Sample records for burn severity patterns

  1. Analysis of Alaskan burn severity patterns using remotely sensed data

    USGS Publications Warehouse

    Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

    2007-01-01

    Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

  2. Landscape Patterns of Burn Severity in the Soberanes Fire of 2016

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2016-01-01

    The Soberanes Fire started on July 22, 2016 in Monterey County on the California Central Coast from an illegal campfire. This fire burned for 10 weeks at a record cost of more than $208 million for protection and control. A progressive analysis of the normalized burn ratio from the Landsat satellite showed that the final high burn severity (HBS) area for the Soberanes Fire comprised 22 percent of the total area burned, whereas final moderate burn severity (MBS) area comprised about 10 percent of the total area burned of approximately 53,470 ha (132,130 acres). The resulting landscape pattern of burn severity classes from the 2016 Soberanes Fire revealed that the majority of HBS area was located in the elevation zone between 500 and 1000 m, in the slope zone between 15 percent and 30 percent, or on south-facing aspects.

  3. Burn severity of areas reburned by wildfires in the Gila National Forest, New Mexico, USA

    Treesearch

    Zachary A. Holden; Penelope Morgan; Andrew T. Hudak

    2010-01-01

    We describe satellite-inferred burn severity patterns of areas that were burned and then reburned by wildland fire from 1984 to 2004 within the Gila Aldo Leopold Wilderness Complex, New Mexico, USA. Thirteen fires have burned 27 000 hectares across multiple vegetation types at intervals between fires ranging from 3 yr to 14 yr. Burn severity of reburned areas showed...

  4. An Analysis Framework Using Satellite Remote Sensing to Understand Landscape Patterns of High Severity Burns from Wildfires in Coastal Woodlands of California and Italy

    NASA Astrophysics Data System (ADS)

    Potter, C. S.

    2016-12-01

    The central California coastal landscape has a history of frequent large wildfires that have threatened or destroyed many residential structures at the wildland interface. This study starts with the largest wildfires on the Central Coast over the past 30 years and analyzes the fraction and landscape patterns of high severity burned (HBS) areas from the Landsat-based Monitoring Trends in Burn Severity (MTBS) data base as a function of weather conditions and topographic variations. Results indicate that maximum temperatures at the time of fire and the previous 12 months of rainfall explained a significant portion of the variation in total area burned and the fraction of HBS area. Average patch size and aggregation metrics of HBS areas were included in the analysis framework. Within each burned area, the Landsat (30-meter resolution) differenced Normalized Burn Ratio (dNBR), a continuous index of vegetation burn severity, was correlated against slope, aspect, and elevation to better understand landscape level-controls over HBS patches. The Landsat dNBR analysis framework is being extended next to the island of Sardinia, Italy for a comparison of Mediterranean climates and wildfire patterns since the mid-1980s.

  5. Lessons from the fires of 2000: Post-fire heterogeneity in ponderosa pine forests

    USGS Publications Warehouse

    Kotliar, Natasha B.; Haire, Sandra L.; Key, Carl H.; Omni, Phillip N.; Joyce, Linda A.

    2003-01-01

    We evaluate burn-severity patterns for six burns that occurred in the southern Rocky Mountains and the Colorado Plateau in 2000. We compare the results of two data sources: Burned Area Rehabilitations Teams (BAER) and a spatial burnseverity model derived from satellite imagery (the Normalized Burn Ratio; NBR). BAER maps tended to overestimate area of severe burns and underestimate area of moderate-severity burns relative to NBR maps. Low elevation and more southern ponderosa pine burns were predominantly understory burns, whereas burns at higher elevations and farther north had a greater component of high-severity burns. Thus, much, if not most, of the area covered by these burns appears to be consistent with historic burns and contributes to healthy functioning ecosystems.

  6. In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection.

    PubMed

    Ragol, S; Remer, I; Shoham, Y; Hazan, S; Willenz, U; Sinelnikov, I; Dronov, V; Rosenberg, L; Bilenca, A

    2016-01-01

    Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager.

  7. In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection

    PubMed Central

    Ragol, S.; Remer, I.; Shoham, Y.; Hazan, S.; Willenz, U.; Sinelnikov, I.; Dronov, V.; Rosenberg, L.; Bilenca, A.

    2015-01-01

    Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager. PMID:26819831

  8. Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure

    Treesearch

    Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North

    2015-01-01

    Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...

  9. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA

    Treesearch

    Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Jay D. Miller; Haiganoush K. Preisler

    2017-01-01

    Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn...

  10. Normalized burn ratios link fire severity with patterns of avian occurrence

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.; Klein, Rob; McKerrow, Alexa

    2016-01-01

    ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.MethodsWe identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat™ imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.ResultsAgreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.ConclusionsDNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.

  11. Avifaunal responses to fire in southwestern montane forests along a burn severity gradient

    Treesearch

    Natasha B. Kotliar; Patricia L. Kennedy; Kimberly Ferree

    2007-01-01

    The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986- 1988, 1990) created a...

  12. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA

    Treesearch

    C. Alina Cansler; Donald. McKenzie

    2014-01-01

    Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We...

  13. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event

    Treesearch

    Susan J. Prichard; Maureen C. Kennedy

    2014-01-01

    Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State...

  14. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks

    USGS Publications Warehouse

    Nesmith, C.B.; Caprio, Anthony C.; Pfaff, Anne H.; McGinnis, Thomas W.; Keeley, Jon E.

    2011-01-01

    Current goals for prescription burning are focused on measures of fuel consumption and changes in forest density. These benchmarks, however, do not address the extent to which prescription burning meets perceived ecosystem needs of heterogeneity in burning, both for overstory trees and understory herbs and shrubs. There are still questions about how closely prescribed fires mimic these patterns compared to natural wildfires. This study compared burn patterns of prescribed fires and managed unplanned wildfires to understand how the differing burning regimes affect ecosystem properties. Measures of forest structure and fire severity were sampled in three recent prescribed fires and three wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Fine scale patterns of fire severity and heterogeneity were compared between fire types using ground-based measures of fire effects on fuels and overstory and understory vegetation. Prescribed fires and wildfires managed for resource objectives displayed similar patterns of overstory and understory fire severity, heterogeneity, and seedling and sapling survival. Variation among plots within the same fire was always greater than between fire types. Prescribed fires can provide burned landscapes that approximate natural fires in many ways. It is recognized that constraints placed on when wildfires managed for resource objectives are allowed to burn freely may bias the range of conditions that might have been experienced under more natural conditions. Therefore they may not exactly mimic natural wildfires. Overall, the similarity in fire effects that we observed between prescribed fires and managed wildfires indicate that despite the restrictions that are often placed on prescribed fires, they appear to be creating post-fire conditions that approximate natural fires when assessed on a fine spatial scale.

  15. High severity experimental burns in Siberian larch forests increase permafrost thaw and larch tree regeneration

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Davydov, S.; Zimov, N.; Mack, M. C.

    2013-12-01

    Global change models predict increased fire activity in boreal forests as climate warms and dries. We hypothesized that fire-driven decreases in soil organic layer (SOL) depth will (1) increase permafrost thaw by reducing the insulating capacity of the SOL and (2) improve seedbed conditions for tree regeneration. Over time, these changes will lead to altered patterns of above- and belowground carbon (C) accumulation. To test these hypotheses, we conducted plot-level experimental burns in July 2012 in a low-density, mature larch stand near the Northeast Science Station in Cherskii, Siberia. Dried fuels of naturally occurring vegetation were added to plots to achieve four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). Pre-fire and during two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature to determine severity effects on permafrost thaw. We also sowed larch seeds in fall 2012 and quantified germination rates the following growing season. By 1 wk post-fire, thaw depth was 15-25 cm deeper in plots burned at high severity (55 cm) compared to other treatments (30-40 cm). These differences in thaw depth with burn severity were maintained during the subsequent growing season and were associated with increased soil temperature and moisture. Larch regeneration was 10x higher on severely burned plots than those unburned. Our findings highlight the potential for increased fire severity to degrade permafrost and alter successional dynamics and patterns of C accumulation.

  16. [Preclinical treatment of severe burn trauma due to an electric arc on an overhead railway cable].

    PubMed

    Spelten, O; Wetsch, W A; Hinkelbein, J

    2013-09-01

    Severe burns due to electrical accidents occur rarely in Germany but represent a challenge for emergency physicians and their team. Apart from extensive burns cardiac arrhythmia, neurological damage caused by electric current and osseous injury corresponding to the trauma mechanism are also common. It is important to perform a survey of the pattern of injuries and treat acute life-threatening conditions immediately in the field. Furthermore, specific conditions related to burns must be considered, e.g. fluid resuscitation, thermal management and analgesia. In addition, a correct strategy for further medical care in an appropriate hospital is essential. Exemplified by this case guidelines for the treatment of severe burns and typical pitfalls are presented.

  17. Mapping burned areas and burn severity patterns across the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea

    2010-05-01

    The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.

  18. Mapping burned areas using dense time-series of Landsat data

    USGS Publications Warehouse

    Hawbaker, Todd J.; Vanderhoof, Melanie; Beal, Yen-Ju G.; Takacs, Joshua; Schmidt, Gail L.; Falgout, Jeff T.; Williams, Brad; Brunner, Nicole M.; Caldwell, Megan K.; Picotte, Joshua J.; Howard, Stephen M.; Stitt, Susan; Dwyer, John L.

    2017-01-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete. Consequently, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables (ECVs), including information about burned area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient boosted regression models to generate burn probability surfaces using band values and spectral indices from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in combination with a region growing process. The algorithm can be applied anywhere Landsat and training data are available. For this study, BAECV products were generated for the conterminous United States from 1984 through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability and a burn classification. We compared the BAECV burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring Trends in Burn Severity (MTBS; 1984–2013) data. We found that the BAECV products mapped 36% more burned area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the GFED were especially high in the West and East where the BAECV products mapped 32% and 88% more burned area, respectively. However, the BAECV products found less burned area than the GFED in regions with frequent agricultural fires. Compared to the MTBS data, the BAECV products identified 31% more burned area in the West, 312% more in the Great Plains, and 233% more in the East. Most pixels in the MTBS data were detected by the BAECV, regardless of burn severity. The BAECV products document patterns of fire similar to those in the GFED but also showed patterns of fire that are not well characterized by the existing MTBS data. We anticipate the BAECV products will be useful to studies that seek to understand past patterns of fire occurrence, the drivers that created them, and the impacts fires have on natural and human systems.

  19. The effects of hillslope-scale variability in burn severity on post-fire sediment delivery

    NASA Astrophysics Data System (ADS)

    Quinn, Dylan; Brooks, Erin; Dobre, Mariana; Lew, Roger; Robichaud, Peter; Elliot, William

    2017-04-01

    With the increasing frequency of wildfire and the costs associated with managing the burned landscapes, there is an increasing need for decision support tools that can be used to assess the effectiveness of targeted post-fire management strategies. The susceptibility of landscapes to post-fire soil erosion and runoff have been closely linked with the severity of the wildfire. Wildfire severity maps are often spatial complex and largely dependent upon total vegetative biomass, fuel moisture patterns, direction of burn, wind patterns, and other factors. The decision to apply targeted treatment to a specific landscape and the amount of resources dedicated to treating a landscape should ideally be based on the potential for excessive sediment delivery from a particular hillslope. Recent work has suggested that the delivery of sediment to a downstream water body from a hillslope will be highly influenced by the distribution of wildfire severity across a hillslope and that models that do not capture this hillslope scale variability would not provide reliable sediment and runoff predictions. In this project we compare detailed (10 m) grid-based model predictions to lumped and semi-lumped hillslope approaches where hydrologic parameters are fixed based on hillslope scale averaging techniques. We use the watershed scale version of the process-based Watershed Erosion Prediction Projection (WEPP) model and its GIS interface, GeoWEPP, to simulate the fire impacts on runoff and sediment delivery using burn severity maps at a watershed scale. The flowpath option in WEPP allows for the most detail representation of wildfire severity patterns (10 m) but depending upon the size of the watershed, simulations are time consuming and computational demanding. The hillslope version is a simpler approach which assigns wildfire severity based on the severity level that is assigned to the majority of the hillslope area. In the third approach we divided hillslopes in overland flow elements (OFEs) and assigned representative input values on a finer scale within single hillslopes. Each of these approaches were compared for several large wildfires in the mountainous ranges of central Idaho, USA. Simulations indicated that predictions based on lumped hillslope modeling over-predict sediment transport by as much as 4.8x in areas of high to moderate burn severity. Annual sediment yield within the simulated watersheds ranged from 1.7 tonnes/ha to 6.8 tonnes/ha. The disparity between simulated sediment yield with these approaches was attributed to hydrologic connectivity of the burn patterns within the hillslope. High infiltration rates between high severity sites can greatly reduce the delivery of sediment. This research underlines the importance of accurately representing soil burn severity along individual hillslopes in hydrologic models and the need for modeling approaches to capture this variability to reliability simulate soil erosion.

  20. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests

    USGS Publications Warehouse

    Arkle, Robert S.; Pilliod, David S.; Welty, Justin L.

    2012-01-01

    We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30-m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in untreated areas and significantly lower than the potential wildfire severity of the treated areas had treatments not been implemented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the summer and supported greater vegetation volume. We found considerable evidence that prescribed fires have landscape-level influences within treatment boundaries; most notable was an interaction between distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to 66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinuity of fuels following treatment may influence wildfire severity and explain how even low severity treatments can be effective management tools in fire-prone landscapes.

  1. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    PubMed

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  2. Determining Relative Contributions of Vegetation and Topography to Burn Severity from LANDSAT Imagery

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; He, Hong S.; Liang, Yu; Cai, Longyan; Lewis, Bernard J.

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  3. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    NASA Astrophysics Data System (ADS)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species-specific differences in N preference coupled with their respective physiological response to fire severity represent a positive feedback loop that reinforce the opposing stand dominance patterns that have developed at the two ends of the fire severity spectrum. Shifts in forest composition from the current dominance by conifers to a future landscape dominated by deciduous forest are of concern due to impacts on climate-albedo feedbacks, forest productivity, ecosystem carbon storage, and wildlife habitat use.

  4. Effects of timber harvest following wildfire in western North America

    Treesearch

    David L. Peterson; James K. Agee; Gregory H. Aplet; Dennis P. Dykstra; Russell T. Graham; John F. Lehmkuhl; David S. Pilliod; Donald F. Potts; Robert F. Powers; John D. Stuart

    2009-01-01

    Timber harvest following wildfire leads to different outcomes depending on the biophysical setting of the forest, pattern of burn severity, operational aspects of tree removal, and other management activities. Fire effects range from relatively minor, in which fire burns through the understory and may kill a few trees, to severe, in which fire kills most trees and...

  5. Spatial patterns of ponderosa pine regeneration in high-severity burn patches

    Treesearch

    Suzanne M. Owen; Carolyn H. Sieg; Andrew J. Sanchez. Meador; Peter Z. Fule; Jose M. Iniguez; L. Scott. Baggett; Paula J. Fornwalt; Michael A. Battaglia

    2017-01-01

    Contemporary wildfires in southwestern US ponderosa pine forests can leave uncharacteristically large patches of tree mortality, raising concerns about the lack of seed-producing trees, which can prevent or significantly delay ponderosa pine regeneration. We established 4-ha plots in high-severity burn patches in two Arizona wildfires, the 2000 Pumpkin and 2002 Rodeo-...

  6. Avian response to fire in pine–oak forests of Great Smoky Mountains National Park following decades of fire suppression

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.

  7. Outpatient presentations to burn centers: data from the Burns Registry of Australia and New Zealand outpatient pilot project.

    PubMed

    Gabbe, Belinda J; Watterson, Dina M; Singer, Yvonne; Darton, Anne

    2015-05-01

    Most studies about burn injury focus on admitted cases. To compare outpatient and inpatient presentations at burn centers in Australia to inform the establishment of a repository for outpatient burn injury. Data for sequential outpatient presentations were collected at seven burn centers in Australia between December 2010 and May 2011 and compared with inpatient admissions from these centers recorded by the Burns Registry of Australia and New Zealand for the corresponding period. There were 788 outpatient and 360 inpatient presentations. Pediatric outpatients included more children <3 years of age (64% vs 33%), scald (52% vs 35%) and contact burns (39% vs 24%). Adult outpatients included fewer males (58% vs 73%) and intentional injuries (3.3% vs 10%), and more scald (46% vs 30%) and contact burns (24% vs 13%). All pediatric, and 98% of adult, outpatient presentations involved a %TBSA<10. The pattern of outpatient presentations was consistent between centers. Outpatient presentations outnumbered inpatient admissions by 2.2:1. The pattern of outpatient burns presenting to burn centers differed to inpatient admission data, particularly with respect to etiology and burn severity, highlighting the importance of the need for outpatient data to enhance burn injury surveillance and inform prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  8. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event

    USGS Publications Warehouse

    Lydersen, Jamie M; Collins, Brandon M.; Brooks, Matthew L.; Matchett, John R.; Shive, Kristen L.; Povak, Nicholas A.; Kane, Van R.; Smith, Douglas F.

    2017-01-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.

  9. A 10 year epidemiological study of paediatric burns at the Welsh Centre for burns and plastic surgery.

    PubMed

    Sanyaolu, Leigh; Javed, Muhammad Umair; Eales, Micheal; Hemington-Gorse, Sarah

    2017-05-01

    Paediatric burns make up a significant proportion of burn injured patients seen within the hospital setting and worldwide account for a significant proportion of unintentional deaths. Currently there is limited data on severe paediatric burns requiring intensive care support. Our study aimed primarily to describe the epidemiology of severe burns admitted to the intensive care unit at our centre receiving fluid resuscitation over a 10 year period. A secondary aim was to describe the referrals patterns in general over the same time period. A retrospective analysis was performed for paediatric patients referred to our centre receiving fluid resuscitation and intensive care support from 2003 to 2013. We also analysed the patterns of referrals, admissions and need for surgical intervention over the same time period retrospectively. Children less than 5 years old made up 65% of admissions to intensive care and scald injuries (56%) were the commonest aetiology. Both total length of stay (25 days in 2003 to 10 days in 2013) and intensive care length of stay (7.2 days in 2003 to 3 days in 2013) decreased during the study and less patients underwent operative intervention. Referrals to our centre increased from 261 in 2003 to 366 in 2013, however admission rates declined from 145 to 85 during that time period. Currently there is limited data on severe burns within the paediatric population. Our study provides epidemiological data in this area, an important step for developing future prevention strategies. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  10. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    PubMed

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  11. Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data

    Treesearch

    K. Barrett; E.S. Kasischke; A.D. McGuire; M.R. Turetsky; E.S. Kane

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to...

  12. Post-fire Vegetation Regeneration Dynamics to Topography and Burn Severity in two contrasting ecosystems: the Case of the Montane Cordillera Ecozones of Western Canada & that of a Typical Mediterranean site in Greece

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; Petropoulos, George P.; Kalivas, Dionissios; Griffirths, Hywel M.; Louka, Panagiota

    2015-04-01

    Altering land cover dynamics is currently regarded as the single most important variable of global change affecting ecological systems. Wildfires are an integral part of many terrestrial ecosystems and are considered to dramatically affect land cover dynamics at a variety of spatial and temporal scales. In this context, knowledge of the spatio-temporal distribution of post-fire vegetation recovery dynamics is of key importance. In this study, we explore the relationships between vegetation recovery dynamics to topography and burn severity for two different ecosystems using a chronosequence of Landsat TM data images analysis. One of our experimental sites is the Okanagan Mountain Park, located in the Montane Cordillera Ecozones of western Canada at which a fire occurred in 2003. The other is Mt. Parnitha, located in Greece, representing a typical Mediterranean setting. The spatio-temporal patterns of regrowth for 8 years following the fire events were quantified based on the analysis of 2 widely used indices, the Normalized Difference Vegetation Index (NDVI) and the Regeneration Index (RI). Burn severity was derived from the differenced Normalized Burn Ratio (dNBR) index computed from the Landsat TM images. Topographical information for the studied area was obtained from the ASTER global operational product. Relationships of vegetation regrowth to both topography and burn severity was quantified using a series of additional statistical metrics. In overall, results indicated noticeable differences in the recovery rates of both ecosystems to the pre-fire patterns. Re-growth rates appeared to be somewhat higher in north-facing slopes in comparison to south facing ones for both experimental sites, in common with other similar studies in different ecosystems. Lastly, areas of lower burn severity exhibited a higher recovery rate compared to areas of high severity burns. Results are presented in detail and an explanation of the main observation trends is also attempted to be provided. To our knowledge, this study is one of the few attempting to explore the relationships between post-fire vegetation regrowth and topography or burn severity, particularly so in such a comparative and systematic manner between two contrasting ecosystem types. It corroborates the significance of EO technology as a successful and cost-effective solution in providing information related to post-fire regeneration assessment. Keywords: post-fire vegetation regeneration, topography, burn severity, Landsat, remote sensing, Cordillera Ecozones, Canada, Mt. Parnitha, Greece

  13. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

  14. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models

    USGS Publications Warehouse

    Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.

    2015-01-01

    Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.

  15. Effect of season and interval of prescribed burn on ponderosa pine butterfly defoliation patterns

    Treesearch

    Becky K. Kerns; Douglas J. Westlind

    2013-01-01

    Current knowledge concerning the interactions between forest disturbances such as fire and insect defoliation is limited. Wildfires and prescribed burns may influence the intensity and severity of insect outbreaks by affecting the vigor of residual trees, altering aspects of stand structure and abundance of preferred hosts, and by changing the physical environment...

  16. Analysis of the microcirculation after soft tissue reconstruction of the outer ear with burns in patients with severe burn injuries.

    PubMed

    Medved, Fabian; Medesan, Raluca; Rothenberger, Jens Martin; Schaller, Hans-Eberhard; Schoeller, Thomas; Manoli, Theodora; Weitgasser, Lennart; Naumann, Aline; Weitgasser, Laurenz

    2016-07-01

    Reconstruction of soft tissue defects of the ear with burns remains one of the most difficult tasks for the reconstructive surgeon. Although numerous reconstructive options are available, the results are often unpredictable and worse than expected. Besides full and split skin grafting, local random pattern flaps and pedicled flaps are frequently utilized to cover soft tissue defects of the outer auricle. Because of the difficulty and unpredictable nature of outer ear reconstruction after burn injury, a case-control study was conducted to determine the best reconstructive approach. The microcirculatory properties of different types of soft tissue reconstruction of the outer ear with burns in six severely burned Caucasian patients (three men and three women; mean age, 46 years (range, 22-70)) were compared to those in the healthy tissue of the outer ear using the O2C device (Oxygen to See; LEA Medizintechnik, Gießen, Germany). The results of this study revealed that the investigated microcirculation parameters such as the median values of blood flow (control group: 126 AU), relative amount of hemoglobin (control group: 59.5 AU), and tissue oxygen saturation (control group: 73%) are most similar to those of normal ear tissue when pedicled flaps based on the superficial temporal artery were used. These findings suggest that this type of reconstruction is superior for soft tissue reconstruction of the outer ear with burns in contrast to random pattern flaps and full skin grafts regarding the microcirculatory aspects. These findings may improve the knowledge on soft tissue viability and facilitate the exceptional and delicate process of planning the reconstruction of the auricle with burns. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity Across Spatial Scales in a Pine Barrens Ecosystem

    NASA Technical Reports Server (NTRS)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; Zhao, Feng; Dennison, Philip E.; Cook, Bruce D.; Brewster, Kristen; Green, Timothy M.; Serbin, Shawn P.

    2017-01-01

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (less than or equal to 5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal - pre- and post-fire event - WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the less than 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.

  18. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.

  19. Etiology, incidence and gender-specific patterns of severe burns in a German Burn Center - Insights of 25 years.

    PubMed

    Schiefer, Jennifer Lynn; Perbix, Walter; Grigutsch, Daniel; Zinser, Max; Demir, Erhan; Fuchs, Paul Christian; Schulz, Alexandra

    2016-05-01

    Burns often require special treatment in specialized burn centers. One of the specialized German burn centers is located in Cologne-Merheim. Only little is known about the etiology of burns in Germany, their monthly distribution and changes over the past 25 years. We therefore retrospectively analyzed the etiology for all patients treated at the burn intensive care unit (BICU) of Cologne in the last 25 years and categorized them into groups. Thereafter all groups were analyzed according to distribution of age, gender and occurrence. In this way we were able to show that the number of severe burns did not decrease over the time under evaluation and that it did not show seasonal variation. Injured females were older than males but fewer in number. The highest numbers of burns were related to fire, followed by electricity, hot liquids, chemicals and heat contact. Work-related burns occurred mostly with males. However, most of the burns were not work-related for either gender. The number of burns in Germany and in the world is still high, and prevention strategies do not always have the desired effect. This study aims to fill the gap in published burn knowledge in Germany by way of describing the gender differences and etiology characteristics. It can therefore help to identify risks and expand effective burn prevention strategies. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  1. Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska

    NASA Technical Reports Server (NTRS)

    Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut

    2011-01-01

    There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.

  2. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  3. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE PAGES

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...

    2017-01-21

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  4. Spatial patterns of large natural fires in Sierra Nevada wilderness areas

    USGS Publications Warehouse

    Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2007-01-01

    The effects of fire on vegetation vary based on the properties and amount of existing biomass (or fuel) in a forest stand, weather conditions, and topography. Identifying controls over the spatial patterning of fire-induced vegetation change, or fire severity, is critical in understanding fire as a landscape scale process. We use gridded estimates of fire severity, derived from Landsat ETM+ imagery, to identify the biotic and abiotic factors contributing to the observed spatial patterns of fire severity in two large natural fires. Regression tree analysis indicates the importance of weather, topography, and vegetation variables in explaining fire severity patterns between the two fires. Relative humidity explained the highest proportion of total sum of squares throughout the Hoover fire (Yosemite National Park, 2001). The lowest fire severity corresponded with increased relative humidity. For the Williams fire (Sequoia/Kings Canyon National Parks, 2003) dominant vegetation type explains the highest proportion of sum of squares. Dominant vegetation was also important in determining fire severity throughout the Hoover fire. In both fires, forest stands that were dominated by lodgepole pine (Pinus contorta) burned at highest severity, while red fir (Abies magnifica) stands corresponded with the lowest fire severities. There was evidence in both fires that lower wind speed corresponded with higher fire severity, although the highest fire severity in the Williams fire occurred during increased wind speed. Additionally, in the vegetation types that were associated with lower severity, burn severity was lowest when the time since last fire was fewer than 11 and 17 years for the Williams and Hoover fires, respectively. Based on the factors and patterns identified, managers can anticipate the effects of management ignited and naturally ignited fires at the forest stand and the landscape levels. ?? 2007 Springer Science+Business Media, Inc.

  5. Severe sepsis facilitates intestinal colonization by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and transfer of the SHV-18 resistance gene to Escherichia coli during antimicrobial treatment.

    PubMed

    Guan, Jun; Liu, Shaoze; Lin, Zhaofen; Li, Wenfang; Liu, Xuefeng; Chen, Dechang

    2014-01-01

    Infections caused by multidrug-resistant pathogens are frequent and life threatening in critically ill patients. To investigate whether severe sepsis affects gut colonization by resistant pathogens and genetic exchange between opportunistic pathogens, we tested the intestinal-colonization ability of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain carrying the SHV-18 resistance gene and the transfer ability of the resistance gene to endogenous Escherichia coli under ceftriaxone treatment in rats with burn injury only or severe sepsis induced by burns plus endotoxin exposure. Without ceftriaxone treatment, the K. pneumoniae strain colonized the intestine in both septic and burned rats for a short time, with clearance occurring earlier in burn-only rats but never in sham burn rats. In both burned and septic rats, the colonization level of the challenge strain dropped at the beginning and then later increased during ceftriaxone treatment, after which it declined gradually. This pattern coincided with the change in resistance of K. pneumoniae to ceftriaxone during and after ceftriaxone treatment. Compared with burn-only injury, severe sepsis had a more significant effect on the change in antimicrobial resistance to ceftriaxone. Only in septic rats was the resistance gene successfully transferred from the challenge strain to endogenous E. coli during ceftriaxone treatment; the gene persisted for at least 4 weeks after ceftriaxone treatment. We concluded that severe sepsis can facilitate intestinal colonization by an exogenous resistant pathogen and the transfer of the resistance gene to a potential endogenous pathogen during antimicrobial treatment.

  6. Characterization of skin allograft use in thermal injury.

    PubMed

    Fletcher, John L; Caterson, E J; Hale, Robert G; Cancio, Leopoldo C; Renz, Evan M; Chan, Rodney K

    2013-01-01

    This study provides objective data on the practice of allograft usage in severely burned patients. Furthermore, gaps in our knowledge are identified, and areas for further research are delineated. Using an institutional review board-approved protocol, active duty military patients injured while deployed in support of overseas contingency operations and treated at our burn center between March 2003 and December 2010 were identified. Their electronic medical records were reviewed for allograft use, TBSA burned, injury severity score, anatomic distribution of burns, operative burden, length of stay, transfusions, and outcome. Among 844 patients, 112 (13.3%) received allograft and 732 (86.7%) did not. The amount of allograft used per patient varied and was not normally distributed (median, 23.5; interquartile range, 69.5). Patients received allograft skin an average of 12.75 times during their admission. Allografted patients sustained severe burns (μ, 53.8% TBSA); most were transfused (71.2%) and grafted frequently, averaging every 7.45 days. Most commonly, allograft was placed on the extremities (66.5%) followed by the trunk (44.2%); however, the vast majority of allografted patients also had concomitant burns of the head (91.1%) and hands (87.5%). All-cause mortality among the allografted patients was 19.1%. In conclusion, allograft is commonly used in the surgical treatment of severe burns. Although there are no anatomic limitations to allograft placement, there are distinct patterns of use. Given the role of allograft in the acute management of large burns, there is need for further investigation of its effect on mortality, morbidity, and antigenicity.

  7. Evaluation of wildfire patterns at the wildland-urban fringe across the continental U.S.

    NASA Astrophysics Data System (ADS)

    Kinoshita, A. M.; Hogue, T. S.

    2014-12-01

    Wildfires threaten ecosystems and urban development across the United States, posing significant implications for land management and natural processes such as watershed hydrology. This study investigates the spatial association between large wildfires and urbanization. Several geospatial dataset are combined to map wildfires (Monitoring Trends in Burn Severity for 1984 to 2012) and housing density (SILVIS Lab Spatial Analysis for Conservation and Sustainability decadal housing density for 1940 to 2030) relative to natural wildlands across the contiguous U.S. Several buffers (i.e. 25 km) are developed around wildlands (Protected Areas Database of the United States) to quantify the change and relationship in spatial fire and housing density patterns. Since 1984, wildfire behavior is cyclical and follows general climatology, where warmer years have more and larger fires. Ignition locations also follow transportation corridors and development which provide easy accessibility to wildlands. In California, both fire frequency and total acres burned exhibit increasing trends (statistically significant at 95%). The 1980s average wildfire frequency and total acres burned was 3100 fires and approximately 1200 km2, respectively. These numbers have increased to 2200 fires and over 1500 km2 in the 2010 to 2012 period alone. Initial observations also show that decennial population and area burned for four major Californian counties (Los Angeles, San Bernardino, San Diego, and Shasta) show strong correlation between the last decade of burned area, urban-fringe proximity, and urbanization trends. Improving our understanding of human induced wildfire regimes provides key information on urban fringe communities most vulnerable to the wildfire risks and can help inform regional development planning.

  8. Drought and Fire in the Western United States: Contrasting the Causes, Distributions, and Effects of Drought in the 20th and 21st Centuries with a Multiyear Moisture Deficit Drought Index

    NASA Astrophysics Data System (ADS)

    Crockett, J.; Westerling, A. L.

    2016-12-01

    The current drought in California is considered to be most severe drought event of the 20th and 21st century. Climate models forecast increasing temperatures in the Western United States but are less certain regarding precipitation patterns. Here we impose a novel index based on sustained, multiyear moisture deficit anomalies onto a 1/8° grid of the Western United States to investigate 1) whether California's drought is irregular in the recent history of the Western States; 2) how temperature and precipitation affected the development of large drought events; and 3) what impact did drought events have on burn area and severity of fires. Fire records were compiled from the Monitoring Trends in Burn Severity database and compared to drought events since 1984. Results indicate that drought events similar in size and duration to the current drought have occurred in the West since 1918, though previous drought events were not as severe nor centered on California. Six drought events of similar size to the 2012 - 2014 drought were compared: while they were characterized by negative precipitation anomalies, only the 2012 - 2014 event exhibited temperature anomalies that increased over the drought's duration. In addition, we found that large fires ( > 1000 acres) within drought areas had greater total area burned as well as area burned at medium and high severities compared to fires in non-drought areas. Our results suggest that though uncertainty of future precipitation patterns exists, increasing temperatures will exacerbate drought severity when events do occur. In addition, understanding the relationships between droughts and fire can guide land managers to more effective fire management during drought events.

  9. Trauma mechanisms and injury patterns in pediatric burn patients.

    PubMed

    Moehrlen, Theres; Szucs, Thomas; Landolt, Markus A; Meuli, Martin; Schiestl, Clemens; Moehrlen, Ueli

    2018-03-01

    The objective of this study was to evaluate the frequency, severity, exact patterns and mechanisms of burn injuries in children. The patient records of children with acute burns admitted to the University Children's Hospital of Zurich were retrospectively reviewed over an 11year period. The age group with the highest risk, were children under the age of five (69%). Boys were overrepresented in all age groups, but the gender imbalance increased with age. Infants and toddlers were mainly injured by scalds and contact burns. Conversely, almost three quarters of injuries over the age of 9 were caused by flame. The majority of scald injuries was a result of pulling down hot liquids. The typical distribution of this accident scenario involved mainly the face, trunk and arms. More than half of all flame injuries occurred due to fire accelerants. 55% of children were passively involved while other children throwing flammable substances into a fire. Most of these injuries involved the face and arms. This study shows that burn etiology is age dependent. Additionally, our results demonstrate the diversity of burn accidents and their resulting injuries. These findings may help better specify target groups and subjects for prevention. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  10. Remote Sensing Field Guide - Desert

    DTIC Science & Technology

    1991-09-01

    rcatching on fire. Caution is advised against thorns on acacia trees, spikey Spinifex n•shes, and several different types of venomous snakes, as well as...e.g., mesquite, many acacias, Spinifex . DESERT PROCESSES WORKING GROUP PATTERN INDICATOR SHFET - DESERT DUNES PHOTOS: GROUND VEGETATION MOUNDS LOCATION...deliberate burning of natural vegetation is done episodically by the abo- rginal inhabitants. They burn the mature vegetation (primarily Spinifex ), which is

  11. Trends and causes of severity, size, and number of fires in northwestern California, USA.

    PubMed

    Miller, J D; Skinner, C N; Safford, H D; Knapp, E E; Ramirez, C M

    2012-01-01

    Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.

  12. Comparison of combat and non-combat burns from ongoing U.S. military operations.

    PubMed

    Kauvar, David S; Cancio, Leopoldo C; Wolf, Steven E; Wade, Charles E; Holcomb, John B

    2006-05-15

    Military burns result from either combat or non-combat causes. We compared these etiologies from patients involved in ongoing conflicts to evaluate their impact and provide prevention recommendations. All military patients with significant burns treated at the United States Army Institute of Surgical Research from April 2003 to May 2005 were reviewed. Injuries were categorized as having resulted from combat or non-combat causes. Demographics, burn severity and pattern, mortality, and early outcomes were compared. There were 273 burn patients seen with 63% injured in combat. A high early rate of non-combat injuries was noted. Feedback on non-combat burn prevention was provided to the combat theater, and the incidence of non-combat burns decreased. Mean age and time from injury to admission did not differ. The majority of combat injuries resulted from explosive device detonation. Waste burning, ammunition handling, and gasoline caused most non-combat injuries. Combat casualties had more associated and inhalation injuries and greater full-thickness burn size; total body surface area burned was equivalent. The hands and the face were the most frequently burned body areas. Mortality was 5% in combat and 2% in non-combat patients. The majority of survivors in both groups returned to military duty. The disparity in full-thickness burn size and incidence of inhalation and associated injuries resulted from differing mechanisms of injury, with explosions and penetrating trauma more common in combat wounds. Despite the severity of combat burns, mortality was low and outcomes generally good. Non-combat burns are preventable and have decreased in incidence.

  13. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado

    Treesearch

    Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd

    1999-01-01

    Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...

  14. Persistent Influences of the 2002 Hayman Fire on Stream Nitrate and Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Rhoades, C.; Pierson, D. N.; Fegel, T. S., II; Chow, A. T.; Covino, T. P.

    2016-12-01

    Large, high severity wildfires alter the physical and biological conditions that determine how watersheds retain and release nutrients and regulate stream water quality. For five years after the 2002 Hayman Fire burned in Colorado conifer forests, stream nitrate concentrations and export increased steadily in watersheds with extensive high-severity burning. Stream temperature and turbidity also increased in relation to the extent of high-severity burning and remained elevated above background levels throughout the initial five year post-fire period. Our recent sampling documents that 14 years after the Hayman Fire stream nitrate remains an order of magnitude higher in extensively-burned (35-90%) compared to unburned watersheds (0.2 vs 2.8 mg L-1). Nitrate represents 83% of the total dissolved N in extensively-burned watersheds compared to 29% in unburned watersheds. In contrast, dissolved organic carbon (DOC), was highest in watersheds that burned to a moderate extent (10-20%) and lowest in those with extensive burning. Catchments with a moderate extent burned had DOC concentrations 2.5 and 1.7 times more than those with extensive burning and unburned catchments, respectively. Peak concentrations of DOC and nitrate track the rising limb of the streamflow hydrograph and reach a maximum in May, but patterns among burn extent categories were seasonally consistent. Current riparian conditions are linked to stream nitrate in burned watersheds. For example, stream nitrate increases proportionally to the extent of riparian zones with low shrub cover (R2 = 0.76). We found signs of watershed recovery compared to the initial post-fire period; stream temperature and turbidity remained elevated in extensively burned catchments, but increases were only significant during the spring season. The persistent stream nitrate concentrations as well as the relation between riparian cover and post-fire stream nitrate may help prioritize restoration planting efforts and mitigate chronic, elevated nitrate export from burned watersheds.

  15. Avifaunal responses to fire in southwestern montane forests along a burn severity gradient

    USGS Publications Warehouse

    Kotliar, N.B.; Kennedy, P.L.; Ferree, K.

    2007-01-01

    The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17 351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986-1988, 1990) created a unique opportunity to quantify avifaunal changes in 13 pre-fire transects (resampled in 2002) and to compare two designs for analyzing the effects of unplanned disturbances: after-only analysis and before-after comparisons. Distance analysis was used to calculate densities. We analyzed after-only densities for 21 species using gradient analysis, which detected a broad range of responses to increasing burn severity: (I) large significant declines, (II) weak, but significant declines, (III) no significant density changes, (IV) peak densities in low- or moderate-severity patches, (V) weak, but significant increases, and (VI) large significant increases. Overall, 71% of the species included in the after-only gradient analysis exhibited either positive or neutral density responses to fire effects across all or portions of the severity gradient (responses III-VI). We used pre/post pairs analysis to quantify density changes for 15 species using before-after comparisons; spatiotemporal variation in densities was large and confounded fire effects for most species. Only four species demonstrated significant effects of burn severity, and their densities were all higher in burned compared to unburned forests. Pre- and post-fire community similarity was high except in high-severity areas. Species richness was similar pre- and post-fire across all burn severities. Thus, ecosystem restoration programs based on the assumption that recent severe fires in Southwestern ponderosa pine forests have overriding negative ecological effects are not supported by our study of post-fire avian communities. This study illustrates the importance of quantifying burn severity and controlling confounding sources of spatiotemporal variation in studies of fire effects. After-only gradient analysis can be an efficient tool for quantifying fire effects. This analysis can also augment historical data sets that have small samples sizes coupled with high non-process variation, which limits the power of before-after comparisons. ?? 2007 by the Ecological Society of America.

  16. The overall patterns of burns

    PubMed Central

    Almoghrabi, A.; Abu Shaban, N.

    2011-01-01

    Summary Burn patterns differ across the whole world and not only in relation to lack of education, overcrowding, and poverty. Cultures, habits, traditions, psychiatric illness, and epilepsy are strongly correlated to burn patterns. However, burns may also occur because of specific religious beliefs and activities, social events and festivals, traditional medical practices, occupational activities, and war. PMID:22639565

  17. Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.

    2017-12-01

    Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.

  18. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    USGS Publications Warehouse

    Barrett, K.; McGuire, A. David; Hoy, E.E.; Kasischke, E.S.

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep‐burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity.This new approach was used to identify black spruce stands that experienced intermediate‐ to high‐severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (∼4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co‐dominated by deciduous forest stands by 20%. Such disturbance‐driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.

  19. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity.

    PubMed

    Barrett, K; McGuire, A D; Hoy, E E; Kasischke, E S

    2011-10-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep-burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity. This new approach was used to identify black spruce stands that experienced intermediate- to high-severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (approximately 4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co-dominated by deciduous forest stands by 20%. Such disturbance-driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.

  20. 1984–2010 trends in fire burn severity and area for the conterminous US

    USGS Publications Warehouse

    Picotte, Joshua J.; Peterson, Birgit E.; Meier, Gretchen; Howard, Stephen M.

    2016-01-01

    Burn severity products created by the Monitoring Trends in Burn Severity (MTBS) project were used to analyse historical trends in burn severity. Using a severity metric calculated by modelling the cumulative distribution of differenced Normalized Burn Ratio (dNBR) and Relativized dNBR (RdNBR) data, we examined burn area and burn severity of 4893 historical fires (1984–2010) distributed across the conterminous US (CONUS) and mapped by MTBS. Yearly mean burn severity values (weighted by area), maximum burn severity metric values, mean area of burn, maximum burn area and total burn area were evaluated within 27 US National Vegetation Classification macrogroups. Time series assessments of burned area and severity were performed using Mann–Kendall tests. Burned area and severity varied by vegetation classification, but most vegetation groups showed no detectable change during the 1984–2010 period. Of the 27 analysed vegetation groups, trend analysis revealed burned area increased in eight, and burn severity has increased in seven. This study suggests that burned area and severity, as measured by the severity metric based on dNBR or RdNBR, have not changed substantially for most vegetation groups evaluated within CONUS.

  1. Fire severity in intermittent stream drainages, Western Cascade Range, Oregon.

    Treesearch

    Jennifer E. Tollefson; Frederick J. Swanson; John H. Cissel

    2004-01-01

    We quantified fire severity patterns within intermittent stream drainages in a recently burned area of the central western Cascades, Oregon. Aerial photographs were used to estimate post fire live canopy cover within streamside and upland zones on the southeast and southwest-facing slopes of 33 watersheds. Live canopy cover did not differ significantly between...

  2. Contemporary patterns of burn severity heterogeneity from fires in the Northwestern U.S.

    Treesearch

    R. Travis Belote

    2015-01-01

    Historically, frequent, low-severity fires maintained opengrown structure of dry ponderosa pine forests (Hessburg and Agee 2003). Thus, an open forest structure may be a reasonable template for ecological restoration in those particular forest types (Allen and others 2002). In contrast, setting goals for ecosystem management and restoration targets in the vast majority...

  3. Functional Characterization of Cultured Keratinocytes after Acute Cutaneous Burn Injury

    PubMed Central

    Gauglitz, Gerd G.; Zedler, Siegfried; v. Spiegel, Felix; Fuhr, Jasmin; v. Donnersmarck, Guido Henkel; Faist, Eugen

    2012-01-01

    Background In addition to forming the epithelial barrier against the outside environment keratinocytes are immunologically active cells. In the treatment of severely burned skin, cryoconserved keratinocyte allografts gain in importance. It has been proposed that these allografts accelerate wound healing also due to the expression of a favourable - keratinocyte-derived - cytokine and growth factor milieu. Methods In this study the morphology and cytokine expression profile of keratinocytes from skin after acute burn injury was compared to non-burned skin. Skin samples were obtained from patients after severe burn injury and healthy controls. Cells were cultured and secretion of selected inflammatory mediators was quantified using Bioplex Immunoassays. Immunohistochemistry was performed to analyse further functional and morphologic parameters. Results Histology revealed increased terminal differentiation of keratinocytes (CK10, CK11) in allografts from non-burned skin compared to a higher portion of proliferative cells (CK5, vimentin) in acute burn injury. Increased levels of IL-1α, IL-2, IL-4, IL-10, IFN-γ and TNFα could be detected in culture media of burn injury skin cultures. Both culture groups contained large amounts of IL-1RA. IL-6 and GM-CSF were increased during the first 15 days of culture of burned skin compared to control skin. Levels of VEGF, FGF-basic, TGF-ß und G-CSF were high in both but not significantly different. Cryoconservation led to a diminished mediator synthesis except for higher levels of intracellular IL-1α and IL-1ß. Conclusion Skin allografts from non-burned skin show a different secretion pattern of keratinocyte-derived cytokines and inflammatory mediators compared to keratinocytes after burn injury. As these secreted molecules exert auto- and paracrine effects and subsequently contribute to healing and barrier restoration after acute burn injury therapies affecting this specific cytokine/growth factor micromilieu could be beneficial in burned patients. PMID:22359539

  4. Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogeochemistry using 15N natural abundance in terrestrial and aquatic ecosystem components.

    PubMed

    Stephan, Kirsten; Kavanagh, Kathleen L; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post-fire available N.

  5. Comparing the Influence of Wildfire and Prescribed Burns on Watershed Nitrogen Biogeochemistry Using 15N Natural Abundance in Terrestrial and Aquatic Ecosystem Components

    PubMed Central

    Stephan, Kirsten; Kavanagh, Kathleen L.; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post-fire available N. PMID:25885257

  6. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets.

    PubMed

    Lasko, Kristofer; Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012-2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular.

  7. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets

    PubMed Central

    Vadrevu, Krishna Prasad; Nguyen, Thanh Thi Nhat

    2018-01-01

    Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012–2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular. PMID:29738543

  8. Improving Long-term Post-wildfire hydrologic simulations using ParFlow

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Kinoshita, A. M.

    2015-12-01

    Wildfires alter the natural hydrologic processes within a watershed. After vegetation is burned, the combustion of organic material and debris settles into the soil creating a hydrophobic layer beneath the soil surface with varying degree of thickness and depth. Vegetation regrowth rates vary as a function of radiative exposure, burn severity, and precipitation patterns. Hydrologic models used by the Burned Area Emergency Response (BAER) teams use input data and model calibration constraints that are generally either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models estimate runoff measurements at the watershed outlet; however, do not provide a distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to (1) correlate burn severity with hydrophobicity, (2) evaluate vegetation recovery rate on water components, and (3) improve flood prediction for managers to help with resource allocation and management operations in burned watersheds. ParFlow is applied to Devil Canyon (43 km2) in San Bernardino, California, which was 97% burned in the 2003 Old Fire. The model set-up uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness. Variable subsurface thickness allows users to explicitly consider the degree of recovery throughout the stages of regrowth. Burn severity maps from remotely sensed imagery are used to assign initial hydrophobic layer parameters and thickness. Vegetation regrowth is represented with satellite an Enhanced Vegetation Index. Pre and post-fire hydrologic response is evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements.

  9. One pediatric burn unit's experience with sleepwear related injuries

    PubMed Central

    McLoughlin, E.; Clarke, N.; Stahl, K.; Crawford, J.

    1998-01-01

    Review of the records of 678 children with acute injuries referred during an eight year period to this burn unit indicated that flame burns from a single ignition source (50%) outranked scalds (27%) or house fires (12%) as causes of injury. There was no temporal trend in the rank pattern. The majority of these single-source flame injuries were severe and involved ignition of the child's clothing. From 1969 through 1973, sleepwear was the clothing involved in 32% of the instances. Since that time and coincident with promulgation of strict federal and state standards for flammability of children's night clothing, a dramatic decline in the number of children referred with injuries of this type has taken place. It is probable that the single factor most important to the decline, in our experience with these injuries, is lower fabric flammability but, because our data may not be representative, corroboration is needed before one can exclude factors such as altered garment design, fire safety related practices at home, or changing patterns of hospital referral. PMID:9887427

  10. The ecological importance of severe wildfires: some like it hot.

    PubMed

    Hutto, Richard L

    2008-12-01

    Many scientists and forest land managers concur that past fire suppression, grazing, and timber harvesting practices have created unnatural and unhealthy conditions in the dry, ponderosa pine forests of the western United States. Specifically, such forests are said to carry higher fuel loads and experience fires that are more severe than those that occurred historically. It remains unclear, however, how far these generalizations can be extrapolated in time and space, and how well they apply to the more mesic ponderosa pine systems and to other forest systems within the western United States. I use data on the pattern of distribution of one bird species (Black-backed Woodpecker, Picoides arcticus) as derived from 16465 sample locations to show that, in western Montana, this bird species is extremely specialized on severely burned forests. Such specialization has profound implications because it suggests that the severe fires we see burning in many forests in the Intermountain West are not entirely "unnatural" or "unhealthy." Instead, severely burned forest conditions have probably occurred naturally across a broad range of forest types for millennia. These findings highlight the fact that severe fire provides an important ecological backdrop for fire specialists like the Black-backed Woodpecker, and that the presence and importance of severe fire may be much broader than commonly appreciated.

  11. Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California

    Treesearch

    John D. Alexander; Nathaniel E. Seavy; C Ralph; Bill Hogoboom

    2006-01-01

    We used vegetation data collected in areas before they were burned by the 2500 ha Quartz fire in southern Oregon and the 50 600 ha Big Bar complex in northern California to evaluate the ability of vegetation and topographic characteristics to predict patterns of fire severity. Fire severity was characterized as high, moderate, or low based on crown scorch and...

  12. Cytokine expression profile over time in burned mice.

    PubMed

    Finnerty, Celeste C; Przkora, Rene; Herndon, David N; Jeschke, Marc G

    2009-01-01

    The persistent inflammatory response induced by a severe burn increases patient susceptibility to infections and sepsis, potentially leading to multi-organ failure and death. In order to use murine models to develop interventions that modulate the post-burn inflammatory response, the response in mice and the similarities to the human response must first be determined. Here, we present the temporal serum cytokine expression profiles in burned mice in comparison to sham mice and human burn patients. Male C57BL/6 mice were randomized to control (n=47) or subjected to a 35% TBSA scald burn (n=89). Mice were sacrificed 3, 6, 9, 12, 24, and 48 h and 7, 10, and 14 days post-burn; cytokines were measured by multi-plex array. Following the burn injury, IL-6, IL-1beta, KC, G-CSF, TNF, IL-17, MIP-1alpha, RANTES, and GM-CSF were increased, p<0.05. IL-2, IL-3, and IL-5 were decreased, p<0.05. IL-10, IFN-gamma, and IL-12p70 were expressed in a biphasic manner, p<0.05. This temporal cytokine expression pattern elucidates the pathogenesis of the inflammatory response in burned mice. Expression of 11 cytokines were similar in mice and children, returning to lowest levels by post-burn day 14, confirming the utility of the burned mouse model for development of therapeutic interventions to attenuate the post-burn inflammatory response.

  13. Electronic diary evidence on energy erosion in clinical burnout.

    PubMed

    Sonnenschein, Mieke; Sorbi, Marjolijn J; van Doornen, Lorenz J P; Schaufeli, Wilmar B; Maas, Cora J M

    2007-10-01

    Burnout is generally defined as a state of severe exhaustion. So far, research has predominantly focused on relatively mild burnout in employees able to work despite their complaints. This study examines energy depletion in clinical burnout (e.g., the severest cases on extended sick leave) by comparing the diurnal patterns of fatigue and exhaustion with those of healthy individuals. Sixty clinically burned-out and 40 healthy participants kept an electronic diary for 14 days, 7 times a day, yielding a total of 8,116 diary entries. This study shows that burned-out individuals typically suffer continuously from a severe fatigue throughout the day. The resulting flattened diurnal cycles mark a stable exhaustion that is uncommon in healthy persons. The current results provide novel support for the existence of severe energy erosion in clinical burnout.

  14. Patterns of conifer regeneration following high severity wildfire in ponderosa pine - dominated forests of the Colorado Front Range

    Treesearch

    Marin E. Chambers; Paula J. Fornwalt; Sparkle L. Malone; Michael Battaglia

    2016-01-01

    Many recent wildfires in ponderosa pine (Pinus ponderosa Lawson & C. Lawson) - dominated forests of the western United States have burned more severely than historical ones, generating concern about forest resilience. This concern stems from uncertainty about the ability of ponderosa pine and other co-occurring conifers to regenerate in areas where no...

  15. Impaired Respiratory Function and Heightened Pulmonary Inflammation in Episodic Binge Ethanol Intoxication and Burn Injury

    PubMed Central

    Shults, Jill A.; Curtis, Brenda J.; Chen, Michael M.; O'Halloran, Eileen B.; Ramirez, Luis; Kovacs, Elizabeth J.

    2015-01-01

    Clinical data indicate that cutaneous burn injuries covering greater than ten percent total body surface area are associated with significant morbidity and mortality, where pulmonary complications, including acute respiratory distress syndrome (ARDS), contribute to nearly half of all patient deaths. Approximately 50% of burn patients are intoxicated at the time of hospital admission, which increases days on ventilators by three-fold, and doubles length of hospital admittance, compared to non-intoxicated burn patients. The most common drinking pattern in the United States is binge drinking, where one rapidly consumes alcoholic beverages (4 for women, 5 for men) in 2 hours and an estimated 38 million Americans binge drink, often several times per month. Experimental data demonstrate a single binge ethanol exposure prior to scald injury, impairs innate and adaptive immune responses, thereby enhancing infection susceptibility and amplifying pulmonary inflammation, neutrophil infiltration, and edema, and is associated with increased mortality. Since these characteristics are similar to those observed in ARDS burn patients, our study objective was to determine whether ethanol intoxication and burn injury and the subsequent pulmonary congestion affects physiological parameters of lung function using non-invasive and unrestrained plethysmography in a murine model system. Furthermore, to mirror young adult binge drinking patterns, and to determine the effect of multiple ethanol exposures on pulmonary inflammation, we utilized an episodic binge ethanol exposure regimen, where mice were exposed to ethanol for a total of 6 days (3 days ethanol, 4 days rest, 3 days ethanol) prior to burn injury. Our analyses demonstrate mice exposed to episodic binge ethanol and burn injury have higher mortality, increased pulmonary congestion and neutrophil infiltration, elevated neutrophil chemoattractants, and respiratory dysfunction, compared to burn or ethanol intoxication alone. Overall, our study identifies plethysmography as a useful tool for characterizing respiratory function in a murine burn model and for future identification of therapeutic compounds capable of restoring pulmonary functionality. PMID:26364264

  16. Desertification and other ecological impacts produced by the historic Rodeo-Chediski Wildfire of 2000, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Neary, D.; Ffolliott, P.; Stropki, C.

    2009-04-01

    The Rodeo-Chediski Wildfire - the largest in Arizona's history - damaged or destroyed ecosystem resources and disrupted ecosystem functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of this wildfire on tree overstories were studied on two watersheds in the area burned; one watershed burned by a high severity (stand-replacing) fire, while the other watershed burned by a low severity (stand-modifying) fire. The Rodeo-Chediski wildfire damaged or destroyed ecosystem resources and disrupted the ecological functioning on much of the 189,015 ha impacted by the burning. Intermingling chaparral shrub communities and pinyon-juniper woodlands at lower elevations and ponderosa pine forests at high elevations were located within the burned area. The wildfire was caused by two human ignitions that merged into one inferno. The Rodeo Fire was started by an arsonist on June 18, 2002, while the Chediski Fire was ignited as a signal fire by a stranded motorist on June 20th. The two fires merged on June 26, 2002, to become the Rodeo-Chediski Wildfire. The combined wildfires were contained on July 7th at a suppression (firefighting) cost of about €37.9 million (USA 50 million). However, the estimated costs associated with property losses; losses of ecosystem, anthropological, and cultural resources; and post-fire rehabilitation efforts increased the costs of the wildfire to over €114 million (USA 150 million). About one-half of the total area that was burned by the Rodeo-Chediski Wildfire experienced a high-severity fire, other areas burned at a low- to medium-severity fire, and still other areas were largely unburned according to a Burned Area Emergency Rehabilitation (BAER) report and fire severity map prepared shortly after containment of the wildfire. A mosaic of areas burned at varying fire severities within intermingling unburned areas resulted. Post-fire rehabilitation efforts, including establishment of water bars, wattles, k-rails, and aerial seeding and mulching of herbaceous plants to mitigate that anticipated accelerated post-fire soil erosion, began immediately after the fire was extinguished and it was declared safe for people to enter the burned area and initiate rehabilitation. An assessment of the impacts of the Rodeo-Chediski wildfire on soil erosion was carried out on two watersheds situated at the headwaters of the Little Colorado River. One of the watersheds experienced a high severity burn and the other a low-to-medium severity burn. Estimates of soil erosion on a watershed-basis and relative to physiographic characteristics on the two watersheds following the (a) high-intensity summer monsoonal rains and (2) low-intensity winter precipitation and spring snowmelt-runoff events are presented and compared with estimates of soil erosion following other wildfires in the region. Monitoring of soil erosion and other hydrologic and ecological parameters is continuing to obtain a longer, more comprehensive picture of the impacts of this catastrophic wildfire event. The Rodeo-Chediski Wildfire altered the species composition and impacted the production of herbaceous plants on the burned watersheds studied. Effects of the post-fire vegetation changes reduced the capabilities of watersheds to support livestock and some of the other larger herbivores in the region. When these watersheds will return to pre-fire conditions is largely unknown. Not only must the forage resources be restored but the magnitude of post-fire soil erosion and accompanying nutrient losses must be mitigated. Post-fire rehabilitation efforts including the seeding of herbaceous species and installation of controls to reduce soil erosion and sedimentation processes have helped to accelerate this recovery to some extent. A much longer time will obviously be required for severely burned areas to recover than those areas burned by at a low severity. Portions of the latter have already returned to pre-fire conditions.

  17. The response of Arctic vegetation and soils following an unusually severe tundra fire

    PubMed Central

    Bret-Harte, M. Syndonia; Mack, Michelle C.; Shaver, Gaius R.; Huebner, Diane C.; Johnston, Miriam; Mojica, Camilo A.; Pizano, Camila; Reiskind, Julia A.

    2013-01-01

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred. PMID:23836794

  18. The response of Arctic vegetation and soils following an unusually severe tundra fire.

    PubMed

    Bret-Harte, M Syndonia; Mack, Michelle C; Shaver, Gaius R; Huebner, Diane C; Johnston, Miriam; Mojica, Camilo A; Pizano, Camila; Reiskind, Julia A

    2013-08-19

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km(2) of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub-sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.

  19. In the media: Burns as a method of assault.

    PubMed

    O'Halloran, E; Duke, J; Rea, S; Wood, F

    2013-09-01

    The aims of this study were to determine whether a change occurred in the pattern of assault burn injury cases hospitalised to the adult state burns unit, Western Australia, from 2004 to mid-year of 2012, and to compare patient and burn characteristics of adult assault burns with those admitted for unintentional burns. Study data were obtained from the Royal Perth Hospital (RPH) Burns Minimum Dataset (BMDS). Aggregated data of unintentional burn admissions during the same period were provided by the BMDS data manager to enable comparisons with assault burn patients. Assault burn admissions during 2004-2012 accounted for approximately 1% of all adult burn hospitalisations. All assault victims were burned by either thermal or scald agents. A high rate of intubation (24%) and ICU admission (1 in 3 cases) was observed in the fire assault group. The six assault cases undergoing intubation were severe burns, median TBSA 50%, most commonly affecting the face, head and torso, half of these cases had inhalational injuries and also required escharotomies. Comparison of admissions by calendar period showed no statistically significant differences in demographic, burn cause or TBSA%. However, statistically significant differences were found for pre-morbid psychiatric history (15% vs. 58%, p=0.025) and concomitant fractures or dislocations (46% vs. 2%), p=0.011). While the proportion of assault burn admissions per total burn admissions steadily increased from 0.4% in 2009 to 1.5% in mid-2012, this proportion did not exceed that peak level observed of 2.1% for 2004. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Pattern of burn injury at north of Jordan.

    PubMed

    Bataineh, Ziad A; Al Quran, Thekraiat M; Al Balas, Hamzeh; Khammash, Muhmammad R

    2018-01-01

    To the best of our knowledge, pattern of burn injury was not reported yet at our region, our hospital considered the only tertiary referral center with the only burn unit at the region since 2001 till date, a retrospective analysis of our computerized filing system recorded 527 burn patients between 2001-2016, mean age was 26 years; 1.27:1 was the male to female ratio, 79 patients were found to have major burns, 46% of admissions were below 20 years' age, 92% was at domestic site of affection and 65% due to flame burn followed by scald burn in about 23%. The limbs were the most affected body site, majority of patients were below 15% TBSA and partial thickness, 77 patients found to have inhalational injury. Our mean hospital stay was 16 days and mortality was 8.2%. Mortality was associated with high TBSA affection, depth and flame type. This study shows the pattern of burn at north of Jordan, preventive measures by education and observation will reduce the incidence of burn and its sequel, non-flammable cook plates and stoves will probably help in decrease burn morbidity and mortality.

  1. Multidecadal trends in area burned with high severity in the Selway-Bitterroot Wilderness Area 1880-2012

    Treesearch

    Penelope Morgan; Andrew T. Hudak; Ashley Wells; Sean A. Parks; L. Scott Baggett; Benjamin C. Bright; Patricia Green

    2017-01-01

    Multidecadal trends in areas burned with high severity shape ecological effects of fires, but most assessments are limited to ~30 years of satellite data. We analysed the proportion of area burned with high severity, the annual area burned with high severity, the probability areas burned with high severity and also the area reburned (all severities and high burn...

  2. The relative importance of hydrophobicity in determining runoff-infiltration processes in burned forest soils

    NASA Astrophysics Data System (ADS)

    Wittenberg, Lea; Malkinson, Dan; Voogt, Annelies; Leska, Danny; Argaman, Eli; Keesstra, Saskia

    2010-05-01

    Wildfires induce fundamental changes to vegetation and soil structure/texture which conseqeuntly have major impacts on infiltration capacity, overland flow generation, runoff and sediment yields. The relative importance, however, of fire-induced soil water repellency (WR) on hydrological and erosional processes is somewhat controversial, partially, as the direct effects of soil WR in-situ field conditions have been difficult to isolate. It is generally accepted that hydrophobicity is caused by the formation of organic substances in forest soils, while burning is considered to enhance this process. Given the complex response of the soil-vegetation system to burning, soil WR is only one of several affecting soil hydrology. Other factors include the physical sealing of soils triggered by rain drops energy, the increase in soil erodibility due to changes in soil aggregates, and the role of the ash in sealing the burned surface. The degree and spatial distribution of WR burned varies considerably with fire severity, soil and vegetation type, soil moisture content and time since burning. Nevertheless, given the inverse relationship between soil moisture and hydrophobicity, the role of the latter in determining overland flow during wet winters when the soil is mostly inundated, is marginal. Following a 60 ha wildfire, which took place at the Pe'eram catchment during July 2009, we assessed the spatio-temporal distribution of WR in a burned Pinus halepensis forest. The site, located in the Upper Galille, Israel, was severely burned; the combustion removed all understory vegetation and burned down some of the trunks, leaving a thick layer of ash. The soils composed of reddish-brown clay loam forest soil and terra rossa on limestone bedrock, greyish light rendzina characterises the marl and chalk exposures. To consider the effect of distance from trees, in-situ hydrophobicity was assessed within a week, month and five months after the fire, using the WDPT test. Measurements were taken in concentric circles around the burned trees at two soil depths. We complemented this investigation by conducting a series of laboratory simulations. Non-burned soil was taken for laboratory analysis and rainfall simulations. Four treatment types were conducted: non-burned soil, non-burned soil + pine needles, burned soil without ash (300°C/15 min. after adding pine needles) and burned soil with the residue ash (300°C/15 min. after adding pine needles). Hydrophobicity was measured in all trays. Constant rainfall intensity of 30 mm/hr was simulated until terminal infiltration rates were reached. The experimental trays were oven dried and simulated again to imitate the effect of second rainstorm. Preliminary results indicate strong surface WR (60% >180s) at a distance of 1m and at the subsurface (50% >180s) directly by the trunk. In the control non-burned site stronger WR was found in proximity to the trunks. While in the burned sites extreme values (>300s) were apparent (15-35%) and correlated with distance from the trunk, no corresponding patterns were noticed in the control trees. The attempt to create homogeneous layer of WR under controlled laboratory conditions yielded a scattered pattern of repellency, similar to the field conditions. In contrast to expected, the bare soil and bare soil covered by needles exhibited the highest and lowest infiltration rates, respectively, while the burned hydrophobic soils demonstrated intermediate rates. It is thus suggested that in some soils, WR might enhance infiltration capacity by creating a complex mosaic of runoff-generating and runoff-absorbing micro-patches. In the experimental non-burned soil a rapid crusting of the surface provided lateral connectivity whilst the accumulation of litter and organic matter blanket the surface and enhance the vertical conductivity. To better understand the role of WR in generating hydrological response, it is required to consider the 3D 'sponge like' properties of the WR soils.

