morbidity and mortality in Thailand, and this may be true throughout Southeast Asia, which is usually regarded as the main endemic area for the disease. In Australia, melioidosis causes a smaller number of human infections, while disease among livestock has important economic and possible public health implications. Sporadic reports of the infection indicate its presence in several other tropical regions: in the Indian subcontinent, Africa, and Central and South America. Clinical melioidosis may be highly prevalent in these areas, but underdiagnosed as a result of a lack of awareness of the clinical and microbiological features of the disease, or simply because of a lack of health care facilities. Furthermore, during the last two decades the importation and transmission of melioidosis within nontropical zones have been documented. The causative organism is not difficult to grow, and modern antibiotics have improved disease prognosis. Further studies are needed to determine the true worldwide distribution and prevalence of melioidosis so that improved therapeutic and preventive measures can be developed and applied. PMID:2004347

  10. COMPLEMENT FIXATION TEST IN EXPERIMENTAL CLINICAL AND SUBCLINICAL MELIOIDOSIS

    PubMed Central

    Nigg, Clara; Johnston, Margaret M.

    1961-01-01

    Nigg, Clara (University of California, Berkeley), and Margaret M. Johnston. Complement fixation test in experimental clinical and subclinical melioidosis. J. Bacteriol. 82:159–168. 1961.—Soluble stable antigens prepared from Pseudomonas pseudomallei gave 4+ complement fixation reactions in a dilution of 1 to 8,000 when tested with specific rabbit antiserum diluted 1 to 10,000. The complement fixation reaction was positive in 100% of experimentally infected rabbits 9 to 11 days postinfection. Infected guinea pigs and monkeys showed similar results. Monkeys inoculated with very small infecting doses of P. pseudomallei developed positive complement fixation reactions in the absence of clinical manifestation of infection. An anamnestic complement-fixing antibody response could be induced in such monkeys, after the titer had dropped to approximately the preinfection level, by inoculating very small doses of viable P. pseudomallei or larger doses of killed melioidosis vaccine. The complement fixation test described appeared to be both sensitive and specific, and should be of value in human melioidosis which cannot be diagnosed on the basis of clinical manifestations alone. It is suggested that subclinical infections may play a role in the epidemiology of human meliodosis. The potential application of the complement fixation test to serological surveys in areas where melioidosis occurs endemically is discussed. PMID:13729013

  11. The BpeAB-OprB Efflux Pump of Burkholderia pseudomallei 1026b Does Not Play a Role in Quorum Sensing, Virulence Factor Production, or Extrusion of Aminoglycosides but Is a Broad-Spectrum Drug Efflux System ▿

    PubMed Central

    Mima, Takehiko; Schweizer, Herbert P.

    2010-01-01

    Most Burkholderia pseudomallei strains are intrinsically aminoglycoside resistant, mainly due to AmrAB-OprA-mediated efflux. Rare naturally occurring or genetically engineered mutants lacking this pump are aminoglycoside susceptible despite the fact that they also encode and express BpeAB-OprB, which was reported to mediate efflux of aminoglycosides in the Singapore strain KHW. To reassess the role of BpeAB-OprB in B. pseudomallei aminoglycoside resistance, we used mutants overexpressing or lacking this pump in either AmrAB-OprA-proficient or -deficient strain 1026b backgrounds. Our data show that BpeAB-OprB does not mediate efflux of aminoglycosides but is a multidrug efflux system which extrudes macrolides, fluoroquinolones, tetracyclines, acriflavine, and, to a lesser extent, chloramphenicol. Phylogenetically, BpeAB-OprB is closely related to Pseudomonas aeruginosa MexAB-OprM, which has a similar substrate spectrum. AmrAB-OprA is most closely related to MexXY, the only P. aeruginosa efflux pump known to extrude aminoglycosides. Since BpeAB-OprB in strain KHW was also implicated in playing a major role in export of acylated homoserine lactone (AHL) quorum-sensing molecules and in expression of diverse virulence factors, we explored whether this was also true in the strain 1026b background. The results showed that BpeAB-OprB was not required for AHL export, and mutants lacking this efflux system exhibited normal swimming motility and siderophore production, which were severely impaired in KHW bpeAB-oprB mutants. Biofilm formation was impaired in 1026b Δ(amrRAB-oprA) and Δ(amrRAB-oprA) Δ(bpeAB-oprB) mutants. At present, we do not know why our BpeAB-OprB susceptibility and virulence factor expression results with 1026b and its derivatives are different from those previously published for Singapore strain KHW. PMID:20498323

  12. The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system.

    PubMed

    Mima, Takehiko; Schweizer, Herbert P

    2010-08-01

    Most Burkholderia pseudomallei strains are intrinsically aminoglycoside resistant, mainly due to AmrAB-OprA-mediated efflux. Rare naturally occurring or genetically engineered mutants lacking this pump are aminoglycoside susceptible despite the fact that they also encode and express BpeAB-OprB, which was reported to mediate efflux of aminoglycosides in the Singapore strain KHW. To reassess the role of BpeAB-OprB in B. pseudomallei aminoglycoside resistance, we used mutants overexpressing or lacking this pump in either AmrAB-OprA-proficient or -deficient strain 1026b backgrounds. Our data show that BpeAB-OprB does not mediate efflux of aminoglycosides but is a multidrug efflux system which extrudes macrolides, fluoroquinolones, tetracyclines, acriflavine, and, to a lesser extent, chloramphenicol. Phylogenetically, BpeAB-OprB is closely related to Pseudomonas aeruginosa MexAB-OprM, which has a similar substrate spectrum. AmrAB-OprA is most closely related to MexXY, the only P. aeruginosa efflux pump known to extrude aminoglycosides. Since BpeAB-OprB in strain KHW was also implicated in playing a major role in export of acylated homoserine lactone (AHL) quorum-sensing molecules and in expression of diverse virulence factors, we explored whether this was also true in the strain 1026b background. The results showed that BpeAB-OprB was not required for AHL export, and mutants lacking this efflux system exhibited normal swimming motility and siderophore production, which were severely impaired in KHW bpeAB-oprB mutants. Biofilm formation was impaired in 1026b Delta(amrRAB-oprA) and Delta(amrRAB-oprA) Delta(bpeAB-oprB) mutants. At present, we do not know why our BpeAB-OprB susceptibility and virulence factor expression results with 1026b and its derivatives are different from those previously published for Singapore strain KHW.

  13. Incidence, risk factors and clinical epidemiology of melioidosis: a complex socio-ecological emerging infectious disease in the Alor Setar region of Kedah, Malaysia

    PubMed Central

    2010-01-01

    Background Melioidosis, a severe and fatal infectious disease caused by Burkholderia pseudomallei, is believed to an emerging global threat. However, data on the natural history, risk factors, and geographic epidemiology of the disease are still limited. Methods We undertook a retrospective analysis of 145 confirmed cases extracted from a hospital-based Melioidosis Registry set up from 2005 in Hospital Sultanah Bahiyah, Alor Setar, Kedah state, Malaysia, in order to provide a first description of the contemporary incidence, risk factors, and clinical epidemiology of the disease in this putatively high risk region of the country. Results The incidence of melioidosis in Alor Setar is remarkably high at 16.35 per 100,000 population per year. The mean age of patients was 50.40 years, with infection varying nonlinearly with age. Males (75.2%; P < 0.0001) predominated and the majority of cases were Malays (88.9%). The overall, crude mortality rate among the study patients was 33.8%. The proportions of cases and deaths were significantly greater among patients involved in farming, forestry and fishing and the unemployed (χ2 = 30.57, P < 0.0001). A majority of cases (62.75%) were culture positive, with mortality in these patients being 45.05%. A large proportion (83.0%) of culture positives was also bacteremic. Pneumonia accounted for 42.06% of primary diagnoses followed in importance by soft tissue abscess. In patients with pneumonia and who were culture positive, the mortality rate was as high as 65.00%. Diabetes mellitus constituted the major underlying risk factor for developing and dying from melioidosis, occurring in 57% of all diagnosed cases. The age distribution of diabetes paralleled that of melioidosis cases. There were linear associations between cases and deaths with monthly rainfall. Conclusions Melioidosis represents a complex socio-ecological public health problem in Kedah, being strongly related with age, occupation, rainfall and predisposing chronic

  14. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    PubMed Central

    Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.; Rosenzweig, C. Nicole; Redden, Cassie L.; Xu, Yan; Minogue, Timothy D.; Chain, Patrick S.

    2015-01-01

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development. PMID:25931592

  15. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    DOE PAGES

    Johnson, Shannon L.; Bishop-Lilly, Kimberly A.; Ladner, Jason T.; ...

    2015-04-30

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Presented in this document are full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

  16. Melioidosis Diagnostic Workshop, 20131

    PubMed Central

    AuCoin, David; Baccam, Prasith; Baggett, Henry C.; Baird, Rob; Bhengsri, Saithip; Blaney, David D.; Brett, Paul J.; Brooks, Timothy J.G.; Brown, Katherine A.; Chantratita, Narisara; Cheng, Allen C.; Dance, David A.B.; Decuypere, Saskia; Defenbaugh, Dawn; Gee, Jay E.; Houghton, Raymond; Jorakate, Possawat; Lertmemongkolchai, Ganjana; Limmathurotsakul, Direk; Merlin, Toby L.; Mukhopadhyay, Chiranjay; Norton, Robert; Peacock, Sharon J.; Rolim, Dionne B.; Simpson, Andrew J.; Steinmetz, Ivo; Stoddard, Robyn A.; Stokes, Martha M.; Sue, David; Tuanyok, Apichai; Whistler, Toni; Wuthiekanun, Vanaporn; Walke, Henry T.

    2015-01-01

    Melioidosis is a severe disease that can be difficult to diagnose because of its diverse clinical manifestations and a lack of adequate diagnostic capabilities for suspected cases. There is broad interest in improving detection and diagnosis of this disease not only in melioidosis-endemic regions but also outside these regions because melioidosis may be underreported and poses a potential bioterrorism challenge for public health authorities. Therefore, a workshop of academic, government, and private sector personnel from around the world was convened to discuss the current state of melioidosis diagnostics, diagnostic needs, and future directions. PMID:25626057

  17. Melioidosis in a returning traveller

    PubMed Central

    Ismail, Alaa; Buckley, Adam; Dubrey, Simon William

    2013-01-01

    A 66-year-old man returned to the UK from Thailand with a 2-week history of new confusion, hallucinations, fever with rigours and productive cough. He had not responded to (unspecified) antibiotic treatment in Thailand. On examination he was afebrile, with an abbreviated mental test score of 8/10 and no other findings on systemic examination. He was treated with ceftriaxone in response to discovery of a Gram-negative organism in blood. This was converted to meropenem on the clinical suspicion of our microbiologist, on the basis of a history of contact with surface water in the Far East. A blood culture subsequently confirmed Burkholderia pseudomallei. His condition remained stable for approximately 4 days, but then deteriorated over the course of the next 2 weeks with pneumonia and subsequent formation of disseminated abscesses. Treatment was withdrawn as his condition deteriorated to the point at which survival was deemed impossible and he subsequently died. PMID:23605844

  18. Quorum Sensing: A Transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei

    DTIC Science & Technology

    2004-11-01

    mallei can cause Burkholderia cepacia . Burkdtolderia vietnaniensis, Burkholderia disease in a variety of animals, including mice, hamsters, fer...hisresearch Program. s.ons d A y th Medical Researchrical D rn-e sensing in Burkholderia cepacia : identification of the iuxRl homologs Ce- Research t program...A Transcriptional Regulatory System that Contributes to the Virulence of Burkholderia mallei and Burkholderia pseudomallei. Submission Information

  19. Preparation of a Burkholderia Mallei Vaccine

    DTIC Science & Technology

    1999-01-01

    34pathogenicity island" that is present in Burkholderia pseudomallei, B. mallei and B. cepacia , we are proceeding with the cloning and characterization of...8217 Ur7flidveticS.ORE 7J L Elurknolderias vie tnamiensis B~urkho/deria cepacia E3Irkholderia pyrrocinia Burkholderia sp. CSB1 WM - Burkholderia so. rn35’b C0 00 L’If 00...TITLE: Preparation of a Burkholderia mallei Vaccine PRINCIPAL INVESTIGATOR: Donald E. Woods, Ph.D. CONTRACTING ORGANIZATION: University of Calgary

  20. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development

    PubMed Central

    Mott, Tiffany M.; Vijayakumar, Sudhamathi; Sbrana, Elena; Endsley, Janice J.; Torres, Alfredo G.

    2015-01-01

    Background In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Methodology/Principal Findings Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 104 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Conclusions/Significance Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis. PMID:26114445

  1. [Melioidosis: report of the first case in a northern state of México].

    PubMed

    Boroel-Cervantes, Carlos; Ibarra-Valdez, Mónica; Miranda-Pacheco, Sandra; Sánchez-Camarena, Elías; Wolburgth-Franco, Tamara; Ortìz-González, Andrés; Domínguez-Ríos, José Luis

    2017-01-01

    The melioidosis, is an infection caused by Burkhordelia pseudomallei that comprises heterogeneous clinical syndromes with acute or chronic evolution. The objective of this article is to report a case with unusual presentation and outside the known epidemiological context. We present the case of a 48-year-old man who came to our hospital with fever and a history of an abscess in the right subscapular region, physical examination showed hepatomegaly, splenomegaly, fever, without pulmonary symptoms. Within study it reveal multiple abscesses in liver and spleen, requiring surgical exploration and antibiotics (meropenem/vancomycin). Blood cultures reveal Burkhordelia pseudomallei adding trimethoprim/sulfamethoxazole with resolution of symptoms.

  2. Enzyme-linked immunosorbent assay for immunoglobulin M specific antibody for the diagnosis of melioidosis.

    PubMed Central

    Kunakorn, M; Boonma, P; Khupulsup, K; Petchclai, B

    1990-01-01

    Indirect hemagglutination (IHA) is commonly used for serodiagnosis of melioidosis. However, in endemic areas, high background titers in normal populations and occasional low titers in patients with septicemic melioidosis prompted a search for a more sensitive and more specific method of serodiagnosis. An indirect fluorescent-antibody test for immunoglobulin M (IgM) specific antibody to Pseudomonas pseudomallei was more sensitive and more specific, but fluorescence microscopes are rarely available in the endemic areas. An enzyme-linked immunosorbent assay (ELISA) for IgM antibody is an attractive alternative. An indirect ELISA for IgM antibody (IgM ELISA) and an IgM antibody capture ELISA for melioidosis were developed. Both tests, together with IHA, were evaluated for 153 serum specimens from blood donors and 16 serum specimens from 16 melioidosis patients. It was found that IHA, the IgM ELISA, and the IgM antibody capture ELISA had sensitivities of 88, 88, and 75%, respectively, with specificities of 97.4, 92.2, and 91.5%, respectively. When IHA was combined with IgM ELISA, a sensitivity of 100% and a specificity of 95.4% were obtained. The IgM ELISA and IHA should be used in combination for serodiagnosis of melioidosis. PMID:2199494

  3. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions

    DTIC Science & Technology

    2013-06-23

    Wallqvist‡ Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent ...causative agent of glan- ders, a disease primarily affecting horses but transmittable to humans; and Burkholderia pseudomallei, which is responsible for...ingestion, inhalation , or skin abrasion. Given their considerable antibiotic resistance, ability to infect via aerosol, and absence of vaccines, these

  4. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  5. Efflux pump-mediated drug resistance in Burkholderia

    PubMed Central

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  6. Fatal melioidosis in goats in Bangkok, Thailand.

    PubMed

    Tonpitak, Walaiporn; Sornklien, Chulabha; Chawanit, Mongkol; Pavasutthipaisit, Suvarin; Wuthiekanun, Vanaporn; Hantrakun, Viriya; Amornchai, Premjit; Thaipadungpanit, Janjira; Day, Nicholas P J; Yingst, Samuel; Peacock, Sharon J; Limmathurotsakul, Direk

    2014-08-01

    Bangkok, Thailand, is a city considered to be at low risk for melioidosis. We describe 10 goats that died of melioidosis in Bangkok. Half of them were born and reared in the city. Multilocus sequence typing ruled out an outbreak. This finding challenges the assumption that melioidosis is rarely acquired in central Thailand.

  7. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    PubMed Central

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  8. Type VI Secretion is a Major Virulence Determinant in Burkholderia Mallei

    DTIC Science & Technology

    2007-06-01

    infections can also occur in felines , camels and goats. Humans are accidental hosts of B. mallei and the majority of cases have been the result of...occupational contact with infected horses. Whereas equines are generally infected orally , the primary route of infection in humans is contamination of skin...Effects of Burkholderia pseudomallei and other Burkholderia species on eukarotic cells in tissue culture. Microbios 96: 71–93. Holm, M.M., Vanlerberg, S.L

  9. Cranial melioidosis with extradural extension after a fall in the bathroom

    PubMed Central

    Naha, Kushal; Dasari, Sowjanya; Kusugodlu, Ramamoorthi; Prabhu, Mukhyaprana

    2012-01-01

    A 32-year-old diabetic male, with a past history of head injury and seizures, presented with a painful swelling over his forehead present for the past three months. Cranial MRI demonstrated the presence of a scalp collection with extradural extension through a bony defect. Biopsy from the area showed caseating necrosis suggestive of tuberculosis. Although the patient failed to return for initiation of anti-tubercular therapy for the next 11 months, the swelling did not progress, and there were no constitutional symptoms. The indolent nature of the swelling prompted re-evaluation and delayed cultures of pus from the collection grew Burkholderia pseudomallei. PMID:23024720

  10. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  11. Melioidosis in Malaysia: A Review of Case Reports

    PubMed Central

    Kingsley, Paul Vijay; Leader, Mark; Nagodawithana, Nandika Suranjith; Tipre, Meghan; Sathiakumar, Nalini

    2016-01-01

    parotid abscess was reported among children. Conclusions The clinical patterns of cases reported from Malaysia are consistent for the most part from previous case reports from South and Southeast Asia with regard to common primary presentations of pneumonia and soft tissue abscesses, and diabetes as a major risk factor. Bacteremic melioidosis carried a poor prognosis and septic shock was strong predictor of mortality. Differences included the occurrence of: primary neurological infection was higher in Malaysia compared to reports outside Malaysia; internal foci of infection such as abscesses of the liver, spleen, prostate, and mycotic pseudoaneurysms were higher than previously reported in the region. No parotid abscess was reported among children. Early recognition of the disease is the cornerstone of management. In clinical situations of community-acquired sepsis and/or pneumonia, where laboratory bacteriological confirmation is not possible, empirical treatment with antimicrobials for B. pseudomallei is recommended. PMID:28005910

  12. [Comparative assessment of DNA extraction methods for identification of glanders and melioidosis etiological agents by PCR].

