Science.gov

Sample records for burners quarterly technical

  1. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Bai, T.

    1997-01-01

    This quarterly technical progress report describes work performed under DOE Grant No. DE-FG22-94MT94011 during the period September 1, 1996 to December 31, 1996 which covers the nineth quarter of the project. The objective of this investigation is to characterize the operation of a fan powered infrared burner (IR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. As the environmental regulations become more stringent, infrared burners are receiving increasing interests.

  2. Thermionic-cogeneration-burner assessment study. Second quarterly technical progress report, January-March 1983

    SciTech Connect

    Not Available

    1983-01-01

    The performance analysis work continued with the completion of the programming of the mathematical model and with the start of a series of parametric analyses. Initial studies predict that approximately 25 to 30% of the heat contained in the flue gas can be passed through the thermionic converters (TEC) and then be converted at 12 to 15% efficiency into electrical power. This results in up to 17 kWe per 1 million Btu/h burner firing rate. This is a 4 to 10 percent energy saving over power produced at the utility. The thermal burner design and construction have been completed, as well as initial testing on the furnace and preheat systems. The following industries are still considered viable options for use of the thermionic cogeneration burner: chlor-alkali, alumina-aluminum, copper refining, steel and gray iron, industries using resistance heating, electrolytic industries and electrochemical industries. Information gathered on these industries is presented.

  3. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    SciTech Connect

    Not Available

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  4. Study of the effects of ambient conditions upon the performance of fan powdered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1996-04-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PER) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PER burners for satisfactory performance. During this past quarter, a porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Various gas mixtures were tested. Results indicated that the stability limits of the burner and emissions vary with fuel gas composition and air/fuel ratio. However, the maximum radiant efficiency of the burner remained constant. Results obtained from this study can be useful to develop optimum design guidelines for PER burner manufacturers.

  5. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Bai, Tiejun; Yeboah, Y.D.; Sampath, R.

    1996-01-01

    Infrared burner is a surface combustor that elevates the temperature of the burner head to a radiant condition. Applications of radiant burners includes boilers, air heaters, deep fat fryers, process heaters, and immersion heaters. On reason for the present interest in this type of burner is its low NO{sub x} emissions, which is attributed to the fact that a large proportion of the combustion heat is given out as radiation from the burner surface, which results in relatively low gas temperature in the combustion zone compared to that of a conventional free-flame burner. As a consequence, such burners produce less NO{sub x}, mainly by the so-called prompt-NO mechanism. A porous radiant burner testing facility was built, consisting of spectral radiance as well as flue gas composition measurements. Measurement capabilities were tested using methane; results were consistent with literature.

  6. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Bai, Tiejun

    1995-04-01

    The objective of this investigation is to characterize the operation of fan powered infrared (PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes that determine the performance of PIR burners. Based on the results of this study, a burner performance model for radiant output will be developed. The model will be applied to predict the performance of the selected burner and will also be modified and improved through comparison with experimental results. During this period, laboratory facilities that are necessary for conducting this research are completed. The student research assistants have started working in the laboratory. The selection of the test burner has completed. The preparation and instrumentation of this test burner is underway. The theoretical analysis and modeling of the fundamental combustion process of the PIR burner is progressing well. A study of the existing models are being conducted, which will yield specific direction and recommendations for the new model to be developed.

  7. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, September 1--September 30, 1994

    SciTech Connect

    Bai, T.

    1994-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared(PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes which determine the performance of PIR burners. Based on the results of this study, a first order model of the performance of the burner, including radiant output will be developed. The model will be applied to predict the performance of the selected burner and modified through comparison with test results. Concurrently, an experimental setup will be devised and built. This experimental rig will be a modified appliance, capable of measuring the heat and combustion product output, as well as providing a means by which the radiant heat output can be measured. The burner will be selected from an existing commercial appliance, a commercial deep fat fryer, and will be of a scale that will be compatible with the laboratory facilities in the Combustion Laboratory at Clark Atlanta University. Theoretical analysis and formulation of the PIR burner performance model has been started and the development of the test facilities and experimental setup has also been initiated. These are described.

  8. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  9. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, January--March 1991

    SciTech Connect

    Not Available

    1991-12-31

    LNS Burner design effort during this period focussed on the analysis of LNS Burner heat transfer, review and approval of fabrication drawings, completion of LNS Burner boiler flow modelling and the continued development of the slag screen model. Balance of plant engineering indude d the finalization of roof and wall details for the Fuel Preparation Building, structural checks associated with installation of equipment in the existing plant, the design of the fire fighting and ventilation systems for the Fuel Preparation Building and the preparation of P&ID`s for the materials handling facilities. Work continued on the preparation of P&ED`s for the fuel oil system and the instrument air and service air systems, the preparation of equipment lists and system descriptions, detailed design documentation for powering and control of major electrical components and preparation of the instrument index. Work on electrical design details for the instrumentation and minor control devices has been started.

  10. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  11. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A quarterly listing of RTO technical publications is presented. The topics include: Handbook on the Analysis of Smaller-Scale Contingency Operations in Long Term Defence Planning; 2) Radar Polarimetry and Interferometry; 3) Combat Casualty Care in Ground-Based Tactical Situations: Trauma Technology and Emergency Medical Procedures; and 4) RTO Technical Publications: A Quarterly Listing

  12. AGEX II: Technical quarterly, Volume 2

    SciTech Connect

    Ekdahl, C.

    1995-03-01

    The AGEX II Technical Quarterly publishes short technical contributions on above ground experiments that use pulsed power and laser drivers. The Quarterly is intended to provide rapid exposure of timely technical ideas and results as well as a means for documenting AGEX II progress and scientific quality for the AGEX II community. Suitable topics include experimental results, diagnostic apparatus, theoretical design, and scaling, among others.

  13. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information. Contents include the following: RTO Technical Publications: A Quarterly Listing. Implications of Multilingual Interoperability of Speech Technology for Military Use. Non-Lethal Weapons and Future Peace Enforcement Operations.

  14. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    SciTech Connect

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  15. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    SciTech Connect

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  16. Yucca Mountain Site Characterization Project technical data catalog quarterly supplement

    SciTech Connect

    1995-03-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with t requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to@ previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  17. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    SciTech Connect

    1993-06-30

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993.

  18. Quarterly Technical Progress Report June 2015

    SciTech Connect

    Buchholz, Bruce A.

    2015-06-08

    The project has two main goals: 1) Identify the types of adducts naphthalene (NA) forms with DNA and 2) determine whether adduct formation correlates with site selective tumor formation in defined subcompartments of the respiratory tract (respiratory and olfactory nasal epithelium and airways of mice, rats and rhesus monkeys). Five tasks are associated with the completion of the goals. Task 1: Contracting and Animal Use Approvals. IACUC and ACURO approvals are complete, The subcontract with UC Davis (UCD) was executed in December 2014. Task 2: Perform In Vitro Study for Goal 1. Rat samples exposed and in freezer while adduct standards are being made. Mouse samples need to be exposed in next quarter. Task 3: Perform In Vitro Study for Goal 2. Mouse ex vivo samples completed. Rat and monkey samples need to be completed in the next quarter. Task 4: Sample Preparation and Analysis. Mouse Goal 2 samples completed. Other samples remain to be done. Task 5: Data Interpretation and Reporting. Need rat data to write paper on adduct formation.

  19. RTO Technical Report: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from April 1,2002 through June 30, 2002. Topics covered include: intrusion detection and design loads for aircraft.

  20. Department of Energy quarterly technical report

    SciTech Connect

    Anderson, R.N.

    1995-04-15

    The objective is to test the concept that the growth faults in Eugene Island Block 330 (EI-330 field) are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water and the productive depth intervals include 4000 to 9000 feet. The field demonstration will be accomplished by drilling and production testing of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, compact visualization systems. In this quarterly report, progress reports are presented for the following tasks: database management; reservoir characterization; modeling; geochemistry; and data integration.

  1. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from Jan 1, 2002 through Mar 31, 2002. Topics covered included information management, ice accretion, digital flight control systems, supercavitation flows, and tactical decision aids.

  2. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information. Reports may be downloaded for free from the RTO website at http:/www.rta.nato.int or they may be purchased from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MID 21076-1320 USA, phone 301-621-0390, fax 301-621-0134. Prices and order forms are available from the NASA STI website at http://www.sti.nasa.gov. An automatic distribution of unclassified RTO technical publications in CD-ROM is also available within the U.S. through the NASA Standing Order Service from the NASA Center for AeroSpace Information.

  3. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information. Reports may be downloaded for free from the RTO website at http://www.rta.nato.int or they may be purchased from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MD 21076-1320 USA, phone 301-621-0390, fax 301-621-0134. Prices and order forms are available from the NASA STI website at http://www.sti.nasa.gov. An automatic distribution of unclassified RTO technical publications in CD-ROM is also available within the US through the NASA Standing Order Service from the NASA Center for AeroSpace Information.

  4. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information covering the period from July 1, 2005 to September 30, 2005; and available in the NASA Aeronautics and Space Database. Contents include: Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing; Actively Controlling Buffet-Induced Excitations; Modelling and Simulation to Address NATO's New and Existing Military Requirements; Latency in Visionic Systems: Test Methods and Requirements; Personal Hearing Protection including Active Noise Reduction; Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies; A Method to Analyze Tail Buffet Loads of Aircraft; Particle Image Velocimetry Measurements to Evaluate the Effectiveness of Deck-Edge Columnar Vortex Generators on Aircraft Carriers; Introduction to Flight Test Engineering, Volume 14; Pathological Aspects and Associated Biodynamics in Aircraft Accident Investigation;

  5. Full-scale demonstration Low-NO{sub x} Cell{trademark} Burner retrofit. Quarterly report No. 3, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1992-03-18

    The overall objectives of the full-Scale Low-NO{sub x} Cell{trademark} Burner (LNCB{trademark}) Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the LNCB{trademark} retrofits are the most cost-effective alternative to emerging, or commercially- available NO{sub x} control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NO{sub x} reduction capabilities without adversely impacting plant performance, operation and maintenance. In particular, the prototype evaluations will resolve many technical issues not possible to address fully in the previous pilot-scale work and the single full-scale burner installation.

  6. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  7. Phase II - photovoltaics for utility scale applications (PVUSA). Quarterly technical report, First quarter 1996

    SciTech Connect

    1996-07-01

    This is the first of three planned quarterly Technical Reports of 1996 system performance and major project activities. The final quarter will be discussed in the 1996 Progress Report. Activity for the PVUSA project was curtailed considerably, pending resolution of the transfer of management to the California Energy Commission (CEC) and the Sacramento Municipal Utility District (SMUD). Principal activities during the first quarter of 1996 included: (1) Continued negotiations regarding the transfer of project management from PG&E to the joint CEC/SMUD team. Primary remaining hurdle is obtaining approval from the California Public Utilities Commission. (2) Provided training to CEC and SMUD project team members on January 8, 9, and 11. Training covered site operations including data acquisition. (3) Completed the draft of the 1995 Progress Report. (4) Supported the contractor in their efforts for enhancing the performance and reliability of the Amonix EMT-3 array at Davis. (5) Reviewed the PSCo installation drawings, and started activities to provide the PVUSA DAS equipment, (6) Operation and maintenance of existing systems, including data collection and reporting. Data were collected for 19 completed systems with a combined capacity of 1,800 kW. Combined, these systems generated nearly 1.1 million kWh during January through March. The project`s cumulative generation now stands at 8.2 million kWh. Key cumulative 1996 results are listed in the following table. The locations of systems other than Davis are noted alongside the supplier`s name.

  8. Energy from in situ processing of antrim oil shale. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Washington, L.J. Jr.

    1980-01-21

    Extraction trials on the new site were begun. The first trial, F80-1, was completed in Well No. 301 in October, 1979. Using a methane burner and an ignition service from TOR Developments, Inc., downhole burner ignition was readily achieved. Shale ignition occurred within two days. Combustion in the wellbore was so intense that the burner was lost, and subsequently shale combustion decreased and the trial was terminated. After some modification of equipment and procedures, the second trial, F80-2, was begun in late November, 1979. Combustion was achieved and the trial was still in progress at the end of the quarter.

  9. Technical Data Catalog: Yucca Mountain Site Characterization Project. Quarterly supplement

    SciTech Connect

    1995-06-30

    This report presents reference information contained in the Yucca Mountain Project Automated Technical Data Tracking System. The Department of Energy is seeking to design and maintain a geologic repository for the disposal of high-level radioactive wastes. However, before this repository can be built, the DOE must first do a comprehensive site evaluation. This evaluation is subject to many regulations. This report fulfills the reporting requirements of the Site-Specific Procedural Agreement for Geologic Repository to develop and maintain a catalog of data which will be updated and provided to the Nuclear Regulatory Commission on a quarterly basis. This catalog contains: description of data; time, place, and method of acquisition; and where data may be examined.

  10. Phase 2 -- Photovoltaics for utility scale applications (PVUSA). Quarterly technical report, third quarter 1996

    SciTech Connect

    1996-12-01

    PVUSA is now monitoring 20 systems at nine locations with a combined capacity of 1,800 kW. This is the first quarter that performance data are being reported on the Amonix EMT-3 array. One additional 375-kW system is under construction in Yuma, AZ and is scheduled to start up in December 1996. Combined, these systems generated 0.8 million kWh during July through September, increasing the project cumulative total to 9.2 million kWh since 1989. The report discusses project management including schedule analysis, cost analysis and funding activities, and technology transfer activities. A section of the report gives a technical analysis of the Davis site describing performance data for the 11 systems, weather data, operation and maintenance. Performance of the other 9 PVUSA sites is briefly discussed.

  11. Regulatory and technical reports (abstract index journal). Compilation for third quarter 1997, July--September

    SciTech Connect

    Stevenson, L.L.

    1998-01-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. This report contains the third quarter 1997 abstracts.

  12. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention's performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  13. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention`s performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  14. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Quarterly technical progress report No. 9, 1 October 1993--31 December 1993

    SciTech Connect

    Jennings, P.; Borio, R.; McGowan, J.G.

    1994-03-01

    This report documents the technical aspects of this project during the ninth quarter of the program. During this quarter, the natural gas baseline testing at the Penn State demonstration boiler was completed, results were analyzed and are presented here. The burner operates in a stable manner over an 8/1 turndown, however due to baghouse temperature limitations (300{degrees}F for acid dewpoint), the burner is not operated for long periods of time below 75% load. Boiler efficiency averaged 83.1% at the 100 percent load rate while increasing to 83.7% at 75% load. NO{sub x} emissions ranged from a low of 0.17 Lbs/MBtu to a high of 0.24 Lbs/MBtu. After the baseline natural gas testing was completed, work continued on hardware optimization and testing with the goal of increasing carbon conversion efficiency on 100% coal firing from {approx}95% to 98%. Several coal handling and feeding problems were encountered during this quarter and no long term testing was conducted. While resolving these problems several shorter term (less than 6 hour) tests were conducted. These included, 100% coal firing tests, 100% natural gas firing tests, testing of air sparges on coal to simulate more primary air and a series of cofiring tests. For 100% coal firing, the carbon conversion efficiency (CCE) obtained this quarter did not exceed the 95-96% barrier previously reached. NO{sub x} emissions on coal only ranged from {approx} 0.42 to {approx} 0.78 Lbs/MBtu. The burner has not been optimized for low NO{sub x} yet, however, due to the short furnace residence time, meeting the goals of 98% CCE and <0.6 Lbs/MBtu NO{sub x} simultaneously will be difficult. Testing on 100% natural gas in the boiler after coal firing indicated no changes in efficiency due to firing in a `dirty` boiler. The co-firing tests showed that increased levels of natural gas firing proportionately decreased NO{sub x}, SO{sub 2}, and CO.

  15. Ceramic burner

    SciTech Connect

    Laux, W.; Hebel, R.; Artelt, P.; Esfeld, G.; Jacob, A.

    1981-03-31

    Improvements in the mixing body and supporting structure of a molded-ceramic-brick burner enable the burner to withstand the vibrations induced during its operation. Designed for the combustion chambers of air heaters, the burner has a mixing body composed of layers of shaped ceramic bricks that interlock and are held together vertically by a ceramic holding bar. The mixing body is shaped like a mushroom - the upper layers have a larger radius than the lower ones.

  16. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  17. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly report, April 1, 1996 - June 30, 1996

    SciTech Connect

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1996-07-01

    A porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Following the validation of the measurement system, various gas mixtures were tested to study the effect of gas compositions have on burner performance. Results indicated that the emissions vary with fuel gas composition and air/fuel ratio. The maximum radiant efficiency of the burner was obtained close to air/fuel ratio of 1.

  18. High explosive safety manual. Fifth quarterly technical progress report, October-December 1979

    SciTech Connect

    Albaugh, L.R.; McBride, D.A.