  3. Severity of burn and its related factors: A study from the developing country Pakistan.

    PubMed

    Adil, Syed Omair; Nisar, Nighat; Ehmer-Al-Ibran; Shafique, Kashif; Baig-Ansari, Naila

    2016-06-01

    Burns are leading cause of fatal injuries and major cause of morbidity and mortality in developing countries. The major obstacle in controlling severity is factors related to burn. This study determines frequency of burns and the factors related to it in Karachi, Pakistan. A cross-sectional study was conducted and 384 hospitalized adult patients with burns were consecutively interviewed during August 2013 to February 2014. Information was collected on socio-demographic profile, intent of burn, severity of burn, health hazards, physical and psychological characteristics. TBSA burn of >15% was considered as higher severity of burn. Higher severity of burns was found in 76.3% patients. Multivariate analysis showed that higher severity of burns were significantly associated with age less than 25 years (OR 2.7, 95% CI 1.5-4.9), never had been to school (OR 3.1, 95% CI 1.7-5.9) and intentional burn (OR 20.6, 95% CI 5.0-84.9). Majority of patients had higher severity of burn. The intent of injury was intentional, age less than 25 years and no schooling were found significantly associated with higher severity of burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  4. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.; Morton, D. C.; Chen, Y.; van der Werf, G.; Giglio, L.; Kasibhatla, P. S.; Randerson, J. T.

    2016-12-01

    Fire is an important and dynamic ecosystem process that influences many aspects of the global Earth system. Here, we used several different satellite datasets to assess trends in global burned area during 1998 to 2014. Global burned area decreased by about 21.6 ± 8.5% over the period from 1998-2014, with large regional declines observed in savanna and grassland ecosystems in northern Africa, Eurasia, and South America. The decrease in burned area remained robust after removing the influence of climate (16.0 ± 6.0%), implicating human activity as a likely driver. To further investigate the mechanisms contributing to regional and global trends, we conducted several kinds of analysis, including separation of burned area into ignition and fire size components and geospatial analysis of fire trends in relationship with demographic and land use variables. We found that fire number was a more important factor contributing to burned area trends than fire size, suggesting a reduction in the use of fire for management purposes. Concurrent decreases in fire size also contributed to the trend outside of North and South America, suggesting a role for greater landscape fragmentation. From our geospatial analysis, we developed a conceptual model that incorporates a range of drivers for human-driven changes in biomass burning that can be used to guide global fire models, currently unable to reproduce these large scale recent trends. Patterns of agricultural expansion and land use intensification are likely to further contribute to declining burned area trends in future decades, with important consequences for Earth system processes mediated by surface albedo, greenhouse gas emissions, and aerosols. Our results also highlight the vulnerability of savannas and grassland to land use changes with unprecedented global scale consequences for vegetation structure and the carbon cycle.

  5. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    PubMed

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.

  6. Pattern of burn injury at north of Jordan

    PubMed Central

    Bataineh, Ziad A; Al Quran, Thekraiat M; Al Balas, Hamzeh; Khammash, Muhmammad R

    2018-01-01

    To the best of our knowledge, pattern of burn injury was not reported yet at our region, our hospital considered the only tertiary referral center with the only burn unit at the region since 2001 till date, a retrospective analysis of our computerized filing system recorded 527 burn patients between 2001-2016, mean age was 26 years; 1.27:1 was the male to female ratio, 79 patients were found to have major burns, 46% of admissions were below 20 years’ age, 92% was at domestic site of affection and 65% due to flame burn followed by scald burn in about 23%. The limbs were the most affected body site, majority of patients were below 15% TBSA and partial thickness, 77 patients found to have inhalational injury. Our mean hospital stay was 16 days and mortality was 8.2%. Mortality was associated with high TBSA affection, depth and flame type. This study shows the pattern of burn at north of Jordan, preventive measures by education and observation will reduce the incidence of burn and its sequel, non-flammable cook plates and stoves will probably help in decrease burn morbidity and mortality. PMID:29531853

  7. A Novel Classification System for Injuries After Electronic Cigarette Explosions.

    PubMed

    Patterson, Scott B; Beckett, Allison R; Lintner, Alicia; Leahey, Carly; Greer, Ashley; Brevard, Sidney B; Simmons, Jon D; Kahn, Steven A

    Electronic cigarettes (e-cigarettes) contain lithium batteries that have been known to explode and/or cause fires that have resulted in burn injury. The purpose of this article is to present a case study, review injuries caused by e-cigarettes, and present a novel classification system from the newly emerging patterns of burns. A case study was presented and online media reports for e-cigarette burns were queried with search terms "e-cigarette burns" and "electronic cigarette burns." The reports and injury patterns were tabulated. Analysis was then performed to create a novel classification system based on the distinct injury patterns seen in the study. Two patients were seen at our regional burn center after e-cigarette burns. One had an injury to his thigh and penis that required operative intervention after ignition of this device in his pocket. The second had a facial burn and corneal abrasions when the device exploded while he was inhaling vapor. The Internet search and case studies resulted in 26 cases for evaluation. The burn patterns were divided in direct injury from the device igniting and indirect injury when the device caused a house or car fire. A numerical classification was created: direct injury: type 1 (hand injury) 7 cases, type 2 (face injury) 8 cases, type 3 (waist/groin injury) 11 cases, and type 5a (inhalation injury from using device) 2 cases; indirect injury: type 4 (house fire injury) 7 cases and type 5b (inhalation injury from fire started by the device) 4 cases. Multiple e-cigarette injuries are occurring in the United States and distinct patterns of burns are emerging. The classification system developed in this article will aid in further study and future regulation of these dangerous devices.

  8. Burned areas for the conterminous U.S. from 1984 through 2015, an automated approach using dense time-series of Landsat data

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Vanderhoof, M.; Beal, Y. J. G.; Takacs, J. D.; Schmidt, G.; Falgout, J.; Brunner, N. M.; Caldwell, M. K.; Picotte, J. J.; Howard, S. M.; Stitt, S.; Dwyer, J. L.

    2016-12-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, many existing fire datasets in the United States are known to be incomplete and that complicates efforts to understand burned area patterns and introduces a large amount of uncertainty in efforts to identify their driving processes and impacts. Because of this, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables. To help meet this need, we developed a novel algorithm that automatically identifies burned areas in temporally-dense time series of Landsat image stacks to produce Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Outputs of the BAECV algorithm, generated for the conterminous United States for 1984 through 2015, consist of burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability, burn classification, and the Julian date of the first Landsat scene a burn was observed. The BAECV products document patterns of fire occurrence that are not well characterized by existing fire datasets in the United States. We anticipate that these data could help to better understand past patterns of fire occurrence, the drivers that created them, and the impacts fires had on natural and human systems.

  9. Children with burns referred for child abuse evaluation: Burn characteristics and co-existent injuries.

    PubMed

    Pawlik, Marie-Christin; Kemp, Alison; Maguire, Sabine; Nuttall, Diane; Feldman, Kenneth W; Lindberg, Daniel M

    2016-05-01

    Intentional burns represent a serious form of physical abuse that must be identified to protect children from further harm. This study is a retrospectively planned secondary analysis of the Examining Siblings To Recognize Abuse (ExSTRA) network data. Our objective was to describe the characteristics of burns injuries in children referred to Child Abuse Pediatricians (CAPs) in relation to the perceived likelihood of abuse. We furthermore compare the extent of diagnostic investigations undertaken in children referred to CAPs for burn injuries with those referred for other reasons. Within this dataset, 7% (215/2890) of children had burns. Children with burns were older than children with other injuries (median age 20 months vs. 10 months). Physical abuse was perceived as likely in 40.9% (88) and unlikely in 59.1% (127). Scalds accounted for 52.6% (113) and contact burns for 27.6% (60). Several characteristics of the history and burn injury were associated with a significantly higher perceived likelihood of abuse, including children with reported inflicted injury, absent or inadequate explanation, hot water as agent, immersion scald, a bilateral/symmetric burn pattern, total body surface area ≥10%, full thickness burns, and co-existent injuries. The rates of diagnostic testing were significantly lower in children with burns than other injuries, yet the yield of skeletal survey and hepatic transaminases testing were comparable between the two groups. This would imply that children referred to CAPs for burns warrant the same level of comprehensive investigations as those referred for other reasons. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    PubMed

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  11. Survey of the Statewide Impact of Payer Source on Referral of Small Burns to Burn Centers.

    PubMed

    Penny, Rachel; Coffey, Rebecca; Jones, Larry; Bailey, J Kevin

    It is generally agreed that patients with large burns will be referred to organized burn centers, however, the referral of patients with smaller burns is less certain. A two-part survey was conducted to identify referral patterns for burn patients that meet American Burn Association referral criteria, and any effect insurance type might have on the referral patterns. The emergency departments of our state hospital association's member hospitals were contacted seeking a referral for a fictitious patient with a third-degree scald of the dominant hand. The referral sites were contacted twice, first stating that the patient had commercial insurance, next stating that the patient had Medicaid. Data collected included wait time for an appointment or reasons for denial of an appointment. Of 218 hospitals, 46 were excluded because they did not offer emergency care, and eight because they were listed as burn centers on the American Burn Association website. Of the remaining 164, 119 (73%) would refer to a burn center, 21 (13%) to a plastic surgeon, 10 (6%) to a hand surgeon, 7 (4%) to a wound center, 7 (4%) to another nonburn physician resource. There was no difference in wait time to the first available appointment with regards to insurance type (6.56 ± 4.68 vs 6.53 ± 5.05 days). Our state's referral pattern gives us insight into the regional referral pattern. This information will be used to guide a focused education and communication program to provide better service for the burn victims of our state.

  12. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests

    PubMed Central

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492

  13. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    PubMed

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.

  14. Pattern of severe electrical injuries in a Nigerian regional burn centre.

    PubMed

    Opara, K O; Chukwuanukwu, T O G; Ogbonnaya, I S; Nwadinigwe, C U

    2006-12-01

    Electrical injuries, though uncommon usually have devastating consequences. They are largely preventable. The objectives of the study were to highlight the pattern of severe electrical injuries seen in our environment, the management problems faced here compared with other studies and proffer suggestions for improvement and prevention. A 10-year retrospective study of case files of patients seen with electrical injuries in our centre was carried out from January 1995 to December 2004. Case notes were retrieved and data collated from them were analysed by descriptive statistics. Twenty four (24) case files met the inclusion criteria and were analysed. Electrical burns constituted 2.8% of total burn admissions. Patients' ages ranged from 15 months to 42 years. Male: Female ratio was 4.8:1. Seven (29%) had high voltage injuries, mostly work-related. Sixteen (67%) had low voltage injuries while one (4%) had a lightening injury. Fourteen (58%) presented or were referred more than 24 hours post injury. Fifteen (63%) had a form of surgical treatment with wound debridement (33%) skin grafting (38%) and amputations (29%) being the commonest ones. The mortality was 12.5% with septicaemia as the leading cause of death. Late presentation of patients to specialised centres, inadequate management at the primary centres of treatment, poverty and inadequate facilities even at the specialised centres were the main problems encountered. We recommend re-education of the populace including medical practitioners, enforcement of safety rules in the home and workplaces and upgrading of our health facilities to decrease the menace of severe electrical injuries.

  15. Soil geochemistry controls fire severity: A soil approach to improved understanding of forest fire consequences in southwest Montana.

    NASA Astrophysics Data System (ADS)

    Callahan, R.; Hartshorn, T.

    2014-12-01

    Fire severity can be defined using satellite imagery to ratio mid (~2.2 um) to near (~0.8 um) infrared reflectance values. We examined how lithology and topography affected burn severity, and how post-fire soils data could be used to ground-truth burn severity at two sites in southwestern Montana. A burned area reflectance classification (BARC), lithology, and terrain attributes were used to predict burn severity for the Millie Fire, which was triggered two years ago by lightning and burned ~4,000 ha. Burn severity showed a strong dependence on lithology: the ratio of areas with high burn severity vs. low or moderate burn severities was 2.9 for gneiss (vs. 0.3 for volcanics). The high-severity burn area for the gneiss was larger than the volcanics, despite the latter lithology covering ~270% greater area (~2,600 ha). Aspect and elevation also influenced burn severity with lower severity at higher elevations (2,600-3,000 m) and higher severity at lower elevations (1,800-2,400 m). Southern and western aspects burned more severely than northern and eastern aspects. To clarify whether post-fire soil geochemical changes might predict ground-based estimates of fire severity, a lab experiment was carried out . We expected residual enrichment of trace metal concentrations, as soil organic matter (SOM) was combusted, which we quantified as loss on ignition (LOI). To test this approach, burned and unburned soils were sampled from the ~6000 ha Beartrap 2 fire, which also burned two years. We simulated differing fire severities on unburned soil using a muffle furnace factorially (duration [5, 15, 30, 45, or 60 minutes] x temperature [50, 100, 200, 300, 400, or 500ºC]). Consistent with expectations, unburned samples had a lower mean (±1SD) concentrations for 23 of 30 elements than field-burned samples. For example, barium concentrations ([Ba]) in unburned samples were (708±37μg/g), 16% lower than field-burned [Ba] (841±7 μg/g). Simulated burning yielded smaller [Ba] (732±9 μg/g). Of the 30 trace metals examined, barium explained the greatest fraction of variance in post-burn LOI (R2 =0.79); gallium explained slightly less variance (R2=0.67). Our results document the promise of post-burn soil geochemistry to indicate soil burn severity, which could complement vegetation-based and remotely sensed indices.

  16. TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling.

    PubMed

    Liu, Lingying; Song, Huifeng; Duan, Hongjie; Chai, Jiake; Yang, Jing; Li, Xiao; Yu, Yonghui; Zhang, Xulong; Hu, Xiaohong; Xiao, Mengjing; Feng, Rui; Yin, Huinan; Hu, Quan; Yang, Longlong; Du, Jundong; Li, Tianran

    2016-07-22

    The hMSCs have become a promising approach for inflammation treatment in acute phase. Our previous study has demonstrated that human umbilical cord-MSCs could alleviate the inflammatory reaction of severely burned wound. In this study, we further investigated the potential role and mechanism of the MSCs on severe burn-induced excessive inflammation. Wistar rats were randomly divided into following groups: Sham, Burn, Burn+MSCs, Burn+MAPKs inhibitors, and Burn, Burn+MSCs, Burn+Vehicle, Burn+siTSG-6, Burn+rhTSG-6 in the both experiments. It was found that MSCs could only down-regulate P38 and JNK signaling, but had no effect on ERK in peritoneal macrophages of severe burn rats. Furthermore, suppression of P38 and JNK activations significantly reduced the excessive inflammation induced by severe burn. TSG-6 was secreted by MSCs using different inflammatory mediators. TSG-6 from MSCs and recombinant human (rh)TSG-6 all significantly reduced activations of P38 and JNK signaling induced by severe burn and then attenuated excessive inflammations. On the contrary, knockdown TSG-6 in the cells significantly increased phosphorylation of P38 and JNK signaling and reduced therapeutic effect of the MSCs on excessive inflammation. Taken together, this study suggested TSG-6 from MSCs attenuated severe burn-induced excessive inflammation via inhibiting activation of P38 and JNK signaling.

  17. Spatial and Temporal Patterns of Unburned Areas within Fire Perimeters in the Northwestern United States from 1984 to 2014

    NASA Astrophysics Data System (ADS)

    Meddens, A. J.; Kolden, C.; Lutz, J. A.; Abatzoglou, J. T.; Hudak, A. T.

    2016-12-01

    Recently, there has been concern about increasing extent and severity of wildfires across the globe given rapid climate change. Areas that do not burn within fire perimeters can act as fire refugia, providing (1) protection from the detrimental effects of the fire, (2) seed sources, and (3) post-fire habitat on the landscape. However, recent studies have mainly focused on the higher end of the burn severity spectrum whereas the lower end of the burn severity spectrum has been largely ignored. We developed a spatially explicit database for 2,200 fires across the inland northwestern USA, delineating unburned areas within fire perimeters from 1984 to 2014. We used 1,600 Landsat scenes with one or two scenes before and one or two scenes after the fires to capture the unburned proportion of the fire. Subsequently, we characterized the spatial and temporal patterns of unburned areas and related the unburned proportion to interannual climate variability. The overall classification accuracy detecting unburned locations was 89.2% using a 10-fold cross-validation classification tree approach in combination with 719 randomly located field plots. The unburned proportion ranged from 2% to 58% with an average of 19% for a select number of fires. We find that using both an immediate post-fire image and a one-year post fire image improves classification accuracy of unburned islands over using just a single post-fire image. The spatial characteristics of the unburned islands differ between forested and non-forested regions with a larger amount of unburned area within non-forest. In addition, we show trends of unburned proportion related primarily to concurrent climatic drought conditions across the entire region. This database is important for subsequent analyses of fire refugia prioritization, vegetation recovery studies, ecosystem resilience, and forest management to facilitate unburned islands through fuels breaks, prescribed burning, and fire suppression strategies.

  18. Do burns increase the severity of terror injuries?

    PubMed

    Peleg, Kobi; Liran, Alon; Tessone, Ariel; Givon, Adi; Orenstein, Arie; Haik, Josef

    2008-01-01

    The use of explosives and suicide bombings has become more frequent since October 2000. This change in the nature of terror attacks has marked a new era in the Israeli-Palestinian conflict. We previously reported that the incidence of thermal injuries has since risen. However, the rise in the incidence of burns among victims of terror was proportionate to the rise in the incidence of burns among all trauma victims. This paper presents data from the Israeli National Trauma Registry during the years 1997--2003, to compare the severity of injuries and outcome (mortality rates) in terror victims with and without burn injuries. We also compare the severity of injuries and outcome (mortality rates) for patients with terror-attack related burns to non terror-attack related burns during the same period. Data was obtained from the Israeli National Trauma Registry for all patients admitted to 8 to 10 hospitals in Israel between 1997 and 2003. We analyzed and compared demographic and clinical characteristics of 219 terror-related burn patients (terror/burn), 2228 terror patients with no associated burns (Terror/no-burn) and 6546 non terror related burn patients (burn/no-terror). Severity of injuries was measured using the injury severity score, and burn severity by total body surface percentage indices. Admission rates to Intensive Care Units (ICU) and total length of hospitalization were also used to measure severity of injuries. In-hospital mortality rates were used to indicate outcome. Of burn/terror patients, 87.2% suffered other accompanying injuries, compared with 10.4% of burn/no-terror patients. Of burn/terror patients, 49.8% were admitted to ICU compared with only 11.9% of burn/no-terror patients and 23.8% of no-burn/terror patients. Mean length of hospital stay was 18.5 days for the terror/burn group compared with 11.1 days for the burn/no-terror group and 9.5 days for the terror/no-burn group. Burn/terror patients had a significantly higher injury severity score compared with the other groups. In-hospital mortality rate for the burn/no-terror group was 3.4%. The burn/terror group had a mortality rate of 6.4% which was similar to the no-burn/terror group (6.6%). Terror-attack injuries with accompanying burns have a more complex presentation, are of higher severity, and are associated with increased length of hospital stay and a higher ICU admissions rate, compared with terror-attack injuries without burns and non terror-attack related burns. However, mortality rates in terror-attack injuries are not affected by burns.

  19. Patterns of Seed Productions in Table Mountain Pine

    Treesearch

    Ellen A. Gray; John C. Rennie; Thomas A. Waldrop; James L. Hanula

    2002-01-01

    The lack of regeneration in stands of Table Mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains is of concern, particularly to federal land managers. Efforts to regenerate Table Mountain pine (TMP) stands with prescribed burning have been less successful than expected. Several factors that may play a key role in successful...

  20. [Influence of three-level collaboration network of pediatric burns treatment in Anhui province on treatment effects of burn children].

    PubMed

    Xia, Z G; Zhou, X L; Kong, W C; Li, X Z; Song, J H; Fang, L S; Hu, D L; Cai, C; Tang, Y Z; Yu, Y X; Wang, C H; Xu, Q L

    2018-03-20

    Objective: To explore the influence of three-level collaboration network of pediatric burns in Anhui province on treatment effects of burn children. Methods: The data of medical records of pediatric burn children transferred from Lu'an People's Hospital and Fuyang People's Hospital to the First Affiliated Hospital of Anhui Medical University from January 2014 to December 2015 and January 2016 to September 2017 (before and after establishing three-level collaboration network of pediatric burns treatment) were analyzed: percentage of transferred burn children to hospitalized burn children in corresponding period, gender, age, burn degree, treatment method, treatment result, occurrence and treatment result of shock, and operative and non-operative treatment time and cost. Rehabilitation result of burn children transferred back to local hospitals in 2016 and 2017. Data were processed with t test, chi-square test, Mann-Whitney U test, and Fisher's exact test. Results: (1) Percentage of burn children transferred from January 2014 to December 2015 was 34.3% (291/848) of the total number of hospitalized burn children in the same period of time, which was close to 30.4% (210/691) of burn children transferred from January 2016 to September 2017 ( χ (2)=2.672, P >0.05). (2) Gender, age, burn degree, and treatment method of burn children transferred from the two periods of time were close ( χ (2)=3.382, Z =-1.917, -1.911, χ (2)=3.133, P >0.05). (3) Cure rates of children with mild, moderate, and severe burns transferred from January 2016 to September 2017 were significantly higher than those of burn children transferred from January 2014 to December 2015 ( χ (2)=11.777, 6.948, 4.310, P <0.05). Cure rates of children with extremely severe burns transferred from the two periods of time were close ( χ (2)=1.181, P >0.05). (4) Children with mild and moderate burns transferred from the two periods of time were with no shock. The incidence of shock of children with severe burns transferred from January 2014 to December 2015 was 6.0% (4/67), and 3 children among them were cured. The incidence of shock of children with severe burns transferred from January 2016 to September 2017 was 3.9% (2/51), and both children were cured. The incidences and cures of shock of children with severe burns transferred from the two periods of time were close ( χ (2)=0.006, P >0.05). Incidence of shock of children with extremely severe burns transferred from January 2014 to December 2015 was 57.1% (32/56), significantly higher than that of burn children transferred from January 2016 to September 2017 [34.5% (10/29), χ (2)=3.925, P <0.05]. Shock of 25 children with extremely severe burns transferred from January 2014 to December 2015 were cured, and shock of 9 children with extremely severe burns transferred from January 2016 to September 2017 were cured. The cures of shock of children with extremely severe burns transferred from the two periods of time were close ( χ (2)=0.139, P >0.05). (5) Time of operative treatment of children with moderate, severe, and extremely severe burns transferred from January 2014 to December 2015 was obviously longer than that of burn children transferred from January 2016 to September 2017 ( t =2.335, 2.065, 2.310, P <0.05). Time of operative treatment of children with mild burns transferred from the two periods of time was close ( Z =-0.417, P >0.05). Costs of operative treatment of children with moderate and severe burns transferred from January 2014 to December 2015 were significantly more than those of burn children transferred from January 2016 to September 2017 ( Z =-3.324, t =2.167, P <0.05). Costs of operative treatment of children with mild and extremely severe burns transferred from the two periods of time were close ( t =0.627, 0.808, P >0.05). (6)Time of non-operative treatment of children with mild, moderate, and severe burns transferred from January 2014 to December 2015 was obviously longer than that of burn children transferred from January 2016 to September 2017 ( t =2.335, Z =-2.095, t =2.152, P <0.05). Time of non-operative treatment of children with extremely severe burns transferred from the two periods of time was close ( t =0.450, P >0.05). Costs of non-operative treatment of children with moderate and severe burns transferred from January 2014 to December 2015 were obviously higher than those of burn children transferred from January 2016 to September 2017 ( Z =-2.164, t =2.040, P <0.05). Costs of non-operative treatment of children with mild and extremely severe burns transferred from the two periods of time were close ( t =0.146, 1.235, P >0.05). (7) Sixty-seven burn children transferred from January 2016 to September 2017 were transferred back to local hospitals for rehabilitation under the guidance of experts of the First Affiliated Hospital of Anhui Medical University, with 25 patients in 2016 and 42 patients in 2017. Effective rehabilitation rates of burn children transferred back to local hospitals for rehabilitation in 2016 and 2017 were both 100%. Conclusions: The three-level collaboration network of pediatric burns treatment in Anhui province can effectively increase cure rate of children with mild, moderate, and severe burns, reduce incidence of shock of children with extremely severe burns, shorten time of operative treatment of burn children with moderate, severe, and extremely severe burns, and time of non-operative treatment of children with mild, moderate, and severe burns, reduce treatment costs of children with moderate and severe burns, and improve rehabilitation effectiveness of children transferred from Lu'an People's Hospital and Fuyang People's Hospital to the the First Affiliated Hospital of Anhui Medical University.

  1. Modeling Fire Severity in Black Spruce Stands in the Alaskan Boreal Forest Using Spectral and Non-Spectral Geospatial Data

    NASA Technical Reports Server (NTRS)

    Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.

  2. Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data

    USGS Publications Warehouse

    Barrett, Kirsten M.; Kasischke, E.S.; McGuire, A.D.; Turetsky, M.R.; Kane, E.S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.

  3. Wildland fire and climate variability impacts on annual streamflow in watersheds across the continental United States: Regional patterns and attribution analysis

    NASA Astrophysics Data System (ADS)

    Hallema, D. W.; Sun, G.; Caldwell, P. V.; Norman, S. P.; Cohen, E. C.; Liu, Y.; McNulty, S. G.

    2016-12-01

    The magnitude of wildland fire impacts on water resources varies regionally depending on fire severity, topography, vegetation and climate. An assessment of the potential threat that wildland fire poses to water supplies across the conterminous United States (CONUS) is critically important because forests supply 50% of consumed water. In our assessment, we first performed a double mass analysis of streamflow (GAGES-II) vs. precipitation (PRISM) data from 170 burned watersheds to identify changes in average water yield in the first five years following wildland fire (MTBS burn severity dataset), which were positive in 52 watersheds (Chow test p<0.1), negative in 69 (p<0.1), and not significant in 49 (p>0.1). Subsequently, we separated the respective contributions of fire and climate variability to changes in annual runoff (dQ) by fitting linear climate elasticity models (CEMs), yielding acceptable CEMs (coefficient p<0.1) for 106 watersheds. Median dQ (MdQ) for 62 watersheds with a burned area to drainage area ratio (BAR) <10% declined by -12%, mostly attributed to lower annual precipitation (P) (-16%) associated with regional climate trends, which was a common response in watersheds in the eastern states with low severity prescribed (Rx) or wildfires. MdQ increased by +11% in 44 watersheds with BAR >10%, notwithstanding overall declining P. These watersheds were for the greatest part located in the western CONUS, where dQ was correlated with burn severity (R2>0.53, variable per severity class) and PET (R2=0.73). The most severe impacts were observed in Arizona (2005 Cave Creek Complex, 2004 Edge Complex and 2004 Willow Fires), with BARs >39% and dQ>+160%, while hydrologic response in the east was much less extreme with only 10 cases where post-fire dQ increased >+10%. The clear regional patterns in post-fire Q together with evidence showing that downward trends in P can mask flow enhancing effects of fire disturbance (24 watersheds), underline the importance of the combined analysis of wildland fire and climate impacts in national scale assessments. Research funded by the USDA Forest Service Southern Research Station, Joint Fire Science Program (#14-1-06-18), and Oak Ridge Institute for Science and Education (U.S. Department of Energy).

  4. Burning transformations: Fire history effects on organic matter processing from hillslopes to streams

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Gilbertson, A.; Maxwell, K.

    2017-12-01

    Disturbance strongly regulates material and energy flows, changing ecosystem pattern and process. An increase in the size and severity of fire, particularly in the Intermountain West, over the last several decades is expected to continue due to a warming climate. Predicting how fire will alter the net ecosystem carbon balance requires us to understand how carbon is stored, processed, and transferred. Here we present results from paired watersheds focused on five 2002 severe fires in Colorado to examine how organic matter is processed along the hillslope and within the stream. Comparing soil samples and water extractable organic matter (WEOM) between burned and unburned sites illustrates the impact of fire: burned soils have 50% organic matter (OM) content as unburned soils, regardless of geomorphic position. While a smaller pool, soil OM (SOM) in burned sites is more susceptible to microbial degradation (p<0.001 for 4 of 6 sites), especially in systems with slower vegetative recovery. This is explained, in part, to the water extractable organic matter (WEOM) from unburned soils having a higher C:N than burned sites (p<0.02). This shift in SOM quality is likely due to differing OM inputs (e.g. grasses and forbes vs. trees in burned vs. unburned sites). Comparing results from intact soil column experiments to soil extractions and stream samples, suggests that the majority of this soil derived WEOM does not make it to the stream, potentially getting sorbed deeper in the mineral rich, organic poor, portion of the soil. Interestingly, the systematic shifts in OM amounts and quality (as measured by SUVA, E2:E3, and fluorescence) within the terrestrial system in response to fire, are not seen in stream exports. As such, while there are significant relationships (p<0.05) between stream DOM quality, DOM bioavailability, and stream metabolism, burned watersheds are not exporting DOM that is more bioavailable. In addition, despite different terrestrial OM pools, burned and unburned watersheds export statistically similar amounts of DOM per unit area, suggesting that a larger fraction of OM is transferred from the terrestrial to aquatic ecosystem within fire affected landscapes.

  5. Pharmacological modulation of wound healing in experimental burns.

    PubMed

    Jurjus, Abdo; Atiyeh, Bishara S; Abdallah, Inaya M; Jurjus, Rosalyne A; Hayek, Shady N; Jaoude, Marlene Abou; Gerges, Alice; Tohme, Rania A

    2007-11-01

    Factors involved in wound healing and their interdependence are not yet fully understood; nevertheless, new prospects for therapy to favor speedy and optimal healing are emerging. Reports about wound healing modulation by local application of simple and natural agents abound even in the recent literature, however, most are anecdotal and lack solid scientific evidence. We describe the effect of silver sulfadiazine and moist exposed burn ointment (MEBO), a recently described burn ointment of herbal origin, on mast cells and several wound healing cytokines (bFGF, IL-1, TGF-beta, and NGF) in the rabbit experimental burn model. The results demonstrate that various inflammatory cells, growth factors and cytokines present in the wound bed may be modulated by application of local agents with drastic effects on their expression dynamics with characteristic temporal and spatial regulation and changes in the expression pattern. Such data are likely to be important for the development of novel strategies for wound healing since they shed some light on the potential formulations of temporally and combinatory optimized therapeutic regimens.

  6. The Burning of Surface and Deep Peat during Boreal Forest and Peatland Fires: Implications for Fire Behaviour and Global Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.

    2015-12-01

    Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.

  7. Quantifying soil burn severity for hydrologic modeling to assess post-fire effects on sediment delivery

    NASA Astrophysics Data System (ADS)

    Dobre, Mariana; Brooks, Erin; Lew, Roger; Kolden, Crystal; Quinn, Dylan; Elliot, William; Robichaud, Pete

    2017-04-01

    Soil erosion is a secondary fire effect with great implications for many ecosystem resources. Depending on the burn severity, topography, and the weather immediately after the fire, soil erosion can impact municipal water supplies, degrade water quality, and reduce reservoirs' storage capacity. Scientists and managers use field and remotely sensed data to quickly assess post-fire burn severity in ecologically-sensitive areas. From these assessments, mitigation activities are implemented to minimize post-fire flood and soil erosion and to facilitate post-fire vegetation recovery. Alternatively, land managers can use fire behavior and spread models (e.g. FlamMap, FARSITE, FOFEM, or CONSUME) to identify sensitive areas a priori, and apply strategies such as fuel reduction treatments to proactively minimize the risk of wildfire spread and increased burn severity. There is a growing interest in linking fire behavior and spread models with hydrology-based soil erosion models to provide site-specific assessment of mitigation treatments on post-fire runoff and erosion. The challenge remains, however, that many burn severity mapping and modeling products quantify vegetation loss rather than measuring soil burn severity. Wildfire burn severity is spatially heterogeneous and depends on the pre-fire vegetation cover, fuel load, topography, and weather. Severities also differ depending on the variable of interest (e.g. soil, vegetation). In the United States, Burned Area Reflectance Classification (BARC) maps, derived from Landsat satellite images, are used as an initial burn severity assessment. BARC maps are classified from either a Normalized Burn Ratio (NBR) or differenced Normalized Burned Ratio (dNBR) scene into four classes (Unburned, Low, Moderate, and High severity). The development of soil burn severity maps requires further manual field validation efforts to transform the BARC maps into a product more applicable for post-fire soil rehabilitation activities. Alternative spectral indices and modeled output approaches may prove better predictors of soil burn severity and hydrologic effects, but these have not yet been assessed in a model framework. In this project we compare field-verified soil burn severity maps to satellite-derived and modeled burn severity maps. We quantify the extent to which there are systematic differences in these mapping products. We then use the Water Erosion Prediction Project (WEPP) hydrologic soil erosion model to assess sediment delivery from these fires using the predicted and observed soil burn severity maps. Finally, we discuss differences in observed and predicted soil burn severity maps and application to watersheds in the Pacific Northwest to estimate post-fire sediment delivery.

  8. Monitoring the impact of straw burning on particulate pollution using satellite and in-situ observations in the North China Plain

    NASA Astrophysics Data System (ADS)

    Zeng, C.

    2015-12-01

    The North China Plain is one of the main grain producing areas of China, but is also a severe straw burning zone. Winter wheat and summer corn harvests in this area usually occur from the beginning of Jun and Oct, respectively. After harvest, farmers usually burn out the remaining straw for convenience. However, straw burning can release a large quantity of air pollutants and can consequently result in a significant deterioration in regional air quality. To monitor the impact of straw burning on particulate pollution, daily MODIS thermal anomaly products (MOD14 and MYD14) were used to identify dates and regions of straw burning. Then the corresponding MODIS AOD products (MOD04 and MYD04) and particulate matter (PM) concentration observations from ground stations were integrated using a geostatistical method. By combining the accurate station-based PM observations and satellite data of well spatial coverage, PM concentration distribution maps were generated. Meanwhile, NCEP reanalysis data were used to obtain the corresponding surface wind pattern maps. Preliminary results show that satellite and station-based observations can indicate the impact of straw burning on PM pollution during harvest time. Air qualities during these times are obviously affected by the straw burning and surface wind field. Moreover, the air quality of the southeast study region is susceptible to the straw burning in adjacent areas due to the characteristic of the terrain.

  9. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    PubMed

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  10. Capturing spatiotemporal variation in wildfires for improving postwildfire debris-flow hazard assessments: Chapter 20

    USGS Publications Warehouse

    Haas, Jessica R.; Thompson, Matthew P.; Tillery, Anne C.; Scott, Joe H.

    2017-01-01

    Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive natural hazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key input to postwildfire debris-flow modeling, the amount of watershed burned at moderate to high severity, in a prewildfire context. The use of stochastic wildfire simulation captures variability surrounding the timing and location of ignitions, fire weather patterns, and ultimately the spatial patterns of watershed area burned. Model results provide for enhanced estimates of postwildfire debris-flow hazard in a prewildfire context, and multiple hazard metrics are generated to characterize and contrast hazards across watersheds. Results can guide mitigation efforts by allowing planners to identify which factors may be contributing the most to the hazard rankings of watersheds.

  11. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2016-09-01

    Increasing rates of natural disturbances under a warming climate raise important questions about how multiple disturbances interact. Escalating wildfire activity in recent decades has resulted in some forests re-burning in short succession, but how the severity of one wildfire affects that of a subsequent wildfire is not fully understood. We used a field-validated, satellite-derived, burn-severity atlas to assess interactions between successive wildfires across the US Northern Rocky Mountains a 300,000-km 2 region dominated by fire-prone forests. In areas that experienced two wildfires between 1984 and 2010, we asked: (1) How do overall frequency distributions of burn-severity classes compare between first and second fires? (2) In a given location, how does burn severity of the second fire relate to that of the first? (3) Do interactions between successive fires vary by forest zone or the interval between fires? (4) What factors increase the probability of burning twice as stand-replacing fire? Within the study area, 138,061 ha burned twice between 1984 and 2010. Overall, frequency distributions of burn severity classes (low, moderate, high; quantified using relativized remote sensing indices) were similar between the first and second fires; however burn severity was 5-13% lower in second fires on average. Negative interactions between fires were most pronounced in lower-elevation forests and woodlands, when fire intervals were <10 yr, and when burn severity was low in the first fire. When the first fire burned as high severity and fire intervals exceeded 10-12 yr, burn-severity interactions switched from negative to positive, with high-severity fire begetting subsequent high-severity fire. Locations most likely to experience successive stand-replacing fires were high-elevation forests, which are adapted to high-severity fire, and areas conducive to abundant post-fire tree regeneration. Broadly similar severities among short-interval "re-burns" and other wildfires indicate that positive severity feedbacks, an oft-posited agent of ecosystem decline or state shift, are not an inevitable outcome of re-burning. Nonetheless, context-dependent shifts in both the magnitude and direction of wildfire interactions (associated with forest zone, initial burn-severity, and disturbance interval) illustrate complexities in disturbance interactions and can inform management and predictions of future system dynamics. © 2016 by the Ecological Society of America.

  12. Factors related to child maltreatment in children presenting with burn injuries.

    PubMed

    Wibbenmeyer, Lucy; Liao, Junlin; Heard, Jason; Kealey, Lyn; Kealey, Gerald; Oral, Resmiye

    2014-01-01

    The underpinnings of maltreatment in children presenting with burn injuries are necessary to discern as detection and prevention rest on a clear delineation of factors associated with maltreatment. Inaccurate identification of child victims can result in perpetuation of the maltreatment and its attendant neuropsychological sequela. The authors sought to determine factors associated with maltreatment in children presenting with burn injuries, which would guide the burn team in assessing the likelihood of maltreatment. All consenting children admitted with burn injuries were surveyed regarding their injury mechanism and current sociodemographic status. Suspicious injuries were referred by the burn team to the multidisciplinary review team (MRT). The MRT reported injuries with signs of physical abuse, supervision neglect, neglect of other basic needs, or sexual abuse. These children constituted the cases in our study. Variables related to maltreatment were entered into stepwise logistic regression to identify independent predicting variables. P< .05 was considered significant. MRT identified 16 children (24%) admitted with burn injuries with suspicions of maltreatment. Risk factors related to suspicions of maltreatment included: young age, large burns, tap water injury, immersion lines, delay in care, absence of a two-parent family (unconventional family structure), young parents, inconsistent history, and injury pattern. In this single-center prospective study, the authors identified several factors that, when present in injuries with initial suspicion of maltreatment, should trigger a child maltreatment workup. Burn clinicians have an important role as advocates for children and their families. It is important to continue to further the knowledge of maltreatment detection and prevention among children presenting with burn injuries.

  13. Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn.

    PubMed

    Zhang, Yi-Ming; Ruan, Jing; Xiao, Rong; Zhang, Qiong; Huang, Yue-Sheng

    2013-01-01

    Infrared lasers are widely used in medicine, industry, and other fields. While science, medicine, and the society in general have benefited from the many practical uses of lasers, they also have inherent safety issues. Although several procedures have been put forward to protect the skin from non-specific laser-induced damage, individuals receiving laser therapy or researchers who use laser are still at risk for skin damage. This study aims to understand the interaction between laser and the skin, and to investigate the differences between the skin damage caused by 1,064-nm laser and common thermal burns. Skin lesions on Wistar rats were induced by a 1,064-nm CW laser at a maximum output of 40 W and by a copper brass bar attached to an HQ soldering iron. Histological sections of the lesions and the process of wound healing were evaluated. The widths of the epidermal necrosis and dermal denaturalization of each lesion were measured. To observe wound healing, the epithelial gap and wound gap were measured. Masson's trichrome and picrosirius red staining were also used to assess lesions and wound healing. The thermal damage induced by laser intensified significantly in both horizontal dimension and in vertical depth with increased duration of irradiation. Ten days after wounding, the dermal injuries induced by laser were more severe. Compared with the laser-induced skin damage, the skin burn induced by an HQ soldering iron did not show a similar development or increased in severity with the passage of time. The results of this study showed the pattern of skin damage induced by laser irradiation and a heated brass bar. This study also highlighted the difference between laser irradiation and thermal burn in terms of skin damage and wound healing, and offers insight for further treatment.

  14. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    NASA Astrophysics Data System (ADS)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  15. Pattern of burn injury in hang-glider pilots.

    PubMed

    Campbell, D C; Nano, T; Pegg, S P

    1996-06-01

    High-voltage electrical injury has been well documented in a number of situations, such as the occupational hazard of linesmen and construction workers, and in the context of overhead railway power lines. Two cases of hang-glider pilots contacting 11,000-volt power lines have recently been treated in the Royal Brisbane Hospital Burns Unit. They demonstrate an interesting pattern of injury, not described in current burns literature, involving both hand and lower abdominal burns. Both patients sustained full-thickness patches of burn injury, with underlying muscle damage and peripheral neurological injury. This distribution of injury seems to be closely related to the design of the hang glider.

  16. Remote Sensing of Global Fire Patterns, Aerosol Optical Thickness, and Carbon Monoxide During April 1994

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Klich, Donna V.; Welch, Ronald M.; Nolf, Scott; Connors, Vickie S.

    1997-01-01

    Fires play a crucial role in several ecosystems. They are routinely used to burn forests in order to accommodate the needs of the expanding population, clear land for agricultural purposes, eliminate weeds and pests, regenerate nutrients in grazing and crop lands and produce energy for cooking and heating purposes. Most of the fires on earth are related to biomass burning in the tropics, although they are not confined to these latitudes. The boreal and tundra regions also experience fires on a yearly basis. The current study examines global fire patterns, Aerosol Optical Thickness (AOT) and carbon monoxide concentrations during April 9-19, 1994. Recently, global Advanced Very High Resolution Radiometer (AVHRR) data at nadir ground spatial resolution of 1 km are made available through the NASA/NOAA Pathfinder project. These data from April 9-19, 1994 are used to map fires over the earth. In summary, our analysis shows that fires from biomass burning appear to be the dominant factor for increased tropospheric CO concentrations as measured by the MAPS. The vertical transport of CO by convective activities, along with horizontal transport due to the prevailing winds, are responsible for the observed spatial distribution of CO.

  17. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests.

    PubMed

    Kulakowski, Dominik; Veblen, Thomas T

    2007-03-01

    Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.

  18. The Effect of Prescribed Burns and Wildfire on Vegetation in Bastrop State Park, TX

    NASA Astrophysics Data System (ADS)

    Justice, C. J.

    2014-12-01

    In 2011, central Texas had its worst drought since the 1950's. This, in conjunction with the strong winds produced by Tropical Storm Lee created conditions that made possible the Bastrop County Complex Fire in September 2011. These record-breaking wildfires burned over 95% of the 6,565-acre Bastrop State Park (BSP). Since 2003, BSP had been using prescribed burns as a management practice to reduce fuel load and prevent high severity wildfires. Although these prescribed fires did not prevent the 2011 wildfires they may have mitigated their effects. This study considered the effect of prescribed burn history and wildfire burn severity on vegetation recovery in BSP since the 2011 wildfire. The hypotheses of this study are that prescribed burn history and wildfire burn severity separately and jointly have affected post wildfire vegetation. To test these hypotheses, data were collected in 2013 from 46 plots across BSP using the Fire Effects Monitoring and Inventory (FIREMON) protocol to determine herbaceous plant density, shrub density, overstory density, and midstory tree density. Data were analyzed using analyses of variance (ANOVA) to determine the effects of prescribed fire and wildfire severity on these vegetation measurements. It was found that more severely burned plots had more herbaceous plants, fewer midstory trees, and lower shrub densities than less severely burned plots. Contrary to an initial hypotheses, there were few relationships between prescribed burn history and wildfire effects. The only significant effect detected for prescribed burning was the positive effect of prescribed fire on midstory tree density, but only for plots that were not severely burned in the wildfire. In this system, burn severity had a greater effect on post-wildfire vegetation than prescribed burns.

  19. Contributions of ignitions, fuels, and weather to the spatial patterns of burn probability of a boreal landscape

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz

    2011-01-01

    The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...

  20. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    PubMed

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (<0.5% cover), and vegetation characteristics were similar between grazed and ungrazed treatments. However, litter accumulation was almost twofold greater in ungrazed than in grazed treatments. Long-term grazing exclusion followed by burning resulted in a substantial B. tectorum invasion, but burning the grazed areas did not produce an invasion. The ungrazed-burned treatment also had less perennial vegetation than other treatments. The accumulation of litter (fuel) in ungrazed treatments may have resulted in greater fire-induced mortality of perennial vegetation in ungrazed compared to grazed treatments. Our results demonstrate that prior disturbances exert a strong influence on the response of plant communities to subsequent disturbances and suggest that low-severity disturbances may be needed in some plant communities to increase their resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.

  1. Regional patterns of cropland and pasture burning: Statistical separation of signals from remote sensing products

    NASA Astrophysics Data System (ADS)

    Rabin, S. S.; Pacala, S. W.; Magi, B. I.; Shevliakova, E.

    2013-12-01

    The use of fire in agriculture--to manage crop residues and pastoral grasses, and for clearing land--has consequences worldwide for air quality, human health, and climate. Airborne particulate matter from such burning aggravates respiratory ailments and can influence regional precipitation, while associated greenhouse gases and aerosols affect global climate. Little research, however, has focused on understanding patterns of cropland and pasture fire use with an eye towards simulation at global scales. Previous work by these authors showed that the separate seasonal trends of agricultural and non-agricultural fire could be extracted from large-scale fire observation and land use datasets. This study builds on that research, describing the derivation and application of a statistical method to estimate both the seasonality and amount of cropland, pasture, and other fire based on observations from satellite-based remote sensing products. We demonstrate that our approach is flexible enough to allow the incorporation of alternative high-quality observations of fire and/or land use that might be available only for certain regions. Results for a number of large regions around the world show that these two kinds of agricultural fire often differ in their extent and seasonality from each other and from burning on other land in ways that reflect known management practices. For example, we find that pasture in north-central sub-Saharan Africa tends to burn earlier than non-agricultural land; this can be attributed to pastoralists preventively burning their land early in the dry season so as to avoid severe, uncontrolled burns under more dangerous fire conditions later. Both the timing and extent of agricultural fires prove to be regionally specific; our method allows these geographically distinct patterns to be fully appreciated. The local and global differences in seasonality and amount of fire between different land-use types suggest that dynamic global vegetation models (DGVMs) should simulate fires on cropland and pasture fire independently from burning on other lands and take a regional approach in doing so. For example, pastoral burning dominates across large parts of the African region described above, where a fire model focused only on non-agricultural burning would therefore be inaccurate. On the other hand, in southern Africa those two types of fire more closely parallel each other. While a pure application of our analytical method is based exclusively on the relative distributions of fire activity and land use types, we demonstrate its incorporation into a more process-based fire model to capture the influence of seasonal and interannual variations in climate and ecosystem characteristics on burning. Such a model, the ultimate goal of our research, will help improve DGVM simulations--and therefore scientific understanding--of past, present, and future distributions of fire.

  2. Landsat-Based Detection and Severity Analysis of Burned Sugarcane Plots in Tarlac, Philippines Using Differenced Normalized Burn Ratio (dNBR)

    NASA Astrophysics Data System (ADS)

    Baloloy, A. B.; Blanco, A. C.; Gana, B. S.; Sta. Ana, R. C.; Olalia, L. C.

    2016-09-01

    The Philippines has a booming sugarcane industry contributing about PHP 70 billion annually to the local economy through raw sugar, molasses and bioethanol production (SRA, 2012). Sugarcane planters adapt different farm practices in cultivating sugarcane, one of which is cane burning to eliminate unwanted plant material and facilitate easier harvest. Information on burned sugarcane extent is significant in yield estimation models to calculate total sugar lost during harvest. Pre-harvest burning can lessen sucrose by 2.7% - 5% of the potential yield (Gomez, et al 2006; Hiranyavasit, 2016). This study employs a method for detecting burn sugarcane area and determining burn severity through Differenced Normalized Burn Ratio (dNBR) using Landsat 8 Images acquired during the late milling season in Tarlac, Philippines. Total burned area was computed per burn severity based on pre-fire and post-fire images. Results show that 75.38% of the total sugarcane fields in Tarlac were burned with post-fire regrowth; 16.61% were recently burned; and only 8.01% were unburned. The monthly dNBR for February to March generated the largest area with low severity burn (1,436 ha) and high severity burn (31.14 ha) due to pre-harvest burning. Post-fire regrowth is highest in April to May when previously burned areas were already replanted with sugarcane. The maximum dNBR of the entire late milling season (February to May) recorded larger extent of areas with high and low post-fire regrowth compared to areas with low, moderate and high burn severity. Normalized Difference Vegetation Index (NDVI) was used to analyse vegetation dynamics between the burn severity classes. Significant positive correlation, rho = 0.99, was observed between dNBR and dNDVI at 5% level (p = 0.004). An accuracy of 89.03% was calculated for the Landsat-derived NBR validated using actual mill data for crop year 2015-2016.

  3. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    NASA Astrophysics Data System (ADS)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  4. Late-onset rhabdomyolysis in burn patients in the intensive care unit.

    PubMed

    Bache, Sarah E; Taggart, Ian; Gilhooly, Charlotte

    2011-11-01

    Rhabdomyolysis (RML), defined as creatine phosphokinase (CPK) >1000 U/L, is relatively common immediately after a significant burn. Late-onset RML, occurring a week or more after a burn, is less well understood and recognised. All patients admitted to the Intensive Care Unit (ICU) following an acute burn between May 2006 and December 2009 were retrospectively identified. Patients with CPK>1000 U/L a week or more after their burn had a detailed notes review. Seventy-six patients were admitted during 43 months. Late-onset RML was demonstrated in 7/76 (9%) patients. They had a similar pattern of normal or mildly raised CPK on admission that resolved over the following days, but suddenly increased sharply to over 1000 U/L, a week or more after their burn, usually around day ten. A severe late-onset RML occurred in 5/76 (7%) patients, with a CPK rise of over 5000 U/L, and all required haemodialysis. Potential triggering factors for late-onset RML include sepsis, nephrotoxic drugs and hypophosphataemia. It is important to consider measuring CPK in all patients with the above complications, even after it has previously been observed to be normal, in order to initiate early treatment. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  5. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations and ignition probability grids (1000 x 1000 m) built from historical fire data (1995-2007). The simulation outputs were then examined to understand relationships between burn probability and specific vegetation types and ignition sources. Wildfire threats to specific values of human interest were quantified to map landscape patterns of wildfire risk. The simulation outputs also allowed us to differentiate between areas of the landscape that were progenitors of fires versus "victims" of large fires. The results provided spatially explicit data on wildfire likelihood and intensity that can be used in a variety of strategic and tactical planning forums to mitigate wildfire threats to human and other values in the Mediterranean Basin.

  6. Toll-Like Receptor Signaling in Burn Wound Healing and Scarring

    PubMed Central

    D'Arpa, Peter; Leung, Kai P.

    2017-01-01

    Significance: Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) emanate from burn-injured tissue and enter systemic circulation. Locally and systemically, they activate pattern-recognition receptors, including toll-like receptors (TLRs), to stimulate cytokine secretion, which in the severest burns typically results in extreme systemic cytokine levels, a dysfunctioning immune system, infection, impaired healing, and excessive scarring. This system-wide disruption of homeostasis can advance to life-threatening, multiorgan dysfunction syndrome. Knowledge of DAMP- and PAMP-TLR signaling may lead to treatments that ameliorate local and systemic inflammation and reduce scarring and other burn injury sequela. Recent Advances: Many PAMPs and DAMPs, the TLRs they activate, and their downstream signaling molecules have been shown to contribute to local and systemic inflammation and tissue damage following burn injury. Critical Issues: Whether TLR-pathway-targeting treatments applied at different times postburn injury might improve scarring remains an open question. The evaluation of this question requires the use of appropriate preclinical and clinical burn models carried out until after mature scar has formed. Future Directions: After TLR-pathway-targeting treatments are evaluated in porcine burn wound models and their safety is demonstrated, they can be tested in proof-of-concept clinical burn wound models. PMID:29062590

  7. In view of standardization: comparison and analysis of initial management of severely burned patients in Germany, Austria and Switzerland.

    PubMed

    Münzberg, Matthias; Ziegler, Benjamin; Fischer, Sebastian; Wölfl, Christoph Georg; Grützner, Paul Alfred; Kremer, Thomas; Kneser, Ulrich; Hirche, Christoph

    2015-02-01

    Initial treatment of severely injured patients in German speaking trauma centers follows precise sequences. Several guidelines and training courses ensure a constant quality in providing evidence-based treatment for these patients. Similar standards, algorithms and guidelines for the treatment of severely burned patients are lacking. This raises the question about the current standard of care for burn victims in German speaking burn centers. In order to achieve standardization, as a first step this study surveys principles of burn room organization and management in these burn centers. A questionnaire including 40 questions regarding burn room organization, personnel structure and qualification, infrastructural conditions and quality management was developed and sent to 21 level one burn centers in Germany, Austria and Switzerland. The rate of returned questionnaires was 81%. The analysis revealed varying personnel and infrastructural conditions in participating burn centers. Indications for admission to the burn room and admission procedures itself are different throughout surveyed hospitals. Individual standard operating procedure (SOP) for burn trauma admissions was available in most burn centers and nearly all participants register their burn trauma cases using an in-house burn register. The survey suggests a lack of standardization in personnel structure, infrastructure and treatment approach for the initial clinical care of severely burned patients in burn centers across the German speaking countries. Further evaluation of existing protocols and international standards in burn care is inevitable to develop standardized guidelines for burn care and to improve quality of care. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  8. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.

  9. Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-05-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.

  10. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Jin, Yufang; Randerson, James T.; Goetz, Scott J.; Beck, Pieter S. A.; Loranty, Michael M.; Goulden, Michael L.

    2012-03-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Database. We used the MODIS-derived difference Normalized Burn Ratio (dNBR) and initial changes in spring albedo as measures of burn severity. We found that the most severe burns had the greatest reduction in summer MODIS Enhanced Vegetation Index (EVI) in the first year after fire, indicating greater loss of vegetation cover. By 5-8 years after fire, summer EVI for all severity classes had recovered to within 90%-108% of prefire levels. Spring and summer albedo progressively increased during the first 7 years after fire, with more severely burned areas showing considerably larger postfire albedo increases during spring and more rapid increases during summer as compared with moderate- and low-severity burns. After 5-7 years, increases in spring albedo above prefire levels were considerably larger in high-severity burns (0.20 ± 0.06; defined by dNBR percentiles greater than 75%) as compared to changes observed in moderate- (0.16 ± 0.06; for dNBR percentiles between 45% and 75%) or low-severity burns (0.13 ± 0.06; for dNBR percentiles between 20% and 45%). The sensitivity of spring albedo to dNBR was similar in all ecozones and for all vegetation types along gradients of burn severity. These results suggest carbon losses associated with increases in burn severity observed in some areas of boreal forests may be at least partly offset, in terms of climate impacts, by increases in negative forcing associated with changes in surface albedo.

  11. Burn Severity Based Stream Buffers for Post Wildfire Salvage Logging Erosion

    NASA Astrophysics Data System (ADS)

    Bone, E. D.; Robichaud, P. R.; Brooks, E. S.; Brown, R. E.

    2017-12-01

    Riparian buffers may be managed for timber harvest disturbances to decrease the risk of hillslope erosion entering stream channels during runoff events. After a wildfire, burned riparian buffers may become less efficient at infiltrating runoff and reducing sedimentation, requiring wider dimensions. Testing riparian buffers under post-wildfire conditions may provide managers guidance on how to manage post-fire salvage logging operations on hillslopes and protect water quality in adjacent streams. We tested burned, unlogged hillslopes at the 2015 North Star Fire and 2016 Cayuse Mountain Fire locations in Washington, USA for their ability to reduce runoff flows and sedimentation. Our objectives were to: 1) measure the travel distances of concentrated flows using three sediment-laden flow rates, 2) measure the change in sediment concentration as each flow moves downslope, 3) test hillslopes under high burn-severity, low burn-severity and unburned conditions, and 4) conduct experiments at 0, 1 and 2 years since the fire events. Mean total flow length at the North Star Fire in year 1 was 211% greater at low burn-severity sites than unburned sites, and 467% greater at high burn-severity sites than unburned sites. Results decreased for all burned sites in year 2; by 40% at the high burn-severity sites, and by 30% at the low burn-severity sites, with no significant changes at the unburned sites. We tested only high burn-severity sites at the Cayuse Mountain Fire in year 0 and 1 where the mean total flow length between year 0 and year 1 decreased by 65%. The results of sediment concentration changes tracked closely with the magnitude of changes in flow travel lengths between treatments. Results indicate that managers may need to increase the widths of burned stream buffers during post-wildfire salvage logging for water quality protection, but stream buffer widths may decrease with less severe burn severity and increasing elapsed time (years) since fire.

  12. Sensitivity of Landsat image-derived burn severity indices to immediate post-fire effects

    Treesearch

    A. T. Hudak; S. Lewis; P. Robichaud; P. Morgan; M. Bobbitt; L. Lentile; A. Smith; Z. Holden; J. Clark; R. McKinley

    2006-01-01

    The USFS Remote Sensing Applications Center (RSAC) and the USGS Center for Earth Resources Observation and Science (EROS) produce Burned Area Reflectance Classification (BARC) maps as a rapid, preliminary indication of burn severity on large wildfire events. Currently the preferred burn severity index is the delta Normalized Burn Ratio (dNBR), which requires NBR values...

  13. Burn Wound Infections and Antibiotic Susceptibility Patterns at Pakistan Institute of Medical Sciences, Islamabad, Pakistan

    PubMed Central

    Saaiq, Muhammad; Ahmad, Shehzad; Zaib, Muhammad Salman

    2015-01-01

    BACKGROND Burn wound infections carry considerable mortality and morbidity amongst burn injury victims who have been successfully rescued through the initial resuscitation. This study assessed the prevalent microrganisms causing burn wound infections among hospitalized patients; their susceptibility pattern to commonly used antibiotics; and the frequency of infections with respect to the duration of the burn wounds. METHODS This study was carried out at Burn Care Centre, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan over a period of two years (i.e. from June 2010 to May 2012). The study included all wound-culture-positive patients of either gender and all ages, who had sustained deep burns and underwent definitive management with wound excisions and skin auto-grafting. Patients with negative cultures of the wounds were excluded. Tissue specimens for culture and sensitivity were collected from burn wounds using standard collection techniques and analyzed at microbiological laboratory. RESULTS Out of a total of 95 positive microbial growths, 36 were Pseudomonas aeruginosa (35.29%) as the most frequent isolate found, followed by 21 Klebsiella pneumoniae (20.58%), 19 Staphylococcus aureaus (18.62%), 10 Proteus (9.80%), 7 E. coli (6.86%), 7 Acinetobacter (6.86%), and 4 Candida (3.92%). A variable antibiotic susceptibility pattern was observed among the grown microbes. Positive cultures were significantly more frequent among patients with over two weeks duration of burn wounds. CONCLUSION P. aeruginosa, K. pneumoniae and S. aureus constituted the most common bacterial microbes of burn wounds in our in-patients cases. Positive cultures were more frequent among patients with over two weeks duration of burn wounds. Early excision and skin grafting of deep burns and adherence to infection control measures can help to effectively reduce the burden of these infections. PMID:25606471

  14. Patterns and processes: Monitoring and understanding plant diversity in frequently burned longleaf pine (Pinus palustris) landscapes

    Treesearch

    J. O' Brien; L. Dyer; R. Mitchell; A. Hudak

    2013-01-01

    Longleaf pine (Pinus palustris) ecosystems are remarkably rich in plant species and represent the dominant upland forest type in several southeastern military installations. Management of these forests on installations is critical both to fulfill the military mission and to conserve this unique natural resource. The researchers will couple a series of field experiments...

  15. Post-fire ecosystem recovery trajectories along burn severity gradients

    NASA Astrophysics Data System (ADS)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.; Smith, A. G.; Henareh Khalyani, A.

    2017-12-01

    Burn severity is a term used to describe the longer-term, second-order effects of fire on ecosystems. Plant communities are assumed to recover more slowly at higher burn severities; however, this likely depends on plant community type and climate. We assessed vegetation recovery approximately a decade post-fire across North American forests (moist mixed conifer, dry mixed conifer, ponderosa pine) and shrublands (mountain big sagebrush and Wyoming big sagebrush) distributed across climate and burn severity gradients. We assessed vegetation recovery across these ecosystems as indicated by the differenced Normalized Burn Ratio derived from 1984-2016 Landsat time series imagery (LandTrendr). Additionally, we used field vegetation measurements to examine local topographic controls on burn severity and post-fire vegetation recovery. Ecosystem responses were related to climate predictors derived from downscaled 1993-2011 climate normals. We hypothesized that drier and hotter ecosystems would take longer to recover. We also predicted areas with higher burn severity to have slower recovery. We found post-fire recovery to be strongly predicted by precipitation with the slowest recovery in shrublands and ponderosa pine forest, the driest vegetation types considered. We conclude that climate and burn severity interact to determine ecosystem recovery trajectories after fire, with burn severity having larger influence in the short term, and climate having larger influence in the long term.

  16. Burn severity estimation using GeoEye imagery, object-based image analysis (OBIA), and Composite Burn Index (CBI) measurements

    NASA Astrophysics Data System (ADS)

    Dragozi, E.; Gitas, Ioannis Z.; Stavrakoudis, Dimitris G.; Minakou, C.

    2015-06-01

    Forest fires greatly influence the stability and functions of the forest ecosystems. The ever increasing need for accurate and detailed information regarding post-fire effects (burn severity) has led to several studies on the matter. In this study the combined use of Very High Resolution (VHR) satellite data (GeoEye), Objectbased image analysis (OBIA) and Composite Burn Index (CBI) measurements in estimating burn severity, at two different time points (2011 and 2012) is assessed. The accuracy of the produced maps was assessed and changes in burn severity between the two dates were detected using the post classification comparison approach. It was found that the produced burn severity map for 2011 was approximately 10% more accurate than that of 2012. This was mainly attributed to the increased heterogeneity of the study area in the second year, which led to an increased number of mixed class objects and consequently made it more difficult to spectrally discriminate between the severity classes. Following the post-classification analysis, the severity class changes were mainly attributed to the trees' ability to survive severe fire damage and sprout new leaves. Moreover, the results of the study suggest that when classifying CBI-based burn severity using VHR imagery it would be preferable to use images captured soon after the fire.