    PubMed

    Zinchenko, O V; Antonov, V A; Tkachenko, G A; Altukhova, V V; Zamaraev, V S; Piven', N N; Goloseev, Iu A; Vasil'ev, V P; Lomova, L V; Alekseev, V V

    2008-01-01

    Pathogenic Burkholderia are considered as a cause of dangerous infections and potential agents of bioterrorism. Comparative assessment of different methods of extraction and purification of DNA for PCR analysis of pure cultures and samples contaminated by etiological agents of glanders and melioidosis was performed. Samples of soil and food artificially contaminated by pathogenic Burkholderia as well as organs of infected animals were tested. DNA was extracted by methods of boiling, nucleosorption with presence of guanidine thiocyanate, guanidine thiocyanatephenol extraction, guanidine thiocyanate-phenol extraction with additional purification of DNA by nucleosorption. Amplification was performed by "Flash" technique and detector of fluorescence was used for analysis of PCR products. Utilization of the recommended methods of preparation depending on the nature of sample let to detect by the "Flash" technique the etiological agents of glanders and melioidosis in concentration =10(3) microbial cells per ml. Choice of DNA extraction and purification methods is determined by type of a sample and presence in it of admixtures inhibiting PCR.

  13. Assessment of a DNA Vaccine Encoding Burkholderia pseudomallei Bacterioferritin

    DTIC Science & Technology

    2007-08-01

    bacterioferritin gene from Brucella abortus, when delivered to mice as a DNA vaccine, evokes a potent Th1 immune response, including strong IFN-γ...blocking buffer containing goat anti-mouse IgG alkaline phosphatase conjugate (Sigma) at a dilution of 1:30000 for 1hr at room temperature. Following...Walravens, and J. J. Letesson. 2001. Induction of immune response in BALB/c mice with a DNA vaccine encoding bacterioferritin or P39 of Brucella

  14. Environmental Survival, Military Relevance, and Persistence of Burkholderia Pseudomallei

    DTIC Science & Technology

    2007-04-01

    required) or intranasal (lower inoculum). Bacterial inoculum density and growth phases are both important to cellular invasion in laboratory model... accumulates polyhydroxybutyrate (PHB) in large, central granules to give a negative staining effect on 15 gram stain (Pitt, 1995). The appearance is...that this species has a wide range of potential carbon and nitrogen sources and strategies to ensure iron and phosphate supply, the metabolic range of B

  15. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    PubMed Central

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates. PMID:26356298

  16. Invasion of Spores of the Arbuscular Mycorrhizal Fungus Gigaspora decipiens by Burkholderia spp.

    PubMed Central

    Levy, Avram; Chang, Barbara J.; Abbott, Lynette K.; Kuo, John; Harnett, Gerry; Inglis, Timothy J. J.

    2003-01-01

    Burkholderia species are bacterial soil inhabitants that are capable of interacting with a variety of eukaryotes, in some cases occupying intracellular habitats. Pathogenic and nonpathogenic Burkholderia spp., including B. vietnamiensis, B. cepacia, and B. pseudomallei, were grown on germinating spores of the arbuscular mycorrhizal fungus Gigaspora decipiens. Spore lysis assays revealed that all Burkholderia spp. tested were able to colonize the interior of G. decipiens spores. Amplification of specific DNA sequences and transmission electron microscopy confirmed the intracellular presence of B. vietnamiensis. Twelve percent of all spores were invaded by B. vietnamiensis, with an average of 1.5 × 106 CFU recovered from individual infected spores. Of those spores inoculated with B. pseudomallei, 7% were invaded, with an average of 5.5 × 105 CFU recovered from individual infected spores. Scanning electron and fluorescence microscopy provided insights into the morphology of surfaces of spores and hyphae of G. decipiens and the attachment of bacteria. Burkholderia spp. colonized both hyphae and spores, attaching to surfaces in either an end-on or side-on fashion. Adherence of Burkholderia spp. to eukaryotic surfaces also involved the formation of numerous fibrillar structures. PMID:14532087

  17. Economic burden of bacteremic melioidosis in eastern and northeastern, Thailand.

    PubMed

    Bhengsri, Saithip; Lertiendumrong, Jongkol; Baggett, Henry C; Thamthitiwat, Somsak; Chierakul, Wirongrong; Tisayaticom, Kanjana; Tanwisaid, Kittisak; Chantra, Somrak; Kaewkungwal, Jaranit

    2013-08-01

    Melioidosis is among the most common causes of septicemia in Thailand, but data on economic burden are limited. We describe the economic impact of bacteremic melioidosis hospitalizations in two Thailand provinces during 2006-2008. Costs are presented in US dollars ($1 = 30.49 Thai Baht). The average annual incidence of bacteremic melioidosis cases per 100,000 persons in Sa Kaeo and Nakhon Phanom was 4.6 and 14.4, respectively. The annual cost of bacteremic melioidosis hospitalizations from the societal perspective, including direct and indirect costs, was $152,159 in Sa Kaeo and $465,303 in Nakhon Phanom. The average cost per fatal case was $14,182 and $14,858 in Sa Kaeo and Nakhon Phanom, respectively. In addition to the high morbidity and mortality, the substantial economic burden of melioidosis further supports the need for investments to identify improved prevention and control strategies for melioidosis.

  18. Polysaccharide Microarray Technology for the Detection of Burkholderia Pseudomallei and Burkholderia Mallei Antibodies

    DTIC Science & Technology

    2006-04-27

    SRM117, 1026b, and 576 (micromoles of rhamnose equivalents per milliliter) were 3.6, 16.0, 3.6, and 3.5, respectively. We also used inulin (Sigma...the rabbit antiserum did not react with inulin , the polysaccharide used as a negative control. Furthermore, using this microarray, we are able to

  19. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis

    PubMed Central

    Thomas, Richard J.; Davies, C.; Nunez, A.; Hibbs, S.; Eastaugh, L.; Harding, S.; Jordan, J.; Barnes, K.; Oyston, P.; Eley, S.

    2012-01-01

    Deposition of Burkholderia pseudomallei within either the lungs or nasal passages of the Balb/c murine model resulted in different infection kinetics. The infection resulting from the inhalation of B. pseudomallei within a 12 μm particle aerosol was prolonged compared to a 1 μm particle aerosol with a mean time-to-death (MTD) of 174.7 ± 14.9 h and 73.8 ± 11.3 h, respectively. Inhalation of B. pseudomallei within 1 μm or 12 μm particle aerosols resulted in a median lethal dose (MLD) of 4 and 12 cfu, respectively. The 12 μm particle inhalational infection was characterized by a marked involvement of the nasal mucosa and extension of bacterial colonization and inflammatory lesions from the olfactory epithelium through the olfactory nerves (or tracts) to the olfactory bulb (100%), culminating in abscessation of the brain (33%). Initial involvement of the upper respiratory tract lymphoid tissues (nasal-associated lymphoid tissue (NALT) and cervical lymph nodes) was observed in both the 1 and 12 μm particle inhalational infections (80–85%). Necrotising alveolitis and bronchiolitis were evident in both inhalational infections, however, lung pathology was greater after inhalation of the 1 μm particle aerosol with pronounced involvement of the mediastinal lymph node (50%). Terminal disease was characterized by bacteraemia in both inhalational infections with dissemination to the spleen, liver, kidneys, and thymus. Treatment with co-trimoxazole was more effective than treatment with doxycycline irrespective of the size of the particles inhaled. Doxycycline was more effective against the 12 μm particle inhalational infection as evidenced by increased time to death. However, both treatment regimes exhibited significant relapse when therapy was discontinued with massive enlargement and abscessation of the lungs, spleen, and cervical lymph nodes observed. PMID:22919690

  20. Case report: melioidosis imported from West Africa to Europe.

    PubMed

    Cuadros, Juan; Gil, Horacio; Miguel, Julio De; Marabé, Graciela; Gómez-Herruz, Teresa Arroyo Peña; Lobo, Bruno; Marcos, Ruth; Anda, Pedro

    2011-08-01

    We report the first case of imported melioidosis in Spain from a diabetic immigrant who visited West Africa during the rainy season. Because of the unusual presentation of this disease in Africa, clinical and microbiological diagnosis of imported melioidosis from this continent can be very elusive.

  1. Subcutaneous Surprise

    PubMed Central

    Jakribettu, RP; Boloor, R; D’Souza, R; Aithala, S

    2014-01-01

    Melioidosis is a zoonosis caused by the accidental pathogen Burkholderia pseudomallei, which is endemic in Southeast Asia and northern Australia. The mortality of melioidosis is 20-50% even with treatment. Suppurative lymphadenitis caused by melioidosis has been rarely encountered by clinicians practicing in endemic areas. In the majority of previously described patients, the infected lymph nodes were in the head and neck region, except for four patients who presented with unilateral, inguinal lymphadenitis. Hence, we report a case of unilateral suppurative inguinal lymphadenitis caused by B. pseudomallei in a 48-year-old lady who presented with groin swelling of 2 months duration. PMID:24669344

  2. Immunogenic Consensus Sequence T helper Epitopes for a Pan-Burkholderia Biodefense Vaccine

    PubMed Central

    De Groot, Anne S.; Ardito, Matthew; Moise, Leonard; Gustafson, Eric A.; Spero, Denice; Tejada, Gloria; Martin, William

    2014-01-01

    Background Biodefense vaccines against Category B bioterror agents Burkholderia pseudomallei (BPM) and Burkholderia mallei (BM) are needed, as they are both easily accessible to terrorists and have strong weaponization potential. Burkholderia cepaciae (BC), a related pathogen, causes chronic lung infections in cystic fibrosis patients. Since BPM, BM and BC are all intracellular bacteria, they are excellent targets for T cell-based vaccines. However, the sheer volume of available genomic data requires the aid of immunoinformatics for vaccine design. Using EpiMatrix, ClustiMer and EpiAssembler, a set of immunoinformatic vaccine design tools, we screened the 31 available Burkholderia genomes and performed initial tests of our selections that are candidates for an epitope-based multi-pathogen vaccine against Burkholderia species. Results Immunoinformatics analysis of 31 Burkholderia genomes yielded 350,004 9-mer candidate vaccine peptides of which 133,469 had perfect conservation across the 10 BM genomes, 175,722 had perfect conservation across the 11 BPM genomes and 40,813 had perfect conservation across the 10 BC genomes. Further screening with EpiMatrix yielded 54,010 high-scoring Class II epitopes; these were assembled into 2,880 longer highly conserved ‘immunogenic consensus sequence’ T helper epitopes. 100% of the peptides bound to at least one HLA class II allele in vitro, 92.7% bound to at least two alleles, 82.9% to three, and 75.6% of the binding results were consistent with the immunoinformatics analysis. Conclusions Our results show it is possible to rapidly identify promiscuous T helper epitopes conserved across multiple Burkholderia species and test their binding to HLA ligands in vitro. The next step in our process will be to test the epitopes ex vivo using peripheral leukocytes from BC, BPM infected humans and for immunogenicity in human HLA transgenic mice. We expect that this approach will lead to development of a licensable, pan-Burkholderia

  3. Involvement of the Efflux Pumps in Chloramphenicol Selected Strains of Burkholderia thailandensis: Proteomic and Mechanistic Evidence

    PubMed Central

    Biot, Fabrice V.; Valade, Eric; Garnotel, Eric; Chevalier, Jacqueline; Villard, Claude; Thibault, François M.; Vidal, Dominique R.; Pagès, Jean-Marie

    2011-01-01

    Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some β-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections. PMID:21347382

  4. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis.

    PubMed

    Angus, Annette A; Agapakis, Christina M; Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; Caballero-Mellado, Jésus; de Faria, Sergio M; Dakora, Felix D; Weinstock, George; Hirsch, Ann M

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low.

  5. Management of melioidosis osteomyelitis and septic arthritis.

    PubMed

    Shetty, R P; Mathew, M; Smith, J; Morse, L P; Mehta, J A; Currie, B J

    2015-02-01

    Little information is available about several important aspects of the treatment of melioidosis osteomyelitis and septic arthritis. We undertook a retrospective review of 50 patients with these conditions in an attempt to determine the effect of location of the disease, type of surgical intervention and duration of antibiotic treatment on outcome, particularly complications and relapse. We found that there was a 27.5% risk of osteomyelitis of the adjacent bone in patients with septic arthritis in the lower limb. Patients with septic arthritis and osteomyelitis of an adjacent bone were in hospital significantly longer (p = 0.001), needed more operations (p = 0.031) and had a significantly higher rate of complications and re-presentation (p = 0.048). More than half the patients (61%), most particularly those with multifocal bone and joint involvement, and those with septic arthritis and osteomyelitis of an adjacent bone who were treated operatively, needed more visits to theatre.

  6. Clinical-Epidemiological Features of 13 Cases of Melioidosis in Brazil

    PubMed Central

    Bandeira, Tereza J. P. G.; Cordeiro, Rossana A.; Grangeiro, Thalles B.; Lima, Rita A. C.; Ribeiro, Joyce F.; Castelo-Branco, Débora S. C. M.; Rodrigues, Jorge L. N.; Coelho, Ivo C. B.; Magalhães, Francisco G.; Rocha, Marcos F. G.; Sidrim, José J. C.

    2012-01-01

    The aim of this work was to catalog the clinical and ecoepidemiological characteristics of melioidosis in Brazil. The clinical-epidemiological features of melioidosis in Ceará are similar to those in other regions where the disease is endemic. These findings support the inclusion of this Brazilian state as part of the zone of endemicity for melioidosis. PMID:22814457

  7. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    PubMed Central

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG

  8. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade.

    PubMed

    French, Christopher T; Toesca, Isabelle J; Wu, Ting-Hsiang; Teslaa, Tara; Beaty, Shannon M; Wong, Wayne; Liu, Minghsun; Schröder, Imke; Chiou, Pei-Yu; Teitell, Michael A; Miller, Jeff F

    2011-07-19

    Burkholderia pseudomallei and Burkholderia thailandensis are related pathogens that invade a variety of cell types, replicate in the cytoplasm, and spread to nearby cells. We have investigated temporal and spatial requirements for virulence determinants in the intracellular life cycle, using genetic dissection and photothermal nanoblade delivery, which allows efficient placement of bacterium-sized cargo into the cytoplasm of mammalian cells. The conserved Bsa type III secretion system (T3SS(Bsa)) is dispensable for invasion, but is essential for escape from primary endosomes. By nanoblade delivery of B. thailandensis we demonstrate that all subsequent events in intercellular spread occur independently of T3SS(Bsa) activity. Although intracellular movement was essential for cell-cell spread by B. pseudomallei and B. thailandensis, neither BimA-mediated actin polymerization nor the formation of membrane protrusions containing bacteria was required for B. thailandensis. Surprisingly, the cryptic (fla2) flagellar system encoded on chromosome 2 of B. thailandensis supported rapid intracellular motility and efficient cell-cell spread. Plaque formation by both pathogens was dependent on the activity of a type VI secretion system (T6SS-1) that functions downstream from T3SS(Bsa)-mediated endosome escape. A remarkable feature of Burkholderia is their ability to induce the formation of multinucleate giant cells (MNGCs) in multiple cell types. By infection and nanoblade delivery, we observed complete correspondence between mutant phenotypes in assays for cell fusion and plaque formation, and time-course studies showed that plaque formation represents MNGC death. Our data suggest that the primary means for intercellular spread involves cell fusion, as opposed to pseudopod engulfment and bacterial escape from double-membrane vacuoles.