    1980-01-01

    This is the fifth quarterly technical report on a program to prepare a high explosive safety manual for the Department of Energy. The program is described and progress to date is presented. During this work period, the first draft of the manual was completed and the quantitative risk analysis begun.

  19. Regulatory and technical reports: (Abstract index journal). Compilation for first quarter 1997, January--March

    SciTech Connect

    Sheehan, M.A.

    1997-06-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. This compilation is published quarterly and cummulated annually. Reports consist of staff-originated reports, NRC-sponsored conference reports, NRC contractor-prepared reports, and international agreement reports.

  20. Offshore scientific and technical publications, February-July, Spring 1989. Quarterly report

    SciTech Connect

    Not Available

    1989-01-01

    The catalog lists all current (1987-1989) scientific and technical publications of the Offshore Minerals Management Program. The catalog is updated and released on a quarterly basis in winter, spring, summer, and fall. Publications available after July 21, 1989, will be listed in the next issue.

  1. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, March 22, 1993--June 22, 1993

    SciTech Connect

    McCormick, C.; Hester, R.

    1993-08-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress for the quarter is summarized for the following tasks: advanced copolymer syntheses; characterization of molecular structure of copolymers; and polymer solution rheology.

  2. SRC-1 Quarterly technical report, April-June 1980

    SciTech Connect

    Not Available

    1980-01-01

    The SRC-1 quarterly report has chapters on: an evaluation of current technologies for deashing coal liquids; domestic vendors of thick-wall pressure vessels; a comparative evaluation of GKT, Texaco and Shell-Koppers gasification processes (GKT is a modification of Koppers-Totzek and is recommended for reasons given); disposal or gasification of residues; evaluation of one or two slurry feed tanks; evaluation of one or two critical solvent deashing trains; analysis of causes of corrosion in the fractionating tower (chlorides and phenols); identifying and planning for pollution control in the demonstration plant; and characterizing waste center and monitoring its treatment. (LTN)

  3. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    SciTech Connect

    Not Available

    1994-08-18

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  4. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-11-01

    Preparation of the baseline economic assessment, based on Wilsonville Run {number_sign}263J, continued. This baseline study will serve as the reference against which the results of this program will be compared. During the quarter calculation of the material and energy balances for the conceptual commercial plant were completed and estimation of the investment for the main process units was begun (Wyoming plant site basis). A presentation on the technical results of the baseline study was prepared and delivered at the Quarterly Project Review Meeting in Pittsburgh.

  5. Burner apparatus

    SciTech Connect

    Ximpara, N.; Moriya, Y.; Xaneko, H.

    1984-01-31

    The present invention improves a conventional Bunsen burner by providing it with a primary combustion chamber which covers the primary flame forming portion of the Bunsen burner and which has a secondary flame hole immediately above the primary flame forming portion. The burner apparatus of the present invention produces reduced NO /SUB x/ since the overall combustion is divided into primary flame combustion and secondary flame combustion. Further according to the invention, an indication of incomplete combustion due to oxygen deficiency in the ambient air or blockade of the primary air passage can be dependably detected for cessation of combustion by providing a flame rod and measuring the impedance (or ion current) of the rod.

  6. Yucca Mountain Site Characterization Project: Technical data catalog,(quarterly supplement)

    SciTech Connect

    1993-03-31

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year.

  7. AGEX II technical quarterly: Volume 1, November 1, 1994

    SciTech Connect

    Ekdahl, C.

    1994-11-01

    This report publishes short technical contributions on aboveground experiments that use pulsed power and laser drivers. The five papers included here cover the following: experimental colliding plasma; capacitor for Atlas Marx modules; computational modeling of magnetized target fusion experiments; ultraviolet ultrafast pump-probe laser using a Ti:sapphire laser system; and high resolution x-ray spectroscopy of a subpicosecond laser-produced silicon plasma.

  8. Quarterly technical progress report, February 1, 1996--April 30, 1996

    SciTech Connect

    1996-05-28

    This report from the Amarillo National REsource Center for PLutonium provides research highlights and provides information regarding the public dissemination of information. The center is a a scientific resource for information regarding the issues of the storage, disposition, potential utilization and transport of plutonium, high explosives, and other hazardous materials generated from nuclear weapons dismantlement. The center responds to informational needs and interpretation of technical and scientific data raised by interested parties and advisory groups. Also, research efforts are carried out on remedial action programs and biological/agricultural studies.

  9. Nuclear magnetic resonance studies of granular flows: Technical progress report, quarter ending 09/30/93

    SciTech Connect

    Not Available

    1993-10-27

    This Technical Progress Report for the quarter ending 09/30/93 describes work on two tasks which are part of nuclear magnetic resonance studies of granular flows. (1) Research has been directed toward improving concentration measurements under reasonably fast conditions. (2) The process continues of obtaining comprehensive velocity, concentration, and diffusion information at several angular velocities of the cylinder for seeds (mustard, sesame, and sunflower seeds) flowing in a half-filled cylinder.

  10. Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project

    SciTech Connect

    1992-09-01

    The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

  11. MHD Coal-Fired Flow Facility. Quarterly technical progress report, January-March 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R.C. Baucum, W.E.

    1980-05-30

    The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Although slowed by incessant rain during several days, work on the CFFF Bid Packages progressed to nearly 100 percent completion, excluding later punchlist items. On the quench system, the cyclone separator was delivered to UTSI, and under Downstream Components, the secondary combustor was received and the radiant slagging furnace was emplaced at the CFFF. Water quality analysis of Woods Reservoir provided the expected favorable results, quite similar to last year's. Generator experiments describing local current distribution are reported along with behavior under conditions of imposed leakage. Also, during the Quarter, the shelter for the cold flow modeling facility was constructed and circuits installation begun. A jet turbine combustor was tested for use as a vitiation burner. Samples taken from the exhaust duct, besides other applications, show that the refractories used are performing well in alleviating heat loss while exhibiting acceptable degredation. A new resistive power take-off network was designed and implemented.

  12. West Hackberry Tertiary Project. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-04-10

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic. The first quarter of 1996 was outstanding both in terms of volume of air injected and low cost operations. More air was injected during this quarter than in any preceding quarter. The compressors experienced much improved run time with minimal repairs. Low operating costs resulted from no repairs required for injection or production wells. A discussion of the following topics are contained herein: (1) performance summary for the injection and production wells, (2) air compressor operations, (3) updated bottom hole pressure data, (4) technology transfer activities and (5) plans for the upcoming quarter.

  13. Infrared and catalytic burner technology assessment

    NASA Astrophysics Data System (ADS)

    Kesselring, J. P.; Krill, W. V.; Schreiber, R. J.

    1981-02-01

    A review of the state of the art in infrared and catalytic burner development shows that four basic types of IR burners are currently in use. Eight commercial and/or residential appliances were characterized to assess the applicability of these burners. The refractory monolith tile and the fiber matrix burners appear most applicable for appliance use. Conceptual designs for the eight appliances with IR burners were prepared to evaluate the technical feasibility. These appliances are shown to have significant fuel efficiency increase and NOx and CO emission reduction benefits. Four appliances -- the commercial rangetop, deep fat fryer, commercial water heater, and warm air furnance -- also appear economically competitive, and recommended approaches for further development are presented. Lists of IR burner literature and patents are also presented.

  14. West Hackberry Tertiary Project. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    1995-10-11

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 Sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presented uneconomic. During this quarter, the West Hackberry Tertiary Project completed the first ten months of air injection operations. Plots of air injection rates and cumulative air injected are included in this report as attachments. The following events are reviewed in this quarter`s technical progress report: (1) successful workovers on the Gulf Land D Nos. 44, 45 and 51 and the Watkins No. 3; (2) the unsuccessful repair attempt on the Watkins No. 16; (3) gathering of additional bottom hole pressure data; (4) air compressor operations and repairs; and (5) technology transfer activities.

  15. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  16. Heber geothermal binary demonstration project quarterly technical progress report, October 1, 1981--December 31, 1981

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of October 1, 1981, through December 31, 1981. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  17. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  18. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  19. MHD Integrated Topping Cycle Project. Eighteenth quarterly technical progress report, November 1, 1991--January 31, 1992

    SciTech Connect

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  20. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  1. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  2. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    SciTech Connect

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  3. MHD Integrated Topping Cycle Project. Fifteenth quarterly technical progress report, February 1991--April 1991

    SciTech Connect

    Not Available

    1992-02-01

    A summary of the work is excerpted here. Final design of an MHD channel for the ITC program POC test has been completed. The channel was designed to be capable of 1.5 MW {sub e} power output and a lifetime of 2000 hours. Emphasis was placed upon durability and reliability. Hence, specific measures were taken to design against channel damage due to electric faults. The life-limiting issues associated with electrochemical corrosion and erosion of gas-side surfaces were addressed by the use of various materials with proven wear characteristics in a coal-fired MHD channel environment. Pitting of prototypical sidewall coupons was observed in the CDIF workhorse testing. The most likely cause of the observed pitting, water leaks resulting from cooling water tube braze failures, has been remedied. New brazing procedures and isolation of the sidebar gas-side material from water contact will prevent sidebar pitting in the prototypical channel. Water-side corrosion tests reported in this quarterly report include the latest results of tungsten-copper elements at controlled pH, heat flux and voltage levels. In the combustion subsystem, efforts continued to focus on understanding and improving the current levels of slag recovery and seed utilization achieved by the combustor. Analytical support was also provided in the areas of slag rejection system operation, precombustor operation, and oil burner design modification. Channel data analysis activities continued in support of prototypical coupon testing at the CDIF. Analyses are presented on channel wall slagging behavior and sidewall voltage distributions.

  4. Strategic petroleum reserve supporting research. Quarterly technical report, January 1-March 31, 1986

    SciTech Connect

    Woodward, P.W.

    1986-01-01

    The basic objective is to provide technical support to the Strategic Petroleum Reserve Office (SPRO), through the Bartlesville Project Office. This support includes routine analyses, experimental research, and technical consultation at the SPRO's request. Accomplishments for this past quarter include: stable D, /sup 34/S, and /sup 13/C isotope ratio analyses for 27 samples of SPR crude oil; gas chromatographic simulated distillation (Sim-dis) of 74 SPR crude samples; sim-dis of sludge samples to check for bimodal distributions; data for 8 comprehensive analyses have been entered into the Bonner and Moore ''Crude Assay II'' library; 25 samples which included both whole crudes and distillate fractions were chromatographed using Siemens dual-oven GC and PIANO software; separation of 4 sludge samples into acid, base, and neutral fractions by ion exchange chromatography; and proton and sodium-23 NMR measurements of sludge samples. 1 fig., 5 tabs.

  5. Burner systems

    DOEpatents

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  6. PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This is the eleventh technical progress report submitted to the Department of Energy (DOE) in connection with the Cooperative Agreement between DOE and Ohio Power company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1992. Activities included: The Tidd combustor internals were modified to connect the hot gas system for slipstream operation; Various pre-operational activities were completed, including pneumatic leak testing of the HGCU system, operation of the closed cycle cooling water system, operation of the back pulse compressor and air preheater, and checkout of the back pulse skid. Initial operation of the system using the bypass cyclone occurred during May 21--23, 1992; On May 23, 1992, an expansion joint ruptured, forcing the unit to be shut down. The failure was later determined to be due to stress corrosion. Following the expansion joint failure, a complete engineering review of the system was undertaken and is continuing; Contract Modification No. 6 was issued to Westinghouse during this quarter. This modification is for APF surveillance testing services; A purchase order was issued to Battelle for ash sampling hardware and testing services.

  7. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  8. Project LIFE--Language Improvement to Facilitate Education. (Technical Progress Report; Third Quarter; March 1, 1974-May 31, 1974).

    ERIC Educational Resources Information Center

    National Foundation for the Improvement of Education, Washington, DC.

    Reported is the third quarter, fiscal year 1974 (March 1, 1974-May 31, 1974) technical progress of Project LIFE (Language Improvement to Facilitate Education), toward developing an instructional system in which filmstrips in the areas of perceptual training, perceptual thinking, and language/reading are used to assist hearing impaired children in…

  9. Regulatory and technical reports (abstract index journal). Volume 20, No. 2: Compilation for second quarter April--June 1995

    SciTech Connect

    1995-09-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually.

  10. Quarterly technical progress report, October-December 1982 on Energy Conversion Research and Development Programs

    SciTech Connect

    Not Available

    1983-10-01

    In this quarterly technical progress report, UTSI reports on the continued design work for the low mass flow train superheater. The detailed design of this component continued and the overall arrangement drawing for the superheater and air heater was finalized. The air heater procurement reached the point of contract award, but the actual purchase order award was held up pending receipt of additional funding from the Department of Energy. Testing activity reported includes two additional tests in the LMF1C series, which concludes this test series. Test data are presented, along with preliminary analyses for the combustor, nozzle, diagnostic channel, diffuser, radiant furnace/secondary combustor and Materials Test Module. In addition to the nitrogen oxide test measurements, corrosion and erosion rates for the boiler tube specimens and the materials test module are reported.

  11. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the twelfth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Summaries of the final reports produced by Lehigh University, West Virginia University, and Vander Sande Associates under the Participants Program are presented. Analytical data produced by CONSOL are provided in Appendix I for all samples employed in the Participants Program and issued with the samples to research groups in the Participants Program. A paper was presented at the 1992 US Department of Energy Pittsburgh Energy Technology Center Liquefaction Contractors` Review Conference, held in Pittsburgh September 23--24, 1992, entitled ``The Chemical Nature of Coal Liquid Resids and the Implications for Process Development``. It appears as Appendix 2 in this report.

  12. (The MHD (magnetohydrodynamics) coal fired flow facility): Quarterly technical progress report, April-June 1987

    SciTech Connect

    Not Available

    1987-09-01

    In this Quarterly Technical Progress Report, UTSI reports on progress in a multitask program to develop MHD technology, currently oriented toward the steam bottoming plant and environmental considerations. Plans and preparation for resumption of testing in the DOE Coal Fired Flow Facility are summarized. The status of the new aerodynamic duct, nozzle and diffuser is reported. Plans for continued testing of tubes made of candidate materials in the superheater test module are discussed. Progress in preparing the facility for the upcoming tests are included. Plans formulated jointly with Mississippi State University for application of advanced instrumentation in future tests are detailed. Additional analyses of data from previous tests is included in particulate loading and size distribution, seed recovery and trace elements. Progress in the environmental program is reported for the water quality program, the trace element study and process gas analysis.

  13. MHD Integrated Topping Cycle Project. Seventeenth quarterly technical progress report, August 1, 1991--October 31, 1991

    SciTech Connect

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  14. Redwood Community Action Agency: Technical progress report, 3rd quarter, 1986

    SciTech Connect

    Not Available

    1986-01-01

    Since the second quarter, at which time venture feasibility activities were well underway by Redwood Community Action Agency (RCAA) to develop a shared-savings energy business plan, significant progress has been made. Nearly all consultant reports on the technical feasibility analysis have been completed, initial market research has begun and capitalization strategy has been investigated. Additionally, RCAA received an award of a substantial grant from the California Dept. of Economic Opportunity to develop a series of business ventures with a consortium of Northern California community providers. Fifteen thousand dollars of equity capital has been allocated for the energy-related business venture being investigated under this grant. If all plans go as anticipated, this money, combined with agency unrestricted funds, will provide the initial seed capital for the venture.

  15. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 13, October--December 1994

    SciTech Connect

    1995-02-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate t economics of the process. Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Evaluation of catalyst samples from UCI led to the ordering of the OHC PDU catalyst batch. This catalyst batch arrived, was screened and found to be defective, and was reordered. (2) Natural gas containing higher hydrocarbons was used as a methane source. The reactant mixture formed oxygenates at temperatures lower than observed in the past. Burning at such low temperatures seems to create a product stream containing very little CH{sub 2}Cl{sub 2}. (3) Although it has not been decided if the PDU will use natural gas from the plant or methane or natural gas from cylinders as a methane feed source, it was concluded that an adsorption unit to remove sulfur and higher hydrocarbons is not necessary at this time. (4) PDU construction was completed in December. The bulk of insulation work was completed at the end of November. Much effort has been put into pressure testing the PDU`s systems. The startup team has become adept at finding and correcting such leaks. (5) SOP writing for the PDU was completed this quarter with communication with the software programmer to insure agreement between the software and SOP.

  16. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  17. Advancement of flash hydrogasification. Quarterly technical progress report, January-March 1984

    SciTech Connect

    Falk, A.Y.