  17. The wound/burn guidelines - 6: Guidelines for the management of burns.

    PubMed

    Yoshino, Yuichiro; Ohtsuka, Mikio; Kawaguchi, Masakazu; Sakai, Keisuke; Hashimoto, Akira; Hayashi, Masahiro; Madokoro, Naoki; Asano, Yoshihide; Abe, Masatoshi; Ishii, Takayuki; Isei, Taiki; Ito, Takaaki; Inoue, Yuji; Imafuku, Shinichi; Irisawa, Ryokichi; Ohtsuka, Masaki; Ogawa, Fumihide; Kadono, Takafumi; Kawakami, Tamihiro; Kukino, Ryuichi; Kono, Takeshi; Kodera, Masanari; Takahara, Masakazu; Tanioka, Miki; Nakanishi, Takeshi; Nakamura, Yasuhiro; Hasegawa, Minoru; Fujimoto, Manabu; Fujiwara, Hiroshi; Maekawa, Takeo; Matsuo, Koma; Yamasaki, Osamu; Le Pavoux, Andres; Tachibana, Takao; Ihn, Hironobu

    2016-09-01

    Burns are a common type of skin injury encountered at all levels of medical facilities from private clinics to core hospitals. Minor burns heal by topical treatment alone, but moderate to severe burns require systemic management, and skin grafting is often necessary also for topical treatment. Inappropriate initial treatment or delay of initial treatment may exert adverse effects on the subsequent treatment and course. Therefore, accurate evaluation of the severity and initiation of appropriate treatment are necessary. The Guidelines for the Management of Burn Injuries were issued in March 2009 from the Japanese Society for Burn Injuries as guidelines concerning burns, but they were focused on the treatment for extensive and severe burns in the acute period. Therefore, we prepared guidelines intended to support the appropriate diagnosis and initial treatment for patients with burns that are commonly encountered including minor as well as moderate and severe cases. Because of this intention of the present guidelines, there is no recommendation of individual surgical procedures. © 2016 Japanese Dermatological Association.

  18. The Hand Burn Severity (HABS) score: A simple tool for stratifying severity of hand burns.

    PubMed

    Bache, Sarah E; Fitzgerald O'Connor, Edmund; Theodorakopoulou, Evgenia; Frew, Quentin; Philp, Bruce; Dziewulski, Peter

    2017-02-01

    Hand burns represent a unique challenge to the burns team due to the intricate structure and unrivalled functional importance of the hand. The initial assessment and prognosis relies on consideration of the specific site involved as well as depth of the burn. We created a simple severity score that could be used by referring non-specialists and researchers alike. The Hand Burn Severity (HABS) score stratifies hand burns according to severity with a numerical value of between 0 (no burn) and 18 (most severe) per hand. Three independent assessors scored the photographs of 121 burned hands of 106 adult and paediatric patients, demonstrating excellent inter-rater reliability (r=0.91, p<0.0001 on testing with Lin's correlation coefficient). A significant relationship was shown between the HABS score and a reliable binary outcome of the requirement for surgical excision on Mann-Whitney U testing (U=152; Z=9.8; p=0.0001). A receiver operator characteristic (ROC) curve analysis found a cut off score of 5.5, indicating that those with a HABS score below 6 did not require an operation, whereas those with a score above 6 did. The HABS score was shown to be more sensitive and specific that assessment of burn depth alone. The HABS score is a simple to use tool to stratify severity at initial presentation of hand burns which will be useful when referring, and when reporting outcomes. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  19. Predicting gully rejuvenation after wildfire using remotely sensed burn severity data

    NASA Astrophysics Data System (ADS)

    Hyde, Kevin; Woods, Scott W.; Donahue, Jack

    2007-05-01

    The loss of surface vegetation and reduced infiltration caused by wildfires can trigger gully rejuvenation, resulting in damage to downstream aquatic resources and risk to human life and property. We developed a spatially explicit metric of burn severity — the Burn Severity Distribution Index (BSDI) — and tested its ability to predict post-fire gully rejuvenation in 1st and 2nd order basins burned in the 2000 Valley Complex fires in the Sapphire Mountains of western Montana. The BSDI was derived from burn severity data interpreted from Landsat 7 satellite imagery using the Normalized Burn Ratio (NBR) method, and ranged from 0.0 for completely unburned basins to 4.0 for basins burned entirely at high severity. In July 2001 rainstorms with peak 30-minute intensities of up to 17 mm h - 1 triggered gully rejuvenation in 66 of the 171 basins examined. The frequency of gully rejuvenation was higher in basins with higher BSDI values, increasing from zero for basins with a BSDI less than 1.3 to 67% for basins with a BSDI greater than 3.0. Binary logistic regression indicated that BSDI was a more significant predictor of gully rejuvenation than basin morphometric variables. The absence of gully rejuvenation in several basins with a high BSDI was attributed to low gradient, dense riparian vegetation, or concentration of high burn severity at lower elevations in the basin. The presence of gully rejuvenation in several basins with a low BSDI was associated with false negative NBR classification errors in northwest aspects, and concentration of severe burn impacts in the drainage headslopes. BSDI is a useful metric for predicting gully rejuvenation after wildfire. The use of the BSDI in Burned Area Emergency Response team assessments could improve the planning, implementation, and monitoring of burned area recovery treatments.

  20. Biomass Combustions and Burning Emissions Inferred from GOES Fire Radiative Power

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Schmidt, C.

    2007-12-01

    Biomass burning significantly affects air quality and climate changes. Current estimates of burning emissions are rather imprecise and vary markedly with different methodologies. This paper investigates biomass burning consumption and emissions using GOES (Geostationary Operational Environmental Satellites) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. In doing this, we establish a set of representatives in diurnal patterns of half-hourly GOES Fire Radiative Power (FRP) for various ecosystems. The representative patterns are used to fill the missed and poor observations of half hourly FRP in GOES fire data for individual fire pixels. The simulated FRP is directly applied to the calculation of the biomass combusted during fire activities. The FRP-based biomass combustion is evaluated using the estimates using a traditional model which integrates burned area, fuel loading, and combustion factor. In the traditional model calculation, we derive burned areas from GOES WF_ABBA fire size. Fuel loading includes three different types (1) MODIS Vegetation Property-based Fuel System (MVPFS), (2) National Dangerous Rating Systems (NFDRS), and (3) the Fuel Characteristic Classification System (FCCS). By comparing the biomass combustions across the Contiguous United States (CONUS) from 2003-2005, we conclude that FRP is an effective tool to estimate the biomass burning emissions. Finally, we examine the temporal and spatial patterns in biomass combustions and emissions (PM2.5, CO, NH3) across the CONUS.

  1. Fire severity and ecosytem responses following crown fires in California shrublands

    USGS Publications Warehouse

    Keeley, J.E.; Brennan, T.; Pfaff, A.H.

    2008-01-01

    Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses.Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining >50% of the variation in severity.Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly short-lived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types.Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire.A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a site but relative dNBR was not. Despite being correlated with fire severity, absolute dNBR showed little or no relationship with important ecosystem responses to wildfire such as shrub resprouting or total vegetative regeneration. These findings point to a critical need for further research on interpreting remote sensing indices as applied to postfire management of these shrublands.

  2. Fire severity and ecosytem responses following crown fires in California shrublands.

    PubMed

    Keeley, Jon E; Brennan, Teresa; Pfaff, Anne H

    2008-09-01

    Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses. Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining > 50% of the variation in severity. Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly shortlived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types. Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire. A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a site but relative dNBR was not. Despite being correlated with fire severity, absolute dNBR showed little or no relationship with important ecosystem responses to wildfire such as shrub resprouting or total vegetative regeneration. These findings point to a critical need for further research on interpreting remote sensing indices as applied to postfire management of these shrublands.

  3. Assessing the predictive capability of optical imaging techniques, Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI), to the gold standard of clinical assessment in a controlled animal model

    NASA Astrophysics Data System (ADS)

    Ponticorvo, A.; Rowland, R.; Baldado, M.; Burmeister, D. M.; Christy, R. J.; Bernal, N.; Durkin, A. J.

    2018-02-01

    The current standard for assessment of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Accurate early assessment of burn severity is critical for dictating the course of wound management. Complicating matters is the fact that burn wounds are often large and can have multiple regions that vary in severity. In order to manage the treatment more effectively, a tool that can provide spatially resolved information related to mapping burn severity could aid clinicians when making decisions. Several new technologies focus on burn care in an attempt to help clinicians objectively determine burn severity. By quantifying perfusion, laser speckle imaging (LSI) has had success in categorizing burn wound severity at earlier time points than clinical assessment alone. Additionally, spatial frequency domain imaging (SFDI) is a new technique that can quantify the tissue structural damage associated with burns to achieve earlier categorization of burn severity. Here we compared the performance of a commercial LSI device (PeriCam PSI, Perimed Inc.), a SFDI device (Reflect RSTM, Modulated Imaging Inc.) and conventional clinical assessment in a controlled (porcine) model of graded burn wound severity over the course of 28 days. Specifically we focused on the ability of each system to predict the spatial heterogeneity of the healed wound at 28 days, based on the images at an early time point. Spatial heterogeneity was defined by clinical assessment of distinct regions of healing on day 28. Across six pigs, 96 burn wounds (3 cm diameter) were created. Clinical assessment at day 28 indicated that 39 had appeared to heal in a heterogeneous manner. Clinical observation at day 1 found 35 / 39 (90%) to be spatially heterogeneous in terms of burn severity. The LSI system was able to detect spatial heterogeneity of burn severity in 14 / 39 (36%) cases on day 1 and 23 / 39 cases (59%) on day 7. By contrast the SFDI system was able to detect spatial heterogeneity of burn severity in 39 / 39 (100%) cases on day 1. Here we have demonstrated that for the purposes of predicting heterogeneity in wound healing, SFDI generated scattering properties were a significantly more effective tool than perfusion images measured using LSI. This indicates that SFDI may be better suited to help clinicians categorize different burns earlier, ultimately informing treatment strategy to improve patient outcomes.

  4. From the stand-scale to the landscape-scale: predicting the spatial patterns of forest regeneration after disturbance.

    PubMed

    Shive, Kristen L; Preisler, Haiganoush K; Welch, Kevin R; Safford, Hugh D; Butz, Ramona J; O'Hara, Kevin L; Stephens, Scott L

    2018-05-29

    Shifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increasing the distance from live tree seed sources. This has raised concerns about limitations to natural reforestation and the potential for conversion to non-forested vegetation types, which in turn has implications for shifts in many ecological processes and ecosystem services. We used a California region-wide dataset with 1,848 plots across 24 wildfires in yellow pine and mixed conifer forests to build a spatially-explicit habitat suitability model for forecasting postfire forest regeneration. To model the effect of seed availability, the critical initial biological filter for regeneration, we used a novel approach to predicting spatial patterns of seed availability by estimating annual seed production from existing basal area and burn severity maps. The probability of observing any conifer seedling in a 60m 2 area (the field plot scale) was highly dependent on 30-year average annual precipitation, burn severity and seed availability. We then used this model to predict regeneration probabilities across the entire extent of a "new' fire (the 2014 King Fire), which highlights the spatial variability inherent in postfire regeneration patterns. Such accurate forecasts of postfire regeneration patterns are of importance to land managers and conservationists interested in maintaining forest cover on the landscape. Our tool can also help anticipate shifts in ecosystem properties, supporting researchers interested in investigating questions surrounding alternative stable states, and the interaction of altered disturbance regimes and the changing climate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems

    USGS Publications Warehouse

    Klinger, Robert C.; Brooks, Matthew L.

    2017-01-01

    Arid ecosystems are often vulnerable to transformation to invasive-dominated states following fire, but data on persistence of these states are sparse. The grass/fire cycle is a feedback process between invasive annual grasses and fire frequency that often leads to the formation of alternative vegetation states dominated by the invasive grasses. However, other components of fire regimes, such as burn severity, also have the potential to produce long-term vegetation transformations. Our goal was to evaluate the influence of both fire frequency and burn severity on the transformation of woody-dominated communities to communities dominated by invasive grasses in major elevation zones of the Mojave Desert of western North America.We used a chronosequence design to collect data on herbaceous and woody cover at 229 unburned reference plots and 578 plots that burned between 1972 and 2010. We stratified the plots by elevation zone (low, mid, high), fire frequency (1–3 times) and years post-fire (YPF; 1–5, 6–10, 11–20 and 21–40 YPF). Burn severity for each plot was estimated by the difference normalized burn ratio.We identified two broad post-fire successional pathways. One was an outcome of fire frequency, resulting in a strong potential transformation via the grass/fire cycle. The second pathway was driven by burn severity, the critical aspect being that long-term transformation of a community could occur from just one fire in areas that burned at high or sometimes moderate severity. Dominance by invasive grasses was most likely to occur in low-and high-elevation communities; cover of native herbaceous species was often greater than that of invasive grasses in the mid-elevation zone.Synthesis. Invasive grasses can dominate a site that burned only one time in many decades at high severity, or a site that burned at low severity but multiple times in the same time period. However, high burn severity may predispose areas to more frequent fire because they have relatively high cover of invasive annual grass, suggesting burn severity and fire frequency have both independent and synergistic effects. Resilience in vegetation structure following fire in many arid communities may be limited to a narrow window of low burn severity in areas that have not burned in many decades.

  6. Early anticoagulation therapy for severe burns complicated by inhalation injury in a rabbit model

    PubMed Central

    Fu, Zhong-Hua; Guo, Guang-Hua; Xiong, Zhen-Fang; Liao, Xincheng; Liu, Ming-Zhuo; Luo, Jinhua

    2017-01-01

    The aim of the present study was to determine the effects of early anticoagulation treatment on severe burns complicated by inhalation injury in a rabbit model. Under anesthetization, an electrical burns instrument (100°C) was used to scald the backs of rabbits for 15 sec, which established a 30% III severe burns model. Treatment of the rabbits with early anticoagulation effectively improved the severe burns complicated by inhalation injury-induced lung injury, reduced PaO2, PaCO2 and SPO2 levels, suppressed the expression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6, and increased the activity of IL-10. In addition, it was found that early anticoagulation treatment effectively suppressed the activities of caspase-3 and caspase-9, upregulated the protein expression of vascular endothelial growth factor (VEGF) and decreased the protein expression of protease-activated receptor 1 (PAR1) in the severe burns model. It was concluded that early anticoagulation treatment affected the severe burns complicated by inhalation injury in a rabbit model through the upregulation of VEGF and downregulation of PAR1 signaling pathways. Thus, early anticoagulation is a potential therapeutic option for severe burns complicated by inhalation injury. PMID:28944866

  7. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska

    USGS Publications Warehouse

    Harden, J.W.; Manies, K.L.; Turetsky, M.R.; Neff, J.C.

    2006-01-01

    The influence of discontinuous permafrost on ground-fuel storage, combustion losses, and postfire soil climates was examined after a wildfire near Delta Junction, AK in July 1999. At this site, we sampled soils from a four-way site comparison of burning (burned and unburned) and permafrost (permafrost and nonpermafrost). Soil organic layers (which comprise ground-fuel storage) were thicker in permafrost than nonpermafrost soils both in burned and unburned sites. While we expected fire severity to be greater in the drier site (without permafrost), combustion losses were not significantly different between the two burned sites. Overall, permafrost and burning had significant effects on physical soil variables. Most notably, unburned permafrost sites with the thickest organic mats consistently had the coldest temperatures and wettest mineral soil, while soils in the burned nonpermafrost sites were warmer and drier than the other soils. For every centimeter of organic mat thickness, temperature at 5cm depth was about 0.5??C cooler during summer months. We propose that organic soil layers determine to a large extent the physical and thermal setting for variations in vegetation, decomposition, and carbon balance across these landscapes. In particular, the deep organic layers maintain the legacies of thermal and nutrient cycling governed by fire and revegetation. We further propose that the thermal influence of deep organic soil layers may be an underlying mechanism responsible for large regional patterns of burning and regrowth, detected in fractal analyses of burn frequency and area. Thus, fractal geometry can potentially be used to analyze changes in state of these fire prone systems. ?? 2006 Blackwell Publishing Ltd.

  8. Children with burn injuries-assessment of trauma, neglect, violence and abuse

    PubMed Central

    Toon, Michael H.; Maybauer, Dirk M.; Arceneaux, Lisa L.; Fraser, John F.; Meyer, Walter; Runge, Antoinette; Maybauer, Marc O.

    2011-01-01

    Abstract: Burns are an important cause of injury to young children, being the third most frequent cause of injury resulting in death behind motor vehicle accidents and drowning. Burn injuries account for the greatest length of stay of all hospital admissions for injuries and costs associated with care are substantial. The majority of burn injuries in children are scald injuries resulting from hot liquids, occurring most commonly in children aged 0-4 years. Other types of burns include electrical, chemical and intentional injury. Mechanisms of injury are often unique to children and involve exploratory behavior without the requisite comprehension of the dangers in their environment. Assessment of the burnt child includes airway, breathing and circulation stabilization, followed by assessment of the extent of the burn and head to toe examination. The standard rule of 9s for estimating total body surface area (TBSA) of the burn is inaccurate for the pediatric population and modifications include utilizing the Lund and Browder chart, or the child's palm to represent 1% TBSA. Further monitoring may include cardiac assessment, indwelling catheter insertion and evaluation of inhalation injury with or without intubation depending on the context of the injury. Risk factors and features of intentional injury should be known and sought and vital clues can be found in the history, physical examination and common patterns of presentation. Contemporary burn management is underscored by several decades of advancing medical and surgical care however, common to all injuries, it is in the area of prevention that the greatest potential to reduce the burden of these devastating occurrences exists. PMID:21498973

  9. Total inpatient treatment costs in patients with severe burns: towards a more accurate reimbursement model.

    PubMed

    Mehra, Tarun; Koljonen, Virve; Seifert, Burkhardt; Volbracht, Jörk; Giovanoli, Pietro; Plock, Jan; Moos, Rudolf Maria

    2015-01-01

    Reimbursement systems have difficulties depicting the actual cost of burn treatment, leaving care providers with a significant financial burden. Our aim was to establish a simple and accurate reimbursement model compatible with prospective payment systems. A total of 370 966 electronic medical records of patients discharged in 2012 to 2013 from Swiss university hospitals were reviewed. A total of 828 cases of burns including 109 cases of severe burns were retained. Costs, revenues and earnings for severe and nonsevere burns were analysed and a linear regression model predicting total inpatient treatment costs was established. The median total costs per case for severe burns was tenfold higher than for nonsevere burns (179 949 CHF [167 353 EUR] vs 11 312 CHF [10 520 EUR], interquartile ranges 96 782-328 618 CHF vs 4 874-27 783 CHF, p <0.001). The median of earnings per case for nonsevere burns was 588 CHF (547 EUR) (interquartile range -6 720 - 5 354 CHF) whereas severe burns incurred a large financial loss to care providers, with median earnings of -33 178 CHF (30 856 EUR) (interquartile range -95 533 - 23 662 CHF). Differences were highly significant (p <0.001). Our linear regression model predicting total costs per case with length of stay (LOS) as independent variable had an adjusted R2 of 0.67 (p <0.001 for LOS). Severe burns are systematically underfunded within the Swiss reimbursement system. Flat-rate DRG-based refunds poorly reflect the actual treatment costs. In conclusion, we suggest a reimbursement model based on a per diem rate for treatment of severe burns.

  10. How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods

    Treesearch

    C. Alina Cansler; Donald McKenzie

    2012-01-01

    Remotely sensed indices of burn severity are now commonly used by researchers and land managers to assess fire effects, but their relationship to field-based assessments of burn severity has been evaluated only in a few ecosystems. This analysis illustrates two cases in which methodological refinements to field-based and remotely sensed indices of burn severity...

  11. Gut microbiota trajectory in patients with severe burn: A time series study.

    PubMed

    Wang, Xinying; Yang, Jianbo; Tian, Feng; Zhang, Li; Lei, Qiucheng; Jiang, Tingting; Zhou, Jihong; Yuan, Siming; Wang, Jun; Feng, Zhijian; Li, Jieshou

    2017-12-01

    This time series experiments aimed to investigate the dynamic change of gut microbiomes after severe burn and its association with enteral nutrition (EN). Seven severely burned patients who suffered from a severe metal dust explosion injury were recruited in this study. The dynamic changes of gut microbiome of fecal samples at six time points (1-3days, 2, 3, 4, 5 and 6weeks after severe burn) were detected using 16S ribosomal RNA pyrosequencing technology. Following the post-burn temporal order, gut microbiota dysbiosis was detected in the gut microbiome after severe burn, then it was gradually resolved. The bio-diversity of gut bacteria was initially decreased, and then returned to normal level. In addition, at the early stage (from 2 to 4weeks), the majority of those patients' gut microbiome were opportunistic pathogen genus, Enterococcus and Escherichia; while at the end of this study, the majority was a beneficial genus, Bacteroides. EN can promote the recovery of gut microbiota, especially in EN well-tolerated patients. Severe burn injury can cause a dramatic dysbiosis of gut microbiota. A trend of enriched beneficial bacteria and diminished opportunistic pathogen bacteria may serve as prognosis microbiome biomarkers of severe burn patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Responses of pond-breeding amphibians to wildfire: Short-term patterns in occupancy and colonization

    Treesearch

    Blake R. Hossack; Paul Stephen Corn

    2007-01-01

    Wildland fires are expected to become more frequent and severe in many ecosystems, potentially posing a threat to many sensitive species. We evaluated the effects of a large, stand-replacement wildfire on three species of pond-breeding amphibians by estimating changes in occupancy of breeding sites during the three years before and after the fire burned 42 of 83...

  13. When the forest burns: making sense of fire history west of the Cascades.

    Treesearch

    Sally Duncan

    2002-01-01

    It is widely accepted that wildfire has been part of the Douglas-fir region for millennia, but the variations across space and time in frequency, severity, pattern, and influence of native people are poorly understood. With wildfire raging every summer across parts of the West, interest is growing in the roles of fire in ecosystems, the possible use of fire and fuels...

  14. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  15. Impact of the extreme 2009 wildfire Victoria the wettability of naturally highly water repellent soils

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.

    2010-05-01

    The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually fast-moving fire front and the resultant short fire residence time during this event. Thick ash layers were present at the time of sampling despite some significant earlier pre-sampling rainfall events. This suggests that the wettable ash (up to 15 cm thick) was able to store substantial amounts of water, which would otherwise have formed overland flow moving over the highly water repellent underlying mineral soil. Once this hydrological ‘sponge' is removed, the lack of ground cover is expected to lead to the underlying soil being susceptible to erosion until the ground cover becomes re-established. This ‘erosion window‘ is likely to be relatively brief over much of the burnt area as the vegetation is already showing a comparatively rapid regrowth response. This is supported by initial results from laboratory germination experiments, which showed seedling emergence from even the most severely burnt sites. The factors contributing to the fire impacts determined here are explored in conjunction with predictions for future burn severity under a changing climate. The soil samples collected represent a reference soil sample collection, which are available to the scientific community for further investigation.

  16. Vegetation burn severity mapping using Landsat-8 and WorldView-2

    USGS Publications Warehouse

    Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.

    2015-01-01

    We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.

  17. ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury

    PubMed Central

    Shen, Chuanan; Li, Dawei; Wang, Xiaoteng

    2017-01-01

    Severe burns are typically followed by hypermetabolism characterized by significant muscle wasting, which causes considerable morbidity and mortality. The aim of the present study was to explore the underlying mechanisms of skeletal muscle damage/wasting post-burn. Rats were randomized to the sham, sham+4-phenylbutyrate (4-PBA, a pharmacological chaperone promoting endoplasmic reticulum (ER) folding/trafficking, commonly considered as an inhibitor of ER), burn (30% total body surface area), and burn+4-PBA groups; and sacrificed at 1, 4, 7, 14 days after the burn injury. Tibial anterior muscle was harvested for transmission electron microscopy, calcium imaging, gene expression and protein analysis of ER stress / ubiquitin-proteasome system / autophagy, and calpain activity measurement. The results showed that ER stress markers were increased in the burn group compared with the sham group, especially at post-burn days 4 and 7, which might consequently elevate cytoplasmic calcium concentration, promote calpain production as well as activation, and cause skeletal muscle damage/wasting of TA muscle after severe burn injury. Interestingly, treatment with 4-PBA prevented burn-induced ER swelling and altered protein expression of ER stress markers and calcium release, attenuating calpain activation and skeletal muscle damage/wasting after severe burn injury. Atrogin-1 and LC3-II/LC3-I ratio were also increased in the burn group compared with the sham group, while MuRF-1 remained unchanged; 4-PBA decreased atrogin-1 in the burn group. Taken together, these findings suggested that severe burn injury induces ER stress, which in turns causes calpain activation. ER stress and subsequent activated calpain play a critical role in skeletal muscle damage/wasting in burned rats. PMID:29028830

  18. Prevalence, Comorbidity and Course of Trauma Reactions in Young Burn-Injured Children

    ERIC Educational Resources Information Center

    De Young, Alexandra C.; Kenardy, Justin A.; Cobham, Vanessa E.; Kimble, Roy

    2012-01-01

    Background: Infants, toddlers and preschoolers are the highest risk group for burn injury. However, to date this population has been largely neglected. This study examined the prevalence, onset, comorbidity and recovery patterns of posttrauma reactions in young children with burns. Methods: Parents of 130 unintentionally burned children (1-6…

  19. Assessment of burn-specific health-related quality of life and patient scar status following burn.

    PubMed

    Oh, Hyunjin; Boo, Sunjoo

    2017-11-01

    This study assessed patient-perceived levels of scar assessment and burn-specific quality of life (QOL) in Korean burn patients admitted to burn care centers and identified differences in scar assessment and QOL based on various patient characteristics. A cross-sectional descriptive study using anonymous paper-based survey methods was conducted with 100 burn patients from three burn centers specializing in burn care in South Korea. Mean subject age was 44.5 years old, and 69% of the subjects were men. The overall mean QOL was 2.91 out of 5. QOL was lowest for the work subdomain (2.25±1.45) followed by the treatment regimen subdomain (2.32±1.16). The subjects' mean total scar assessment score was 35.51 out of 60, and subjects were most unsatisfied with scar color. Subjects with low income, flame-source burns, severe burns, visible scars, and scars on face or hand reported significantly lower QOL. Subjects with severe burn degree and burn range perceived their burn scar condition to be worse than that of others. The results show that burn subjects experience the most difficulties with their work and the treatment regimen. Subjects with severe burn and visible scarring have a reduced QOL and a poor scar status. Scar management intervention may improve QOL of burn patients especially those with severe burn and visible scars. Further studies are warranted to evaluate the relationship between scar assessment and QOL. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  20. Comparison of soil infiltration rates in burned and unburned mountainous watersheds

    USGS Publications Warehouse

    Martin, D.A.; Moody, J.A.

    2001-01-01

    Steady-state infiltration measurements were made at mountainous sites in New Mexico and Colorado, USA, with volcanic and granitic soils after wildfires and at comparable unburned sites. We measured infiltration in the New Mexico volcanic soils under two vegetation types, ponderosa pine and mixed conifer, and in the Colorado granitic soils under ponderosa pine vegetation. These measurements were made within high-severity burn areas using a portable infiltrometer with a 0.017 m2 infiltration area and artificial rainfall rates ranging from 97 to 440 mm h-1. Steady-state infiltration rates were less at all burned sites relative to unburned sites. The volcanic soil with ponderosa pine vegetation showed the greatest difference in infiltration rates with a ratio of steady-state infiltration rate in burned sites to unburned soils equal to 0.15. Volcanic soils with mixed conifer vegetation had a ratio (burned to unburned soils) of at most 0.38, and granitic soils with ponderosa pine vegetation had a ratio of 0.38. Steady-state infiltration rates on unburned volcanic and granitic soils with ponderosa pine vegetation are not statistically different. We present data on the particle-size distribution at all the study sites and examples of wetting patterns produced during the infiltration experiments. Published in 2001 by John Wiley and Sons, Ltd.

  1. Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries

    DTIC Science & Technology

    2010-07-01

    TITLE: Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries PRINCIPAL INVESTIGATOR: David H. Sachs, M.D...4. TITLE AND SUBTITLE Genetically Modified Porcine Skin Grafts for Treatment of 5a. CONTRACT NUMBER Severe Burn Injuries 5b. GRANT NUMBER...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Burns, skin grafts , genetic

  2. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests

    Treesearch

    Donovan S. Birch; Penelope Morgan; Crystal A. Kolden; John T. Abatzoglou; Gregory K. Dillon; Andrew T. Hudak; Alistair M. S. Smith

    2015-01-01

    Burn severity as inferred from satellite-derived differenced Normalized Burn Ratio (dNBR) is useful for evaluating fire impacts on ecosystems but the environmental controls on burn severity across large forest fires are both poorly understood and likely to be different than those influencing fire extent. We related dNBR to environmental variables including vegetation,...

  3. Quality of life and mediating role of patient scar assessment in burn patients.

    PubMed

    Oh, Hyunjin; Boo, Sunjoo

    2017-09-01

    In this study, we examined the plausibility of the mediating effect of the levels of patient scar assessment on the relationship between burn severity measured with total body surface area and burn-specific health-related quality of life (HRQL) among patients with burns in South Korea. In this cross sectional descriptive study, we collected data from 100 burn patients in three burn centers specializing in burn care in South Korea. Patient scar assessment, burn specific HRQL, and burn-related characteristics were self-reported with anonymous, paper-based surveys. The findings showed a positive correlation between burn severity, patient scar assessment, and HRQL in burn patients. The evidence of this paper is that quality of life after burns more determined by scar characteristics than burn severity. In the light of the poor HRQL in burn patients, the results of this study support that improving scar status could improve patients' HRQL. Health care providers should keep in mind that patients' perspectives of their scars would be a great indicator of their HRQL, so the providers' focus should be on intensive scar management intervention in their care. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  4. Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa.

    PubMed

    Wadley, Lyn; Sievers, Christine; Bamford, Marion; Goldberg, Paul; Berna, Francesco; Miller, Christopher

    2011-12-09

    The Middle Stone Age (MSA) is associated with early behavioral innovations, expansions of modern humans within and out of Africa, and occasional population bottlenecks. Several innovations in the MSA are seen in an archaeological sequence in the rock shelter Sibudu (South Africa). At ~77,000 years ago, people constructed plant bedding from sedges and other monocotyledons topped with aromatic leaves containing insecticidal and larvicidal chemicals. Beginning at ~73,000 years ago, bedding was burned, presumably for site maintenance. By ~58,000 years ago, bedding construction, burning, and other forms of site use and maintenance intensified, suggesting that settlement strategies changed. Behavioral differences between ~77,000 and 58,000 years ago may coincide with population fluctuations in Africa.

  5. Burn severity mapping using simulation modeling and satellite imagery

    Treesearch

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  6. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.

    PubMed

    Erni, Sandy; Arseneault, Dominique; Parisien, Marc-André; Bégin, Yves

    2017-03-01

    The forest age mosaic is a fundamental attribute of the North American boreal forest. Given that fires are generally lethal to trees, the time since last fire largely determines the composition and structure of forest stands and landscapes. Although the spatiotemporal dynamics of such mosaics has long been assumed to be random under the overwhelming influence of severe fire weather, no long-term reconstruction of mosaic dynamics has been performed from direct field evidence. In this study, we use fire length as a proxy for fire extent across the fire-prone eastern Canadian taiga and systematically reconstruct the spatiotemporal variability of fire extent and fire intervals, as well as the resulting forest age along a 340-km transect for the 1840-2013 time period. Our results indicate an extremely active fire regime over the last two centuries, with an overall burn rate of 2.1% of the land area yr -1 , mainly triggered by seasonal anomalies of high temperature and severe drought. However, the rejuvenation of the age mosaic was strongly patterned in space and time due to the intrinsically lower burn rates in wetland-dominated areas and, more importantly, to the much-reduced likelihood of burning of stands up to 50 years postfire. An extremely high burn rate of ~5% yr -1 would have characterized our study region during the last century in the absence of such fuel age effect. Although recent burn rates and fire sizes are within their range of variability of the last 175 years, a particularly severe weather event allowed a 2013 fire to spread across a large fire refuge, thus shifting the abundance of mature and old forest to a historic low. These results provide reference conditions to evaluate the significance and predict the spatiotemporal dynamics and impacts of the currently strengthening fire activity in the North American boreal forest. © 2016 John Wiley & Sons Ltd.

  7. Does fire severity influence shrub resprouting after spring prescribed burning?

    NASA Astrophysics Data System (ADS)

    Fernández, Cristina; Vega, José A.; Fonturbel, Teresa

    2013-04-01

    Prescribed burning is commonly used to reduce the risk of severe wildfire. However, further information about the associated environmental effects is required to help forest managers select the most appropriate treatment. To address this question, we evaluated if fire severity during spring prescribed burning significantly affects the resprouting ability of two common shrub species in shrubland under a Mediterranean climate in NW Spain. Fire behaviour and temperatures were recorded in tagged individuals of Erica australis and Pterospartum tridentatum during prescribed burning. The number and length of resprouted shoots were measured three times (6, 12 and 18 months) after the prescribed burning. The influence of a series of fire severity indicators on some plant resprouting vigour parameters was tested by canonical correlation analysis. Six months and one year after prescribed burning, soil burn severity (measured by the absolute reduction in depth of the organic soil layer, maximum temperatures in the organic soil layer and the mineral soil surface during burning and the post-fire depth of the organic soil layer) reduced the resprouting vigour of E. australis and P. tridentatum. In contrast, direct measurements of fire effects on plants (minimum branch diameter, duration of temperatures above 300 °C in the shrub crown and fireline intensity) did not affect the post-fire plant vigour. Soil burn severity during spring prescribed burning significantly affected the short-term resprouting vigour in a mixed heathland in Galicia. The lack of effects eighteen months after prescribed burning indicates the high resilience of these species and illustrates the need to conciliate fire prevention and conservation goals.

  8. LANDSAT digital analysis of the initial recovery of the Kokolik River tundra fire area, Alaska

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Ormsby, J. P.; Johnson, L.; Brown, J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Considerable regrowth of vegetation was observed between August 1977 and August 1978, both in the field and through analysis of LANDSAT near infrared digital data. The spectral reflectances in the burned areas were found to increase with the age of the burn in a one year period due to vegetation regrowth. Regrowth was particularly evident in the lightly burned portions of the burned area. Image analysis techniques using the AOIPS system permitted delineation of burn severity categories. The conditions and type of ground cover prior to the fire influenced the severity of burning, as did the direction of the winds while the burning was in progress as determined from field and LANDSAT observations. More severe burning was induced by winds blowing in the northeastern and southeastern portions of the burned area.

  9. [Severe ocular burns by calcium carbide in a speleologist: a case report].

    PubMed

    Testud, F; Voegtlé, R; Nordmann, J P; Descotes, J

    2002-03-01

    A case of severe ocular burns in an amateur speleologist is reported. The explosion of his acetylene lamp caused the projection of calcium carbide particles, which induced burning of the cornea and conjunctiva in both eyes. He slowly recovered in several months. The pathophysiology of the burns, linked to the in situ production of lime, and their management are discussed.

  10. Evaluating and monitoring forest fuel treatments using remote sensing applications in Arizona, U.S.A.

    USGS Publications Warehouse

    Petrakis, Roy; Villarreal, Miguel; Wu, Zhuoting; Hetzler, Robert; Middleton, Barry R.; Norman, Laura M.

    2018-01-01

    The practice of fire suppression across the western United States over the past century has led to dense forests, and when coupled with drought has contributed to an increase in large and destructive wildfires. Forest management efforts aimed at reducing flammable fuels through various fuel treatments can help to restore frequent fire regimes and increase forest resilience. Our research examines how different fuel treatments influenced burn severity and post-fire vegetative stand dynamics on the San Carlos Apache Reservation, in east-central Arizona, U.S.A. Our methods included the use of multitemporal remote sensing data and cloud computing to evaluate burn severity and post-fire vegetation conditions as well as statistical analyses. We investigated how forest thinning, commercial harvesting, prescribed burning, and resource benefit burning (managed wildfire) related to satellite measured burn severity (the difference Normalized Burn Ratio – dNBR) following the 2013 Creek Fire and used spectral measures of post-fire stand dynamics to track changes in land surface characteristics (i.e., brightness, greenness and wetness). We found strong negative relationships between dNBR and post-fire greenness and wetness, and a positive non-linear relationship between dNBR and brightness, with greater variability at higher severities. Fire severity and post-fire surface changes also differed by treatment type. Our results showed harvested and thinned sites that were not treated with prescribed fire had the highest severity fire. When harvesting was followed by a prescribed burn, the sites experienced lower burn severity and reduced post-fire changes in vegetation greenness and wetness. Areas that had previously experienced resource benefit burns had the lowest burn severities and the highest post-fire greenness measurements compared to all other treatments, except for where the prescribed burn had occurred. These results suggest that fire treatments may be most effective at reducing the probability of hazardous fire and increasing post-fire recovery. This research demonstrates the utility of remote sensing and spatial data to inform forest management, and how various fuel treatments can influence burn severity and post-fire vegetation response within ponderosa pine forests across the southwestern U.S.

  11. Composition of breeding bird communities in Gulf Coast Chenier Plain marshes: Effects of winter burning

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2004-01-01

    Marsh managers along the Gulf Coast Chenier Plain frequently use winter burns to alter marsh vegetation and improve habitat quality for wintering waterfowl. However, effects of these burns on marsh avifauna are not well documented. We recorded abundances of breeding bird species and vegetation structure in burned and unburned control marshes during one breeding season before (1996) and two breeding seasons after (1997, 1998) experimental winter burns. We used non-metric multidimensional scaling analysis to assess the extent and direction of changes in bird community compositions of burned and unburned control marshes and to investigate the influence of vegetation structure on bird community composition. Overall, we found that Seaside Sparrows (Emberizidae: Ammodramus maritimus [Wilson]) and Red-winged Blackbirds and Boat-tailed Grackles (Icteridae: Agelaius phoeniceus [L.] and Quiscalus major Vieillot, respectively) comprised > 85% of observed birds. In burned marshes during the first breeding season following experimental burns (1997), icterid abundance increased while Seaside Sparrow abundance decreased relative to pre-burn (1996) conditions. This pattern was reversed during the second breeding season post-burn. No obvious patterns of change in avian abundance were detected in unburned control marshes over the 3-year period. Qualitative changes in breeding bird community composition were related to effects of winter burning on percent cover of dead vegetation and Spartina patens (Aiton) Muhl.

  12. Burn Severity and Its Impact on Soil Properties: 2016 Erskine Fire in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Haake, S.; Guo, J.; Krugh, W. C.

    2017-12-01

    Wildfire frequency in the southern Sierra Nevada has increased over the past decades. The effects of wildfires on soils can increase the frequency of slope failure and debris flow events, which pose a greater risk to people, as human populations expand into foothill and mountainous communities of the Sierra Nevada. Alterations in the physical properties of burned soils are one such effect that can catalyze slope failure and debris flow events. Moreover, the degree of a soil's physical alteration resulting from wildfire is linked to fire intensity. The 2016 Erskine fire occurred in the southern Sierra Nevada, burning 48,019 acres, resulting in soils of unburned, low, moderate, and high burn severities. In this study, the physical properties of soils with varying degrees of burn severity are explored within the 2016 Erskine fire perimeter. The results constrain the effects of burn severity on soil's physical properties. Unburned, low, moderate, and high burn severity soil samples were collected within the Erskine fire perimeter. Alterations in soils' physical properties resulting from burn severity are explored using X-ray diffractometry analysis, liquid limit, plastic limit, and shear strength tests. Preliminary results from this study will be used to assess debris flow and slope failure hazard models within burned areas of the Kern River watershed in the southern Sierra Nevada.

  13. Paediatric sunburn: the experience of an Australian paediatric burns unit.

    PubMed

    Mah, Latifa; Di Giovine, Paul; Quinn, Linda; Sparnon, Anthony

    2013-08-01

    The number of hospital presentations and admissions for treatment of sunburn remains significant, despite efforts to educate the public regarding sun protection. Current literature chiefly examines public health campaigns and sun protection behaviours and attitudes. There are very few articles that explore paediatric sunburn requiring hospital presentation. This study was therefore undertaken to provide a snapshot of this issue and to identify patterns and causative factors in the development of severe sunburn requiring hospital presentation. Data were collected for retrospective analysis from case records of patients who presented with sunburn and were registered on the Burns Service database at the Women's and Children's Hospital in South Australia. This study includes patients who presented during the period of October 2006 to March 2011. There were 81 cases identified over the period of 2006-2011 from the Burns database that had sufficient information for the purpose of this study. Factors such as outdoor activity and water sports were predictably apparent, with patients being burned on days with extremely high ultraviolet ratings. Key patterns that emerged were location of sunburn and sun protection use, which were gender and age specific. Larger-scale studies are warranted to further delineate the contributing factors and to identify the specific populations of children at risk of sunburn. Future educational programmes can therefore target these subgroups and behaviours for effective prevention of sunburn. Tailored campaigns that address these factors may be of greater impact in reducing hospital presentations and admissions of significant sunburn. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  14. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning

    NASA Astrophysics Data System (ADS)

    Parra, Antonio; Ramírez, David A.; Resco, Víctor; Velasco, Ángel; Moreno, José M.

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  15. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning.

    PubMed

    Parra, Antonio; Ramírez, David A; Resco, Víctor; Velasco, Ángel; Moreno, José M

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  16. Temporal patterns of charcoal burning suicides among the working age population in Hong Kong SAR: the influence of economic activity status and sex

    PubMed Central

    2012-01-01

    Background Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Methods Suicide data from 2001 to 2008 on victims of usual working age (20–59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Results Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. Conclusion The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific. PMID:22770504

  17. Temporal patterns of charcoal burning suicides among the working age population in Hong Kong SAR: the influence of economic activity status and sex.

    PubMed

    Law, Chi-kin; Leung, Candi M C

    2012-07-06

    Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Suicide data from 2001 to 2008 on victims of usual working age (20-59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific.

  18. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland-urban interface during the Wallow Fire, Arizona, USA

    Treesearch

    Maureen C. Kennedy; Morris C. Johnson

    2014-01-01

    Fuel reduction treatments are implemented in the forest surrounding the wildland–urban interface (WUI) to provide defensible space and safe opportunity for the protection of homes during a wildfire. The 2011 Wallow Fire in Arizona USA burned through recently implemented fuel treatments in the wildland surrounding residential communities in the WUI, and those fuel...

  19. Preventative Therapeutics for Heterotopic Ossification

    DTIC Science & Technology

    2016-12-01

    lamellar bone within soft tissue after severe traumatic in- jury [10]. It is known to develop in the majority of combat- related amputations, and early...in- jury pattern alone and in various combinations. Lastly, we evaluated the time course of gene expression for a small subset of genes at given...demonstrated in a murine Achilles tenotomy plus partial-thickness dorsum burn in- jury model that injured mice develop endochondral ectopic bone and

  20. The Acute Respiratory Distress Syndrome (ARDS) in mechanically ventilated burn patients: An analysis of risk factors, clinical features, and outcomes using the Berlin ARDS definition.

    PubMed

    Cartotto, Robert; Li, Zeyu; Hanna, Steven; Spano, Stefania; Wood, Donna; Chung, Karen; Camacho, Fernando

    2016-11-01

    The Berlin definition of Acute Respiratory Distress Syndrome (ARDS) has been applied to military burns resulting from combat-related trauma, but has not been widely studied among civilian burns. This study's purpose was to use the Berlin definition to determine the incidence of ARDS, and its associated respiratory morbidity, and mortality among civilian burn patients. Retrospective study of burn patients mechanically ventilated for ≥48h at an American Burn Association-verified burn center. The Berlin criteria identified patients with mild, moderate, and severe ARDS. Logistic regression was used to identify variables predictive of moderate to severe ARDS, and mortality. The outcome measures of interest were duration of mechanical ventilation and in-hospital mortality. Values are shown as the median (Q1-Q3). We included 162 subjects [24% female, age 48 (35-60), % total body surface area (TBSA) burn 28 (19-40), % body surface area (BSA) full thickness (FT) burn 13 (0-30), and 62% with inhalation injury]. The incidence of ARDS was 43%. Patients with ARDS had larger %TBSA burns [30.5 (23.1-47.0) vs. 24.8 (17.1-35), p=0.007], larger FT burns [20.5(5.4-35.5) vs. 7 (0-22.1), p=0.001], but had no significant difference in the incidence of inhalation injury (p=0.216), compared to those without ARDS. The % FT burn predicted the development of moderate to severe ARDS [OR 1.034, 95%CI (1.013-1.055), p=0.001]. ARDS developed in the 1st week after burn in 86% of cases. Worsening severity of ARDS was associated with increased days of mechanical ventilation in survivors (p=0.001), a reduction in ventilator-free days/1st 30 days in all subjects (p=0.004), and a strong indication of increased mortality (0% in mild ARDS vs. 50% in severe ARDS, unadjusted p=0.02). Neither moderate ARDS nor severe ARDS were significant predictors of death. ARDS is common among mechanically ventilated civilian burn patients, and develops early after burn. The extent of full thickness burn predicted development of moderate to severe ARDS. Increasing severity of ARDS based upon the Berlin definition was associated with a significantly greater duration of mechanical ventilation and a trend toward higher mortality. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  1. Developing a burn injury severity score (BISS): adding age and total body surface area burned to the injury severity score (ISS) improves mortality concordance.

    PubMed

    Cassidy, J Tristan; Phillips, Michael; Fatovich, Daniel; Duke, Janine; Edgar, Dale; Wood, Fiona

    2014-08-01

    There is limited research validating the injury severity score (ISS) in burns. We examined the concordance of ISS with burn mortality. We hypothesized that combining age and total body surface area (TBSA) burned to the ISS gives a more accurate mortality risk estimate. Data from the Royal Perth Hospital Trauma Registry and the Royal Perth Hospital Burns Minimum Data Set were linked. Area under the receiver operating characteristic curve (AUC) measured concordance of ISS with mortality. Using logistic regression models with death as the dependent variable we developed a burn-specific injury severity score (BISS). There were 1344 burns with 24 (1.8%) deaths, median TBSA 5% (IQR 2-10), and median age 36 years (IQR 23-50). The results show ISS is a good predictor of death for burns when ISS≤15 (OR 1.29, p=0.02), but not for ISS>15 (ISS 16-24: OR 1.09, p=0.81; ISS 25-49: OR 0.81, p=0.19). Comparing the AUCs adjusted for age, gender and cause, ISS of 84% (95% CI 82-85%) and BISS of 95% (95% CI 92-98%), demonstrated superior performance of BISS as a mortality predictor for burns. ISS is a poor predictor of death in severe burns. The BISS combines ISS with age and TBSA and performs significantly better than the ISS. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  2. Biogeochemical patterns of intermittent streams over space and time as surface flows decrease

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2016-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry in southwest Idaho and hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production. Furthermore, we expected that biogeochemical patterns of streams would become increasingly spatially heterogeneous with drying. Finally, we expected that these patterns would vary in response to fire. To test these hypotheses, we collected water samples every 50 meters from two intermittent streams, one burned and one unburned, in April, May and June, 2016 to determine surface water biogeochemistry. Results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site where concentrations remained relatively constant. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. We also assessed changes in spatial correlation between the burned and unburned site: carbon concentrations were less spatially correlated at the unburned site than at the burned site. Scatterplot matrices of DIC values indicated that at a lag distance of 300 m in April and June, the unburned site had r-values of 0.7416 and 0.5975, respectively, while the burned site had r-values of 0.9468 and 0.8783, respectively. These initial findings support our hypotheses that carbon concentrations and spatial heterogeneity increased over time.

  3. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  4. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing

    USGS Publications Warehouse

    Brown, Dana R. N.; Jorgenson, M. Torre; Kielland, Knut; Verbyla, David L.; Prakash, Anupma; Koch, Joshua C.

    2016-01-01

    Climate change coupled with an intensifying wildfire regime is becoming an important driver of permafrost loss and ecosystem change in the northern boreal forest. There is a growing need to understand the effects of fire on the spatial distribution of permafrost and its associated ecological consequences. We focus on the effects of fire a decade after disturbance in a rocky upland landscape in the interior Alaskan boreal forest. Our main objectives were to (1) map near-surface permafrost distribution and drainage classes and (2) analyze the controls over landscape-scale patterns of post-fire permafrost degradation. Relationships among remote sensing variables and field-based data on soil properties (temperature, moisture, organic layer thickness) and vegetation (plant community composition) were analyzed using correlation, regression, and ordination analyses. The remote sensing data we considered included spectral indices from optical datasets (Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)), the principal components of a time series of radar backscatter (Advanced Land Observing Satellite—Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR)), and topographic variables from a Light Detection and Ranging (LiDAR)-derived digital elevation model (DEM). We found strong empirical relationships between the normalized difference infrared index (NDII) and post-fire vegetation, soil moisture, and soil temperature, enabling us to indirectly map permafrost status and drainage class using regression-based models. The thickness of the insulating surface organic layer after fire, a measure of burn severity, was an important control over the extent of permafrost degradation. According to our classifications, 90% of the area considered to have experienced high severity burn (using the difference normalized burn ratio (dNBR)) lacked permafrost after fire. Permafrost thaw, in turn, likely increased drainage and resulted in drier surface soils. Burn severity also influenced plant community composition, which was tightly linked to soil temperature and moisture. Overall, interactions between burn severity, topography, and vegetation appear to control the distribution of near-surface permafrost and associated drainage conditions after disturbance.

  5. Potential health impacts of burning coal beds and waste banks

    USGS Publications Warehouse

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  6. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants.

    Treesearch

    Becky K. Kerns; Walter G. Thies; Christine G. Niwa

    2006-01-01

    We investigated herbaceous richness and cover in relation to fire season and severity, and other variables, five growing seasons following prescribed fires. Data were collected from six stands consisting of three randomly applied treatments: no burn, spring burn, and fall burn. Fall burns had significantly more exotic/native annual/biennial (an/bi) species and greater...

  7. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity

    USGS Publications Warehouse

    Van Wagtendonk, Jan W.; Root, Ralph R.; Key, Carl H.

    2004-01-01

    Our study compares data on burn severity collected from multi-temporal Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) with similar data from the Enhanced Thematic Mapper Plus (ETM+) using the differenced Normalized Burn Ratio (dNBR). Two AVIRIS and ETM+ data acquisitions recorded surface conditions immediately before the Hoover Fire began to spread rapidly and again the following year. Data were validated with 63 field plots using the Composite Burn Index (CBI). The relationship between spectral channels and burn severity was examined by comparing pre- and post-fire datasets. Based on the high burn severity comparison, AVIRIS channels 47 and 60 at wavelengths of 788 and 913 nm showed the greatest negative response to fire. Post-fire reflectance values decreased the most on average at those wavelengths, while channel 210 at 2370 nm showed the greatest positive response on average. Fire increased reflectance the most at that wavelength over the entire measured spectral range. Furthermore, channel 210 at 2370 nm exhibited the greatest variation in spectral response, suggesting potentially high information content for fire severity. Based on general remote sensing principles and the logic of variable spectral responses to fire, dNBR from both sensors should produce useful results in quantifying burn severity. The results verify the band–response relationships to burn severity as seen with ETM+ data and confirm the relationships by way of a distinctly different sensor system.

  8. [Advance on human umbilical cord mesenchymal stem cells for treatment of ALI in severe burns].

    PubMed

    Wang, Yu; Hu, Xiaohong

    2017-01-01

    Severe burn is often accompanied by multiple organ damage. Acute lung injury (ALI) is one of the most common complications, and often occurs in the early stage of severe burns. If it is not treated in time, it will progress to acute respiratory distress syndrome (ARDS), which will be a serious threat to the lives of patients. At present, the treatment of ALI in patients with severe burn is still remained in some common ways, such as the liquid resuscitation, the primary wound treatment, ventilation support, and anti-infection. In recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been found having some good effects on ALI caused by various causes, but few reports on the efficacy of ALI caused by severe burns were reported. By reviewing the mechanism of stem cell therapy for ALI, therapeutic potential of hUCMSCs in the treatment of severe burns with ALI and a new approach for clinical treatment was provided.

  9. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  10. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    USGS Publications Warehouse

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  11. AmeriFlux US-An1 Anaktuvuk River Severe Burn

    DOE Data Explorer

    Hobbie, John [Marine Biological Laboratory; Rocha, Adrian [Marine Biological Laboratory; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-An1 Anaktuvuk River Severe Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the fire on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Severe Burn site consisted of a large area in which all of the green vegetation were consumed in the fire and some of the organic matter had burnt to the mineral soil in many places. A bear damaged the tower during the last week of August 2008, and it was repaired shortly after.

  12. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice

    PubMed Central

    Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui

    2018-01-01

    The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349

  13. Corridors promote fire via connectivity and edge effects.

    PubMed

    Brudvig, Lars A; Wagner, Stephanie A; Damschen, Ellen I

    2012-04-01

    Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously unrecognized benefit during prescribed burning activities, by promoting fire intensity, which may assist in promoting plant biodiversity.

  14. Mapping Disturbance Dynamics in Wet Sclerophyll Forests Using Time Series Landsat

    NASA Astrophysics Data System (ADS)

    Haywood, A.; Verbesselt, J.; Baker, P. J.

    2016-06-01

    In this study, we characterised the temporal-spectral patterns associated with identifying acute-severity disturbances and low-severity disturbances between 1985 and 2011 with the objective to test whether different disturbance agents within these categories can be identified with annual Landsat time series data. We analysed a representative State forest within the Central Highlands which has been exposed to a range of disturbances over the last 30 years, including timber harvesting (clearfell, selective and thinning) and fire (wildfire and prescribed burning). We fitted spectral time series models to annual normal burn ratio (NBR) and Tasseled Cap Indices (TCI), from which we extracted a range of disturbance and recovery metrics. With these metrics, three hierarchical random forest models were trained to 1) distinguish acute-severity disturbances from low-severity disturbances; 2a) attribute the disturbance agents most likely within the acute-severity class; 2b) and attribute the disturbance agents most likely within the low-severity class. Disturbance types (acute severity and low-severity) were successfully mapped with an overall accuracy of 72.9 %, and the individual disturbance types were successfully attributed with overall accuracies ranging from 53.2 % to 64.3 %. Low-severity disturbance agents were successfully mapped with an overall accuracy of 80.2 %, and individual agents were successfully attributed with overall accuracies ranging from 25.5 % to 95.1. Acute-severity disturbance agents were successfully mapped with an overall accuracy of 95.4 %, and individual agents were successfully attributed with overall accuracies ranging from 94.2 % to 95.2 %. Spectral metrics describing the disturbance magnitude were more important for distinguishing the disturbance agents than the post-disturbance response slope. Spectral changes associated with planned burning disturbances had generally lower magnitudes than selective harvesting. This study demonstrates the potential of landsat time series mapping for fire and timber harvesting disturbances at the agent level and highlights the need for distinguishing between agents to fully capture their impacts on ecosystem processes.

  15. Effects of fire and post-fire salvage logging on avian communities in conifer-dominated forests of the western United States

    USGS Publications Warehouse

    Kotliar, N.B.; Hejl, S.J.; Hutto, R.L.; Saab, V.; Melcher, Cynthia; McFadzen, M.E.; George, T.L.; Dobkin, D.S.

    2002-01-01

    Historically, fire was one of the most widespread natural disturbances in the western United States. More recently, however, significant anthropogenic activities, especially fire suppression and silvicultural practices, have altered fire regimes; as a result, landscapes and associated communities have changed as well. Herein, we review current knowledge of how fire and postfire salvaging practices affect avian communities in conifer-dominated forests of the western United States. Specifically, we contrast avian communities in (1) burned vs. unburned forest, and (2) unsalvaged vs. salvage-logged burns. We also examine how variation in burn characteristics (e.g., severity, age, size) and salvage logging can alter avian communities in burns.Of the 41 avian species observed in three or more studies comparing early postfire and adjacent unburned forests, 22% are consistently more abundant in burned forests, 34% are usually more abundant in unburned forests, and 44% are equally abundant in burned and unburned forests or have varied responses. In general, woodpeckers and aerial foragers are more abundant in burned forest, whereas most foliage-gleaning species are more abundant in unburned forests. Bird species that are frequently observed in stand-replacement burns are less common in understory burns; similarly, species commonly observed in unburned forests often decrease in abundance with increasing burn severity. Granivores and species common in open-canopy forests exhibit less consistency among studies. For all species, responses to tire may be influenced by a number of factors including burn severity, fire size and shape, proximity to unburned forests, pre-and post-fire cover types, and time since fire. In addition, postfire management can alter species’ responses to burns. Most cavity-nesting species do not use severely salvaged burns, whereas some cavity-nesters persist in partially salvaged burns. Early post fire specialists, in particular, appear to prefer unsalvaged burns. We discuss several alternatives to severe salvage-logging that will help provide habitat for cavity nesters.We provide an overview of critical research questions and design considerations crucial for evaluating the effects of prescribed fire and other anthropogenic disturbances, such as forest fragmentation. Management of native avifaunas may be most successful if natural disturbance regimes, including fire, are permitted to occur when possible. Natural fires could be augmented with practices, such as prescribed fire (including high-severity fire), that mimic inherent disturbance regimes.

  16. Burns inflicted by self or by others--an 11 year snapshot.

    PubMed

    Malic, C C; Karoo, R O S; Austin, O; Phipps, A

    2007-02-01

    In the United Kingdom, the incidence of assault by burning and of self inflicted burns increased significantly over the last decade. This has major implications both for service providers and society as a whole. Our aim was to investigate the differences in patients' characteristics, management and outcome following a burn sustained by either an assault or self immolation. Acute admissions to a tertiary Burn Centre were retrospectively reviewed over an 11 year period (1994-2005). Demographic data and information regarding the circumstances surrounding the incident, burn severity, treatment and outcomes of the patients were collected. Over an 11 year period, 1745 patients were admitted to the tertiary Burn Centre. Of this total, 41 patients (mean age 29 years+/-16) sustained burns following an assault, a further 86 patients (mean age of 37 years+/-12) had self inflicted burn injuries; males were preponderant in both groups. In this series, a history of alcohol or substance abuse was present in 25% of both cohorts, 63% of the patients with self inflicted injuries having a previously diagnosed psychiatric disorder. Petrol, accelerants and other flammable liquids were the main agents chosen to inflict injury in both the assault and self inflicted groups. The burn depth and surface area distribution was greater in the self inflicted group compared to those assaulted (29% versus 21%). A difference was also noted in the pattern of distribution of burns between the two groups, as well as between genders although this difference was not significant. Two-thirds (67.4%) of the self immolated patients and 56% of the assaulted group required surgery. The length of hospital stay was similar for both groups, averaging 20 days. The crude mortality for the self inflicted group was 29%, whereas in the assaulted patients, the overall mortality was 4.9%. Although the incidence of burns caused either by assault or attempted suicide is low, the affected patients require a multidisciplinary approach. Their management requires significant medical, psychological occupational and social support. Increased awareness and education of those vulnerable individuals maybe of benefit to help prevent self inflicted injuries by burning.

  17. Firefighter burn injuries: predictable patterns influenced by turnout gear.

    PubMed

    Kahn, Steven A; Patel, Jignesh H; Lentz, Christopher W; Bell, Derek E

    2012-01-01

    Approximately 100 firefighters suffer fatal injuries annually and tens of thousands receive nonfatal injuries. Many of these injuries require medical attention and restricted activity but may be preventable. This study was designed to elucidate etiology, circumstances, and patterns of firefighter burn injury so that further prevention strategies can be designed. In particular, modification of protective equipment, or turnout gear, is one potential strategy to prevent burn injury. An Institutional Review Board-approved retrospective review was conducted with records of firefighters treated for burn injury from 2005 to 2009. Data collected included age, gender, TBSA, burn depth, anatomic location, total hospital days per patient, etiology, and circumstances of injury. Circumstances of injury were stratified into the following categories: removal/dislodging of equipment, failure of equipment to protect, training errors, and when excessive external temperatures caused patient sweat to boil under the gear. Over the 4-year period, 20 firefighters were treated for burn injury. Mean age was 38.9 ± 8.9 years and 19 of 20 patients were male. Mean burn size was 1.1 ± 2.7% TBSA. Eighteen patients suffered second-degree burns, while two patients suffered first-degree burns. Mean length of hospitalization was 2.45 days. Scald burns were responsible for injury to 13 firefighters (65%). Flame burns caused injury to four patients (20%). Only three patients received contact burns (15%). The face was the site most commonly burned, representing 29% of injuries. The hand/wrist and ears were the next largest groups, with 23 and 16% of the injuries, respectively. Other areas burned included the neck (10%), arm (6.5%), leg (6.5%), knees (3%), shoulders (3%), and head (3%). Finally, the circumstance of injury was evaluated for each patient. Misuse and noncontiguous areas of protective equipment accounted for 14 of the 20 injuries (70%). These burns were caused when hot steam/liquid entered the gear via gaps in the sleeve or face mask. Three patients (15%) received injury due to removal/dislodging of their safety equipment, two patients (10%) suffered their injuries during training exercises when they were not wearing their safety equipment, and the final patient (5%) received burns due to sweat evaporation. Firefighter burn injuries occur to predictable anatomic sites with common injury patterns. Modification and optimization of gear to eliminate gaps that allow steam/hot liquid entry may decrease burn injury. Improving education regarding the use of protective equipment may also be beneficial.

  18. Is proportion burned severely related to daily area burned?

    Treesearch

    Donovan S. Birch; Penelope Morgan; Crystal A. Kolden; Andrew T. Hudak; Alistair M. S. Smith

    2014-01-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large...

  19. Steam vaporizers: A danger for paediatric burns.

    PubMed

    Lonie, Sarah; Baker, Paul; Teixeira, Rodrigo

    2016-12-01

    Steam vaporizers are used to humidify air in dry environments. They are marketed to moisten children's airway secretions and thus to help relieve symptoms associated with upper respiratory tract infections. Unfortunately the steam emitted from the unit can also pose a significant risk of burns to children. Our study aimed to ascertain patterns of injury and treatment outcomes from steam burns resulting from these devices. Potential preventative measures are discussed. Children who had sustained vaporizer scald burns were identified at the outpatient burns clinic over a 10-month period (November 2014-August 2015). Medical records were reviewed retrospectively and data collected on pattern of injury, management and outcomes. Ten children were treated for vaporizer steam burns over the study period. The mean age was 1.6 years and 8 (80%) patients were male. Operative intervention was undergone in 5 (50%) cases; four acutely and one as a secondary reconstructive procedure. Hand burns accounted for 8 (80%) of cases. Steam vaporizers can cause significant burns in the paediatric population. Toddlers were most at risk, frequently sustaining hand burns that underwent skin grafting. Greater public awareness of the danger is indicated and measures to prevent such injuries should be addressed by appropriate authorities. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  20. Mechanism of acute depletion of plasma fibronectin following thermal injury in rats. Appearance of a gelatinlike ligand in plasma.