  9. Insights into β-Lactamases from Burkholderia Species, Two Phylogenetically Related yet Distinct Resistance Determinants*

    PubMed Central

    Papp-Wallace, Krisztina M.; Taracila, Magdalena A.; Gatta, Julian A.; Ohuchi, Nozomi; Bonomo, Robert A.; Nukaga, Michiyoshi

    2013-01-01

    Burkholderia cepacia complex and Burkholderia pseudomallei are opportunistic human pathogens. Resistance to β-lactams among Burkholderia spp. is attributable to expression of β-lactamases (e.g. PenA in B. cepacia complex and PenI in B. pseudomallei). Phylogenetic comparisons reveal that PenA and PenI are highly related. However, the analyses presented here reveal that PenA is an inhibitor-resistant carbapenemase, most similar to KPC-2 (the most clinically significant serine carbapenemase), whereas PenI is an extended spectrum β-lactamase. PenA hydrolyzes β-lactams with kcat values ranging from 0.38 ± 0.04 to 460 ± 46 s−1 and possesses high kcat/kinact values of 2000, 1500, and 75 for β-lactamase inhibitors. PenI demonstrates the highest kcat value for cefotaxime of 9.0 ± 0.9 s−1. Crystal structure determination of PenA and PenI reveals important differences that aid in understanding their contrasting phenotypes. Changes in the positioning of conserved catalytic residues (e.g. Lys-73, Ser-130, and Tyr-105) as well as altered anchoring and decreased occupancy of the deacylation water explain the lower kcat values of PenI. The crystal structure of PenA with imipenem docked into the active site suggests why this carbapenem is hydrolyzed and the important role of Arg-220, which was functionally confirmed by mutagenesis and biochemical characterization. Conversely, the conformation of Tyr-105 hindered docking of imipenem into the active site of PenI. The structural and biochemical analyses of PenA and PenI provide key insights into the hydrolytic mechanisms of β-lactamases, which can lead to the rational design of novel agents against these pathogens. PMID:23658015

  10. Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants.

    PubMed

    Papp-Wallace, Krisztina M; Taracila, Magdalena A; Gatta, Julian A; Ohuchi, Nozomi; Bonomo, Robert A; Nukaga, Michiyoshi

    2013-06-28

    Burkholderia cepacia complex and Burkholderia pseudomallei are opportunistic human pathogens. Resistance to β-lactams among Burkholderia spp. is attributable to expression of β-lactamases (e.g. PenA in B. cepacia complex and PenI in B. pseudomallei). Phylogenetic comparisons reveal that PenA and PenI are highly related. However, the analyses presented here reveal that PenA is an inhibitor-resistant carbapenemase, most similar to KPC-2 (the most clinically significant serine carbapenemase), whereas PenI is an extended spectrum β-lactamase. PenA hydrolyzes β-lactams with k(cat) values ranging from 0.38 ± 0.04 to 460 ± 46 s(-1) and possesses high k(cat)/k(inact) values of 2000, 1500, and 75 for β-lactamase inhibitors. PenI demonstrates the highest kcat value for cefotaxime of 9.0 ± 0.9 s(-1). Crystal structure determination of PenA and PenI reveals important differences that aid in understanding their contrasting phenotypes. Changes in the positioning of conserved catalytic residues (e.g. Lys-73, Ser-130, and Tyr-105) as well as altered anchoring and decreased occupancy of the deacylation water explain the lower k(cat) values of PenI. The crystal structure of PenA with imipenem docked into the active site suggests why this carbapenem is hydrolyzed and the important role of Arg-220, which was functionally confirmed by mutagenesis and biochemical characterization. Conversely, the conformation of Tyr-105 hindered docking of imipenem into the active site of PenI. The structural and biochemical analyses of PenA and PenI provide key insights into the hydrolytic mechanisms of β-lactamases, which can lead to the rational design of novel agents against these pathogens.

  11. Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon.

    PubMed

    Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard; Greenberg, E Peter

    2014-04-01

    Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei.

  12. Discrimination of Pathogenic vs. Nonpathogenic Francisella tularensis and Burkholderia pseudomallei Using Proteomics Mass Spectrometry

    DTIC Science & Technology

    2011-03-01

    GroEL AhpC/TSA family protein hypothetical protein FTL0617 heat shock protein DnaK succinyl-CoA synthetase subunit beta hypothetical protein...lipoprotein chaperonin GroEL co-chaperonin GroES DNA-directed RNA polymerase subunit beta intracellular growth locus, subunit C 3.2 Differentiation...thailandensis E264 Unique Proteins Whole Cell Lysates OMPs putative lipoprotein glucan 1,4-a-glucosidase glycosy hydrolase family protein putative

  13. Unraveling the B. pseudomallei Heptokinase WcbL: From Structure to Drug Discovery

    PubMed Central

    Vivoli, Mirella; Isupov, Michail N.; Nicholas, Rebecca; Hill, Andrew; Scott, Andrew E.; Kosma, Paul; Prior, Joann L.; Harmer, Nicholas J.

    2015-01-01

    Summary Gram-negative bacteria utilize heptoses as part of their repertoire of extracellular polysaccharide virulence determinants. Disruption of heptose biosynthesis offers an attractive target for novel antimicrobials. A critical step in the synthesis of heptoses is their 1-O phosphorylation, mediated by kinases such as HldE or WcbL. Here, we present the structure of WcbL from Burkholderia pseudomallei. We report that WcbL operates through a sequential ordered Bi-Bi mechanism, loading the heptose first and then ATP. We show that dimeric WcbL binds ATP anti-cooperatively in the absence of heptose, and cooperatively in its presence. Modeling of WcbL suggests that heptose binding causes an elegant switch in the hydrogen-bonding network, facilitating the binding of a second ATP molecule. Finally, we screened a library of drug-like fragments, identifying hits that potently inhibit WcbL. Our results provide a novel mechanism for control of substrate binding and emphasize WcbL as an attractive anti-microbial target for Gram-negative bacteria. PMID:26687481

  14. Unraveling the B. pseudomallei Heptokinase WcbL: From Structure to Drug Discovery.

    PubMed

    Vivoli, Mirella; Isupov, Michail N; Nicholas, Rebecca; Hill, Andrew; Scott, Andrew E; Kosma, Paul; Prior, Joann L; Harmer, Nicholas J

    2015-12-17

    Gram-negative bacteria utilize heptoses as part of their repertoire of extracellular polysaccharide virulence determinants. Disruption of heptose biosynthesis offers an attractive target for novel antimicrobials. A critical step in the synthesis of heptoses is their 1-O phosphorylation, mediated by kinases such as HldE or WcbL. Here, we present the structure of WcbL from Burkholderia pseudomallei. We report that WcbL operates through a sequential ordered Bi-Bi mechanism, loading the heptose first and then ATP. We show that dimeric WcbL binds ATP anti-cooperatively in the absence of heptose, and cooperatively in its presence. Modeling of WcbL suggests that heptose binding causes an elegant switch in the hydrogen-bonding network, facilitating the binding of a second ATP molecule. Finally, we screened a library of drug-like fragments, identifying hits that potently inhibit WcbL. Our results provide a novel mechanism for control of substrate binding and emphasize WcbL as an attractive anti-microbial target for Gram-negative bacteria.

  15. Naturally occurring melioidosis in a colonized rhesus monkey (Macaca mulatta).

    PubMed

    Fritz, P E; Miller, J G; Slayter, M; Smith, T J

    1986-10-01

    An aged wild-caught male rhesus monkey (Macaca mulatta), maintained in a research facility for 10 years, developed bilateral pelvic limb paralysis without other signs of disease. Unresponsive to therapy, the monkey was killed and necropsied. Chronic inflammation with osteolysis of thoracic vertebrae 10-13 was observed. Pseudomonas pseudomallei was cultured and identified from cerebrospinal fluid obtained at the site of the thoracic lesion. This Gram-negative bacterium can cause infection in animals and man and may remain latent for years before the appearance of clinical signs.

  16. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    EPA Science Inventory

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  17. Computational Identification and Comparative Analysis of Secreted and Transmembrane Proteins in Six Burkholderia Species

    PubMed Central

    Nguyen, Thao Thi; Lee, Hyun-Hee; Park, Jungwook; Park, Inmyoung; Seo, Young-Su

    2017-01-01

    As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens (B. glumae BGR1, B. gladioli BSR3), human pathogens (B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes (Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, human-pathogenic, and endophytic bacteria. PMID:28381962

  18. Elucidation of the Regulon and cis-Acting Regulatory Element of HrpB, the AraC-Type Regulator of a Plant Pathogen-Like Type III Secretion System in Burkholderia pseudomallei▿†

    PubMed Central

    Lipscomb, Lyla; Schell, Mark A.

    2011-01-01

    The human pathogen Burkholderia pseudomallei possesses multiple type III secretion system (T3SS) gene clusters. One of these, the B. pseudomallei T3SS2 (T3SS2bp) gene cluster, which apparently plays no role in animal virulence, is also found in six additional Burkholderia spp. and is very similar to T3SSs found in phytopathogenic Xanthomonas spp. and Ralstonia solanacearum. The T3SS2bp gene cluster also encodes an AraC-type regulatory protein (HrpBbp) that is an ortholog of HrpB, the master regulator of the R. solanacearum T3SS (T3SSrso) and its secreted effectors. Transcriptome analysis showed that HrpBbp activates the expression of T3SS2bp genes, as well as their orthologs in R. solanacearum. In addition to activating T3SS2bp, HrpBbp also upregulates the expression of ∼30 additional B. pseudomallei genes, including some that may confer production of adhesive pili, a polyketide toxin, several putative T3SS2bp-secreted effectors, and components of a regulatory cascade. T3SS2bp promoter regions were found to contain a conserved DNA motif (p2bp box) identical in sequence and position to the hrpII box required for HrpB-dependent T3SSrso transcription activation. The p2bp box is also present in the promoter regions of the essentially identical T3SS found in the very closely related species Burkholderia thailandensis (T3SS2bt). Analysis of p2bp box mutants showed that it is essential for HrpBbp-mediated transcription activation in both species. Although it has been suggested that T3SS2bp and T3SS2bt may function in phytopathogenicity, we were unable to demonstrate a phytopathogenic phenotype for B. thailandensis in three different plant hosts. PMID:21335458

  19. Whitmore's disease: an uncommon urological presentation

    PubMed Central

    Naganathan, Karthickeyan; Pillai, Sunil Bhaskara; Kumar, Praveen; Hegde, Padmaraj

    2014-01-01

    The incidence of prostatic abscesses has much decreased in the antibiotic era. We present an uncommon cause of prostatic abscess secondary to melioidosis, also known as Whitmore's disease or pseudoglanders. The disease is endemic in South East Asia and Australia. Although India is considered endemic for Burkholderia pseudomallei, the causative organism of melioidosis, not many cases have been reported. Most of the reported cases from India are from the South-West coastal regions of Kerala and Karnataka, Vellore, West Bengal and Bihar. Our index patient was successfully treated with parenteral antibiotics and endoscopic deroofing of the abscess. PMID:24518392

  20. A case-control study of community-acquired Acinetobacter baumannii pneumonia and melioidosis pneumonia in northeast Thailand: an emerging fatal disease with unique clinical features.

    PubMed

    Patamatamkul, Samadhi; Klungboonkrong, Voravan; Praisarnti, Pakawas; Jirakiat, Kittitouch

    2017-01-01

    Acinetobacter baumannii is the emerging cause of severe and often fatal gram-negative, community-acquired pneumonia (CAP-AB) in Thailand. Due to its rarity, its specific clinical features are ill defined. In this retrospective study, we compared the demographic data, risk factors, clinical characteristics, radiographic pattern, and microbiological data between CAP-AB and Burkholderia pseudomallei CAP (CAP-BP) to identify the clinical features and risk factors of CAP-AB. CAP-AB was associated with a more productive cough and a shorter duration of symptoms, while CAP-BP was associated with more musculoskeletal symptoms. The white blood cell and neutrophil counts were significantly lower in the CAP-AB group. Gram staining of the sputum revealed a significantly higher amount of bacteria in the CAP-AB group. Lobar infiltration and unilateral right lung involvement were the most common radiographic patterns in the CAP-AB group. CAP-AB is associated with severe pneumonia and has unique clinical features that distinguish it from CAP-BP.

  1. Evolution of bopA Gene in Burkholderia: A Case of Convergent Evolution as a Mechanism for Bacterial Autophagy Evasion

    PubMed Central

    Yu, Dong; Yin, Zhiqiu; Jin, Yuan; Zhou, Jing; Ren, Hongguang; Hu, Mingda; Li, Beiping; Zhou, Wei

    2016-01-01

    Autophagy is an important defense mechanism targeting intracellular bacteria to restrict their survival and growth. On the other hand, several intracellular pathogens have developed an antiautophagy mechanism to facilitate their own replication or intracellular survival. Up to now, no information about the origin or evolution of the antiautophagic genes in bacteria is available. BopA is an effector protein secreted by Burkholderia pseudomallei via the type three secretion system, and it has been shown to play a pivotal role in their escape from autophagy.  The evolutionary origin of bopA was examined in this work. Sequence similarity searches for BopA showed that no homolog of BopA was detected in eukaryotes. However, eukaryotic linear motifs were detected in BopA. The phylogenetic tree of the BopA proteins in our analysis is congruent with the species phylogeny derived from housekeeping genes. Moreover, there was no obvious difference in GC content values of bopA gene and their respective genomes. Integrated information on the taxonomic distribution, phylogenetic relationships, and GC content of the bopA gene of Burkholderia revealed that this gene was acquired via convergent evolution, not from eukaryotic host through horizontal gene transfer (HGT) event. This work has, for the first time, characterized the evolutionary mechanism of bacterial evasion of autophagy. The results of this study clearly demonstrated the role of convergent evolution in the evolution of how bacteria evade autophagy. PMID:28018913

  2. Killing of Pseudomonas pseudomallei by polymorphonuclear leukocytes and peritoneal macrophages from chicken, sheep, swine and rabbits.

    PubMed

    Markova, N; Kussovski, V; Radoucheva, T

    1998-07-01

    Differences in the kinetics of Pseudomonas pseudomallei killing by peritoneal macrophages (PM) and polymorphonuclear leucocytes (PMNL) from chickens, sheep, swine and rabbits were found. P. pseudomallei was rapidly killed by porcine PM and PMNL. However the bacterial killing by ovine and lapine PM and PMNL proceeded at a slower rate. In contrast, chicken PM and PMNL ingested and killed the lowest number of P. pseudomallei bacteria. The differences in the bactericidal activity of PM and PMNL from different animal species correlated with the level of their acid phosphatase and glycolytic activity.

  3. Development of a Polymerase Chain Reaction Assay for the Specific Identification of Burkholderia mallei and Differentiation from Burkholderia pseudomallei and Other Closely Related Burkholderiaceae

    DTIC Science & Technology

    2005-11-29

    Gram-negative and Gram-positive isolates analyzed for cross-reactivity with the B. mallei-specific assay include Escherichia coli, Chromobacterium ... violaceum , Yersinia pestis, Pseudomonas aeruginosa, and Bacillus anthracis. Genomic DNA for PCR amplification was purified using previously described...used in this work were grown in LB broth. C. violaceum and Y. pestis were propagated at 25 8C, whereas the remaining bacterial isolates were cultured

  4. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators

    PubMed Central

    Nock, Adam M.

    2016-01-01

    arrangement and differential regulation of these components can help us understand both the evolution of these systems and the potential roles these pathways have in the biology of each bacterium. Here, we describe the transcriptome response of Burkholderia thailandensis to the eukaryote-enriched molecule choline, identify the regulatory pathway governing choline catabolism, and compare the pathway to that previously described for Pseudomonas aeruginosa. These data support a multitiered regulatory network in B. thailandensis, with conserved orthologs in the select agents Burkholderia pseudomallei and Burkholderia mallei, as well as the opportunistic lung pathogens in the Burkholderia cepacia clade. PMID:27381916

  5. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil.

    PubMed

    Lee, Jae-Chan; Whang, Kyung-Sook

    2015-09-01

    Strains Y-12(T) and Y-47(T) were isolated from mountain forest soil and strain WR43(T) was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10-55 °C (optimal growth at 28-30 °C), at pH 3.0-8.0 (optimal growth at pH 6.0) and in the presence of 0-4.0% (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461(T) (97.2-97.7%); the similarity between the three sequences ranged from 98.3 to 98.7%. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes recA and gyrB. The predominant ubiquinone was Q-8, the major fatty acids were C16 : 0 and C17  : 0 cyclo and the DNA G+C content of the novel isolates was 61.6-64.4 mol%. DNA-DNA relatedness among the three strains and the type strains of the closest species of the genus Burkholderia was less than 50%. On the basis of 16S rRNA, recA and gyrB gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus Burkholderia, for which the names Burkholderia humisilvae sp. nov. (type strain Y-12(T)= KACC 17601(T) = NBRC 109933(T) = NCAIM B 02543(T)), Burkholderia solisilvae sp. nov. (type strain Y-47(T) = KACC 17602(T)= NBRC 109934(T) = NCAIM B 02539(T)) and Burkholderia rhizosphaerae sp. nov. (type strain WR43(T) = KACC 17603(T) = NBRC 109935(T) = NCAIM B 02541(T)) are proposed.

  6. CpG Oligodeoxyribonucleotides Protect Mice from Burkholderia Pseudomallei but not Francisella Tularensis Schu S4 Aerosols

    DTIC Science & Technology

    2010-01-01

    David A Rozak1*, Herbert C Gelhaus1,3, Mark Smith2, Mojgan Zadeh1,4, Louis Huzella2, David Waag1, Jeffrey J Adamovicz1,5 Abstract Studies have shown...tularensis LPS, and contributes to F. novicida murine pathogenesis. Microbes and infection/ Institut Pasteur 2003, 5(5):397-403. 12. Forsman M, Sandstrom G

  7. Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis

    PubMed Central

    Peano, Clelia; Chiaramonte, Fabrizio; Motta, Sara; Pietrelli, Alessandro; Jaillon, Sebastien; Rossi, Elio; Consolandi, Clarissa; Champion, Olivia L.; Michell, Stephen L.; Freddi, Luca; Falciola, Luigi; Basilico, Fabrizio; Garlanda, Cecilia; Mauri, Pierluigi; De Bellis, Gianluca; Landini, Paolo

    2014-01-01

    Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272) at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors. PMID:24671187

  8. Polyclonal outbreak of Burkholderia cepacia complex bacteraemia in haemodialysis patients.

    PubMed

    Magalhães, M; Doherty, C; Govan, J R W; Vandamme, P

    2003-06-01

    We report a polyclonal outbreak of bacteraemia involving 24 patients at a haemodialysis facility in Recife (Brazil). During the outbreak period (4 June to 11 July, 2001), three Burkholderia cepacia complex strains were isolated from human blood and from various water samples collected at different sites in the haemodialysis unit and from dialysate fluids. Out of 14 patients with positive blood cultures, six were infected by Burkholderia cepacia complex bacteria: three with Burkholderia cepacia genomovar III, two with a first strain of Burkholderia vietnamiensis, and one with the Burkholderia cepacia genomovar III strain and a second B. vietnamiensis strain.