    1984-06-25

    This first quarterly report documents technical progress during the period 31 December 1983 through 30 March 1984. The technical effort is 17 months in duration and is divided into two major technical tasks: Task VII, Hardware Fabrication and PDU Modifications, and Task VIII, Performance Testing. The design of test hardware and process development unit modifications had been previously completed as part of Task VI of the current contract. Task VII involves the fabrication of test hardware and modification of an existing 1-ton/h hydroliquefaction PDU at Rockwell's facilities for use as a hydrogasifier test facility. During this report period, fabrication of the test hardware and modifications to the PDU were initiated. Test hardware fabrication is now approximately 80% complete and should be completed by the end of May 1984. PDU modifications are progressing well and should be completed by the end of June 1984. The completed test hardware fabrication and PDU modifications will allow the conduct of short duration (1 to 2 h) hydrogasification tests along with preburner assembly performance evaluation tests in order to fulfill the test program objectives. Separate supplies of hydrogen, oxygen, methane, carbon monoxide, and water (for steam generation) are provided for this purpose. The modified facility is designed to accommodate both 10- and 20-ft-long hydrogasifier reactors so that residence times will be in the range of 2 to 6 s when coal is fed at a nominal 1/2 ton/h into reactors at 1000 psia pressure. Provisions are being made for real-time analysis of the product gases using an on-line gas chromatograph system. Test planning was the only Task VIII effort active during this report period. An initial (preliminary) test matrix has been defined. Preparation of a data analysis plan is underway, and data reduction programs are being programmed. 17 references, 25 figures, 6 tables.

  18. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report: First quarter 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, long-term testing of the LNB + AOFA configuration continued and no parametric testing was performed. Further full-load optimization of the LNB + AOFA system began on March 30, 1993. Following completion of this optimization, comprehensive testing in this configuration will be performed including diagnostic, performance, verification, long-term, and chemical emissions testing. These tests are scheduled to start in May 1993 and continue through August 1993. Preliminary engineering and procurement are progressing on the Advanced Low NOx Digital Controls scope addition to the wall-fired project. The primary activities during this quarter include (1) refinement of the input/output lists, (2) procurement of the distributed digital control system, (3) configuration training, and (4) revision of schedule to accommodate project approval cycle and change in unit outage dates.

  19. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  20. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  1. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-03-01

    This is the Sixteenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Fifty-eight process samples from HRI CTSL Bench Unit Run CC-15 (227-75) were analyzed to provide information on process performance. Run CC-15 was operated for 14 periods (days) from October 21 through November 3, 1992 in the thermal/catalytic configuration with Black Thunder Mine (Wyodak and Anderson seams) coal and Shell S-317 Ni/Mo supported extrudate catalyst. The run was made to test performance with and without a dispersed hydrous iron hydroxide catalyst precursor impregnated in the coal. Results are compared with those of previous HRI CTSL bench unit Run CC-1, which was operated in the catalytic/catalytic configuration, also with Shell S-317 catalyst. Several HRI Run CC-15 product distillate fractions prepared by the National Institute for Petroleum and Energy Research (NIPER) for petroleum inspection tests were further characterized by CONSOL. These characterization data are presented. MicroAutoclave tests and chemical analyses were performed to evaluate the solvent quality of two potential solvents for Alberta Research Council ARC. Eight product samples from catalytic dehydrogenation experiments were characterized for the University of Pittsburgh. A description is presented of the thermogravimetric analysis (TGA) method for determination of resid concentration/resid conversion, which was adapted for use in-house from HRI`s standard method. A brief summary of the status of the Participants Program is given.

  2. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  3. EDS coal liquefaction process development: Phase V. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    1984-07-01

    This report is the twenty-first Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC05-77ET10069 for EDS Coal Liquefaction Process Development Phase V. A detailed comparison of RCLU, CLPP, and ECLP yields has been initiated. This study builds off previous yield modeling results, which found that RCLU, CLPP, and ECLP yields were generally consistent given the scatter of the data, although some differences were noted. These pilot unit yield differences have now been quantified, and operating/configurational differences which account for some of them have been identified. Preliminary yield comparison results after correcting for these known process differences between the pilot plants indicate that: RCLU and CLPP yields are generally consistent; ECLP's conversion is about 5 lb/100 lb DAF coal lower than RCLU/CLPP at comparable operating conditions; and work has been initiated to define the EDS slurry preheater feed system design (based on slurry distributor manifold guidelines and coking correlation predictions, which influence furnace pass control issues such as slurry flow measurement). EDS hydrotreated naphtha showed a low level of systemic toxicity to rats exposed to the vapor six hours per day, five days per week for thirteen weeks.

  4. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 12, July--September 1994

    SciTech Connect

    1994-11-01

    Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Mixed LnCl{sub 3} solutions were successfully tested as substitutes for LaCl{sub 3} in preparing OHC catalysts. This will dramatically lower the price of the catalyst. (2) Six catalyst samples were received from UCI. Each was made via either incipient wetness or compounded extrudate techniques. Four of the catalysts have been screened. All seem adequate. (3) Contact has opened with Calsicat as an alternate catalyst supplier to UCI. It should be valuable to draw from their catalyst expertise. (4) It has been decided to tie into the plant`s natural gas source. Methods of cleaning up this stream are being investigated. (5) PDU construction completion is expected the first week in November. Pressure testing and punchout fix-up work remain to be completed. (6) Three new engineers were hired to work on the PDU. Half of the temporary operating procedures (TOP`s) have been written. SOP completion date is targeted for the beginning of November.

  5. EDS coal liquefaction process development. Phase V. Quarterly technical progress report, July 1-September 30, 1980

    SciTech Connect

    1981-02-01

    This report is the tenth Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC01-77ET10069 (formerly EF-77-A-01-2893) for Exxon Donor Solvent (EDS) Coal Liquefaction Process Development - Phase V. The Laboratory Process Research and Development studies were conducted at various Exxon Research and Engineering Co. (ER and E) facilities: Research and Development Division at Baytown, Texas; Products Research Division at Linden, New Jersey; and the Exxon Research and Development Laboratories at Baton Rouge, Louisiana. The Engineering Research and Development studies were performed at the Synthetic Fuels Engineering and Exxon Engineering Technology Departments of ER and E at Florham Park, New Jersey. The information dealing with the Management, Detailed Engineering, and Procurement activities related to revamp of the FLEXICOKING Prototype Unit was generated at Exxon Company, USA, Houston, Texas, and Exxon Engineering - Project Management Department of ER and E, Florham Park, New Jersey. The information dealing with operation of the 250 T/D Exxon Coal Liquefaction Pilot Plant (ECLP) was generated at Exxon Company, USA, Houston, Texas.

  6. Thermal treatment for chlorine removal from coal. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-08-01

    It is the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Under the reaction conditions employed, the behavior of other trace elements of concern will also be evaluated. The recovery of the chlorine removed from the coal as a marketable by-product, calcium chloride suitable for use as a road deicer, is also being investigated using a novel absorption/crystallization device. We have previously reported on equipment modifications required to attain the necessary data. A tube furnace system employs a flow of nitrogen across the coal sample to carry the HCl released to an absorber, where a chloride specific electrode measures the concentration of the chloride in solution. The data is analyzed by a least squares technique to provide values of the three kinetic constants in a modified first order rate equation used to model the system. During the past quarter, several runs were performed, and kinetic constants determined. After 20 minutes at 385{degree}C, 90% of the chlorine was removed from IBC-109 {minus}200 mesh coal. The data are encouraging, in terms of being able to provide a basis for design of a precombustion chlorine removal process based on thermal treatment.

  7. MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991

    SciTech Connect

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  8. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  9. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (Inventor)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  10. Stanford Geothermal Program [quarterly technical progress reports, July--September 1990 and October--December 1990

    SciTech Connect

    Not Available

    1991-02-18

    For the summer quarter, progress is summarized and data are presented on the following: well test analysis of finite-conductivity fractures, theoretical investigation of adsorption phenomena, and optimization of reinjection strategy. For the fall quarter, activity focused on the adsorption and well testing projects. A new project investigating reinjection at the Geysers was initiated. (MHR)

  11. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 9

    SciTech Connect

    Tim Richter

    2005-03-02

    This ninth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DEFC04- 2002AL68080 presents the project status at the end of December 2004, and covers activities in the ninth project quarter, October - December 2004.

  12. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 10

    SciTech Connect

    Tim Richter

    2005-05-05

    This tenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-2002AL68080 presents the project status at the end of March 2005, and covers activities in the tenth project quarter, January-March 2005.

  13. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 13

    SciTech Connect

    Tim Richter

    2006-03-23

    This thirteenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of December 2005, and covers activities in the thirteenth project quarter, October 2005 ? December 2005.

  14. Combustor burner vanelets

    DOEpatents

    Lacy, Benjamin; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Zuo, Baifang

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  15. BX in situ oil shale project. Quarterly technical progress report, September 1-November 30, 1981

    SciTech Connect

    Dougan, P.M.

    1981-12-20

    September 1, 1981-November 30, 1981, was the fourth consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. During the quarter, 117,520 barrels of water as steam were injected into project injection wells at an average wellhead temperature of 715/sup 0/F and an average wellhead pressure of 1378 PSIG. During the same period, 148,516 barrels of fluid were produced from the project production wells for a produced-to-injected fluid ratio of 1.26 to 1.0. Net oil production for the quarter was 169 barrels.

  16. PFBC HGCU Test Facility. Fourth quarterly technical progress report, [October--December 1993

    SciTech Connect

    Not Available

    1994-01-01

    The APF was shut down on September 23, 1993 and no operation was performed during this quarter. This report summarizes inspection, candle reinstallation, retrofit and accelerometer testing conducted during this three month outage.

  17. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  18. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992

    SciTech Connect

    Not Available

    1992-08-24

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  19. Toms Creek Integrated Gasification Combined Cycle Demonstration Project. Final quarterly technical progress report for the period ending March 31, 1993

    SciTech Connect

    Feher, G.

    1993-05-24

    This Quarterly Technical Progress Report for the period ending March 31, 1993 summarizes the work done to data by Tampella Power Corporation and Enviropower, Inc. on the integrated combined-cycle power plant project. Efforts were concentrated on the Toms Creek PDS (Preliminary Design and Studies). Tampella Power Corporation`s efforts were concentrated on the Toms Creek Preliminary Process Flow Diagram (PFD) and Piping and Instrument Diagrams (P&IDs). Tampella Power Corporation also prepared Heat and Material Balances (H&MBs) for different site-specific cases.

  20. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  1. LOW NOX BURNER DEVELOPMENT

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  2. Radiant gas burner assembly

    SciTech Connect

    Simpson, T.W.

    1988-02-16

    A radiant gas burner assembly is described comprising: a planar metal member defining a heat utilization surface; generator means defining a radiant heat burner surface spaces substantially centrally of and below the planar member for directing radiant energy to the planar member as a primary heating source therefor; a housing defining a closed combustion chamber around and above the burner surface and peripherally around and below the heat utilization surface; and means for directing a current of combustion effluent to a peripheral location of the chamber to act as a secondary heating source for at least one peripheral portion of the planar member.

  3. Excimer laser annealing to fabricate low cost solar cells. Quarterly technical report No. 1, 26 March-30 June 1984

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this research is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed during the first quarter of this program shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process described by JPL. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. The technical goal of this research is to develop an optimized PELA process compatible with commercial production, and to demonstrate increased cell efficiency with sufficient product for adequate statistical analysis. During the first quarter of this program an excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon. Preliminary results showed that the PELA processed cells had overall efficiencies comparable to furnace annealed ion implanted controls, and that texture-etched material requires lower fluence for annealing than polished silicon. Process optimization will be carried out in the second quarter.

  4. Bench-scale testing of the micronized magnetite process. Second quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-01-19

    This document contains the Quarterly Technical Progress Report for the Micronized Magnetite Testing Project being performed at PETC`s Process Research Facility (PRF). This second quarterly report covers the period from October, 1994 through December, 1994. The main accomplishments of Custom Coals and the project subcontractors, during this period, included: (1) Submitted all overdue project documents and kept up with routine reporting requirements; (2) Worked with CLI Corporation, the design subcontractor, and completed the circuit design and finalized all design drawings; (3) Specified and procured all of the process equipment for the circuit, as well as a number of ancillary equipment, instruments, and supplies; (4) Assisted Vangura Iron Inc. in detailing and constructing the structural and platework steel; (5) Subcontracted Rizzo & Sons to perform the circuit mechanical and electrical installation, and prepared for January 23rd installation start date; (6) Organized and prepared for coal and magnetite procurement; (7) Specified and organized an operating personnel plan for the commissioning and testing tasks in the project; (8) Assessed analytical challenges for project, and began to research problem areas. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the abovementioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  5. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  6. Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

  7. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  8. Pulverized coal burner

    DOEpatents

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  9. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  10. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objectives for this quarter were: (1) to install and test the temperature probe and the flammable gas detector: (2) to conduct Fischer-Tropsch synthesis experiments at baseline conditions and at a high pressure in order to test the newly constructed fixed bed reactor assembly.

  11. Educational Technology Program. Quarterly Technical Summary, 1 September Through 30 November 1972.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    Several on-goint activities were conducted during this quarter. Field trials of the Lincoln Training System-3 (LTS-3) at Keesler Air Force Base were extended to include high-aptitude students previously excluded. Results showed such students scored significantly higher on achievement tests and learned substantially faster when they received LTS…

  12. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1, 1997--October 31, 1997

    SciTech Connect

    1997-12-31

    This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.

  13. Educational Technology Program. Quarterly Technical Summary, 1 June through 31 August 1971.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    During the quarter covered by this report, the design of the Lincoln Training System-3 (LTS-3) Terminal System was completed and construction of a prototype unit begun. Four major hardware developments occurred: 1) An Image Systems, Incorporated Model 201 CARD Reader was converted into the LTS-3 audio-visual student terminal; 2) the first of five…

  14. Educational Technology Program. Quarterly Technical Summary, 1 March through 31 May 1973.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    During this quarter further investigations of alternative designs for the Lincoln Training System LTS-4 project's features and subsystems continued. Software efforts proceeded concurrently in three areas: 1) system architecture, monitor, and input/output programs; 2) a new version of the Lincoln Terminal Language, LTL-2; and 3) programs to apply…

  15. Projects at the Western Environmental Technology Office. Quarterly technical progress report, January 1--March 31, 1995

    SciTech Connect

    1995-06-01

    This quarterly report briefly describes recent progress in eight projects. The projects are entitled Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Spray Casting Project; and Watervliet Arsenal Project.

  16. Los Angeles County Juvenile Justice Crime Prevention Act. RAND Quarterly Report, October 2008. Technical Report

    ERIC Educational Resources Information Center

    Fain, Terry; Turner, Susan; Ridgeway, Greg

    2009-01-01

    This document is the second quarterly progress report for the evaluation of Juvenile Justice Crime Prevention Act (JJCPA) programs for the Los Angeles County Probation Department. The report covers the period from July 1, 2008, through September 30, 2008. The intent of the report is to provide Probation and the community-based organizations (CBOs)…

  17. OTEC support services. Quarterly technical progress report No. 11, 15 November 1980-14 February 1981

    SciTech Connect

    1981-02-01

    Technical engineering and management support services for the Ocean Thermal Energy Conversion Program are listed along with their objectives. Progress is reported on the following: technical assessments, OTEC system integration, environment and siting considerations, and transmission subsystem considerations. (MHR)

  18. OTEC support services. Quarterly technical progress report No. 17, 15 May 1982-14 August 1982

    SciTech Connect

    1982-08-01

    Progress relative to accomplishments and relative to meetings, conferences, etc. are reported in the areas of OTEC commercialization support, program technical engineering and instrumentation analysis, technical and management services, OTEC system integration, and transmission subsystem considerations. (LEW)

  19. OTEC support services. Quarterly technical progress report No. 19, November 15, 1982-February 14, 1983

    SciTech Connect

    Not Available

    1983-03-01

    Activities relative to accomplishments and to meetings, conferences, etc. are reported in the areas of: OTEC commercialization support, program technical engineering and instrumentation analysis, technical and management services, OTEC systems integration, and transmission subsystem considerations. (LEW)

  20. Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998

    SciTech Connect

    1999-01-19

    Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual

  1. OTEC support services. Quarterly technical progress report No. 18, 15 August 1982-14 November 1982

    SciTech Connect

    Not Available

    1982-11-01

    After a brief description of the technical engineering and management support services for the OTEC Program and of the task objectives, technical progress is reported in the areas of: survey, analysis, and evaluation; program technical monitoring; and transmission subsystem subsytem considerations. (LEW)

  2. OTEC support services quarterly technical progress report No. 14, 15 August 1981-14 November 1981

    SciTech Connect

    1981-11-01

    The progress in the areas of system integration, system engineering, and management services is reported. The effort is divided into seven tasks: survey, analysis, and evaluation of technical program status; program technical monitoring; development and implementation of methodology for identification, evaluation, and trade-off for major subsystem configurations; technical assessments; OTEC system integration; environment and siting considerations; and transmission subsystem considerations. (LEW)

  3. OTEC support services. Quarterly technical progress report No. 16, 15 February 1982-14 May 1982

    SciTech Connect

    Not Available

    1982-05-01

    Technical progress is reported in the area of OTEC program survey, analysis, evaluation, and recommendation concerning program performance, including OTEC commercialization support and program technical engineering and instrumentation analysis. Progress is also reported in the areas of program technical monitoring, OTEC system integration, and transmission subsystem considerations. Participation in meetings, conferences, etc. is also reported. (LEW)

  4. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, August 25--November 24, 1992

    SciTech Connect

    Kadlec, R.H.; Srinivasan, K.R.