    PubMed Central

    Deno, D C; McCafferty, M H; Saba, T M; Blumenstock, F A

    1984-01-01

    Plasma fibronectin was depleted within 15 min following sublethal burn, followed by partial recovery at 8 h and complete restoration by 24 h in anesthetized rats. Radiolabeled 75Se-plasma fibronectin, injected intravenously before burn, was rapidly sequestered in burn skin as well as the liver. Fibronectin levels at 2 h postburn as detected by immunoassay vs. 75Se-plasma fibronectin indicated that more fibronectin was in the plasma than detected by electroimmunoassay. Crossed immunoelectrophoretic analysis of fibronectin in early postburn plasma demonstrated a reduced electrophoretic mobility of the fibronectin antigen. Addition of heparin or fibrin, both of which have affinity for fibronectin, to normal plasma was unable to reproduce this altered fibronectin electrophoretic pattern. In contrast, addition of gelatin or native collagen to normal plasma reproduced the abnormal electrophoretic pattern of fibronectin seen in burn plasma. Extracts of burned skin, but not extracts of normal skin, when added to normal plasma, elicited a similar altered electrophoretic pattern for fibronectin. By gel filtration, fibronectin in burn plasma had an apparent molecular weight approximately 40% greater than that observed in normal plasma. These data suggest the release into the blood of a gelatinlike ligand from burned skin, which complexes with plasma fibronectin. Thus, fibronectin deficiency acutely postburn appears mediated by (a) its accumulation at the site of burn injury; (b) its removal from the circulation by the liver; and (c) its presence in the plasma in a form that is less detectable by immunoassay. Images PMID:6690478

  1. Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska

    NASA Astrophysics Data System (ADS)

    Kasischke, Eric S.; Turetsky, Merritt R.

    2006-05-01

    We used historic records from 1959-99 to explore fire regime characteristics at ecozone scales across the entire North American boreal region (NABR). Shifts in the NABR fire regime between the 1960s/70s and the 1980s/90s were characterized by a doubling of annual burned area and more than a doubling of the frequency of larger fire years because of more large fire events (>1,000 km2). The proportion of total burned area from human-ignited fires decreased over this same time period, while the proportion of burning during the early and late- growing-seasons increased. Trends in increased burned area were consistent across the NABR ecozones, though the western ecozones experienced greater increases in larger fire years compared to the eastern ecozones. Seasonal patterns of burning differed among ecozones. Along with the climate warming, changes in the fire regime characteristics may be an important driver of future ecosystem processes in the NABR.

  2. Hot soup! Correlating the severity of liquid scald burns to fluid and biomedical properties.

    PubMed

    Loller, Cameron; Buxton, Gavin A; Kerzmann, Tony L

    2016-05-01

    Burns caused by hot drinks and soups can be both debilitating and costly, especially to pediatric and geriatric patients. This research is aimed at better understanding the fluid properties that can influence the severity of skin burns. We use a standard model which combines heat transfer and biomedical equations to predict burn severity. In particular, experimental data from a physical model serves as the input to our numerical model to determine the severity of scald burns as a consequence of actual fluid flows. This technique enables us to numerically predict the heat transfer from the hot soup into the skin, without the need to numerically estimate the complex fluid mechanics and thermodynamics of the potentially highly viscous and heterogeneous soup. While the temperature of the soup is obviously is the most important fact in determining the degree of burn, we also find that more viscous fluids result in more severe burns, as the slower flowing thicker fluids remain in contact with the skin for longer. Furthermore, other factors can also increase the severity of burn such as a higher initial fluid temperature, a greater fluid thermal conductivity, or a higher thermal capacity of the fluid. Our combined experimental and numerical investigation finds that for average skin properties a very viscous fluid at 100°C, the fluid must be in contact with the skin for around 15-20s to cause second degree burns, and more than 80s to cause a third degree burn. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  3. A systematic review of advance practice providers in acute care: options for a new model in a burn intensive care unit.

    PubMed

    Edkins, Renee E; Cairns, Bruce A; Hultman, C Scott

    2014-03-01

    Accreditation Council for Graduate Medical Education mandated work-hour restrictions have negatively impacted many areas of clinical care, including management of burn patients, who require intensive monitoring, resuscitation, and procedural interventions. As surgery residents become less available to meet service needs, new models integrating advanced practice providers (APPs) into the burn team must emerge. We performed a systematic review of APPs in critical care questioning, how best to use all providers to solve these workforce challenges? We performed a systematic review of PubMed, CINAHL, Ovid, and Google Scholar, from 2002 to 2012, using the key words: nurse practitioner, physician assistant, critical care, and burn care. After applying inclusion/exclusion criteria, 18 relevant articles were selected for review. In addition, throughput and financial models were developed to examine provider staffing patterns. Advanced practice providers in critical care settings function in various models, both with and without residents, reporting to either an intensivist or an attending physician. When APPs participated, patient outcomes were similar or improved compared across provider models. Several studies reported considerable cost-savings due to decrease length of stay, decreased ventilator days, and fewer urinary tract infections when nurse practitioners were included in the provider mix. Restrictions in resident work-hours and changing health care environments require that new provider models be created for acute burn care. This article reviews current utilization of APPs in critical care units and proposes a new provider model for burn centers.

  4. Burn severity mapping in Australia 2009

    USGS Publications Warehouse

    McKinley, Randy; Clark, J.; Lecker, Jennifer

    2012-01-01

    In 2009, the Victoria Department of Sustainability and Environment estimated approximately 430,000 hectares of Victoria Australia were burned by numerous bushfires. Burned Area Emergency Response (BAER) teams from the United States were deployed to Victoria to assist local fire managers. The U.S. Geological Survey Earth Resources Observation and Science Center (USGS/EROS) and U.S. Forest Service Remote Sensing Applications Center (USFS/RSAC) aided the support effort by providing satellite-derived "soil burn severity " maps for over 280,000 burned hectares. In the United States, BAER teams are assembled to make rapid assessments of burned lands to identify potential hazards to public health and property. An early step in the assessment process is the creation of a soil burn severity map used to identify hazard areas and prioritize treatment locations. These maps are developed primarily using Landsat satellite imagery and the differenced Normalized Burn Ratio (dNBR) algorithm.

  5. Extracorporeal Shock Wave Therapy Suppresses the Early Proinflammatory Immune Response to a Severe Cutaneous Burn Injury

    DTIC Science & Technology

    2009-02-01

    Burn wound model Mice were anaesthetised using isoflurane inha- lation. After shaving the dorsum, the exposed skin was washed gently with room...Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury* Thomas A Davis, Alexander...S, Peoples GE, Tadaki D, Elster EA. Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn

  6. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    DOE PAGES

    Smith, Jane E.; Kluber, Laurel A.; Jennings, Tara N.; ...

    2017-02-23

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. Here, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned red soil and less severely burned black soil from a burned forest on the eastern slope of the Cascade Range in Oregon. We examined the effects of burn severity on soil nutrients and microbial communi- ties for 14 years after wildfire. Soil nutrients were significantly reduced in red soils. Soil fungi and bac teria, assessed withmore » molecular methods, steadily colonized both burn severities and soil biodiversity increased throughout the study showing that microbial communities seem to have the capacity to quickly adjust to extreme disturbances. Although richness did not vary by soil type, the fungal and bacterial community compositions varied with burn severity. This difference was greatest in the early time points following the fire and decreased with time. But, nutrient-limited conditions of red soils were detected for four years after the wildfire and raise concern about soil productivity at these sites.« less

  7. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jane E.; Kluber, Laurel A.; Jennings, Tara N.

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. Here, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned red soil and less severely burned black soil from a burned forest on the eastern slope of the Cascade Range in Oregon. We examined the effects of burn severity on soil nutrients and microbial communi- ties for 14 years after wildfire. Soil nutrients were significantly reduced in red soils. Soil fungi and bac teria, assessed withmore » molecular methods, steadily colonized both burn severities and soil biodiversity increased throughout the study showing that microbial communities seem to have the capacity to quickly adjust to extreme disturbances. Although richness did not vary by soil type, the fungal and bacterial community compositions varied with burn severity. This difference was greatest in the early time points following the fire and decreased with time. But, nutrient-limited conditions of red soils were detected for four years after the wildfire and raise concern about soil productivity at these sites.« less

  8. Improved survival with an innovative approach to the treatment of severely burned patients: development of a burn treatment manual.

    PubMed

    Morisada, S; Nosaka, N; Tsukahara, K; Ugawa, T; Sato, K; Ujike, Y

    2015-09-30

    The management of severely burned patients remains a major issue worldwide as indicated by the high incidence of permanent debilitating complications and poor survival rates. In April 2012, the Advanced Emergency & Critical Care Medical Center of the Okayama University Hospital began implementing guidelines for severely burned patients, distributed as a standard burn treatment manual. The protocol, developed in-house, was validated by comparing the outcomes of patients with severe extensive burns (SEB) treated before and after implementation of these new guidelines at this institution. The patients included in this study had a burn index (BI) ≥30 or a prognostic burn index (PBI = BI + patient's age) ≥100. The survival rate of the patients with BI ≥30 was 65.2% with the traditional treatment and 100% with the new guidelines. Likewise, the survival rate of the patients with PBI ≥100 was 61.1% with the traditional treatment compared to 100% with the new guidelines. Together, these data demonstrate that the new treatment guidelines dramatically improved the treatment outcome and survival of SEB patients.

  9. Accuracy of burn size estimation in patients transferred to adult Burn Units in Sydney, Australia: an audit of 698 patients.

    PubMed

    Harish, Varun; Raymond, Andrew P; Issler, Andrea C; Lajevardi, Sepehr S; Chang, Ling-Yun; Maitz, Peter K M; Kennedy, Peter

    2015-02-01

    The purpose of this study was to compare burn size estimation between referring centres and Burn Units in adult patients transferred to Burn Units in Sydney, Australia. A review of all adults transferred to Burn Units in Sydney, Australia between January 2009 and August 2013 was performed. The TBSA estimated by the referring institution was compared with the TBSA measured at the Burns Unit. There were 698 adults transferred to a Burns Unit. Equivalent TBSA estimation between the referring hospital and Burns Unit occurred in 30% of patients. Overestimation occurred at a ratio exceeding 3:1 with respect to underestimation, with the difference between the referring institutions and Burns Unit estimation being statistically significant (P<0.001). Significant overestimation occurs in the early transfer of burn-injured patients as well as in patients transferred more than 48h after the burn (P<0.005). Underestimation occurs with less frequency but rises with increasing time after the burn (P<0.005) and with increasing TBSA. Throughout the temporal spectrum of transferred patients, severe burns (≥20% TBSA) were found to have more satisfactory burn size estimations compared with less severe injuries (<20% TBSA; P<0.005). There are significant inaccuracies in burn size assessment by referring centres. The systemic tendency for overestimation occurs throughout the entire TBSA spectrum, and persists with increasing time after the burn. Underestimation occurs less frequently but rises with increasing time after the burn and with increasing TBSA. Severe burns (≥20% TBSA) are more accurately estimated by the referring hospital. The inaccuracies in burn size assessment have the potential to result in suboptimal treatment and inappropriate referral to specialised Burn Units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  10. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year

    USGS Publications Warehouse

    Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

    2011-01-01

    Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

  11. Possible risk factors associated with burn wound colonization in burn units of Gaza strip hospitals, Palestine

    PubMed Central

    Al Laham, N.A.; Elmanama, A.A.; Tayh, G.A.

    2013-01-01

    Summary The epidemiological pattern and risk factors of burns and burn infections varies widely in different parts of the world. This study aims to determine the epidemiologic pattern of burn injuries and possible risk factors associated with burn infections in burn units of Gaza strip hospitals. A total of 118 patients were included in the study. The data collected included: patient age and gender, the causes, site, degree, and TBSA of the burns, as well as surgical operations, length of hospital stay, and microbiological profile of samples collected from patients, the environment, and from health care staff. Pediatric and adult patients accounted for 72% and 28% respectively. 58.5% of all patients were male and 41.5% were female. The most common etiological factors in children were scalding, while in adults these were open fire and flammable liquids. The mean TBSA was 12% with a range from 1–90%. Second and third degree burns accounted for 78% and 22% respectively. The area of the body most often affected was the torso (39%), followed by the lower limb (29.7%), and upper limb (17.8%). The predominant microorganisms isolated from burn wounds were Pseudomonas aeruginosa, Enterobacter spp. and Staphylococcus spp. The study showed the highest risk groups to be children and males, and enabled us to identify possible risk factors that can help in future efforts toward prevention and minimizing nosocomial infections in burn units of Gaza strip hospitals. PMID:24133399

  12. Burns in Tanzania: morbidity and mortality, causes and risk factors: a review

    PubMed Central

    Outwater, Anne H; Ismail, Hawa; Mgalilwa, Lwidiko; Justin Temu, Mary; Mbembati, Naboth A

    2013-01-01

    Burn injuries in low and middle income countries still remain a significant health problem, even though numbers of burn injuries in high income countries have decreased showing that such events are not “accidents” but are usually preventable. WHO states that the vast majority (over 95%) of fire-related burns occur in low and middle income countries. Burn injuries are a major cause of prolonged hospital stays, disfigurement, disability, and death in Africa Region. Evidence shows that prevention strategies can work. However prevention strategies need to be tailored to the specific environment taking into account local risk factors and available resources. An examination of the patterns and causes of burns should allow site specific recommendations for interventions. This literature review, specific to the United Republic of Tanzania, was conducted by researching PubMed, SafetyLit, and African Journals on Line data bases for primary sources using key words plus . Two sets of student data collected as part of Bachelor’s degree final dissertations at Muhimbili University of Health and Allied Sciences were used. In all, twenty two primary sources were found. Risk factors for burn morbidity in Tanzania are: 1/ a young age, especially years 1-3, 2/ home environment, especially around cooking fires, 3/ epilepsy, during seizures, and 4/ perceived inevitability of the incident. It was expected that ground level cooking fires would be found to be a risk factor, but several studies have shown non-significant results about raised cooking fires, types of fuel used, and cooking appliances. Risk factors for burn mortality are: being male, between 20-30 years of age, and being punished for alleged thieving by community mobs. An important factor in reducing burn morbidity, especially in children, is to educate people that burns are preventable in most cases and that most burns occur in the home around cooking fires. Children need to be kept away from fires. Epileptics should be monitored for medication and kept away from cooking fires as well. Community members need to be encouraged to bring wrong doers to the police. PMID:23386982

  13. Relations between soil hydraulic properties and burn severity

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.; Nyman, Petter; Martin, Deborah A.; Stoof, Cathelijne R.; McKinley, Randy

    2015-01-01

    Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory measurements to determine relations between a remotely sensed burn severity metric (dNBR, change in normalised burn ratio) and soil hydraulic properties (SHPs). SHPs were measured on soil cores collected from an area burned by the 2013 Black Forest fire in Colorado, USA. Six sites with the same soil type were selected across a range of burn severities, and 10 random soil cores were collected from each site within a 30-m diameter circle. Cumulative infiltration measurements were made in the laboratory using a tension infiltrometer to determine field-saturated hydraulic conductivity, Kfs, and sorptivity, S. These measurements were correlated with dNBR for values ranging from 124 (low severity) to 886 (high severity). SHPs were related to dNBR by inverse functions for specific conditions of water repellency (at the time of sampling) and soil texture. Both functions had a threshold value for dNBR between 124 and 420, where Kfs and S were unchanged and equal to values for soil unaffected by fire. For dNBRs >~420, the Kfs was an exponentially decreasing function of dNBR and S was a linearly decreasing function of dNBR. These initial quantitative empirical relations provide a first step to link SHPs to burn severity, and can be used in quantitative infiltration models to predict post-wildfire infiltration and resulting runoff.

  14. Stormwater contaminant loading following southern California wildfires.

    PubMed

    Stein, Eric D; Brown, Jeffrey S; Hogue, Terri S; Burke, Megan P; Kinoshita, Alicia

    2012-11-01

    Contaminant loading associated with stormwater runoff from recently burned areas is poorly understood, despite the fact that it has the potential to affect downstream water quality. The goal of the present study is to assess regional patterns of runoff and contaminant loading from wildfires in urban fringe areas of southern California. Postfire stormwater runoff was sampled from five wildfires that each burned between 115 and 658 km(2) of natural open space between 2003 and 2009. Between two and five storm events were sampled per site over the first one to two years following the fires for basic constituents, metals, nutrients, total suspended solids, and polycyclic aromatic hydrocarbons (PAHs). Results were compared to data from 16 unburned natural areas and six developed sites. Mean copper, lead, and zinc flux (kg/km(2)) were between 112- and 736-fold higher from burned catchments and total phosphorus was up to 921-fold higher compared to unburned natural areas. Polycyclic aromatic hydrocarbon flux was four times greater from burned areas than from adjacent urban areas. Ash fallout on nearby unburned watersheds also resulted in a threefold increase in metals and PAHs. Attenuation of elevated concentration and flux values appears to be driven mainly by rainfall magnitude. Contaminant loading from burned landscapes has the potential to be a substantial contribution to the total annual load to downstream areas in the first several years following fires. Copyright © 2012 SETAC.

  15. A new metric for quantifying burn severity: The Relativized Burn Ratio

    Treesearch

    Sean A. Parks; Gregory K. Dillon; Carol Miller

    2014-01-01

    Satellite-inferred burn severity data have become increasingly popular over the last decade for management and research purposes. These data typically quantify spectral change between pre-and post-fire satellite images (usually Landsat). There is an active debate regarding which of the two main equations, the delta normalized burn ratio (dNBR) and its relativized form...

  16. Postfire soil burn severity mapping with hyperspectral image unmixing

    Treesearch

    Peter R. Robichaud; Sarah A. Lewis; Denise Y. M. Laes; Andrew T. Hudak; Raymond F. Kokaly; Joseph A. Zamudio

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after...

  17. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  18. Chemical and Common Burns in Children.

    PubMed

    Yin, Shan

    2017-05-01

    Burns are a common cause of preventable morbidity and mortality in children. Thermal and chemical burns are the most common types of burns. Their clinical appearance can be similar and the treatment is largely similar. Thermal burns in children occur primarily after exposure to a hot surface or liquid, or contact with fire. Burns are typically classified based on the depth and total body surface area, and the severity and onset of the burn can also depend on the temperature and duration of contact. Chemical burns are caused by chemicals-most commonly acids and alkalis-that can damage the skin on contact. In children, the most common cause of chemical burns is from household products such as toilet bowl cleaners, drain cleaners, detergents, and bleaches. Mild chemical burns generally cause redness and pain and can look similar to other common rashes or skin infections, whereas severe chemical burns are more extreme and may cause redness, blistering, skin peeling, and swelling.

  19. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    Treesearch

    Jane E. Smith; Laurel A. Kluber; Tara N. Jennings; Donaraye McKay; Greg Brenner; Elizabeth W. Sulzman

    2017-01-01

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. In this study, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned ‘‘red” soil and less severely burned ‘‘black” soil from a burned...

  20. Relative abundance of small mammals in nest core areas and burned wintering areas of Mexican spotted owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; Sean C. Kyle; Todd A. Rawlinson; Darrell L. Apprill; James P Ward

    2014-01-01

    Mexican Spotted Owls (Strix occidentalis lucida) are common in older forests within their range but also persist in many areas burned by wildfire and may selectively forage in these areas. One hypothesis explaining this pattern postulates that prey abundance increases in burned areas following wildfire. We observed movement to wintering areas within areas burned by...

  1. A decadal glimpse on climate and burn severity influences on ponderosa pine post-fire recovery

    NASA Astrophysics Data System (ADS)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.; Smith, A.; Khalyani, A. H.

    2016-12-01

    Climate change is predicted to affect plants at the margins of their distribution. Thus, ecosystem recovery after fire is likely to vary with climate and may be slowest in drier and hotter areas. However, fire regime characteristics, including burn severity, may also affect vegetation recovery. We assessed vegetation recovery one and 9-15 years post-fire in North American ponderosa pine ecosystems distributed across climate and burn severity gradients. Using climate predictors derived from downscaled 1993-2011 climate normals, we predicted vegetation recovery as indicated by Normalized Burn Ratio derived from 1984-2012 Landsat time series imagery. Additionally, we collected field vegetation measurements to examine local topographic controls on burn severity and post-fire vegetation recovery. At a regional scale, we hypothesized a positive relationship between precipitation and recovery time and a negative relationship between temperature and recovery time. At the local scale, we hypothesized southern aspects to recovery slower than northern aspects. We also predicted higher burn severity to slow recovery. Field data found attenuated ponderosa pine recovery in hotter and drier regions across all burn severity classes. We concluded that downscaled climate data and Landsat imagery collected at commensurate scales may provide insight into climate effects on post-fire vegetation recovery relevant to ponderosa pine forest managers.

  2. [Timing of bacterial colonization in severe burns: is strict isolation necessary?].

    PubMed

    Barret, Juan P

    2003-12-01

    Infection is still one of the main causes of mortality in severe burn patients. Strict isolation has been used for the prevention of infection, but the efficacy of this measure is debatable. The aim of this study was to determine the timing of bacterial colonization in these patients and to ascertain whether strict isolation is indicated. Thirty consecutive children with severe burns were studied. Patients were only barrier-nursed during dressing changes. On admission and twice weekly over the entire hospital stay, burn, sputum, gastric aspirates, feces, and blood samples were obtained for culture. All isolates were tested for specific biotypes. Results were studied with linear regression and repeated measures ANOVA to determine the timing of colonization and cross-colonization between patients. On admission, normal cutaneous flora were isolated from burn cultures of all patients. The remaining cultures were negative. After one week, gastric aspirates were found to be colonized by gram-negative bacteria and fungi. This was followed by colonization of feces, burn, and sputum cultures. Biotype identification showed unidirectional colonization from the gastrointestinal tract to burns and upper airway. There were no cross infections between patients. Microbial colonization in severe burn patients was endogenous in nature and there were no cross infections. Thus, strict isolation is not necessary in burn centers, except during outbreaks of multi-resistant microorganisms.

  3. Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather.

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot

    2006-01-01

    The purpose of this study was to compare the sensitivity of nlodelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...

  4. Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Michael D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot

    2006-01-01

    The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...

  5. A project for monitoring trends in burn severity

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Schwind, Brian; Brewer, Ken; Zhu, Zhu-Liang; Quayle, Brad; Howard, Stephen M.

    2007-01-01

    Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle, and Elected officials and leaders of environmental agencies need information about the effects of large wildfires in order to set policy and make management decisions. Recently, the Wildland Fire Leadership Council (WFLC), which implements and coordinates the National Fire Plan (NFP) and Federal Wildland Fire Management Policies (National Fire Plan 2004), adopted a strategy to monitor the effectiveness of the National Fire Plan and the Healthy Forests Restoration Act (HFRA). One component of this strategy is to assess the environmental impacts of large wildland fires and identify the trends of burn severity on all lands across the United States. To that end, WFLC has sponsored a six-year project, Monitoring Trends in Burn Severity (MTBS), which requires the U.S. Department of Agriculture Forest Service (USDA-FS) and the U.S. Geological Survey (USGS) to map and assess the burn severity for all large current and historical fires. Using Landsat data and the differenced Normalized Burn Ratio (dNBR) algorithm, the USGS Center for Earth Resources Observation and Science (EROS) and USDA-FS Remote Sensing Applications Center will map burn severity of all fires since 1984 greater than 202 ha (500ac) in the east, and 404 ha (1,000 ac) in the west. The number of historical fires from this period combined with current fires occurring during the course of the project will exceed 9,000. The MTBS project will generate burn severity data, maps, and reports, which will be available for use at local, state, and national levels to evaluate trends in burn severity and help develop and assess the effectiveness of land management decisions. Additionally, the information developed will provide a baseline from which to monitor the recovery and health of fire-affected landscapes over time. Spatial and tabular data quantifying burn severity will augment existing information used to estimate risk associated with a range of current and future resource threats. The annual report of 2004 fires has been completed. All data and results will be distributed to the public on a Web site. A Project for Monitoring Trends in Burn Severity

  6. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape.

    PubMed

    Coop, Jonathan D; Parks, Sean A; McClernan, Sarah R; Holsinger, Lisa M

    2016-03-01

    Large and severe wildfires have raised concerns about the future of forested landscapes in the southwestern United States, especially under repeated burning. In 2011, under extreme weather and drought conditions, the Las Conchas fire burned over several previous burns as well as forests not recently exposed to fire. Our purpose was to examine the influences of prior wildfires on plant community composition and structure, subsequent burn severity, and vegetation response. To assess these relationships, we used satellite-derived measures of burn severity and a nonmetric multidimensional scaling of pre- and post- Las Conchas field samples. Earlier burns were associated with shifts from forested sites to open savannas and meadows, oak scrub, and ruderal communities. These non-forested vegetation types exhibited both resistance to subsequent fire, measured by reduced burn severity, and resilience to reburning, measured by vegetation recovery relative to forests not exposed to recent prior fire. Previous shifts toward non-forested states were strongly reinforced by reburning. Ongoing losses of forests and their ecological values confirm the need for restoration interventions. However, given future wildfire and climate projections, there may also be opportunities presented by transformations toward fire-resistant and resilient vegetation types within portions of the landscape.

  7. Clothing burns in Canadian children

    PubMed Central

    Stanwick, Richard S.

    1985-01-01

    A Canadian survey of 11 tertiary care pediatric centres with specialized burn facilities revealed that an estimated 37 children up to 9 years of age are admitted annually to such hospitals because of clothing burns. Sleepwear accounts for an estimated 21 such burns per year. Girls were found to suffer the most severe burns and represented eight of the nine children in the series who died. Loose and flowing garments dominated the girls' styles. The results of multiple-regression analysis confirmed that style of clothing (loose and flowing as opposed to snug) was the most significant predictor of burn severity, length of hospital stay, the need for skin grafting and survival. The ignition situation (avoidance of parental supervision at the time of injury) was the only other important predictor. The success of regulatory actions in other countries in reducing the incidence of severe clothing burns is reviewed, and preventive strategies for Canada are explored. ImagesFig. 2 PMID:3995433

  8. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    Treesearch

    Merritt R. Turetsky; Evan S. Kane; Jennifer W. Harden; Roger D. Ottmar; Kristen L. Maines; Elizabeth Hoy; Eric S. Kasischke

    2010-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult...

  9. Mapping day-of-burning with coarse-resolution satellite fire-detection data

    Treesearch

    Sean A. Parks

    2014-01-01

    Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps ­ in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution -...

  10. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.

  11. Fire Effects on Microbial Enzyme Activities in Larch Forests of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Alexander, H. D.; Bulygina, E. B.; Mann, P. J.; Natali, S.

    2012-12-01

    Arctic forest ecosystems are warming at an accelerated rate relative to lower latitudes, with global implications for C cycling within these regions. As climate continues to warm and dry, wildfire frequency and severity are predicted to increase, creating a positive feedback to climate warming. Increased fire activity will also influence the microenvironment experienced by soil microbes in disturbed soils. Because soil microbes regulate carbon (C) and nitrogen (N) cycling between terrestrial ecosystems and the atmosphere, it is important to understand microbial response to fires, particularly in the understudied larch forests in the Siberian Arctic. In this project, we created experimental burn plots in a mature larch forest in the Kolyma River watershed of Northeastern Siberia. Plots were burned at several treatments: control (no burn), low, moderate, and severe. After, 1 and 8 d post-fire, we measured soil organic layer depth, soil organic matter (SOM) content, soil moisture, and CO2 flux from the plots. Additionally, we leached soils and measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and chromophoric dissolved organic matter (CDOM). Furthermore, we measured extracellular activity of four enzymes involved in soil C and nutrient cycling (leucine aminopeptidase (LAP), β-glucosidase, phosphatase, and phenol oxidase). One day post-fire, LAP activity was similarly low in all treatments, but by 8 d post-fire, LAP activity was lower in burned plots compared to control plots, likely due to increased nitrogen content with increasing burn severity. Phosphatase activity decreased with burn severity 1 d post-fire, but after 8 d, moderate and severe burn plots exhibited increased phosphatase activity. Coupled with trends in LAP activity, this suggests a switch in nutrient limitation from N to phosphorus that is more pronounced with burn severity. β-glucosidase activity similarly decreased with burn severity 1 d post-fire, but by 8 d post-fire activity was the same in all treatments, indicating complete recovery of the microbial population. Phenol oxidase activity was low in all treatments 1 d post-fire, but by 8 d post-fire, severe plots had substantially increased phenol oxidase activity, likely due to microbial efforts to mitigate phenolic compound toxicity following severe fires. Both DOC and the slope ratio of CDOM absorbance increased with burn severity 1 d post-fire, indicating higher extractability of lighter molecular weight C from severe burns. These results imply that black C created from fires remains as a stable C pool while more labile C is mobilized with increasing burn severity. Our results suggest that the immediate effects of fire severity on microbial communities have the potential to change both nutrient use and the form and concentration of C being processed and mobilized from larch forest ecosystems. These findings highlight the importance of changing fire regimes on soil dynamics with implications for forest re-growth, soil-atmospheric feedbacks, and terrestrial inputs to aquatic ecosystems.

  12. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events.

    NASA Astrophysics Data System (ADS)

    Hall, J.; Loboda, T. V.

    2017-12-01

    Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic region. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited, thereby leading to an underestimation in black carbon emissions from cropland burning. This research focuses on 1) assessing the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia through low-level transport, and 2) identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions to the Arctic. Specifically, atmospheric blocking events present a potential mechanism that could act to enhance the likelihood of transport or accelerate the transport of pollutants to the snow-covered Arctic from Russian cropland burning based on their persistent wind patterns. This research study confirmed the importance of Russian cropland burning as a potential source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Based on the successful transport pathways, this study identified the potential transport of black carbon from Russian cropland burning beyond 80°N which has important implications for permanent sea ice cover. Further, based on the persistent wind patterns of blocking events, this study identified that blocking events are able to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during spring when the impact on the snow/ice albedo is at its highest. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  13. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  14. Use of artificial landscapes to isolate controls on burn probability

    Treesearch

    Marc-Andre Parisien; Carol Miller; Alan A. Ager; Mark A. Finney

    2010-01-01

    Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of...

  15. Contribution of Bacterial and Viral infections to Attributable Mortality in Patients with Severe Burns: An Autopsy Series

    DTIC Science & Technology

    2010-01-01

    and related mortality following severe burns. Burns 2008;3(4):1108 12. [5] Nash G , Foley FD. Herpetic infection of the middle and lower respiratory...Albrecht M, Griffith M, Murray C, Chung K, Horvath E, Ward J, et al. Impact of Acinetobacter infection on the mortality of burn patients. J Am Coll... Mason AD. Survival benefit conferred by topical antimicrobial preparations in burn patients: a historical perspective. J Trauma 2004;56:863 6. [27

  16. Reburn severity in managed and unmanaged vegetation in a large wildfire

    PubMed Central

    Thompson, Jonathan R.; Spies, Thomas A.; Ganio, Lisa M.

    2007-01-01

    Debate over the influence of postwildfire management on future fire severity is occurring in the absence of empirical studies. We used satellite data, government agency records, and aerial photography to examine a forest landscape in southwest Oregon that burned in 1987 and then was subject, in part, to salvage-logging and conifer planting before it reburned during the 2002 Biscuit Fire. Areas that burned severely in 1987 tended to reburn at high severity in 2002, after controlling for the influence of several topographical and biophysical covariates. Areas unaffected by the initial fire tended to burn at the lowest severities in 2002. Areas that were salvage-logged and planted after the initial fire burned more severely than comparable unmanaged areas, suggesting that fuel conditions in conifer plantations can increase fire severity despite removal of large woody fuels. PMID:17563370

  17. Prescribed burning weather in Minnesota.

    Treesearch

    Rodney W. Sando

    1969-01-01

    Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.

  18. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Romme, William H; Turner, Monica G

    The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by lodgepole pine (Pinus contorta var. latifolia) in Greater Yellowstone, Wyoming, USA, to determine if fire severity was linked to prefire beetle outbreak severity and whether these two disturbances produced compound ecological effects on postfire tree regeneration. With field data from 143 postfire plots that burned under different conditions, we assessed canopy and surface fire severity, and postfire tree seedling density against prefire outbreak severity. In the green-attack/red stage, several canopy fire-severity measures increased with prefire outbreak severity under moderate burning conditions. Under extreme conditions, few fire-severity measures were related to prefire outbreak severity, and effect sizes were of marginal biological significance. The percentage of tree stems and basal area killed by fire increased with more green-attack vs. red-stage trees (i.e., the earliest stages of outbreak). In the gray stage, by contrast, most fire-severity measures declined with increasing outbreak severity under moderate conditions, and fire severity was unrelated to outbreak severity under extreme burning conditions. Postfire lodgepole pine seedling regeneration was unrelated to prefire outbreak severity in either post-outbreak stage, but increased with prefire serotiny. Results suggest bark beetle outbreaks can affect fire severity in subalpine forests under moderate burning conditions, but have little effect on fire severity under extreme burning conditions when most large wildfires occur in this system. Thus, beetle outbreak severity was moderately linked to fire severity, but the strength and direction of the linkage depended on both endogenous (outbreak stage) and exogenous (fire weather) factors. Closely timed beetle outbreak and fire did not impart compound effects on tree regeneration, suggesting the presence of a canopy seedbank may enhance resilience to their combined effects.

  19. Barren-ground caribou (Rangifer tarandus groenlandicus) behaviour after recent fire events; integrating caribou telemetry data with Landsat fire detection techniques.

    PubMed

    Rickbeil, Gregory J M; Hermosilla, Txomin; Coops, Nicholas C; White, Joanne C; Wulder, Michael A

    2017-03-01

    Fire regimes are changing throughout the North American boreal forest in complex ways. Fire is also a major factor governing access to high-quality forage such as terricholous lichens for barren-ground caribou (Rangifer tarandus groenlandicus). Additionally, fire alters forest structure which can affect barren-ground caribou's ability to navigate in a landscape. Here, we characterize how the size and severity of fires are changing across five barren-ground caribou herd ranges in the Northwest Territories and Nunavut, Canada. Additionally, we demonstrate how time since fire, fire severity, and season result in complex changes in caribou behavioural metrics estimated using telemetry data. Fire disturbances were identified using novel gap-free Landsat surface reflectance composites from 1985 to 2011 across all herd ranges. Burn severity was estimated using the differenced normalized burn ratio. Annual area burned and burn severity were assessed through time for each herd and related to two behavioural metrics: velocity and relative turning angle. Neither annual area burned nor burn severity displayed any temporal trend within the study period. However, certain herds, such as the Ahiak/Beverly, have more exposure to fire than other herds (i.e. Cape Bathurst had a maximum forested area burned of less than 4 km 2 ). Time since fire and burn severity both significantly affected velocity and relative turning angles. During fall, winter, and spring, fire virtually eliminated foraging-focused behaviour for all 26 years of analysis while more severe fires resulted in a marked increase in movement-focused behaviour compared to unburnt patches. Between seasons, caribou used burned areas as early as 1-year postfire, demonstrating complex, nonlinear reactions to time since fire, fire severity, and season. In all cases, increases in movement-focused behaviour were detected postfire. We conclude that changes in caribou behaviour immediately postfire are primarily driven by changes in forest structure rather than changes in terricholous lichen availability. © 2016 John Wiley & Sons Ltd.

  20. Marsh canopy structure changes and the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  1. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.

  2. How Much Global Burned Area Can Be Forecast on Seasonal Time Scales Using Sea Surface Temperatures?

    NASA Technical Reports Server (NTRS)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; Giglio, Louis; Randerson, James T.

    2016-01-01

    Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area in many regions by means of climate controls on fuel continuity, amount, and moisture content. Some of the variability in burned area is predictable on seasonal timescales because fuel characteristics respond to the cumulative effects of climate prior to the onset of the fire season. Here we systematically evaluated the degree to which annual burned area from the Global Fire Emissions Database version 4 with small fires (GFED4s) can be predicted using SSTs from 14 different ocean regions. We found that about 48 of global burned area can be forecast with a correlation coefficient that is significant at a p < 0.01 level using a single ocean climate index (OCI) 3 or more months prior to the month of peak burning. Continental regions where burned area had a higher degree of predictability included equatorial Asia, where 92% of the burned area exceeded the correlation threshold, and Central America, where 86% of the burned area exceeded this threshold. Pacific Ocean indices describing the El Nino-Southern Oscillation were more important than indices from other ocean basins, accounting for about 1/3 of the total predictable global burned area. A model that combined two indices from different oceans considerably improved model performance, suggesting that fires in many regions respond to forcing from more than one ocean basin. Using OCI-burned area relationships and a clustering algorithm, we identified 12 hotspot regions in which fires had a consistent response to SST patterns. Annual burned area in these regions can be predicted with moderate confidence levels, suggesting operational forecasts may be possible with the aim of improving ecosystem management.

  3. Using multilevel spatial models to understand salamander site occupancy patterns after wildfire

    USGS Publications Warehouse

    Chelgren, Nathan; Adams, Michael J.; Bailey, Larissa L.; Bury, R. Bruce

    2011-01-01

    Studies of the distribution of elusive forest wildlife have suffered from the confounding of true presence with the uncertainty of detection. Occupancy modeling, which incorporates probabilities of species detection conditional on presence, is an emerging approach for reducing observation bias. However, the current likelihood modeling framework is restrictive for handling unexplained sources of variation in the response that may occur when there are dependence structures such as smaller sampling units that are nested within larger sampling units. We used multilevel Bayesian occupancy modeling to handle dependence structures and to partition sources of variation in occupancy of sites by terrestrial salamanders (family Plethodontidae) within and surrounding an earlier wildfire in western Oregon, USA. Comparison of model fit favored a spatial N-mixture model that accounted for variation in salamander abundance over models that were based on binary detection/non-detection data. Though catch per unit effort was higher in burned areas than unburned, there was strong support that this pattern was due to a higher probability of capture for individuals in burned plots. Within the burn, the odds of capturing an individual given it was present were 2.06 times the odds outside the burn, reflecting reduced complexity of ground cover in the burn. There was weak support that true occupancy was lower within the burned area. While the odds of occupancy in the burn were 0.49 times the odds outside the burn among the five species, the magnitude of variation attributed to the burn was small in comparison to variation attributed to other landscape variables and to unexplained, spatially autocorrelated random variation. While ordinary occupancy models may separate the biological pattern of interest from variation in detection probability when all sources of variation are known, the addition of random effects structures for unexplained sources of variation in occupancy and detection probability may often more appropriately represent levels of uncertainty. ?? 2011 by the Ecological Society of America.

  4. Scientific support to prescribed underburning in southern Europe: What do we know?

    PubMed

    Fernandes, Paulo M

    2018-07-15

    Prescribed burning is a technically demanding and usually highly scrutinized and debated practice. Barriers of various natures have constrained the development of prescribed burning in forests (PUB) in southern Europe, with insufficient research and outreach among the contributing factors. This paper synthesizes PUB knowledge in the region and identifies research needs. PUB research in the western Mediterranean basin was fostered by international cooperative projects that studied the ecological and management ramifications of low-intensity burning for fire hazard mitigation. Effects of PUB on soil and vegetation are minor and short-lived and regulated through forest floor moisture content, fire intensity, tree resistance to fire, and ignition patterns. Generic burn prescriptions are available and specific burn windows targeting site-specific burn objectives can be developed with the existing software tools. However, the need to increase the depth and breadth of PUB research is apparent. Current knowledge is based upon pine forests, particularly Pinus pinaster, as past research has overlooked hardwoods; was obtained across a limited number of research teams and study sites; and essentially reflects short-term treatments. Fuel consumption by PUB effectively decreases fire potential, but post-treatment fuel dynamics and effects on wildfire spread and severity warrant further study. Future work should devote more attention to the socioeconomic, biodiversity and carbon storage implications of PUB and should expand to encompass cumulative effects and the whole PUB regime and its variation; long-term experiments and monitored management programs are crucial to this end. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Restoration of shortleaf pine (Pinus echinata) - hardwood ecosystems severely impacted by the southern pine beetle (Dendroctonus frontalis)

    Treesearch

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Barton D. Clinton

    2012-01-01

    In the Southern Appalachian Mountains of eastern USA, pine-hardwood ecosystems have been severely impacted by the interactions of past land use, fire exclusion, drought, and southern pine beetle (SPB, Dendroctonus frontalis). We examined the effects of restoration treatments: burn only (BURN); cut + burn on dry sites (DC + B); cut + burn on sub-mesic sites (MC + B);...

  6. Aetiology of adult burns treated from 2000 to 2012 in a Swiss University Hospital.

    PubMed

    Müller, M; Moser, E M; Pfortmueller, C A; Olariu, R; Lehmann, B; Exadaktylos, A K

    2016-06-01

    Burns in Switzerland are frequent and lead to high economic and social costs. However, little is known about the aetiology of burns suffered by patients seeking treatment in hospital emergency departments. This knowledge could be used to develop preventive measures. This retrospective analysis included all patients (≥16 years old) with acute thermal injuries of known cause admitted to the adult emergency department in Bern University Hospital (Switzerland, not a specialised burns unit) between 2000 and 2012. Clinical and sociodemographic data were extracted from medical records, i.e. the environment in which the burn occurred, as well as details of burn severity and aetiology. Seven hundred and one (701) patients with a mean age of 35.0±14.5 years (56% men) were included in the analysis. The winter season and the days around Christmas, turn of the year and Swiss National Day were identified as times with high risk of burns. Household (45%) and workplace (31%) were the most common locations/settings in which the burns occurred. Approximately every second burn was caused by scald, every fourth by flame and every seventh by hot objects. The analysis identified cooking, tar and electricity in workplace accidents, barbecues and the use of gasoline as aetiological factors in burns in leisure time, together with water in domestic thermal injuries. Burns occurred predominantly on non-protected skin on the hand and arms. The most severe burns were seen in electrical and flame burns. Men suffered more severe burns than women in all settings except psychopathology. The data suggest that the incidence and severity of burns in Switzerland could be reduced by preventive strategies and public campaigns, including education on fire protection systems, raising awareness about the times and locations where the risks of burns are greater, further improvement in workplace safety, particularly with cooking facilities and electrical equipment, and the development of innovative safety devices (i.e. machines, protective gloves). These findings have to be interpreted carefully, as this study includes only adult patients who presented in our ED and, in most cases, the burns covered less than 20% of the body surface. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  7. Did the 2002 Hayman Fire, Colorado, USA, burn with uncharacteristic severity?

    Treesearch

    Paula J. Fornwalt; Laurie S. Huckaby; Steven K. Alton; Merrill R. Kaufmann; Peter M. Brown; Antony S. Cheng

    2016-01-01

    There is considerable interest in evaluating whether recent wildfires in dry conifer forests of western North America are burning with uncharacteristic severity - that is, with a severity outside the historical range of variability. In 2002, the Hayman Fire burned an unlogged 3400 ha dry conifer forest landscape in the Colorado Front Range, USA, that had been the...

  8. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Treesearch

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  9. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1.

    PubMed

    Bai, Xiao-Zhi; He, Ting; Gao, Jian-Xin; Liu, Yang; Liu, Jia-Qi; Han, Shi-Chao; Li, Yan; Shi, Ji-Hong; Han, Jun-Tao; Tao, Ke; Xie, Song-Tao; Wang, Hong-Tao; Hu, Da-Hai

    2016-09-07

    Acute kidney injury (AKI) is a common complication after severe burns. Melatonin has been reported to protect against multiple organ injuries by increasing the expression of SIRT1, a silent information regulator that regulates stress responses, inflammation, cellular senescence and apoptosis. This study aimed to investigate the protective effects of melatonin on renal tissues of burned rats and the role of SIRT1 involving the effects. Rat severely burned model was established, with or without the administration of melatonin and SIRT1 inhibitor. The renal function and histological manifestations were determined to evaluate the severity of kidney injury. The levels of acetylated-p53 (Ac-p53), acetylated-p65 (Ac-p65), NF-κB, acetylated-forkhead box O1 (Ac-FoxO1), Bcl-2 and Bax were analyzed to study the underlying mechanisms. Our results suggested that severe burns could induce acute kidney injury, which could be partially reversed by melatonin. Melatonin attenuated oxidative stress, inflammation and apoptosis accompanied by the increased expression of SIRT1. The protective effects of melatonin were abrogated by the inhibition of SIRT1. In conclusion, we demonstrate that melatonin improves severe burn-induced AKI via the activation of SIRT1 signaling.

  10. Inhibition of Na+/H+ exchanger 1 by cariporide reduces burn-induced intestinal barrier breakdown.

    PubMed

    Yang, Xuekang; Chen, Ji; Bai, Hua; Tao, Ke; Zhou, Qin; Hou, Hongyi; Hu, Dahai

    2013-12-01

    Severe burns initiate an inflammatory cascade within the gut, which leads to intestinal mucosal injury. Although Na(+)/H(+) exchanger 1 (NHE1) is recognised as a pivotal player in several inflammatory processes, its role in burn-induced intestinal injury is relatively unknown. We hypothesised that NHE1 might be involved in the increased intestinal permeability and barrier breakdown after severe burns. Thus, we here investigate whether the inhibition of NHE1 has a protective effect on burn-induced intestinal injury. Mice were subjected to a 30% total body surface area (TBSA) full-thickness steam burn. Cariporide was used to assess the function of NHE1 in mice with burn-induced intestinal injury by fluorescence spectrophotometry, Western blotting and enzyme linked immunosorbent assay (ELISA). We found that severe burn increased intestinal permeability, associated with the up-regulation of NHE1 and raised inflammatory cytokine levels. Mice treated with the NHE1 inhibitor cariporide had significantly attenuated burn-induced intestinal permeability and a reduced inflammatory response. NHE1 inhibition also reduced nuclear factor-κB (NF-κB) activation and attenuated p38 mitogen-activated protein kinase (MAPK) phosphorylation. Our study suggests that NHE1 plays an important role in burn-induced intestinal permeability through the regulation of the inflammatory response. Inhibition of NHE1 may be adopted as a potential therapeutic strategy for attenuating intestinal barrier breakdown. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. Monitoring a boreal wildfire using multi-temporal Radarsat-1 intensity and coherence images

    USGS Publications Warehouse

    Rykhus, Russell P.; Lu, Zhong

    2011-01-01

    Twenty-five C-band Radarsat-1 synthetic aperture radar (SAR) images acquired from the summer of 2002 to the summer of 2005 are used to map a 2003 boreal wildfire (B346) in the Yukon Flats National Wildlife Refuge, Alaska under conditions of near-persistent cloud cover. Our analysis is primarily based on the 15 SAR scenes acquired during arctic growing seasons. The Radarsat-1 intensity data are used to map the onset and progression of the fire, and interferometric coherence images are used to qualify burn severity and monitor post-fire recovery. We base our analysis of the fire on three test sites, two from within the fire and one unburned site. The B346 fire increased backscattered intensity values for the two burn study sites by approximately 5–6 dB and substantially reduced coherence from background levels of approximately 0.8 in unburned background forested areas to approximately 0.2 in the burned area. Using ancillary vegetation information from the National Land Cover Database (NLCD) and information on burn severity from Normalized Burn Ratio (NBR) data, we conclude that burn site 2 was more severely burned than burn site 1 and that C-band interferometric coherence data are useful for mapping landscape changes due to fire. Differences in burn severity and topography are determined to be the likely reasons for the observed differences in post-fire intensity and coherence trends between burn sites.

  12. Postwildfire measurement of soil physical and hydraulic properties at selected sampling sites in the 2011 Las Conchas wildfire burn scar, Jemez Mountains, north-central New Mexico

    USGS Publications Warehouse

    Romero, Orlando C.; Ebel, Brian A.; Martin, Deborah A.; Buchan, Katie W.; Jornigan, Alanna D.

    2018-04-10

    The generation of runoff and the resultant flash flooding can be substantially larger following wildfire than for similar rainstorms that precede wildfire disturbance. Flash flooding after the 2011 Las Conchas Fire in New Mexico provided the motivation for this investigation to assess postwildfire effects on soil-hydraulic properties (SHPs) and soil-physical properties (SPPs) as a function of remotely sensed burn severity 4 years following the wildfire. A secondary purpose of this report is to illustrate a methodology to determine SHPs that analyzes infiltrometer data by using three different analysis methods. The SPPs and SHPs are measured as a function of remotely sensed burn severity by using the difference in the Normalized Burn Ratio (dNBR) metric for seven sites. The dNBR metric was used to guide field sample collection across a full spectrum of burn severities that covered the range of Monitoring Trends in Burn Severity (MTBS) and Burned Area Reflectance Classification (BARC) thematic classes from low to high severity. The SPPs (initial and saturated soil-water content, bulk density, soil-organic matter, and soil-particle size) and SHPs (field-saturated hydraulic conductivity and sorptivity) were measured under controlled laboratory conditions for soil cores collected in the field. The SHPs were estimated by using tension infiltrometer measurements and three different data analysis methods. These measurements showed large effects of burn severity, focused in the top1 centimeter (cm) of soil, on some SPPs (bulk density, soil organic matter, and particle sizes). The threshold of these bulk density and soil organic matter effects was between 300 and 400 dNBR, which corresponds to a MTBS thematic class between moderate and high burn severity and a BARC4 thematic class of high severity. Gravel content and the content of fines in the top 1 cm of soil had a higher threshold value between 450 and 500 dNBR. Lesser effects on SPPs were observed at depths of 1–3 cm and 3–6 cm. In contrast, SHPs showed little effect from dNBR or from MTBS/BARC4 thematic class. Measurements suggested that 4 years of elapsed time after the wildfire may be sufficient for SHP recovery in this area. These measurements also indicated that SPP differences as a function of burn severity cannot be used as reliable indicators of SHP differences as a function of burn severity.

  13. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine ( Pinus elliottii var. densa ) Forests in the Florida Keys, USA

    DOE PAGES

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; ...

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less

  14. Interactions among livestock grazing, vegetation type, and fire behavior in the Murphy Wildland Fire Complex in Idaho and Nevada, July 2007

    USGS Publications Warehouse

    Launchbaugh, Karen; Brammer, Bob; Brooks, Matthew L.; Bunting, Stephen C.; Clark, Patrick; Davison, Jay; Fleming, Mark; Kay, Ron; Pellant, Mike; Pyke, David A.

    2008-01-01

    A series of wildland fires were ignited by lightning in sagebrush and grassland communities near the Idaho-Nevada border southwest of Twin Falls, Idaho in July 2007. The fires burned for over two weeks and encompassed more than 650,000 acres. A team of scientists, habitat specialists, and land managers was called together by Tom Dyer, Idaho BLM State Director, to examine initial information from the Murphy Wildland Fire Complex in relation to plant communities and patterns of livestock grazing. Three approaches were used to examine this topic: (1) identify potential for livestock grazing to modify fuel loads and affect fire behavior using fire models applied to various vegetation types, fuel loads, and fire conditions; (2) compare levels of fuel consumed within and among major vegetation types; and (3) examine several observed lines of difference and discontinuity in fuel consumed to determine what factors created these contrasts. The team found that much of the Murphy Wildland Fire Complex burned under extreme fuel and weather conditions that likely overshadowed livestock grazing as a factor influencing fire extent and fuel consumption in many areas where these fires burned. Differences and abrupt contrast lines in the level of fuels consumed were affected mostly by the plant communities that existed on a site before fire. A few abrupt contrasts in burn severity coincided with apparent differences in grazing patterns of livestock, observed as fence-line contrasts. Fire modeling revealed that grazing in grassland vegetation can reduce surface rate of spread and fire-line intensity to a greater extent than in shrubland types. Under extreme fire conditions (low fuel moisture, high temperatures, and gusty winds), grazing applied at moderate utilization levels has limited or negligible effects on fire behavior. However, when weather and fuel-moisture conditions are less extreme, grazing may reduce the rate of spread and intensity of fires allowing for patchy burns with low levels of fuel consumption. The team suggested that targeted grazing to accomplish fuel objectives holds promise but requires detailed planning that includes clearly defined goals for fuel modification and appropriate monitoring to assess effectiveness. It was recommended that a pilot plan be devised to strategically place grazed blocks across a landscape to create fuel-reduction bands capable of influencing fire behavior. Also suggested was the development of a general technical report that highlights information and examples of how livestock grazing influences fire extent, severity, and intensity. Finally, the team encouraged continued research and monitoring of the effects of the Murphy Wildland Fire Complex. Much more can be learned from the effects of this extensive fire complex that may offer insight for future management decisions.

  15. Monitoring the extent and occurrence of fire in the different veld types of South Africa with particular reference to its ecological role and role in range management

    NASA Technical Reports Server (NTRS)

    Edwards, D. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Veld burning was recorded from LANDSAT imagery covering approximately 75 million ha or 62% of the surface of the eastern part of South Africa. All basic data on the location, areas, and numbers of burns for 10 biomes, composed of 67 veld types, are available on 1:250,000 and 1:500,000 map overlays, and are summarized on small scale maps showing fire distribution and amount burned in classes per 15 minute square of latitude and longitude. Veld burning is not randomly distributed, but is almost continuous over a broad belt, widest in the north and narrowing southeastwards, and then southwestwards between the eastern escarpment and the area. It is shown that over almost the whole sea, the overall pattern of veld burning is clearly marked out as early as July in midwinter, subsequent development being merely an intensification of the pattern.

  16. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    USGS Publications Warehouse

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  17. Charring temperatures are driven by the fuel types burned in a peatland wildfire

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Yearsley, Jonathan M.

    2014-01-01

    Peatlands represent a globally important carbon store; however, the human exploitation of this ecosystem is increasing both the frequency and severity of fires on drained peatlands. Yet, the interactions between the hydrological conditions (ecotopes), the fuel types being burned, the burn severity, and the charring temperatures (pyrolysis intensity) remain poorly understood. Here we present a post-burn assessment of a fire on a lowland raised bog in Co. Offaly, Ireland (All Saints Bog). Three burn severities were identified in the field (light, moderate, and deeply burned), and surface charcoals were taken from 17 sites across all burn severities. Charcoals were classified into two fuel type categories (either ground or aboveground fuel) and the reflectance of each charcoal particle was measured under oil using reflectance microscopy. Charcoal reflectance shows a positive relationship with charring temperature and as such can be used as a temperature proxy to reconstruct minimum charring temperatures after a fire event. Resulting median reflectance values for ground fuels are 1.09 ± 0.32%Romedian, corresponding to estimated minimum charring temperatures of 447°C ± 49°C. In contrast, the median charring temperatures of aboveground fuels were found to be considerably higher, 646°C ± 73°C (3.58 ± 0.77%Romedian). A mixed-effects modeling approach was used to demonstrate that the interaction effects of burn severity, as well as ecotope classes, on the charcoal reflectance is small compared to the main effect of fuel type. Our findings reveal that the different fuel types on raised bogs are capable of charring at different temperatures within the same fire, and that the pyrolysis intensity of the fire on All Saints Bog was primarily driven by the fuel types burning, with only a weak association to the burn severity or ecotope classes. PMID:25566288

  18. Noble gases in the Murchison meteorite - Possible relics of s-process nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Srinivasan, B.; Anders, E.

    1978-01-01

    The Murchison carbonaceous chondrite contains a new type of xenon component, enriched by up to 50 percent in five of the nine stable xenon isotopes, mass numbers 128 to 132. This component is released at 1200 to 1600 C from a severely etched mineral fraction. Krypton shows a similar but smaller enrichment in the isotopes 80 and 82. Neon and helium released in the same interval also are quite anomalous, being highly enriched in the isotopes 22 and 3. These patterns are strongly suggestive of three nuclear processes believed to take place in red giants: the s process (neutron capture on a slow time scale), helium burning, and hydrogen shell burning. If this interpretation is correct, then primitive meteorites contain yet another kind of alien, presolar material: dust grains ejected from red giants.

  19. Amniotic membrane traps and induces apoptosis of inflammatory cells in ocular surface chemical burn

    PubMed Central

    Liu, Ting; Zhai, Hualei; Xu, Yuanyuan; Dong, Yanling; Sun, Yajie; Zang, Xinjie

    2012-01-01

    Purpose Severe chemical burns can cause necrosis of ocular surface tissues following the infiltration of inflammatory cells. It has been shown that amniotic membrane transplantation (AMT) is an effective treatment for severe chemical burns, but the phenotypes of cells that infiltrate the amniotic membrane and the clinical significance of these cellular infiltrations have not previously been reported. The present work studies the inflammation cell traps and apoptosis inducing roles of the amniotic membrane after AMT in patients with acute chemical burns. Methods A total of 30 patients with acute alkaline burns were classified as having either moderate or severe burns. In all participants, AMT was performed within one week of his/her injury. After 7–9 days, the transplanted amniotic membranes were removed. Histopathological and immunohistochemical techniques were used for the examination and detection of infiltrating cells, and tests for the expression of CD (cluster of differentiation)15, CD68, CD3, CD20, CD57, CD31, CD147, and CD95 (Fas) were performed. A TUNEL (TdT-mediated dUTP nick end labeling) assay was used to confirm apoptosis of the infiltrating cells. Three patients with herpes simplex-induced keratitis who had undergone AMT to treat persistent epithelium defects were used as a control group. Amniotic membrane before transplantation was used as another control. Results After amniotic membrane transplantation, the number of infiltrating cells in patients with severe burns was significantly higher than in patients with moderate burns or in control patients (p<0.05). Among the severe burns patients, CD15 and CD68 were widely expressed in the infiltrating cells, and CD3, CD20, and CD57 were only found in a small number of cells. Occasionally, CD31-positive cells were found in the amniotic membranes. More cells that were CD147, Fas, and TUNEL positive were found in patients with severe burns than in patients with moderate burns or in control patients. Conclusions Neutrophils and macrophages were the main cells that had infiltrated into the amniotic membrane during the acute phase of healing from a chemical burns. AMT can trap different inflammatory cells and induce apoptosis of inflammatory cells in acute ocular chemical burns. PMID:22876141

  20. [Clinical study on the postburn change in the hypothalamus-pituitary-adrenal hormones in severely burned patients].

    PubMed

    Li, Hong-mian; Liang, Zi-qian; Luo, Zuo-jie

    2003-06-01

    To investigate the postburn dynamic changes in the hypothalamus-pituitary-adrenal hormones in severely burned patients. Fifty burn patients were enrolled in the study. The plasma contents of total GC (cortisol), ACTH and aldosterone (ALDO) and urinary contents of 17-OHO and 17-KS were determined with radio-immunological assay (RIA) method after burn injury to compare with the normal values which were well established clinically. The postburn plasma and urinary contents of the above indices were increased evidently with two peak values in shock and infectious stages, whilst the majority of he indices were lower than the normal values after 6 postburn weeks (PBWs). The values of these hormones were the lowest in dying patients. On the other hand, the values approached normal levels in those patients whose burn wounds were healing. Increases of the plasma and urinary levels of hypothalamus-pituitary -adrenal hormones in severely burned patients were constantly seen. Burn shock and infection seemed to be the two major factors in inducing postburn stress reaction in burn victims. Abrupt decrease of the hormone levels in plasma and or urine indicated adrenal failure predicting a poor prognosis of the burn patients.

  1. Modelling Carbon Emissions in Calluna vulgaris-Dominated Ecosystems when Prescribed Burning and Wildfires Interact.

    PubMed

    Santana, Victor M; Alday, Josu G; Lee, HyoHyeMi; Allen, Katherine A; Marrs, Rob H

    2016-01-01

    A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions.

  2. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains

    USGS Publications Warehouse

    Lu Liang,; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li,; Peng Gong,

    2016-01-01

    The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.

  3. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement

    PubMed Central

    McWethy, David B.; Whitlock, Cathy; Wilmshurst, Janet M.; McGlone, Matt S.; Fromont, Mairie; Li, Xun; Dieffenbacher-Krall, Ann; Hobbs, William O.; Fritz, Sherilyn C.; Cook, Edward R.

    2010-01-01

    Humans have altered natural patterns of fire for millennia, but the impact of human-set fires is thought to have been slight in wet closed-canopy forests. In the South Island of New Zealand, Polynesians (Māori), who arrived 700–800 calibrated years (cal y) ago, and then Europeans, who settled ∼150 cal y ago, used fire as a tool for forest clearance, but the structure and environmental consequences of these fires are poorly understood. High-resolution charcoal and pollen records from 16 lakes were analyzed to reconstruct the fire and vegetation history of the last 1,000 y. Diatom, chironomid, and element concentration data were examined to identify disturbance-related limnobiotic and biogeochemical changes within burned watersheds. At most sites, several high-severity fire events occurred within the first two centuries of Māori arrival and were often accompanied by a transformation in vegetation, slope stability, and lake chemistry. Proxies of past climate suggest that human activity alone, rather than unusually dry or warm conditions, was responsible for this increased fire activity. The transformation of scrub to grassland by Europeans in the mid-19th century triggered further, sometimes severe, watershed change, through additional fires, erosion, and the introduction of nonnative plant species. Alteration of natural disturbance regimes had lasting impacts, primarily because native forests had little or no previous history of fire and little resilience to the severity of burning. Anthropogenic burning in New Zealand highlights the vulnerability of closed-canopy forests to novel disturbance regimes and suggests that similar settings may be less resilient to climate-induced changes in the future. PMID:21149690

  4. [Fluid management and cause of death during shock period in patients with severe burns or burns complicated by inhalation injury].

    PubMed

    Zhang, Ming-liang; Li, Chi; Ma, Chun-xu

    2003-11-01

    To explore fluid management and cause of death during shock period in severe burns or burns with inhalation injury. One hundred and twelve patients with severe burns or burn complicated by inhalation injury admitted to our hospital from 1991 to 2000 were analyzed. The fluid management and death conditions during shock period were discussed. The fluid volume for resuscitation could be described as follows: the total fluid volume was 2.2 ml/(%TBSA.kg) including colloid fluid 0.5 ml/(%TBSA.kg), crystalloid fluid 1 ml/(%TBSA.kg)and water 0.7 ml/(%TBSA.kg) during first 24 hours. The total fluid volume was 1.8 ml/(%TBSA.kg) including colloid fluid 0.4 ml/(%TBSA.kg), crystalloid fluid 0.7 ml/(%TBSA.kg) and water 0.7 ml/(%TBSA.kg) during second 24 hours. There were no difference in fluid management between burns and burns with inhalation injury. Seven patients died due to respiratory failure during shock period. Many fluid formula can provide guidance for resuscitation and it is very important that early fluid therapy should accord with concrete clinical conditions of patients in order to pass smoothly through shock period. Early fluid management is not different between burns and burns with inhalation injury.

  5. Comparison between burning mouth syndrome patients with and without psychological problems.

    PubMed

    Kim, M-J; Kim, J; Kho, H-S

    2018-07-01

    The purpose of this study was to compare clinical and socio-demographic characteristics between burning mouth syndrome (BMS) patients with and without psychological problems. Of 644 patients with symptoms of oral burning, 224 with primary BMS were selected on the basis of laboratory testing, medical history, and psychometric tests: 39 with psychological problems (age 62.5±11.5years) and 185 without psychological problems (age 58.4±11.4years). Comprehensive clinical and socio-demographic characteristics, including psychological profiles and salivary flow rates, were compared between the two groups. No significant difference in sex ratio, duration and diurnal pattern of symptoms, unstimulated whole saliva flow rate, or marital status was found between the groups. The patients with psychological problems had a significantly higher mean age, reduced stimulated whole saliva flow rate, and lower level of education than those without psychological problems. The patients with psychological problems also displayed higher rates and greater severity of various types of BMS-related symptom in most parts of the oral mucosa, higher rates of stress-related symptoms, and greater difficulties in daily activities. The severity of taste disturbance was the factor most significantly correlated with the level of psychometry. In conclusion, psychological problems in BMS patients are associated with an aggravation of BMS symptoms. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Substance use and misuse in burn patients: Testing the classical hypotheses of the interaction between post-traumatic symptomatology and substance use.