  9. Burkholderia cepacia sepsis among neonates.

    PubMed

    Patra, Saikat; Bhat Y, Ramesh; Lewis, Leslie Edward; Purakayastha, Jayashree; Sivaramaraju, V Vamsi; Kalwaje E, Vandana; Mishra, Swathi

    2014-11-01

    Burkholderia cepacia is a rare cause of sepsis in newborns and its transmission involves human contact with heavily contaminated medical devices and disinfectants. The authors aimed to determine epidemiology, clinical features, antibiotic sensitivity pattern, complications and outcome of blood culture proven B. cepacia infections in 12 neonates. All neonates were outborn, 5 preterm and 7 term. B. cepacia was isolated from blood in all and concurrently from CSF in three neonates. Lethargy and respiratory distress (41.7 %) were major presenting features. Five newborns (41.7 %) required mechanical ventilation for 3-7 d. Highest bacterial susceptibility was observed for meropenem (100 %), followed by cefoperazone-sulbactam, piperacillin-tazobactam, sulfamethoxazole-trimethoprim (all 83 %), ceftazidime (75 %) and ciprofloxacin (42 %). Piperacillin-tazobactam, ciprofloxacin and cotrimoxazole either singly or in combination led to complete recovery of 11 (91.7 %) newborns; one developed hydrocephalus. Eight of nine infants who completed 6 mo follow up were normal. Prompt recognition and appropriate antibiotic therapy for B. cepacia infection results in complete recovery in majority.

  10. Host Evasion by Burkholderia cenocepacia

    PubMed Central

    Ganesan, Shyamala; Sajjan, Umadevi S.

    2012-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF). Some strains of B. cenocepacia are highly transmissible and resistant to almost all antibiotics. Approximately one-third of B. cenocepacia infected CF patients go on to develop fatal “cepacia syndrome.” During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia have the capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary sentinels of the lung and play a pivotal role in clearance of infecting bacteria. Those strains of B. cenocepacia, which express both cable pili and the associated 22 kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria as well as lung inflammation in CF patients. PMID:22919590

  11. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    EPA Science Inventory

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  12. A polar-localized iron-binding protein determines the polar targeting of Burkholderia BimA autotransporter and actin tail formation.

    PubMed

    Lu, Qiuhe; Xu, Yue; Yao, Qing; Niu, Miao; Shao, Feng

    2015-03-01

    Intracellular bacterial pathogens including Shigella, Listeria, Mycobacteria, Rickettsia and Burkholderia spp. deploy a specialized surface protein onto one pole of the bacteria to induce filamentous actin tail formation for directional movement within host cytosol. The mechanism underlying polar targeting of the actin tail proteins is unknown. Here we perform a transposon screen in Burkholderia thailandensis and identify a conserved bimC that is required for actin tail formation mediated by BimA from B. thailandensis and its closely related pathogenic species B. pseudomallei and B. mallei. bimC is located upstream of bimA in the same operon. Loss of bimC results in even distribution of BimA on the outer membrane surface, where actin polymerization still occurs. BimC is targeted to the same bacterial pole independently of BimA. BimC confers polar targeting of BimA prior to BimA translocation across bacterial inner membrane. BimC is an iron-binding protein, requiring a four-cysteine cluster at the carboxyl terminus. Mutation of the cysteine cluster disrupts BimC polar localization. Truncation analyses identify the transmembrane domain in BimA being responsible for its polar targeting. Consistently, BimC can interact with BimA transmembrane domain in an iron binding-dependent manner. Our study uncovers a new mechanism that determines the polar distribution of bacteria-induced actin tail in infected host cells.

  13. Burkholderia monticola sp. nov., isolated from mountain soil.

    PubMed

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Yi, Hana; Chun, Jongsik

    2015-02-01

    An ivory/yellow, Gram-stain-negative, short-rod-shaped, aerobic bacterial strain, designated JC2948(T), was isolated from a soil sample taken from Gwanak Mountain, Republic of Korea. 16S rRNA gene sequence analysis indicated that strain JC2948(T) belongs to the genus Burkholderia. The test strain showed highest sequence similarities to Burkholderia tropica LMG 22274(T) (97.6 %), Burkholderia acidipaludis NBRC 101816(T) (97.5 %), Burkholderia tuberum LMG 21444(T) (97.5 %), Burkholderia sprentiae LMG 27175(T) (97.4 %), Burkholderia terricola LMG 20594(T) (97.3 %) and Burkholderia diazotrophica LMG 26031(T) (97.1 %). Based on average nucleotide identity (ANI) values, the new isolate represents a novel genomic species as it shows less than 90 % ANI values with other closely related species. Also, other phylosiological and biochemical comparisons allowed the phenotypic differentiation of strain JC2948(T) from other members of the genus Burkholderia. Therefore, we suggest that this strain should be classified as the type strain of a novel species of the genus Burkholderia. The name Burkholderia monticola sp. nov. (type strain, JC2948(T) = JCM 19904(T) = KACC 17924(T)) is proposed.

  14. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection

    NASA Astrophysics Data System (ADS)

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Utispan, Kusumawadee; Suwannasaen, Duangchan; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2013-11-01

    Type 2 diabetes mellitus is a major risk factor for melioidosis, which is caused by Burkholderia pseudomallei. Our previous study has shown that polymorphonuclear neutrophils (PMNs) from diabetic subjects exhibited decreased functions in response to B. pseudomallei. Here we investigated the mechanisms regulating cytokine secretion of PMNs from diabetic patients which might contribute to patient susceptibility to bacterial infections. Purified PMNs from diabetic patients who had been treated with glibenclamide (an ATP-sensitive potassium channel blocker for anti-diabetes therapy), showed reduction of interleukin (IL)-1β and IL-8 secretion when exposed to B. pseudomallei. Additionally, reduction of these pro-inflammatory cytokines occurred when PMNs from diabetic patients were treated in vitro with glibenclamide. These findings suggest that glibenclamide might be responsible for the increased susceptibility of diabetic patients, with poor glycemic control, to bacterial infections as a result of its effect on reducing IL-1β production by PMNs.

  15. Burkholderia megalochromosomata sp. nov., isolated from grassland soil.

    PubMed

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Lee, Kihyun; Park, Sang-Cheol; Yi, Hana; Chun, Jongsik

    2015-03-01

    A Gram-stain negative, rod-shaped, non-spore-forming, obligate aerobic bacterial strain, JC2949(T), was isolated from grassland soil in Gwanak Mountain, Seoul, Republic of Korea. Phylogenetic analysis, based on 16S rRNA sequences, indicated that strain JC2949(T) belongs to the genus Burkholderia, showing highest sequence similarities with Burkholderia grimmiae R27(T) (98.8 %), Burkholderia cordobensis LMG 27620(T) (98.6 %), Burkholderia jiangsuensis MP-1T(T) (98.6 %), Burkholderia zhejiangensis OP-1(T) (98.5 %), Burkholderia humi LMG 22934(T) (97.5 %), Burkholderia terrestris LMG 22937(T) (97.3 %), Burkholderia telluris LMG 22936(T) (97.2 %) and Burkholderia glathei ATCC 29195(T) (97.0 %). The major fatty acids of strain JC2949(T) were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Its predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown amino phospholipid. The dominant isoprenoid quinone was ubiquinone Q-8. The pairwise average nucleotide identity values between strain JC2949(T) and the genomes of 30 other species of the genus Burkholderia ranged from 73.4-90.4 %, indicating that the isolate is a novel genomic species within this genus. Based on phenotypic and chemotaxonomic comparisons, it is clear that strain JC2949(T) represents a novel species of the genus Burkholderia. We propose the name for this novel species to be Burkholderia megalochromosomata sp. nov. The type strain is JC2949(T) ( = KACC 17925(T) = JCM 19905(T)).

  16. Members of the genus Burkholderia: good and bad guys

    PubMed Central

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  17. The epidemiology and clinical features of melioidosis in Far North Queensland: Implications for patient management

    PubMed Central

    Stewart, James D.; Smith, Simon; Binotto, Enzo; McBride, William J.; Currie, Bart J.; Hanson, Josh

    2017-01-01

    Background The epidemiology, clinical presentation and management of melioidosis vary around the world. It is essential to define the disease’s local features to optimise its management. Principal findings Between 1998 and 2016 there were 197 cases of culture confirmed melioidosis in Far North Queensland; 154 (78%) presented in the December-April wet season. 145 (74%) patients were bacteraemic, 58 (29%) were admitted to the Intensive Care Unit and 27 (14%) died; nine (33%) of these deaths occurred within 48 hours of presentation. Pneumonia was the most frequent clinical finding, present in 101 (61%) of the 166 with available imaging. A recognised risk factor for melioidosis (diabetes, hazardous alcohol use, chronic renal disease, chronic lung disease, immunosuppression or malignancy) was present in 148 (91%) of 162 patients with complete comorbidity data. Despite representing only 9% of the region’s population, Aboriginal and Torres Strait Island (ATSI) people comprised 59% of the cases. ATSI patients were younger than non-ATSI patients (median (interquartile range): 46 (38–56) years versus 59 (43–69) years (p<0.001) and had a higher case-fatality rate (22/117 (19%) versus 5/80 (6.3%) (p = 0.01)). In the 155 patients surviving the initial intensive intravenous phase of treatment, eleven (7.1%) had disease recurrence, despite the fact that nine (82%) of these patients had received prolonged intravenous therapy. Recurrence was usually due to inadequate source control or poor adherence to oral eradication therapy. The case fatality rate declined from 12/44 (27%) in the first five years of the study to 7/76 (9%) in the last five (p = 0.009), reflecting national improvements in sepsis management. Conclusions Melioidosis in Far North Queensland is a seasonal, opportunistic infection of patients with specific comorbidities. The ATSI population bear the greatest burden of disease. Although the case-fatality rate is declining, deaths frequently occur early after

  18. Preparation of a Burkholderia Mallei Vaccine

    DTIC Science & Technology

    2000-01-01

    together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which... on to apoptosis; hence, virulent mycobacteria will survive in those macrophages. To assess any similarity between Mycobacterium and Burkholderia...the presence of an open reading frame encoding for a type I polyketide synthase from Streptomyces species (data not 13 shown). We are currently

  19. Complete genome sequence of the fenitrothion-degrading Burkholderia sp. strain YI23.

    PubMed

    Lim, Jong Sung; Choi, Beom Soon; Choi, Ah Young; Kim, Kyung Duk; Kim, Dong In; Choi, Ik Young; Ka, Jong-Ok

    2012-02-01

    Burkholderia species are ubiquitous in soil environments. Many Burkholderia species isolated from various environments have the potential to biodegrade man-made chemicals. Burkholderia sp. strain YI23 was isolated from a golf course soil and identified as a fenitrothion-degrading bacterium. In this study, we report the complete genome sequence of Burkholderia sp. strain YI23.

  20. Burkholderia glumae Infection in an Infant with Chronic Granulomatous Disease▿

    PubMed Central

    Weinberg, Jason B.; Alexander, Barbara D.; Majure, Joseph M.; Williams, Larry W.; Kim, Jason Y.; Vandamme, Peter; LiPuma, John J.

    2007-01-01

    An 8-month-old boy developed a necrotic lung mass from which Burkholderia glumae was recovered, leading to the diagnosis of chronic granulomatous disease (CGD). While other Burkholderia species have been identified as important pathogens in persons with CGD, B. glumae has not been previously reported to cause human infection. PMID:17135434

  1. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  2. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  3. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  4. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    DOE PAGES

    Daligault, H. E.; Johnson, Shannon L.; Davenport, K. W.; ...

    2016-01-07

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Though glanders have been eradicated from many parts of the world, the threat ofB. malleibeing used as a weapon is very real. We, then, present draft genome assemblies of 8Burkholderia malleistrains that were isolated in Turkey.

  5. Draft Genome Sequences of Burkholderia contaminans, a Burkholderia cepacia Complex Species That Is Increasingly Recovered from Cystic Fibrosis Patients

    PubMed Central

    Bloodworth, Ruhi A. M.; Selin, Carrie; López De Volder, Maria Agustina; Drevinek, Pavel; Galanternik, Laura; Degrossi, José

    2015-01-01

    Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate. PMID:26251482

  6. Draft Genome Sequences of Burkholderia contaminans, a Burkholderia cepacia Complex Species That Is Increasingly Recovered from Cystic Fibrosis Patients.

    PubMed

    Bloodworth, Ruhi A M; Selin, Carrie; López De Volder, Maria Agustina; Drevinek, Pavel; Galanternik, Laura; Degrossi, José; Cardona, Silvia T

    2015-08-06

    Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate.

  7. Biocide susceptibility of the Burkholderia cepacia complex

    PubMed Central

    Rose, Helen; Baldwin, Adam; Dowson, Christopher G.; Mahenthiralingam, Eshwar

    2009-01-01

    Objectives The Burkholderia cepacia complex (Bcc) species are important opportunistic pathogens with intrinsic antibiotic resistance. They are also well known as contaminants of disinfectants, yet their biocide susceptibility has not been studied in detail. We investigated Bcc biocide susceptibility and correlated it to their taxonomy, antibiotic susceptibility and ability to form biofilms. Methods Genetically distinct Bcc strains belonging to 12 of the defined species were examined. Biocide susceptibility was assessed by (i) broth dilution MIC assays, (ii) agar growth-based MBC screens and (iii) suspension tests. Antibiotic MIC was determined by Etest® strips, and the ability to form biofilms was examined in a 96-well plate assay. Results Biocide susceptibility varied across the Bcc complex with high MIC recorded for chlorhexidine (>100 mg/L), cetylpyridinium chloride (>200 mg/L), triclosan (>500 mg/L), benzalkonium chloride (>400 mg/L) and povidone (>50 000 mg/L). Species-dependent differences were apparent only for cetylpyridinium chloride. There was no correlation between biocide susceptibility and (i) antibiotic susceptibility or (ii) the ability to form biofilms. Biocide MBC was considerably higher than the MIC (chlorhexidine, 6-fold greater; cetylpyridinium chloride, 20-fold greater). Cystic fibrosis outbreak strains (Burkholderia multivorans Glasgow strain and Burkholderia cenocepacia ET12) possessed elevated chlorhexidine resistance, and Bcc bacteria were also shown to remain viable in current commercial biocide formulations. Conclusions Bcc bacteria are resistant to a wide range of biocides and further representatives of this group should be included as reference strains in the development of new anti-infectives and commercial formulations. PMID:19153076

  8. Fluoroquinolone-resistant mutants of Burkholderia cepacia.

    PubMed

    Pope, C F; Gillespie, S H; Pratten, J R; McHugh, T D

    2008-03-01

    Fluoroquinolone-resistant Burkholderia cepacia mutants were selected on ciprofloxacin. The rate of mutation in gyrA was estimated to be 9.6 x 10(-11) mutations per division. Mutations in gyrA conferred 12- to 64-fold increases in MIC, and an additional parC mutation conferred a large increase in MIC (>256-fold). Growth rate, biofilm formation, and survival in water and during drying were not impaired in strains containing single gyrA mutations. Double mutants were impaired only in growth rate (0.85, relative to the susceptible parent).

  9. Modulation of Human Airway Barrier Functions during Burkholderia thailandensis and Francisella tularensis Infection Running Title: Airway Barrier Functions during Bacterial Infections.

    PubMed

    Blume, Cornelia; David, Jonathan; Bell, Rachel E; Laver, Jay R; Read, Robert C; Clark, Graeme C; Davies, Donna E; Swindle, Emily J

    2016-08-03

    The bronchial epithelium provides protection against pathogens from the inhaled environment through the formation of a highly-regulated barrier. In order to understand the pulmonary diseases melioidosis and tularemia caused by Burkholderia thailandensis and Fransicella tularensis, respectively, the barrier function of the human bronchial epithelium were analysed. Polarised 16HBE14o- or differentiated primary human bronchial epithelial cells (BECs) were exposed to increasing multiplicities of infection (MOI) of B. thailandensis or F. tularensis Live Vaccine Strain and barrier responses monitored over 24-72 h. Challenge of polarized BECs with either bacterial species caused an MOI- and time-dependent increase in ionic permeability, disruption of tight junctions, and bacterial passage from the apical to the basolateral compartment. B. thailandensis was found to be more invasive than F. tularensis. Both bacterial species induced an MOI-dependent increase in TNF-α release. An increase in ionic permeability and TNF-α release was induced by B. thailandensis in differentiated BECs. Pretreatment of polarised BECs with the corticosteroid fluticasone propionate reduced bacterial-dependent increases in ionic permeability, bacterial passage, and TNF-α release. TNF blocking antibody Enbrel(®) reduced bacterial passage only. BEC barrier properties are disrupted during respiratory bacterial infections and targeting with corticosteroids or anti-TNF compounds may represent a therapeutic option.