    1992-12-24

    In this quarterly report, results of efforts on Tasks 2 and 3 are presented and discussed. Construction of a laboratory-type wetland (green house) has been begun and this undertaking is described in this report. The literature search has shown that clay amendments to wetlands are beginning to be used in Europe for P removal in agricultural drainage systems. The authors have undertaken similar studies on the use of inexpensive amendments to wetlands such as modified-clays and algae to enhance the performance of a constructed wetland for the treatment of oil and gas well wastewaters. The results from these studies are presented and analyzed in this report. Further, the literature search (nominally completed under Task 1) unearthed more recent studies (some unpublished) and a summary is included in this quarterly report.

  5. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 10, January 1944--March 1994

    SciTech Connect

    1994-08-01

    In work related to the design and construction of the Process Development Unit (PDU) this quarter involved further detail design and a real start to the construction activities. Status updates are given below for each discipline in the Task 2.0 and 3.0 headings. This work is progressing well. with the caveat of several small slips in the scheduling. On the catalyst development front this quarter was extremely productive. Many catalyst screening experiments were completed and they showed that control of the reaction exotherm is going to be quite challenging under PDU conditions. The presence of much more efficient reactor design and the ability to maintain closer to isothermal conditions is expected to give a significant advantage in actual PDU operation. A major concern at the moment is the cost of La in the catalyst being used. An action plan to remedy this is being put together.

  6. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    SciTech Connect

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  7. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997

    SciTech Connect

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Among these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.

  8. [Establishment and support of the International Power Institute]. Quarterly technical progress report, October--December, 1997

    SciTech Connect

    Coles, J.E.

    1998-04-02

    This is the quarterly report of the International Power Institute for October--December 1997. The topics of the report include pre-cooperative agreement activities, a discussion of the deputy director position, the IPI brochure, exploration of collaborative arrangements, formation of the IPI advisory board, a review of the advisory board meeting, report of a meeting with African electric utility executives, report of a visit to South Africa to explore a collaborative relationship.

  9. SRC-1 solvent-refined coal. Quarterly technical report, January-March 1980

    SciTech Connect

    Not Available

    1980-01-01

    Four papers in this quarterly report have been entered individually into EDB and ERA. They deal with reducing organic solvent losses in the Kerr-McGee solvent deashing process; with the design of heaters for the process (which involved determining the temperature dependence of the enthalpy of the organic solvent, coal and hydrogen mixture); with a review of the carbon dioxide greenhouse effect on global climates; and with a methodology for fractionating and evaluating the coal liquids produced. (LTN)

  10. Energy efficient louver and blind. Technical progress report for Quarter 2, 1996

    SciTech Connect

    Khajavi, S.

    1996-07-26

    In this quarter we jumped ahead and performed Task 5 which is testing to get empirical energy saving data. One 4` X 3` horizontal Incredibling prototype and one black and one white conventional control blinds with the same size were delivered to the Lawrence Berekely Laboratories Mobile Test Facility in Reno. The blinds are still in testing since we had only two sunny days in the month of June and we encountered some hardware problem with the computers at the lab.

  11. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994

    SciTech Connect

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1994-03-01

    During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

  12. OTEC support services. Quarterly technical progress report No. 8, February 15-May 14, 1980

    SciTech Connect

    Lipari, M. V.

    1980-05-01

    Technical engineering and management support services provided by the VSE Corporation for the Ocean Thermal Energy Conversion Program of the Ocean Systems Branch, Division of Central Solar Technology are reported. Tasks include: (1) survey, analysis, evaluation, and recommendation concerning program performance; (2) program technical monitoring; (3) development and implementation of methodology to identify and evaluate program alternatives; (4) technical assessments; (5) OTEC system integration; (6) environment and siting considerations; and (7) transmission subsystem considerations. (WHK)

  13. Identification and Evaluation of Fluvial-Dominated Deltaic Reservoirs. Quarterly technical progress report, October 1-December 31, 1996

    SciTech Connect

    Banken, M.K.; Andrews, R.

    1997-09-12

    This document is provided as a Quarterly Technical Progress Report for the program entitled 'Identification and Evaluation of Fluvial- Dominated Deltaic (Class 1 Oil) Reservoirs in Oklahoma', covering the reporting period of October 1 - December 31, 1996. Work is progressing as expected for the project. The FDD computer facility is fully operational. During this quarter, there were 37 industry 'visits' to use the facility. The Cleveland and Peru Plays workshop was completed on October 17, 1996 with 85 attendees. The Red Fork Play workshop is scheduled for March 5 and 12, 1997. The Red Fork text was submitted for editing, and all figures, maps, and plates were submitted to cartography for drafting. The Tonkawa workshop is scheduled for June, 1997 although the exact time and place have yet to be determined. Regional work and field studies for that play are in progress. This project is serving an extremely valuable role in the technology transfer activities for the Oklahoma petroleum industry, with very positive industry feedback.

  14. Advanced photovoltaic concentrator cells. Quarterly technical progress report No. 2, 1 December 1979-29 February 1980

    SciTech Connect

    Zehr, S.W.; Yang, H.T.; Yang, J.J.; Harris, J.S. Jr.

    1980-01-01

    This report describes second quarter activities for a project aimed at demonstrating the technical feasibility of advanced high efficiency concentrator solar converters. The goal of the program is to achieve 30% conversion efficiency with a converter operating at 30/sup 0/C under 500 to 1000 SUN AM2 illumination and 25% conversion efficiency with a converter operating at 150/sup 0/C under 500 to 1000 SUN AM2 illumination. The approach is to fabricate two cell, non-lattice matched, monolithic stacked converters using optimum pairs of cells having bandgaps in the range of 1.6 to 1.7 eV and 0.95 to 1.1 eV. The high bandgap cells are to be fabricated using MOCVD or LPE to produce the needed AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap cells are to be similarly fabricated from AlGaSb(As) compositions by LPE. These subcells are then to be joined into a monolithic structure by an appropriate thermal bonding technique which will also form the needed transparent intercell ohmic contact (IOC) between the two subcells. The activities this quarter have been largely focused on the development and study of low bandgap cell structures and attempts to develop suitable techniques for the thermal bonding operation.

  15. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  16. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, 1 April--30 June 1994

    SciTech Connect

    Chen, J.P.; Li, W.B.; Hausladen, M.C.; Kikkinides, E.S.; Yang, R.T.

    1994-09-01

    In the last Quarterly Technical Progress Report the authors reported the synthesis and (partial characterization) and SCR (Selective Catalytic Reduction of NO) activity for a delaminated Fe{sub 2}O{sub 3}-pillared clay (Fe{sub 2}O{sub 3}-PILC). The SCR activity for this PILC was substantially higher than that of the commercial-type V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst. During the past quarter, the authors first completed the characterization of the delaminated Fe{sub 2}O{sub 3}-PILC catalyst. Both physical characterization (micropore probing by adsorption and Moessbauer spectroscopy) and chemical characterization (by IR spectroscopy) were performed. Since the synthesis of this PILC sample was undertaken under a specific set of conditions and it is known that the PILC properties depend strongly on the synthesis conditions, they then proceeded to examine in a systematic manner the dependence of the catalytic properties of the PILC on its synthesis conditions. Four parameters in the synthesis were studied: Fe precursors, pH of the pillaring solution, concentration of the pillaring solution, and the starting clay. Finally, the effect of the Cr{sub 2}O{sub 3} promoter on the SCR activity of the pillar clay was studied. Results are reported.

  17. Ultralean low swirl burner

    DOEpatents

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  18. Ultralean low swirl burner

    DOEpatents

    Cheng, Robert K.

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  19. Regulatory and technical reports (abstract index journal): Compilation for third quarter 1994, July--September. Volume 19, Number 3

    SciTech Connect

    1994-12-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issues by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order: NUREG-XXXX, NUREG/CP-XXXX, NUREG/CR-XXXX, and NUREG/IA-XXXX. These precede the following indexes: Secondary Report Number Index, Personal Author Index, Subject Index, NRC Originating Organization Index (Staff Reports), NRC Originating Organization Index (International Agreements), NRC Contract Sponsor Index (Contractor Reports) Contractor Index, International Organization Index, Licensed Facility Index. A detailed explanation of the entries precedes each index.

  20. Regulatory and technical reports (abstract index journal): Compilation for third quarter 1996 July--September. Volume 21, Number 3

    SciTech Connect

    1997-02-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order: NUREG-XXXX, NUREG/CP-XXXX, NUREG/CR-XXXX, and NUREG/IA-XXXX. These precede the following indexes: secondary report number index; personal author index; subject index; NRC originating organization index (staff reports); NRC originating organization index (international agreements); NRC contract sponsor index (contractor reports); contractor index; international organization index; and licensed facility index. A detailed explanation of the entries precedes each index.

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-11-04

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

  2. OTEC support services. Quarterly technical progress report No. 21, 15 May-15 August 1983

    SciTech Connect

    Not Available

    1983-09-01

    Progress is reported on the system integration, system engineering, and management services for the OTEC program under the following tasks: (1) survey, analysis, and evaluation; (2) program technical monitoring; (3) development and implementation of methodology; (4) technical assessments; (5) OTEC systems integration; (6) environment and siting considerations; and (7) transmission subsystem considerations.

  3. OTEC support services. Quarterly technical progress report No. 20, 15 February - 14 May 1983

    SciTech Connect

    Not Available

    1983-01-01

    The following task areas are described briefly for the system integration, system engineering, and management services provided for the OTEC program: (1) survey, analysis and evaluation; (2) program technical monitoring; (3) development and implementation of methodology; (4) technical assessment; (5) OTEC systems integration; (6) environment and siting considerations; and (7) transmission subsystem considerations.

  4. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  5. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    SciTech Connect

    Kilbane, J.J. II

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  6. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1993-07-20

    Twelve weld overlay hardfacing alloys have been selected for preliminary erosion testing based upon a literature review. Four of the selected coatings were deposited on a 1018 steel substrate using plasma arc welding process. During the past quarter, the remaining eight coatings were deposited in the same manner. Ten samples from each coatings were prepared for erosion testing. Microstructural characterization of each coating is in progress. This progress report describes coating deposition and sample preparation procedures. Relation between coatings hardness and formation of cracks in coatings is discussed.

  7. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  8. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, July 1-September 30, 1997

    SciTech Connect

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has completed one year of activity, accelerating the pace of cofiring development. Cofiring tests were completed at the Seward Generating Station of GPU Genco and at the Michigan City Generating Station of NIPSCO. The NYSEG work at Greenidge Station resulted in a workable, low cost method for injecting biofuels into coal-fired PC boilers. Support studies and modeling continued to provide analytics for the cofiring program. This report summarizes the activities during the fourth quarter of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon the results of testing in order to highlight the progress at utilities.

  9. Magnetohydrodynamic projects at the CDIF. Quarterly technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The Component Development and Integration Facility (CDIF) is a major US Department of Energy magnetohydrodynamic (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the first quarter of FY92, MHD testing was initiated. Off-line and on-line calibration tests were completed for the Endress+Hauser flowmeter, and thermal, conductivity, and electrical testing was initiated.

  10. Magnetohydrodynamic projects at the CDIF. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-08-01

    The Component Development and Integration Facility (CDIF) is a major U.S. Department of Energy magnetohydrodynamics (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the second quarter of FY92, a second external water leak on the iron-core magnet was repaired, and MHD testing was completed on February 11; this was the final testing of the workhorse hardware. Workhorse hardware was removed, and installation of the proof-of-concept (POC) combustor began.

  11. Novel concepts in electrochemical solar cells. Quarterly technical progress report, December 15, 1980-March 15, 1981

    SciTech Connect

    Not Available

    1981-01-01

    During the past quarter, the following areas were emphasized: (a) characterization of redox couples with very positive potentials in room-temperature AlCl/sub 3/-BPC electrolytes and comparison of the electrochemical behavior of decamethyl ferrocene in these electrolytes with the previously-studied ferrocene/ferricenium ion couple, (b) photoelectrochemical characterization of CdSe thin-film anodes in aqueous polysulfide electrolytes and (c) refinement of the admittance measurement technique for extraction of Mott-Schottky parameters. The results of research in these areas are detailed in turn below.

  12. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Technical progress report No. 17, 18 and 19, September 30, 1991--December 31, 1996

    SciTech Connect

    Borio, R.W.; Patel, R.L.; Thornock, D.E.

    1996-07-29

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the last three quarters [seventeenth (October `95 through December `95), eighteenth (January `96 through March `96), and nineteenth (April `96 through June `96)] of the program.

  13. Cuprous oxide photovoltaic cells. Third quarterly technical progress report, October 9, 1979 to January 8, 1980

    SciTech Connect

    Trivich, D.

    1980-01-08

    Previous work in this laboratory on cuprous oxide Schottky barrier photovoltaic cells showed that some potential improvements were limited by chemical degradations at the junction (1), e.g., in Al/Cu/sub 2/O cells, the aluminum reduced the surface of the Cu/sub 2/O to metallic Cu. The present project is being devoted to a study of methods to avoid this problem and also to the development of other methods of improving the efficiency of Cu/sub 2/O cells. The first quarterly report was devoted to a study of thin oxide interlayers between the metal and the Cu/sub 2/O which gives MIS structures. The most stable interlayers were obtained with SiO/sub 2/. The second quarterly report covered some initial work on heterojunctions with other oxides on Cu/sub 2/O. The most stable heterojunctions were obtained with CdO on Cu/sub 2/O. The present report presents some results on Auger studies of the oxide heterojunctions, the preparation of doped Cu/sub 2/O by introduction of impurities in the starting copper, the exploration of several method for the study of diffusion length, and some initial attempts on the laser annealing of Cu/sub 2/O.

  14. Quarterly technical progress report, July-September 1982 on Energy Conversion Research and Development Programs

    SciTech Connect

    Not Available

    1983-12-01

    Detail design work was resumed on the superheater. Satisfactory bids were received for the air heater and lowest price responsive bidder was chosen. The conduct of three tests in the LMF1C series is reported. The status of the environmental monitoring program is reviewed. Preliminary analyses of the test data from the three tests conducted during the quarter are included. The heat fluxes, combustor pressure and combustor efficiencies are reported. The performance of the nozzle, diagnostic (Hall) channel and diffuser is compared with an analytical model for each test run. The performance of the new diffuser which was installed during the quarter is discussed. The test results from the downstream components; i.e. slag screen, radiant furnace, secondary combustor and materials test module, are discussed. Slag removal from the radiant furnace, refractory performance and metals performance is covered. A summary report is included on the results of the cold flow modeling of the secondary combustor, which involved variations in relative velocity of the secondary air, the angle of injection and the flow constriction. Diagnostic support of testing activities is described, including the use of the laser doppler velocimeter (LDV) for the secondary combustor modeling. Luminosity and line reversal temperature measurements were made in support of the CFFF tests. A photodiode line reversal system has been designed which has the promise of being more reliable, easier to install on operational equipment and cheaper.

  15. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, September--November 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number_sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal`s inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  16. Photochemical coal dissolution. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Doetschman, D.C.

    1995-12-31

    Examination of the photochemical extractions of the four Argonne Premium Coal Residues has been under way in a routine manner during this last quarter. An unexpectedly great effort last quarter had been necessary to find extraction solvents and photochemical reagents that were photochemically stable and inert. While it is a rather poor thermal extraction solvent, acetonitrile has proven to be the best solvent the authors have examined. In addition to runs with only the acetonitrile solvent present, experiments were performed with the photochemical reagents, benzophenone and pyridine. Both ketone and pyridine triplet states are well-known for their hydrogen abstraction and electron transfer capabilities. The photochemical reagents were used at concentrations resulting in 50% transmission of the light across the reactor pathlength at 320 nm. Experiments with the quartz cutoff filter remain to be completed at concentrations resulting in 50% transmittance at lower wavelengths. Changes in the transmission of light by the column effluent were monitored continuously and the extraction yield by weight was measured by evaporation of the solvent and subtraction of reagent weight. Thermal extraction yields without light under otherwise identical conditions were measured for comparison. As a check on undesirable effects, such as solvent photochemical degradation, otherwise identical light and dark experiments were also done without the coal on the column.

  17. Particulate Hot Gas Stream Cleanup Technical Issues: Quarterly report, July 1-September 30, 1996

    SciTech Connect

    Pontius, D.H.