    PubMed

    Eiroa-Orosa, Francisco Jose; Giannoni-Pastor, Anna; Fidel-Kinori, Sara Guila; Argüello, José María

    2016-01-01

    The authors aimed to test whether the three classical hypotheses of the interaction between post-traumatic symptomatology and substance use (high risk of trauma exposure, susceptibility for post-traumatic symptomatology, and self-medication of symptoms), may be useful in the understanding of substance use among burn patients. Substance use data (nicotine, alcohol, cannabis, amphetamines, cocaine, opiates, and tranquilizers) and psychopathology measures among burn patients admitted to a burn unit and enrolled in a longitudinal observational study were analyzed. Lifetime substance use information (n = 246) was incorporated to analyses aiming to test the high risk hypothesis. Only patients assessed for psychopathology in a 6-month follow-up (n = 183) were included in prospective analyses testing the susceptibility and self-medication hypotheses. Regarding the high risk hypothesis, results show a higher proportion of heroin and tranquilizer users compared to the general population. Furthermore, in line with the susceptibility hypothesis, higher levels of symptomatology were found in lifetime alcohol, tobacco, and drug users during recovery. The self-medication hypothesis could be tested partially due to the hospital stay "cleaning" effect, but severity of symptoms was linked to the amount of caffeine, nicotine, alcohol, and cannabis use after discharge. It was found that the 3 classical hypotheses could be used to understand the link between traumatic experiences and substance use explaining different patterns of burn patient's risk for trauma exposure and emergence of symptomatology.

  7. [The Nutrition Care of Severe Burn Patients].

    PubMed

    Hsieh, Yu-Hsiu

    2016-02-01

    In addition to recent advances in burn patient care techniques such as maintaining warm circumambient temperature, the early excision of wounds, and the use of closed dressing, providing nutrition support through early feeding has proven instrumental in greatly increasing the survival rate of burn patients. Severe burns complicated by many factors initiate tremendous physiological stress that leads to postburn hypermetabolism that includes enhanced tissue catabolism, the loss of muscle mass, and decreases in the body's reservoirs of protein and energy. These problems have become the focus of burn therapy. Treating severe burns aims not only to enhance survival rates but also to restore normal bodily functions as completely as possible. Recent research evaluating the application of anabolic agents and immune-enhance formula for severe burns therapy has generated significant controversy. Inadequate caloric intake is one of the main differences among the related studies, with the effect of many special nutrients such as bran acid amides not taken into consideration. Therefore, considering the sufficiency of caloric and protein intake is critical in assessing effectiveness. Only after patients receive adequate calories and protein may the effect of special nutrients such as glutamine and supplements be evaluated effectively.

  8. Remote sensing sensitivity to fire severity and fire recovery

    USGS Publications Warehouse

    Key, C.H.

    2005-01-01

    The paper examines fundamental ways that geospatial data on fire severity and recovery are influenced by conditions of the remote sensing. Remote sensing sensitivities are spatial, temporal and radiometric in origin. Those discussed include spatial resolution, the sampling time of year, and time since fire. For standard reference, sensitivities are demonstrated with examples drawn from an archive of burn assessments based on one radiometric index, the differenced Normalized Burn Ratio. Resolution determines the aggregation of fire effects within a pixel (alpha variation), hence defining the detected ecological response, and controlling the ability to determine patchiness and spatial distribution of responses throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation from the complexity of the whole burn. Seasonal timing impacts the radiometric quality of data in terms of transmittance, sun angle, and potential for enhanced contrast between responses within burns. Remote sensing sensitivity can degrade during many fire seasons when snow, incomplete burning, hazy conditions, low sun angles, or extended drought are common. Time since fire (lag timing) most notably shapes severity detection through the first-order fire effects evident in survivorship and delayed mortality that emerge by the growth period after fire. The former effects appear overly severe at first, but diminish, as burned vegetation remains viable. Conversely, the latter signals vegetation that appears healthy at first, but is damaged by heat to the extent that it soon dies. Both responses can lead to either over- or under-estimating severity, respectively, depending on fire behavior and pre-fire composition unique to each burned area. Based on implications of such sensitivities, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within ca. two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Jointly, remote sensing conditions and the way burns are studied yield different tendencies for data quality and information content that impact the objectives and hypotheses that can be studied. Such considerations can be commonly overlooked, but need to be incorporated especially in comparative studies, and to build long-term reference databases on fire severity and recovery.

  9. Burn Wound Infections

    PubMed Central

    Church, Deirdre; Elsayed, Sameer; Reid, Owen; Winston, Brent; Lindsay, Robert

    2006-01-01

    Burns are one of the most common and devastating forms of trauma. Patients with serious thermal injury require immediate specialized care in order to minimize morbidity and mortality. Significant thermal injuries induce a state of immunosuppression that predisposes burn patients to infectious complications. A current summary of the classifications of burn wound infections, including their diagnosis, treatment, and prevention, is given. Early excision of the eschar has substantially decreased the incidence of invasive burn wound infection and secondary sepsis, but most deaths in severely burn-injured patients are still due to burn wound sepsis or complications due to inhalation injury. Burn patients are also at risk for developing sepsis secondary to pneumonia, catheter-related infections, and suppurative thrombophlebitis. The introduction of silver-impregnated devices (e.g., central lines and Foley urinary catheters) may reduce the incidence of nosocomial infections due to prolonged placement of these devices. Improved outcomes for severely burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary and burn wound care, and infection control practices. PMID:16614255

  10. Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats.

    PubMed

    Li, Jun; Zhu, Liang; Xu, Ming; Han, Juntao; Bai, Xiaozhi; Yang, Xuekang; Zhu, Huayu; Xu, Jie; Zhang, Xing; Gong, Yangfan; Hu, Dahai; Gao, Feng

    2015-08-01

    Severe burns often initiate the prevalence of hyperglycemia and insulin resistance, significantly contributing to adverse clinical outcomes. However, there are limited treatment options. This study was designed to investigate the role and the underlying mechanisms of oral antibiotics to selectively decontaminate the digestive tract (SDD) on burn-induced insulin resistance. Rats were subjected to 40% of total body surface area full-thickness burn or sham operation with or without SDD treatment. Translocation of FITC-labeled LPS was measured at 4h after burn. Furthermore, the effect of SDD on post-burn quantity of gram-negative bacteria in gut was investigated. Serum or muscle LPS and proinflammatory cytokines were measured. Intraperitoneal glucose tolerance test and insulin tolerance test were used to determine the status of systemic insulin resistance. Furthermore, intracellular insulin signaling (IRS-1 and Akt) and proinflammatory related kinases (JNK and IKKβ) were assessed by western blot. Burn increased the translocation of LPS from gut 4h after injury. SDD treatment effectively inhibited post-burn overgrowth of gram-negative enteric bacilli in gut. In addition, severe burns caused significant increases in the LPS and proinflammatory cytokines levels, activation of proinflammatory related kinases, and systemic insulin resistance as well. But SDD treatment could significantly attenuate burn-induced insulin resistance and improve the whole-body responsiveness to insulin, which was associated with the inhibition of gut-derived LPS, cytokines, proinflammatory related kinases JNK and IKKβ, as well as activation of IRS-1 and Akt. SDD appeared to have an effect on proinflammatory signaling cascades and further reduced severe burn-induced insulin resistance. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. The Role of Hyperglycemia in Burned Patients: Evidence-Based Studies

    PubMed Central

    Mecott, Gabriel A.; Al-Mousawi, Ahmed M.; Gauglitz, Gerd G.; Herndon, David N.; Jeschke, Marc G.

    2013-01-01

    Severely burned patients typically experience a systemic response expressed as increased metabolism, inflammation, alteration of cardiac and immune function, and associated hyperglycemia. Hyperglycemia has been associated with an increased risk of morbidity and mortality in critically ill patients. Until recently and for many years, hyperglycemia has been expectantly managed and considered a normal and desired response of an organism to stress. However, findings reported from recent studies now suggest beneficial effects of intensive insulin treatment for critically-ill patients. The literature on the management of hyperglycemia in severely burned patients is sparse, with most of the available studies involving only small numbers of burned patients. The purpose of this article is to describe the pathophysiology of hyperglycemia following severe burns and review the available literature on the outcome of intensive insulin treatment and other anti-hyperglycemic modalities in burned patients in an evidence-based-medicine approach. PMID:19503020

  12. Surgical and psychiatric profile of patients who self-harm by burning in a regional burn unit over an 11-year period.

    PubMed

    Conlin, Samantha; Littlechild, Joseph; Aditya, Hosakere; Bahia, Hilal

    2016-02-01

    Patients admitted to hospital for deliberate self-harm by burning (DSHB) provide a challenge for medical, surgical and psychological management. We retrospectively reviewed all the patients admitted to a Scottish regional burn unit with DSHB over an 11-year period to assess demographics and outcome. Ward admission data were used to identify DSHB patients admitted to the South East Scotland regional burn unit in Livingston, UK between 2002 and 2012, as well as a control group of accidental burn patients. Data were extracted concerning burn injury, psychiatric history and inpatient management. A total of 53 DSHB patients with 58 attendances over the 11-year period were compared to 49 accidental burns patients. Compared to controls, DSHB patients were more likely to be unemployed, live alone and have a previous psychiatric diagnosis (p < 0.01). DSHB patients had more severe burns, a longer hospital stay and were more likely to undergo surgery (p < 0.01). DSHB patients with previous self-harm, suicide attempts and diagnoses of personality and eating disorder all had significantly less severe burns than DSHB patients without these risk factors (p < 0.05). In our experience, DSHB patients have more severe burn injuries and require longer, resource-intensive hospital stays. Burn units should have an appropriate specialist psychologist/psychiatrist who works within the Burn multi-disciplinary team to help manage this complex group of patients' healthcare needs and reduce their risk of further self-harm. © The Author(s) 2016.

  13. Use of prescribed burning for restoration and maintenance of ecological conditions: Predicting and managing fire injury and tree mortality

    Treesearch

    Kevin Ryan; E. Rigolot; F. C. Rego; H. Botelho; J. A. Vega; P. M. Fernandes; T. M. Sofronova

    2010-01-01

    Throughout Earth’s history fire has been a major disturbance factor in many terrestrial ecosystems. Fire is man’s first tool. It was used for a host of cultural purposes to modify stand structure and species composition as well as landscape pattern and process. Changes in climate and land use are leading to changes in vegetation and the frequency and severity of modern...

  14. Two-year follow-up of outcomes related to scarring and distress in children with severe burns.

    PubMed

    Wurzer, Paul; Forbes, Abigail A; Hundeshagen, Gabriel; Andersen, Clark R; Epperson, Kathryn M; Meyer, Walter J; Kamolz, Lars P; Branski, Ludwik K; Suman, Oscar E; Herndon, David N; Finnerty, Celeste C

    2017-08-01

    We assessed the perception of scarring and distress by pediatric burn survivors with burns covering more than one-third of total body surface area (TBSA) for up to 2 years post-burn. Children with severe burns were admitted to our hospital between 2004 and 2012, and consented to this IRB-approved-study. Subjects completed at least one Scars Problems and/or Distress questionnaire between discharge and 24 months post burn. Outcomes were modeled with generalized estimating equations or using mixed linear models. Significance was accepted at p < 0.01. Responses of 167 children with a mean age of 7 ± 5 years and burns covering an average 54 ± 14% of TBSA were analyzed. Significant improvements over the 2-year period were seen in reduction of pain, itching, sleeping disturbance, tightness, range of motion, and strength (p < 0.01). There was a significantly increased persistent desire to hide the scarred body areas over time (p < 0.01). The perception of mouth scarring, inability to portray accurate facial expressions, and skin coloration did not improve over the follow-up period. According to self-assessment questionnaires, severely burned children exhibit significant improvements in their overall perception of scarring and distress. However, these patients remain self-conscious with respect to their body image even 2 years after burn injury. Implications for Rehabilitation According to self-assessment questionnaires, severely burned children perceive significant improvements in scarring and distress during the first 2 years post burn. Significant improvements were seen in reduction of pain, itching, sleeping disturbances, tightness, range of motion, and strength (p < 0.01). Burn care providers should improve the treatment of burns surrounding the mouth that with result in scarring, and develop strategies to prevent skin discoloration. Careful evaluation of pain and sleeping disorders during the first year post burn are warranted to improve the patient rehabilitation. Overall, significantly more female patients expressed a persistent desire to hide their scarred body areas. The rehabilitation team should provide access to wigs or other aids to pediatric burn survivors to address these needs.

  15. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1

    PubMed Central

    Bai, Xiao-Zhi; He, Ting; Gao, Jian-Xin; Liu, Yang; Liu, Jia-Qi; Han, Shi-Chao; Li, Yan; Shi, Ji-Hong; Han, Jun-Tao; Tao, Ke; Xie, Song-Tao; Wang, Hong-Tao; Hu, Da-Hai

    2016-01-01

    Acute kidney injury (AKI) is a common complication after severe burns. Melatonin has been reported to protect against multiple organ injuries by increasing the expression of SIRT1, a silent information regulator that regulates stress responses, inflammation, cellular senescence and apoptosis. This study aimed to investigate the protective effects of melatonin on renal tissues of burned rats and the role of SIRT1 involving the effects. Rat severely burned model was established, with or without the administration of melatonin and SIRT1 inhibitor. The renal function and histological manifestations were determined to evaluate the severity of kidney injury. The levels of acetylated-p53 (Ac-p53), acetylated-p65 (Ac-p65), NF-κB, acetylated-forkhead box O1 (Ac-FoxO1), Bcl-2 and Bax were analyzed to study the underlying mechanisms. Our results suggested that severe burns could induce acute kidney injury, which could be partially reversed by melatonin. Melatonin attenuated oxidative stress, inflammation and apoptosis accompanied by the increased expression of SIRT1. The protective effects of melatonin were abrogated by the inhibition of SIRT1. In conclusion, we demonstrate that melatonin improves severe burn-induced AKI via the activation of SIRT1 signaling. PMID:27599451

  16. A rare case of failed healing in previously burned skin after a secondary burns.

    PubMed

    Goldie, Stephen J; Parsons, Shaun; Menezes, Hana; Ives, Andrew; Cleland, Heather

    2017-01-01

    Patients presenting with large surface area burns are common in our practice; however, patients with a secondary large burn on pre-existing burn scars and grafts are rare and not reported. We report on an unusual case of a patient sustaining a secondary large burn to areas previously injured by a burn from a different mechanism. We discuss the potential implications when managing a case like this and suggest potential biological reasons why the skin may behave differently. Our patient was a 33-year-old man who presented with a 5% TBSA burn on skin scarred by a previous 40% total body surface area (TBSA) burn and skin grafts. Initially assessed as superficial partial thickness in depth, the wounds were treated conservatively with dressings; however, they failed to heal and became infected requiring surgical management. Burns sustained in areas of previous burn scars and grafts may behave differently to normal patterns of healing, requiring more aggressive management and surgical intervention at an early stage.

  17. Jewelry cleaners

    MedlinePlus

    ... swelling (may also cause breathing difficulty) EYES, EARS, NOSE, AND THROAT Severe pain in the throat Severe pain or burning in the nose, eyes, ears, lips, or tongue Vision loss GASTROINTESTINAL SYSTEM ... pain (severe) Bloody stools Burns and possible holes of ...

  18. Linking runoff response to burn severity after a wildfire

    USGS Publications Warehouse

    Moody, J.A.; Martin, D.A.; Haire, S.L.; Kinner, D.A.

    2008-01-01

    Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the bum severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity ?? was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the bum severity along hillslope flow paths. The runoff response and the burn severity were measured in seven subwatersheds (0.24 to 0.85 km2) in the upper part of Rendija Canyon burned by the 2000 Cerro Grande Fire Dear Los Alamos, New Mexico, USA. A rainfall-discharge relation was determined for four of the subwatersheds with nearly the same bum severity. The peak discharge per unit drainage area Qupeak was a linear function of the maximum 30 min rainfall intensity I30. This function predicted a rainfall intensity threshold of 8.5 mm h-1 below which no runoff was generated. The runoff coefficient C = Qupeak/I30 was a linear function of the mean hydraulic functional connectivity of the subwatersheds. Moreover, the variability of the mean hydraulic functional connectivity was related to the variability of the mean runoff coefficient, and this relation provides physical insight into why the runoff response from the same subwatershed can vary for different rainstorms with the same rainfall intensity. Published in 2007 by John Wiley & Sons, Ltd.

  19. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity

    NASA Astrophysics Data System (ADS)

    Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O.

    2018-02-01

    Nowadays Earth observation satellites, in particular Landsat, provide a valuable help to forest managers in post-fire operations; being the base of post-fire damage maps that enable to analyze fire impacts and to develop vegetation recovery plans. Sentinel-2A MultiSpectral Instrument (MSI) records data in similar spectral wavelengths that Landsat 8 Operational Land Imager (OLI), and has higher spatial and temporal resolutions. This work compares two types of satellite-based maps for evaluating fire damage in a large wildfire (around 8000 ha) located in Sierra de Gata (central-western Spain) on 6-11 August 2015. 1) burn severity maps based exclusively on Landsat data; specifically, on differenced Normalized Burn Ratio (dNBR) and on its relative versions (Relative dNBR, RdNBR, and Relativized Burn Ratio, RBR) and 2) burn severity maps based on the same indexes but combining pre-fire data from Landsat 8 OLI with post-fire data from Sentinel-2A MSI data. Combination of both Landsat and Sentinel-2 data might reduce the time elapsed since forest fire to the availability of an initial fire damage map. Interpretation of ortho-photograph Pléiades 1 B data (1:10,000) provided us the ground reference data to measure the accuracy of both burn severity maps. Results showed that Landsat based burn severity maps presented an adequate assessment of the damage grade (κ statistic = 0.80) and its spatial distribution in wildfire emergency response. Further using both Landsat and Sentinel-2 MSI data the accuracy of burn severity maps, though slightly lower (κ statistic = 0.70) showed an adequate level for be used by forest managers.

  20. Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children.

    PubMed

    Chao, Tony; Porter, Craig; Herndon, David N; Siopi, Aikaterina; Ideker, Henry; Mlcak, Ronald P; Sidossis, Labros S; Suman, Oscar E

    2018-03-01

    Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with β-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function. However, the effect of RET combined with multiple drug therapy on muscle mass, strength, cardiorespiratory fitness, and protein turnover are unknown. In this placebo-controlled randomized trial, we hypothesize that RET combined with oxandrolone and propranolol (Oxprop) will improve muscle mass and function and protein turnover in severely burned children compared with burned children undergoing the same RET with a placebo. We studied 42 severely burned children (7-17 yr) with severe burns over 30% of the total body surface area. Patients were randomized to placebo (22 control) or to Oxprop (20) and began drug administration within 96 h of admission. All patients began RET at hospital discharge as part of their standardized care. Muscle strength (N·m), power (W), V˙O2peak, body composition, and protein fractional synthetic rate and fractional breakdown rate were measured pre-RET (PRE) and post-RET (POST). Muscle strength and power, lean body mass, and V˙O2peak increased with RET in both groups (P < 0.01). The increase in strength and power was significantly greater in Oxprop versus control (P < 0.01), and strength and power was greater in Oxprop over control POST (P < 0.05). Fractional synthetic rate was significantly higher in Oxprop than control POST (P < 0.01), resulting in improved protein net balance POST (P < 0.05). Rehabilitative exercise training improves body composition, muscle function, and cardiorespiratory fitness in children recovering from severe burns. Oxprop therapy augments RET-mediated improvements in muscle strength, power, and protein turnover.

  1. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  2. Hydrometeorological conditions preceding wildfire, and the subsequent burning of a fen watershed in Fort McMurray, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Elmes, Matthew C.; Thompson, Dan K.; Sherwood, James H.; Price, Jonathan S.

    2018-01-01

    The destructive nature of the ˜ 590 000 ha Horse river wildfire in the Western Boreal Plain (WBP), northern Alberta, in May of 2016 motivated the investigation of the hydrometeorological conditions that preceded the fire. Historical climate and field hydrometeorological data from a moderate-rich fen watershed were used to (a) identify whether the spring 2016 conditions were outside the range of natural variability for WBP climate cycles, (b) explain the observed patterns in burn severity across the watershed, and (c) identify whether fall and winter moisture signals observed in peatlands and lowland forests in the region are indicative of wildfire. Field hydrometeorological data from the fen watershed confirmed the presence of cumulative moisture deficits prior to the fire. Hydrogeological investigations highlighted the susceptibility of fen and upland areas to water table and soil moisture decline over rain-free periods (including winter), due to the watershed's reliance on supply from localized flow systems originating in topographic highs. Subtle changes in topographic position led to large changes in groundwater connectivity, leading to greater organic soil consumption by fire in wetland margins and at high elevations. The 2016 spring moisture conditions measured prior to the ignition of the fen watershed were not illustrated well by the Drought Code (DC) when standard overwintering procedures were applied. However, close agreement was found when default assumptions were replaced with measured duff soil moisture recharge and incorporated into the overwintering DC procedure. We conclude that accumulated moisture deficits dating back to the summer of 2015 led to the dry conditions that preceded the fire. The infrequent coinciding of several hydrometeorological conditions, including low autumn soil moisture, a modest snowpack, lack of spring precipitation, and high spring air temperatures and winds, ultimately led to the Horse river wildfire spreading widely and causing the observed burn patterns. Monitoring soil moisture at different land classes and watersheds would aid management strategies in the production of more accurate overwintered DC calculations, providing fire management agencies early warning signals ahead of severe spring wildfire seasons.

  3. Bird response to fire severity and repeated burning in upland hardwood forest

    Treesearch

    Cathryn H. Greenberg; Thomas A. Waldrop; Joseph Tomcho; Ross J. Phillips; Dean Simon

    2012-01-01

    Prescribed burning is a common management tool for upland hardwood forests, with wildlife habitat improvement an often cited goal. Fire management for wildlife conservation requires understanding how species respond to burning at different frequencies, severities, and over time. In an earlier study, we experimentally assessed how breeding bird communities and species...

  4. Towards a Better Understanding of Biomas Burning and Large Scale Climate Dynamics on the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Ajoku, O.; Norris, J. R.; Miller, A. J.

    2017-12-01

    Seasonal biomass burning and resulting black carbon (BC) emissions have been well documented to effect regional weather patterns, especially including low level convection. These effects can be due to the hydrophilic and radiative qualities of the aerosols emitted from such burning. This project focuses on utilizing observation and reanalysis data in order to understand the effects of BC advected from the Southern hemisphere impact the dynamics of the West African Monsoon. Our results show that, of all monsoon months, BC advection has a direct impact on precipitation in July. Early analysis indicates that biomass burning occuring near Angola/Congo advects over the Gulf of Guinea, towards the Intertropical Convergence Zone at around 850mb and stabalizes the atmosphere. For a broader impact, this region is home to more than 200 million people and thus understanding these climate patterns may carry great importance.

  5. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN ...

    EPA Pesticide Factsheets

    A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic compound (VOC) and polycyclic aromatic hydrocarbon (PAH) data were available for many of the sources. Data on semivolatile organic compounds (SVOCs) that are not PAHs were available for several sources. Carbonyl and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran (PCDD/F) data were available for only a few sources. There were several sources for which no emissions data were available at all. Several observations were made including: 1) Biomass open burning sources typically emitted less VOCs than open burning sources with anthropogenic fuels on a mass emitted per mass burned basis, particularly those where polymers were concerned; 2) Biomass open burning sources typically emitted less SVOCs and PAHs than anthropogenic sources on a mass emitted per mass burned basis. Burning pools of crude oil and diesel fuel produced significant amounts of PAHs relative to other types of open burning. PAH emissions were highest when combustion of polymers was taking place; and 3) Based on very limited data, biomass open burning sources typically produced higher levels of carbonyls than anthropogenic sources on a mass emitted per mass burned basis, probably due to oxygenated structures r

  6. Thermal characteristics of amphibian microhabitats in a fire-disturbed landscape

    USGS Publications Warehouse

    Hossack, B.R.; Eby, L.A.; Guscio, C.G.; Corn, P.S.

    2009-01-01

    Disturbance has long been a central issue in amphibian conservation, often regarding negative effects of logging or other forest management activities, but some amphibians seem to prefer disturbed habitats. After documenting increased use of recently burned forests by boreal toads (Bufo boreas), we hypothesized that burned habitats provided improved thermal opportunities in terrestrial habitats. We tested this hypothesis by conducting a radio telemetry study of habitat use (reported previously) and by using physical models that simulated the temperature of adult toads. We deployed 108 physical models in and adjacent to a 1-year old burn using a fully-replicated design with three burn severities (unburned, partial, high severity) and four microhabitats (open surface, under vegetation, under log, in burrow). Model temperatures were compared to a range of preferred temperatures in published studies. We found 70% more observations within the preferred temperature range of B. boreas in forests burned with high severity than in unburned areas. Burned forest was warmer than unburned forest across all microhabitats, but the largest relative difference was in burrows, which averaged 3 ??C warmer in high-severity burn areas and remained warmer though the night. More than twice as many observations were within the preferred temperature range in high-severity burrows than in unburned burrows. Areas burned with high severity were still warmer than unburned forest 3 years after the fire. Habitat use of toads during the concurrent radio telemetry study matched that predicted by the physical models. These results suggest there are fitness-linked benefits to toads using burned habitats, such as increased growth, fertility, and possibly disease resistance. However, increased soil temperatures that result from wildfire may be detrimental to other amphibian species that prefer cooler temperatures and stable environments. More broadly, our data illustrate the use of physical models to measure and interpret changes that amphibians may experience from disturbance, and highlight the need for research linking vital rates such as growth and survival to disturbance.

  7. Prone Positioning Improves Oxygenation in Adult Burn Patients with Severe Acute Respiratory Distress Syndrome

    DTIC Science & Technology

    2012-01-01

    Prone positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome Diane F. Hale, MD, Jeremy W. Cannon, MD...Kevin K. Chung, MD, San Antonio, Texas BACKGROUND: Prone positioning (PP) improves oxygenation and may provide a benefit in patients with acute... positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  8. Health related quality of life in adults after burn injuries: A systematic review

    PubMed Central

    Legemate, Catherine; Oen, Irma; van Loey, Nancy; Polinder, Suzanne; van Baar, Margriet

    2018-01-01

    Objectives Measurement of health-related quality of life (HRQL) is essential to qualify the subjective burden of burns in survivors. We performed a systematic review of HRQL studies in adult burn patients to evaluate study design, instruments used, methodological quality, and recovery patterns. Methods A systematic review was performed. Relevant databases were searched from the earliest record until October 2016. Studies examining HRQL in adults after burn injuries were included. Risk of bias was scored using the Quality in Prognostic Studies tool. Results Twenty different HRQL instruments were used among the 94 included studies. The Burn Specific Health Scale–Brief (BSHS-B) (46%), the Short Form–36 (SF-36) (42%) and the EuroQol questionnaire (EQ-5D) (9%) were most often applied. Most domains, both mentally and physically orientated, were affected shortly after burns but improved over time. The lowest scores were reported for the domains ‘work’ and ‘heat sensitivity’ (BSHS-B), ‘bodily pain’, ‘physical role limitations’ (SF-36), and ‘pain/discomfort’ (EQ-5D) in the short-term and for ‘work’ and ‘heat sensitivity’, ‘emotional functioning’ (SF-36), ‘physical functioning’ and ‘pain/discomfort’ in the long-term. Risk of bias was generally low in outcome measurement and high in study attrition. Conclusion Consensus on preferred validated methodologies of HRQL measurement in burn patients would facilitate comparability across studies, resulting in improved insights in recovery patterns and better estimates of HRQL after burns. We recommend to develop a guideline on the measurement of HRQL in burns. Five domains representing a variety of topics had low scores in the long-term and require special attention in the aftermath of burns. PMID:29795616

  9. Automated mapping of burned areas in semi-arid ecosystems using modis time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, L. A.; Blanco, P. D.; del Valle, H. F.; Metternicht, G. I.; Sione, W. F.

    2015-04-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Standard satellite burned area and active fire products derived from the 500-m MODIS and SPOT are avail - able to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applica - tions. Consequently, we propose a novel algorithm for automated identification and mapping of burned areas at regional scale in semi-arid shrublands. The algorithm uses a set of the Normalized Burned Ratio Index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. The correlation between the size of burnt areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01 - 0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  10. The view of severely burned patients and healthcare professionals on the blind spots in the aftercare process: a qualitative study.

    PubMed

    Christiaens, Wendy; Van de Walle, Elke; Devresse, Sophie; Van Halewyck, Dries; Benahmed, Nadia; Paulus, Dominique; Van den Heede, Koen

    2015-08-01

    In most Western countries burn centres have been developed to provide acute and critical care for patients with severe burn injuries. Nowadays, those patients have a realistic chance of survival. However severe burn injuries do have a devastating effect on all aspects of a person's life. Therefore a well-organized and specialized aftercare system is needed to enable burn patients to live with a major bodily change. The aim of this study is to identify the problems and unmet care needs of patients with severe burn injuries throughout the aftercare process, both from patient and health care professional perspectives in Belgium. By means of face-to-face interviews (n = 40) with individual patients, responsible physicians and patient organizations, current experiences with the aftercare process were explored. Additionally, allied healthcare professionals (n = 17) were interviewed in focus groups. Belgian burn patients indicate they would benefit from a more integrated aftercare process. Quality of care is often not structurally embedded, but depends on the good intentions of local health professionals. Most burn centres do not have a written discharge protocol including an individual patient-centred care plan, accessible to all caregivers involved. Patients reported discontinuity of care: nurses working at general wards or rehabilitation units are not specifically trained for burn injuries, which sometimes leads to mistakes or contradictory information transmission. Also professionals providing home care are often not trained for the care of burn injuries. Some have to be instructed by the patient, others go to the burn centre to learn the right skills. Finally, patients themselves underestimate the chronic character of burn injuries, especially at the beginning of the care process. The variability in aftercare processes and structures, as well as the failure to implement locally developed best-practices on a wider scale emphasize the need for a comprehensive network, which can initiate transversal activities such as the development of discharge protocols, common guidelines, and quality criteria.

  11. Work-related burns.

    PubMed

    Pruitt, Valerie M

    2006-01-01

    Work-related upper extremity burns often occur. The cause directs the course of action. Thermal burns should be assessed for system alterations, and depth of burn should be determined. Deep partial-thickness burns and more severe burns require a specialist evaluation. Chemical burns must be irrigated and the agent identified. Some chemical burns, such as those that involve phenols and metal fragments, require specific topical applications before water lavage. Hydrofluoric acid burns can cause life-threatening electrolyte abnormalities with a small, highly concentrated acid burn. The goal with any extremity burn is to provide the patient with a multidisciplinary team approach to achieve a functional, usable extremity.

  12. Epidemiological data and costs of burn injuries in workers in Switzerland: an argument for immediate treatment in burn centres.

    PubMed

    de Roche, R; Lüscher, N J; Debrunner, H U; Fischer, R

    1994-02-01

    A complete statistical evaluation of epidemiological data and costs of burn injuries in 1984 with a follow-up for 5 years is presented, considering a collective of 1.77 million workers in Switzerland. The majority of burns are minor injuries; only about 5 per cent of the burn victims are admitted to a hospital, 0.2 per cent died. Burn injuries at work are rare, mainly owing to strict safety measures. Only one-fifth of the costs caused by burns are due to medical treatment. All other expenses result from continuation of payments of salaries and annuities. The treatment of the few severely burned patients in burn units produces effective costs which are higher than the tariff paid by the insurance. Even so, the predominant portion of the enormous costs is taken up by wages while off work and annuities. As our conclusion we stress the importance of primary care for all severe burns including all burns of the hands in a specialized centre. Any economic effort for primary burn treatment, however high it may be, is justified if the duration of rehabilitation and invalidity can be reduced.

  13. Health-related quality of life (EQ-5D) early after injury predicts long-term pain after burn.

    PubMed

    Gauffin, Emelie; Öster, Caisa; Sjöberg, Folke; Gerdin, Bengt; Ekselius, Lisa

    2016-12-01

    Chronic pain after burn can have severe physical and psychological effects on former patients years after the initial injury. Although the issue of pain after burn has gained increased attention over the past years, prospective, longitudinal studies are scarce. Our aim was to prospectively investigate consecutive burn patients for pain severity over time and to evaluate the prevalence and characteristics of post-burn pain to 2-7 years after the burn. As an additional aim, the effects of burn and individual-related factors, especially health-related Quality of Life (HRQoL), were investigated. Sixty-seven consecutive burn patients were assessed during acute care at 3, 6, 12 and 24 months, as well as at 2-7 years post-burn. HRQoL, symptoms of post-traumatic stress disorder (PTSD) and other psychiatric disorders were investigated. During the interviews that took place 2-7 years after the injury (mean 4.6±1.9 years), current chronic post-burn pain was assessed using the Brief Pain Inventory-Short Form (BPI-SF). One-third of the patients still reported pain 2-7 years after the injury. Pain severity and interference with daily life were mainly mild to moderate though they were found to be associated with significantly lower HRQoL. Chronic pain after burn was associated with both burn- and individual-related factors. In logistic regression analysis HRQoL at 3 and 12 months and symptoms of PTSD at 12 months were independent factors in predicting chronic pain after burn. Pain after burn becomes a chronic burden for many former burn patients and decreases HRQoL. A novel finding in this study was that HRQoL assessed early after burn was a predictor for the development of chronic pain. This finding may help to predict future pain problems and serve as an indicator for pain preventive measures. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. AmeriFlux US-An2 Anaktuvuk River Moderate Burn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbie, John; Rocha, Adrian; Shaver, Gaius

    This is the AmeriFlux version of the carbon flux data for the site US-An2 Anaktuvuk River Moderate Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the firemore » on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Moderate Burn site consisted of a large area with small patches of completely and partially burned tundra intermixed across the landscape.« less

  15. [Burns in workers in Switzerland: epidemiology and financial sequelae].

    PubMed

    de Roche, R; Lüscher, N J; Debrunner, H U; Fischer, R

    1993-01-01

    A complete statistical evaluation of epidemiologic data and costs of burn injuries in 1984 with a follow-up for 5 years is presented, considering a collective of 1.77 million workers in Switzerland. The majority of burns are minor injuries; only about 5% of the burn victimes are admitted to a hospital, 0.2% die. Only one fifth of the costs caused by burns are due to medical treatment and rehabilitation. All other expenses result from continuation of payments of salaries and annuities. The few treatments of severely burnt patients in the burn units cause effective costs higher than the tariff paid by the insurance. Even so, the predominant portion of the enormous costs is taken up by wages while off work and annuities. As our conclusion we stress the importance of primary care for all severe burns including all burns of the hands in a specialized centre. Any economic effort for primary burn treatment, however high it may be, is justified if the duration of rehabilitation and invalidity can thus be reduced.

  16. Renal Replacement Therapy in Severe Burns: A Multicenter Observational Study.

    PubMed

    Chung, Kevin K; Coates, Elsa C; Hickerson, William L; Arnold-Ross, Angela L; Caruso, Daniel M; Albrecht, Marlene; Arnoldo, Brett D; Howard, Christina; Johnson, Laura S; McLawhorn, Melissa M; Friedman, Bruce; Sprague, Amy M; Mosier, Michael J; Conrad, Peggie F; Smith, David J; Karlnoski, Rachel A; Aden, James K; Mann-Salinas, Elizabeth A; Wolf, Steven E

    2018-06-20

    Acute kidney injury (AKI) after severe burns is historically associated with a high mortality. Over the past two decades, various modes of renal replacement therapy (RRT) have been utilized in this population. The purpose of this multicenter study was to evaluate demographic, treatment and outcomes data among severe burn patients treated with RRT collectively at various burn centers around the United States. After institutional review board approval, a multicenter observational study was conducted. All adult patients 18 or older, admitted with severe burns who were placed on RRT for acute indications but not randomized into a concurrently enrolling interventional trial were included. Across 8 participating burn centers, 171 subjects were enrolled during a 4 year period. Complete data was available in 170 subjects with a mean age of 51±17, percent total body surface area (TBSA) burn of 38±26% and Injury Severity Score of 27±21. 80% of subjects were male and 34% were diagnosed with smoke inhalation injury. The preferred mode of therapy was continuous venovenous hemofiltration at a mean delivered dose of 37±19 (mL/kg/hr) and a treatment duration of 13±24 days. Overall, in hospital mortality was 50%. Among survivors, 21% required RRT upon discharge from the hospital while 9% continued to require RRT 6 months after discharge. This is the first multi-center cohort of burn patients who underwent RRT reported to date. Overall mortality is comparable to other critically ill populations who undergo RRT. Most patients who survive to discharge eventually recover renal function.

  17. Modelling Carbon Emissions in Calluna vulgaris–Dominated Ecosystems when Prescribed Burning and Wildfires Interact

    PubMed Central

    Santana, Victor M.; Alday, Josu G.; Lee, HyoHyeMi; Allen, Katherine A.; Marrs, Rob H.

    2016-01-01

    A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions. PMID:27880840

  18. Mechanisms of motor vehicle crashes related to burns--an analysis of the German In depth Accident Study (GIDAS) database.

    PubMed

    Brand, S; Otte, D; Stübig, T; Petri, M; Ettinger, M; Mueller, C W; Krettek, C; Haasper, C; Probst, C

    2013-12-01

    Patients of motor vehicle crashes (MVCs) suffering burns are challenging for the rescue team and the admitting hospital. These patients often face worse outcomes than crash patients with trauma only. Our analysis of the German In-depth Accident Study (GIDAS) database researches the detailed crash mechanisms to identify potential prevention measures. We analyzed the 2011 GIDAS database comprising 14,072 MVC patients and compared individuals with (Burns) and without (NoBurns) burns. Only complete data sets were included. Patients with burns obviously resulting of air bag deployment only were not included in the Burns group. Data acquisition by an on call team of medical and technical researchers starts at the crash scene immediately after the crash and comprises technical data as well as medical information until discharge from the hospital. Statistical analysis was done by Mann-Whitney-U-test. Level of significance was p < 0.05. 14,072 MVC patients with complete data sets were included in the analysis. 99 individuals suffered burns (0.7%; group "Burns"). Demographic data and injury severity showed no statistical significant difference between the two groups of Burns and NoBurns. Injury severity was measured using the Injury Severity Score (ISS). Direct frontal impact (Burns: 48.5% vs. NoBurns: 33%; p < 0.05) and high-energy impacts as represented by delta-v (m/s) (Burns: 33.5 ± 21.4 vs. NoBurns: 25.2 ± 15.9; p < 0.05) were significantly different between groups as was mortality (Burns: 12.5% vs. NoBurns: 2.1%; p < 0.05). Type of patients' motor vehicles and type of crash opponent showed no differences. Our results show, that frontal and high-energy impacts are associated with a frequency of burns. This may serve automobile construction companies to improve the burn safety to prevent flames spreading from the motor compartment to the passenger compartment. Communities may impose speed limits in local crash hot spots. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  19. Factors associated with the severity of interacting fires in Yosemite National Park

    USGS Publications Warehouse

    van Wagtendonk, Jan W.; van Wagtendonk, Kent A.; Thode, Andrea E.

    2012-01-01

    In 1972, Yosemite National Park established a wilderness fire zone in which lightning fires were allowed to run their courses under prescribed conditions. This zone was expanded in 1973 to include the 16 209 ha Illilouette Creek basin, just to the southeast of Yosemite Valley. From 1973 through 2011, there have been 157 fires in the basin. Fire severity data were collected on all 28 of those fires that were larger than 40 ha. The proportion burned in each fire severity class was not significantly associated with fire return interval departure class. When areas were reburned, the proportion of unchanged severity fire decreased while the proportion of high severity fire increased. The proportion of fire severity of the subsequent fires was associated with the number of years since last burned, the burning index, and the severity of the previous fires. The main effects were significant for unchanged severity and low severity, and the interaction between return interval class and burning index class was significant for high severity. Most vegetation types remained the same when burned with unchanged, low, or moderate severity, while high severity often resulted in conversion to montane chaparral. The factors that were associated with reburn severity worked in combination with each factor influencing some aspect of severity. Managers and scientists can use this information to better understand the role fire plays in these ecosystems and how to best manage this dynamic ecological process.

  20. Electrical burns: The trend and risk factors in the Ghanaian population.

    PubMed

    Agbenorku, P; Agbenorku, E; Akpaloo, J; Obeng, G; Agbley, D

    2014-12-31

    The usefulness of electricity in daily life offers several advantages which cannot be underestimated. Electricity is needed by industries for manufacturing and also in homes for lighting, cooking, washing, etc. However, electricity can cause severe life-threatening complications. This study investigates the trend and mortality risk factors of electrical burn injuries at the Burns Intensive Care Unit (BICU) of the Komfo Anokye Teaching Hospital (KATH), Ghana. The Burns Registry at KATH BICU containing information on patients who were admitted for electrical burns was used. Data on the sex, age, occupation, cause of injury, Total Body Surface Area burned (TBSA) and outcome of admissions was obtained. GraphPad version 5 was used for the analysis. There were 13 (2.7%) electrical burns, suffered by 11 males (84.6%) and 2 females (15.4%) out of a total 487 BICU admissions over a 4-year period (July 1, 2009 - June 30, 2013); the mean age of the electrical burn victims was 37.8 years (range = 22-56); the TBSA ranged from 5.0% - 98.0%. Mortality risk factors identified were high voltage electrical burns, older age (P=0.0250) and TBSA>20% (P=0.048). Four cases (30.8%) were transferred to the Main Burns Ward (Ward D2C); 6 cases (46.1%) were discharged home; 3 patients (23.1%) died; all deaths were recorded in persons who had high voltage electrical burns. Electrical burns can be severe and can cause death. Even though the current study showed that a small population was affected by electrical burns, society has to be continually conscious of the detrimental effects of electrical energy and take the necessary precautions to minimize this type of accident.

  1. Electrical burns: The trend and risk factors in the Ghanaian population

    PubMed Central

    Agbenorku, P.; Agbenorku, E.; Akpaloo, J.; Obeng, G.; Agbley, D.

    2014-01-01

    Summary The usefulness of electricity in daily life offers several advantages which cannot be underestimated. Electricity is needed by industries for manufacturing and also in homes for lighting, cooking, washing, etc. However, electricity can cause severe life-threatening complications. This study investigates the trend and mortality risk factors of electrical burn injuries at the Burns Intensive Care Unit (BICU) of the Komfo Anokye Teaching Hospital (KATH), Ghana. The Burns Registry at KATH BICU containing information on patients who were admitted for electrical burns was used. Data on the sex, age, occupation, cause of injury, Total Body Surface Area burned (TBSA) and outcome of admissions was obtained. GraphPad version 5 was used for the analysis. There were 13 (2.7%) electrical burns, suffered by 11 males (84.6%) and 2 females (15.4%) out of a total 487 BICU admissions over a 4-year period (July 1, 2009 – June 30, 2013); the mean age of the electrical burn victims was 37.8 years (range = 22–56); the TBSA ranged from 5.0% - 98.0%. Mortality risk factors identified were high voltage electrical burns, older age (P=0.0250) and TBSA>20% (P=0.048). Four cases (30.8%) were transferred to the Main Burns Ward (Ward D2C); 6 cases (46.1%) were discharged home; 3 patients (23.1%) died; all deaths were recorded in persons who had high voltage electrical burns. Electrical burns can be severe and can cause death. Even though the current study showed that a small population was affected by electrical burns, society has to be continually conscious of the detrimental effects of electrical energy and take the necessary precautions to minimize this type of accident. PMID:26336364

  2. Revised Baux Score and updated Charlson comorbidity index are independently associated with mortality in burns intensive care patients.

    PubMed

    Heng, Jacob S; Clancy, Olivia; Atkins, Joanne; Leon-Villapalos, Jorge; Williams, Andrew J; Keays, Richard; Hayes, Michelle; Takata, Masao; Jones, Isabel; Vizcaychipi, Marcela P

    2015-11-01

    The purpose of the current study was to utilise established scoring systems to analyse the association of (i) burn injury severity, (ii) comorbid status and (iii) associated systemic physiological disturbance with inpatient mortality in patients with severe burn injuries admitted to intensive care. Case notes of all patients with acute thermal injuries affecting ≥15% total body surface area (TBSA) admitted to the Burns Intensive Care Unit (BICU) at Chelsea and Westminster Hospital during a 10-year period were retrospectively reviewed. Revised Baux Score, Belgian Outcome in Burn Injury (BOBI) Score, Abbreviated Burn Severity Index (ABSI), APACHE II Score, Sequential Organ Failure Assessment (SOFA) Score and Updated Charlson Comorbidity Index (CCI) were computed for each patient and analysed for association with inpatient mortality. Ninety mechanically ventilated patients (median age 45.7 years, median % TBSA burned 36.5%) were included. 72 patients had full thickness burns and 35 patients had inhalational injuries. Forty-four patients died in hospital while 46 survived to discharge. In a multivariate logistic regression model, only the Revised Baux Score (p<0.001) and updated CCI (p=0.014) were independently associated with mortality. This gave a ROC curve with area under the curve of 0.920. On multivariate cox regression survival analysis, only the Revised Baux Score (p<0.001) and the updated CCI (p=0.004) were independently associated with shorter time to death. Our data suggest that the Revised Baux Score and the updated CCI are independently associated with inpatient mortality in patients admitted to intensive care with burn injuries affecting ≥15% TBSA. This emphasises the importance of comorbidities in the prognosis of patients with severe burn injuries. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  3. Effects of Pharmacological Interventions on Muscle Protein Synthesis and Breakdown in Recovery from Burns

    PubMed Central

    Diaz, Eva C.; Herndon, David N.; Porter, Craig; Sidossis, Labros S.; Suman, Oscar E.; Børsheim, Elisabet

    2014-01-01

    Objective The pathophysiological response to burn injury disturbs the balance between skeletal muscle protein synthesis and breakdown, resulting in severe muscle wasting. Muscle loss after burn injury is related to increased mortality and morbidity. Consequently, mitigation of this catabolic response has become a focus in the management of these patients. The aim of this review is to discuss the literature pertaining to pharmacological interventions aimed at attenuating skeletal muscle catabolism in severely burned patients. Data selection Review of the literature related to skeletal muscle protein metabolism following burn injury was conducted. Emphasis was on studies utilizing stable isotope tracer kinetics to assess the impact of pharmacological interventions on muscle protein metabolism in severely burned patients. Conclusion Data support the efficacy of testosterone, oxandrolone, human recombinant growth hormone, insulin, metformin, and propranolol in improving skeletal muscle protein net balance in patients with severe burns. The mechanisms underlying the improvement of protein net balance differ between types and dosages of drugs, but their main effect is on protein synthesis. Finally, the majority of studies have been conducted during the acute hypermetabolic phase of the injury. Except for oxandrolone, the effects of drugs on muscle protein kinetics following discharge from the hospital are largely unknown. PMID:25468473

  4. Field guide for mapping post-fire soil burn severity

    Treesearch

    Annette Parson; Peter R. Robichaud; Sarah A. Lewis; Carolyn Napper; Jess T. Clark

    2010-01-01

    Following wildfires in the United States, the U.S. Department of Agriculture and U.S. Department of the Interior mobilize Burned Area Emergency Response (BAER) teams to assess immediate post-fire watershed conditions. BAER teams must determine threats from flooding, soil erosion, and instability. Developing a postfire soil burn severity map is an important first step...

  5. Noble Gases in the Murchison Meteorite: Possible Relics of s-Process Nucleosynthesis.

    PubMed

    Srinivasan, B; Anders, E

    1978-07-07

    The Murchison carbonaceous chondrite contains a new type of xenon component, enriched by up to 50 percent in five of the nine stable xenon isotopes, mass numbers 128 to 132. This component, comprising 5 x 10(-5) of the total xenon in the meteorite, is released at 1200 degrees to 1600 degrees C from a severely etched mineral fraction, and probably resides in some refractory mineral. Krypton shows a similar but smaller enrichment in the isotopes 80 and 82. Neon and helium released in the same interval also are quite anomalous, being highly enriched in the isotopes 22 and 3. These patterns are strongly suggestive of three nuclear processes believed to take place in red giants: the s process (neutron capture on a slow time scale), helium burning, and hydrogen shell burning. If this interpretation is correct, then primitive meteorites contain yet another kind of alien, presolar material: dust grains ejected from red giants.

  6. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    NASA Astrophysics Data System (ADS)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  7. Spatial and temporal assessment of cumulative disturbance impacts due to military training, burning, haying, and their interactions on land condition of Fort Riley.

    PubMed

    Wang, Guangxing; Murphy, Dana; Oller, Adam; Howard, Heidi R; Anderson, Alan B; Rijal, Santosh; Myers, Natalie R; Woodford, Philip

    2014-07-01

    The effects of military training activities on the land condition of Army installations vary spatially and temporally. Training activities observably degrade land condition while also increasing biodiversity and stabilizing ecosystems. Moreover, other anthropogenic activities regularly occur on military lands such as prescribed burns and agricultural haying-adding to the dynamics of land condition. Thus, spatially and temporally assessing the impacts of military training, prescribed burning, agricultural haying, and their interactions is critical to the management of military lands. In this study, the spatial distributions and patterns of military training-induced disturbance frequency were derived using plot observation and point observation-based method, at Fort Riley, Kansas from 1989 to 2001. Moreover, spatial and variance analysis of cumulative impacts due to military training, burning, haying, and their interactions on the land condition of Fort Riley were conducted. The results showed that: (1) low disturbance intensity dominated the majority of the study area with exception of concentrated training within centralized areas; (2) high and low values of disturbance frequency were spatially clustered and had spatial patterns that differed significantly from a random distribution; and (3) interactions between prescribed burning and agricultural haying were not significant in terms of either soil erosion or disturbance intensity although their means and variances differed significantly between the burned and non-burned areas and between the hayed and non-hayed areas.

  8. Spatial and temporal variations of soil moisture under Rosmarinus officinalis and Quercus coccifera in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume of 172 mm; and (3) ten months after fire (Jun-08), when 50 mm were registered in the previous ten days. The spatial pattern of SMC was determined trough geostatistical analysis using GS+ software, calculating the semivariograms, to analyse the spatial correlation scale, interpolating data to estimate values of SMC at unsampled locations by means of kriging and finally, the results of kriging were displayed as different contour maps. Results showed that spatial pattern of SMC was highly variable, with important differences recorded within short distances. In fact, the range of spatial correlation (a0), which is the distance at that spatial correlation exists, varied between 0.5 to 1.4 m. A0 also varied according to the time from fire, with values of 0.5 m in the first rainfall after fire, 0.9 m four months later and 1.4 m ten months after fire occurs. This result suggests that the extent of the wettest areas increase as the vegetation recover. After the first rainfall, the SMC spatial pattern seems to be related to the soil microsite characteristics, mainly organic matter content, presence of hydrophobicity and soil clay content. Generally, the highest SMC (26-31%) appears at the burned bare soil areas. Four months later, as the same time as Q. coccifera resprouts, and in the R. officinalis microsites an important regrowth of Brachypodium resutum is observed, the spatial pattern of SMC changed according this plant cover distribution. This pattern is more clearly observed ten months after fire, when the highest SMC values were located at Q. coccifera and B. resutum areas (28-33%). At this time, no evidence of germination of R. officinalis (obligate seeder specie) was found. The lowest SMC (19-22%) appeared at the half lower part of the plot, where there was a central strip dominated by bare soil, with scarce presence of resprouter species. These results showed that at detailed working scale, the soil moisture pattern in this burned area was highly heterogeneous and the microsite characteristics (mainly soil properties and vegetation regrowth) seem to control the SMC spatial pattern. The interaction of soil-plant-water is more complex that the few environmental factors analysed here, and future research is needed to consider other site factors, such as microtopography, surface stoniness and outcrops, root density, between others. However, the obtained results reflect the capacity of vegetated patches to act as moisture holding areas ten months after fire occurs.

  9. Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries

    PubMed Central

    Kruczek, Cassandra; Kottapalli, Kameswara Rao; Dissanaike, Sharmila; Dzvova, Nyaradzo; Griswold, John A.; Colmer-Hamood, Jane A.; Hamood, Abdul N.

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. After multiplying within the burn wound, P. aeruginosa translocate into the bloodstream causing bacterial sepsis frequently leading to organ dysfunction and septic shock. Although the pathogenesis of P. aeruginosa infection of thermally-injured wounds has been extensively analyzed, little is known regarding the ability of P. aeruginosa to adapt and survive within the blood of severely burned patients during systemic infection. To identify such adaptations, transcriptome analyses (RNA-seq) were conducted on P. aeruginosa strain PA14 that was grown in whole blood from a healthy volunteer or three severely burned patients. Compared with growth in blood from healthy volunteers, growth of PA14 in the blood from severely burned patients significantly altered the expression of 2596 genes, with expression of 1060 genes enhanced, while that of 1536 genes was reduced. Genes whose expression was significantly reduced included genes related to quorum sensing, quorum sensing-controlled virulence factors and transport of heme, phosphate, and phosphonate. Genes whose expression was significantly enhanced were related to the type III secretion system, the pyochelin iron-acquisition system, flagellum synthesis, and pyocyanin production. We confirmed changes in expression of many of these genes using qRT-PCR. Although severe burns altered the levels of different blood components in each patient, the growth of PA14 in their blood produced similar changes in the expression of each gene. These results suggest that, in response to changes in the blood of severely burned patients and as part of its survival strategy, P. aeruginosa enhances the expression of certain virulence genes and reduces the expression of others. PMID:26933952

  10. Acute respiratory distress syndrome in wartime military burns: application of the Berlin criteria.

    PubMed

    Belenkiy, Slava M; Buel, Allison R; Cannon, Jeremy W; Sine, Christy R; Aden, James K; Henderson, Jonathan L; Liu, Nehemiah T; Lundy, Jonathan B; Renz, Evan M; Batchinsky, Andriy I; Cancio, Leopoldo C; Chung, Kevin K

    2014-03-01

    Acute respiratory distress syndrome (ARDS) prevalence and related outcomes in burned military casualties from Iraq and Afghanistan have not been described previously. The objective of this article was to report ARDS prevalence and its associated in-hospital mortality in military burn patients. Demographic and physiologic data were collected retrospectively on mechanically ventilated military casualties admitted to our burn intensive care unit from January 2003 to December 2011. Patients with ARDS were identified in accordance with the new Berlin definition of ARDS. Subjects were categorized as having mild, moderate, or severe ARDS. Multivariate logistic regression identified independent risk factors for developing moderate-to-severe ARDS. The main outcome measure was the prevalence of ARDS in a cohort of patients burned as a result of recent combat operations. A total of 876 burned military casualties presented during the study period, of whom 291 (33.2%) required mechanical ventilation. Prevalence of ARDS in this cohort was 32.6%, with a crude overall mortality of 16.5%. Mortality increased significantly with ARDS severity: mild (11.1%), moderate (36.1%), and severe (43.8%) compared with no ARDS (8.7%) (p < 0.001). Predictors for the development of moderate or severe ARDS were inhalation injury (odds ratio [OR], 1.90; 95% confidence interval [CI], 1.01-3.54; p = 0.046), Injury Severity Score (ISS) (OR, 1.04; 95% CI, 1.01-1.07; p = 0.0021), pneumonia (OR, 198; 95% CI, 1.07-3.66; p = 0.03), and transfusion of fresh frozen plasma (OR, 1.32; 95% CI, 1.01-1.72; p = 0.04). Size of burn was associated with moderate or severe ARDS by univariate analysis but was not an independent predictor of ARDS by multivariate logistic regression (p > 0.05). Age, size of burn, and moderate or severe ARDS were independent predictors of mortality. In this cohort of military casualties with thermal injuries, nearly a third required mechanical ventilation; of those, nearly one third developed ARDS, and nearly one third of patients with ARDS did not survive. Moderate and severe ARDS increased the odds of death by more than fourfold and ninefold, respectively. Epidemiologic/prognostic study, level III.

  11. Fire severity impacts trajectories of vegetative regrowth and δ13C in organic pools and fluxes in Siberian/Alaskan forests

    NASA Astrophysics Data System (ADS)

    Fessenden, J. E.; Randerson, J. T.; Schuur, E.; Zimov, S.

    2002-12-01

    Stable carbon isotope ratios of carbon dioxide and leaf organic matter were measured in boreal forests of varying age and fire severity in Siberia and Alaska. This study focused on moderate and extreme severity burn sites in neighboring Alaskan forests ranging from 2 years to 160 years and Siberian forests ranging from 1 year to 200 years. The Alaskan forests were composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce approximately 50 years after fire disturbance. The Siberian forests were composed of Dahurian larch (Larix gmelinii). The understory species are the same in both Siberia and Alaska: dwarf birch (Betula nana), willow (Salix alaxensis), blueberry (Vaccinium ovalifolium), cranberry (Vaccinium vitis-idaea), and various moss and lichen species. Our aim was to determine how disturbance influenced local and regional carbon isotopic ratios in organic pools and fluxes. Samples of organic δ13C in whole leaf tissue were collected from the dominant species of each forest. δ13CO2 and [CO2] were measured on soil cuvette- and canopy-CO2 to determine the isotopic ratio of soil and ecosystem respiration, respectively. Plant functional type primarily controlled the organic δ13C composition, and changes in abundance of different plant functional types with time since fire lead to patterns of 13C-enrichment with increased forest age. Successional stage and species composition trajectory dictated the composition of heterotrophic respiration with more 13C-enriched values found in dry/cold coniferous areas. Burn severity and successional state largely determined the distribution and abundance of plant functional types which dictated the δ13C values of organic pools and fluxes in the ecosystems. These results suggest that fire severity and frequency changes the carbon isotope composition of ecosystems and biosphere-atmosphere fluxes in ways that are predictable at local and regional scales by changing species composition and regrowth patterns.

  12. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.

    2014-01-01

    Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.

  13. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm.

    PubMed

    Parr, Catherine L; Andersen, Alan N

    2006-12-01

    Fire management is increasingly focusing on introducing heterogeneity in burning patterns under the assumption that "pyrodiversity begets biodiversity." This concept has been formalized as patch mosaic burning (PMB), in which fire is manipulated to create a mosaic of patches representative of a range of fire histories to generate heterogeneity across space and time. Although PMB is an intuitively appealing concept, it has received little critical analysis. Thus we examined ecosystems where PMB has received the most attention and has been the most extensively implemented: tropical and subtropical savannas of Australia and Africa. We identified serious shortcomings of PMB: the ecological significance of different burning patterns remains unknown and details of desired fire mosaics remain unspecified. This has led to fire-management plans based on pyrodiversity rhetoric that lacks substance in terms of operational guidelines and capacity for meaningful evaluation. We also suggest that not all fire patterns are ecologically meaningful: this seems particularly true for the highly fire-prone savannas of Australia and South Africa. We argue that biodiversity-needs-pyrodiversity advocacy needs to be replaced with a more critical consideration of the levels of pyrodiversity needed for biodiversity and greater attention to operational guidelines for its implementation.

  14. The effect of seasonality on burn incidence, severity and outcome in Central Malawi.

    PubMed

    Tyson, Anna F; Gallaher, Jared; Mjuweni, Stephen; Cairns, Bruce A; Charles, Anthony G

    2017-08-01

    In much of the world, burns are more common in cold months. However, few studies have described the seasonality of burns in sub-Saharan Africa. This study examines the effect of seasonality on the incidence and outcome of burns in central Malawi. A retrospective analysis was performed at Kamuzu Central Hospital and included all patients admitted from May 2011 to August 2014. Demographic data, burn mechanism, total body surface area (%TBSA), and mortality were analyzed. Seasons were categorized as Rainy (December-February), Lush (March-May), Cold (June-August) and Hot (September-November). A negative binomial regression was used to assess the effect of seasonality on burn incidence. This was performed using both the raw and deseasonalized data in order to evaluate for trends not attributable to random fluctuation. A total of 905 patients were included. Flame (38%) and Scald (59%) burns were the most common mechanism. More burns occurred during the cold season (41% vs 19-20% in the other seasons). Overall mortality was 19%. Only the cold season had a statistically significant increase in burn . The incidence rate ratios (IRR) for the hot, lush, and cold seasons were 0.94 (CI 0.6-1.32), 1.02 (CI 0.72-1.45) and 1.6 (CI 1.17-2.19), respectively, when compared to the rainy season. Burn severity and mortality did not differ between seasons. The results of this study demonstrate the year-round phenomenon of burns treated at our institution, and highlights the slight predominance of burns during the cold season. These data can be used to guide prevention strategies, with special attention to the implications of the increased burn incidence during the cold season. Though burn severity and mortality remain relatively unchanged between seasons, recognizing the seasonal variability in incidence of burns is critical for resource allocation in this low-income setting. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  15. Validation of the burns itch questionnaire.

    PubMed

    Van Loey, N E; Hofland, H W; Hendrickx, H; Van de Steenoven, J; Boekelaar, A; Nieuwenhuis, M K

    2016-05-01

    Itch (pruritus) is a common multidimensional complaint after burn that can persist for months to years. A questionnaire able to investigate itch and its consequences is imperative for clinical and research purposes. The current study investigated the factor structure, internal consistency and construct validity of the Burns Itch Questionnaire (BIQ), a questionnaire particularly focusing on itch in the burns population. The BIQ was completed by 195 respondents at 3 months after burn. An exploratory factor analysis (EFA) was performed to investigate the factor structure. EFA showed the BIQ comprised three latent factors: itch severity, sleep interference and daily life interference. This was re-evaluated in a confirmatory factor analysis that yielded good fit indices after removing two items. The three subscales showed to have high internal consistency (.89) and were able to distinguish between patients with severe and less severe complaints. In conclusion, the BIQ showed to be useful in persons suffering from itch following burns. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  16. Climate and wildfires in the North American boreal forest.

    PubMed

    Macias Fauria, Marc; Johnson, E A

    2008-07-12

    The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.

  17. Ecological and sampling constraints on defining landscape fire severity

    USGS Publications Warehouse

    Key, C.H.

    2006-01-01

    Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal conditions of sampling strategies constrain data quality and ecological information obtained about fire severity. Though commonly overlooked, such considerations determine the objectives and hypotheses that are appropriate for each application, and are especially important when building comparative studies or long-term reference databases on fire severity.

  18. Postfire soil burn severity mapping with hyperspectral image unmixing

    USGS Publications Warehouse

    Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A.

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. ?? 2006 Elsevier Inc. All rights reserved.

  19. Puerarin attenuates severe burn-induced acute myocardial injury in rats.

    PubMed

    Liu, Sheng; Ren, Hong-Bo; Chen, Xu-Lin; Wang, Fei; Wang, Ren-Su; Zhou, Bo; Wang, Chao; Sun, Ye-Xiang; Wang, Yong-Jie

    2015-12-01

    Puerarin, the main isoflavone glycoside extracted from the root of Pueraria lobata, is widely prescribed for patients with cardiovascular disorders in China. This study investigates the effect of puerarin on severe burn-induced acute myocardial injury in rats and its underlying mechanisms. Healthy adult Wistar rats were divided into three groups: (1) sham group, sham burn treatment; (2) burn group, third-degree burns over 30% of the total body surface area (TBSA) with lactated Ringer's solution for resuscitation; and (3) burn plus puerarin group, third-degree burns over 30% of TBSA with lactated Ringer's solution containing puerarin for resuscitation. The burned animals were sacrificed at 1, 3, 6, 12, and 24 h after burn injury. Myocardial injury was evaluated by analyzing serum creatine kinase MB fraction (CK-MB) activity and cardiac troponin T (cTNT) level. Changes in cardiomyocyte ultrastructure were also determined using a transmission electron microscope. Tumor necrosis factor (TNF)-α concentration in serum was measured by radioimmunoassay. Cardiac myeloperoxidase (MPO) activity and malondialdehyde (MDA) concentration were measured to determine neutrophil infiltration and oxidative stress in the heart, respectively. The expression of p38 mitogen-activated protein (MAP) kinase in the heart was determined by Western blot analysis. After the 30% TBSA full-thickness burn injury, serum CK-MB activities and cTnT levels increased markedly, both of which were significantly decreased by the puerarin treatment. The level of serum TNF-α concentration in burn group at each time-point was obviously higher than those in sham group (1.09±0.09 ng/ml), and it reached the peak value at 12 h post burn. Burn trauma also resulted in worsen ultrastructural condition, elevated MPO activity and MDA content in heart tissue, and a significant activation of cardiac p38 MAP kinase. Administration of puerarin improved the ultrastructural changes in cardiomyocytes, decreased TNF-α concentration in serum as well as suppressed cardiac MPO activity and reduced MDA content, and abolished the activation of p38 MAP kinase in heart tissue after severe burn. These results suggest that puerarin attenuates inflammatory responses, reduces neutrophil infiltration and oxidative stress in the heart, and protects against acute myocardial injury induced by severe burn. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Vulnerability of North American Boreal Peatlands to Interactions between Climate, Hydrology, and Wildland Fires

    NASA Astrophysics Data System (ADS)

    Bourgeau-Chavez, L. L.; Jenkins, L. K.; Kasischke, E. S.; Turetsky, M.; Benscoter, B.; Banda, E. J.; Boren, E. J.; Endres, S. L.; Billmire, M.