  10. Prospective observational study of the frequency and features of intra-abdominal abscesses in patients with melioidosis in northeast Thailand.

    PubMed

    Maude, Rapeephan R; Vatcharapreechasakul, Teerapon; Ariyaprasert, Pitchayanant; Maude, Richard J; Hongsuwan, Maliwan; Yuentrakul, Prayoon; Limmathurotsakul, Direk; Koh, Gavin C K W; Chaowagul, Wipada; Day, Nicholas P J; Peacock, Sharon J

    2012-10-01

    Retrospective case series from Thailand have reported the presence of intra-abdominal abscesses in around half of patients with melioidosis, a much higher rate than our clinical experience would suggest. We performed a prospective, observational study of 230 adult patients with culture-confirmed melioidosis in which all patients underwent abdominal ultrasound. One or more abscesses were detected in the liver and/or spleen in 77 (33%) cases. These were often multiple (70%, 31/44 in hepatic abscesses and 88%, 50/57 in splenic abscesses) and clinically silent (27% of cases with abscesses presenting with abdominal pain). The mortality rate at 4 weeks post-discharge was lower in patients who were abscess-positive vs abscess-negative (10%, 8/77 vs 20%, 31/153).

  11. Clonally related Burkholderia contaminans among ventilated patients without cystic fibrosis.

    PubMed

    Peterson, Amy E; Chitnis, Amit S; Xiang, Nan; Scaletta, Joseph M; Geist, Robert; Schwartz, Jennifer; Dement, Jamie; Lawlor, Elizabeth; Lipuma, John J; O'Connell, Heather; Noble-Wang, Judith; Kallen, Alexander J; Hunt, D Charles

    2013-12-01

    We investigated a cluster of 10 Burkholderia cepacia complex-positive cultures among ventilated patients and those with a tracheostomy in an acute care hospital. Isolates from 5 patients had outbreak-strain-related Burkholderia contaminans. Isolates of B. cepacia complex unrelated to the outbreak strain were cultured from a sink drain. The investigation identified practices that might have led to contamination of patient respiratory care supplies with tap water, which might have contributed to the cluster.

  12. SNaPBceBcon: a Practical Tool for Identification and Genotyping of Burkholderia cepacia and Burkholderia contaminans.

    PubMed

    Araujo, Ricardo; Caramalho, Rita; Coutinho, Carla; Sá-Correia, Isabel

    2016-02-01

    We propose an optimized protocol for an extensive population analysis of Burkholderia cepacia and Burkholderia contaminans. Seven new polymorphisms were added to the recently proposed SNaPBcen assay, and a total of 18 markers ensured the clear identification and distinction of B. cepacia and B. contaminans isolates and high genotypic discrimination (Simpson index of 0.94) compared to those for multilocus sequence typing.

  13. SNaPBceBcon: a Practical Tool for Identification and Genotyping of Burkholderia cepacia and Burkholderia contaminans

    PubMed Central

    Caramalho, Rita; Coutinho, Carla; Sá-Correia, Isabel

    2015-01-01

    We propose an optimized protocol for an extensive population analysis of Burkholderia cepacia and Burkholderia contaminans. Seven new polymorphisms were added to the recently proposed SNaPBcen assay, and a total of 18 markers ensured the clear identification and distinction of B. cepacia and B. contaminans isolates and high genotypic discrimination (Simpson index of 0.94) compared to those for multilocus sequence typing. PMID:26659211

  14. 42 CFR 73.9 - Responsible Official.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., or e-mail: Bacillus anthracis, Botulinum neurotoxins, Botulinum neurotoxin producing species of Clostridium, Burkholderia mallei, Burkholderia pseudomallei Francisella tularensis, Ebola viruses, ,...

  15. 42 CFR 73.9 - Responsible Official.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., or e-mail: Bacillus anthracis, Botulinum neurotoxins, Botulinum neurotoxin producing species of Clostridium, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Ebola viruses,...

  16. Burkholderia jirisanensis sp. nov. isolated from forest soil.

    PubMed

    Kim, Seil; Gong, Gyeongtaek; Woo, Han Min; Kim, Yunje; Um, Youngsoon

    2015-12-23

    A Gram-negative, catalase-positive, mesophilic obligate aerobic bacterium designated as JRM2-1T was isolated from forest soil of Jirisan Mountain, Republic of Korea and its taxonomic position was investigated based on the polyphasic taxonomy. The cells of strain JRM2-1T were optimally grown in the range of pH 5.0-7.0 at 25°C. The strain JRM2-1T was susceptible to chloramphenicol, gentamicin, kanamycin, nalidixic acid, rifampicin, streptomycin, and tetracycline. On the basis of 16S rRNA gene sequence similarity, the closest neighbor of strain JRM2-1T was Burkholderia terrae KMY02T (97.2%) and DNA-DNA hybridization value between JRM2-1T and Burkholderia terrae KCTC 12388T was 14.4%. On the basis of the phylogenetic analysis, strain JRM2-1T is clearly distinguished from other related Burkholderia species and is clustered with plant-associated Burkholderia species. The major cellular fatty acids were C16:0, cyclo-C17:0 and cyclo-C19:0 ω8c. The polar lipids profile of strain JRM2-1T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylenthanolamine, several unidentified amino lipids and unidentified amino-phospholipid. Isoprenoid quinone of strain JRM2-1T was Q-8. The G+C content of strain JRM2-1T was 63.7 mol%. Low DNA-DNA hybridization value indicated that JRM2-1T does not belong to Burkholderia terrae KCTC 12388T.On the basis of polyphasic taxonomical investigation, strain JRM2-1T is considered to represent a novel species in the genus Burkholderia for which the name Burkholderia jirisanensis sp. nov. is proposed. The type strain is JRM2-1T (=AIM 0373T = KCTC 42072T =JCM 19985T).

  17. Draft Genome Sequences of Burkholderia contaminans FFI-28, a Strain Isolated from a Contaminated Pharmaceutical Solution

    PubMed Central

    Haim, Maria Sol; Mollerach, Marta; Van Domselaar, Gary; Teves, Sergio A.; Degrossi, José

    2016-01-01

    Burkholderia contaminans is a species of the Burkholderia cepacia complex, a group of bacteria that can grow in pharmaceutical products and are capable of infecting the immunocompromised and people with cystic fibrosis. Here, we report draft genome sequences for Burkholderia contaminans FFI-28, a strain isolated from a contaminated pharmaceutical solution. PMID:27789640

  18. Draft Genome Sequences of Burkholderia contaminans FFI-28, a Strain Isolated from a Contaminated Pharmaceutical Solution.

    PubMed

    Haim, Maria Sol; Mollerach, Marta; Van Domselaar, Gary; Teves, Sergio A; Degrossi, José; Cardona, Silvia T

    2016-10-27

    Burkholderia contaminans is a species of the Burkholderia cepacia complex, a group of bacteria that can grow in pharmaceutical products and are capable of infecting the immunocompromised and people with cystic fibrosis. Here, we report draft genome sequences for Burkholderia contaminans FFI-28, a strain isolated from a contaminated pharmaceutical solution.

  19. Non-Caseating Granulomatous Infective Spondylitis: Melioidotic Spondylitis

    PubMed Central

    Karthik, Rajiv; Jeyaraj, Veena; Amritanand, Rohit; Krishnan, Venkatesh; David, Kenny Samuel; Sundararaj, Gabriel David

    2016-01-01

    Study Design Retrospective clinical analysis. Purpose To delineate the clinical presentation of melioidosis in the spine and to create awareness among healthcare professionals, particularly spine surgeons, regarding the diagnosis and treatment of melioidotic spondylitis. Overview of Literature Melioidosis is an emerging disease, particularly in developing countries, associated with a high mortality rate. Its causative pathogen, Burkholderia pseudomallei, has been labeled as a bio-terrorism agent. Methods We performed a retrospective analysis of patients who were culture positive for B. pseudomallei. Assessment of patients was performed using clinical, radiological, and blood parameters. Clinical measures included pain, neurological deficit, and return to work. Radiological measures included plain radiography of the spine and magnetic resonance imaging. Blood tests included erythrocyte sedimentation rate and C-reactive protein levels. Results Four patients having melioidosis with spondylitis were evaluated. All of them had diabetes mellitus; three had multiple abscesses which required incision and drainage. Their clinical spectrum was similar to that of tuberculous spondylitis; all had back pain and radiology revealed infective spondylodiscitis with prevertebral and paravertebral collections with psoas abscess. Three patients underwent ultrasound-guided drainage of the psoas abscess and one had aspiration of the subcutaneous abscess. Bacteriological cultures showed presence of B. pseudomallei, and histopathology showed non-caseating granulomatous inflammation. All patients were treated with intravenous Ceftazidime for 2 weeks, followed by oral bactrim double strength and Doxycycline for 20 weeks. All patients improved with treatment and were healed at follow up. Conclusions Melioidosis presents with a clinical spectrum similar to that of tuberculosis. A diagnosis of melioidotic spondylitis should be considered, particularly in patients with diabetes with

  20. Differentiation of Species Combined into the Burkholderia cepacia Complex and Related Taxa on the Basis of Their Fatty Acid Patterns

    PubMed Central

    Krejčí, Eva; Kroppenstedt, Reiner M.

    2006-01-01

    Using the established commercial system Sherlock (MIDI, Inc.), cellular fatty acid methyl ester analysis for differentiation among Burkholderia cepacia complex species was proven. The identification key based on the diagnostic fatty acids is able to discern phenotypically related Ralstonia pickettii and Pandoraea spp. and further distinguish Burkholderia pyrrocinia, Burkholderia ambifaria, and Burkholderia vietnamiensis. PMID:16517920

  1. Burkholderia cepacia Complex Vaccines: Where Do We Go from here?

    PubMed

    Pradenas, Gonzalo A; Ross, Brittany N; Torres, Alfredo G

    2016-04-15

    Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine.

  2. Burkholderia cepacia Complex Vaccines: Where Do We Go from here?

    PubMed Central

    Pradenas, Gonzalo A.; Ross, Brittany N.; Torres, Alfredo G.

    2016-01-01

    Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine. PMID:27092530

  3. Intracellular survival of Burkholderia cepacia complex in phagocytic cells.

    PubMed

    Valvano, Miguel A

    2015-09-01

    Burkholderia cepacia complex (Bcc) species are a group of Gram-negative opportunistic pathogens that infect the airways of cystic fibrosis patients, and occasionally they infect other immunocompromised patients. Bcc bacteria display high-level multidrug resistance and chronically persist in the infected host while eliciting robust inflammatory responses. Studies using macrophages, neutrophils, and dendritic cells, combined with advances in the genetic manipulation of these bacteria, have increased our understanding of the molecular mechanisms of virulence in these pathogens and the molecular details of cell-host responses triggering inflammation. This article discusses our current view of the intracellular survival of Burkholderia cenocepacia within macrophages.

  4. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... significant new use is any use other than research and development in the degradation of chemicals via... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new...

  5. Complete Genome Sequence of Burkholderia cepacia Strain LO6

    PubMed Central

    Belcaid, Mahdi; Kang, Yun; Tuanyok, Apichai

    2015-01-01

    Burkholderia cepacia strain LO6 is a betaproteobacterium that was isolated from a cystic fibrosis patient. Here we report the 6.4 Mb draft genome sequence assembled into 2 contigs. This genome sequence will aid the transcriptomic profiling of this bacterium and help us to better understand the mechanisms specific to pulmonary infections. PMID:26067955

  6. Complete Genome Sequence of Burkholderia cepacia Strain LO6.

    PubMed

    Belcaid, Mahdi; Kang, Yun; Tuanyok, Apichai; Hoang, Tung T

    2015-06-11

    Burkholderia cepacia strain LO6 is a betaproteobacterium that was isolated from a cystic fibrosis patient. Here we report the 6.4 Mb draft genome sequence assembled into 2 contigs. This genome sequence will aid the transcriptomic profiling of this bacterium and help us to better understand the mechanisms specific to pulmonary infections.

  7. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Burkholderia cepacia complex. 725.1075 Section 725.1075 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms §...

  8. Removal of Burkholderia cepacia biofilms with oxidants.

    PubMed

    Koenig, D W; Mishra, S K; Pierson, D L

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  9. Removal of Burkholderia cepacia biofilms with oxidants

    NASA Technical Reports Server (NTRS)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  10. Diversity analysis of Burkholderia cepacia complex in the water bodies of West Lake, Hangzhou, China.

    PubMed

    Fang, Yuan; Xie, Guan-Lin; Lou, Miao-Miao; Li, Bin; Muhammad, Ibrahim

    2011-04-01

    A survey of Burkholderia cepacia complex (Bcc) species was conducted in water bodies of West Lake in China. A total of 670 bacterial isolates were recovered on selective media. Out of them, 39.6% (265 isolates) were assigned to the following species: Burkholderia multivorans, Burkholderia cenocepacia recA lineage IIIA, IIIB, Burkholderia stabilis, Burkholderia vietnamiensis, and Burkholderia seminalis while B. cenocepacia is documented as a dominant Bcc species in water of West Lake. In addition, all Bcc isolates tested were PCR negative for the cblA and esmR transmissibility marker genes except B. cenocepacia IIIB A8 which was positive for esmR genelater. The present study raises great concerns on the role of West Lake as a "reservoir" for potential Bcc pathogenic strains.

  11. Quorum Quenching: Enzymatic Disruption of N-Acylhomoserine Lactone-Mediated Bacterial Communication in Burkholderia thailandensis

    DTIC Science & Technology

    2004-10-01

    Burkholderia species (2, 5, 17, 26, 27). In Burk- holderia cepacia , QS negatively regulates ornibactin biosynthe- sis and positively induces protease and N...Microbiol. 33:1267–1277. 2. Baldwin, A., P. A. Sokol, J. Parkhill, and E. Mahenthiralingam. 2004. The Burkholderia cepacia epidemic strain marker is...the members of the Burkholderia cepacia com- plex. Syst. Appl. Microbiol. 24:1–14. 18. Gray, K. M., J. P. Pearson, J. A. Downie, B. E. Boboye, and E

  12. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    PubMed Central

    Bragina, Anastasia; Cardinale, Massimiliano; Berg, Christian; Berg, Gabriele

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses – model plants for long-term associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves. PMID:24391630

  13. Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli

    PubMed Central

    2014-01-01

    Background The genus Burkholderia is widespread in diverse ecological niches, the majority of known species are soil bacteria that exhibit different types of non-pathogenic interactions with plants. Burkholderia species are versatile organisms that solubilize insoluble minerals through the production of organic acids, which increase the availability of nutrients for the plant. Therefore these bacteria are promising candidates for biotechnological applications. Results Burkholderia sp. (R 3.25 isolate) was isolated from agricultural soil in Ponta Grossa-PR-Brazil and identified through analysis of the 16S rDNA as a strain classified as Burkholderia gladioli. The expression of membrane-bound acid phosphatase (MBAcP) was strictly regulated with optimal expression at a concentration of phosphorus 5 mM. The apparent optimum pH for the hydrolysis of p-nitrophenylphosphate (PNPP) was 6.0. The hydrolysis of PNPP by the enzyme exhibited a hyperbolic relationship with increasing concentration of substrate and no inhibition by excess of substrate was observed. Kinetic data revealed that the hydrolysis of PNPP exhibited cooperative kinetics with n = 1.3, Vm = 113.5 U/mg and K0.5 = 65 μM. The PNPPase activity was inhibited by vanadate, p-hydroxymercuribenzoate, arsenate and phosphate, however the activity was not inhibited by calcium, levamisole, sodium tartrate, EDTA, zinc, magnesium, cobalt, ouabain, oligomycin or pantoprazol. Conclusion The synthesis of membrane-bound non-specific acid phosphatase, strictly regulated by phosphate, and its properties suggest that this bacterium has a potential biotechnological application to solubilize phosphate in soils with low levels of this element, for specific crops. PMID:24713147

  14. Atypical presentation of chronic granulomatous disease with Burkholderia cepacia.

    PubMed

    Vining, Mac; Sharma, Nirupma; Guill, Margaret

    2014-08-06

    Chronic granulomatous disease (CGD) is a rare inherited disorder of neutrophil oxidative burst. In patients with CGD, phagocyte destruction of catalase-producing organisms is impaired, resulting in recurrent and potentially fatal infections. Burkholderia cepacia, a catalase-producing organism, is known to infect patients with dysfunctional immune systems. We report a case of a 3-year-old boy with this rare infection that unravelled the diagnosis of CGD.