    1996-12-09

    This is the eighth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, additional analyses were performed on ashes from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. Work continued on the HGCU data base being constructed in Microsoft Access. A variety of information has been entered into the data base, including numerical values, short or long text entries, and photographs. Detailed design of a bench top device for high temperature measurement of ash permeability has also begun. In addition to these activities, a paper was prepared and a poster was presented summarizing recent work performed under this contract at the 1996 DOE/METC Contractor`s Conference. A presentation was also given corresponding to the manuscript entitled Particle Characteristics and High-Temperature Filtration that was prepared for publication in the Proceedings of the Thirteenth Annual International Pittsburgh Coal Conference held this September in Pittsburgh, PA. Arrangements have been made to be present at the DOE/METC Modular Gas Cleanup Rig (MGCR) at the conclusion of the next run of the DOE/METC air blown Fluid Bed Gasifier (FBG). This visit will include on-site sampling to collect and characterize the filter cakes collected during FGB operation. Task 2 efforts during the past quarter focused on

  18. Cuprous oxide photovoltaic cells. Fourth quarterly technical progress report, January 9-April 8, 1980

    SciTech Connect

    Trivich, D.

    1980-01-01

    The previous work on this project was devoted to a study of MIS cells and heterojunction cells with Cu/sub 2/O. In particular the junctions were studied by Auger techniques to detect possible chemical changes at the interface. It was found that some preparation conditions could produce heterojunctions without chemical degradation. In the last quarter, work was initiated on the effect of impurities in the starting Cu on the properties of the Cu/sub 2/O and Cu/sub 2/O solar cells. Methods of measuring diffusion length were explored. In this report a further examination of impurities in the Cu is presented. Some additional details on the CdO/Cu/sub 2/O heterojunction are given. The measurement of diffusion length by a photocurrent method is described and some results are given.

  19. Products of motor burnout. Second quarterly technical report, October 1, 1994--December 31, 1994

    SciTech Connect

    Hawley-Fedder, R.

    1995-01-15

    The OSP (Operating Safety Procedure) required for performance of electrical arc testing of CFC replacement fluids was renewed. Electrical breakdown tests at one atmosphere pressure have been performed for R-22, R-134a, and R-125/R-143a (50:50 blend; R-507), and breakdown products identified. No differences in HCFC breakdown products are seen in the presence or absence of lubricant oils. The design of the high pressure-high temperature test stand has been finalized, and construction initiated during this quarter. Three motor stators and rotors were received from Tecumseh Products Company for use in motor burnout tests. A test plan for the motor breakdown tests is in preparation.

  20. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objective for this quarter was to study the effect of co-feeding a 1-olefin on the Ruhrchemie catalyst activity and selectivity, during-both conventional Fisher-Tropsch synthesis (FTS) and FTS under supercritical conditions. We used propane as the supercritical fluid and 1-dodecene (1-C{sub 12}H{sub 24}) in this test. Motivation for this study was the work of Fujimoto and co-workers who reported that suppression of methane and enhancement of high molecular weight hydrocarbons selectivities occurs with co-feeding of 1-olefins (1-heptene, 1-tetradecene, or 1-hexadecene) during FTS under supercritical conditions, but not during the conventional FTS (Co-La catalyst supported on silica in supercritical n-pentane).The diffusion coefficients of products in supercritical fluids is discussed.

  1. (Operation of MHD Coal Fired Flow Facility): Quarterly technical progress report, October-December 1987

    SciTech Connect

    Not Available

    1988-05-01

    In this Progress Report UTSI summarizes the progress on a multitask research and development project encompassing the development of the steam bottoming plant technology for a Coal Fired MHD/Steam power plant. Current emphasis is on testing promising tube materials, removal of particulate from the flue gas by both electrostatic precipitator and baghouse, fouling of heat transfer surfaces, recovery of spent seed material and environmental intrusion. The results of a 65 hour test conducted during the quarter in the DOE Coal Fired Flow Facility (CFFF) are discussed. The application of advanced optical diagnostic measurement equipment by both UTSI and Mississippi State University (MSU) is summarized. Evolutionary changes to test hardware and facility equipment are reported.

  2. Molecular biology of coal bio-desulfurization; Quarterly technical progress report, October 1--December 31, 1990

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1991-01-25

    The aim of this project is to use the techniques of molecular genetics to identify, clone, sequence, and enhance the expression of proteins which remove sulfur covalently bound to coal. This includes the movement and expression of these proteins into bacterial species which may be more useful in the industrial application of a biological desulfurization process. This quarter we finalized the initial cloning and sequencing of the dibenzothiophene (DBT) metabolic (``dox``) genes from strain C18. In addition, we constructed several mutations in single dox genes and have begun to dissect the contribution of each gene product in the DBT degradation pathway. Using a probe derived from DNA adjacent to a transposon which inactivated DBT metabolism, the DBT active genes from A15 have been cloned and identified on cosmids. We have also electroporated Thiobacillus ferrooxidans with a plasmid containing a chloramphenicol resistant transposon. Colonies of T. ferrooxidans resistant to chloramphenicol were obtained.

  3. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  4. Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

  5. Methane coupling by membrane reactor. Quarterly technical progress report, June 25, 1994--September 24, 1994

    SciTech Connect

    Ma, Yi Hua

    1995-01-04

    This quarterly report describes results from the experimental studies on oxidative coupling of methane, oxygen conducting perovskite dense membrane synthesis and modeling studies of the methane coupling reaction. The focus of the experimental study is to explore the effects of varying catalyst loading, varying methane to oxygen ratios and feed conditions when the oxygen conversion is much less than 100%. Results from these studies help in understanding the effects of various parameters controlling methane coupling. Dense membrane synthesis and characterization results are presented which describe new approaches to the synthesis and characterization of these membranes. The modeling results described in this report present a theoretical fit to the experimental data on oxidative coupling of methane in fixed bed reactors. The parameters from the fit are used to predict the trends in experimental data obtained from VYCOR membrane reactors. The predicted trends are based on a theoretical model employing simplified methane coupling kinetics.

  6. Direct liquefaction of low-rank coal. Quarterly technical progress report, January 1--March 31, 1995

    SciTech Connect

    Hetland, M.D.

    1995-04-01

    A multistep direct liquefaction process specifically aimed at low-rank coals (LRCs) has been developed at the Energy & Environmental Research Center (EERC). The process consists of a preconversion treatment to prepare the coal for solubilization, solubilization of the coal in the solvent, and polishing using a phenolic solvent or solvent blend to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrogenation step. This project addresses two research questions necessary for the further development and scaleup of this process: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for effective hydrotreatment of the liquid product. The project involves two tasks, the first consisting of ten recycle tests and the second consisting of twelve hydrotreatment tests performed at various conditions. Activities performed during this quarter are discussed.

  7. Development of analytical procedures for coprocessing. Quarterly technical progress report, April 1, 1991--June 30, 1991

    SciTech Connect

    Green, J.B.; Anderson, R.P.

    1991-07-01

    The overall objective of the contract is to improve understanding of the fundamental chemistry of coprocessing. A primary objective is to evaluate methods to distinguish between compound classes originating from coal versus those originating from petroleum resid while a corollary objective is to provide detailed knowledge on the composition of coprocessing products. This and the prior quarterly report summarize work conducted in support of the latter objective in which process development unit samples produced by HRI, Inc. were subjected to detailed analysis. Coprocessing resid samples selected for detailed analysis were made under constant conditions except for variations in coal concentration or in the coal (New Mexico subbituminous or Texas lignite). Separation of the resids into acid, base, saturate, and neutral-aromatic subtractions, separation of the neutral-aromatics by ring number and high temperature gas chromatography were discussed in the previous quarterly. This report includes results of nonaqueous titrations, elemental analyses and infrared spectroscopy. The hydrocarbon skeletons of saturated hydrocarbons in the coprocessing resids appear to be fundamentally different than those of aromatic species. Neutral-aromatic fractions contain minor levels of sulfur compounds, an unknown proportion of ether or other oxygen-containing species, and major concentrations of aromatic hydrocarbons containing from 3 to 7 aromatic rings. Base fractions contain predominantly single nitrogen compounds of azaarene or aminoaromatic type. Aminoaromatics (compounds analogous to aniline) are present in significant amounts in products made from New Mexico subbituminous coal but are nearly absent in the Texas lignite product. Acid fractions contain appreciable quantities of pyrrolic benzologs, but surprisingly low concentrations of compounds with a free OH group.

  8. Particulate hot gas stream cleanup technical issues. Quarterly report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFs) and to relate these ash properties to the operation and performance of these filters and their components. APF operations have also been limited by the strength and durability of the ceramic materials that have served as barrier filters for the capture of entrained HGCU ashes. Task 2 concerns testing and failure analyses of ceramic filter elements currently used in operating APFs and the characterization and evaluation of new ceramic materials. Task 1 research activities during the past quarter included characterizations of samples collected during a site visit on January 20 to the Department of Energy/Southern Company Services Power Systems Development Facility (PSDF). Comparisons were made between laboratory analyses of these PSDF ashes and field data obtained from facility operation. In addition, selected laboratory techniques were reviewed to assess their reproducibility and the influence of non-ideal effects and differences between laboratory and filter conditions on the quantities measured. Further work on the HGCU data base is planned for the next quarter. Two Dupont PRD-66 candle filters, one McDermott candle filter, one Blasch candle filter, and one Specific Surfaces candle filter were received at SRI for testing. A test plan and cutting plan for these candles was developed. Acquisition of two of the Dupont PRD-66 candle filters will allow candle-to-candle variability to be examined.

  9. OTEC support services. Quarterly technical progress report No. 9, 15 May-14 August 1980

    SciTech Connect

    1980-08-01

    System integration, system engineering, and management support services provided by the VSE Corporation for the Ocean Thermal Energy Conversion Program of the Ocean Systems Branch, Division of Central Solar Technology, DOE are described. The services are provided under seven task areas: (1) survey, analysis, evaluation, and recommendation concerning program performance; (2) program technical monitoring; (3) development and implementation of methodology to identify and evaluate program alternatives; (4) technical assignments; (5) OTEC system integration; (6) environment and siting considerations; and (7) transmission subsystem considerations. (WHK)

  10. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  11. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1--July 31, 1998

    SciTech Connect

    1998-09-01

    Progress is reported on research projects related to the following: Electronic resource library; Environment, safety, and health; Communication, education, training, and community involvement; Nuclear and other materials; and Reporting, evaluation, monitoring, and administration. Technical studies investigate remedial action of high explosives-contaminated lands, radioactive waste management, nondestructive assay methods, and plutonium processing, handling, and storage.

  12. Educational Technology Program. Quarterly Technical Summary, Period Ending 31 May 1970.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    An overview of the Lincoln Training System (LTS) and descriptions of the hardward and software of the LTS-1 and LTS-2 systems are provided. The overall program seeks to develop, test, and evaluate technical aids to vocational training systems. These are appropriate to this field because the high costs need to be reduced and because there are clear…

  13. Technical progress report for the quarter 1 October-31 December 1980

    SciTech Connect

    Not Available

    1981-01-01

    This report describes the technical accomplishments on the commercial nuclear waste management programs and on the geologic disposal of nuclear wastes. The program is organized into eight tasks: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management. (DLC)

  14. Educational Technology Program. Quarterly Technical Summary Report 1 June - 31 August 1970.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    Although the principal goal of the Lincoln Training System (LTS) is to develop prototypical hardware and lesson materials for military technical training, the computer-assisted instructional system is being studied for possible application in various areas of special education in the public sector. The LTS-1 terminal was prepared for testing.…

  15. [Dynamic enhanced recovery techniques]. Quarterly technical report, April 1994--June 1994

    SciTech Connect

    Anderson, R.N.

    1994-07-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth of faults in Eugene Island Block 330 (EI-330 field) are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water and the productive depth intervals include 4000 to 9000 feet. The field demonstration will be accomplished by drilling and production testing of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. In this quarterly report, progress reports are presented for the following tasks: Task one--management start-up; Task two--database management; Task three--field demonstration experiment; Task four--reservoir characterization; Task five--modeling; Task six--geochemistry; and Task seven--data integration.

  16. Microbial stabilization of sulfur-laden sorbents. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Miller, K.W.

    1993-09-01

    Clean coal technologies that involve limestone for in situ sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur frequently results in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide or sulfite can serve as growth substrates for sulfur-oxidizing bacteria, which convert all sulfur to sulfate. The goals of this project are the following: (1) to optimize conditions for sulfate generation from sulfide, thiosulfate, and sulfite; (2) to test and optimize the effectiveness of microbial processing on spent sorbents from flue gas desulfurization, coal gasification, and fluidized bed combustion; (3) to search for hyperalkalinophilic thiobacilli, which would be effective up to pH 11. This quarter, temperature, nitrogen, and phosphate requirements for sulfate generation on thiosulfate were optimized with respect to two named strains and two promising isolates. Spent sorbents from three different power plants were tested for sulfite and thiosulfate contents, in preparation for bioprocessing.

  17. National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-06-01

    Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  18. Low-cost-silicon-process development. Phase IV: process improvement. Second quarterly technical progress report

    SciTech Connect

    Giraudi, R. V.; Newman, C. G.

    1981-04-01

    A number of promising techniques for improving the overall yield and economics of the tribromosilane based process to produce solar cell grade silicon is investigated. The current work is aimed at the identification of an optimum process and the characterization of that process through mini-plant operation and analysis. The three project tasks include process improvement studies, kinetic studies, and process economic studies. During this second quarter reporting period process improvement studies continued in the mini-plant, focusing on the correlation of current mini-plant yield results with prior laboratory scale work. Silicon bromination in the synthesis unit and tribromosilane purification in the distillation unit proceeded efficiently and without complication during this reporting period. Tribromosilane yields in the synthesis unit were low due to unobtainable higher reaction temperatures. Initial polycrystalline silicon production studies have indicated consistent yields of 85%. The laboratory scale static bulb reactor system was calibrated by observing the decomposition of t-butyl chloride. These results compared very well to results obtained by previous investigators for the same decomposition. Upon the conclusion of the calibration tests, the tribromosilane decomposition rate study was initiated. Two decompositions were completed and it was concluded that the reaction order can not be determined at this time. A free space reactor apparatus was assembled and tribromosilane decompositions, as a function of dilution in argon, was studied.

  19. Oxidation of phenolics in supercritical water. Quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Savage, P.E.

    1993-12-31

    Oxidation reactions are accomplished in an isothermal, high-pressure, flow reactor designed specifically for operation at supercritical water conditions. The reactor feed stream is prepared by mixing two separate streams. One stream is an aqueous solution of the phenolic reactant and the second stream is water with dissolved oxygen. Controlling the flow rates of these two streams allows us to control the reactor residence time and the relative amounts of the phenol and oxygen fed to the reactor. The reactor effluent is cooled and depressorized and then collected for analysis. The gaseous products are analyzed by gas chromatography (GC). The liquid-phase products are analyzed by GC, high-performance liquid chromatography, and GC-mass spectrometry. Our work to date has focused on the oxidation of cresols in SCW. We have explored the effects of temperature, pressure, and the concentrations of o-cresol, oxygen, and water. Table I gives these experimental conditions and the resulting ocresol conversions. We reported a portion of this data in our previous quarterly report. New information is given in the last three columns where we report the molar yields of phenol, CO{sub 2}, and CO. Molar yields were calculated as the molar flow rate of a given product divided by the initial molar flow rate of o-cresol and normalized by the stoichiometric coefficient. Earlier, we used the o-cresol conversion data to determine the parameters in a global reaction rate law for o-cresol disappearance.

  20. Molecular biological enhancement of coal biodesulfurization. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Kilbane, J.J. II

    1994-06-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strain`s of microorganisms that possess higher levels of desulfurization activity and therefore wall permit more favorable biodesulfurization process conditions: faster rates, mare complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. Several possible strong promoters have been isolated and are in the process of being analyzed. When these promoters have been characterized for inducibility, strength, transcriptional start sites and other physical properties, they will be placed in front of the desulfurization genes and expression will be monitored. Improved promoter probe vectors have been constructed, allowing a conclusive screen of all putative Rhodococcus promoters. With the improved methodologies in the handling of Rhodococcus RNA, we have begun to gauge promoter expression using Northern blots. During this quarter we have constructed and successfully used a promoter probe vector using the {beta}-galactosidane gene from E. coli. A chromosomal promoter library was constructed upstream from the {beta}-galactosidase gene. Over 200 colonies were isolated that yielded {beta}-galactosidase activity.

  1. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 11, April--June 1994

    SciTech Connect

    1994-11-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate the economics of the process. Significant progress was made in catalyst and PDU development this quarter. The key points of these developments are: Initial discussions have taken place with a catalyst supplier. United Catalysts, Inc. UCI came up with some good catalyst development suggestions and has agreed to produce a batch of catalyst for the PDU; previous plans for supply of methane for the PDU have fallen through. New options. including getting gas from Carrollton Utilities, are being evaluated; and PDU equipment installation is completed. and piping is 40% complete. The electrical work is close to being finished, and the instrumentation is underway.

  2. VHF EPR analysis of organic sulfur in coal. [Quarterly] technical report, September 1--November 20, 1991

    SciTech Connect

    Clarkson, R.B.