    2013-12-01

    North American boreal peatland sites of Alaska, Alberta Canada, and the southern limit of the boreal ecoregion (Michigan's Upper Peninsula) are the focus of an ongoing project to better understand the fire weather, hydrology, and climatic controls on boreal peatland fires. The overall goal of the research project is to reduce uncertainties of the role of northern high latitude ecosystems in the global carbon cycle and to improve carbon emission estimates from boreal fires. Boreal peatlands store tremendous reservoirs of soil carbon that are likely to become increasingly vulnerable to fire as climate change lowers water tables and exposes C-rich peat to burning. Increasing fire activity in peatlands could cause these ecosystems to become net sources of C to the atmosphere, which is likely to have large influences on atmospheric carbon concentrations through positive feedbacks that enhance climate warming. Remote sensing is key to monitoring, understanding and quantifying changes occurring in boreal peatlands. Remote sensing methods are being developed to: 1) map and classify peatland cover types; 2) characterize seasonal and inter-annual variations in the moisture content of surface peat (fuel) layers; 3) map the extent and seasonal timing of fires in peatlands; and 4) discriminate different levels of fuel consumption/burn severity in peat fires. A hybrid radar and optical infrared methodology has been developed to map peatland types (bog vs. fen) and level of biomass (open herbaceous, shrubby, forested). This methodology relies on multi-season data to detect phenological changes in hydrology which characterize the different ecosystem types. Landsat data are being used to discriminate burn severity classes in the peatland types using standard dNBR methods as well as individual bands. Cross referencing the peatland maps and burn severity maps will allow for assessment of the distribution of upland and peatland ecosystems affected by fire and quantitative analysis of emissions. Radar imagery from multiple platforms (L-band PALSAR, C-band ERS-2, Envisat, and Radarsat-2) is being used to develop soil moisture extraction algorithms to monitor changes (drying - wetting) through time and to develop a standard method for soil moisture assessment. Using data from the 1990s (ERS-1 and 2) through the present (Radarsat-2) will allow for determination of patterns of wetting and drying across the landscape. All the remote sensing analysis is supported with field work which has been coordinated with that of Canadian scientists. Field collection includes vegetation and hydrology data to validate peatland distribution maps, collection of water table depths and peat moisture content data to aid in algorithm development for radar organic soil moisture retrieval, and characterization of variations in depth of burning and carbon consumption during peatland fires to use in burn severity mapping and fire emissions modeling.

  1. Post-fire recovery of torpor and activity patterns of a small mammal.

    PubMed

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  2. The Clinical Significance of the MIF Homolog D-Dopachrome Tautomerase (MIF-2) and its Circulating Receptor (sCD74) in Burn Injury

    PubMed Central

    Kim, Bong-Sung; Stoppe, Christian; Grieb, Gerrit; Leng, Lin; Sauler, Maor; Assis, David; Simons, David; Boecker, Arne Hendrick; Schulte, Wibke; Piecychna, Marta; Hager, Stephan; Bernhagen, Jürgen; Pallua, Norbert; Bucala, Richard

    2016-01-01

    Background We reported earlier that the cytokine macrophage migration inhibitory factor (MIF) is a potential biomarker in burn injury. In the present study, we investigated the clinical significance in severely burned patients of expression levels the newly discovered MIF family member D-dopachrome tautomerase (DDT or MIF-2) and their common soluble receptor CD74 (sCD74). Methods DDT and sCD74 serum levels were measured 20 severely burned patients and 20 controls. Serum levels were correlated to the abbreviated burn severity index (ABSI) and TBSA followed by receiver operating characteristic (ROC) analysis. Data were supported by gene expression dataset analysis of 31 burn patients and 28 healthy controls. Results CD74 and DDT were increased in burn patients. Furthermore, CD74 and DDT also were elevated in septic non-survivors when compared to survivors. Serum levels of DDT showed a positive correlation with the ABSI and TBSA in the early stage after burn injury, and the predictive character of DDT was strongest at 24 hrs. Serum levels of CD74 only correlated with the ABSI five days post-injury. Conclusions DDT may assist in the monitoring of clinical outcome and prediction of sepsis during the early post-burn period. sCD74 and MIF, by contrast, have limited value as an early predictor of death due to their delayed response to burn injury. PMID:27209369

  3. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  4. Myocardial Autophagy after Severe Burn in Rats

    PubMed Central

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  5. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  6. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events

    NASA Astrophysics Data System (ADS)

    Hall, Joanne; Loboda, Tatiana

    2018-05-01

    The deposition of short-lived aerosols and pollutants on snow above the Arctic Circle transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon has received a great deal of attention due to its absorptive efficiency and its fairly complex influence on the climate. Cropland burning in Russia is a large contributor to the black carbon emissions deposited directly onto the snow in the Arctic region during the spring when the impact on the snow/ice albedo is at its highest. In this study, our focus is on identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic. Specifically, atmospheric blocking events are large-scale patterns in the atmospheric pressure field that are nearly stationary and act to block migratory cyclones. The persistent low-level wind patterns associated with these mid-latitude weather patterns are likely to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during the spring. Our results revealed that overall, in March, the transport time of hypothetical black carbon emissions from Russian cropland burning to the Arctic snow is shorter (in some areas over 50 hours less at higher injection heights) and the success rate is also much higher (in some areas up to 100% more successful) during atmospheric blocking conditions as compared to conditions without an atmospheric blocking event. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  7. The relation between forest structure and soil burn severity

    Treesearch

    Theresa B. Jain; Russell T. Graham; David S. Pilliod

    2006-01-01

    A study funded through National Fire Plan evaluates the relation between pre-wildfire forest structure and post-wildfire soil burn severity across three forest types: dry, moist, and cold forests. Over 73 wildfires were sampled in Idaho, Oregon, Montana, Colorado, and Utah, which burned between 2000 and 2003. Because of the study’s breadth, the results are applicable...

  8. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Treesearch

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  9. Comparison of Estimated Energy Requirements in Severely Burned Patients With Measurements by Using Indirect Calorimetry

    PubMed Central

    Tancheva, D.; Arabadziev, J.; Gergov, G.; Lachev, N.; Todorova, S.; Hristova, A.

    2005-01-01

    Summary Severe burn injuries give rise to an extreme state of physiological stress. No other trauma results in such an accelerated rate of tissue catabolism, loss of lean body mass, and depletion of energy and protein reserves. A heightened attention to energy needs is essential, and the significance of adequate nutritional support in the complex management of patients with major burns is very important. The purpose of this study is to compare the results obtained by three of the most popular methods of estimating energy requirements in severely burned adult patients with the measurements of resting energy (REE) expenditure by indirect calorimetry (IC). A prospective study was carried out of 20 patients (male/female ratio, 17/3; mean age, 37.83 ± 10.86 yr), without accompanying morbidities, with burn injuries covering a mean body surface area of 34.27 ± 11.55% and a mean abbreviated burn severity index of 7.44 ± 1.58. During the first 30 days after trauma, the energy requirements were estimated using the Curreri, Long, and Toronto formulas. Twice weekly measurements of REE by IC were obtained. It was found that the Curreri and Long formulas overestimated the energy requirements in severely burned patients, as found by other investigators. However, no significant difference was found between the daily energy requirements calculated by the Toronto formula and the measured REE values by IC. It is concluded that the Toronto formula can be used as an alternative method for estimating the energy requirements of patients with major burns in cases where IC is not available or not applicable. PMID:21990973

  10. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  11. Too hot to trot? evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat-specialist

    USGS Publications Warehouse

    Varner, Johanna; Lambert, Mallory S.; Horns, Joshua J.; Laverty, Sean; Dizney, Laurie; Beever, Erik; Dearing, M. Denise

    2015-01-01

    Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps). We determine the effects of a fire on microclimates within talus and explore habitat factors promoting persistence and abundance in fire-affected habitat. During the fire, temperatures in talus interstices remained below 19°C, suggesting that animals could have survived in situ. Within 2 years, pikas were widely distributed throughout burned areas and did not appear to be physiologically stressed at severely burned sites. Furthermore, pika densities were better predicted by topographic variables known to affect this species than by metrics of fire severity. This widespread distribution may reflect quick vegetation recovery and the fact that the fire did not alter the talus microclimates in the following years. Together, these results highlight the value of talus as a thermal refuge for small animals during and after fire. They also underscore the importance of further study in individual species’ responses to typical and altered disturbance regimes.

  12. Infections in critically ill burn patients.

    PubMed

    Hidalgo, F; Mas, D; Rubio, M; Garcia-Hierro, P

    2016-04-01

    Severe burn patients are one subset of critically patients in which the burn injury increases the risk of infection, systemic inflammatory response and sepsis. The infections are usually related to devices and to the burn wound. Most infections, as in other critically ill patients, are preceded by colonization of the digestive tract and the preventative measures include selective digestive decontamination and hygienic measures. Early excision of deep burn wound and appropriate use of topical antimicrobials and dressings are considered of paramount importance in the treatment of burns. Severe burn patients usually have some level of systemic inflammation. The difficulty to differentiate inflammation from sepsis is relevant since therapy differs between patients with and those without sepsis. The delay in prescribing antimicrobials increases morbidity and mortality. Moreover, the widespread use of antibiotics for all such patients is likely to increase antibiotic resistance, and costs. Unfortunately the clinical usefulness of biomarkers for differential diagnosis between inflammation and sepsis has not been yet properly evaluated. Severe burn injury induces physiological response that significantly alters drug pharmacokinetics and pharmacodynamics. These alterations impact antimicrobials distribution and excretion. Nevertheless the current available literature shows that there is a paucity of information to support routine dose recommendations. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  13. Temporal Cytokine Profiles in Severely Burned Patients: A Comparison of Adults and Children

    PubMed Central

    Finnerty, Celeste C; Jeschke, Marc G; Herndon, David N; Gamelli, Richard; Gibran, Nicole; Klein, Matthew; Silver, Geoff; Arnoldo, Brett; Remick, Daniel; Tompkins, Ronald G

    2008-01-01

    A severe burn leads to hypermetabolism and catabolism resulting in compromised function and structural changes of essential organs. The release of cytokines has been implicated in this hypermetabolic response. The severity of the hypermetabolic response following burn injury increases with age, as does the mortality rate. Due to the relationship between the hypermetabolic and inflammatory responses, we sought to compare the plasma cytokine profiles following a severe burn in adults and in children. We enrolled 25 adults and 24 children who survived a flame burn covering more than 20% of total body surface area (TBSA). The concentrations of 22 cytokines were measured using the Linco multiplex array system (St. Charles, MO, USA). Large perturbations in the expression of pro- and anti-inflammatory cytokines were seen following thermal injury. During the first week following burn injury, IFN-γ, IL-10, IL-17, IL-4, IL-6, and IL-8 were detected at significantly higher levels in adults compared with children, P < 0.05. Significant differences were measured during the second week post-burn for IL-1β (higher in children) and IL-5 (higher in adults), P < 0.05. IL-18 was more abundant in children compared with adults during the third week post-burn, P < 0.05. Between post-burn d 21 and d 66, IL-1α was detected at higher concentrations in pediatric compared with adult patients, P < 0.05. Only GM-CSF expression was significantly different at all time points; it was detected at lower levels in pediatric patients, P < 0.05. Eotaxin, G-CSF, IL-13, IL-15, IP-10, MCP-1, and MIP-1α were detected at significantly different concentrations in adult compared with pediatric patients at multiple time points, P < 0.05. There were no differences in IL-12, IL-2, IL-7, or TNF levels in adult compared with pediatric burn patients at any of these time points. Following severe flame burns, the cytokine profiles in pediatric patients differ compared with those in adult patients, which may provide insight with respect to the higher morbidity rate in adults. Furthermore, the dramatic discrepancies observed in plasma cytokine detection between children and adults suggest that these two patient populations may benefit from different therapeutic interventions to achieve attenuation of the post-burn inflammatory response. PMID:18548133

  14. Self-inflicted burns in patients with chronic combat-related post-traumatic stress disorder.

    PubMed

    Bras, Marijana; Loncar, Zoran; Boban, Maja; Gregurek, Rudolf; Brajković, Lovorka; Tomicić, Hrvoje; Muljacić, Ante; Micković, Vlatko; Kalenić, Barbara

    2007-12-01

    This study examined self-inflicted burns in case series of four patients with chronic combat-related post-traumatic stress disorder (PTSD). Those patients were hospitalized in the Burn Unit of the University Hospital of Traumatology in Zagreb because of severe burns and had a premorbid psychiatric history of PTSD. Demographic data and information regarding the circumstances surrounding the incident, burn severity, treatment and outcomes of these patients were collected. The authors have analyzed possible impacts of the sensationalistic way in which media present cases of self-inflicted burning that induce other, new cases of this suicide type, known in the literature as "Werther's syndrome". The importance of multidisciplinary approach in the treatment of burn patients is stressed with emphasis on the important role of liaison psychiatrist in treating these patients. It is necessary to educate media people to avoid sensational reporting on this kind of events. Continuous psychiatric treatment of vulnerable individuals could be useful in prevention of self-inflicted burns.

  15. Sivelestat sodium hydrate attenuates acute lung injury by decreasing systemic inflammation in a rat model of severe burns.

    PubMed

    Xiao, X-G; Zu, H-G; Li, Q-G; Huang, P

    2016-01-01

    Patients with severe burns often develop acute lung injury (ALI), systemic inflammatory response syndrome (SIRS) often complicates with ALI. Sivelestat sodium hydrate is an effective drug against ALI. However, the mechanisms of this beneficial effect are still poorly understood. In the current study, we evaluate the effects of sivelestat sodium hydrate on systemic and local inflammatory parameters (neutrophil elastase [NE], interleukin [IL]-8, matrix metalloproteinase [MMP] 2 and 9) in a rat model of severe burns and ALI. And to analyze the correlations between expression of NE and IL-8 and acute lung injury. 48 Sprague-Dawley (SD) rats were divided into 3 groups: normal control group, severe burns injury group and severe burns treated with sivelestat sodium hydrate group (SSI). The lung water content and PaO2 were detected in each group. Pathological manifestations in each group were observed for pathology scoring in SD rats with acute lung injury. ELISA was used for detecting expression of NE and IL-8 in serum and BAL specimens of SD rats in each group. RT-PCR was used to detect mRNA expression of NE and IL-8 in lung tissues of each group. Western blotting was used for detecting protein expression of MMP-2 and MMP-9 in lung tissues of each group. SPSS 18.0 was used for statistical analysis. The PaO2 was significantly increased after sivelestat sodium hydrate intravenous injection. Pathological score and water content of lung tissue were significantly decreased in SSI group compared with severe burns injury group, slightly higher than that normal control group. NE and IL-8 levels significantly decreased in serum, BAL and lung tissue specimens after sivelestat sodium hydrate intravenous injection; Expression of MMP-2 and MMP-9 were significantly up-regulated in severe burns group and showed no significantly changed after sivelestat sodium hydrate intravenous injection. In a rat model of severe burns and ALI, administration of sivelestat sodium hydrate improved symptoms of ALI and significantly decreased inflammatory parameters NE and IL-8.

  16. Spatial and temporal selectivity patterns of fires in Attika, Greece from 1984 to 2015 delineated from Landsat time series satellite images

    NASA Astrophysics Data System (ADS)

    Stamos, Zoi; Koutsias, Nikos

    2017-04-01

    The aim of this study is to assess spatial and temporalfire selectivity patterns in the region of Attica - Greece from 1984 to 2015. Our work is implemented in two distinct phases: the first consists of the accurate delineation of the fire perimeter using satellite remote sensing technology, and the second consists of the application of suitable GIS supported analyses to develop thematic layers that optimally summarised the spatial and temporal information of fire occurrence. Fire perimeters of wildland fires occurred within the time window 1984-2015 were delineated from freely available Landsat images from USGS and ESA sources.More than three thousands satellite images were processed in order to extract fire perimeters and create maps of fire frequency and fire return interval. In total one thousand and one hundred twenty fire perimeters were recorded during this thirty years' period. Fire perimeters within each year of fire occurrence were compared against the available to burn under complete random processes to identify selectivity patterns over (i) CORINE land use/land cover, (ii) fire frequency and (iii) time since last firemaps. For example, non- irrigated arable lands, complex cultivation patterns and discontinuous urban fabrics are negative related with fires, while coniferous forests, sclerophyllous vegetation and transitional woodlands seem to be preferable by the fires. Additionally, it seems that fires prefer their old burnings (two and three times burned) and also places with different patterns of time since last fire depending on the time needed by the type of vegetation to recover and thus to re-burn.

  17. Burns in South Korea: An analysis of nationwide data from the Health Insurance Review and Assessment Service.

    PubMed

    Oh, Hyunjin; Boo, Sunjoo

    2016-05-01

    The purpose of the study was to identify and describe the incidence of burn injuries in patients seen and treated in South Korea. Characteristics of inpatients and outpatients with burns were analyzed according to gender, age, burn site, and burn severity. This retrospective study examined the characteristics of a stratified sample of burn patients seen and treated in South Korea during the calendar year 2011. The sample was drawn from the national patient database Health Insurance Review and Assessment (HIRA). Approximately 1.71% of the total patients in the Patient Sample of HIRA for 2011 were burn-injured patients. The numbers of patients treated for burns were 913/10(5) males (n=8009) and 1454/10(5) females (n=11,881). Nearly all of these patients (94.1%) were covered by national health insurance and the majority of these patients (80.6%) were treated as outpatients. Nearly half of the burn injuries were of the upper extremities (43.5%), and most of these injuries (71.5%) were rated as second-degree burns. A review of the national data on patients seen and treated for burns in 2011 revealed that people in South Korea may experience higher numbers and more severe cases of burns and burn-related injuries than found in other countries. General burn prevention programs as well as gender- and age-specific prevention strategies are needed to reduce the risk of burns in this population. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  18. Fire and Emission Characterization in the Northern Sub-Saharan Africa (NSSA) Region and their Potential Effects on the Regional Climate System

    NASA Astrophysics Data System (ADS)

    Ellison, L.; Ichoku, C. M.

    2013-12-01

    Northern Sub-Saharan Africa (NSSA) is known for its consistent vast amounts of seasonal biomass burning each year. These mostly anthropogenic slash-and-burn fires typically used for farming and grazing purposes contributes to a significant proportion of the total global emissions of particulate matter (PM). The consequences of such severe burning could potentially have a noticeable influence on local climate patterns, such as the frequent severe droughts over the past century or the drying of Lake Chad, through both direct and indirect causes. This research therefore focuses on: 1) characterizing the burning patterns and extent within NSSA, 2) accurately quantifying PM emissions that have a direct impact on climate, and 3) exploring potential indirect impacts of burning on climate through evaluation of correlations with various environmental and meteorological parameters. In this study, the NSSA region was first split into nine distinct sub-regions to better analyze the burning patters and climatological changes. The diurnal cycle of fire radiative power (FRP, a quantifiable way of measuring fire radiant heat output) within these different regions differ in amplitude and shape, though the basic shape is the same with months of maximum FRP being between November and January and with practically no fires during the rainy season. Corresponding changes in other climatological variables were studied against changes seen in FRP on a monthly scale, including precipitation, soil moisture, surface evaporation, evapotranspiration (ET), normalized difference vegetation index (NDVI) and aerosol optical depth (AOD). This study includes an analysis of the distinct change in FRP signal that occurred in 2006 for the middle of the NSSA region, which is the area with the highest concentration of fires. A decrease in maximum monthly FRP has been observed since 2006 in this region. Regional changes in PM emissions have also been observed since then, including a large region of decreasing emissions southwest of Lake Chad. These emissions are taken from the new Fire Energetics and Emissions Research (FEER) emissions product that was developed as part of this NSSA research and is based on a global coefficient of emission (Ce) map with high spatial resolution. The FEER algorithm is a top-down approach in an effort to properly account for all emitted PM, which is especially important in the NSSA region because of its high concentration of fire events. When the FEER Ce v1.0 product is combined with the global FRP dataset from the Global Fire Assimilation System (GFAS) v1.0 product to generate PM emissions, estimates of total particulate matter (TPM) are generated. The FEER product estimates average annual TPM emissions in the NSSA region to be around 14 Tg between 2004-2010, which is greater than GFAS v1.0 by a factor of 1.8, and greater than the Global Fire Emissions Database (GFED) v3.1 by a factor of 1.6. Future work will plug these new emission estimates into regional models to gain a better understanding of the impacts of biomass burning on climate in NSSA.

  19. The role of fire in structuring sagebrush habitats and bird communities

    USGS Publications Warehouse

    Knick, S.T.; Holmes, A.L.; Miller, R.F.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular, we need to develop larger-scale and longer-term research to identify the underlying mechanisms that produce the patterns of bird responses to fire in sagebrush ecosystems.

  20. Upper gastrointestinal bleeding in severely burned patients: a case-control study to assess risk factors, causes, and outcome.

    PubMed

    Kim, Young Jin; Koh, Dong Hee; Park, Se Woo; Park, Sun Man; Choi, Min Ho; Jang, Hyun Joo; Kae, Sea Hyub; Lee, Jin; Byun, Hyun Woo

    2014-01-01

    To determine the risk factors, causes, and outcome of clinically important upper gastrointestinal bleeding that occurs in severely burned patients. The charts of all patients admitted to the burn intensive care unit were analyzed retrospectively over a 4-year period (from January 2006 to December 2009). Cases consisted of burned patients who developed upper gastrointestinal bleeding more than 24 hours after admission to the burn intensive care unit. Controls were a set of patients, in the burn intensive care unit, without upper gastrointestinal bleeding matched with cases for age and gender. Cases and controls were compared with respect to the risk factors of upper gastrointestinal bleeding and outcomes. During the study period, clinically important upper gastrointestinal bleeding occurred in 20 patients out of all 964 patients. The most common cause of upper gastrointestinal bleeding was duodenal ulcer (11 of 20 cases, 55%). In the multivariate analysis, mechanical ventilation (p = 0.044) and coagulopathy (p = 0.035) were found to be the independent predictors of upper gastrointestinal bleeding in severely burned patients. Upper gastrointestinal hemorrhage tends to occur more frequently after having prolonged mechanical ventilation and coagulopathy.

  1. Assessment of post forest fire reclamation in Algarve, Portugal

    NASA Astrophysics Data System (ADS)

    Andrade, Rita; Panagopoulos, Thomas; Guerrero, Carlos; Martins, Fernando; Zdruli, Pandi; Ladisa, Gaetano

    2014-05-01

    Fire is a common phenomenon in Mediterranean landscapes and it plays a crucial role in its transformations, making the determination of its impact on the ecosystem essential for land management. During summer of 2012, a wildfire took place in Algarve, Portugal, on an area mainly covered by sclerophyllous vegetation (39.44%, 10080ha), broad-leaved forest (20.80%, 5300ha), agriculture land with significant areas of natural vegetation (17.40%, 4400ha) and transitional woodlands-shrubs (16.17%, 4100ha). The objective of the study was to determine fire severity in order to plan post-fire treatments and to aid vegetation recovery and land reclamation. Satellite imagery was used to estimate burn severity by detecting physical and ecological changes in the landscape caused by fire. Differenced Normalized Burn Ratio (DNBR) was used to measure burn severity with pre and post fire data of four Landsat images acquired in October 2011, February and August 2012 and April 2013. The initial and extended differenced normalized burn ratio (DiNBR and DeNBR) were calculated. The calculated burned area of 24291 ha was 552ha lower than the map data determined with field reports. The 19.5% of that area was burned with high severity, 45% with moderate severity and 28.3% with low severity. Comparing fire severity and regrowth with land use, it is shown in DiNBR that the most severely burned areas were predominantly sclerophyllous vegetation (37.6%) and broad-leaved forests (31.1%). From the DeNRB it was found that the reestablishment of vegetation was slower in mixed forests and higher in sclerophyllous vegetation and in land with significant areas of natural vegetation. Faster recovery was calculated for the land uses of sclerophyllous vegetation (46.7%) and significant regrowth in areas of natural vegetation and lands occupied by agriculture (25.4%). Next steps of the study are field validation and crossing with erosion risk maps before to take land reclamation decisions.

  2. Fusarium spp infections in a pediatric burn unit: nine years of experience.

    PubMed

    Rosanova, María Teresa; Brizuela, Martín; Villasboas, Mabel; Guarracino, Fabian; Alvarez, Veronica; Santos, Patricia; Finquelievich, Jorge

    2016-01-01

    Fusarium spp are ubiquitous fungi recognized as opportunistic agents of human infections, and can produce severe infections in burn patients. The literature on Fusarium spp infections in pediatric burn patients is scarce. To describe the clinical and epidemiological features as well as outcome of Fusarium spp infections in pediatric burn patients. Retrospective, descriptive study of Fusarium spp infections in a specialized intensive care burn unit. In 15 patients Fusarium spp infections were diagnosed. Median age was 48 months. Direct fire injury was observed in ten patients. The median affected burn surface area was 45%. Twelve patients had a full thickness burn. Fourteen patients had a Garces Index ≥3. Fungal infection developed at a median of 11 days after burn injury. Fungi were isolated from burn wound in 14 patients and from the bone in one patient. Amphotericin B was the drug of choice for treatment followed by voriconazole. Median time of treatment completion was 23 days. One patient (7%) died of fungal infection-related causes. In our series Fusarium spp was an uncommon pathogen in severely burnt patients. The burn wound was the most common site of infection and mortality was low. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  3. Post-fire burn severity and vegetation response following eight large wildfires across the Western United States

    Treesearch

    Leigh B. Lentile; Penelope Morgan; Andrew T. Hudak; Michael J. Bobbitt; Sarah A. Lewis; Alistair M. S. Smith; Peter R. Robichaud

    2007-01-01

    Vegetation response and burn severity were examined following eight large wildfires that burned in 2003 and 2004: two wildfires in California chaparral, two each in dry and moist mixed-conifer forests in Montana, and two in boreal forests in interior Alaska. Our research objectives were: 1) to characterize one year post-fire vegetation recovery relative to initial fire...

  4. Rates of post-fire vegetation recovery and fuel accumulation as a function of burn severity and time-since-burn in four western U.S. ecosystems

    USDA-ARS?s Scientific Manuscript database

    Vegetation recovery and fuel accumulation rates following wildfire are useful measures of ecosystem resilience, yet few studies have quantified these variables over 10 years post-fire. Conventional wisdom is that recovery time to pre-fire condition will be slower as a function of burn severity, as i...

  5. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  6. Tundra fire disturbance homogonizes belowground food web structure, function and dynamics

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Pressler, Y.; Koltz, A.; Asmus, A.; Simpson, R.

    2016-12-01

    Tundra fires on Alaska's North Slope are on the rise due to increased lightning strikes since 2000. On July 16, 2007 lightning ignited the Anaktuvuk River fire, burning a 40-by-10 mile swath of tundra about 24 miles north of Toolik Field Station. The fire burned 401 square miles, was visible from space, and released more than 2.3 million tons of carbon into the atmosphere. A large amount of the organic layer of the soil was burned, changing the over all composition of the site and exposing deeper soil horizons. Due to fundamental transitions in soil characteristics and vegetation we hypothesized that the belowground food web community would be affected both in terms of biomass and location within the soil profile. Microbial biomass was reduced with burn severity. In the lower organic horizon there was a significant reduction in fungal biomass but we did not observe this effect in the upper organic soil. We did not observe a significant effect of burn severity on individual group biomass within higher trophic levels. Canonical Discriminant Analysis using the biomass estimates of the functional groups in the food webs found that the webs are becoming increasingly homogenized in the severely burned site compared to the moderately burned and unburned sites. The unburned soils differed significantly from soil at both burn sites; the greatest effects on food web structure were at the lower organic depth, whereas. We modeled the effects of the fire on soil organic matter processing rates and energy flow through the three food webs. The model estimated a decrease in C and N mineralization with fire severity, due in large part to the loss of organic material. While the organic horizon at the unburned site had 12 times greater C and N mineralization than the mineral soils, we observed little to no difference in C and N mineralization between the organic and mineral soil horizons in the moderately and severely burned sites. Our results show that the fire significantly altered the trophic structure of the soil food web, with loss of trophic complexity with increasing fire severity, which correlated strongly with C and N processing and food web stability.

  7. The Use of Virtual Reality Facilitates Dialectical Behavior Therapy® "Observing Sounds and Visuals" Mindfulness Skills Training Exercises for a Latino Patient with Severe Burns: A Case Study.

    PubMed

    Gomez, Jocelyn; Hoffman, Hunter G; Bistricky, Steven L; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J; Linehan, Marsha M

    2017-01-01

    Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions, after VR DBT® mindfulness skills training. Immersive Virtual Reality is becoming widely available to mainstream consumers, and thus has the potential to make this treatment available to a much wider number of patient populations, including severe burn patients. Additional development, and controlled studies are needed.

  8. The Use of Virtual Reality Facilitates Dialectical Behavior Therapy® “Observing Sounds and Visuals” Mindfulness Skills Training Exercises for a Latino Patient with Severe Burns: A Case Study

    PubMed Central

    Gomez, Jocelyn; Hoffman, Hunter G.; Bistricky, Steven L.; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V.; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J.; Linehan, Marsha M.

    2017-01-01

    Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions, after VR DBT® mindfulness skills training. Immersive Virtual Reality is becoming widely available to mainstream consumers, and thus has the potential to make this treatment available to a much wider number of patient populations, including severe burn patients. Additional development, and controlled studies are needed. PMID:28993747

  9. Modeling of multi-strata forest fire severity using Landsat TM data

    Treesearch

    Q. Meng; R.K. Meentemeyer

    2011-01-01

    Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which...

  10. Local Burn Injury Promotes Defects in the Epidermal Lipid and Antimicrobial Peptide Barriers in Human Autograft Skin and Burn Margin: Implications for Burn Wound Healing and Graft Survival

    PubMed Central

    Plichta, Jennifer K.; Holmes, Casey J.; Gamelli, Richard L.; Radek, Katherine A.

    2016-01-01

    Burn injury increases the risk of morbidity and mortality by promoting severe hemodynamic shock and risk for local or systemic infection. Graft failure due to poor wound healing or infection remains a significant problem for burn subjects. The mechanisms by which local burn injury compromises the epithelial antimicrobial barrier function in the burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue, are largely unknown. The objective of this study was to establish defects in epidermal barrier function in human donor skin and burn margin, in order to identify potential mechanisms that may lead to graft failure and/or impaired burn wound healing. In the present study, we established that epidermal lipids and respective lipid synthesis enzymes were significantly reduced in both donor skin and burn margin. We further identified diverse changes in the gene expression and protein production of several candidate skin antimicrobial peptides (AMPs) in both donor skin and burn margin. These results also parallel changes in cutaneous AMP activity against common burn wound pathogens, aberrant production of epidermal proteases known to regulate barrier permeability and AMP activity, and greater production of pro-inflammatory cytokines known to be induced by AMPs. These findings suggest that impaired epidermal lipid and AMP regulation could contribute to graft failure and infectious complications in subjects with burn or other traumatic injury. PMID:27183442

  11. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    USGS Publications Warehouse

    Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S.

    2011-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.

  12. Effects of wet- and dry-season fires on Jacquemontia curtisii, a South Florida pine forest endemic

    USGS Publications Warehouse

    Spier, L.P.; Snyder, J.R.

    1998-01-01

    South Florida pine forests have a diverse endemic flora that has evolved under the influence of recurrent fire. We studied the response of Jacquemontia curtisii Peter ex Hallier f. (pineland clustervine), a perennial herbaceous member of that flora, to experimental fires during wet and dry seasons. In each of three populations, three treatments were applied: wet-season (June) prescribed fire, dry-season (January) prescribed fire, and an unburned control. Flowering, fruiting, and seedling establishment were followed for up to one year. Mortality of adult plants was twice as great after wet-season burns than after dry-season burns even though fire temperatures were higher in the dry-season burns. Within a season of burning, mortality was greater for the more severely burned plants or the smaller plants. Wet-season burns produced over three times more flowers than not burning, in spite of mortality of more than half the plants. Burning stimulated germination from the soil seed bank. Dry-season burns resulted in five times more seedlings than wet-season burns and more of these seedlings were alive one year after the burn. It is likely that the long-term viability of Jacquemontia curtisii populations is favored by diversity in fire season and severity.

  13. Exploration of the effects of burn parameters on THz wound imaging

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Sung, Shijun; Fishbein, Michael; Grundfest, Warren S.; Taylor, Zachary D.

    2015-08-01

    The high contrast resolution afforded by terahertz (1 THz = 1012 Hz) imaging of physiologic tissue continues to drive explorations into the utility of THz technology for burn wound detection. Although we have previously reported the use of a novel, reflective THz imaging technology to sense spatiotemporal differences in reflectivity between partial and full thickness burn wounds, no evidence exists of a one-to-one correlation between structural damage observed in histological assessments of burn severity and THz signal. For example, varying burn induction methods may all result in a common burn wound severity, however, burn features observed in parallel THz imagery may not be identical. Successful clinical translation of THz technology as a comprehensive burn guidance tool, therefore, necessitates an understanding of THz signal and its relation to wound pathophysiology. In this work, longitudinal THz imagery was acquired with a quartz (n = 2.1, 500 μm) window of cutaneous wounds induced with the same brand geometry and contact pressure but varying contact times (5, 7, and 10 seconds) in in vivo, pre-clinical rat models (n=3) over a period of 3 days. Though all burn wounds were evaluated to be deep partial thickness with histology, THz contrasts observed for each burn contact time were intrinsically unique. This is the first preliminary in vivo evidence of a many-to-one relationship between changes in THz contrast and burn severity as ascertained by histology. Future large-scale studies are required to assess whether these observed changes in THz contrast may be interpreted as physiological changes occurring over time, morphometric changes related to anatomical change, or electromagnetic changes between dielectric substrate windows and the underlying tissue.

  14. Perioperative Research into Memory (PRiMe): Cognitive impairment following a severe burn injury and critical care admission, part 1.

    PubMed

    Watson, Edward J R; Nenadlová, Klára; Clancy, Olivia H; Farag, Mena; Nordin, Naz A; Nilsen, Agnes; Mehmet, Ashley R T; Al-Hindawi, Ahmed; Mandalia, Sundhiya; Williams, Lisa M; Edginton, Trudi L; Vizcaychipi, Marcela P

    2018-08-01

    An investigation into long-term cognitive impairment and Quality of Life (QoL) after severe burns. A proof of principle, cohort design, prospective, observational clinical study. Patients with severe burns (>15% TBSA) admitted to Burns ICU for invasive ventilation were recruited for psychocognitive assessment with a convenience sample of age and sex-matched controls. Participants completed psychological and QoL questionnaires, the Cogstate ® electronic battery, Hopkins Verbal Learning, Verbal Fluency and Trail making tasks. 15 patients (11M, 4F; 41±14 years; TBSA 38.4%±18.5) and comparators (11M, 4F; 40±13 years) were recruited. Burns patients reported worse QoL (Neuro-QoL Short Form v2, patient 30.1±8.2, control 38.7±3.2, p=0.0004) and cognitive function (patient composite z-score 0.01, IQR -0.11 to 0.33, control 0.13, IQR 0.47-0.73, p=0.02). Compared to estimated premorbid FSIQ, patients dropped an equivalent of 8 IQ points (p=0.002). Cognitive function negatively correlated with burn severity (rBaux score, p=0.04). QoL strongly correlated with depressive symptoms (Rho=-0.67, p=0.009) but not cognitive function. Severe burns injuries are associated with a significant, global, cognitive deficit. Patients also report worse QoL, depression and post-traumatic stress. Perceived QoL from cognitive impairment was more closely associated with depression than cognitive impairment. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  15. Gender differences in burns: A study from emergency centres in the Western Cape, South Africa.

    PubMed

    Blom, Lisa; Klingberg, Anders; Laflamme, Lucie; Wallis, Lee; Hasselberg, Marie

    2016-11-01

    Little is known about gender differences in aetiology and management of acute burns in resource-constrained settings in South Africa. This cross-sectional study is based on burn case reports (n=1915) from eight emergency centres in Western Cape, South Africa (June 2012-May 2013). Male/female rate ratios by age group and age-specific incidence rates were compiled for urban and rural areas along with gender differences in proportions between children and adults for injury aetiology, burn severity, length of stay and patient disposition. Children 0-4 years in urban areas had the highest burn incidence but only among adults did male rates surpass females, with fire burns more common among men 20-39 years and hot liquid burns among men 55+ years. Men had a higher proportion of burns during weekends, from interpersonal violence and suspected use of alcohol/other substances, with more pronounced differences for hot liquid burns. Despite similar Abbreviated Injury Scale (AIS) scores, men were more often transferred to higher levels of care and women more often treated and discharged. Burns were far more common among children although gender differences arose only among adults. Men sustained more injuries of somewhat different aetiology and were referred to higher levels of care more often for comparable wound severity. The results suggest different disposition between men and women despite similar AIS scores. However, further studies with more comprehensive information on severity level and other care- and patient-related factors are needed to explore these results further. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Interactions among wildland fires in a long-established Sierra Nevada natural fire area

    USGS Publications Warehouse

    Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2009-01-01

    We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term 'self-limiting' to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. ?? 2008 Springer Science+Business Media, LLC.

  17. Differential Diptera succession patterns onto partially burned and unburned pig carrion in southeastern Brazil.

    PubMed

    Oliveira-Costa, J; Lamego, C M D; Couri, M S; Mello-Patiu, C A

    2014-11-01

    In the present contribution we compared the entomological succession pattern of a burned carcass with that of an unburned one. For that, we used domestic pig carcasses and focused on Calliphoridae, Muscidae and Sarcophagidae flies, because they are the ones most commonly used in Postmortem Interval estimates. Adult and immature flies were collected daily. A total of 27 species and 2,498 specimens were collected, 1,295 specimens of 26 species from the partially burned carcass and 1,203 specimens of 22 species from the control carcass (unburned). The species composition in the two samples differed, and the results of the similarity measures were 0.875 by Sorensen and 0.756 by Bray-Curtis index. The results obtained for both carcasses also differ with respect to the decomposition process, indicating that the post mortem interval would be underestimated if the entomological succession pattern observed for a carcass under normal conditions was applied to a carbonized carcass.

  18. Anxiety and depression in burn patients.

    PubMed

    Alvi, Tabassum; Assad, Fatima; Aurangzeb; Malik, M A Nasir

    2009-01-01

    The psychological aspects of burn injury have been researched in different parts of world producing different outcomes. Therefore objective of this research is to determine the frequency of Anxiety and Depression in burn patients. To assess the socio-demographic distribution of patients developing Anxiety and Depression and to determine the effects of burn related factors on development of Anxiety and Depression. A Case series was conducted at the Department of Burn, Pakistan Ordinance Factory Hospital, Wah Cantt. for a duration of 12 months commencing from June 2007 and concluded in May 2008. The study population comprised of hospitalized patients with 1% to 50%, selected through non probable sampling technique who were assessed for Anxiety and Depression on fifteen day after burn injury. Testing protocol comprised of questionnaire having socio-demographic variables and burn related variables. Beck Depression Inventory and Beck Anxiety Inventory was applied to evaluate Anxiety and Depression in Burn patients. Descriptive statistics like mean with Standard Deviation was calculated for age. Frequencies along with percentages were calculated for socio-demographic variables. The frequencies and proportions were also calculated for presence and extent of severity of depression and anxiety in burn patients. Fifty patients were included in the study, thirty patients (60%) were male and 20 (40%) were females. The mean age of participants was 33.64 +/- 19 years. Majority of participants, 38 (76%) had sustained burn injury up to 25%. Flame was found to be most common agent of burn injuries affecting 19 (38%) patients. Depression was seen amongst 29 (58%) patients. Thirteen (26 %) patients had mild, 7 (14%) had moderate and 9 (18%) had severe Depressive symptoms. Anxiety was seen among 41 (82%) patients, thirteen (26%) patients had mild, 11 (22%) had moderate and 17 (34%) had severe Anxiety symptoms. Anxiety was present in 41 (82%) and Depression was present in 29 (58%) patients following burn injury. This study highlights the importance of the simultaneous evaluation and management of Anxiety and Depression in burn injured patients.

  19. Childhood burns in south eastern Nigeria.

    PubMed

    Archibong, A E; Antia, U E; Udosen, J

    1997-06-01

    In a ten year retrospective study of burns in children in University of Calabar Teaching Hospital (UCTH), Calabar, the main causes were hot water, hot soup or oil (56.6%) involving children mostly in the one to three year age group. The relative safety of the home environment seen in other forms of paediatric trauma is not observed in burns in children. A changing pattern of burns in children has emerged within the region with naked flames/bush fire coming second and affecting 22.7% of the children. Chemical burns hitherto a rare occurrence is now frequent because of the storage of caustic soda and acids in living rooms by soap making parents. Burns affecting the perineum, axilla and buttocks are difficult to keep clean and frequently lead to infections, with associated increased morbidity. Causes of childhood burns are largely preventable requiring active social/medical education and public enlightenment campaigns on the various methods of prevention.

  20. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    USGS Publications Warehouse

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.

  1. Modelling fire frequency and area burned across phytoclimatic regions in Spain using reanalysis data and the Canadian Fire Weather Index System

    NASA Astrophysics Data System (ADS)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2013-09-01

    We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness of ERA-Interim reanalysis data for the reconstruction of historical fire-climate relationships at the scale of analysis. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as response variable.

  2. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model☆

    PubMed Central

    Burmeister, David M.; Ponticorvo, Adrien; Yang, Bruce; Becerra, Sandra C.; Choi, Bernard; Durkin, Anthony J.; Christy, Robert J.

    2015-01-01

    Surgical intervention of second degree burns is often delayed because of the difficulty in visual diagnosis, which increases the risk of scarring and infection. Non-invasive metrics have shown promise in accurately assessing burn depth. Here, we examine the use of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) for predicting burn depth. Contact burn wounds of increasing severity were created on the dorsum of a Yorkshire pig, and wounds were imaged with SFDI/LSI starting immediately after-burn and then daily for the next 4 days. In addition, on each day the burn wounds were biopsied for histological analysis of burn depth, defined by collagen coagulation, apoptosis, and adnexal/vascular necrosis. Histological results show that collagen coagulation progressed from day 0 to day 1, and then stabilized. Results of burn wound imaging using non-invasive techniques were able to produce metrics that correlate to different predictors of burn depth. Collagen coagulation and apoptosis correlated with SFDI scattering coefficient parameter ( μs′) and adnexal/vascular necrosis on the day of burn correlated with blood flow determined by LSI. Therefore, incorporation of SFDI scattering coefficient and blood flow determined by LSI may provide an algorithm for accurate assessment of the severity of burn wounds in real time. PMID:26138371

  3. [Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection].

    PubMed

    Gong, Y L; Yang, Z C; Yin, S P; Liu, M X; Zhang, C; Luo, X Q; Peng, Y Z

    2016-09-20

    To analyze the distribution and drug resistance of pathogen isolated from severely burned patients with bloodstream infection, so as to provide reference for the clinical treatment of these patients. Blood samples of 162 severely burned patients (including 120 patients with extremely severe burn) with bloodstream infection admitted into our burn ICU from January 2011 to December 2014 were collected. Pathogens were cultured by fully automatic blood culture system, and API bacteria identification panels were used to identify pathogen. Kirby-Bauer paper disk diffusion method was used to detect the drug resistance of major Gram-negative and -positive bacteria to 37 antibiotics including ampicillin, piperacillin and teicoplanin, etc. (resistance to vancomycin was detected by E test), and drug resistance of fungi to 5 antibiotics including voriconazole and amphotericin B, etc. Modified Hodge test was used to further identify imipenem and meropenem resistant Klebsiella pneumonia. D test was used to detect erythromycin-induced clindamycin resistant Staphylococcus aureus. The pathogen distribution and drug resistance rate were analyzed by WHONET 5.5. Mortality rate and infected pathogens of patients with extremely severe burn and patients with non-extremely severe burn were recorded. Data were processed with Wilcoxon rank sum test. (1) Totally 1 658 blood samples were collected during the four years, and 339 (20.4%) strains of pathogens were isolated. The isolation rate of Gram-negative bacteria, Gram-positive bacteria, and fungi were 68.4% (232/339), 24.5% (83/339), and 7.1% (24/339), respectively. The top three pathogens with isolation rate from high to low were Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa in turn. (2) Except for the low drug resistance rate to polymyxin B and minocycline, drug resistance rate of Acinetobacter baumannii to the other antibiotics were relatively high (81.0%-100.0%). Pseudomonas aeruginosa was sensitive to polymyxin B but highly resistant to other antibiotics (57.7%-100.0%). Enterobacter cloacae was sensitive to imipenem and meropenem, while its drug resistance rates to ciprofloxacin, levofloxacin, cefoperazone/sulbactam, cefepime, piperacillin/tazobactam were 25.0%-49.0%, and those to the other antibiotics were 66.7%-100.0%. Drug resistance rates of Klebsiella pneumoniae to cefoperazone/sulbactam, imipenem, and meropenem were low (5.9%-15.6%, two imipenem- and meropenem-resistant strains were identified by modified Hodge test), while its drug resistance rates to amoxicillin/clavulanic acid, piperacillin/tazobactam, cefepime, cefoxitin, amikacin, levofloxacin were 35.3%-47.1%, and those to the other antibiotics were 50.0%-100.0%. (3) Drug resistance rates of methicillin-resistant Staphylococcus aureus (MRSA) to most of the antibiotics were higher than those of the methicillin-sensitive Staphylococcus aureus (MSSA). MRSA was sensitive to linezolid, vancomycin, and teicoplanin, while its drug resistance rates to compound sulfamethoxazole, clindamycin, minocycline, and erythromycin were 5.3%-31.6%, and those to the other antibiotics were 81.6%-100.0%. Except for totally resistant to penicillin G and tetracycline, MSSA was sensitive to the other antibiotics. Fourteen Staphylococcus aureus strains were resistant to erythromycin-induced clindamycin. Enterococcus was sensitive to vancomycin and teicoplanin, while its drug resistance rates to linezolid, chloramphenicol, nitrofurantoin, and high unit gentamicin were low (10.0%-30.0%), and those to ciprofloxacin, erythromycin, minocycline, and ampicillin were high (60.0%-80.0%). Enterococcus was fully resistant to rifampicin. (4) Fungi was sensitive to amphotericin B, and drug resistance rates of fungi to voriconazole, fluconazole, itraconazole, and ketoconazole were 7.2%-12.5%. (5) The mortality of patients with extremely severe burn was higher than that of patients with non-extremely severe burn. The variety of infected pathogens in patients with extremely severe burn significantly outnumbered that in patients with non-extremely severe burn (Z=-2.985, P=0.005). The variety of pathogen in severely burned patients with bloodstream infection is wide, with the main pathogens as Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa, and the drug resistance situation is grim. The types of infected pathogen in patients with extremely severe burn are more complex, and the mortality of these patients is higher when compared with that of patients with non-extremely severe burn.

  4. Long-term effects of burn severity on non-native plant cover

    USDA-ARS?s Scientific Manuscript database

    Effects of burn severity on non-native plant invasion post-fire is of great concern to managers and researchers, especially given predicted increases in large, high severity fires. However, little else is known about long-term (>10 year) vegetation recovery and non-native plant persistence. We anal...

  5. Extreme Wildfire Spread and Behaviour: Case Studies from North Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Salis, M.; Arca, B.; Ager, A.; Fois, C.; Bacciu, V.; Duce, P.; Spano, D.

    2012-04-01

    Worldwide, fire seasons are usually characterized by the occurrence of one or more days with extreme environmental conditions, such as heat waves associated with strong winds. On these days, fires can quickly get out of hand originating large and severe wildfires. In these cases, containment and extinguishment phases are critical, considering that the imperative goal is to keep fire crews, people and animals safe. In this work we will present a set of large and severe wildfires occurred with extreme environmental conditions in the northern area of Sardinia. The most recent wildfire we will describe was ignited on July 13, 2011 in the Oschiri municipality (40°43' N; 9°06' E), and burned about 2,500 ha of wooded and herbaceous pastures and oakwoods in few hours. The second wildfire we will present was ignited on July 23, 2009 in the Bonorva municipality (40°25' N; 8° 46' E), and was responsible for the death of two people and several damages to houses, animals and farms. This wildfire lasted on July 25, and burned about 10,000 ha of wooded and herbaceous pastures; the most of the area was burned during the first day. The last wildfire we will describe was ignited on July 23, 2007 in the Oniferi municipality (40°16' N; 9° 16' E) and burned about 9,000 ha of wooded and herbaceous pastures and oakwoods; about 8,000 ha were burned after 11 hours of propagation. All these wildfires were ignited in days characterized by very hot temperatures associated to the effect of air masses moving from inland North Africa to the Mediterranean Basin, and strong winds from west-south west. This is one of the typical weather pattern associated with large and severe wildfires in North Sardinia, and is well documented in the last years. Weather conditions, fuels and topography factors related to each case study will be accurately analyzed. Moreover, a detailed overview of observed fire spread and behavior and post-fire vegetation recovery will be presented. The fire spread and behavior data collected during the events will be also compared with the results obtained with FARSITE (Finney, 1994) and FLAMMAP (Finney, 2003) models. The main goal of this paper is to thoroughly describe the fire behavior of relevant and recent case studies, in order to learn from it and lessen the chance of making potential mistakes or hazardous firefighting operations in the same environmental conditions. Furthermore, a crucial point is to teach and prepare people and fire crews not to be surprised by severe or abrupt fire behavior under extreme environmental conditions. For these reasons, the combination of analysis, knowledge and awareness of historical case studies, field experience and computer modeling represent a key learning technique.

  6. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    Treesearch

    K. Barrett; A.D. McGuire; E.E. Hoy; E.S. Kasischke

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the...

  7. Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests

    Treesearch

    Eric S. Kasischke; Merritt R. Turetsky; Roger D. Ottmar; Nancy H.F. French; Elizabeth E. Hoy; Evan S. Kane

    2008-01-01

    We evaluated the utility of the composite burn index (CBI) for estimating fire severity in Alaskan black spruce forests by comparing data from 81 plots located in 2004 and 2005 fire events. We collected data to estimate the CBI and quantify crown damage, percentage of trees standing after the fire, depth of the organic layer remaining after the fire, depth of burning...

  8. Impact of facial burns: relationship between depressive symptoms, self-esteem and scar severity.

    PubMed

    Hoogewerf, Cornelis Johannes; van Baar, Margriet Elisabeth; Middelkoop, Esther; van Loey, Nancy Elisa

    2014-01-01

    This study assessed the role of self-reported facial scar severity as a possible influencing factor on self-esteem and depressive symptoms in patients with facial burns. A prospective multicentre cohort study with a 6 months follow-up was conducted including 132 patients with facial burns. Patients completed the Patient and Observer Scar Assessment Scale, the Rosenberg Self-esteem Scale and the Hospital Anxiety and Depression Scale. Structural Equation Modeling was used to assess the relations between depressive symptoms, self-esteem and scar severity. The model showed that patient-rated facial scar severity was not predictive for self-esteem and depressive symptoms six months post-burn. There was, however, a significant relationship between early depressive symptoms and both patient-rated facial scar severity and subsequent self-esteem. The variables in the model accounted for 37% of the variance in depressive symptoms six months post-burn and the model provided a moderately well-fitting representation of the data. The study suggests that self-esteem and depressive symptoms were not affected by self-reported facial scar severity but that earlier depressive symptoms were indicative for a more severe self-reported facial scar rating. Therefore, routine psychological screening during hospitalisation is recommended in order to identify patients at risk and to optimise their treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Self-reported prevalence and severity of xerostomia and its related conditions in individuals attending hospital for general health examinations.

    PubMed

    Lee, E; Lee, Y-H; Kim, W; Kho, H-S

    2014-04-01

    The aim of this study was to investigate the prevalence, severity, and relationships between xerostomia and its related symptoms in individuals who attended hospital for general health examinations. Participants included 883 men and 618 women aged between 30 and 60 years. History of symptoms during the previous 6 months, current symptoms, and severity of current symptoms were evaluated using a questionnaire that included questions about xerostomia, burning mouth, taste disturbance, and oral malodor. The prevalence of xerostomia and its related symptoms was 60.2%; the prevalence of oral malodor was 52.3%, xerostomia 33.0%, burning mouth 13.6%, and taste disturbance 12.5%. Men in their 30s and women in their 60s showed significantly higher prevalence and greater severity of xerostomia, burning mouth, and taste disturbance compared with their counterparts. The prevalence of xerostomia, burning mouth, and taste disturbance, and the severity of xerostomia increased significantly with age in women. The prevalence and severity of these four symptoms were significantly related and the association was the highest between burning mouth and taste disturbance. In conclusion, xerostomia and its related symptoms were highly prevalent at all ages. The prevalence and severity of these symptoms were closely related. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and lymphoid organ apoptosis in severely burned rats.

    PubMed

    Fan, Jun; Wu, Jing; Wu, Li-Dong; Li, Guo-Ping; Xiong, Meng; Chen, Xi; Meng, Qing-Yan

    2016-11-01

    The aim of this study is to investigate the effects of parenteral glutamine(GLN) supplementation combined with enteral nutrition (EN) on heat shock protein 90(Hsp90) expression, apoptosis of lymphoid organs and circulating lymphocytes, immunological function and survival in severely burned rats. Male SD rats were randomly assigned into 4 groups: a sham burn+EN+GLN-free amino acid (AA) group (n=10), a sham burn+EN+GLN group (n=10), a burn+EN+AA group (n=10), and a burn +EN +GLN group (n=10). Two hours after a 30% total body surface area (TBSA), full-thickness scald burn injury on the back was made, the burned rats in two experimental groups (the burn+EN+AA group and the burn+EN +GLN group) were fed with a conventional enteral nutrition solution by oral gavage for 7 days. Simultaneously, the rats in the burn+EN+GLN group were given 0.35g GLN/kg body weight/day once via a tail vein injection for 7 days, whereas those in the burn+EN+AA group were administered isocaloric/isonitrogenous GLN-free amino acid solution (Tyrosine) for comparison. The rats in two sham burn control groups (the sham burn+EN+AA group and the sham burn+EN +GLN group) were treated in the same procedure as above, except for burn injury. All rats in each of the four groups were given 175kcal/kg body wt/day. There was isonitrogenous, isovolumic and isocaloric intake among four groups. At the end of the 7th day after nutritional programme were finished, all rats were anesthetized and samples were collected for further analysis. Serum immunoglobulin quantification was conducted by ELISA. Circulating lymphocyte numbers were counted by Coulter LH-750 Analyzer. The percentages and apoptotic ratio of CD4 and CD8T lymphocytes in circulation were determined by flow cytometry (FCM). The neutrophil phagocytosis index (NPI) was examined. The GLN concentrations in plasma, thymus, spleen and skeletal muscle were measured by high performance liquid chromatography (HPLC). The organ index evaluation and TUNEL analysis of thymus and spleen were carried out. The expression of Hsp90 in thymus and spleen was analyzed by western blotting. Moreover, the survival in burned rats was observed. The results revealed that parenteral GLN supplementation combined with EN significantly increased the GLN concentrations of plasma and tissues, the serum immunoglobulin content, the circulating lymphocyte number, the CD4/CD8 ratio, the indexes of thymus and spleen, NPI and survival as compared with the burn+EN+AA group (p<0.05). The expression of Hsp90 in thymus and spleen in the burn+EN+GLN group was significantly up-regulated as compared with the burn+EN+AA group (p<0.05). The apoptosis in circulating CD4 and CD8 lymphocytes, thymus and spleen in the burn+EN+GLN group was significantly decreased as compared with the burn+EN+AA group (p<0.05). The results of this study show that parenteral GLN supplementation combined with EN may increase the GLN concentrations of plasma and tissues, up-regulate the expression of Hsp90, attenuate apoptosis in lymphoid organ and circulating lymphocyte, enhance the immunological function and improve survival in severely burned rats. Clinically, therapeutic efforts at the modulation of the immune dysfunction may contribute to a favorable outcome in severely burned patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Water repellency and soil moisture variations under Rosmarinus officinalis in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    Mediterranean semi-arid landscapes are characterised by the patchiness of the vegetation cover, in which variations in the distribution pattern of soil water repellency (SWR) can be of major importance for their hydrological and geomorphological effects in burned areas, and also for their ecological implications concerning to the re-establishment of their plant cover. Within a broader research framework, the present work studies the influence of Rosmarinus officinalis vegetated patches on SWR in burned and unburned soils and its relationship with the field soil moisture content (SMC). The results presented here are the first step analysing the spatial pattern of sink and source runoff areas in a burned hillslope. The study area is located in the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occurred in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12 ° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight at the nearest unburned area were selected. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for soil sampling (1 sample per zone at each microsite, n= 84, form the first 2 cm of the mineral A horizon) and field soil moisture measurements determined by means of the moisture meter HH2 with ThetaProbe sensor type ML2x (5 measurements per zone at each microsite, n= 420), which were taken one day after the first rainfall event after fire, when 11 mm were registered in the study area. Results showed that the largest repellency persistence (measured by means of the Water Drop Penetration Time test, WDPT) was found close to the burned R. officinalis stumps, where all soil samples showed water repellency, with mean WDPT of 68 seconds. Generally, we observed a sharp hydrophobic/hydrophilic boundary between the zones I (stump) and II (intermediate). Soil samples from bare soil (zone III) were entirely wettable. At control microsites, SWR was present only in one of the unburned R. officinalis samples. On the basis that unburned microsites are representative of the pre-fire conditions at the burned ones, these results imply that fire caused a significant increase in SWR occurrence at the soil surface. Field SMC showed statistically significant differences between the three zones. Both control and burned microsites showed the same trend, with an increasing gradient towards the outer zone. Furthermore, burned microsites showed larger differences in SMC between zone I and zone III (18% and 27%, respectively) than the unburned ones. It could be explained because at burned stumps, the largest persistence of water repellency and the highest SOM content might decrease the wettability of aggregates, slowing their rates of wetting, which might not occur at all during the rainstorms. In fact, there was obtained a significant and negative Pearson's correlation coefficients between SMC and WDPT, and between SMC and SOM at burned microsites. However, no correlation between field SMC and WDPT was found from control microsites. Moreover, at the burned microsites, the partial correlation analysis with SOM as control variable revealed that SMC and WDPT were influenced by the SOM. In addition, it is necessary to consider the existence of root channels with the development of preferential flow pathways, which could enhance deeper water infiltration in the stump areas. These results provide evidences of the importance of microsite soil surface properties on SMC variability on semiarid burned slopes. The existence of SWR and lowest SMC detected at burned stumps opposite to the highest SMC after rainfall and the absence of SWR in burned bare soil zones could be key factors for the differences in overland flow and erosional response of burned areas characterised by the patchiness of the vegetation cover.

  12. The ins and outs of terrorist bus explosions: injury profiles of on-board explosions versus explosions occurring adjacent to a bus.

    PubMed

    Golan, Ron; Soffer, Dror; Givon, Adi; Peleg, Kobi

    2014-01-01

    Terrorist explosions occurring in varying settings have been shown to lead to significantly different injury patterns among the victims, with more severe injuries generally arising in confined space attacks. Increasing numbers of terrorist attacks have been targeted at civilian buses, yet most studies focus on events in which the bomb was detonated within the bus. This study focuses on the injury patterns and hospital utilisation among casualties from explosive terrorist bus attacks with the bomb detonated either within a bus or adjacent to a bus. All patients hospitalised at six level I trauma centres and four large regional trauma centres following terrorist explosions that occurred in and adjacent to buses in Israel between November 2000 and August 2004 were reviewed. Injury severity scores (ISS) were used to assess severity. Hospital utilisation data included length of hospital stay, surgical procedures performed, and intensive care unit (ICU) admission. The study included 262 victims of 22 terrorist attacks targeted at civilian bus passengers and drivers; 171 victims were injured by an explosion within a bus (IB), and 91 were injured by an explosion adjacent to a bus (AB). Significant differences were noted between the groups, with the IB population having higher ISS scores, more primary blast injury, more urgent surgical procedures performed, and greater ICU utilisation. Both groups had percentages of nearly 20% for burn injury, had high percentages of injuries to the head/neck, and high percentages of surgical wound and burn care. Explosive terrorist attacks detonated within a bus generate more severe injuries among the casualties and require more urgent surgical and intensive level care than attacks occurring adjacent to a bus. The comparison and description of the outcomes to these terrorist attacks should aid in the preparation and response to such devastating events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Spatially-varied erosion modeling using WEPP for timber harvested and burned hillslopes

    Treesearch

    Peter R. Robichaud; T. M. Monroe

    1997-01-01

    Spatially-varied hydrologic surface conditions exist on steep hillslopes after timber harvest operation and site preparation burning treatments. Site preparation burning creates low- and high-severity burn surface conditions or disturbances. In this study, a hillslope was divided into multiple combinations of surface conditions to determine how their spatial...

  14. Use of multi-sensor active fire detections to map fires in the United States: the future of monitoring trends in burn severity

    USGS Publications Warehouse

    Picotte, Joshua J.; Coan, Michael; Howard, Stephen M.

    2014-01-01

    The effort to utilize satellite-based MODIS, AVHRR, and GOES fire detections from the Hazard Monitoring System (HMS) to identify undocumented fires in Florida and improve the Monitoring Trends in Burn Severity (MTBS) mapping process has yielded promising results. This method was augmented using regression tree models to identify burned/not-burned pixels (BnB) in every Landsat scene (1984–2012) in Worldwide Referencing System 2 Path/Rows 16/40, 17/39, and 1839. The burned area delineations were combined with the HMS detections to create burned area polygons attributed with their date of fire detection. Within our study area, we processed 88,000 HMS points (2003–2012) and 1,800 Landsat scenes to identify approximately 300,000 burned area polygons. Six percent of these burned area polygons were larger than the 500-acre MTBS minimum size threshold. From this study, we conclude that the process can significantly improve understanding of fire occurrence and improve the efficiency and timeliness of assessing its impacts upon the landscape.

  15. Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2018-01-01

    In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high). Results: Field measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites increased by an average of 8o - 10o C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests. Conclusions: Combined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire emission of carbon to the atmosphere exceeded most previous estimates for the state.