  15. Evaluation of Burkholderia cepacia Complex Bacteria Pathogenicity Using Caenorhabditis elegans

    PubMed Central

    Tedesco, Pietro; Di Schiavi, Elia; Esposito, Fortunato Palma; de Pascale, Donatella

    2017-01-01

    This protocol describes two biological assays to evaluate pathogenicity of Burkholderia cepacia complex (Bcc) strains against the nematode Caenorhabditis elegans. Specifically, these two assays allow one to identify if the under-investigated Bcc strains are able to kill the nematodes by intestinal colonization (slow killing assay, SKA) or by toxins production (fast killing assay, FKA). The principal differences between the two assays rely on the different killing kinetics for worms. PMID:28255573

  16. Is Hydrogen Cyanide a Marker of Burkholderia cepacia Complex?

    PubMed Central

    Sims, Hayley; Alcock, Alice; Jones, Andrew M.; Bright-Thomas, Rowland J.; Smith, David; Španĕl, Patrik; Webb, A. Kevin; Lenney, Warren

    2013-01-01

    Biofilm cultures of Burkholderia cepacia complex (BCC) infection have been found to generate the nonvolatile cyanide ion. We investigated if gaseous hydrogen cyanide (HCN) was a marker of BCC infection. Selected ion flow tube mass spectrometry analysis showed HCN was not elevated in the headspace of planktonic or biofilm cultures or in the exhaled breath of adult cystic fibrosis patients with chronic BCC infection. HCN is therefore not an in vitro or in vivo marker of BCC. PMID:23966502

  17. Evaluation of Burkholderia cepacia Complex Bacteria Pathogenicity Using Caenorhabditis elegans.

    PubMed

    Tedesco, Pietro; Di Schiavi, Elia; Esposito, Fortunato Palma; de Pascale, Donatella

    2016-10-20

    This protocol describes two biological assays to evaluate pathogenicity of Burkholderia cepacia complex (Bcc) strains against the nematode Caenorhabditis elegans. Specifically, these two assays allow one to identify if the under-investigated Bcc strains are able to kill the nematodes by intestinal colonization (slow killing assay, SKA) or by toxins production (fast killing assay, FKA). The principal differences between the two assays rely on the different killing kinetics for worms.

  18. Atypical presentation of chronic granulomatous disease with Burkholderia cepacia

    PubMed Central

    Vining, Mac; Sharma, Nirupma; Guill, Margaret

    2014-01-01

    Chronic granulomatous disease (CGD) is a rare inherited disorder of neutrophil oxidative burst. In patients with CGD, phagocyte destruction of catalase-producing organisms is impaired, resulting in recurrent and potentially fatal infections. Burkholderia cepacia, a catalase-producing organism, is known to infect patients with dysfunctional immune systems. We report a case of a 3-year-old boy with this rare infection that unravelled the diagnosis of CGD. PMID:25103315

  19. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum

    PubMed Central

    Elliott, Geoffrey N.; Chen, Wen-Ming; Bontemps, Cyril; Chou, Jui-Hsing; Young, J. Peter W.; Sprent, Janet I.; James, Euan K.

    2007-01-01

    Background and Aims Species of the genus Burkholderia, from the Betaproteobacteria, have been isolated from legume nodules, but so far they have only been shown to form symbioses with species of Mimosa, sub-family Mimosoideae. This work investigates whether Burkholderia tuberum strains STM678 (isolated from Aspalathus carnosa) and DUS833 (from Aspalathus callosa) can nodulate species of the South African endemic papilionoid genera Cyclopia (tribe Podalyrieae) and Aspalathus (Crotalarieae) as well as the promiscuous legume Macroptilium atropurpureum (Phaseoleae). Method Bacterial strains and the phylogeny of their symbiosis-related (nod) genes were examined via 16S rRNA gene sequencing. Seedlings were grown in liquid culture and inoculated with one of the two strains of B. tuberum or with Sinorhizobium strain NGR 234 (from Lablab purpureus), Mesorhizobium strain DUS835 (from Aspalathus linearis) or Methylobacterium nodulans (from Crotalaria podocarpa). Some nodules, inoculated with green fluorescence protein (GFP)-tagged strains, were examined by light and electron microscopy coupled with immunogold labelling with a Burkholderia-specific antibody. The presence of active nitrogenase was checked by immunolabelling of nitrogenase and by the acetylene reduction assay. B. tuberum STM678 was also tested on a wide range of legumes from all three sub-families. Key Results Nodules were not formed on any of the Aspalathus spp. Only B. tuberum nodulated Cyclopia falcata, C. galioides, C. genistoides, C. intermedia and C. pubescens. It also effectively nodulated M. atropurpureum but no other species tested. GFP-expressing inoculant strains were located inside infected cells of C. genistoides, and bacteroids in both Cyclopia spp. and M. atropurpureum were immunogold-labelled with antibodies against Burkholderia and nitrogenase. Nitrogenase activity was also shown using the acetylene reduction assay. This is the first demonstration that a β-rhizobial strain can effectively

  20. Approaches to measure the fitness of Burkholderia cepacia complex isolates.

    PubMed

    Pope, C F; Gillespie, S H; Moore, J E; McHugh, T D

    2010-06-01

    Members of the Burkholderia cepacia complex (Bcc) are highly resistant to many antibacterial agents and infection can be difficult to eradicate. A coordinated approach has been used to measure the fitness of Bcc bacteria isolated from cystic fibrosis (CF) patients with chronic Bcc infection using methods relevant to Bcc growth and survival conditions. Significant differences in growth rate were observed among isolates; slower growth rates were associated with isolates that exhibited higher MICs and were resistant to more antimicrobial classes. The nucleotide sequences of the quinolone resistance-determining region of gyrA in the isolates were determined and the ciprofloxacin MIC correlated with amino acid substitutions at codons 83 and 87. Biologically relevant methods for fitness measurement were developed and could be applied to investigate larger numbers of clinical isolates. These methods were determination of planktonic growth rate, biofilm formation, survival in water and survival during drying. We also describe a method to determine mutation rate in Bcc bacteria. Unlike in Pseudomonas aeruginosa where hypermutability has been detected in strains isolated from CF patients, we were unable to demonstrate hypermutability in this panel of Burkholderia cenocepacia and Burkholderia multivorans isolates.

  1. Characterization of Clinically Attenuated Burkholderia mallei by Whole-Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists

    DTIC Science & Technology

    2008-04-01

    genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology...Characterization of Clinically-Attenuated Burkholderia mallei by Whole Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists...of Medicine, Washington, D. C., United States of America Abstract Background: Burkholderia mallei is an understudied biothreat agent responsible for

  2. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico

    PubMed Central

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M. Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A.

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2. PMID:27125479

  3. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    PubMed

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-08

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.

  4. Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards.

    PubMed

    Khan, Asifullah; Asif, Huma; Studholme, David J; Khan, Ishtiaq A; Azim, M Kamran

    2013-11-01

    We characterized the genome of the antibiotic resistant, caseinolytic and non-hemolytic Burkholderia sp. strain TJI49, isolated from mango trees (Mangifera indica L.) with dieback disease. This isolate produced severe disease symptoms on the indicator plants. Next generation DNA sequencing and short-read assembly generated the 60X deep 7,631,934 nucleotide draft genome of Burkholderia sp. TJI49 which comprised three chromosomes and at least one mega plasmid. Genome annotation studies revealed a total 8,992 genes, out of which 8,940 were protein coding genes. Comparative genomics and phylogenetics identified Burkholderia sp. TJI49 as a distinct species of Burkholderia cepacia complex (BCC), closely related to B. multivorans ATCC17616. Genome-wide sequence alignment of this isolate with replicons of BCC members showed conservation of core function genes but considerable variations in accessory genes. Subsystem-based gene annotation identified the active presence of wide spread colonization island and type VI secretion system in Burkholderia sp. TJI49. Sequence comparisons revealed (a) 28 novel ORFs that have no database matches and (b) 23 ORFs with orthologues in species other than Burkholderia, indicating horizontal gene transfer events. Fold recognition of novel ORFs identified genes encoding pertactin autotransporter-like proteins (a constituent of type V secretion system) and Hap adhesion-like proteins (involved in cell-cell adhesion) in the genome of Burkholderia sp. TJI49. The genomic characterization of this isolate provided additional information related to the 'pan-genome' of Burkholderia species.

  5. Complete Genome Sequences for Three Chromosomes of the Burkholderia stabilis Type Strain (ATCC BAA-67).

    PubMed

    Bugrysheva, Julia V; Cherney, Blake; Sue, David; Conley, Andrew B; Rowe, Lori A; Knipe, Kristen M; Frace, Michael A; Loparev, Vladimir N; Avila, Julie R; Anderson, Kevin; Hodge, David R; Pillai, Segaran P; Weigel, Linda M

    2016-11-17

    We report here the complete annotated genome sequence of the Burkholderia stabilis type strain ATCC BAA-67. There were three circular chromosomes with a combined size of 8,527,947 bp and G+C composition of 66.4%. These characteristics closely resemble the genomes of other sequenced members of the Burkholderia cepacia complex.

  6. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  7. Octanoyl-Homoserine Lactone Is the Cognate Signal for Burkholderia mallei BmaR1-BmaI1 Quorum Sensing

    DTIC Science & Technology

    2007-07-01

    Burkholderia species, the Burkholderia cepacia complex. In Burkholderia cenocepacia, there are two luxI-luxR homolog pairs. The primary product of...transcription factor. Mol. Microbiol. 59:602–609. 22. Lewenza, S., B. Conway, E. P. Greenberg, and P. A. Sokol. 1999. Quorum sensing in Burkholderia cepacia ...acyl-L-homoserine lactone production by CepR in Burkholderia cepacia . J. Bacteriol. 183:2212–2218. 24. Lumjiaktase, P., S. P. Diggle, S. Loprasert, S

  8. A case of native valve endocarditis caused by Burkholderia cepacia without predisposing factors

    PubMed Central

    2011-01-01

    Background Infective endocarditis is rarely caused by Burkholderia cepacia. This infection is known to occur particularly in immunocompromised hosts, intravenous heroin users, and in patients with prosthetic valve replacement. Most patients with Burkholderia cepacia endocarditis usually need surgical treatment in addition to antimicrobial treatment. Case Presentation Here, we report the case of a patient who developed Burkholderia cepacia-induced native valve endocarditis with consequent cerebral involvement without any predisposing factors; she was successfully treated by antimicrobial agents only. Conclusion In this report, we also present literature review of relevant cases. PMID:21548997

  9. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii.

    PubMed

    Jianlong, Wang; Xiangchun, Quan; Liping, Han; Yi, Qian; Hegemann, Werner

    2002-05-01

    A quinoline-biodegrading microorganism was isolated from activated sludge of coke-oven wastewater treatment plant using quinoline as sole carbon and nitrogen source. It is a gram negative, rod-shaped and aerobic strain, which was identified as Burkholderia pickettii. The biodegradation of quinoline was carried out with this isolated strain. Analysis by high performance liquid chromatography and gas chromatography/mass spectrum (GC/MS) revealed that 2-hydroxyquinoline (2-OH-Q) was the first intermediate in the course of quinoline biodegradation. A novel immobilization carrier, that is, polyvinyl alcohol (PVA)-gauze hybrid carrier, was developed. The isolated strain was immobilized by two different immobilizing techniques and used for the quinolinerdegradation. It was found that biodegradation rate of quinoline by the microorganisms immobilized on PVA-gauze hybrid carrier was faster than that by the microorganisms immobilized in PVA gel beads. Kinetics of quinoline biodegradation by cells of Burkholderia pickettii immobilized on PVA-gauze hybrid carrier was investigated. The results demonstrate that quinoline degradation could be described by zero-order reaction rate equation when the initial quinoline concentration was in the range of 50-500 mg l(-1).

  10. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    PubMed

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry.

  11. Dissecting novel virulent determinants in the Burkholderia cepacia complex

    PubMed Central

    Tegos, George P.; Haynes, Mark K.; Schweizer, Herbert P.

    2012-01-01

    Prevention and control of infectious diseases remains a major public health challenge and a number of highly virulent pathogens are emerging both in and beyond the hospital setting. Despite beneficial aspects such as use in biocontrol and bioremediation exhibited by members of the Burkholderia cepacia complex (Bcc) some members of this group have recently gained attention as significant bacterial pathogens due to their high levels of intrinsic antibiotic resistance, transmissibility in nosocomial settings, persistence in the presence of antimicrobials and intracellular survival capabilities. The Bcc are opportunistic pathogens and their arsenal of virulence factors includes proteases, lipases and other secreted exoproducts, including secretion system-associated effectors. Deciphering the function of virulence factors and assessment of novel therapeutic strategies has been facilitated by use of diverse non-vertebrate hosts (the fly Drosophila melanogaster, the microscopic nematode Caenorhabditis elegans, the zebrafish and the greater Galleria mellonella wax moth caterpillar larvae). Researchers are now employing sophisticated approaches to dissect the virulence determinants of Bcc with the ultimate goal being the development of novel anti-infective countermeasures. This editorial will highlight selected recent research endeavors aimed at dissecting adaptive responses and the virulence factor portfolio of Burkholderia species. PMID:22546904

  12. 77 FR 66850 - Public Workshop on Burkholderia: Exploring Current Issues and Identifying Regulatory Science Gaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... HUMAN SERVICES Food and Drug Administration Public Workshop on Burkholderia: Exploring Current Issues and Identifying Regulatory Science Gaps AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. SUMMARY: The Food and Drug Administration (FDA) is announcing the following...

  13. Polyclonal outbreak of bacteremia caused by Burkholderia cepacia complex and the presumptive role of ultrasound gel.

    PubMed

    Nannini, Esteban C; Ponessa, Adriana; Muratori, Rosa; Marchiaro, Patricia; Ballerini, Viviana; Flynn, Luis; Limansky, Adriana S

    2015-01-01

    A nosocomial polyclonal outbreak associated to bacteremia caused by different Burkholderia cepacia complex (BCC) species and clones is reported. Molecular characterization identified Burkholderia stabilis, Burkholderia contaminans, and Burkholderia ambifaria among BCC isolates obtained from patients in neonatal and adult intensive care units. BCC was also isolated from an intrinsically contaminated ultrasound gel, which constituted the presumptive BCC source. Prior BCC outbreak related to contaminated ultrasound gels have been described in the setting of transrectal prostate biopsy. Outbreak caused strains and/or clones of BCC have been reported, probably because BCC are commonly found in the natural environment; most BCC species are biofilm producers, and different species may contaminate an environmental source. The finding of multiple species or clones during the analysis of nosocomial BCC cases might not be enough to reject an outbreak from a common source.

  14. AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1

    EPA Science Inventory

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

  15. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    EPA Science Inventory

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  16. Agricultural Use of Burkholderia (Pseudomonas) Cepacia: A Threat to Human Health?

    DTIC Science & Technology

    1998-06-01

    Benson D. Pyrrolnitrin and phenazine production by Pseudomonas cepacia strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol...INTERNET DOCUMENT INFORMATION FORM A. Report Title: Agricultural Use of Burkholderia ( Pseudomonas ) cepacia: A Threat to Human Health? B. DATE...questions, contact the above OCA Representative for resolution. rIfllC QUALITY INSPECTED 1 O-* Synopses Agricultural Use of Burkholderia ( Pseudomonas

  17. Draft Genome Sequence of Burkholderia cordobensis Type Strain LMG 27620, Isolated from Agricultural Soils in Argentina

    PubMed Central

    Draghi, Walter Omar; Mancini Villagra, Ulises M.; Wall, Luis Gabriel

    2015-01-01

    Bacteria of the genus Burkholderia are commonly found in diverse ecological niches in nature. We report here the draft genome sequence of Burkholderia cordobensis type strain LMG 27620, isolated from agricultural soil in Córdoba, Argentina. This strain harbors several genes involved in chitin utilization and phenol degradation, which make it an interesting candidate for biocontrol purposes and xenobiotic degradation in polluted environments. PMID:26494680

  18. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    PubMed

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)).

  19. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    DTIC Science & Technology

    2015-03-04

    RESEARCH ARTICLE Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms Vesna Memišević1, Nela...were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we...host-cell environment for the successful establishment of host infections and intracellular spread. PLOS Computational Biology | DOI:10.1371

  20. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    SciTech Connect

    Daligault, H. E.; Johnson, Shannon L.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Lo, C. -C.; Munk, C.; Wolcott, M. J.; Palacios, G. F.; Redden, C. L.; Rosenzweig, C. N.; Scholz, M. B.; Chain, P. S.

    2016-01-07

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Though glanders have been eradicated from many parts of the world, the threat ofB. malleibeing used as a weapon is very real. We, then, present draft genome assemblies of 8Burkholderia malleistrains that were isolated in Turkey.

  1. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  2. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    PubMed

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  3. Molecular mechanisms underlying the close association between soil Burkholderia and fungi

    PubMed Central

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  4. Expression of Caenorhabditis elegans antimicrobial peptide NLP-31 in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Lim, Mei-Perng; Nathan, Sheila

    2014-09-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

  5. Culturing and Characterization of Gut Symbiont Burkholderia spp. from the Southern Chinch Bug, Blissus insularis (Hemiptera: Blissidae)

    PubMed Central

    Buss, Eileen A.; Boucias, Drion G.

    2016-01-01

    ABSTRACT The phloem-feeding Southern chinch bug, Blissus insularis, harbors a high density of the exocellular bacterial symbiont Burkholderia in the lumen of specialized midgut crypts. Here we developed an organ culture method that initially involved incubating the B. insularis crypts in osmotically balanced insect cell culture medium. This approach enabled the crypt-inhabiting Burkholderia spp. to make a transition to an in vitro environment and to be subsequently cultured in standard bacteriological media. Examinations using ribotyping and BOX-PCR fingerprinting techniques demonstrated that most in vitro-produced bacterial cultures were identical to their crypt-inhabiting Burkholderia counterparts. Genomic and physiological analyses of gut-symbiotic Burkholderia spp. that were isolated individually from two separate B. insularis laboratory colonies revealed that the majority of individual insects harbored a single Burkholderia ribotype in their midgut crypts, resulting in a diverse Burkholderia community within each colony. The diversity was also exhibited by the phenotypic and genotypic characteristics of these Burkholderia cultures. Access to cultures of crypt-inhabiting bacteria provides an opportunity to investigate the interaction between symbiotic Burkholderia spp. and the B. insularis host. Furthermore, the culturing method provides an alternative strategy for establishing in vitro cultures of other fastidious insect-associated bacterial symbionts. IMPORTANCE An organ culture method was developed to establish in vitro cultures of a fastidious Burkholderia symbiont associated with the midgut crypts of the Southern chinch bug, Blissus insularis. The identities of the resulting cultures were confirmed using the genomic and physiological features of Burkholderia cultures isolated from B. insularis crypts, showing that host insects maintained the diversity of Burkholderia spp. over multiple generations. The availability of characterized gut

  6. A Structural Biology Approach Enables the Development of Antimicrobials Targeting Bacterial Immunophilins

    PubMed Central

    Fox, David; Jenner, Dominic; Juli, Christina; Pierce, Phillip G.; Abendroth, Jan; Muruthi, Muigai; Safford, Kris; Anderson, Vanessa; Atkins, Kateri; Barnes, Steve R.; Moen, Spencer O.; Raymond, Amy C.; Stacy, Robin; Myler, Peter J.; Staker, Bart L.; Harmer, Nicholas J.; Norville, Isobel H.; Holzgrabe, Ulrike; Sarkar-Tyson, Mitali; Edwards, Thomas E.; Lorimer, Donald D.