    1991-12-31

    This report covers progress made in the first yearly quarter of a two year investigation using novel, very high frequency electron paramagnetic resonance (VHF EPR) spectroscopy techniques and instrumentation (one of only two W-band spectrometers in existence) developed earlier by these authors, to conduct further qualitative and quantitative studies of heteroatomic organic molecules in coal with particular emphasis on sulfur. Previous W-band (96 GHz) work is being extended to studies of new model compounds as well as coal and desulfurized coal samples. Typically, the model compounds under investigation and their analogues are found in coals as stable free radicals which give rise to an EPR signal. The preparation of radicals from compounds having widely varying structures and physical properties in a stable environment has long been a very difficult task. To address this problem, the refinement of several new and very useful methods of preparing of these stable free radicals in various glasses, at catalytic surfaces, and in solution, are presented in this first report. Free radical generation was accomplished by both UV photolysis as well as chemical oxidation/reduction techniques. By these methods, over 25 new compounds, often commercially derived from coal extracts, have been prepared and studied by conventional X-band EPR (9 GHz). Several representative W-band spectra are also presented.

  3. Quarterly Technical Progress Report - Investigation of Syngas Interaction in Alcohol Synthesis Catalysts

    SciTech Connect

    Murty A. Akundi

    1998-11-10

    This report presents the work done on " Investigation of Syngas Interaction in Alcohol Synthesis Catalysts" during the last quarter. The major activity during this period is on FTIR absorption studies of Co/Cr catalysts using CO as a probe molecule. Transition metals cobalt and copper play significant roles in the conversion of syngas (CO + H2 ) to liquid fuels. With a view to examine the nature of interaction between CO and metal, the FTIR spectra of CO adsorbed on Co-Cr2 O3 composites were investigated. The results indicate that as cobalt loading increases, the intensity of the CO adsorption bands increase and several vibrational modes seem to be promoted. Heat treatment of the sample revealed two distinct processes of adsorption. Bands due to physisorption disappeared while bands due to chemisorption not only increased in intensity but persisted even after desorption. It seems that the physisorption process is more active when the catalyst is fresh and is hindered when carbidic/carbonyl formations occur on the metal surfaces.

  4. GBRN/DOE Project: Dynamic enhanced recovery technologies. Quarterly technical report, January 1994--March 1994

    SciTech Connect

    Anderson, R.N.

    1994-04-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth faults in EI-330 field are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water the productive depth intervals include 4000 to 9000 feet. Previous work, which incorporated pressure, temperature, fluid flow, heat flow, seismic, production, and well log data, indicated active fluid flow along fault zones. The field demonstration will be accomplished by drilling and production test of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. The quarterly progress reports contains accomplishments to date for the following tasks: Management start-up; database management; field and demonstration equipment; reservoir characterization, modeling; geochemistry; and data integration.

  5. Appalachian clean coal technology consortium. Technical quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Yoon, R.H.; Basim, B.; Luttrell, G.H.; Phillips, D.I.

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. These included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. The tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0.5 inches of cake thickness, the improvement was limited to 8% at the same reagent dosage. The results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering. The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  6. The Kelastic variable wall mining machine. Third quarterly technical report, April 1--July 1, 1997

    SciTech Connect

    1997-12-31

    The Project Team accomplished two tasks during the third quarter: preparation and presentation of professional papers; and development of simulation models and sub models of the hypothetical variable wall mining installation. The project team also continued its search for the suitable animation software to be adapted to the underground mining systems. Meanwhile work is progressing along the lines of updating the original open loop flow diagram that deals with the automatic control of the thrusting, advance, and rotation of the auger train which both cuts (extracts) and transports the coal across the face. The team is integrating the control systems into a deterministic mathematical equation for optimizing the mining and material flow rate in the operating system. The long range plan is to integrate the current deterministic equations in a suitable animation program with a number of adjustable and controllable parameters. This will enable coal operators and engineers to visualize how the variations can affect the safety, cost and production levels of the system.

  7. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1993-10-01

    The Research and Development Department of CONSOL Inc. is conducted a program to characterize process and product streams from direct coal liquefaction process development projects sponsored by the Department of Energy. In this program, CONSOL obtains samples from current process development activities in coal liquefaction and coal-oil coprocessing, and characterizes them using established analytical techniques. In addition, selected samples are characterized by other analytical techniques to evaluate their potential for aiding process development. These analyses and interpretation of the results in relation to process operations are provided by the subcontractor. Major topics reported in this thirteenth quarterly report are the following: (1) Analyses were performed on three coals and eleven process oils from HRI, Inc. process development unit Run 260--03, which was the first process development unit test of Black Thunder Mine subbituminous coal, significant operating problems were encountered, and sample properties are discussed in context to the operational problems; (2) a summary of the status of the Participants Program is given; (3) summaries of the final reports produced by the University of Chicago, the University of Utah, Iowa State University, and the University of Kentucky under the Participants Program, are presented.

  8. Western Research Institute quarterly technical progress report, July--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    Accomplishments for the quarter are described briefly for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers process studies. Tar sand research is on recycle oil pyrolysis and extraction (ROPE{sup TM}) Process. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: CROW{sup TM} field demonstration with Bell Lumber and Pole; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid state NMR analysis of Mowry formation shale from different sedimentary basins; solid state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  9. Metal boride catalysts for indirect liquefaction. Quarterly technical progress report, December 1, 1983-February 29, 1984

    SciTech Connect

    Bartholomew, C.H.

    1984-04-12

    During the sixth quarter four boron-promoted cobalt catalysts were prepared by a new boriding process using diborane gas as the boriding agent. These catalysts were characterized by chemical analysis, BET, H/sub 2/ chemisorption, and x-ray diffraction. Temperature-programmed desorption spectra of H/sub 2/ were obtained for a sodium-promoted cobalt boride and a sodium-promoted Co/SiO/sub 2/. Four cobalt catalysts (unsupported, boron-promoted, sodium-promoted, and doubly-promoted) were tested for CO hydrogenation activity and selectivity at 1 atm and 3 to 4 temperatures in the range of 190 to 240/sup 0/C. About 10% of the surface of cobalt boride consists of reduced metallic cobalt. The addition of sodium to cobalt increases its binding energy with H/sub 2/ and its activation energy for H/sub 2/ adsorption. Boron does not affect the activity of cobalt; sodium decreases it by a factor of 10. Cobalt boride produces lighter hydrocarbon products relative to cobalt; sodium-promoted cobalt produces heavier products, more alcohols, and more CO/sub 2/. 29 references, 10 figures, 4 tables.

  10. ERIP invention 637. Technical progress report 2nd quarter, April 1997--June 1997

    SciTech Connect

    Thacker, G.W.

    1997-07-22

    This technical report describes progress in the development of the Pegasus plow, a stalk and root embedding apparatus. Prototype testing is reported, and includes the addition of precision tillage. Disease data, organic matter, and nitrogen levels results are very briefly described. Progress in marketing is also reported. Current marketing issues include test use by cotton and wheat growers, establishment of dealer relationships, incorporation of design modifications, expansion of marketing activities, and expansion of loan and lease program.

  11. Dark Matter Burners

    SciTech Connect

    Moskalenko, Igor V.; Wai, Lawrence L.; /SLAC

    2007-02-28

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  12. Burners and stingers.

    PubMed

    Feinberg, J H

    2000-11-01

    The burner or stinger syndrome is one of the most common injuries in football and most likely represents an upper cervical root injury. Other sports reported include wrestling, hockey, basketball, boxing, and weight lifting. The athlete experiences radiating pain, numbness, or tingling down one upper limb, usually lasting less than 1 minute. Recurrences are common and can lead to permanent neurologic deficits. Burners are usually diagnosed and treated based on physical examination findings, but radiographs, MR imaging, and electrodiagnostic testing may help localize the precise level of injury, identify other associated pathology, and quantify neurologic injury. Management should include education on proper tackling techniques, restoration of neck motion, functional strengthening, and carefully fitted orthosis.

  13. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  14. Infrared and catalytic burner technology assessment. Final report, 21 February 1980-20 February 1981

    SciTech Connect

    Kesselring, J.P.; Krill, W.V.; Schreiber, R.J.

    1981-02-01

    The results of a review of the state of the art in infrared and catalytic burner development are presented. Four basic types of IR burners are currently is use. Eight commercial and/or residential appliances were characterized to assess the applicability of these burners. The refractory monolith tile and the fiber matrix burners appear most applicable for appliance use. Conceptual designs for the eight appliances with IR burners were prepared to evaluate the technical feasibility. These appliances are shown to have significant fuel efficiency increase and NOx and CO emission reduction benefits. Four appliances -- the commercial rangetop, deep fat fryer, commercial water heater, and warm air furnace -- also appear economically competitive, and recommended approaches for further development are presented. Lists of IR burner literature and patents are also included.

  15. Quarterly technical progress report for the period ending June 30, 1984

    SciTech Connect

    Not Available

    1984-10-01

    The Magnetohydrodynamics Program (Component Development and Integration Facility) in Butte, Montana, continued its site preparation for the TRW first-stage combustor installation. In the area of flue gas cleanup, our in-house research program is continuing its investigation into the causes of sorbent attrition in PETC's fluidized-bed copper oxide process for simultaneous SO/sub 2//NO/sub x/ removal. Interwoven with these tests is a series of spray dryer/electrostatic precipitator tests that are being conducted with the cooperation of Wheelabrator-Frye, Inc. This test series was completed this quarter, and the data show that when using a Kentucky coal, Wheelabrator-Frye's electrostatic precipitator provides excellent particulate control efficiency while using a spray dryer for sulfur dioxide removal. A unique project at Carnegie-Mellon University is looking at the concept of integrated environmental control for coal-fired power plants making use of precombustion, combustion, and postcombustion control, including systems for the simultaneous removal of more than one pollutant. The objective of this research is to develop a computer model and assessment for integrated environmental control systems that utilize conventional or advanced systems. The Liquid Phase Methanol Project Development Unit in LaPorte, Texas, was restarted after a successful shakedown run was completed. PETC has recently begun an in-house research project aimed at exploring the basic chemistry of liquefying coal in the presence of water under supercritical conditions. In the Alternative Fuels Technology Program, the Gulf Research and Development Company has completed the preliminary testing phase of its erosion test loop. Their results indicate that when pumping a coal-water slurry fuel through a flow loop, the erosion rate increases as velocity increases, suggesting a well-defined relationship between these two parameters.

  16. Electrochemical photovoltaic cells. Project 65021 quarterly technical progress report, October 15, 1979-January 15, 1980

    SciTech Connect

    Ang, P.G.P.; Remick, R.J.; Sammells, A.F.

    1980-03-01

    During the third quarter of this program, liquid junction devices based upon the semiconductors MoSe/sub 2/, MoS/sub 2/, GaAs, and CdSe have been evaluated. Lifetime testing of MoSe/sub 2/ and MoS/sub 2/ materials in acidic halogen electrolytes at constant current densities of 5 mA/cm/sup 2/ have shown excellent stability to date. For MoSe/sub 2/ single crystals in the electrolyte 1M HBr + 1M Br/sub 2/, short-circuit currents of 63 mA/cm/sup 2/ were achieved with a power conversion efficiency of 6.7% for 200 mW/cm/sup 2/ xenon light illumination. Transient potentiostatic measurements made on MoSe/sub 2/ in this electrolyte indicated little diffusion control, with exchange currents being of the order of 1 to 10 mA/cm/sup 2/. Good photoresponse of MoS/sub 2/ has been observed in 1M HBr + 1M Br/sub 2/. The performance of the natural crystal is comparable to the performance of a single-crystal MoS/sub 2/ in this electrolyte. CdSe thermally evaporated onto porous titanium gave efficiencies of about 4% with 100 mW/cm/sup 2/ xenon illumination. Experimental work was initiated on the dye sensitization of Fe/sub 2/O/sub 3/ and TiO/sub 2/ materials. Of the twelve dyes evaluated, little enhancement of the photoresponse of these materials was noted. Solid-state photoelectrochemical cells have been fabricated, based upon LiI. Cells of the configuration - cond. glass CdSe/LiI + PbI/sub 2//LiI/LiI + C + PbI/sub 2//cond. glass - were fabricated. Photoresponses up to 150 mV were observed.

  17. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    SciTech Connect

    Not Available

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  18. Flash hydroliquefaction of coal. Quarterly technical progress report No. 3, April 4, 1981-July 3, 1981

    SciTech Connect

    Falk, A.Y.

    1982-05-24

    Rockwell has developed a reactor which allows rapid and uniform mixing of pulverized coal with heated hydrogen through the use of a rocket-engine-type injector. The hydrogen is partially heated by indirect heating and further heated by partial combustion with oxygen to supply the required process heat. The amount of hydrogen fed is being kept as low as practicable because of the recycle implication for a complete process. Successful operation of a water-cooled heat-exchange quench unit without plugging or degradation has been demonstrated. Char is separated from the vapor-phase material in a separator which is maintained at a sufficiently high temperature to allow vapor-phase removal of the liquid products. The effectiveness of the concept has been demonstrated in a series of tests. Substantial liquid yields and high overall conversions are possible. A high-pressure product recovery system contains two condensers which split the liquid product into heavy and light oil fractions. In addition, an adsorber bed BTX recovery system was installed. The new system functioned well after an initial shakedown, and they allow for better separation and recovery of the products. Evaluation showed a very high thermal efficiency and favorable economics compared with other liquefaction processes. Many potential advantages of the process were noted; however, most of these advantages remain to be demonstrated. During the first two quarters of the Phase IV effort modifications were made to the PDU to improve material balances; the PDU was activated and six successful tests were conducted; and supporting dense-phase flow, product refining and utilization, and material studies were initiated. The PDU facility modifications made to improve material balances were quite beneficial. Material and major elemental balances for the Phase IV tests are within 5% of closure, a contract target value.

  19. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 7, April--June 1993

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate the economics of the process. Several key technology areas were evaluated this quarter. The catalyst definition effort focused on the determination of the role of the Li and La promoters that have been found to be useful in enhancing Cu based oxyhydrochlorination of methane catalysts. Initial experiments show that the La acts to provide a much more active catalyst than the Cu only case. The role of the Li is ambiguous at this point. The Li enhances the stability of the La promoted catalyst, but gives only marginal improvement by itself This work will be continued, with additional emphasis on the analysis of the catalysts to determine the structural role that the promoters may play. The separation unit operation definition made significant progress by demonstrating in a laboratory system that a process solvent may be used to remove the product CH{sub 3}Cl from the reactor effluent stream. To date the data has been qualitative, but clear. Work will continue to gather the information possible in the laboratory to help with PDU design. An extensive amount of testing was performed on the chosen process solvent, Multitherm. A comprehensive review of all the thermal testing and associated FTIR, UV/VIS, and physical property testing is included in this report. This work shows that Multitherm should give the desired stability and solubility that are necessary to make the separation unit operation successful.

  20. Development of analytical procedures for coprocessing. Quarterly technical progress report, January 1, 1991--March 31, 1991

    SciTech Connect

    Anderson, R.P.

    1991-06-01

    This is the tenth quarterly report under DOE Contract No. DE-AC22-88PC88810, Development of Analytical Procedures for Coprocessing. The overall objective of the contract is to improve understanding of the fundamental chemistry of coprocessing. A primary objective is to evaluate methods to distinguish between compound classes originating from coal versus those originating from petroleum resid while a corollary objective is to provide detailed knowledge on the composition of coprocessing products. This report summarizes work conducted in support of the latter objective in which process development unit samples produced by HRI, Inc. are being subjected to detailed analysis. Coprocessing resid samples selected for detailed analysis were made under constant conditions except for variations in coal concentration or in the coal (New Mexico subbituminous or Texas lignite). The soluble material was separated into strong and weak acids, strong and weak bases, and neutrals. The predominant fraction from the ABN separations was the neutral fraction (67-81%). All of the polar fractions increase with increasing coal concentration. The concentration of saturates in the neutrals is high in a run with 33% subbituminous coal but drops substantially with either increasing coal concentration or the substitution of lignite for subbituminous coal. High temperature gas chromatography showed that both the neutral aromatics fractions and saturates fractions from all of the runs are extremely similar regardless of the coal concentration or coal type. The neutral aromatics fractions were further separated by ring number separation. Chromatograms were again very similar regardless of the initial coal concentration or coal type with most material eluting in the 3-ring to 6-ring region.