  16. Recent Trends in Burn Epidemiology Worldwide: A Systematic Review

    PubMed Central

    Smolle, Christian; Cambiaso-Daniel, Janos; Forbes, Abigail A.; Wurzer, Paul; Hundeshagen, Gabriel; Branski, Ludwik K.; Huss, Fredrik; Kamolz, Lars-Peter

    2017-01-01

    Burn injuries have been more prevalent among low socioeconomic populations and in less developed regions. Incredible advances in burn care and social development over the recent decades, however, should have placed the incidence and severity of burns in a downwards trend. The aim of this review was to give an overview on current trends in burn epidemiology across the world. Also the socioeconomic development in countries that have published epidemiological data used in this study has been taken into account when comparing the results. There was a worldwide downwards trend of burn incidence, burn severity, length of hospital stay, and mortality rate. These findings were particularly pronounced in very highly developed countries. Data from highly and medium developed countries were more heterogeneous. No studies could be obtained from low developed countries. Comparisons between the different studies were compromised by the fact that studies emerged from specialized facilities on one hand and general hospitals on the other. Analyzed studies were also frequently focusing on limited patient populations such as “children” or “elderly”. Our findings indicate the need for an international burn database with a minimal data-set in order to obtain objective and comparable results in respect of burn epidemiology. PMID:27600982

  17. The influence of wildfire severity on soil char composition and nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Rhoades, Charles; Fegel, Timothy; Chow, Alex; Tsai, Kuo-Pei; Norman, John, III; Kelly, Eugene

    2017-04-01

    Forest fires cause lasting ecological changes and alter the biogeochemical processes that control stream water quality. Decreased plant nutrient uptake is the mechanism often held responsible for lasting post-fire shifts in nutrient supply and demand, though other upland and in-stream factors also likely contribute to elevated stream nutrient losses. Soil heating, for example, creates pyrogenic carbon (C) and char layers that influence C and nitrogen (N) cycling. Char layer composition and persistence vary across burned landscapes and are influenced first by fire behavior through the temperature and duration of combustion and then by post-fire erosion. To evaluate the link between soil char and stream C and N export we studied areas burned by the 2002 Hayman Fire, the largest wildfire in Colorado, USA history. We compared soil C and N pools and processes across ecotones that included 1) unburned forests, 2) areas with moderate and 3) high wildfire severity. We analyzed 1-2 cm thick charred organic layers that remain visible 15 years after the fire, underlying mineral soils, and soluble leachate from both layers. Unburned soils released more dissolved organic C and N (DOC and DON) from organic and mineral soil layers than burned soils. The composition of DOC leachate characterized by UV-fluorescence, emission-excitation matrices (EEMs) and Fluorescence Regional Integration (FRI) found similarity between burned and unburned soils, underscoring a common organic matter source. Humic and fulvic acid-like fractions, contained in regions V and III of the FRI model, comprised the majority of the fluorescing DOM in both unburned and char layers. Similarity between two EEMs indices (Fluorescence and Freshness), further denote that unburned soils and char layers originate from the same source and are consistent with visual evidence char layers contain significant amounts of unaltered OM. However, the EEMs humification index (HIX) and compositional analysis with pyrolysis GCMS both indicate that C contained or leached from severely-burned char layers has higher aromaticity and thus chemical stability compared to C in unburned soils. Mineral soil (0-5 cm depth) beneath char layers in high severity portions of the Hayman Fire had significantly more soil N and C and lower pH. Potential net mineralization - an index of the supply of plant-available nitrogen - differed between the severely-burned areas and both unburned and moderately-burn areas. Negative net mineralization in unburned and moderately burned soils indicates immobilization or retention of inorganic N by soil microbes. In contrast, soils burned at high severity produced inorganic N sources available to plants, leaching and gas losses. Water soluble nitrate comprised a larger proportion of inorganic N leached from the char layer of high severity burns. Mineral soil in those areas had both higher water soluble nitrate and total inorganic N in leachate. Char layers that have persisted for fifteen years influence soil N turnover within the Hayman Fire affected area and may contribute to elevated N losses in streams burned at high severity. The chemical stability of soil char layers perpetuates their importance for C sequestration and N dynamics in burned landscapes.

  18. Can we make an early 'do not resuscitate' decision in severe burn patients?

    PubMed

    Yüce, Yücel; Acar, Hakan Ahmet; Erkal, Kutlu Hakan; Tuncay, Erhan

    2017-03-01

    The present study was conducted to examine topic of issuing early do-not-resuscitate (DNR) order at first diagnosis of patients with severe burn injuries in light of current law in Turkey and the medical literature. DNR requires withholding cardiopulmonary resuscitation in event of respiratory or cardiac arrest and allowing natural death to occur. It is frequently enacted for terminal cancer patients and elderly patients with irreversible neurological disorders. Between January 2009 and December 2014, 29 patients (3.44%) with very severe burns were admitted to burn unit. Average total burn surface area (TBSA) was 94.24% (range: 85-100%), and in 10 patients, TBSA was 100%. Additional inhalation burns were present in 26 of the patients (89.65%). All of the patients died, despite every medical intervention. Mean survival was 4.75 days (range: 1-24 days). Total of 17 patients died within 72 hours. Lethal dose 50 (% TBSA at which certain group has 50% chance of survival) rate of our burn center is 62%. Baux indices were used for prognostic evaluation of the patients; mean total Baux score of the patients was 154.13 (range: 117-183). It is well known that numerous problems may be encountered during triage of severely burned patients in Turkey. These patients are referred to burn centers and are frequently transferred via air ambulance between cities, and even countries. They are intubated and mechanical ventilation is initiated at burn center. Many interventions are performed to treat these patients, such as escharotomy, fasciotomy, tangential or fascial excision, central venous catheterization and tracheostomy, or hemodialysis. Yet despite such interventions, these patients die, typically within 48 to 96 hours. Integrity of the body is often lost as result of aggressive intervention with no real benefit, and there are also economic costs to hospital related to use of materials, bed occupancy, and distribution of workforce. For these reasons, as well as patient comfort, early do-not-resuscitate or do-not-intubate protocol for these patients is suggested. Resources could then be directed to other patients with high expectancy of life and patients with burns that are beyond treatment can experience more comfortable end of life. At present in Turkey, it is not possible to give DNR order for patient with severe burns that are incompatible with survival due to legal interdiction. This subject should be discussed at high-level meetings with participation of doctors, legal experts, economists, and theologians.

  19. A modern combat trauma.

    PubMed

    Popivanov, Georgi; Mutafchiyski, V M; Belokonski, E I; Parashkevov, A B; Koutin, G L

    2014-03-01

    The world remains plagued by wars and terrorist attacks, and improvised explosive devices (IED) are the main weapons of our current enemies, causing almost two-thirds of all combat injuries. We wished to analyse the pattern of blast trauma on the modern battlefield and to compare it with combat gunshot injuries. Analysis of a consecutive series of combat trauma patients presenting to two Bulgarian combat surgical teams in Afghanistan over 11 months. Demographics, injury patterns and Injury Severity Scores (ISS) were compared between blast and gunshot-injured casualties using Fisher's Exact Test. The blast victims had significantly higher median ISS (20.54 vs 9.23) and higher proportion of ISS>16 (60% vs 33.92%, p=0.008) than gunshot cases. They also had more frequent involvement of three or more body regions (47.22% vs 3.58%, p<0.0001). A significantly higher frequency of head (27.27% vs 3.57%), facial (20% vs 0%) and extremities injuries (85.45% vs 42.86%) and burns (12.72% vs 0%) was noted among the victims of explosion (p<0.0001). Based on clinical examination and diagnostic imaging, primary blast injury was identified in 24/55 (43.6%), secondary blast injury in 37 blast cases (67.3%), tertiary in 15 (27.3%) and quaternary blast injury (all burns) in seven (12.72%). Our results corroborate the 'multidimensional' injury pattern of blast trauma. The complexity of the blast trauma demands a good knowledge and a special training of the military surgeons and hospital personnel before deployment.

  20. Injury control in practice. Home radiator burns in inner-city children.

    PubMed

    Quinlan, K P

    1996-09-01

    To describe thermal burns from radiators in the homes of children in the inner city and an intervention to decrease the risk for this pediatric injury. Academic medical center in Chicago. Case series of 10 radiator-related burns. The burns described were found to be clustered in an area of a public housing project served by steam radiators. No burns were associated with hot water radiators. Just 14% of housing units with young children had adequate radiator covers and radiator pipe insulation. Radiator covers and insulation have now been replaced or repaired in all units of the 11 housing project buildings served by steam radiators. Steam radiators in the home represent a particular childhood burn hazard. Community-based clinicians are in a unique position to recognize local patterns of injury and work with other agencies in injury control efforts.

  1. Temperature responses in severely burned children during exercise in a hot environment.

    PubMed

    McEntire, Serina J; Chinkes, David L; Herndon, David N; Suman, Oscar E

    2010-01-01

    The authors have previously described thermoregulatory responses of severely burned children during submaximal exercise in a thermoneutral environment. However, the thermoregulatory response of burned children to exercise in the heat is not well understood and could have important safety implications for rehabilitation. Children (n = 10) with >40% TBSA burns and nonburned children (n = 10) performed a 30-minute bout of treadmill exercise at 75% of their peak aerobic power in a heated environment. Intestinal temperature, burned and unburned skin temperature, and heart rate were recorded pre-exercise, every 2 minutes during exercise, and during recovery. Three of the 10 burned children completed the exercise bout in the heat; however, all the nonburned children completed the 30-minute bout. One burned child reached a core body temperature >39 degrees C at minute 23. Burned children had significantly higher core body temperature through the first 12 minutes of exercise compared with nonburned children. However, nine of 10 (90%) burned children did not become hyperthermic during exercise in the heat. Specific to this study, hyperthermia did not typically occur in burned children, relative to nonburned children. Whether this is due to an intolerance to exercise in the heat or to an inability to generate sufficient heat during exercise needs to be explored further.

  2. Seasonal timing of fire alters biomass and species composition of northern mixed prairie

    USDA-ARS?s Scientific Manuscript database

    Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semi-arid grasslands. Most prescribed burns occur during spring and fall, when windows of safe burning conditions are often broad. Burnin...

  3. Wildfire, legacy carbon combustion, and the centennial carbon balance of permafrost ecosystems

    NASA Astrophysics Data System (ADS)

    Mack, M. C.; Walker, X. J.; Melvin, A. M.; Schuur, E.

    2017-12-01

    One of the most rapid pathways through which climate warming could alter the carbon (C) balance of high northern latitude permafrost ecosystems is through intensification of wildfire disturbance. The majority of organic C sequestered in arctic tundra and boreal coniferous forest and peatlands resides in thick soil organic layers (SOL) that can be hundreds to thousands of years old, a C legacy of past ecosystems. Combustion of the SOL dominates C emissions during fire, and more intense fires result in deeper burning. Because rates of soil C accumulation vary across the landscape, deeper burning may not always combust legacy C. But deeper burning that does combust legacy C could rapidly shift ecosystems across a centennial-scale C cycling threshold: from net accumulation of C from the atmosphere over multiple fire cycles, to net loss. Thus, the vulnerability of this C pool—the material legacy of past disturbance events—to more intense wildfires could ultimately determine the C balance of these ecosystems and their net feedback to climate warming. In addition to determining net C balance over the disturbance cycle, combustion of legacy C provides historic context for the current fire's severity. Fires that are greater in severity than past fires are expected to be most likely to push ecosystems across thresholds in permafrost and plant composition, rendering ecosystem C cycling vulnerable to additional state change after fire. Although substantial progress has been made in understanding patterns of deep burning across boreal landscapes, much less is known about the vulnerability of legacy C to combustion and the ecosystem consequences of its loss. In this talk, we will present the concept of legacy C and discuss mass balance and radiocarbon-based methods for estimating its combustion. We will present a synthesis of data from burned Alaskan arctic tundra ecosystems, and Alaskan and Canadian boreal forests and peatlands and discuss the implications for the C balance of permafrost ecosystems. While most ecosystems in wet to moderately-drained landscape positions harbored SOL C that was hundreds to thousands of years old, loss of C that was older than the last disturbance event was limited to moderately-drained sites.

  4. Sodium Butyrate Protects against Severe Burn-Induced Remote Acute Lung Injury in Rats

    PubMed Central

    Liu, Sheng; Guo, Feng; Sun, Li; Wang, Yong-Jie; Sun, Ye-Xiang; Chen, Xu-Lin

    2013-01-01

    High-mobility group box 1 protein (HMGB1), a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI). Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague–Dawley rats were divided into three groups: 1) sham group, sham burn treatment; 2) burn group, third-degree burns over 30% total body surface area (TBSA) with lactated Ringer’s solution for resuscitation; 3) burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer’s solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D) ratio. Tumor necrosis factor (TNF)-α and interleukin (IL)-8 protein concentrations in bronchoalveolar lavage fluid (BALF) and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO) activity and malondialdehyde (MDA) concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1 expression. PMID:23874764

  5. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.

  6. Range and variation in landscape patch dynamics: Implications for ecosystem management

    Treesearch

    Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg

    2001-01-01

    Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...

  7. Urinary Biomarkers are Associated with Severity and Mechanism of Injury

    PubMed Central

    Janak, Jud C.; Stewart, Ian J.; Sosnov, Jonathan A.; Howard, Jeffrey T.; Siew, Edward D.; Chan, Mallory M.; Wickersham, Nancy; Ikizler, T. Alp; Chung, Kevin K.

    2016-01-01

    Combat-related blast trauma results in massive tissue injury and tends to involve multiple systems. Further, an acute measure of injury severity based on underlying biological mechanisms may be important for the triage and treatment of these types of patients. We hypothesized that urinary biomarkers (UBs) would reflect severity of injury and that they would be elevated for blast injuries compared to gunshot wounds (GSW) in a cohort of combat casualties. We also postulated that UBs would be higher in patients with burns compared to patients with non-burn trauma in a civilian cohort. Among 80 service members who sustained combat-related injuries, we performed generalized estimating equations to compare differences in log-transformed concentrations of the UBs by both (1) injury severity and (2) injury mechanism. Among 22 civilian patients, we performed Kruskal-Wallis tests to compare differences for the UBs stratified by burn and non-burn trauma. In the military cohort, with the exception of IL-18, all UBs were significantly (p<0.05) higher for patients with a severe combat-related injury (Injury Severity Score≥25). In addition, all crude UBs concentrations were significantly higher for blast vs. GSW patients (p<0.05). After adjusting for injury severity score and time of UB draw, KIM-1 (2.80 vs. 2.31; p=0.03) and LFABP (−1.11 vs. −1.92; p=0.02) were significantly higher for patients with a blast mechanism of injury. There were no significant differences in UBs between burn and non-burn civilian trauma patients. Future studies are needed to understand the physiologic response to trauma and the extent that UBs reflect these underlying processes. PMID:27798535

  8. Review of the use of povidone-iodine (PVP-I) in the treatment of burns.

    PubMed

    Steen, M

    1993-01-01

    Local infection and burn wound sepsis are one of the most severe problems in the treatment of thermally injured patients. Early surgical treatment and the use of topical antiseptics led to a decrease in the infection rate and significantly improved the survival rate of burns patients within the last twenty-five years. Many antiseptics are used in the treatment of burns. Silver nitrate, silver sulphadiazine, sulfamylon and povidone-iodine (PVP-I) are the most common substances used worldwide in burn care facilities. Clinical studies demonstrate that treatment with PVP-I is the most effective against bacterial and fungal infection. Several methodological problems however arise from direct comparison between these antiseptics, and local and systemic adverse effects can make the right choice difficult. Some case reports documented possible side effects in the treatment of patients with PVP-I, leading to general concerns about this treatment. Absorption of iodine and possible changes in thyroid hormones are well known, but evaluation of the clinical consequences is controversial. Reports of severe metabolic acidosis and renal insufficiency with lethal results have condemned the use of PVP-I in the treatment of extensive burns. The case reports, however, dealt with patients suffering from general morbidity and sepsis and therefore these single reports may not be generally valid. Local treatment of burns may cause further problems. The beneficial effect of a decrease of bacterial counts in deeper tissue may be confounded by other effects delaying wound healing, as shown in some experimental studies. Controlled clinical investigations on burn patients however are still missing. The paper will discuss these topics in detail referring to the treatment of burns with PVP-I. It is based on a critical review of the literature and the author's own experience in burns therapy.

  9. Comparison of oxidative stress & leukocyte activation in patients with severe sepsis & burn injury

    PubMed Central

    Mühl, Diana; Woth, Gábor; Drenkovics, Livia; Varga, Adrienn; Ghosh, Subhamay; Csontos, Csaba; Bogár, Lajos; Wéber, György; Lantos, János

    2011-01-01

    Background & objectives: We evaluated pro- and anti-oxidant disturbances in sepsis and non-sepsis burn patients with systemic inflammatory response syndrome (SIRS). Adhesion molecules and inflammation markers on leukocytes were also analyzed. We hypothesized that oxidative stress and leukocyte activation markers can lead to the severity of sepsis. Methods: In 28 severe sepsis and 27 acute burn injury patients blood samples were collected at admission and 4 days consecutively. Oxidative stress markers: production of reactive oxygen species (ROS), myeloperoxidase, malondialdehyde and endogenous antioxidants: plasma protein sulphydryl groups, reduced glutathione, superoxide dismutase and catalase were measured. Flow cytometry was used to determine CD11a, CD14, CD18, CD49d and CD97 adhesion molecules on leukocytes. Procalcitonin, C-reactive protein, fibrinogen, platelet count and lactate were also analyzed. Results: Pro-oxidant parameters were significantly elevated in sepsis patients at admission, ROS intensity increased in burn patients until the 5th day. Endogenous antioxidant levels except catalase showed increased levels after burn trauma compared to sepsis. Elevated granulocyte activation and suppressed lymphocyte function were found at admission and early activation of granulocytes caused by increasing activation/migration markers in sepsis. Leukocyte adhesion molecule expression confirmed the suppressed lymphocyte and monocyte function in sepsis. Interpretation & conclusions: Severe sepsis is accompanied by oxidative stress and pathological leukocyte endothelial cell interactions. The laboratory parameters used for the evaluation of sepsis and several markers of pro- and antioxidant status were different between sepsis and non-sepsis burn patients. The tendency of changes in these parameters may refer to major oxidative stress in sepsis and developing SIRS in burns. PMID:21808137

  10. Disturbance gradient shows logging affects plant functional groups more than fire.

    PubMed

    Blair, David P; McBurney, Lachlan M; Blanchard, Wade; Banks, Sam C; Lindenmayer, David B

    2016-10-01

    Understanding the impacts of natural and human disturbances on forest biota is critical for improving forest management. Many studies have examined the separate impacts on fauna and flora of wildfire, conventional logging, and salvage logging, but empirical comparisons across a broad gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of occurrence of vascular plants, and functional group responses, across a gradient of disturbances that occurred concurrently in 2009 in the mountain ash forests of southeastern Australia. Our study encompassed replicated sites in undisturbed forest (~70 yr post fire), forest burned at low severity, forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high severity that was clearcut salvage logged post-fire. All sites were sampled 2 and 3 yr post fire. Mean species richness decreased across the disturbance gradient from 30.1 species/site on low-severity burned sites and 28.9 species/site on high-severity burned sites, to 25.1 species/site on clearcut sites and 21.7 species/site on salvage logged sites. Low-severity burned sites were significantly more species-rich than clearcut sites and salvage logged sites; high-severity burned sites supported greater species richness than salvage logged sites. Specific traits influenced species' sensitivity to disturbance. Resprouting species dominated undisturbed mountain ash forests, but declined significantly across the gradient. Fern and midstory trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High-severity burned sites supported a greater frequency of occurrence and species richness of midstory trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees than any other disturbance category, and were distinctly different from clearcut sites. Plant life form groups, including midstory trees, shrubs, and ferns, were dominated by very few species on logged sites. The differences in biotic response across the gradient of natural and human disturbances have significant management implications, particularly the need to reduce mechanical disturbance overall and to leave specific areas with no mechanical disturbance across the cut area during logging operations, to ensure the persistence of resprouting taxa. © 2016 by the Ecological Society of America.

  11. Computer vision syndrome and ergonomic practices among undergraduate university students.

    PubMed

    Mowatt, Lizette; Gordon, Carron; Santosh, Arvind Babu Rajendra; Jones, Thaon

    2018-01-01

    To determine the prevalence of computer vision syndrome (CVS) and ergonomic practices among students in the Faculty of Medical Sciences at The University of the West Indies (UWI), Jamaica. A cross-sectional study was done with a self-administered questionnaire. Four hundred and nine students participated; 78% were females. The mean age was 21.6 years. Neck pain (75.1%), eye strain (67%), shoulder pain (65.5%) and eye burn (61.9%) were the most common CVS symptoms. Dry eyes (26.2%), double vision (28.9%) and blurred vision (51.6%) were the least commonly experienced symptoms. Eye burning (P = .001), eye strain (P = .041) and neck pain (P = .023) were significantly related to level of viewing. Moderate eye burning (55.1%) and double vision (56%) occurred in those who used handheld devices (P = .001 and .007, respectively). Moderate blurred vision was reported in 52% who looked down at the device compared with 14.8% who held it at an angle. Severe eye strain occurred in 63% of those who looked down at a device compared with 21% who kept the device at eye level. Shoulder pain was not related to pattern of use. Ocular symptoms and neck pain were less likely if the device was held just below eye level. There is a high prevalence of Symptoms of CVS amongst university students which could be reduced, in particular neck pain and eye strain and burning, with improved ergonomic practices. © 2017 John Wiley & Sons Ltd.

  12. A review of burns patients admitted to the Burns Unit of Hospital Universiti Kebangsaan Malaysia.

    PubMed

    Chan, K Y; Hairol, O; Imtiaz, H; Zailani, M; Kumar, S; Somasundaram, S; Nasir-Zahari, M

    2002-12-01

    This is a retrospective review of 110 patients admitted to the Burns Units between October 1999 and November 2001. The aim was to determine the burns pattern of patients admitted to hospital UKM. There was an increasing trend for patients admitted. Female to male ratio was 1:2. Children consisted 34% of the total admission. Children had significant higher number of scald burns as compare to adult (p < 0.01). Domestic burns were consist of 75% overall admission. Mean percentage of TBSA (total body surface area) burns was 19%. Thirty percent of patients sustained more than 20% of TBSA. Sixty percent of patients had scald burns. Ninety percents of patients with second degree burns that were treated with biologic membrane dressing or split skin graft. Mean duration of hospital stay was 10 days. Over 70% of patients were discharged within 15 days. Overall mortality rate was 6.3%. The patients who died had significantly larger area of burns of more than 20% TBSA (p < 0.05) and a higher incidence of inhalation injury (p < 0.02). Hence, this study suggests a need for better preventive measures by the authority to prevent burns related accident and the expansion of the service provided by the Burns Unit.

  13. Muscle Contractile Properties in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.

    2010-01-01

    Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255

  14. Quercus kelloggii (Newb.) sprout response to fire severity in northern California

    Treesearch

    Justin S. Crotteau; Martin W. Ritchie; J. Morgan Varner; John-Pascal Berrill

    2015-01-01

    We counted seedlings and assessed crown characteristics and abundance of fire-induced stump sprout regeneration in California black oak (Quercus kelloggii) 11 to 12 years after wildfire. Regeneration was examined across three levels of burn severity (low, moderate, and high) according to the Composite Burn Index. Fire severity affected crown width...

  15. Differences in Human Versus Lightning Fires with Human Proximity at Two Spatial Scales in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Calef, M. P.; Varvak, A.; McGuire, A. D.

    2017-12-01

    The boreal forest contains significant amounts of carbon in its biomass and soils and is currently responding to a rapidly changing climate. This is leading to warmer temperatures, drier conditions and larger and more frequent wildfires in western North America. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models are important predictive tools for understanding future conditions but they are based on regional generalizations of wildfire behavior and do not account for the complexity of human-fire interactions. In order to achieve a better understanding of the human influence on fires and how human fires differ from lightning fires, we analyzed both in regard to human proximity at two spatial scales (the Fairbanks subregion and Interior Alaska) using ArcGIS and quantitative analysis methods. We found that area burned is increasing across the region at 3% per year and is driven by increase in area burned by lightning while human-caused area burned has been decreasing recently especially in the WUI near Fairbanks. Human fires differed from lightning fires in several ways: they occurred significantly closer to settlements and highways, burned for a shorter duration, and were not as restricted to a brief seasonal window. The fire regime in the much more populated Fairbanks subregion has been altered by human activity: it experienced substantially more human fire ignitions along with a larger area burned though the human influence decreases with distance. This study provides important insights into spatial patterns of human influences on fires and provides useful information for fire modeling and fire management.

  16. Satellite-based Assessment of Fire Impacts on Ecosystem Changes in West Africa

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2008-01-01

    Fires bum many vegetated regions of the world to a variety of degrees and frequency depending on season. Extensive biomass burning occurs in most parts of sub-Saharan Africa, posing great threat to ecosystem stability among other real and potential adverse impacts. In Africa, such landscape-scale fires are used for various agricultural purposes, including land clearing and hunting, although there may be a limited number of cases of fires ignited by accident or due to arson. Satellite remote sensing provides the most practical means of mapping fires, because of their sudden and aggressive nature coupled with the tremendous heat they generate. Recent advancements in satellite technology has enabled, not only the identification of fire locations, but also the measurement of fire radiative energy (FRE) release rate or power (FRP), which has been found to have a direct linear relationship with the rate of biomass combustion. A recent study based on FRP measurements from the Moderate-resolution imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites revealed that, among all the regions of the world where fires occur, African regions rank the highest in the intensity of biomass burning per unit area of land during the peak of the burning season. In this study, we will analyze the burning patterns in West Africa during the last several years and examine the extent of their impacts on the ecosystem dynamics, using a variety of satellite data. The study introduces a unique methodology that can be used to build up the knowledge base from which decision makers can obtain scientific information in fomulating policies for regulating biomass burning in the region.

  17. Global fire emissions estimates during 1997-2016

    NASA Astrophysics Data System (ADS)

    van der Werf, Guido R.; Randerson, James T.; Giglio, Louis; van Leeuwen, Thijs T.; Chen, Yang; Rogers, Brendan M.; Mu, Mingquan; van Marle, Margreet J. E.; Morton, Douglas C.; Collatz, G. James; Yokelson, Robert J.; Kasibhatla, Prasad S.

    2017-09-01

    Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997-2016. The modeling system, based on the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 × 1015 grams of carbon per year (Pg C yr-1) during 1997-2016, with a maximum in 1997 (3.0 Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997-2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (-19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr-1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org.

  18. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire?

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. L.; Moore, P. A.; Flannigan, M. D.; Wotton, B. M.; Waddington, J. M.

    2018-01-01

    Climate change mediated drying of boreal peatlands is expected to enhance peatland afforestation and wildfire vulnerability. The water table depth-afforestation feedback represents a positive feedback that can enhance peat drying and consolidation and thereby increase peat burn severity; exacerbating the challenges and costs of wildfire suppression efforts and potentially shifting the peatland to a persistent source of atmospheric carbon. To address this wildfire management challenge, we examined burn severity across a gradient of drying in a black spruce dominated peatland that was partially drained in 1975-1980 and burned in the 2016 Fort McMurray Horse River wildfire. We found that post-drainage black spruce annual ring width increased substantially with intense drainage. Average (±SD) basal diameter was 2.6 ± 1.2 cm, 3.2 ± 2.0 cm and 7.9 ± 4.7 cm in undrained (UD), moderately drained (MD) and heavily drained (HD) treatments, respectively. Depth of burn was significantly different between treatments (p < 0.001) and averaged (±SD) 2.5 ± 3.5 cm, 6.4 ± 5.0 cm and 36.9 ± 29.6 cm for the UD, MD and HD treatments, respectively. The high burn severity in the HD treatment included 38% of the treatment that experienced combustion of the entire peat profile, and we estimate that overall 51% of the HD pre-burn peat carbon stock was lost. We argue that the HD treatment surpassed an ecohydrological tipping point to high severity peat burn that may be identified using black spruce stand characteristics in boreal plains bogs. While further studies are needed, we believe that quantifying this threshold will aid in developing effective adaptive management techniques and protecting boreal peatland carbon stocks.

  19. Quantitative long term measurements of burns in a rat model using spatial frequency domain imaging and laser speckle imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ponticorvo, Adrien; Rowland, Rebecca A.; Baldado, Melissa L.; Kennedy, Gordon T.; Saager, Rolf B.; Choi, Bernard; Durkin, Anthony J.

    2016-04-01

    The ability to accurately assess burn wound severity in a timely manner is a critical component of wound management as it dictates the course of treatment. While full thickness and superficial burns can be easily diagnosed through visual inspection, burns that fall in between these categories are difficult to classify. Additionally, the ability to better quantify different stages of wound healing from a burn of any severity would be important for evaluating the efficacy of different treatment options. Here we present a longitudinal (28 day) study that employs spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) as non-invasive technologies to characterize in-vivo burn wounds and healing in a murine model. Burn wounds were created using an established technique of a brass comb heated to a given temperature and applied for a set amount of time. They were imaged immediately after the initial injury and then at 2, 4, 7, 14, 21, and 28 days following the injury. Biopsies were taken on the day of the injury in order to verify the extent of the burn damage as well as at different time points after the injury in order to visualize different stages of inflammation and healing. The results of this study suggest that the reduced scattering coefficient measured using SFDI and blood flow as measured using LSI have the potential to provide useful metrics for quantifying the severity of burn injuries as well as track the different stages associated with wound healing progression.

  20. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats.

    PubMed

    Song, J; Yin, J; Sallam, H S; Bai, T; Chen, Y; Chen, J D Z

    2013-10-01

    Delayed gastric emptying (GE) is common in patients with severe burns. This study was designed to investigate effects and mechanisms of electroacupuncture (EA) on gastric motility in rats with burns. Male rats (intact and vagotomized) were implanted with gastric electrodes, chest and abdominal wall electrodes for investigating the effects of EA at ST-36 (stomach-36 or Zusanli) on GE, gastric slow waves, autonomic functions, and plasma interleukin 6 (IL-6) 6 and 24 h post severe burns. (i) Burn delayed GE (P < 0.001). Electroacupuncture improved GE 6 and 24 h post burn (P < 0.001). Vagotomy blocked the EA effect on GE. (ii) Electroacupuncture improved burn-induced gastric dysrhythmia. The percentage of normal slow waves was increased with EA 6 and 24 h post burn (P = 0.02). (iii) Electroacupuncture increased vagal activity assessed by the spectral analysis of heart rate variability (HRV). The high-frequency component reflecting vagal component was increased with EA 6 (P = 0.004) and 24 h post burn (P = 0.03, vs sham-EA). (iv) Electroacupuncture attenuated burn-induced increase in plasma IL-6 at both 6 (P = 0.03) and 24 h post burn (P = 0.003). Electroacupuncture at ST-36 improves gastric dysrhythmia and accelerates GE in rats with burns. The improvement seems to be mediated via the vagal pathway involving the inflammatory cytokine IL-6. © 2013 John Wiley & Sons Ltd.

  1. Consequences of fire on aquatic nitrate and phosphate dynamics in Yellowstone National Park

    Treesearch

    James A. Brass; Vincent G. Ambrosia; Philip J. Riggan; Paul D. Sebesta

    1996-01-01

    Airborne remotely sensed data were collected and analyzed during and following the 1988 Greater Yellowstone Ecosystem (GYE) fires in order to characterize the fire front movements, burn intensities and various vegetative components of selected watersheds. Remotely sensed data were used to categorize the burn intensities as: severely burned, moderately burned, mixed...

  2. Field validation of Burned Area Reflectance Classification (BARC) products for post fire assessment

    Treesearch

    Andrew T. Hudak; Peter R. Robichaud; Jeffery B. Evans; Jess Clark; Keith Lannom; Penelope Morgan; Carter Stone

    2004-01-01

    The USFS Remote Sensing Applications Center (RSAC) and the USGS EROS Data Center (EDC) produce Burned Area Reflectance Classification (BARC) maps for use by Burned Area Emergency Rehabilitation (BAER) teams in rapid response to wildfires. BAER teams desire maps indicative of soil burn severity, but photosynthetic and nonphotosynthetic vegetation also influences the...

  3. Mineralogical and micromorphological modifications in soil affected by slash pile burn

    Treesearch

    M. M. Nobles; W. J. Massman; M. Mbila; G. Butters

    2010-01-01

    Silvicultural practices, such as slash pile burning, are commonly used for fire and ecosystem management. This management technique can drastically alter chemical, physical and biological soil properties due to the high temperatures achieved during the prolonged severe burn. Little is known, however, about the impact of high-temperature slash pile burning on soil...

  4. Estimating severity of burn in children: Pediatric Risk of Mortality (PRISM) score versus Abbreviated Burn Severity Index (ABSI).

    PubMed

    Berndtson, Allison E; Sen, Soman; Greenhalgh, David G; Palmieri, Tina L

    2013-09-01

    The purpose of our study is to validate the Pediatric Risk of Mortality (PRISM) score and compare the accuracy of PRISM predicted outcomes to the Abbreviated Burn Severity Index (ABSI). We hypothesized that the PRISM score is more accurate in predicting mortality and hospital length of stay than the ABSI in children with severe burns. All children <18 years of age admitted to a regional pediatric burn center between January 1, 2008 and July 1, 2010 were reviewed. Those with a Total Body Surface Area (TBSA) burn ≥20% who were admitted within 7 days of injury were selected for our study. Measured parameters included: demographics, burn characteristics, PRISM and ABSI scores at admission, and outcomes (mortality, hospital length of stay (LOS), ventilator days and cause of death). A total of 83 patients met criteria and had complete data sets. The mean age (±SEM) was 8.0±0.6 years, mean % TBSA burn 49.9±2.1%, 62.7% were male, and 45.8% had inhalation injury. Hospital LOS was 74.4±7.9 days, with 31.5±4.9 ventilator days. Mean PRISM score ranged from 14.2 to 16.0, with ABSI scores 7.9 to 8.5. Actual overall mortality was 18.1% compared to a PRISM predicted mortality of 19.8±2.5% (p<0.001, r=0.570). ABSI predicted mortality varied from 10 to 20% for a score of 7.9 to 30-50% for a score of 8.5. Logistic regression showed that both PRISM (p<0.001) and ABSI (p<0.001) mortality predictions accurately estimated actual mortality, which remained true in a combined model. ABSI was predictive of hospital LOS (p<0.001) and ventilator days (p<0.001) while PRISM was not (p=0.326 and p=0.863). Both PRISM and ABSI scores are predictive of mortality in severely burned children. Only ABSI correlates with hospital length of stay and ventilator days, and thus may also be more useful in predicting ICU resource utilization. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  5. Perceived social support among patients with burn injuries: A perspective from the developing world.

    PubMed

    Waqas, Ahmed; Turk, Marvee; Naveed, Sadiq; Amin, Atif; Kiwanuka, Harriet; Shafique, Neha; Chaudhry, Muhammad Ashraf

    2018-02-01

    Social support is among the most well-established predictors of post-burn psychopathology after burn. Despite a disproportionately large burden of burns in the developing world, the nature of social support among burn patients in this context remains elusive. We, therefore, seek to investigate social support and its biopsychosocial determinants among patients with burn injuries in Pakistan. A cross-sectional study of 343 patients presenting with burn injuries at four teaching hospitals in the Punjab province of Pakistan was conducted. Patient evaluation consisted of a multi-part survey of demographic status, clinical features, and social support as measured by the validated Urdu translation of the Multidimensional Scale of Perceived Social Support (MSPSS). Multiple regression analysis was performed to evaluate associations between patient characteristics and MSPSS score. Mean overall MSPSS score was 57.64 (std dev 13.57). Notable positive predictors of social support include male gender, Punjabi ethnicity, burn surface area, and ego resiliency. Our study reveals a troubling pattern of inadequate social support among certain subgroups of Pakistani burn patients. Addressing these inequities in the provision of social support must be prioritized as part of the global burn care agenda. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  6. AFIRM-Wake Forest/University of Pittsburgh Consortium

    DTIC Science & Technology

    2012-07-01

    therapy for infected burn wounds using Lactobacillu s was applied to a new m ouse model and is capable of rescuing the anim al from burn wound induced... Lactobacillus to reduce scar from burn wound infection. We have tested bacteriotherapy with Lactobacillus in a rabbit model of Pseudomonas-infected burn...probiotic therapy with Lactobacillus is sufficient to attenuate the length and severity of a Pseudo monal infection of the burn wound, and that this

  7. Pressure necrosis masquerading as a burn injury in a patient with a cervical epidural abscess producing acute quadriplegia.

    PubMed

    Thorpe, Eric J; McCallin, John P; Miller, Sidney F

    2008-01-01

    A case of a patient with acute onset of quadriplegia from a cervical epidural abscess referred to our tertiary burn center is presented. The pattern of the patient's 'burns' suggested pressure necrosis. A literature review was undertaken of this unusual condition, its evaluation and management. Cervical epidural abscesses are rare and present in a variety of ways. Acute onset of quadriplegia without a history of trauma should trigger a workup to make the diagnosis. The management of complicating skin lesions or burns and the patient outcome will primarily be determined by the management of the epidural abscess.

  8. Blood transfusions in severe burn patients: Epidemiology and predictive factors.

    PubMed

    Wu, Guosheng; Zhuang, Mingzhu; Fan, Xiaoming; Hong, Xudong; Wang, Kangan; Wang, He; Chen, Zhengli; Sun, Yu; Xia, Zhaofan

    2016-12-01

    Blood is a vital resource commonly used in burn patients; however, description of blood transfusions in severe burns is limited. The purpose of this study was to describe the epidemiology of blood transfusions and determine factors associated with increased transfusion quantity. This is a retrospective study of total 133 patients with >40% total body surface area (TBSA) burns admitted to the burn center of Changhai hospital from January 2008 to December 2013. The study characterized blood transfusions in severe burn patients. Univariate and Multivariate regression analyses were used to evaluate the association of clinical variables with blood transfusions. The overall transfusion rate was 97.7% (130 of 133). The median amount of total blood (RBC and plasma), RBC and plasma transfusions was 54 units (Interquartile range (IQR), 20-84), 19 units (IQR, 4-37.8) and 28.5 units (IQR, 14.8-51.8), respectively. The number of RBC transfusion in and outside operation room was 7 (0, 14) and 11 (2, 20) units, and the number of plasma was 6 (0.5, 12) and 21 (11.5, 39.3) units. A median of one unit of blood was transfused per TBSA and an average of 4 units per operation was given in the series. The consumption of plasma is higher than that of RBC. On multivariate regression analysis, age, full-thickness TBSA and number of operations were significant independent predictors associated with the number of RBC transfusion, and coagulopathy and ICU length showed a trend toward RBC consumption. Predictors for increased plasma transfusion were female, high full-thickness TBSA burn and more operations. Severe burn patients received an ample volume of blood transfusions. Fully understanding of predictors of blood transfusions will allow physicians to better optimize burn patients during hospitalization in an effort to use blood appropriately. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, M. S.; Avelino, P. P.; Stello, D.

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacingmore » and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.« less

  10. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  11. Leaving moss and litter layers undisturbed reduces the short-term environmental consequences of heathland managed burns.

    PubMed

    Grau-Andrés, Roger; Davies, G Matt; Waldron, Susan; Scott, E Marian; Gray, Alan

    2017-12-15

    Variation in the structure of ground fuels, i.e. the moss and litter (M/L) layer, may be an important control on fire severity in heather moorlands and thus influence vegetation regeneration and soil carbon dynamics. We completed experimental fires in a Calluna vulgaris-dominated heathland to study the role of the M/L layer in determining (i) fire-induced temperature pulses into the soil and (ii) post-fire soil thermal dynamics. Manually removing the M/L layer before burning increased fire-induced soil heating, both at the soil surface and 2 cm below. Burnt plots where the M/L layer was removed simulated the fuel structure after high severity fires where ground fuels are consumed but the soil does not ignite. Where the M/L layer was manually removed, either before or after the fire, post-fire soil thermal dynamics showed larger diurnal and seasonal variation, as well as similar patterns to those observed after wildfires, compared to burnt plots where the M/L layer was not manipulated. We used soil temperatures to explore potential changes in post-fire soil respiration. Simulated high fire severity (where the M/L layer was manually removed) increased estimates of soil respiration in warm months. With projected fire regimes shifting towards higher severity fires, our results can help land managers develop strategies to balance ecosystem services in Calluna-dominated habitats. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE PAGES

    Meng, Ran; Wu, Jin; Zhao, Feng; ...

    2018-06-01

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  13. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Zhao, Feng

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  14. Stream structure at low flow: biogeochemical patterns in intermittent streams over space and time

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2017-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry during a dry (2016) and a wet (2017) water year in southwest Idaho. We hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production, and that the heterogeneity of constituents within each stream would increase. We expected these patterns to differ in a high water year compared to a low water year due to algae scour. Finally, we expected that the spatial heterogeneity of biogeochemistry would decrease with time following fire. To test these hypotheses, in 2016 we collected surface water samples at 50 meter intervals from two intermittent headwater streams over 2,500 meter reaches in April, May, and June. One stream is burned and one remains unburned. In 2017, we collected surface water at the 50, 25 and 10 meter intervals from each stream once during low flow. 2016 results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. Between wet and dry water years, we observed a decrease in the spatial heterogeneity as measured by the standard deviation (SD) in conductivity at 50 meter intervals; the burned stream had a SD of 23.08 in 2016 and 11.40 in 2017 whereas the unburned stream had similar SDs. We conclude that the burned stream experienced more inter and intra-annual surface water change in chemistry patterns than did the unburned stream.

  15. Pre Conference Hazardous Materials Workshop, West/East Coast Safety Conference, held 3-4 October/31 October - 1 November 1981,

    DTIC Science & Technology

    1981-01-01

    itation and ulceration of skin Blacher,. picklers (nicals). refiners (metals). tinners. c,".:mical manufactur- ing Hydrofluoric X Severe burning of skin...strong solutions are used) DNc,.g, felt hat industry Nitric X Severe skin burns and ulcers Nitric acid worker%, electroplaters. met- al refincr, acid...Fertilije, makers, gr:cultural workers. Calcium cyanamide alkali salt makers Calcium oxide, carbon- X Dermatitis,. burns , or ulcers Lime %orkers

  16. Integrating remote sensing and terrain data in forest fire modeling

    NASA Astrophysics Data System (ADS)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.

  17. Responses of pond-breeding amphibians to wildfire: Short-term patterns in occupancy and colonization

    USGS Publications Warehouse

    Hossack, B.R.; Corn, P.S.

    2007-01-01

    Wildland fires are expected to become more frequent and severe in many ecosystems, potentially posing a threat to many sensitive species. We evaluated the effects of a large, stand-replacement wildfire on three species of pond-breeding amphibians by estimating changes in occupancy of breeding sites during the three years before and after the fire burned 42 of 83 previously surveyed wetlands. Annual occupancy and colonization for each species was estimated using recently developed models that incorporate detection probabilities to provide unbiased parameter estimates. We did not find negative effects of the fire on the occupancy or colonization rates of the long-toed salamander (Ambystoma macrodactylum). Instead, its occupancy was higher across the study area after the fire, possibly in response to a large snowpack that may have facilitated colonization of unoccupied wetlands. Naïve data (uncorrected for detection probability) for the Columbia spotted frog (Rana luteiventris) initially led to the conclusion of increased occupancy and colonization in wetlands that burned. After accounting for temporal and spatial variation in detection probabilities, however, it was evident that these parameters were relatively stable in both areas before and after the fire. We found a similar discrepancy between naïve and estimated occupancy of A. macrodactylum that resulted from different detection probabilities in burned and control wetlands. The boreal toad (Bufo boreas) was not found breeding in the area prior to the fire but colonized several wetlands the year after they burned. Occupancy by B. boreas then declined during years 2 and 3 following the fire. Our study suggests that the amphibian populations we studied are resistant to wildfire and that B. boreas may experience short-term benefits from wildfire. Our data also illustrate how naïve presence–non-detection data can provide misleading results.

  18. Changes in forest structure after a large, mixed-severity wildfire in ponderosa pine forests of the Black Hills, South Dakota, USA

    Treesearch

    Tara L. Keyser; Leigh B. Lentile; Frederick W. Smith; Wayne D. Shepperd

    2008-01-01

    We evaluated changes in forest structure related to fire severity after a wildfire in ponderosa pine forests of the Black Hills, South Dakota, where 25% burned at low, 48% at moderate, and 27% at high severity. We compared tree mortality, fine (FWD) and coarse woody debris (CWD) and tree regeneration in areas burned under different severity. With low severity,...

  19. The joint time-frequency spectrogram structure of heptanes boilover noise

    NASA Astrophysics Data System (ADS)

    Xu, Qiang

    2006-04-01

    An experiment was conducted to study the noise characteristics in the boilover phenomena. The boilover occurs in the combustion of a liquid fuel floating on water. It will cause a sharp increase in burning rate and external radiation. Explosive burning of the fuel would cause potential safety consequence. Combustion noise accompanies the development of fire and displays different characteristics in typical period. These characteristics can be used to predict the start time of boilover. The acoustic signal in boilover procedure during the combustion of heptanes-water mixture is obtained in a set of experiments. Joint time-frequency analysis (JTFA) method is applied in the treatment of noise data. Several JTFA algorithms were used in the evaluation. These algorithms include Gabor, adaptive spectrogram, cone shape distribution, choi-williams distribution, Wigner-Ville Distribution, and Short Time Fourier Transform with different windows such as rectangular, Blackman, Hamming and Hanning. Time-frequency distribution patterns of the combustion noise are obtained, and they are compared with others from jet flow and small plastic bubble blow up.

  20. U.N. Convention Against Torture (CAT): Overview and Application to Interrogation Techniques

    DTIC Science & Technology

    2008-01-25

    torture”); Al- Saher v. I.N.S., 268 F.3d 1143 (9th Cir. 2001) (finding that regular, severe beatings and cigarette burns inflicted upon an Iraqi alien by...continued) be of sufficient severity to constitute torture. See Al- Saher , 268 F.3d at 1143 (regular, severe beatings and cigarette burns

  1. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.; Strickler, K.

    2010-01-01

    The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.

  2. [Comparison of occupational and home accidents as a cause of severe burns. The experience of a large burn center in an industrial city].

    PubMed

    Romano, C; Arturi, L; Rubino, G F; Magliacani, G

    1989-01-01

    Among acute "traumatisms", occupational and domestic accidents chiefly share burn. To compare these two causes of severe burns, we examined clinical records of patients hospitalized from January 1986 to February 1989 in the "Grand Burns Center" at the C.T.O. hospital in Turin. Data exclusively refer to patients over 12 years old. 61 out of 313 cases (19%) were due to occupational burns, 221 (71%) to domestic ones (left cases including burns occurred in different surroundings). Males predominance was very high (95%) in the occupational settings, lower though still relevant (60%) in the domestic ones. The topographic distribution of the burns did not show any relevant difference. Similarly, the two groups did not differ as the affected percent of the body surface area (BSA) is concerned: in both cases burns extended cases. Decreased patients were fairly more numerous among the domestic burns (33%) as compared to the occupational ones (18%). The overwhelming majority (90.5%) of domestic burns were caused by fire; such a predominance, though present, was lower (68.8%) among occupational accidents. More in detail, domestic burns were caused as follows: alcohol spraying to stir a fire (26%), gas burst (25%), flammable substances exposed to heat sources (18%), hot water or different liquid (8%), fall over heating devices (6%), fires from cigarettes in bed (5%), kitchen stoves (with or without clothing fire) (5%), brushwood burning (4%), other (3%). It is worth noting that in as many as 40% of the cases of domestic burns patients were affected by a pre-existing neuro-psychic disorder, namely: personality disorders (15%), psychiatric disorders (%), epilepsy (9%), mental debility (7%).

  3. Determinants of skeletal muscle protein turnover following severe burn trauma in children.

    PubMed

    Malagaris, Ioannis; Herndon, David N; Polychronopoulou, Efstathia; Rontoyanni, Victoria G; Andersen, Clark R; Suman, Oscar E; Porter, Craig; Sidossis, Labros S

    2018-06-04

    Burns remain the fifth cause of non-fatal pediatric injuries globally, with muscle cachexia being a hallmark of the stress response to burns. Burn-induced muscle wasting is associated with morbidity, yet the determinants of muscle protein catabolism in response to burn trauma remains unclear. Our objective was to determine the effect of patient and injury characteristics on muscle protein kinetics in burn patients. This retrospective, observational study was performed using protein kinetic data from pediatric patients who had severe burns (>30% of the total body surface area burned) and underwent cross-limb stable isotope infusions between 1999 and 2008 as part of prospective clinical trials. Mixed multiple regression models were used to assess associations between patient/injury characteristics and muscle protein fractional synthesis rate (FSR), net balance (NB), and rates of phenylalanine appearance (Ra; index of protein breakdown) and disappearance (Rd; index of protein synthesis) across the leg. A total of 268 patients who underwent 499 studies were analyzed. Increasing time post injury was associated with greater FSR (p < 0.001) and NB (p = 0.01). Males were more catabolic than females (as indicated by lower NB, p = 0.04 and greater Ra, p = 0.008), a consequence of higher protein breakdown rather than lower synthesis. Increasing burn size was associated with higher protein synthesis rate (as indicated by higher FSR, p = 0.019) and higher protein breakdown rates (as indicated by greater Ra, p = 0.001). FSR was negatively associated with age (p < 0.001). Data from this large patient cohort show that injury severity, sex, and time post injury influence skeletal muscle wasting in burned children. These findings suggest that individual patient characteristics should be considered when devising therapies to improve the acute care and rehabilitation of burn survivors. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Whole body protein kinetics measured with a non-invasive method in severely burned children

    PubMed Central

    Børsheim, Elisabet; Chinkes, David L.; McEntire, Serina J.; Rodriguez, Nancy R.; Herndon, David N.; Suman, Oscar E.

    2010-01-01

    Persistent and extensive skeletal muscle catabolism is characteristic of severe burns. Whole body protein metabolism, an important component of this process, has not been measured in burned children during the long-term convalescent period. The aim of this study was to measure whole body protein turnover in burned children at discharge (95% healed) and in healthy controls by a non-invasive stable isotope method. Nine burned children (7 boys, 2 girls; 54 ± 14 (SD)% total body area burned; 13 ± 4 yrs; 45 ± 20 kg; 154 ± 14 cm) and 12 healthy children (8 boys, 4 girls; 12 ± 3 yrs; 54 ± 16 kg;150 ± 22 cm) were studied. A single oral dose of 15N-alanine (16 mg/kg) was given, and thereafter urine was collected for 34 hours. Whole body protein flux was calculated from labeling of urinary urea nitrogen. Then, protein synthesis was calculated as protein flux minus excretion, and protein breakdown as flux minus intake. At discharge, total protein turnover was 4.53 ± 0.65 (SE) g kg bodyweight−1 day−1 in the burned children compared to 3.20 ± 0.22 g kg−1 day−1 in controls (P = 0.02). Expressed relative to lean body mass (LBM), the rates were 6.12 ± 0.94 vs. 4.60 ± 0.36 g kg LBM−1 day−1 in burn vs. healthy (P = 0.06). Total protein synthesis was also elevated in burned vs. healthy children, and a tendency for elevated protein breakdown was observed. Conclusion: Total protein turnover is elevated in burned children at discharge compared to age-matched controls, possibly reflecting the continued stress response to severe burn. The oral 15N-alanine bolus method is a convenient, non-invasive, and no-risk method for measurement of total body protein turnover. PMID:20392565

  5. A small single-nozzle rainfall simulator to measure erosion response on different burn severities in southern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Covert, Ashley; Jordan, Peter

    2010-05-01

    To study the effects of wildfire burn severity on runoff generation and soil erosion from high intensity rainfall, we constructed an effective yet simple rainfall simulator that was inexpensive, portable and easily operated by two people on steep, forested slopes in southern British Columbia, Canada. The entire apparatus, including simulator, pumps, hoses, collapsible water bladders and sample bottles, was designed to fit into a single full-sized pick-up truck. The three-legged simulator extended to approximately 3.3 metres above ground on steep slopes and used a single Spraying Systems 1/2HH-30WSQ nozzle which can easily be interchanged for other sized nozzles. Rainfall characteristics were measured using a digital camera which took images of the raindrops against a grid. Median drop size and velocity 5 cm above ground were measured and found to be 3/4 of the size of natural rain drops of that diameter class, and fell 7% faster than terminal velocity. The simulator was used for experiments on runoff and erosion on sites burned in 2007 by two wildfires in southern British Columbia. Simulations were repeated one and two years after the fires. Rainfall was simulated at an average rate of 67 mm hr-1 over a 1 m2 plot for 20 minutes. This rainfall rate is similar to the 100 year return period rainfall intensity for this duration at a nearby weather station. Simulations were conducted on five replicate 1 m2 plots in each experimental unit including high burn severity, moderate burn severity, unburned, and unburned with forest floor removed. During the simulation a sample was collected for 30 seconds every minute, with two additional samples until runoff ceased, resulting in 22 samples per simulation. Runoff, overland flow coefficient, infiltration and sediment yield were compared between treatments. Additional simulations were conducted immediately after a 2009 wildfire to test different mulch treatments. Typical results showed that runoff on plots with high burn severity and with forest floor removed was similar, reaching on average a steady rate of about 60% of rainfall rate after about 7 minutes. Runoff on unburned plots with intact forest floor was much lower, typically less than 20% of rainfall rate. Sediment yield was greatest on plots with forest floor removed, followed by severely burned plots. Sediment yield on unburned and moderately burned plots was very low to zero. These results are consistent with qualitative observations made following several extreme rainfall events on recent burns in the region.

  6. Nocturnal activity patterns of northern myotis (Myotis septentrionalis) during the maternity season in West Virginia (USA)

    USGS Publications Warehouse

    Johnson, J.B.; Edwards, J.W.; Ford, W.M.

    2011-01-01

    Nocturnal activity patterns of northern myotis (Myotis septentrionalis) at diurnal roost trees remain largely uninvestigated. For example, the influence of reproductive status, weather, and roost tree and surrounding habitat characteristics on timing of emergence, intra-night activity, and entrance at their roost trees is poorly known. We examined nocturnal activity patterns of northern myotis maternity colonies during pregnancy and lactation at diurnal roost trees situated in areas that were and were not subjected to recent prescribed fires at the Fernow Experimental Forest, West Virginia from 2007 to 2009. According to exit counts and acoustic data, northern myotis colony sizes were similar between reproductive periods and roost tree settings. However, intra-night activity patterns differed slightly between reproductive periods and roost trees in burned and non-burned areas. Weather variables poorly explained variation in activity patterns during pregnancy, but precipitation and temperature were negatively associated with activity patterns during lactation. ?? Museum and Institute of Zoology PAS.

  7. Burn injury pain: the continuing challenge.

    PubMed

    Summer, Gretchen J; Puntillo, Kathleen A; Miaskowski, Christine; Green, Paul G; Levine, Jon D

    2007-07-01

    The development of more effective methods of relieving pain associated with burn injury is a major unmet medical need. Not only is acute burn injury pain a source of immense suffering, but it has been linked to debilitating chronic pain and stress-related disorders. Although pain management guidelines and protocols have been developed and implemented, unrelieved moderate-to-severe pain continues to be reported after burn injury. One reason for this is that the intensity of pain associated with wound care and rehabilitation therapy, the major source of severe pain in this patient population, varies widely over the 3 phases of burn recovery, making it difficult to estimate analgesic requirements. The effects of opioids, the most commonly administered analgesics for burn injury procedural pain, are difficult to gauge over the course of burn recovery because the need for an opioid may change rapidly, resulting in the overmedication or undermedication of burn-injured patients. Understanding the mechanisms that contribute to the intensity and variability of burn injury pain over time is crucial to its proper management. We provide an overview of the types of pain associated with a burn injury, describe how these different types of pain interfere with the phases of burn recovery, and summarize pharmacologic pain management strategies across the continuum of burn care. We conclude with a discussion and suggestions for improvement. Rational management, based on the underlying mechanisms that contribute to the intensity and variability of burn injury pain, is in its infancy. The paucity of information highlights the need for research that explores and advances the identification of mechanisms of acute and chronic burn injury pain. Researchers continue to report that burn pain is undertreated. This review examines burn injury pain management across the phases of burn recovery, emphasizing 3 types of pain that require separate assessment and management. It provides insights and suggestions for future research directions to address this significant clinical problem.

  8. Modeling the effects of fire severity and spatial complexity on Small Mammals in Yosemite National Park, California

    USGS Publications Warehouse

    Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.

    2008-01-01

    We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.

  9. The use of botulinum toxin in the management of burns itching: preliminary results.

    PubMed

    Akhtar, N; Brooks, P

    2012-12-01

    Itching is a common and well recognised problem following burns. As the underlying pathways involved in burns itch have been identified, different pharmacological agents have been introduced to improve the effectiveness of management regimes. We present preliminary data from an on-going study in the use of botulinum toxin as a novel agent in the treatment of this problem. Patients with recalcitrant itching secondary to burns treated with Botox(©) were identified. Data pertaining to burn size, depth and management were recorded. The delay in the onset of the itch, its severity and the speed and duration of any improvement in symptoms were also noted. 10 patients were identified. 1 patient was excluded. Average follow-up was 11.3 months. All patients had deep partial thickness to full thickness burns. Eight patients underwent grafting. The average burn was 24% TBSA. 87.5% of patients rated their burns itch as being severe (>7 on the pain scale). Following the administration of Botox(©) this fell to 0 out of 10 at 4 weeks. The average duration of the symptom free period was nine months (range 3-18 months). Botox(©) can successfully be used to treat burns itch that are resistant to conventional therapies. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  10. Recent trends in burn epidemiology worldwide: A systematic review.

    PubMed

    Smolle, Christian; Cambiaso-Daniel, Janos; Forbes, Abigail A; Wurzer, Paul; Hundeshagen, Gabriel; Branski, Ludwik K; Huss, Fredrik; Kamolz, Lars-Peter

    2017-03-01

    Burns have been more prevalent among low socioeconomic populations and in less developed regions. Incredible advances in burn care and social development over the recent decades, however, should have placed the incidence and severity of burns in a downwards trend. The aim of this review was to give an overview on current trends in burn epidemiology across the world. Also the socioeconomic development in countries that have published epidemiological data used in this study has been taken into account when comparing the results. There was a worldwide downwards trend of burn incidence, burn severity, length of hospital stay, and mortality rate. These findings were particularly pronounced in very highly developed countries. Data from highly and medium developed countries were more heterogeneous. No studies could be obtained from low and middle income countries. Comparisons between the different studies were compromised by the fact that studies emerged from specialized facilities on one hand and general hospitals on the other. Analyzed studies were also frequently focusing on limited patient populations such as "children" or "elderly". Our findings indicate the need for an international burn database with a minimal data-set in order to obtain objective and comparable results in respect of burn epidemiology. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

    2008-01-01

    Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.

  12. Role of autophagy and its molecular mechanisms in mice intestinal tract after severe burn.

    PubMed

    Zhang, Duan Y; Qiu, Wei; Jin, PeiS; Wang, Peng; Sun, Yong

    2017-10-01

    Severe burn can lead to hypoxia/ischemia of intestinal mucosa. Autophagy is the process of intracellular degradation, which is essential for cell survival under stresses, such as hypoxia/ischemia and nutrient deprivation. The present study was designed to investigate whether there were changes in intestinal autophagy after severe burn in mice and further to explore the effect and molecular mechanisms of autophagy on intestinal injury. This study includes three experiments. Kunming species mice were subjected to 30% total body surface area third-degree burn. First, we determined protein of LC3 (light chain 3), beclin-1, and cleaved-caspase3 by Western blotting and immunohistochemical (paraffin) staining to investigate whether there were changes in intestinal autophagy after severe burn in mice. Then, changes of the status of enteric damage postburn were measured by observing intestinal mucosa morphology under a magnifier, hematoxylin and eosin staining, enzyme-linked immunosorbent assay, Western blotting under the condition that the intestinal autophagy was respectively activated by rapamycin and inhibited by 3-methyladenine. Finally, protein of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, LC3-II and beclin-1 were assayed, and mice were treated with compound C before burn. The protein of LC3 and beclin-1 were observed at 1 hour postburn and increased to peak-point at 24 hours, reaching the normal level at 96 hours. The cleaved caspase-3 expression increased at 1 hour postburn, but the peak point occurred at 12 hours and had dropped to normal level at 72 hours. In addition, rapamycin enhanced intestinal autophagy and alleviated burn-induced gut damage, while 3-methyladenine showed the against behavior. The AMPK/mTOR pathway which was inhibited decreased the expression of phosphorylated AMPK, LC3-II, and beclin-1, increasing the expression of phosphorylated mTOR. Intestinal autophagy is activated and response to intestinal apoptosis after serious burn, which alleviated burn-induced intestinal injury. The AMPK/mTOR pathway may involve in the activation of burn-induced autophagy. Therapeutic/care management, levels of evidence are not applicable to some studies, such as in vitro work, animal models, cadaver studies.

  13. Fireworks type, injury pattern, and permanent impairment following severe fireworks-related injuries.

    PubMed

    Sandvall, Brinkley K; Jacobson, Lauren; Miller, Erin A; Dodge, Ryan E; Alex Quistberg, D; Rowhani-Rahbar, Ali; Vavilala, Monica S; Friedrich, Jeffrey B; Keys, Kari A

    2017-10-01

    There is a paucity of clinical data on severe fireworks-related injuries, and the relationship between firework types, injury patterns, and magnitude of impairment is not well understood. Our objective was to describe the relationship between fireworks type, injury patterns, and impairment. Retrospective case series (2005-2015) of patients who sustained consumer fireworks-related injuries requiring hospital admission and/or an operation at a Level 1 Trauma/Burn Center. Fireworks types, injury patterns (body region, injury type), operation, and permanent impairment were examined. Data from 294 patients 1 to 61years of age (mean 24years) were examined. The majority (90%) were male. 119 (40%) patients were admitted who did not undergo surgery, 163 (55%) patients required both admission and surgery, and 12 (5%) patients underwent outpatient surgery. The greatest proportion of injuries was related to shells/mortars (39%). There were proportionally more rocket injuries in children (44%), more homemade firework injuries in teens (34%), and more shell/mortar injuries in adults (86%). Brain, face, and hand injuries were disproportionately represented in the shells/mortars group. Seventy percent of globe-injured patients experienced partial or complete permanent vision loss. Thirty-seven percent of hand-injured patients required at least one partial or whole finger/hand amputation. The greatest proportion of eye and hand injuries resulting in permanent impairment was in the shells/mortars group, followed by homemade fireworks. Two patients died. Severe fireworks-related injuries from homemade fireworks and shells/mortars have specific injury patterns. Shells/mortars disproportionately cause permanent impairment from eye and hand injury. Published by Elsevier Inc.

  14. The relationship of field burn severity measures to satellite-derived Burned Area Reflectance Classification (BARC) maps

    Treesearch

    Andrew Hudak; Penelope Morgan; Carter Stone; Pete Robichaud; Terrie Jain; Jess Clark

    2004-01-01

    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn...

  15. Use of autologous fat grafting for the correction of burn scar contracture in the hand: a case report

    PubMed Central

    Al-Hayder, Shems; Gramkow, Christina; Trojahn Kølle, Stig-Frederik

    2017-01-01

    Abstract Severe burn injuries to the hand represent a topic of great concern due to long-term complications such as hypertrofic burn scar and contracture, which may result in loss of function. We present a case of burn scar contracture in the hand of a child undergoing Z-plasty and lipofilling. PMID:28971111

  16. Subtypes in clinical burnout patients enrolled in an employee rehabilitation program: differences in burnout profiles, depression, and recovery/resources-stress balance.