    2014-01-01

    Macrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold. This scaffold possesses inhibitory potency for BpML1 without the immunosuppressive components of related macrocyclic agents. Biophysical characterization of a compound series with this scaffold allowed binding site specificity in solution and potency determinations for rank ordering the set. The best compounds in this series possessed a low-micromolar affinity for BpML1, bound at the site of enzymatic activity, and inhibited a panel of homologous Mip proteins from other pathogenic bacteria, without demonstrating toxicity in human macrophages. Importantly, the in vitro activity of BpML1 was reduced by these compounds, leading to decreased macrophage infectivity and intracellular growth of Burkholderia pseudomallei. These compounds offer the potential for activity against a new class of antimicrobial targets and present the utility of a structure-based approach for novel antimicrobial drug discovery. PMID:24366729

  7. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections.

    PubMed

    Semler, Diana D; Goudie, Amanda D; Finlay, Warren H; Dennis, Jonathan J

    2014-07-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria.

  8. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review.

    PubMed

    Sousa, Sílvia A; Feliciano, Joana R; Pita, Tiago; Guerreiro, Soraia I; Leitão, Jorge H

    2017-01-19

    Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.

  9. Pseudocontamination of blood components with Burkholderia cepacia during quality controls.

    PubMed

    Ebner, W; Meyer, E; Schulz-Huotari, C; Scholz, R; Zilow, G; Daschner, F D

    2005-06-01

    We report on a pseudooutbreak of Burkholderia cepacia because of the use of a contaminated disinfectant during quality controls in a university blood bank. No septic reactions associated with transfusions had been reported in patients over the last 6 months. Analysis of the individual quality control procedures showed that a disinfectant based on a quaternary ammonium compound (QAC) had been used in order to disinfect the rubber stopper of the blood culture bottle. B. cepacia was found in a sample taken from this disinfectant, which was prepared with concentrate and tap water according to the manufacturer's instructions. The four isolates (one in disinfectant and three in blood components) were found to be identical in their biochemical reactions and resistance patterns. QAC-based disinfectants are not efficacious against a part of the spectrum of gram-negatives and are therefore inadequate. After introduction of an alcohol-based preparation, no more cases of B. cepacia contamination have been identified.

  10. Isolation of Burkholderia cepacia complex genomovars from waters.

    PubMed

    Vermis, Karen; Brachkova, Mariya; Vandamme, Peter; Nelis, Hans

    2003-11-01

    The aim of this study was to develop a selective enrichment broth as an aid for the isolation of Burkholderia cepacia complex (Bcc) bacteria from water. To allow growth of all nine genomovars, mixtures of two carbon sources had to be used, i.e. L-arabinose/D-cellobiose or L-arabinose/L-threonine. Selectivity was provided by polymyxin B and 9-chloro-9-(4-diethylaminophenyl)-10-phenylacridan (C-390). Following enrichment, Bcc bacteria were isolated on a diagnostic O/F agar supplemented with gentamicin. A preliminary bio-diversity study on 28 surface waters yielded five different genomovars, i.e. B. cepacia (genomovar I), B. multivorans, B. cenocepacia, B. vietnamiensis and B. anthina. Drinking waters did not contain Bcc bacteria. However, the genomovar pattern from a given sample varied with the enrichment broth used.

  11. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review

    PubMed Central

    Sousa, Sílvia A.; Feliciano, Joana R.; Pita, Tiago; Guerreiro, Soraia I.; Leitão, Jorge H.

    2017-01-01

    Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung. PMID:28106859

  12. Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Goudie, Amanda D.; Finlay, Warren H.

    2014-01-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  13. Strains from the Burkholderia cepacia Complex: Relationship to Opportunistic Pathogens

    PubMed Central

    Vandamme, Peter; Mahenthiralingam, Eshwar

    2003-01-01

    Burkholderia cepacia-like organisms attract much interest from the agricultural industry as natural promoters of plant growth and biological control agents, and for bioremediation. Some of these organisms, however, cause life-threatening infections, particularly in cystic fibrosis patients for whom this multi-resistant bacterium is a major pathogen. The biodiversity of this group of bacteria is severely underestimated, and current identification procedures are inadequate. Presumed B. cepacia isolates belong to at least nine distinct genomic species (genomovars), referred to collectively as the B. cepacia complex. All these B. cepacia complex genomovars have been isolated from clinical and environmental sources. There are no phenotypic, genomic, or taxonomic grounds to differentiate environmental and clinical strains of the B. cepacia complex or to use the source of isolation to assess the safety of biopesticides containing members of the B. cepacia complex. PMID:19265996

  14. Use of the Common Marmoset to Study Burkholderia mallei Infection

    PubMed Central

    Harvey, Stephen B.; Mead, Daniel G.; Shaffer, Teresa L.; Estes, D. Mark; Michel, Frank; Quinn, Frederick D.; Hogan, Robert J.; Lafontaine, Eric R.

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 104 to 2.5 X 105 bacteria developed acute lethal infection within 3–4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 103 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 103 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei. PMID

  15. Host Genes and Resistance/Sensitivity to Military Priority Pathogens

    DTIC Science & Technology

    2012-06-01

    Miller, M.A., del Barrio, L., and Re F. 2011. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection...dependent Pyroptosis and IL-18 Protect against Burkholderia pseudomallei Lung Infection while IL-1b Is Deleterious Ivonne Ceballos-Olvera, Manoranjan Sahoo...Inflammasome-dependent Pyroptosis and IL-18 Protect against Burkholderia pseudomallei Lung Infection while IL-1b Is Deleterious. PLoS Pathog 7(12): e1002452

  16. Pathogens Penetrating the Central Nervous System: Infection Pathways and the Cellular and Molecular Mechanisms of Invasion

    PubMed Central

    Dando, Samantha J.; Mackay-Sim, Alan; Norton, Robert; Currie, Bart J.; St. John, James A.; Ekberg, Jenny A. K.; Batzloff, Michael

    2014-01-01

    SUMMARY The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis. PMID:25278572

  17. Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms

    PubMed Central

    Kennedy, Sarah; Beaudoin, Trevor; Yau, Yvonne C. W.; Caraher, Emma; Zlosnik, James E. A.; Speert, David P.; LiPuma, John J.; Tullis, Elizabeth

    2015-01-01

    Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF. PMID:26503664

  18. Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms.

    PubMed

    Kennedy, Sarah; Beaudoin, Trevor; Yau, Yvonne C W; Caraher, Emma; Zlosnik, James E A; Speert, David P; LiPuma, John J; Tullis, Elizabeth; Waters, Valerie

    2015-10-26

    Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.

  19. Complete Genome Sequence of a Burkholderia mallei Isolate Originating from a Glanderous Horse from the Kingdom of Bahrain

    PubMed Central

    Thomas, Prasad; Melzer, Falk

    2016-01-01

    Burkholderia mallei is a zoonotic agent causing glanders, a notifiable disease in equines. During the past decades glanders emerged, and the Kingdom of Bahrain reported outbreaks to the World Organization of Animal Health in 2010 and 2011. This paper presents the complete genome sequence of the Burkholderia mallei strain 11RR2811 Bahrain1. PMID:27908988

  20. Draft Genome Sequence of Burkholderia sp. MR1, a Methylarsenate-Reducing Bacterial Isolate from Florida Golf Course Soil

    PubMed Central

    Pawitwar, Shashank S.; Utturkar, Sagar M.; Brown, Steven D.; Yoshinaga, Masafumi

    2015-01-01

    To elucidate the environmental organoarsenical biocycle, we isolated a soil organism, Burkholderia sp. MR1, which reduces relatively nontoxic pentavalent methylarsenate to the more toxic trivalent methylarsenite, with the goal of identifying the gene for the reductase. Here, we report the draft genome sequence of Burkholderia sp. MR1. PMID:26044439

  1. Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system.

    PubMed

    Lu, Peng; Zheng, Liu-Qiang; Sun, Jin-Jin; Liu, Hong-Ming; Li, Shun-Peng; Hong, Qing; Li, Wen-Jun

    2012-06-01

    The taxonomic status of a methyl-parathion-degrading strain, OP-1(T), isolated from a wastewater-treatment system in China, was determined using a polyphasic approach. The rod-shaped cells were Gram-staining-negative, non-spore-forming and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain belonged to the genus Burkholderia, as it appeared closely related to Burkholderia glathei ATCC 29195(T) (97.4 % sequence similarity), Burkholderia sordidicola KCTC 12081(T) (96.5 %) and Burkholderia bryophila LMG 23644(T) (96.3 %). The major cellular fatty acids, C(16:0), C(17:0) cyclo and C(18:1)ω7c, were also similar to those found in established members of the genus Burkholderia. The genomic DNA G+C content of strain OP-1(T) was 59.4 mol%. The level of DNA-DNA relatedness between the novel strain and the closest recognized species, Burkholderia glathei ATCC 29195(T), was only 30 %. Based on the phenotypic, genotypic and phylogenetic evidence, strain OP-1(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia zhejiangensis sp. nov. is proposed. The type strain is OP-1(T) ( = CCTCC AB 2010354(T) = KCTC 23300(T)).

  2. Incidence of Burkholderia contaminans at a cystic fibrosis centre with an unusually high representation of Burkholderia cepacia during 15 years of epidemiological surveillance.

    PubMed

    Coutinho, Carla P; Barreto, Celeste; Pereira, Luísa; Lito, Luís; Melo Cristino, José; Sá-Correia, Isabel

    2015-08-01

    The Burkholderia cepacia complex (Bcc) is a heterogeneous group of bacteria comprising around 20 related species. These bacteria are important opportunistic pathogens, especially in cystic fibrosis (CF) patients, and are associated with a worse prognosis and decreased life expectancy. The taxonomic position of 20 Bcc isolates retrieved from CF patients receiving care at Hospital Santa Maria (HSM), in Lisbon, from 1995 to 2006, was re-examined in the present work. These isolates, formerly classified as Burkholderia cepacia (taxon K), are here reclassified as Burkholderia contaminans, including the former B. cepacia IST408, which was the focus of previous studies regarding the biosynthesis of the exopolysaccharide 'cepacian'. The CF population examined has been previously described as having an exceptionally high representation of B. cepacia, presumably due to a contamination arising from saline solutions for nasal application. Twenty-one additional isolates, obtained from a chronically infected patient, from 2006 to 2010, were also identified as B. contaminans. This study also provides insight into the potential clinical impact of B. contaminans, a species that is rarely associated with CF infections. Isolates belonging to this species were shown to be involved in chronic and transient respiratory infections, and were associated with severe lung function deterioration and with a case of death with cepacia syndrome. However, since the patients were co-infected with Burkholderia cenocepacia and other non-Burkholderia bacteria, the role played by B. contaminans is unclear. Nevertheless, B. contaminans isolates were found to prevail over B. cenocepacia isolates during co-infection of at least one chronically infected patient.

  3. The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia

    PubMed Central

    Choudhary, Kumari Sonal; Hudaiberdiev, Sanjarbek; Gelencsér, Zsolt; Coutinho, Bruna Gonçalves; Venturi, Vittorio; Pongor, Sándor

    2013-01-01

    Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/. PMID:23820583

  4. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    EPA Science Inventory

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  5. Regulation of biofilm formation in Pseudomonas and Burkholderia species.

    PubMed

    Fazli, Mustafa; Almblad, Henrik; Rybtke, Morten Levin; Givskov, Michael; Eberl, Leo; Tolker-Nielsen, Tim

    2014-07-01

    In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.

  6. Incidence of Burkholderia mallei infection among indigenous equines in India

    PubMed Central

    Malik, Praveen; Singha, Harisankar; Goyal, Sachin K; Khurana, Sandip K; Tripathi, Badri Naryan; Dutt, Abha; Singh, Dabal; Sharma, Neeraj; Jain, Sanjay

    2015-01-01

    Burkholderia mallei is the causative agent of glanders which is a highly contagious and fatal disease of equines. Considering the nature and severity of the disease in equines, and potential of transmission to human beings, glanders is recognised as a ‘notifiable’ disease in many countries. An increasing number of glanders outbreaks throughout the Asian continents, including India, have been noticed recently. In view of the recent re-emergence of the disease, the present study was undertaken to estimate the prevalence of glanders among indigenous equines from different parts of India. Serum samples were analysed by complement fixation test (CFT) and ELISA for the detection of B mallei specific antibodies. A total of 7794 equines, which included 4720 horses, 1881 donkeys and 1193 mules were sampled from April 2011 to December 2014 from 10 states of India. Serologically, 36 equines (pony=7, mules=10, horses=19) were found to be positive for glanders by CFT and indirect-ELISA. The highest number of cases were detected in Uttar Pradesh (n=31) followed by Himachal Pradesh (n=4) and Chhattisgarh (n=1). Isolation of B mallei was attempted from nasal and abscess swabs collected from seropositive equines. Four isolates of B mallei were cultured from nasal swabs of two mules and two ponies. Identity of the isolates was confirmed by PCR and sequencing of fliP gene fragment. The study revealed circulation of B mallei in northern India and the need for continued surveillance to support the eradication. PMID:26457190

  7. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride.

    PubMed

    Ahn, Youngbeom; Kim, Jeong Myeong; Kweon, Ohgew; Kim, Seong-Jae; Jones, Richard C; Woodling, Kellie; Gamboa da Costa, Gonçalo; LiPuma, John J; Hussong, David; Marasa, Bernard S; Cerniglia, Carl E

    2016-11-22

    Pharmaceutical products that are contaminated with Burkholderia cepacia complex (BCC) bacteria may pose serious consequences to vulnerable patients. Benzyldimethylalkylammonium chloride (BZK) cationic surfactants are extensively used in medical applications and have been implicated in the coselection of antimicrobial resistance. The ability of BCC to degrade BZK, tetradecyldimethylbenzylammonium chloride (C14BDMA-Cl), dodecyldimethylbenzylammonium chloride (C12BDMA-Cl), decyldimethylbenzylammonium chloride (C10BDMA-Cl), hexyldimethylbenzylammonium chloride, and benzyltrimethylammonium chloride was determined by incubation in 1/10-diluted tryptic soy broth (TSB) to determine if BCC bacteria have the ability to survive and inactivate these disinfectants. With BZK, C14BDMA-Cl, and C12BDMA-Cl, inhibition of the growth of 20 BCC strains was observed in disinfectant solutions that ranged from 64 to 256 µg/ml. The efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone increased the sensitivity of bacteria to 64 µg/ml BZK. The 20 BCC strains grew well in 1/10-diluted TSB medium with BZK, C12BDMA-Cl, and C10BDMA-Cl; they absorbed and degraded the compounds in 7 days. Formation of benzyldimethylamine and benzylmethylamine as the initial metabolites suggested that the cleavage of the C alkyl-N bond occurred as the first step of BZK degradation by BCC bacteria. Proteomic data confirmed the observed efflux activity and metabolic inactivation via biodegradation in terms of BZK resistance of BCC bacteria, which suggests that the two main resistance mechanisms are intrinsic and widespread.

  8. [Pharyngitis due to Burkholderia cepacia. Person-to-person transmission].

    PubMed

    Fajardo Olivares, M; Cordero Carrasco, J L; Beteta López, A; Escobar Izquierdo, A B; Sacristán Enciso, B

    2004-06-01

    Burkholderia cepacia is a Gram-negative bacillus that is widely distributed in nature; it is isolated from the ground, water, plants and vegetables. Generally, it produces nosocomial infection due to contamination of disinfectants, medical equipment, prosthetic material and drugs, such as anesthetics or liquids used in urological irrigation. The most probable mechanism of transmission is through hospital material or through fomites among people after contact for several weeks or months. Recently, it has been considered as an important pathogen in immunocompromised patients, or in those with significant underlying diseases, such as chronic granulomastosis or cystic fibrosis. We present a case of pharyngitis due to B. cepacia and its transmission within a few days in two immunocompetent twin siblings without previous underlying diseases. The infection disappeared after specific treatment for this microorganism was started. We believe that samples should be taken from the pharynx and nasal pits in patients with acute upper respiratory tract processes that do not respond to empiric antibiotic treatment, before classifying them as viral infection without etiologic diagnosis.

  9. Siderophore Production by Cystic Fibrosis Isolates of Burkholderia cepacia

    PubMed Central

    Darling, Patricia; Chan, Maria; Cox, Andrew D.; Sokol, Pamela A.