  1. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    Not Available

    1994-02-01

    Several promising leads that have developed during the course of this program are being evaluated in this phase of the study. These have been selected from those that can be economically evaluated within the time constraints of the program schedule. A detailed plan for evaluating these approaches was formulated. The individual steps that will be evaluated are: (1) Dewaxing of the distillate recycle solvent stream treating either 25% or 100% of the stream. (2) Hydrotreating the dewaxed distillate streams in a downflow fixed bed reactor. (3) Agglomerating the coal using both the 25% and 100% dewaxed-hydrotreated distillate streams. (4) Liquefying the as-received coal and the agglomerated coals using two different Mo-promoted hematite particulate catalysts. (5) Liquefying two different Mo-Fe impregnated coals. (6) Liquefying the two off-agglomerated, Mo-Fe impregnated coals. The effect of the presence of molybdenum in the 1050{degrees}F{sup +} will be determined by making comparisons in both Mo-containing and Mo-free full range V-131B process solvent. The solvents that will be used in this study are the full-range reconstituted Mo-containing V-131B from Run 262E and a Mo-free V-131B made up of 1050{degrees}F{sup +} bottoms from Run 258K V-131B and V-1074 distillate from Run 262E. The series of experiments are described and a chart has been prepared summarizing this series of runs. The plan requires significant exchange of samples between the different participants in the program with the schedule timed for providing the data for economic evaluation within the next quarterly reporting period.

  2. Preliminary evaluation of resinite recovery from Illinois coal. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect

    Crelling, J.C.

    1994-12-31

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density Gradient centrifugation, microspectrofluorometry, and gas chromatography- mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and EBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  3. Confined vortex scrubber. Quarterly technical progress report, April 1, 1990--June 30, 1990

    SciTech Connect

    Not Available

    1990-07-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double_prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double_prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

  4. Methane coupling by membrane reactor. Quarterly technical progress report, September 25, 1995--December 24, 1995

    SciTech Connect

    1996-03-15

    The performance of the third type of catalytic membrane reactor configuration, with catalyst deposited in the membrane and no catalyst or inert materials in the tube side, was evaluated. The C{sub 2} selectivity obtained was about 10% due to the gas phase reaction in the empty tube side of the reactor. The membrane reactor with an oxygen-permeable dense membrane has been built. The use of a dense membrane will eliminate the loss of hydrocarbon from the tube side to the shell side, as observed in the Vycor glass membrane reactor. Also, air can be used as the oxygen source without contaminating the product. La/MgO was synthesized and will be used as the catalyst for the dense membrane reactor. This catalyst was reported in the literature to show significant improvement of C{sub 2} selectivity and yield for oxidative coupling of methane in a packed-bed reactor by using the operation mode of staged-feed of oxygen. A reactor mode for methane oxidative coupling in reactors with both distributed oxygen feed and C{sub 2} product removal was developed based on the general model of cross-flow reactors reported in the last quarterly report. A distributed oxygen feed could give rise to much higher C{sub 2} yield than the co-feed reactor as long as the space time is long enough. In the case of a two-membrane reactor, where oxygen is supplied by one membrane and products are removed through the other membrane, a high separation factor of C{sub 2} product to methane for the product-removal membrane is critical to achieve high C{sub 2} yield.

  5. Photochemical coal dissolution. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Doetschman, D.C.

    1996-07-01

    As mentioned in the report on the previous quarter, the authors have turned their attention to studies of photochemically-induced-charge-transfer phenomena involving aromatic electron donors. Coal is a porous material and it has been demonstrated that there are ground-state charge-transfer-interactions between imbibed TCNE or TCNQ and the automatic systems in bituminous coals. The authors aim to develop a preliminary understanding of the ground and excited state donor-acceptor interactions and the charge-transfer phenomena in porous materials that are better-defined than coals. They are performing background examinations of a set of donors and acceptors in solution by cyclic voltammetry and uv-visible spectroscopy. These preliminary experiments are being followed by systematic studies of the adsorption of the donors and acceptors, individually and together into adjacent supercages of a series of cation-exchanged X- and Y-type faujasite zeolites. Ultraviolet-irradiation of these systems are being performed and electron paramagnetic resonance examination of the samples is being made for the presence of paramagnetic, one-electron, charge-transfer products. In related work performed by students supported by this contract, the authors have reached a good understanding of the interactions and molecular motions of free radical {pi} electron systems in the X- and Y-type faujasite zeolites. Luminescence spectroscopy may also be used to examine the doped zeolite samples in future experiments. The authors have begun to examine the donor-acceptor pairs: diphenylamine-benzophenone, nitroxyl and substituted nitroxyl radical-benzophenone, and aromatic hydrocarbon-unsaturated tetracyano hydrocarbon. The oxidation and reduction potentials and excitation energies of these systems are given. The aromatic hydrocarbon donors span the range of typical aromatic ring sizes found in bituminous, subbituminous and lignite coals.

  6. Fundamental mechanisms in flue gas conditioning. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Snyder, T.R.; Bush, P.V.

    1995-07-11

    This project is divided into four tasks. We developed our Management Plan in Task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focused on characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, was designed to examine effects of various conditioning agents on fine ash particles to determine mechanisms by which these agents alter physical properties of ash. We began Tasks 2 and 3 with an extensive literature search and assembly of existing theories. We completed this phase of the project with publication of two special Topical Reports. In our literature reviews reported in Topical Reports 1 and 2, we emphasized the roles adsorbed water can have in controlling bulk properties of powders. During the next phase of the project we analyzed a variety of fly ashes and fine powders in the laboratory. The experiments we performed were primarily designed to define the extent to which water affects key properties of ashes, powders, and mixtures of sorbents and ashes. We have recently completed a series of pilot-scale tests designed to determine the effects that adsorbed water has on fabric filtration and electrostatic precipitation of entrained fly ash particles in actual flue gas environments. Under Task 4 we will issue our Final Report that will summarize the results of our laboratory and pilot-scale work and will also include a model of flue gas conditioning. Our efforts during this reporting quarter have been directed toward production of the Draft Final Report and the Flue Gas Conditioning Model. In addition to these efforts, we have prepared a paper for presentation at the Eleventh Annual Coal Preparation, Utilization, and Environmental Control Contractor`s Conference to be held in Pittsburgh in July, 1995.

  7. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending December 31, 1985

    SciTech Connect

    Not Available

    1986-10-01

    Microbial desulfurization is the use of ''bugs'' to remove sulfur from coal. Four projects illustrate the variety of ways in which microbes can be used to desulfurize coal. In the liquefaction program area, a joint effort between PETC and Catalytic, Inc., was established for process-modeling studies of two-stage coal liquefaction experiments at Wilsonville. Researchers at PETC have developed a process model for Integrated Two-Stage Liquefaction and are currently focusing on characterization of an engineering (ASPEN Public) simulator. The goal of this work is to establish realistic process performance indices for different reactor configurations and coal feedstocks based on heat and material balance calculations. In another liquefaction research effort this quarter, Hydrocarbon Research, Inc., started the first bench run under its new contract for research on low-severity, two-stage liquefaction. The run is planned for 29 days and will test nine separate operating conditions. Research in the field of magnetohydrodynamics (MHD) continued at the Avco Everett Research Laboratory (AERL). A significant achievement fiscal year was the first-time operation of the Avco MK VIII channel with the total power controlled and/or consolidated using nonresistive circuitry. An electrostatic precipitator (ESP) was delivered, installed, and tested at the DOE's MHD Coal-Fired Flow Facility at the University of Tennessee Space Institute. Shakedown tests of PETC's Continuous Life-Cycle Copper Oxide Test Facility are complete. This PETC facility will be used to conduct the first integrated process tests of the Fluidized-Bed Copper Oxide Process unit for the control of SO/sub 2/ and NO/sub x/. PETC has recently initiated a project to study the fundamental properties of coal surfaces by measuring the heat of immersion of coal and its associated mineral matter using a Setaram C-80 heat flow calorimeter.

  8. Direct catalytic decomposition of nitric oxide. Quarterly technical progress report No. 10, January--March 1994

    SciTech Connect

    Flytzani-Stephanopoulos, M.; Sarofim, A.F.; Zhang, Y.; Sun, T.

    1994-06-01

    This project investigates a suitable catalyst system for the direct nitric oxide decomposition in post-combustion gas streams. This process does not use a reductant, such as the ammonia used in the Selective Catalytic Reduction (SCR) of NO{sub x} to nitrogen. Therefore, it is a greatly simplified process basically involving passing the flue gas through a catalytic converter. Catalysts are prepared by incorporating metal cations into zeolite supports according to ion exchange procedures widely used in preparation of metal/zeolite catalysts. Particular emphasis is given in this work on promoted Cu-exchanged zeolites, especially the catalyst systems Mg/Cu-ZSM-5 and Ce/Cu-ZSM-5, which are promising for NO conversion to nitrogen at typical flue gas O{sub 2} and NO levels and over the temperature range of 673--873{degrees}C. The effect of zeolite modification, copper exchange level and catalyst preparation conditions on the catalytic activity are studied in O{sub 2}-free, O{sub 2}-rich gases, as well as wet (2--20% H{sub 2}O) gas streams in a packed-bed microreactor. Characterization of catalysts is performed by XRD, STEM, TEM and ESR. During this quarter it was found that severe steaming (20% H{sub 2}O) of Na-ZSM-5 at temperatures above 600{degrees}C caused partial vitreous glass formation and dealumination. Unpromoted Cu-ZSM-5 catalysts suffer drastic loss of NO decomposition activity in wet gas streams at 500{degrees}C. Activity is partially recovered in dry gas. Copper migration out of the zeolite channels leading to CuO formation has been identified by STEM/EDX. In Ce/Cu-ZSM-5 catalysts the wet gas activity i`s greatly improved. CuO particle formation is less extensive and the dry gas activity is largely recovered upon removal of the water vapor.

  9. Molecular biological enhancement of coal biodesulfurization. Fourth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  10. Molecular biological enhancement of coal biodesulfurization. Third quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-03-15

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: Clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; Return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; Transfer this pathway into a fast-growing chemolithotrophic bacterium; Conduct a batch-mode optimization/analysis of scale-up variables.

  11. Molecular biological enhancement of coal biodesulfurization. Ninth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Baker, B.; Palmer, D.T.; Fry, I.J.; Tranuero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-09-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  12. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-01

    This reports reports the progress/efforts performed on six technical projects: 1. systematic assessment of the state of hazardous waste clean-up technologies; 2. site remediation technologies (SRT):drain- enhanced soil flushing for organic contaminants removal; 3. SRT: in situ bio-remediation of organic contaminants; 4. excavation systems for hazardous waste sites: dust control methods for in-situ nuclear waste handling; 5. chemical destruction of polychlorinated biphenyls; and 6. development of organic sensors: monolayer and multilayer self-assembled films for chemical sensors.

  13. Molecular biological enhancement of coal biodesulfurization. Tenth quarterly technical progress report, [September--December 1991

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D.; Baker, B.; Palmer, D.T.; Fry, I.J.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-12-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; and conduct a batch-mode optimization/analysis of scale-up variables.

  14. Brick manufacture with fly ash from Illinois coals. Quarterly technical report, September 1, 1994--November 30, 1994

    SciTech Connect

    Hughes, R.E.; Dreher, G.; Frost, J.; Moore, D.; Rostam-Abadi, M.; Fiocchi, T.; Swartz, D.

    1995-03-01

    This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by (1) one or more plant-scale, 5000-brick tests with fly ash mixed with brick clays at the 20% or higher level; (2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; (3) a technical and economic study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are an expected result of this research. If successful, this project should convert an environmental problem (fly ash) into valuable products - bricks. During this quarter, the authors set up the manufacturing run at Colonial Brick Co., provided an expanded NEPA questionnaire for DOE, made preliminary arrangements for a larger brick manufacturing run at Marseilles Brick Co., revised laboratory procedures for selective dissolution analysis, and began characterization of brick clays that could be mixed with fly ash for fired-clay products.

  15. Bench-scale testing of the micronized magnetite process. Third quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-29

    The major focus of the project, which is scheduled to occur through December 1995, will be to install and test a 500{number_sign}/hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The overall objectives of the project are to: Determine the effects of operating time on the characteristics of the recirculating medium in a continuous integrated processing circuit, and subsequently, the sensitivity of cyclone separation performance to the quality of the recirculating medium; and determine the technical and economic feasibility of various unit operations and systems in optimizing the separation and recovery of the micronized magnetite from the coal products. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  16. Development of the selective hydrophobic coagulation process. Fourth quarterly technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-12-31

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy. The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (i) induce the coagulation of coal particles and (ii) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. The technical work program was initiated on July 1, 1992. Force-distance curves were generated for DDOA Br-coated mica surfaces in water and used to calculate hydrophobicity constants and decay lengths for this system; and a new device for the measurement of water contact angles, similar to the Wilhelmy plate balance, has been built 225 kg samples of Pittsburgh No. 8 and Elkhom No. 3 seam coals were obtained; a static mixer test facility for the study of coagula growth was set up and was undergoing shakedown tests at the end of the quarter; a bench-scale lamella thickener was being constructed; and preliminary coagula/ mineral separation tests were being conducted in a bench-scale continuous drum filter.

  17. Separation of flue-gas scrubber sludge into marketable products. Third year, second quarterly technical progress report, December 1, 1995--February 29, 1996 (Quarter {number_sign}10)

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1996-03-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product. In the current quarter, research was focused on two different areas. The first part of this quarter the optimization of the feed slurry percent solids for the two inch water-only cyclone was completed. The optimization of the vortex finder, spigot diameter and inlet feed pressure was completed in the previous quarter. The second part of this quarter began the investigation of why water-only cycloning helps froth flotation performance. The hypothesis is that water-only cycloning scrubs the surface of the unreacted limestone. This scrubbing effect provides a clean calcium carbonate surface, which results in better flotation reagent adsorption. This study used the scanning electron microscope to investigate the surface of the unreacted limestone particles.

  18. Advanced coal liquefaction research. Quarterly technical progress report, July 1, 1983-September 30, 1983

    SciTech Connect

    1984-04-01

    Work this quarter focused on staged liquefaction. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material is quite high and the limit of conversion is approached in only a few minutes. With a subbituminous coal, however, conversion is much lower and the limit of conversion is approached much more slowly. Short contact time (SCT) dissolution of Belle Ayr coal was studied as a possible first stage in a two-stage process. Conversion, hydrocarbon gas yield and hydrogen consumption were increased as residence time or temperature were increased. Conversion was also significantly increased by partial slurry recycle. Pyrite was found to be the most effective slurry catalyst for increasing conversion, followed by ammonium molybdate emulsion and finally nickel-molybdenum on alumina. Illinois No. 6 coal was liquefied in two stages. Conditions in the first stage dissolution were varied to determine the effect on upgradability in the second stage. An SCT (6 minute) coal dissolution stage is preferred over one at 30 minutes because hydrocarbon gas yield was much lower while overall oil yields for the combined dissolution and upgrading stages were nearly the same. Use of a NiMo/Al/sub 2/O/sub 3/ catalyst in a trickle-bed second stage resulted in a higher oil yield and lower product heteroatom content than use of the same catalyst in the slurry phase. The total oil yield was lower with a pyrite slurry catalyst than with a NiMo/Al/sub 2/O/sub 3/ slurry catalyst. With Belle Ayr coal and added pyrite, there was no change in total oil yield, conversion or product quality brought about by adding an 8-minute first stage at 450/sup 0/C (842/sup 0/F) to a 2-hour second stage operated at 420/sup 0/C (788/sup 0/F). 39 figures, 12 tables.

  19. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, September 26-December 31, 1996

    SciTech Connect

    Hughes, E. Tillman, D.

    1997-12-01

    . These projects address various aspects of cofiring for C0{sub 2} mitigation including testing of cofiring with various fuels, and in all types of boilers; development of analytical tools to support the cofiring assessment; addressing specific barriers to cofiring such as the sale of flyash; longer term technology development; and evaluating alternative methods for C0{sub 2} mitigation. Taken together, they address the critical concerns associated with this approach to biofuel utilization. As such, they support implementation of the most promising near-term approach to biomass usage for greenhouse gas mitigation. This report contains a brief description of each project. It then reports the progress made during the first quarter of the contract, focusing upon test results from the Allen Fossil Plant, where precommercial testing at a cyclone boiler was used to evaluate particle size and NO{sub x} emissions from cofiring.

  20. Phase 2: Photovoltaics for utility scale applications (PVUSA). Second quarterly technical report, 1994

    SciTech Connect

    Not Available

    1994-08-01

    Seventy-five people attended PVUSA`s ``Grid-Support PV: Application and Assessment`` workshop in San Francisco on June 9--10. Results from the Kerman project`s distributed benefits evaluation were presented, along with results of four Sandia-sponsored utility case studies. Presentations on SMUD`s and UPVG`s PV programs were given, and several speakers addressed broader issues, such as the role of distributed generation in the changing utility environment, utility restructuring, and PV markets and applications. SMUD`s 200-kW UPG system at their Hedge substation site in Sacramento, California was brought on line in early April and christened at a dedication ceremony on April 18. This system uses SSI modules mounted on twenty rows of UPG-designed one-axis tracking structures, with power fed to a tingle Omnion PCU. In May, SSI notified PVUSA that it would cease additional work on its US-1 system at Davis. Rather than continue development work on both of the system`s Blue Point PCUs, SSI requested to close out its contract with just one of the system`s two PCUs in operation. One unit, inverter ``A``, continued to fail after over two years of troubleshooting and repairs. The other unit, inverter ``B``, has operated reasonablywell, although it too has frequently tripped off line. The half system was mted at 67 kill, 23% less than expected based on one half of the contract target 174 kill. Subsequent I-V curves suggest much of the shortfall may be traced to a 15% shortfall in the dc array field`s maximum power. The EMT and US systems at six PVUSA sites generated nearly 750,000 kWh this quarter, the same energy used by about 500 homes over the same period. For the first half of 1994, the performance index, or ratio of actual to expected generation has exceeded 90%, for six of the twelve completed systems for which data are available. Five of the remaining six systems have generated between 80% and 90% of their expected output.