    PubMed

    Bauernhofer, Kathrin; Bassa, Daniela; Canazei, Markus; Jiménez, Paulino; Paechter, Manuela; Papousek, Ilona; Fink, Andreas; Weiss, Elisabeth M

    2018-01-17

    Burnout is generally perceived a unified disorder with homogeneous symptomatology across people (exhaustion, cynicism, and reduced professional efficacy). However, increasing evidence points to intra-individual patterns of burnout symptoms in non-clinical samples such as students, athletes, healthy, and burned-out employees. Different burnout subtypes might therefore exist. Yet, burnout subtypes based on burnout profiles have hardly been explored in clinical patients, and the samples investigated in previous studies were rather heterogeneous including patients with various physical, psychological, and social limitations, symptoms, and disabilities. Therefore, the aim of this study is to explore burnout subtypes based on burnout profiles in clinically diagnosed burnout patients enrolled in an employee rehabilitation program, and to investigate whether the subtypes differ in depression, recovery/resources-stress balance, and sociodemographic characteristics. One hundred three patients (66 women, 37 men) with a clinical burnout diagnosis, who were enrolled in a 5 week employee rehabilitation program in two specialized psychosomatic clinics in Austria, completed a series of questionnaires including the Maslach Burnout Inventory - General Survey (MBI-GS), the Beck Depression Inventory, and the Recovery-Stress-Questionnaire for Work. Cluster analyses with the three MBI-GS subscales as clustering variables were used to identify the burnout subtypes. Subsequent multivariate/univariate analysis of variance and Pearson chi-square tests were performed to investigate differences in depression, recovery/resources-stress balance, and sociodemographic characteristics. Three different burnout subtypes were discovered: the exhausted subtype, the exhausted/cynical subtype, and the burned-out subtype. The burned-out subtype and the exhausted/cynical subtype showed both more severe depression symptoms and a worse recovery/resources-stress balance than the exhausted subtype. Furthermore, the burned-out subtype was more depressed than the exhausted/cynical subtype, but no difference was observed between these two subtypes with regard to perceived stress, recovery, and resources. Sociodemographic characteristics were not associated with the subtypes. The present study indicates that there are different subtypes in clinical burnout patients (exhausted, exhausted/cynical, and burned-out), which might represent patients at different developmental stages in the burnout cycle. Future studies need to replicate the current findings, investigate the stability of the symptom patterns, and examine the efficacy of rehabilitation interventions in different subtypes.

  17. Use of healthcare a long time after severe burn injury; relation to perceived health and personality characteristics.

    PubMed

    Wikehult, B; Willebrand, M; Kildal, M; Lannerstam, K; Fugl-Meyer, A R; Ekselius, L; Gerdin, B

    2005-08-05

    The aim of the study was to evaluate which factors are associated with the use of healthcare a long time after severe burn injury. After a review process based on clinical reasoning, 69 former burn patients out of a consecutive group treated at the Uppsala Burn Unit from 1980--1995 were visited in their homes and their use of care and support was assessed in a semi-structured interview. Post-burn health was assessed with the Burn-Specific Health Scale-Brief (BSHS-B) and personality was assessed with the Swedish universities Scales of Personality (SSP). The participants were injured on average eight years previously. Thirty-four had current contact with healthcare due to their burn injury and had significantly lower scores on three BSHS-B-domains: Simple Abilities, Work and Hand function, and significantly higher scores for the SSP-domain Neuroticism and the SSP-scales Stress Susceptibility, Lack of Assertiveness, and lower scores for Social Desirability. There was no relation to age, gender, time since injury, length of stay, or to the surface area burned. A routine screening of personality traits as a supplement to long-term follow-ups may help in identifying the patient's need for care.

  18. Explanatory Model of Resilience in Pediatric Burn Survivors.

    PubMed

    Quezada, Lucía; González, Mónica T; Mecott, Gabriel A

    2016-01-01

    Identifying factors of adjustment in pediatric burn patients may facilitate appropriate mental health interventions postinjury. The aim of this is study was to explore the roles of both the patient's and caregivers' resilience and posttraumatic stress in pediatric burn survivor adjustment. For the purposes of the study, "51 patient-parent/guardian" dyads participated. Patients answered the Resilience Questionnaire for Children and Adolescents, and caregivers answered the Mexican Resilience Scale and the Davidson Trauma Scale. The roles of patient age, time since the burn, and size of burn injury were also considered. Statistical analyses included Spearman's ρ for correlations and structural equation modeling. P less than .05 was considered significant. Patients and caregivers reported high levels of resilience, and the majority of caregivers reported low severity of posttraumatic stress disorder symptoms. Pediatric burn survivors' resilience was associated with being younger at the time of the burn and less severity of intrusive and avoidance symptoms in caregivers; it was also associated with a higher resilience in caregivers. It can be concluded that psychological responses of caregivers of pediatric burn survivors affect the well being and positive adjustment of patients; thus psychological services for caregivers would likely have a double benefit for both caregivers and patients.

  19. Evaluation of the efficacy of low-level laser in improving the symptoms of burning mouth syndrome.

    PubMed

    Arbabi-Kalati, Fateme; Bakhshani, Nour-Mohammad; Rasti, Maryam

    2015-10-01

    Burning mouth syndrome (BMS) is common conditions that affects menopause women, patients suffer from sever burning sensation. Up to now there is no definitive treatment for this disease. Present study was undertaken to evaluate the efficacy of low-level laser (LLL) in improving the symptoms of burning mouth syndrome. Twenty patients with BMS were enrolled in this study; they were divided in two groups randomly. In the laser group, in each patient, 10 areas on the oral mucosa were selected and underwent LLL irradiation at a wavelength of 630 nm, and a power of 30 mW for 10 seconds twice a week for 4 weeks. In the placebo group, silent/off laser therapy was carried out during the same period in the same areas. Burning sensation and quality of life were evaluated. Burning sensation severity and quality of life in the two groups after intervention were different significant statistically, (p= 0.004, p= 0.01 respectively) .Patients in laser group had better results. It can be concluded that low level laser might decrease the intensity of burning mouth syndrome. Pain, low-level laser, burning mouth syndrome, oral mucosa.

  20. Evaluation of the efficacy of low-level laser in improving the symptoms of burning mouth syndrome

    PubMed Central

    Bakhshani, Nour-Mohammad; Rasti, Maryam

    2015-01-01

    Background Burning mouth syndrome (BMS) is common conditions that affects menopause women, patients suffer from sever burning sensation. Up to now there is no definitive treatment for this disease. Present study was undertaken to evaluate the efficacy of low-level laser (LLL) in improving the symptoms of burning mouth syndrome. Material and Methods Twenty patients with BMS were enrolled in this study; they were divided in two groups randomly. In the laser group, in each patient, 10 areas on the oral mucosa were selected and underwent LLL irradiation at a wavelength of 630 nm, and a power of 30 mW for 10 seconds twice a week for 4 weeks. In the placebo group, silent/off laser therapy was carried out during the same period in the same areas. Burning sensation and quality of life were evaluated. Results Burning sensation severity and quality of life in the two groups after intervention were different significant statistically, (p= 0.004, p= 0.01 respectively) .Patients in laser group had better results. Conclusions It can be concluded that low level laser might decrease the intensity of burning mouth syndrome. Key words:Pain, low-level laser, burning mouth syndrome, oral mucosa. PMID:26535101

  1. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring.

    PubMed

    van der Wal, Martijn B A; Vloemans, Jos F P M; Tuinebreijer, Wim E; van de Ven, Peter; van Unen, Ella; van Zuijlen, Paul P M; Middelkoop, Esther

    2012-01-01

    Long-term outcome of burn scars as well as the relation with clinically relevant parameters has not been studied quantitatively. Therefore, we conducted a detailed analysis on the clinical changes of burn scars in a longitudinal setup. In addition, we focused on the differences in scar quality in relation to the depth, etiology of the burn wound and age of the patient. Burn scars of 474 patients were subjected to a scar assessment protocol 3, 6, and 12 months postburn. Three different age groups were defined (≤5, 5-18, and ≥18 years). The observer part of the patient and observer scar assessment scale revealed a significant (p < 0.001) improvement in scar quality at 12 months compared with the 3- and 6-month data. Predictors for severe scarring are depth of the wound (p < 0.001) and total body surface area burned (p < 0.001). Etiology (p = 0.753) and age (p > 0.230) have no significant influence on scar quality when corrected for sex, total body surface area burned, time, and age or etiology, respectively. © 2012 by the Wound Healing Society.

  2. Report From the California Burn Registry—The Causes of Major Burns

    PubMed Central

    Bongard, Frederic S.; Ostrow, Louis B.; Sacks, Susan T.; McGuire, Andrew; Trunkey, Donald D.

    1985-01-01

    In its first four years of operation, the California Burn Registry recorded 3,332 cases of burns, of which 73.1% were in male and 26.9% were in female patients of all ages. The average total body surface area burned was 15.4±0.3%. Flame burns were the most common (31.4%). Other common sources included scalds (24.5%) and flammable liquids (12.9%). Several other causes were cited with less frequency. Burns taking place at home occurred more commonly than at all other locations combined. In all, 221 deaths (6.6%) were reported, most (66.1%) of which were due to flame burns. PMID:4013280

  3. Examining the Correlation between Objective Injury Parameters, Personality Traits, and Adjustment Measures among Burn Victims

    PubMed Central

    Weissman, Oren; Domniz, Noam; Petashnick, Yoel R.; Gilboa, Dalia; Raviv, Tal; Barzilai, Liran; Farber, Nimrod; Harats, Moti; Winkler, Eyal; Haik, Josef

    2015-01-01

    Background: Burn victims experience immense physical and mental hardship during their process of rehabilitation and regaining functionality. We examined different objective burn-related factors as well as psychological ones, in the form of personality traits that may affect the rehabilitation process and its outcome. Objective: To assess the influence and correlation of specific personality traits and objective injury-related parameters on the adjustment of burn victims post-injury. Methods: Sixty-two male patients admitted to our burn unit due to burn injuries were compared with 36 healthy male individuals by use of questionnaires to assess each group’s psychological adjustment parameters. Multivariate and hierarchical regression analysis was conducted to identify differences between the groups. Results: A significant negative correlation was found between the objective burn injury severity (e.g., total body surface area and burn depth) and the adjustment of burn victims (p < 0.05, p < 0.001, Table 3). Moreover, patients more severely injured tend to be more neurotic (p < 0.001), and less extroverted and agreeable (p < 0.01, Table 4). Conclusion: Extroverted burn victims tend to adjust better to their post-injury life while the neurotic patients tend to have difficulties adjusting. This finding may suggest new tools for early identification of maladjustment-prone patients and therefore provide them with better psychological support in a more dedicated manner. PMID:25874193

  4. Psychosocial needs of burns nurses: a descriptive phenomenological inquiry.

    PubMed

    Kornhaber, Rachel Anne; Wilson, Anne

    2011-01-01

    The purpose of this qualitative study was to explore the psychosocial needs of nurses who care for patients with severe burn injuries. Burns nurses work in an emotionally challenging and confronting environment, for which they are in need of emotional and clinical support. Exposure to such high levels of stress in this occupational environment has implications for nurses' health and psychosocial well-being. Seven burns nurses were recruited in 2009 from a severe burn injury unit in New South Wales, Australia. A qualitative phenomenological methodology was used to construct themes depicting nurses' experiences. Participants were selected through purposeful sampling, and data were collected through in-depth individual semistructured interviews using open-ended questions. Data were analyzed with Colaizzi's phenomenological method of data analysis. The psychosocial needs of burns nurses were identified and organized into five categories: peer nursing support, informal support, lack of support, multidisciplinary team collaboration, and professional support. The findings clearly demonstrate that support and unity within the workplace are fundamental factors for the psychosocial well-being of nurses caring for patients who have sustained a severe burn injury. Support for nurses in the form of regular professional or collegial debriefing sessions and utilization of employee assistance programs could ease the impact of the stressful environment in which they operate, and could influence staff retention. However, a supportive workplace culture is necessary to encourage nurses to access these services.

  5. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    PubMed Central

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  6. Pollicization for thumb reconstruction in severe pediatric hand burns.

    PubMed

    Ward, J W; Pensler, J M; Parry, S W

    1985-12-01

    Our experience in pollicization of the index ray for severely burned hands in children is reviewed with attention to severity of burn, functional impairment, age at pollicization, procedure used, operative time, length of hospital stay, and long-term functional results. Fifteen pollicizations were performed in 11 patients with an average follow-up of over 5 years. Indication for pollicization was lack of prehension due to total loss of the thumb with the presence of a transposable index ray. The bipedicle flap method was used in two cases and the neurovascular pedicle technique was employed in all others. Skin grafts were necessary in all cases. Results were graded according to presence or absence of tip pinch, key pinch, grasp, and opposition. Significant functional improvement was seen in 14 of 15 cases (94 percent). Four patients (27 percent) developed complications requiring secondary procedures. In our experience, pollicization provides the most rapid and effective means of restoration of thumb function in the severe pediatric hand burn with multiple digit loss.

  7. Quantitative assessment of graded burn wounds using a commercial and research grade laser speckle imaging (LSI) system

    NASA Astrophysics Data System (ADS)

    Ponticorvo, A.; Rowland, R.; Yang, B.; Lertsakdadet, B.; Crouzet, C.; Bernal, N.; Choi, B.; Durkin, A. J.

    2017-02-01

    Burn wounds are often characterized by injury depth, which then dictates wound management strategy. While most superficial burns and full thickness burns can be diagnosed through visual inspection, clinicians experience difficulty with accurate diagnosis of burns that fall between these extremes. Accurately diagnosing burn severity in a timely manner is critical for starting the appropriate treatment plan at the earliest time points to improve patient outcomes. To address this challenge, research groups have studied the use of commercial laser Doppler imaging (LDI) systems to provide objective characterization of burn-wound severity. Despite initial promising findings, LDI systems are not commonplace in part due to long acquisition times that can suffer from artifacts in moving patients. Commercial LDI systems are being phased out in favor of laser speckle imaging (LSI) systems that can provide similar information with faster acquisition speeds. To better understand the accuracy and usefulness of commercial LSI systems in burn-oriented research, we studied the performance of a commercial LSI system in three different sample systems and compared its results to a research-grade LSI system in the same environments. The first sample system involved laboratory measurements of intralipid (1%) flowing through a tissue simulating phantom, the second preclinical measurements in a controlled burn study in which wounds of graded severity were created on a Yorkshire pig, and the third clinical measurements involving a small sample of clinical patients. In addition to the commercial LSI system, a research grade LSI system that was designed and fabricated in our labs was used to quantitatively compare the performance of both systems and also to better understand the "Perfusion Unit" output of commercial systems.

  8. Effects of fire severity and pre-fire stand treatment on plant community recovery after a large wildfire

    Treesearch

    Amanda M. Kuenzi; Peter Z. Fulé; Carolyn Hull Sieg

    2008-01-01

    The Rodeo-Chediski fire burned approximately 189,650 ha in east­central Arizona from June 18 to July 7, 2002, 113,700 ha of it on White Mountain Apache tribal land. In 2004 and 2005, we measured plant canopy cover and richness in areas of high and low burn severity in each of two treatments: (1) cutting and prescribed burning, or (2) untreated, in the 11 years prior to...

  9. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    PubMed

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  10. Pattern of unintentional burns: A hospital based study from Pakistan.

    PubMed

    Adil, Syed Omair; Ibran, Ehmer-Al; Nisar, Nighat; Shafique, Kashif

    2016-09-01

    Burns are major cause of morbidity and mortality in developing countries. Better understanding of the nature and extent of injury remains the major and only available way to halt the occurrence of the event. The present study was conducted to determine the prevalence of by self and by other unintentional burn, their comparison and the possible mode of acquisition by obtaining the history of exposure to known risk factors. A cross-sectional questionnaire based survey was conducted in Burns Centre of Civil Hospital Karachi, Pakistan and 324 hospitalized adult patients with unintentional burns were consecutively interviewed during August 2013 to February 2014. Information was collected on socio-demographic profile. The source of burn, affected body part and place of injury acquisition in terms of home, outside or work were also noted. Logistic regression model was conducted using SPSS software. Out of 324 patients, 295 (91%) had unintentional burn by self and 29 (9%) had unintentional burn by others. Male gender were 2.37 times and no schooling were 1.75 times more likely to have self-inflicted unintentional burn. Lower limb and head and neck were less likely to involve in unintentional burn by self. The burden of unintentional burn by self was considerably higher. Male gender and no schooling were found more at risk to have unintentional burn by self. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Total Intravenous Anesthesia for Major Burn Surgery

    DTIC Science & Technology

    2013-04-30

    been used in burn centers, particularly for frequent debride- ments, dressing changes, and tanking (hydro- therapy) procedures outside of the...2.0 mg/kg for patients with, e.g., burn shock or septic shock. Several conditions are typically considered con- traindications to ketamine use, but

  12. Predictors of muscle protein synthesis after severe pediatric burns

    USDA-ARS?s Scientific Manuscript database

    Objectives: Following a major burn, muscle protein synthesis rate increases but in most patients, this response is not sufficient to compensate the also elevated protein breakdown. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that skeletal muscle prot...

  13. A polymicrobial fungal outbreak in a regional burn center after Hurricane Sandy.

    PubMed

    Sood, Geeta; Vaidya, Dhananjay; Dam, Lisa; Grubb, Lisa M; Zenilman, Jonathan; Krout, Kelly; Khouri-Stevens, Zeina; Bennett, Richard; Blanding, Renee; Riedel, Stefan; Milner, Stephen; Price, Leigh Ann; Perl, Trish M

    2018-03-30

    To describe a polymicrobial fungal outbreak after Hurricane Sandy. An observational concurrent outbreak investigation and retrospective descriptive review. A regional burn intensive care unit that serves the greater Baltimore area, admitting 350-450 burn patients annually. Patients with burn injuries and significant dermatologic diseases such as toxic epidermal necrolysis who were admitted to the burn intensive care unit. An outbreak investigation and a retrospective review of all patients with non-candida fungal isolates from 2009-2016 were performed. A polymicrobial fungal outbreak in burn patients was temporally associated with Hurricane Sandy and associated with air and water permeations in the hospital facility. The outbreak abated after changes to facility design. Our results suggest a possible association between severe weather events like hurricanes and nosocomial fungal outbreaks. This report adds to the emerging literature on the effect of severe weather on healthcare-associated infections. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Key factors controlling microbial community response after a fire: importance of severity and recurrence

    NASA Astrophysics Data System (ADS)

    Lombao, Alba; Barreiro, Ana; Martín, Ángela; Díaz-Raviña, Montserrat

    2015-04-01

    Microorganisms play an important role in forest ecosystems, especially after fire when vegetation is destroyed and soil is bared. Fire severity and recurrence might be one of main factors controlling the microbial response after a wildfire but information about this topic is scarce. The aim of this study is to evaluate the influence of fire regimen (recurrence and severity) on soil microbial community structure by means of the analysis of phospholipid fatty acid (PLFA). The study was performed with unburned and burned samples collected from the top layer of a soil affected by a high severity fire (Laza, NW Spain) heated under laboratory conditions at different temperatures (50°C, 75°C, 100°C, 125°C, 150°C, 175°C, 200°C, 300°C) to simulate different fire intensities; the process was repeated after further soil recovery (1 month incubation) to simulate fire recurrence. The soil temperature was measured with thermocouples and used to calculate the degree-hours as estimation of the amount of heat supplied to the samples (fire severity). The PLFA analysis was used to estimate total biomass and the biomass of specific groups (bacteria, fungi, gram-positive bacteria and gram-negative bacteria) as well as microbial community structure (PLFA pattern) and PLFA data were analyzed by means of principal component analysis (PCA) in order to identify main factors determining microbial community structure. The results of PCA, performed with the whole PLFA data set, showed that first component explained 35% of variation and clearly allow us to differentiate unburned samples from the corresponding burned samples, while the second component, explaining 16% of variation, separated samples according the heating temperature. A marked impact of fire regimen on soil microorganisms was detected; the microbial community response varied depending on previous history of soil heating and the magnitude of changes in the PLFA pattern was related to the amount of heat supplied to the samples. Thus, wildfire was the main factor determining the microbial community structure followed, in less extent, by fire severity. The total biomass and the biomass of specifics microbial groups decreased notably as consequence of wildfire and minor changes were detected due to soil heating under laboratory conditions. The results clearly showed the usefulness of PLFA pattern combined with PCA to study the relationships between fire regimen (recurrence and severity) and associated direct and indirect changes in soil microorganisms. The data also indicated that degree-hours methodology rather than temperature is adequate for evaluating the impact of soil heating on microbial communities. Keywords: wildfire, heating temperature, degree-hours, PLFA pattern, microbial biomass Acknowledgements. This study was supported by the Ministerio Español de Economía y Competitividad (AGL2012-39688-C02-01). A Lombao is recipient of FPU grant from Ministerio Español de Educación.

  15. Injuries to children caused by burning rice husk.

    PubMed

    Raveendran, Sherine Subodhini

    2002-02-01

    A case study of injury to the feet of children from Sri Lanka due to burning husk is discussed. The hot husk causes deep burns on the dorsum of the feet and spares the plantar surface. The contractures caused by the burns lead to severe deformity, and are very resistant to treatment. These burn injuries need to be treated early, in specialized centers, to avoid long term complications. Health education of the public plays an important role in the prevention of these injuries.

  16. Prolonged Effect of Severe Wildfires on Mercury and Other Volatiles in Forest Soils of the Lake Superior Region, USA

    NASA Astrophysics Data System (ADS)

    Cannon, W. F.; Woodruff, L. G.

    2003-12-01

    Soils in Isle Royale National Park, Michigan and Voyageurs National Park, Minnesota show spatial patterns of depletion of total Hg, organic C, Se, total S, P, and Pb within areas of severe, stand-replacing wildfires that burned in 1936, approximately 65 years prior to our current study. The fires burned during a regional drought, were of high severity, and likely consumed a high percentage of organic forest-floor material (O-horizon). A "fire factor" is defined by positive correlations among Hg, C, Se, S, P, and Pb. A factor score for this six-element grouping derived from factor analysis was assigned to each sample. The scores show a high spatial correlation with the footprint of the 1936 fires in both parks, particularly for A-horizon soils. Because many of these elements are volatile, and are highly correlated with soil organic matter, observed depletions likely represent instantaneous atmospheric release during combustion of O-horizon soils coupled with decades-long reduction of organic matter on the forest floor and near-surface soils. Nearly complete combustion of the modern O-horizon would release roughly 1 mg Hg/m2 from the forest floor. Decades-long disturbance resulting from destruction of mature forests and gradual regrowth following fire also play an important role in Hg cycling. Destruction of a mature forest results in decreased deposition of Hg from litterfall as well as throughfall, which contributes Hg by wash-off of dry deposited Hg from foliar surfaces. Hg in forest soils may follow a fire-dependent cycle in which sudden Hg loss during fire is followed by a period of continued Hg loss as evasion exceeds sequestration in the early stand-replacement stage, finally to resume gradual buildup in later stages of forest regrowth. In the Lake Superior region this cycle exceeds 65 years in duration and is of the same magnitude as the fire return interval for this region. Forests that are controlled by fire-induced cycles of stand replacement may also be in continuous cycles of Hg sequestration and emission. Fire history appears to be a major determinant in the amount of Hg stored in forest soils. Fire almost certainly releases Hg to the atmosphere as forest floor material is burned and thus contributes to atmospheric Hg loads. Fire also appears to cleanse burned areas of Hg both by the atmospheric release during combustion and longer-term release during post-fire forest reorganization. Fire cleansing appears to persist for decades after severe fires and may ameliorate Hg contamination of aquatic food webs by decreasing the soil Hg load of burned watersheds.

  17. [To see the future development of burn medicine from the view of holistic integrative medicine].

    PubMed

    Hu, D H; Tao, K

    2017-04-20

    The therapeutic methods and effects have been improved greatly in the past few decades for burn care and management with several important advancements which have resulted in more effective patient stabilization and significantly decreased mortality in China. However, the challenges still exist, such as how to further improve the recovery of the patients' appearance and function, and how to advance the treatment of severe deep extensive burn injury, etc. The theory of holistic integrative medicine (HIM) provides a new opportunity for the development of clinical medicine. This article emphasizes the important roles of HIM in exploration of burn medicine, considering the advanced development of modern life sciences and relevant techniques.

  18. Delayed prescribed burning in a seedling and sapling Longleaf Pine plantation in Louisiana

    Treesearch

    James D. Haywood

    2002-01-01

    To examine the effects of delaying prescribed burning for several years, I initiated five treatments in a 5- to 6-year-old longleaf pine stand: a check of no control; biennial hardwood control by directed chemical application; and biennial burning in either early March, May, or July. After the initial burns, longleaf pine survival decreased from 82 percent in February...

  19. Yellow pine regeneration as a function of fire severity and post-burn stand structure in the southern Appalachian Mountains

    Treesearch

    Michael A. Jenkins; Robert N. Klein; Virginia L. McDaniel

    2011-01-01

    We used pre- and post-burn fire effects data from six prescribed burns to examine post-burn threshold effects of stand structure (understory density, overstory density, shrub cover, duff depth, and total fuel load) on the regeneration of yellow pine (Pinus subgenus Diploxylon) seedlings and cover of herbaceous vegetation in six prescribed-fire management units located...

  20. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.

  1. Fire intensity, fire severity and burn severity: A brief review and suggested usage

    USGS Publications Warehouse

    Keeley, J.E.

    2009-01-01

    Several recent papers have suggested replacing the terminology of fire intensity and fire severity. Part of the problem with fire intensity is that it is sometimes used incorrectly to describe fire effects, when in fact it is justifiably restricted to measures of energy output. Increasingly, the term has created confusion because some authors have restricted its usage to a single measure of energy output referred to as fireline intensity. This metric is most useful in understanding fire behavior in forests, but is too narrow to fully capture the multitude of ways fire energy affects ecosystems. Fire intensity represents the energy released during various phases of a fire, and different metrics such as reaction intensity, fireline intensity, temperature, heating duration and radiant energy are useful for different purposes. Fire severity, and the related term burn severity, have created considerable confusion because of recent changes in their usage. Some authors have justified this by contending that fire severity is defined broadly as ecosystem impacts from fire and thus is open to individual interpretation. However, empirical studies have defined fire severity operationally as the loss of or change in organic matter aboveground and belowground, although the precise metric varies with management needs. Confusion arises because fire or burn severity is sometimes defined so that it also includes ecosystem responses. Ecosystem responses include soil erosion, vegetation regeneration, restoration of community structure, faunal recolonization, and a plethora of related response variables. Although some ecosystem responses are correlated with measures of fire or burn severity, many important ecosystem processes have either not been demonstrated to be predicted by severity indices or have been shown in some vegetation types to be unrelated to severity. This is a critical issue because fire or burn severity are readily measurable parameters, both on the ground and with remote sensing, yet ecosystem responses are of most interest to resource managers.

  2. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    PubMed

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

  3. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pattern and profile of electric burn injury cases at a Burn centre.

    PubMed

    Cheema, Saeed Ashraf

    2016-01-01

    Electrical burns are quite different from thermal and chemical burns. This study is from a centre which deals with job related electric burn injuries alone and thus can give a pure account of the electric burns and discuss the related peculiarities. Study aims to highlight the differences in the mechanism of electric burn injury, its mode of presentation, morbidity, complications and thus the treatment strategies as compared to rest of the burn injuries. This is a descriptive case series study of first consecutive 61 electric burn victims treated at a Burn Unit and Plastic Surgery centre. Cases were admitted and resuscitated at the emergency, and further treated at burn unit. Thorough history, examination findings and operative procedures were recorded. Patients were photographed for record as well. Emergency operative procedures, wound management, soft tissue coverage procedures and complications during the hospital stay were recorded and studied. Twenty cases (33%) were in the fifth decade of life. High voltage electric burn injury was seen in 42 (69%) of the cases. Whereas only 9 cases were treated conservatively, other 52 cases had 24 fasciotomies and 71 debridements. Series witnessed 10 expiries, and 22 amputations and all these were result of high voltage electric burns. Twenty eight soft tissue coverage procedures were carried out. Electric burn injuries are altogether different from rest of the burn injuries and must be treated accordingly. These injuries are peculiar for ongoing damage, extensive trauma, complications and prolonged morbidity. Treatment requires a high degree of suspicion, more aggressive management to unfold and minimize the deep seated insult.

  5. Predictors of moderate to severe fatigue 12 months following admission to hospital for burn: Results from the Burns Registry of Australia and New Zealand (BRANZ) Long Term Outcomes project.

    PubMed

    Gabbe, Belinda J; Cleland, Heather; Watterson, Dina; Schrale, Rebecca; McRae, Sally; Taggart, Susan; Darton, Anne; Wood, Fiona; Edgar, Dale W

    2016-12-01

    Fatigue has been identified as an outcome of concern following burn but is rarely captured in outcomes studies. We aimed to: (i) describe the prevalence, and predictors, of moderate to severe fatigue in the first 12 months following burn, and (ii) establish the association between fatigue and health-related quality of life and work outcomes. Adult burns patients, admitted >24h, were recruited from five BRANZ sites. Participants were followed-up at 1-, 6-, and 12-months after injury using the Brief Fatigue Inventory (BFI), 36-item Short Form Health Survey (SF-36) and the Sickness Impact Profile (SIP)-work scale. Moderate to severe fatigue was defined as a global BFI score of 4-10. Multivariable mixed effects regression modelling was used to identify demographic, socioeconomic, burn size and severity predictors of moderate/severe fatigue at follow-up. The mean±SD age of the 328 participants was 42.1±16.7years, 70% were male, 47% were flame burns, and the mean±SD %TBSA was 8.7±11.2. The prevalence of moderate/severe fatigue decreased from 37% at 1-month, to 32% at 6-months and 26% at 12-months. The adjusted odds of moderate/severe fatigue were 2.62 (95% CI: 1.27, 5.42) times higher for women compared to men, and 2.64 (95% CI: 1.03, 6.79) times higher in patients with a %TBSA≥20. Compared to patients in major cities, the adjusted odds of reporting moderate/severe fatigue were 2.48 fold higher (95% CI: 1.17, 5.24) for patients residing in inner regional areas, and 3.60 fold (95% CI: 1.43, 9.05) higher for patients living in remote/very remote areas. At each time point, the physical and mental health summary scores, and each sub-scale score, of the SF-36 were significantly lower in patients reporting moderate/severe fatigue. Patients experiencing moderate to severe fatigue reported higher work-related disability on the SIP work scale at each time point after injury. More than a quarter of participants reported moderate to severe fatigue on the BFI at 12-months and fatigue was strongly associated with poorer health-related quality of life and greater work-related disability. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. Ultrasonic technique for characterizing skin burns

    DOEpatents

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  7. Modeling the spreading of large-scale wildland fires

    Treesearch

    Mohamed Drissi

    2015-01-01

    The objective of the present study is twofold. First, the last developments and validation results of a hybrid model designed to simulate fire patterns in heterogeneous landscapes are presented. The model combines the features of a stochastic small-world network model with those of a deterministic semi-physical model of the interaction between burning and non-burning...

  8. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs

    Treesearch

    Susan J. Prichard; Camille S. Stevens-Rumann; Paul F. Hessburg

    2017-01-01

    Across the globe, rising temperatures and altered precipitation patterns have caused persistent regional droughts, lengthened fire seasons, and increased the number of weather-driven extreme fire events. Because wildfires currently impact an increasing proportion of the total area burned, land managers need to better understand reburns – in which previously burned...

  9. Growth Response of Pinus ponderosa following a Mixed-Severity Wildfire in the Black Hills, South Dakota

    Treesearch

    Tara keyser; Fredrick Smith; Wayne Sheppard

    2010-01-01

    In late summer 2000 the Jasper Fire burned ~34,000 ha of ponderosa pine forest in the Black Hills of South Dakota. Although regarded as a catastrophic event, the Jasper Fire left a mosaic of fire severity across the landscape, with live trees present in areas burned under low and moderate fire severity. In October 2005, we cored 96 trees from unburned, low-severity,...

  10. Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis.

    PubMed

    Guo, Song-Xue; Zhou, Han-Lei; Huang, Chun-Lan; You, Chuan-Gang; Fang, Quan; Wu, Pan; Wang, Xin-Gang; Han, Chun-Mao

    2015-04-13

    Early acute kidney injury (AKI) is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX) is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9); these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade.

  11. Astaxanthin Attenuates Early Acute Kidney Injury Following Severe Burns in Rats by Ameliorating Oxidative Stress and Mitochondrial-Related Apoptosis

    PubMed Central

    Guo, Song-Xue; Zhou, Han-Lei; Huang, Chun-Lan; You, Chuan-Gang; Fang, Quan; Wu, Pan; Wang, Xin-Gang; Han, Chun-Mao

    2015-01-01

    Early acute kidney injury (AKI) is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX) is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9); these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade. PMID:25871290

  12. Attenuation of Posttraumatic Muscle Catabolism and Osteopenia by Long-Term Growth Hormone Therapy

    PubMed Central

    Hart, David W.; Herndon, David N.; Klein, Gordon; Lee, Steven B.; Celis, Mario; Mohan, Subburaman; Chinkes, David L.; Wolf, Steven E.

    2001-01-01

    Objective To determine whether the beneficial effects of growth hormone persist throughout the prolonged hypermetabolic and hypercatabolic response to severe burn. Summary Background Data The hypermetabolic response to severe burn is associated with increased energy expenditure, insulin resistance, immunodeficiency, and whole body catabolism that persists for months after injury. Growth hormone is a potent anabolic agent and salutary modulator of posttraumatic metabolic responses. Methods Seventy-two severely burned children were enrolled in a placebo-controlled double-blind trial investigating the effects of growth hormone (0.05 mg/kg per day) on muscle accretion and bone growth. Drug or placebo treatment began on discharge from the intensive care unit and continued for 1 year after burn. Total body weight, height, dual-energy x-ray absorptiometry, indirect calorimetry, and hormone values were measured at discharge, then at 6 months, 9 months, and 12 months after burn. Results were compared between groups. Results Growth hormone subjects gained more weight than placebo subjects at the 9-month study point; this disparity in weight gain continued to expand throughout the remainder of the study. Height also increased in the growth hormone group compared with controls at 12 months. Change in lean body mass was greater in those treated with growth hormone at 6, 9, and 12 months. Bone mineral content was increased at 9 and 12 months; this was associated with higher parathormone levels. Conclusions Low-dose recombinant human growth hormone successfully abates muscle catabolism and osteopenia induced by severe burn. PMID:11371741

  13. [Severe burns related to steam inhalation therapy].

    PubMed

    Belmonte, J A; Domínguez-Sampedro, P; Pérez, E; Suelves, J M; Collado, J M

    2015-02-01

    Despite lack of proven effectiveness and its potential to cause severe burns, steam inhalation therapy (SIT) is still used as a treatment for benign respiratory conditions. To characterize cases of burns related to steam inhalation therapy (BRSIT) in order to formulate appropriate preventive criteria. A review was conducted on cases of BRSIT admitted to a Burns Unit between 2006 and 2012, analysing epidemiological data, clinical aspects, severity and course. A total of 530 patients were admitted; 375 (70%) with scalds, and 15 with BRSIT (2.8% of burns; 4% of scalds). SIT was indicated in most cases for mild upper airway infections. The median age of patients was 7 years (2.5m-14 y). The burned area (BA) was ≥10% in 60% of cases (max. BA 22%). Injuries involved trunk, genital area, and extremities; only in one case was the face affected. The mean hospital length-of-stay was 14 days (3-30 d). Five patients (33%) were admitted to the PICU, most of them (60%) younger than 3 years. Eight patients (53%) underwent surgical treatment (skin grafting). In a 12-year-old patient whooping cough was diagnosed in the Burns Unit, and a 2.5-year-old patient developed staphylococcal toxic shock syndrome. No patient died. The final course was satisfactory in all patients. BRSIT can be severe and cause significant use of health resources. Professionals caring for children, particularly paediatricians, should seriously consider their prevention, avoiding treatments with SIT, and educating parents in order not to use it on their own. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  14. Simulating high spatial resolution high severity burned area in Sierra Nevada forests for California Spotted Owl habitat climate change risk assessment and management.

    NASA Astrophysics Data System (ADS)

    Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.

    2017-12-01

    Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.

  15. Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data

    USGS Publications Warehouse

    Kolden, Crystal A.; Rogan, John

    2013-01-01

    Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.

  16. [Severe burns of lower limb due to association of hot water and citrullus colocynthis].

    PubMed

    Fejjal, N; Gharib, N E; El Mazouz, S; Abbassi, A; Belmahi, A

    2011-06-30

    The case is reported of a patient suffering from severe burns through having used Citrullus colocynthis as a medicinal plant together with hot water. This led to carbonization of the foot and to its amputation. A description of the plant and its toxicity is given.

  17. [Analysis of the application and funding projects of National Natural Science Foundation of China in the field of burns and plastic surgery from 2010 to 2016].

    PubMed

    Zhang, Z C; Dou, D; Wang, X Y; Xie, D H; Yan, Z C

    2017-02-20

    We analyzed the data of application and funding projects of the National Natural Science Foundation of China (NSFC) during 2010-2016 in the field of burns and plastic surgery and summarized the NSFC funding pattern, the research hotspots, and weaknesses in this field. The NSFC has funded 460 projects in the field of burns and plastic surgery, with total funding of RMB 227.96 million. The scientific issues involved in the funding projects include orthotherapy against malformations, wound repair, basic research of burns, skin grafting, scars prevention, and regeneration of hair follicle and sweat glands. The research techniques involved in the funding projects are diversified. NSFC plays an important role in the scientific research and talents training in the field of burns and plastic surgery.

  18. Glutamine with probiotics attenuates intestinal inflammation and oxidative stress in a rat burn injury model through altered iNOS gene aberrant methylation

    PubMed Central

    Gong, Zhen-Yu; Yuan, Zhi-Qiang; Dong, Zhi-Wei; Peng, Yi-Zhi

    2017-01-01

    Severe burns may lead to intestinal inflammation and oxidative stress resulting in intestinal barrier damage and gut dysfunction. In the management of severe burns, therapies are needed to attenuate whole-body inflammatory responses and control the burden of oxidative stress. In this study, we evaluated the effects of oral glutamine (Gln) with probiotics on burn-induced intestinal inflammation and oxidative stress using a Wistar rat burn injury model. We then explored potential molecular mechanisms for the effects of glutamine and probiotics on intestinal tissue inflammation and oxidative stress. We found that glutamine and probiotics together significantly inhibited nitric oxide (NO) content; reduced levels of the inflammatory factors TNF-α, IL-6, and IL-8; and altered expression of oxidative stress factors including reactive oxygen species and superoxide dismutase. We found that the apoptotic proportion of intestinal epithelial cells in severely burned subjects was notably decreased following treatment with glutamine plus probiotics. We also found that glutamine and probiotics given together markedly reduced NO content by down-regulating the expression of iNOS in blood and intestinal tissue. These findings indicate that regulation of the iNOS gene plays a pivotal role in inflammation and oxidative stress in the response to severe burns in the Wistar rat. We then further investigated the mechanism by which combined therapy with glutamine and probiotics might reduce expression of iNOS and found that this treatment resulted in increased methylation of the iNOS gene. The methylation level of the iNOS gene was found to be regulated via differential expression of DNMT1 and Tet1. Collectively, our results suggest that combined therapy with glutamine and probiotics can markedly reduce the synthesis of NO, suppressing intestinal inflammation and oxidative stress in the Wistar rat burn injury model. PMID:28560003

  19. Patterns of burns and scalds in Mongolian children: a hospital-based prospective study.

    PubMed

    Gerelmaa, Gunsmaa; Tumen-Ulzii, Badarch; Nakahara, Shinji; Ichikawa, Masao

    2018-03-01

    To describe the circumstances of burn injury occurrence among Mongolian children and the products involved. Study participants were children aged 15 years and younger who were admitted to the Burn Unit of the National Trauma Orthopedic Research Center from August 2015 to July 2016. We collected data on participant demographics and the aetiology and clinical features of their burn injuries, and we analysed the data based on the NOMESCO Classification model. Of 906 children, 83% were aged 0-3 years, 66% were injured around the cooking area in the traditional tent-like dwelling called a ger or a detached house where no specified kitchen exists, and 28% were injured in a kitchen. Burn injuries resulted mostly from exposure to overflowing hot liquids (93%). Electric pots and electric kettles were the products most frequently involved in causing burn injuries (41% and 14%, respectively). Of 601 major burn injuries, 52% were due to electric pots. Moreover, burn injuries inflicted by electric pots were most likely to be major burn injuries (83%). Children typically fell into electric pots, while electric kettles were often pulled down by children. Burn injuries among Mongolian children mainly occurred in cooking area of a ger involving electric pots. The current practice of cooking on the floor should be reconsidered for child burn prevention. © 2018 John Wiley & Sons Ltd.

  20. Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2006-08-01

    Glutamine is an important energy source for immune cells. It is a necessary nutrient for cell proliferation, and serves as specific fuel for lymphocytes, macrophages, and enterocytes when it is present in appropriate concentrations. The purpose of this clinical study was to observe the effects of enteral nutrition supplemented with glutamine granules on immunologic function in severely burned patients. Forty-eight severely burned patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trail. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, Gln and B group patents were given glutamine granules or placebo (glycine) at 0.5 g/kgd for 14 days with oral feeding or tube feeding, respectively. The plasma level of glutamine and several indices of immunologic function including lymphocyte transformation ratio, neutrophil phagocytosis index (NPI), CD4/CD8 ratio, the content of immunoglobulin, complement C3, C4 and IL-2 levels were determined. Moreover, wound healing rate of burn area was observed and then hospital stay was recorded. The results showed significantly reduced plasma glutamine and damaged immunological function after severe burn Indices of cellular immunity function were remarkably decreased from normal controls. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P<0.01). On the other hand, cellular immunity functions were improved in Gln group, such as lymphocyte transformation ratio, NPI, CD4/CD8 ratio and IL-2 compared those in the B group (P<0.05-0.01). However, for humoral immunity function such as the concentration of IgG, IgM, C3, C4, no marked changes were seen compared with the B group (P>0.05). In addition, wound healing was better and hospital stay days were reduced in Gln group (46.59+/-12.98 days versus 55.68+/-17.36 days, P<0.05). These indicated that immunological function damage is present after severe burn; supplemented glutamine granules with oral feeding or tube feeding abate the degree of immunosuppression, improve immunological function especially cellular immunity function, ameliorate wound healing and reduce hospital stay.

  1. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  2. Traditional Herbal Remedies for Burn Wound Healing in Canon of Avicenna

    PubMed Central

    Aliasl, Jale; Khoshzaban, Fariba

    2013-01-01

    Burns are a worldwide problem. The incidence of severe burns has been higher than the combined incidence of tuberculosis and HIV infections. Throughout history there have been many different treatments prescribed for burns. The Canon is the masterpiece of Avicenna’s medical books. The Canon includes a description of 785 simple drugs. Avicenna believed in burn treatment, which follows two goals. The first goal is prevention of blistering and the second goal is treatment of the burn wound after it has created blisters, cold drugs are suitable for the first goal and dry drugs with moderate in cold and hot qualities are better for second goal, this study reviewed remedies for burn wounds in Canon.

  3. Evaluation of the effectiveness of neurofeedback in the reduction of Posttraumatic stress disorder (PTSD) in a patient following high-voltage electric shock with the use of ERPs.

    PubMed

    Chrapusta, Anna; Pąchalska, Maria; Wilk-Frańczuk, Magdalena; Starczyńska, Małgorzata; Kropotov, Juri D

    2015-01-01

    The aim of our research was an evaluation of the effectiveness of neurofeedback in reducing the symptoms of Post-trauma stress disorder (PTSD), which had developed as a result of a high-voltage electric burn to the head. Quantitative EEG (QEEG) and Event related potentials (ERPs) were utilised in the evaluation. A 21-year-old patient, experienced 4(th) degree burns to his head as a result of a high-voltage electric burn. The patient was repeatedly operated on and despite the severity of the injuries was to recover. However the patient complained of flashbacks, difficulties with sleeping as well as an inability to continue work in his given profession. Specialist tests were to show the presence within him of PTSD. As a result of which the patient was provided with neurofeedback therapy. The effectiveness of this therapy in the reduction (eradication) of the symptoms of PTSD were evaluated through the utilisation of qantitative eeg (Qeeg) and event related potentials (ERPs). It was found that in the first examination that ERPs display the most significant deviations from the reference in the two components: (1) the one component is generated within the cingulate cortex. The pattern of its deviation from the norms is similar to that found in a group of OCD patients. In contrast to healthy subjects the component repeats itself twice; (2) the second component is generated in the medial prefrontal cortex. Its pattern (neuromarker) is similar to that found in PTSD patients. There is a delay in the late part of the component, which probably reflects the flashbacks. In the second examination, after neurofeedback training, the ERPs were similar to the norm. The patient returned to work. Chronic PTSD developed within the patient as a result of a high-voltage electric burn. The application of a method of therapy (neurofeedback) resulted in the withdrawal of the syndrome symptoms. ERPs in a GO/NOGO task can be used to plan neurofeedback and in the assessment of functional brain changes induced by neurotherapeutic programmes. Funds Collection: Private sources.

  4. [Advances in the research of pressure therapy for pediatric burn patients with facial scar].

    PubMed

    Wei, Y T; Fu, J F; Li-Tsang, Z H P

    2017-05-20

    Facial scar and deformation caused by burn injury severely affect physical and psychological well-being of pediatric burn patients, which needs medical workers and pediatric burn patients' family members to pay much attention to and to perform early rehabilitation treatment. Pressure therapy is an important rehabilitative strategy for pediatric burn patients with facial scar, mainly including wearing headgears and transparent pressure facemasks, which have their own features. To achieve better treatment results, pressure therapy should be chosen according to specific condition of pediatric burn patients and combined with other assistant therapies. Successful rehabilitation for pediatric burn patients relies on cooperation of both family members of pediatric burn patients and society. Rehabilitation knowledge should be provided to parents of pediatric burn patients to acquire their full support and cooperation in order to achieve best therapeutic effects and ultimately to rebuild physical and psychological well-being of pediatric burn patients.

  5. Shrub succession on eight mixed-severity wildfires in western Montana, northeastern Oregon, and northern Idaho

    Treesearch

    Dennis E. Ferguson; John C. Byrne

    2016-01-01

    The response of 28 shrub species to wildfire burn severity was assessed for 8 wildfires on 6 national forests in the northern Rocky Mountains, USA. Stratified random sampling was used to choose 224 stands based on burn severity, habitat type series, slope steepness, stand height, and stand density, which resulted in 896 plots measured at approximately 2-year intervals...

  6. Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA

    Treesearch

    Jessica L. Hudec; David L. Peterson

    2012-01-01

    Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...

  7. The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology

    Treesearch

    Sheel Bansal; Till Jochum; David A. Wardle; Marie-Charlotte Nilsson

    2014-01-01

    Fire has an important role for regeneration of many boreal forest tree species, and this includes both wildfire and prescribed burning following clear-cutting. Depending on the severity, fire can have a variety of effects on above- and belowground properties that impact tree seedling establishment. Very little is known about the impacts of ground fire severity on post-...

  8. Checklist and Decision Support in Nutritional Care for Burned Patients

    DTIC Science & Technology

    2014-10-01

    in Nutritional Care for Burned Patients PRINCIPAL INVESTIGATOR: Steven E. Wolf, MD CONTRACTING ORGANIZATION: REPORT DATE... Nutritional Care for Burned Patients 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven E Wolf, MD Betty Diamond...Study/Product Aim(s) were as follows: 1) To determine under what conditions compliance with nutritional goals are not met in severely burned adults, 2

  9. Potential Use of Essential Oil Isolated from Cleistocalyx operculatus Leaves as a Topical Dermatological Agent for Treatment of Burn Wound

    PubMed Central

    Le, Nghia-Thu Tram; Dam, Sao-Mai

    2018-01-01

    Several herbal remedies have been used as topical agents to cure burn wound, one of the most common injuries in worldwide. In this study, we investigated the potential use of Cleistocalyx operculatus essential oil to treat the burn wound. We identified a total of 13 bioactive compounds of essential oil, several of which exhibited the anti-inflammatory and antimicrobial activities. Furthermore, the essential oil showed the antibacterial effect against S. aureus but not with P. aeruginosa. The supportive effect of essential oil on burn wound healing process also has been proven. Among three groups of mice, wound contraction rate of essential oil treated group (100%) was significantly higher than tamanu oil treated (79%) and control mice (71%) after 20 days (0.22 ± 0.03 versus 0.31 ± 0.02 cm2, resp., p < 0.05). Histological studies revealed that burn wounds treated with essential oil formed a complete epidermal structure, thick and neatly arranged fibers, and scattered immune cells in burn wound. On the contrary, saline treated burn wound formed uneven epidermal layer with necrotic ulcer, infiltration of immune cells, and existence of granulation tissue. This finding demonstrated Cleistocalyx operculatus essential oil as promising topical dermatological agent to treat burn wound. PMID:29692805

  10. Potential Use of Essential Oil Isolated from Cleistocalyx operculatus Leaves as a Topical Dermatological Agent for Treatment of Burn Wound.

    PubMed

    Tran, Gia-Buu; Le, Nghia-Thu Tram; Dam, Sao-Mai

    2018-01-01

    Several herbal remedies have been used as topical agents to cure burn wound, one of the most common injuries in worldwide. In this study, we investigated the potential use of Cleistocalyx operculatus essential oil to treat the burn wound. We identified a total of 13 bioactive compounds of essential oil, several of which exhibited the anti-inflammatory and antimicrobial activities. Furthermore, the essential oil showed the antibacterial effect against S. aureus but not with P. aeruginosa. The supportive effect of essential oil on burn wound healing process also has been proven. Among three groups of mice, wound contraction rate of essential oil treated group (100%) was significantly higher than tamanu oil treated (79%) and control mice (71%) after 20 days (0.22 ± 0.03 versus 0.31 ± 0.02 cm 2 , resp., p < 0.05). Histological studies revealed that burn wounds treated with essential oil formed a complete epidermal structure, thick and neatly arranged fibers, and scattered immune cells in burn wound. On the contrary, saline treated burn wound formed uneven epidermal layer with necrotic ulcer, infiltration of immune cells, and existence of granulation tissue. This finding demonstrated Cleistocalyx operculatus essential oil as promising topical dermatological agent to treat burn wound.

  11. Chemical Burns of the Eye: The Role of Retinal Injury and New Therapeutic Possibilities.

    PubMed

    Dohlman, Claes H; Cade, Fabiano; Regatieri, Caio V; Zhou, Chengxin; Lei, Fengyang; Crnej, Alja; Harissi-Dagher, Mona; Robert, Marie-Claude; Papaliodis, George N; Chen, Dongfeng; Aquavella, James V; Akpek, Esen K; Aldave, Anthony J; Sippel, Kimberly C; DʼAmico, Donald J; Dohlman, Jan G; Fagerholm, Per; Wang, Liqiang; Shen, Lucy Q; González-Andrades, Miguel; Chodosh, James; Kenyon, Kenneth R; Foster, C Stephen; Pineda, Roberto; Melki, Samir; Colby, Kathryn A; Ciolino, Joseph B; Vavvas, Demetrios G; Kinoshita, Shigeru; Dana, Reza; Paschalis, Eleftherios I

    2018-02-01

    To propose a new treatment paradigm for chemical burns to the eye - in the acute and chronic phases. Recent laboratory and clinical data on the biology and treatment of chemical burns are analyzed. Corneal blindness from chemical burns can now be successfully treated with a keratoprosthesis, on immediate and intermediate bases. Long term outcomes, however, are hampered by early retinal damage causing glaucoma. New data suggest that rapid diffusion of inflammatory cytokines posteriorly (TNF-α, etc) can severely damage the ganglion cells. Prompt anti-TNF-α treatment is markedly neuroprotective. Long term profound reduction of the intraocular pressure is also vital. A new regimen, in addition to standard treatment, for severe chemical burns is proposed. This involves tumor necrosis factor alpha (TNF-α) inhibition promptly after the accident (primarily for retinal neuroprotection), prophylactic maximal lowering of the intraocular pressure (starting immediately), and keratoprosthesis implantation in a later quiet state.

  12. Jaggery: an avoidable cause of severe, deadly pediatric burns.

    PubMed

    Light, T D; Latenser, B A; Heinle, J A; Stolpen, M S; Quinn, K A; Ravindran, V; Chacko, J

    2009-05-01

    Jaggery is the non-industrial refinement of sugar cane into a sugar product. Sugar cane cultivation, harvest and refinement are central aspects of rural Indian life. We present a retrospective review of pediatric burns at a single institution in Southern India, drawing special attention to scald burns incurred when young children fall into the cauldron of boiling jaggery. Descriptive statistics comparing children burned by jaggery and children burned by other mechanisms were performed. Multivariable logistic regression including burn size and mechanism of burn (jaggery and non-jaggery) was performed to determine the increased risk of death when burned by jaggery. Children burned by jaggery immersions are older, more likely male, and have larger burns. They have longer hospital stays, more operations, and are more likely to die. When controlling for age, gender, size of burn, and mechanism, jaggery exposure was associated with a higher mortality. Jaggery burns are deadly, devastating burns which could be prevented. While jaggery and sugar cane production can lead to economic independence for rural Indian villages, the cost it exacts from burns and death to the youngest and most vulnerable children must be addressed and prevented.

  13. A Computer Program to Evaluate Experimental Therapies for Treating Burned Patients

    PubMed Central

    Flora, Jairus D.; Flora, Sharyl Ann

    1980-01-01

    Determining the worth of new therapies for burn patients has been difficult because of the rarity of the burn injury and the disparate survival chances associated with different sizes of burns. Recently a burn survival model has been developed that estimates the risk of death from a burn as a function of the patient's age, sex, area of full thickness (third degree) burn, area of partial thickness burn, involvement of the perineum, and time from burn to admission. An alternative risk model uses the total area burned in place of the areas of partial thickness burn and full thickness burn, and is appropriate if the amount of full thickness burn is not determined accurately. This paper describes a program that uses these risk models to correct or standardize for demographic and severity factors, then, after that adjustment, tests whether a group of burn patients who received a new or experimental therapy shows a significantly better survival rate than that predicted by a baseline model. The program is a simple one written in Fortran for easy adaptation to other computer systems.

  14. Burn Injuries: Causes, Consequences, Knowledge, Behaviors.

    ERIC Educational Resources Information Center

    Healer, Cheryl V.; And Others

    This report covers Phase I of the Burn Injury Education Demonstration Project, a four-phased project designed to explore the feasibility of using educational intervention strategies to increase knowledge and appropriate behaviors and attitudes to reduce the number and severity of burns. Phase I involved a comprehensive needs assessment conducted…

  15. The Fire Challenge: A Case Report and Analysis of Self-Inflicted Flame Injury Posted on Social Media.

    PubMed

    Avery, Andrew H; Rae, Lisa; Summitt, J Blair; Kahn, Steven Alexander

    2016-01-01

    With the advent of social media platforms such as Facebook and YouTube, online dissemination of exhibitionist videos has gained popularity. One recent disturbing trend is the "fire challenge" wherein a participant douses his or herself in a household accelerant such as isopropyl alcohol or acetone, sets him or herself ablaze, and attempts to extinguish the flames before serious burns are incurred. As expected, participants in the "fire challenge" often accidentally suffer serious burns. A 17-year-old white male was recently treated at our burn center after participating in the "fire challenge." He suffered 15% TBSA full and partial thickness burns requiring split thickness skin grafting to his abdomen. He reported lighting himself on fire because he had seen this stunt performed on the internet. A search for "fire challenge" and similar terms was conducted on YouTube (www.youtube.com). Gender and ethnicity of each participant were documented. Burn size, burn depth, and age of video participant were estimated by two attending burn surgeons evaluating YouTube videos. Results were reported with descriptive statistics. The search yielded thousands of hits, mostly home videos, compilations of stunts, and commentaries. After omitting duplicate and irrelevant videos, 50 videos were selected for the study. Of these, 13 videos included postburn footage demonstrating burn wounds of various location, size, and severity. Of these burns, the median TBSA burned was 4 ± 2.7% with a maximum size of 10%. Superficial and partial thickness burns were sustained on the torso (10/13, 77%), face (4/13, 31%), and extremities (2/13, 15%). Full thickness burns were seen in 2/13 videos. Some burn wounds were obscured by dressings. Of the 50 videos reviewed, 45/50 participants (90%) were male and 32/50 (64%) were African American with 29/50 participants (58%) estimated to be under age 20. The "fire challenge" is a popular social media phenomenon, but it can result in severe injury as seen with the patient at our institution. The lure of a challenge and potential for a shocking video to "go viral" might entice people to mimic this risky behavior. This study shows a disturbing trend, but undoubtedly only reflects a small portion of actual participants. A disproportionate number of videos featured young African American males, making this a target population for education and prevention efforts. Our patient's TBSA exceeded the maximum found on YouTube, suggesting that less severe burns may be posted online while larger burns are not, diminishing perceived risk and encouraging this behavior.

  16. Quantitative long term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI)

    PubMed Central

    Ponticorvo, Adrien; Burmeister, David M.; Rowland, Rebecca; Baldado, Melissa; Kennedy, Gordon T.; Saager, Rolf; Bernal, Nicole; Choi, Bernard; Durkin, Anthony J.

    2017-01-01

    The current standard for diagnosis of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Several new technologies are shifting focus to burn care in an attempt to help quantify not only burn depth but also the progress of healing. While accurate early assessment of partial thickness burns is critical for dictating the course of treatment, the ability to quantitatively monitor wound status over time is critical for understanding treatment efficacy. SFDI and LSI are both non-invasive imaging modalities that have been shown to have great diagnostic value for burn severity, but have yet to be tested over the course of wound healing. In this study, a hairless rat model (n=6, 300-450g) was used with a four pronged comb to create four identical partial thickness burns (superficial n=3 and deep n=3) that were used to monitor wound healing over a 28 day period. Weekly biopsies were taken for histological analysis to verify wound progression. Both SFDI and LSI were performed weekly to track the evolution of hemodynamic (blood flow and oxygen saturation) and structural (reduced scattering coefficient) properties for the burns. LSI showed significant changes in blood flow from baseline to 220% in superficial and 165% in deep burns by day 7. In superficial burns, blood flow returned to baseline levels by day 28, but not for deep burns where blood flow remained elevated. Smaller increases in blood flow were also observed in the surrounding tissue over the same time period. Oxygen saturation values measured with SFDI showed a progressive increase from baseline values of 66% to 74% in superficial burns and 72% in deep burns by day 28. Additionally, SFDI showed significant decreases in the reduced scattering coefficient shortly after the burns were created. The scattering coefficient progressively decreased in the wound area, but returned towards baseline conditions at the end of the 28 day period. Scattering changes in the surrounding tissue remained constant despite the presence of hemodynamic changes. Here we show that LSI and SFDI are capable of monitoring changes in hemodynamic and scattering properties in burn wounds over a 28 day period. These results highlight the potential insights that can be gained by using noninvasive imaging technologies to study wound healing. Further development of these technologies could be revolutionary for wound monitoring and studying the efficacy of different treatments. PMID:28220508

  17. An educational board game for learning and teaching burn care: A preliminary evaluation.

    PubMed

    Whittam, Alexander M; Chow, Whitney

    2017-01-01

    Timely and effective assessment, resuscitation and transfer of patients with severe burns has been demonstrated to improve outcome. A dedicated one-day course exists to equip all frontline emergency healthcare workers with the necessary knowledge and skills to manage severe burn injuries. More recently, a board game has been developed which aims to act as a learning and practice development tool for those managing burn injuries. We present the findings of our preliminary evaluation of this game. We played this game with a multidisciplinary group of staff including doctors, nurses and therapists. A proportion of these participants had previously completed the Emergency Management of Severe Burns (EMSB) course. We obtained subjective results from a questionnaire, using both Likert-type ratings and open-ended questions. The styling of the game and ease of instructions was rated from 'average' to 'excellent'. The relevance of questions was rated from 'good' to 'excellent'. The usefulness of the game to increase knowledge and stimulate discussion was rated between 'good' and 'excellent'. All participants stated that they would recommend the game to other healthcare professionals. This is the only burns and plastic surgery-related educational game in the literature. Educational games adhere to principles of adult learning but there is insufficient evidence in the literature to either confirm or refute their utility. Our preliminary evaluation of this game has shown that it achieves its main aims, namely to increase knowledge in burn care and to stimulate discussion. Further work is required to assess the board game.

  18. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.

    2015-06-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  19. Amphibian responses to wildfire in the western united states: Emerging patterns from short-term studies

    USGS Publications Warehouse

    Hossack, B.R.; Pilliod, D.S.

    2011-01-01

    The increased frequency and severity of large wildfires in the western United States is an important ecological and management issue with direct relevance to amphibian conservation. Although the knowledge of fire effects on amphibians in the region is still limited relative to most other vertebrate species, we reviewed the current literature to determine if there are evident patterns that might be informative for conservation or management strategies. Of the seven studies that compared pre- and post-wildfire data on a variety of metrics, ranging from amphibian occupancy to body condition, two reported positive responses and five detected negative responses by at least one species. Another seven studies used a retrospective approach to compare effects of wildfire on populations: two studies reported positive effects, three reported negative effects from wildfire, and two reported no effects. All four studies that included plethodontid salamanders reported negative effects on populations or individuals; these effects were greater in forests where fire had been suppressed and in areas that burned with high severity. Species that breed in streams are also vulnerable to post-wildfire changes in habitat, especially in the Southwest. Wildfire is also important for maintaining suitable habitat for diverse amphibian communities, although those results may not be evident immediately after an area burns. We expect that wildfire will extirpate few healthy amphibian populations, but it is still unclear how populations will respond to wildfire in the context of land management (including pre- and post-fire timber harvest) and fragmentation. Wildfire may also increase the risk of decline or extirpation for small, isolated, or stressed (e.g., from drought or disease) populations. Improved understanding of how these effects vary according to changes in fire frequency and severity are critical to form more effective conservation strategies for amphibians in the western United States.

  20. Toward meaningful snag-management guidelines for postfire salvage logging in North American conifer forests.

    PubMed

    Hutto, Richard L

    2006-08-01

    The bird species in western North America that are most restricted to, and therefore most dependent on, severely burned conifer forests during the first years following afire event depend heavily on the abundant standing snags for perch sites, nest sites, and food resources. Thus, it is critical to develop and apply appropriate snag-management guidelines to implement postfire timber harvest operations in the same locations. Unfortunately, existing guidelines designed for green-tree forests cannot be applied to postfire salvage sales because the snag needs of snag-dependent species in burned forests are not at all similar to the snag needs of snag-dependent species in green-tree forests. Birds in burned forests have very different snag-retention needs from those cavity-nesting bird species that have served as the focus for the development of existing snag-management guidelines. Specifically, many postfire specialists use standing dead trees not only for nesting purposes but for feeding purposes as well. Woodpeckers, in particular specialize on wood-boring beetle larvae that are superabundant in fire-killed trees for several years following severe fire. Species such as the Black-backed Woodpecker (Picoides arcticus) are nearly restricted in their habitat distribution to severely burned forests. Moreover existing postfire salvage-logging studies reveal that most postfire specialist species are completely absent from burned forests that have been (even partially) salvage logged. I call for the long-overdue development and use of more meaningful snag-retention guidelines for postfire specialists, and I note that the biology of the most fire-dependent bird species suggests that even a cursory attempt to meet their snag needs would preclude postfire salvage logging in those severely burned conifer forests wherein the maintenance of biological diversity is deemed important.

Top