    1998-01-01

    Sixty-one Burkholderia cepacia isolates from patients with cystic fibrosis (CF) and four plant isolates were screened for production of the siderophores salicylic acid (SA), pyochelin, cepabactin, and ornibactins and fingerprinted by a PCR-based randomly amplified polymorphic DNA (RAPD) method. Of the 24 RAPD types determined, 22 (92%) were associated with isolates that produced SA, 21 (87%) were associated with isolates that produced ornibactins, 15 (60%) were associated with isolates that produced pyochelin, and 3 (12%) were associated with isolates that produced cepabactin. Of the 24 RAPD types plus 2 phenotypic variants of types 1 and 9, 3 were associated with isolates that produced all four siderophores, 8 were associated with isolates that produced three siderophores, 12 were associated with isolates that produced two siderophores, and 3 were associated with isolates that produced only one siderophore. These results suggest that the numbers and types of siderophores produced by CF isolates of B. cepacia correlate with RAPD type and that SA and ornibactins are the most prevalent siderophores produced. PMID:9453660

  10. Degradation of parabens by Pseudomonas beteli and Burkholderia latens.

    PubMed

    Amin, Aeshna; Chauhan, Sateesh; Dare, Manish; Bansal, Arvind Kumar

    2010-06-01

    p-Hydroxybenzoic acid esters (parabens) are commonly used antimicrobial preservatives in pharmaceutical formulations. Two microorganisms, isolated from non-sterile methyl paraben (MP) and propyl paraben (PP) solutions, were found to degrade the respective parabens. Identification by 16S rRNA partial gene sequencing revealed them to be Pseudomonas beteli and Burkholderia latens, respectively. The present work describes a previously unreported interaction of the parabens with P. beteli and B. latens. Degradation of MP at various concentrations by P. beteli, followed a logarithmic pattern, while that of PP by B. latens was found to be linear. It was subsequently observed that P. beteli could degrade only MP, while B. latens could degrade both the parabens. Absence of HPLC chromatogram peaks of expected degradation products indicated that the parabens were used up as a carbon source. The behaviour of pathogens (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans and Aspergillus niger) of the pharmacopoeial preservative effectiveness test (PET), towards MP, showed that none had the ability to degrade the paraben. It was concluded that, for a paraben-preserved multi-dose ophthalmic formulation, the sole use of the four pathogens that are recommended by the pharmacopoeia for PET can falsely indicate the formulation to be effective against 'in-use' contamination.

  11. [Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains].

    PubMed

    Izmalkova, T Yu; Sazonova, O I; Kosheleva, I A; Boronin, A M

    2013-06-01

    The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel oil and in the strain Burkholderia sp. BS3702 from the laboratory collection isolated from soil samples of the coke gas works (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary origins (phn and nag genes).

  12. An outbreak of Burkholderia cepacia bacteremia in hemodialysis patients: an epidemiologic and molecular study.

    PubMed

    Kaitwatcharachai, C; Silpapojakul, K; Jitsurong, S; Kalnauwakul, S

    2000-07-01

    The risk of blood stream infections increases in patients undergoing chronic hemodialysis. Outbreaks of infection are usually caused by contamination of the water supply, water treatment, distribution system, or dialyzer reprocessing. We report an outbreak of subclavian catheter-related Burkholderia cepacia bacteremia in nine patients undergoing hemodialysis. Using randomly amplified polymorphic DNA (RAPD) analysis, the bacterial isolates were clonally identical to Burkholderia cepacia isolated from residue of the diluted chlorhexidine-cetrimide solution used to disinfect the transfer forceps. These forceps were used to pick up cotton balls and gauze for dressing the subclavian catheter. Antibiotic therapy failed to cure the infections, and all patients required catheter removal. Pathology showed numerous bacilli embedded in the biofilm on the inner surface of the removed catheters. In conclusion, our study showed that contaminated chlorhexidine-cetrimide solution was the source of a bacteremic outbreak in nine patients who developed catheter-related Burkholderia cepacia infection.

  13. Genetic Diversity of Burkholderia contaminans Isolates from Cystic Fibrosis Patients in Argentina

    PubMed Central

    Martina, Pablo; Bettiol, Marisa; Vescina, Cecilia; Montanaro, Patricia; Mannino, M. Constanza; Prieto, Claudia I.; Vay, Carlos; Naumann, Dieter; Schmitt, Juergen; Yantorno, Osvaldo; Lagares, Antonio

    2013-01-01

    A total of 120 Burkholderia cepacia complex isolates collected during 2004–2010 from 66 patients in two cystic fibrosis reference centers in Argentina were analyzed. Burkholderia contaminans was the species most frequently recovered (57.6%), followed by Burkholderia cenocepacia (15%), a species distribution not reported so far. The recA-PCR-based techniques applied to the B. contaminans isolates revealed that 85% of the population carried the recA-ST-71 allele. Our results showed the utility of BOX-PCR genotyping in analyzing B. contaminans diversity. This approach allowed us to address clonal transmission during an outbreak and the genetic changes occurring in infecting bacteria over the course of chronic infection. PMID:23135937

  14. Genetic diversity of Burkholderia contaminans isolates from cystic fibrosis patients in Argentina.

    PubMed

    Martina, Pablo; Bettiol, Marisa; Vescina, Cecilia; Montanaro, Patricia; Mannino, M Constanza; Prieto, Claudia I; Vay, Carlos; Naumann, Dieter; Schmitt, Juergen; Yantorno, Osvaldo; Lagares, Antonio; Bosch, Alejandra

    2013-01-01

    A total of 120 Burkholderia cepacia complex isolates collected during 2004-2010 from 66 patients in two cystic fibrosis reference centers in Argentina were analyzed. Burkholderia contaminans was the species most frequently recovered (57.6%), followed by Burkholderia cenocepacia (15%), a species distribution not reported so far. The recA-PCR-based techniques applied to the B. contaminans isolates revealed that 85% of the population carried the recA-ST-71 allele. Our results showed the utility of BOX-PCR genotyping in analyzing B. contaminans diversity. This approach allowed us to address clonal transmission during an outbreak and the genetic changes occurring in infecting bacteria over the course of chronic infection.

  15. Genome-guided discovery of diverse natural products from Burkholderia sp

    PubMed Central

    Liu, Xiangyang; Cheng, Yi-Qiang

    2013-01-01

    Burkholderia species have emerged as a new source of diverse natural products. This mini-review covers all natural products discovered in recent years from Burkholderia sp. by genome-guided approaches – these refer to the use of bacterial genome sequence as an entry point for in silico structural prediction, wet lab experimental design and execution. While reliable structural prediction based on cryptic biosynthetic gene cluster sequence was not always possible due to noncanonical domains and/or module organization of a deduced biosynthetic pathway, a molecular genetic method was often employed to detect or alter the expression level of the gene cluster to achieve an observable phenotype, which facilitated downstream natural product purification and identification. Those examples of natural product discovery from Burkholderia sp. provide a practical guidance for future exploration of Gram-negative bacteria as a new source of natural products. PMID:24212473

  16. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-09-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.

  17. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    PubMed Central

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-01-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria. PMID:27615705

  18. Burkholderia, a Genus Rich in Plant-Associated Nitrogen Fixers with Wide Environmental and Geographic Distribution

    PubMed Central

    Estrada-De Los Santos, Paulina; Bustillos-Cristales, Rocío; Caballero-Mellado, Jesús

    2001-01-01

    The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N2-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N2-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75T. These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75T. Although the ability to fix N2 is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N2-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N2-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N2-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments. PMID:11375196

  19. Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae)

    PubMed Central

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K.; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the “Piptadenia group”. We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  20. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil

    PubMed Central

    Song, Ok-Ryul; Lee, Seung-Jin; Lee, Yong-Seok; Lee, Sang-Cheol; Kim, Keun-Ki; Choi, Yong-Lark

    2008-01-01

    A mineral phosphate solubilizing bacterium, Burkholderia cepacia DA23 has been isolated from cultivated soils. Phosphate-solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. When 3% of glucose concentration was used for carbon source, the strain had a marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to the pH drop by the strain. Analysis of the culture medium by high pressure liquid chromatography identified gluconic acid as the main organic acid released by Burkholderia cepacia DA23. Gluconic acid production was apparently the result of the glucose dehydrogenase activity and glucose dehydrogenase was affected by phosphate regulation. PMID:24031195

  1. Burkholderia cepacia septicemia in a patient with acute myeloid leukemia in postchemotherapy bone marrow aplasia

    PubMed Central

    Mihaila, Romeo-Gabriel; Blaga, Lucian

    2013-01-01

    The patients with hematologic malignancies are predisposed to develop infections with unusual bacteria, like Burkholderia cepacia, which is frequently resistant to many antibiotics and antiseptics. We present the case of a female patient with acute myeloid leukemia type 2 on the background of myelodysplastic syndrome, from whom Burkholderia cepacia was isolated in blood culture, after the 2nd cycle of induction. She was sensitive to ceftazidime, but its eradication was not easy. Five other patients were contaminated with this bacteria, but all of them had favourable evolution. The case is discussed in the context of those similar in literature. PMID:24353735

  2. Influence of Neutrophil Defects on Burkholderia cepacia Complex Pathogenesis

    PubMed Central

    Porter, Laura A.; Goldberg, Joanna B.

    2011-01-01

    The Burkholderia cepacia complex (Bcc) is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF), as well as those with chronic granulomatous disease (CGD). While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis. PMID:22919575

  3. PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari.

    PubMed

    Lopes, Mateus Schreiner Garcez; Gosset, Guillermo; Rocha, Rafael Costa Santos; Gomez, José Gregório Cabrera; Ferreira da Silva, Luiziana

    2011-10-01

    Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.

  4. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride

    PubMed Central

    Ahn, Youngbeom; Kim, Jeong Myeong; Kweon, Ohgew; Kim, Seong-Jae; Jones, Richard C.; Woodling, Kellie; Gamboa da Costa, Gonçalo; LiPuma, John J.; Hussong, David; Marasa, Bernard S.

    2016-01-01

    ABSTRACT Pharmaceutical products that are contaminated with Burkholderia cepacia complex (BCC) bacteria may pose serious consequences to vulnerable patients. Benzyldimethylalkylammonium chloride (BZK) cationic surfactants are extensively used in medical applications and have been implicated in the coselection of antimicrobial resistance. The ability of BCC to degrade BZK, tetradecyldimethylbenzylammonium chloride (C14BDMA-Cl), dodecyldimethylbenzylammonium chloride (C12BDMA-Cl), decyldimethylbenzylammonium chloride (C10BDMA-Cl), hexyldimethylbenzylammonium chloride, and benzyltrimethylammonium chloride was determined by incubation in 1/10-diluted tryptic soy broth (TSB) to determine if BCC bacteria have the ability to survive and inactivate these disinfectants. With BZK, C14BDMA-Cl, and C12BDMA-Cl, inhibition of the growth of 20 BCC strains was observed in disinfectant solutions that ranged from 64 to 256 µg/ml. The efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone increased the sensitivity of bacteria to 64 µg/ml BZK. The 20 BCC strains grew well in 1/10-diluted TSB medium with BZK, C12BDMA-Cl, and C10BDMA-Cl; they absorbed and degraded the compounds in 7 days. Formation of benzyldimethylamine and benzylmethylamine as the initial metabolites suggested that the cleavage of the C alkyl-N bond occurred as the first step of BZK degradation by BCC bacteria. Proteomic data confirmed the observed efflux activity and metabolic inactivation via biodegradation in terms of BZK resistance of BCC bacteria, which suggests that the two main resistance mechanisms are intrinsic and widespread. PMID:27879334

  5. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia.

    PubMed

    Tyrrell, J; Whelan, N; Wright, C; Sá-Correia, I; McClean, S; Thomas, M; Callaghan, Máire

    2015-04-01

    Burkholderia cenocepacia is a bacterial pathogen which causes severe respiratory infections in cystic fibrosis (CF). These studies were aimed at gaining an insight into the iron acquisition strategies of B. cenocepacia. In iron restricted conditions, genes associated with the synthesis and utilisation of ornibactin (pvdA, orbA, orb F) were significantly upregulated compared to the expression of pyochelin associated genes (pchD, fptA). In the absence of alternative iron sources, B. cenocepacia J2315 and 715j utilised ferritin and haemin, but not transferrin or lactoferrin for growth. Significantly, mutants unable to produce ornibactin, (715j-orbI) or ornibactin and pyochelin, (715j-pobA), utilised haemin and ferritin more efficiently than the wild-type. Moreover, both mutants were also able to utilise lactoferrin for growth (P ≤ 0.01) and additionally 715j-pobA utilised transferrin (P ≤ 0.01), potentially facilitating adaptation to the host environment. Furthermore, B. cenocepacia increased ornibactin gene expression in response to pyoverdine from Pseudomonas aeruginosa (P ≤ 0.01), demonstrating the capacity to compete for iron in co-colonised niches. Pyoverdine also significantly diminished the growth of B. cenocepacia (P < 0.001) which was related to its iron chelating activity. In a study of three B. cenocepacia sequential clonal isolates obtained from a CF patient over a 3.5 year period, ornibactin upregulation in response to pyoverdine was less pronounced in the last isolate compared to the earlier isolates, as was growth in the presence of haemin and ferritin, indicating alternative iron acquisition mechanism(s) may dominate as chronic infection progresses. These data demonstrate the multifaceted iron acquisition strategies of B. cenocepacia and their capacity to be differentially activated in the presence of P. aeruginosa and during chronic infection.

  6. Screening microorganisms for insulin binding reveals binding by Burkholderia multivorans and Burkholderia cenocepacia and novel attachment of insulin to Aeromonas salmonicida via the A-layer.

    PubMed

    Nisr, Raid B; Moody, A John; Gilpin, Martyn L

    2012-03-01

    Exposure to microorganisms is considered an environmental factor that can contribute to Type 1 diabetes. Insulin-binding proteins (IBPs) on microorganisms may induce production of antibodies that can react with the human insulin receptor (HIR) with possible consequences in developing a diabetic autoimmune response against HIR and insulin. The interaction of insulin with microorganisms was studied by screening 45 microbial species for their ability to bind insulin. Binding assays were performed using labelled insulin to identify insulin-binding components on the microorganisms. Burkholderia multivorans and Burkholderia cenocepacia isolated from patients with cystic fibrosis (CF) and the fish pathogen Aeromonas salmonicida were the only strains of those tested, which showed insulin-binding components on their cell surfaces. Further work with A. salmonicida suggested that the insulin-binding activity of A. salmonicida is due to the A-layer. A mutant of A. salmonicida lacking the A-layer showed binding, but at a much reduced rate suggesting another insulin-binding component in addition to the high affinity of the A-protein. Soluble protein lysates were subjected to Western ligand blotting using peroxidase-labelled insulin to detect IBPs. Two positive IBPs were apparent at approximately 30 and 20 kDa in lysates from Burkholderia strains, but no IBP was detected in A. salmonicida lysates.

  7. Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp. VUN10013.

    PubMed

    Somtrakoon, Khanitta; Suanjit, Sudarat; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Lee, Hung; Upatham, Suchart

    2008-08-01

    The ability of Burkholderia sp. VUN10013 to degrade anthracene in microcosms of two acidic Thai soils was studied. The addition of Burkholderia sp. VUN10013 (initial concentration of 10(5) cells g(-1) dry soil) to autoclaved soil collected from the Plew District, Chanthaburi Province, Thailand, supplemented with anthracene (50 mg kg(-1) dry soil) resulted in complete degradation of the added anthracene within 20 days. In contrast, under the same test conditions but using autoclaved soil collected from the Kitchagude District, Chanthaburi Province, Thailand, only approximately 46.3% of the added anthracene was degraded after 60 days of incubation. In nonautoclaved soils, without adding the VUN10013 inocula, 22.8 and 19.1% of the anthracene in Plew and Kitchagude soils, respectively, were degraded by indigenous bacteria after 60 days. In nonautoclaved soil inoculated with Burkholderia sp. VUN10013, the rate and extent of anthracene degradation were considerably better than those seen in autoclaved soils or in uninoculated nonautoclaved soils in that only 8.2 and 9.1% of anthracene remained in nonautoclaved Plew and Kitchagude soils, respectively, after 10 days of incubation. The results showed that the indigenous microorganisms in the pristine acidic soils have limited ability to degrade anthracene. Inoculation with the anthracene-degrading Burkholderia sp. VUN10013 significantly enhanced anthracene degradation in such acidic soils. The indigenous microorganisms greatly assisted the VUN10013 inoculum in anthracene degradation, especially in the more acidic Kitchagude soil.

  8. Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils.

    PubMed

    Talbi, C; Delgado, M J; Girard, L; Ramírez-Trujillo, A; Caballero-Mellado, J; Bedmar, E J

    2010-07-01

    Phylogenetic analysis of 16S rRNA, nodC, and nifH genes of four bacterial strains isolated from root nodules of Phaseolus vulgaris grown in Morocco soils were identified as Burkholderia phymatum. All four strains formed N(2)-fixing nodules on P. vulgaris and Mimosa, Acacia, and Prosopis species and reduced acetylene to ethylene when cultured ex planta.

  9. Burkholderia phymatum Strains Capable of Nodulating Phaseolus vulgaris Are Present in Moroccan Soils ▿

    PubMed Central

    Talbi, C.; Delgado, M. J.; Girard, L.; Ramírez-Trujillo, A.; Caballero-Mellado, J.; Bedmar, E. J.

    2010-01-01

    Phylogenetic analysis of 16S rRNA, nodC, and nifH genes of four bacterial strains isolated from root nodules of Phaseolus vulgaris grown in Morocco soils were identified as Burkholderia phymatum. All four strains formed N2-fixing nodules on P. vulgaris and Mimosa, Acacia, and Prosopis