  1. Volatiles combustion in fluidized beds. [Quarterly] technical progress report, 4 March 1994--3 June 1994

    SciTech Connect

    Pendergrass, R.A. II; Hesketh, R.P.

    1994-08-01

    The goal of this project is to investigate the conditions in which volatiles will bum within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the, inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1994 through 3 June, 1994 is reported in this technical progress report. The experimental work during this time period consists primarily of data collection. Gas composition results using two sand particle diameters of 0.531 and 0.126 mm. Three graphs at equivalence ratios of 0.5, 1.0 and 2.0 for propane in air are reported for the 0.531 mm sand size. For the 0.126 nun sand size stoichiometric propane and air are results are reported.

  2. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, June 23--September 21, 1994

    SciTech Connect

    McCormick, C.; Hester, R.

    1994-12-31

    Summaries are given on the technical progress on three tasks of this project. Monomer and polymer synthesis discusses the preparation of 1(7-aminoheptyloxymethyl)naphthalene and poly(maleic anhydride-alt-ethyl vinyl ether). Task 2, Characterization of molecular structure, discusses terpolymer solution preparation, UV analysis, fluorescence analysis, low angle laser light scattering, and viscometry. The paper discusses the effects of hydrophobic groups, the effect of pH, the effect of electrolyte addition, and photophysical studies. Task 3, Solution properties, describes the factorial experimental design for characterizing polymer solutions by light scattering, the light scattering test model, orthogonal factorial test design, linear regression in coded space, confidence level for coded space test mode coefficients, coefficients of the real space test model, and surface analysis of the model equations.

  3. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect

    Eby, R.J.

    1980-12-01

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  4. West Hackberry Tertiary Project. Quarterly technical progress report, March 3, 1993--June 3, 1994

    SciTech Connect

    Gillham, T.H.

    1994-09-01

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 Sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. This reservoir has been unitized and is designated as the WH Cam C RI SU. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic.

  5. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1994--June 1994

    SciTech Connect

    1994-09-01

    The technical approach of the contract has been expanded to provide additional economic evaluation of related process options. Additional data will be developed in the following areas to facilitate these evaluations. The effect of several modified pretreatments on liquefaction will be investigated. These include catalytic and thermal dewaxing of distillate solvents, the effect that adding light resid to distillate solvent has on hydrotreating and dewaxing, the liquefaction behavior of dense-media separated low-rank coals, and methods of selectively removing oxygen from low-rank coals. Additional chemical, physical, and performance information on improved first-stage catalysts will be developed. Upgrading of ash concentrate to recover catalysts and improve low-rank coals will be assessed. The conversion of residual fractions to distillate by hydropyrolysis will be evaluated. The economic impact of these processes will be determined.

  6. Molecular biological enhancement of coal biodesulfurization. Eleventh quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravarty, L.; Tuovinen, O.H.

    1992-03-13

    The objective of this project is to produce one or more microorganisms capable of the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: (1) clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; (2) return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; (3) transfer this pathway into a fast-growing chemolithotrophic bacterium; (4) conduct a batch-mode optimization/analysis of scale-up variables. By letter of September 3, 1991, from the Project Manager at Department of Energy, Pittsburgh Energy Technology Center, these objectives of this project were redirected toward finding and developing suitable vectors for Thiobacillus strains. All work on bacterial strains from Lehigh University was terminated since they did not contain desulfurization traits represented by the ``4S`` pathway.

  7. Redwood Community Action Agency: Technical progress report, 4th quarter, 1986

    SciTech Connect

    Not Available

    1986-01-01

    Redwood Community Action Agency (RCAA) has been developing a business plan for a shared-savings energy business under this grant since January, 1986. At this time RCAA is nearing completion of the research activities, although a 90 day no-cost extension has been requested and received to complete activities on this grant. All consultant reports on the technical feasibility analysis and market research activities have been completed at this time. Fifteen thousand dollars of equity capital has been allocated for the business venture being investigated under this grant through an equity grant from the California Department of Economic Opportunity. This money, combined with agency unrestricted funds, will provide the initial seed capital for the venture.

  8. Reserves in Western Basins. Seventh quarterly technical progress report, [April 1, 1993--June 30, 1993

    SciTech Connect

    Caldwell, R.H.

    1993-07-16

    The project objective is to estimate the commercially recoverable tight gas reserves for the DOE priority basins. The work consists of a combination and integration of existing tight gas-in-place resources with engineering studies of recovery effectiveness and industry production histories into basin-wide estimates of tight gas reserves. The work will begin in the Greater Green River basin and will be carried forward to the Piceance and Uinta basins in the outyears. Technical work has been completed on the Greater Green River Basin area. As of the date of this memorandum, a final report is in preparation and exists in working draft stage. Analysis of all five plays has been completed and final figures are being quality controlled and checked. An updated production data tape for the Basin was received from Petroleum Information (PI) at the eleventh hour and has been processed to give us updated information and this data has been integrated with the previous analysis.

  9. The variable wall mining machine. Third quarterly technical report, April 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-08-20

    This is the Third Technical Report to develop the Variable Wall Mining Machine(VWM), a patented mining system that has the potential of greatly improving the underground mining of coal and other flat-lying mineral beds by providing a greater safety for workers, a healthier human environment, and a higher productivity. One of the thrusts of this project is to analyze the adaptation of the VWM system to a dual duct ventilation system which separates the air for human breathing from the air which becomes contaminated from dust and dangerous gases. In conventional practice there is one zone in an underground working section where workers breathe the air used to carry away gases and dust. A proposed dual duct system divides the single zone into two zones: one for cutting and fragmentation and one for worker occupancy. It is both technically and economically impossible to ventilate longwall face with the conventional method when methane emission rate is higher than 1,500 cfM. The only available option to the methane problem is to pre-drain the methane before mining so the methane emission rate will be lower later during longwall mining. But it is questionable that enough methane can be predrained to significantly erase the explosibility problem. Contrariwise, the dual-duct gas control method requires significantly less ventilating air, resulting in large savings in fans, air course construction, and energy. The overall costs are measurably less. Since the cutting chamber is sealed, the dust and methane are extracted from the mine in a separate ventilation system at a speed which is independent of the general mine ventilation system.

  10. Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1994-12-31

    The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

  11. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  12. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, 1996

    SciTech Connect

    1996-12-31

    Shake flask tests were completed of microbial pyrite and HAP precursor removal from Rosebud subbituminous coal. Significant amounts of Ni, F, Mn, Cd, Co and Be were removed from this coal. Analyses in connection with leach column tests of Pittsburgh coal were completed and confirmed significant removal of Ni, F, Mn, Cd, Co and As from this coal. Although Hg was not removed from Pittsburgh coal by microbial attack, there was a correlation between HCl leaching of Hg from this coal and the extent of depyritization. Since HgS is soluble in HCl, the results suggest HgS is exposed by chemical and microbial dissolution of coal pyrite. Column tests with cleaned Indiana No. 5 coal are in progress and show significant early dissolution of Ni, Mn, Cd, Co and As. A final shake flask test with Kentucky No. 9 coal was begun. Pittsburgh coal with a low content of fines was shipped to the Idaho National Engineering Laboratory (INEL) in preparation for slurry column tests of HAP precursor removal. Project results were presented at the PETC contractor`s conference held in Pittsburgh. A project progress review meeting was also held with the PETC technical project monitor.

  13. Tidd PFBC Demonstration Project fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the 23rd technical progress report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from October 1, 1992 to December 31, 1992. Major activities during this period involve: (1) The unit was operated for a total of 714 hours (including gas turbine air prewarming). There were seven gas turbine starts, seven bed preheater starts, and seven operating periods with coal fire. The peak gross output of 64 MWH was achieved for the period of 1000 to 1100 hours on November 23, 1992. The longest coal fire was 285 hours beginning at 1211 hours on November 25, 1992. (2) Total gross generation was 24,643, and coal consumption was 11,900 tons. (3) The hot gas clean up system was commissioned. (4) Active end fluidization system to address sparge duct cracking and deformation problem was jointly initiated by ABB carbon, B&W and AEPSC. (5) All testing continued using Plum Run dolomite. This approach was taken as a conservative means to avoid sintering and unit trips which were encountered during the previous two start-ups in September using limestone and (6) monitoring of solid, liquid and gaseous waste streams, as detailed in the operations phase monitoring requirements in the EMP, were performed.

  14. Jointly sponsored research program. Quarterly technical progress report, October--December 1993

    SciTech Connect

    Deans, H.A.

    1994-05-01

    This is a progress report on work performed by Western Research Institute for the U.S. DOE, Morgantown Energy Technology Center in the period October- December 1993. Tasks addressed include: development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; the impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the koppelman {open_quotes}series c{close_quotes} process using a batch test unit with Powder River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with bell lumber and pole; {open_quotes}B{close_quotes} series pilot plant tests; in situ treatment of manufactured gas plant contaminated soils demonstration program.

  15. Pulverized coal firing of aluminum melting furnances. Quarterly technical report, January 1, 1980-March 31, 1980

    SciTech Connect

    West, C E

    1980-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

  16. Advanced emissions control development program. Quarterly technical progress report No. 9, October 1--December 31, 1996

    SciTech Connect

    Evans, A.P.

    1996-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U.S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emission compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emission control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  17. Jointly sponsored research program quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: Development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the Koppelman ``Series C`` Power River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with Bell Lumber and Pole; ``B`` series pilot plant tests; and in-situ treatment of manufactured gas plant contaminated soils demonstration program.

  18. Thermal treatment for chlorine removal from coal. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-10-01

    It is the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Under the reaction conditions employed, the behavior of other trace elements of concern will also be evaluated. The recovery of the chlorine removed from the coal as a marketable byproduct, calcium chloride suitable for use as a road deicer, is also being investigated using a novel absorption/crystallization device. A value of 6.29 hr{sup {minus}1} was determined for the dechlorination rate constant of IBC-109 coal at 385{degrees}C, and an activation energy of 34.7 kcal/mol was obtained from an Arrhenius plot over the temperature range of 300--385{degrees}C. A significant removal of chlorine (84.3%) was attained while retaining 92% of the energy of the coal in the solid product by preheating the coal at lower temperatures prior to a six-minute reaction at 385{degrees}C. Volatiles lost during the thermal dechlorination may be recovered for their heating value, and/or as a source of chemical feedstocks; this aspect will require further study, but it appears that the overall energy balance on the system should prove to be favorable. The design of the bench scale fluidized bed thermal dechlorination unit has been completed, and components ordered. Operation of this system should provide the information required for further scale-up of the process.

  19. Investigation of proposed process sequence for the array automated assembly task: Phase II. Quarterly technical progress report for quarter ending December 29, 1979

    SciTech Connect

    Mardesich, N.; Bunyan, S.; Sipperly, B.

    1980-02-01

    A sulfur hexaflouride plasma etch was investigated as a possible surface treatment to improve the performance of the cell, the Radiation Technology Infrared Furnace was qualified for use in the process sequence, and work was initiated on junction clean up by laser scribing through the junction. An evaluation of the minority carrier diffusion length of silicon crystals received from various vendors was also included in this quarters activities. Results are presented and discussed.

  20. Oil burner nozzle

    DOEpatents

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  1. Hybrid 240 Ton Off Highway Haul Truck: Quarterly Technical Status Report 19, DOE/AL68080-TSR19

    SciTech Connect

    Tim Richter

    2007-06-30

    This nineteenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of June 2007, and covers activities in the nineteenth project quarter, April 2007 – June 2007.

  2. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 11, DOE/AL68080-TSR11

    SciTech Connect

    Tim Richter

    2005-09-26

    This eleventh quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of June 2005, and covers activities in the eleventh project quarter, April 2005-June 2005.

  3. Instrumentation of dynamic gas pulse loading system. Technical progress report, first quarter 1992

    SciTech Connect

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  4. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 15, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled ``Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation``, to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  5. Build, install and demonstrate a variable stroke pump control and windmill system: 2nd quarterly technical progress report

    SciTech Connect

    Not Available

    1986-12-30

    Most of the time during the second quarter has been spent on the new gear drive. At the end of the 1st quarter the VSM (Variable Stroke Mechanism) was approximately 50% complete. Some work was done the second quarter on the VSM. An all steel mount was nearly completed for the hydraulic cyclinder. The purchased parts to finish the plumbing are on hand, the feedback control chain purchased, and one of the two pulleys was made. A safety device, that could be optional, is being designed and constructed. This addition would prevent damage to the equipment if all of the hydraulic fluid were lost for some reason.

  6. Study of the effects of ambient conditions upon the performance of fam powered, infrared, natural gas burners

    SciTech Connect

    Bai, Tiejun

    1996-10-01

    The objective of this investigation is to characterize the operation of a fan powered infrared burner (PIR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. This project consists of both experimental research and numerical analysis. To conduct the experiments, an experimental setup has been developed and installed in the Combustion Laboratory at Clerk Atlanta University (CAU). This setup consists of a commercial deep fat fryer that has been modified to allow in-situ radiation measurements on the surface of the infrared burner via a view port installed on the side wall of the oil vat. Proper instrumentation including fuel/air flow rate measurement, exhaust gas emission measurement, and radiation measurement has been developed. The project is progressing well. The scheduled tasks for this period of time were conducted smoothly. Specifically: 1. Baseline experimental study at CAU has been completed. The data are now under detailed analysis and will be reported in next quarterly report. 2. Theoretical formulation and analysis of the PIR burner performance model are continuing. Preliminary results have been obtained.

  7. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  8. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  9. Low loss duct burner

    SciTech Connect

    Mar, H. M.; Reider, S. B.

    1985-07-09

    A jet propulsion engine with a fan bypass duct includes a duct burner with a plurality of flame stabilizers therein each mounted to inner case and outer case members through spherical bearings. Each of the stabilizers consists of two blade members having integral arms thereon actuated by fore and aft motion of an external actuating ring to assume an expanded position to increase duct turbulence for mixing air flow therethrough with a fuel supply and into a retracted position against each other to reduce pressure drop under nonafterburning operation. Each of the flame stabilizer blades has a platform that controls communication between a hot air source and a duct for improving fuel vaporization during afterburner operation thereby to increase afterburning limits; the platforms close communication between the hot air source and the duct during nonafterburning operation when flame stabilization is not required.

  10. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  11. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  12. Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, second quarter, 1984. [Mercer County, North Dakota

    SciTech Connect

    Not Available

    1984-01-01

    Project activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Detailed engineering is complete for the gasification plant. The only remaining engineering tasks involve field support activities and special projects. Construction is nearly complete. The majority of the remaining tasks involve civil, painting and electrical work. Start-up operations are proceeding very well. Many significant achievements were accomplished during the quarter. Coal was successfully gasified with oxygen. All of the first train's seven gasifiers completed successful production test runs. The only remaining plant permit is the Permit to Operate, which is expected to be issued in late 1985. Quality assurance/quality control activities included major equipment inspections, development of welding procedures and equipment turnover inspections. Freedom Mine development activities remain on schedule.

  13. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  14. Production and screening of carbon products precursors from coal. Quarterly technical progress report No. 5, January 1,1996--March 31, 1996

    SciTech Connect

    1996-04-01

    Individual quarterly reports of four industrial participants of this project are included in this report. The technical emphasis continues to be the supply of coal-based feedstocks to the industrial participants. There have been several iterations of samples and feedback to meet feedstock characteristics for a wide variety of carbon products. Technology transfer and marketing of the Carbon Products Consortium (CPC) is a continual effort. Interest in the program and positive results from the research continue to grow. In several aspects, the program is ahead of schedule.

  15. Quarterly Technical Progress Report

    SciTech Connect

    Yi Hua Ma

    1998-03-16

    The temperature dependence of the oxygen flux across the BaCe0G03 dense membrane (BCG membrane) tube was investigated. In the temperature range of 688C to 955C, the increase in the oxygen flux with temperature obeyed the Arrhenius law. An increase in the helium sweep flow membrane tube. rate in the tube side resulted in an increase in the oxygen flux through the The oxygen fluxes through the BCG dense membrane tube were measured at different oxygen partial pressures in the shell side. The oxygen flux increased with the oxygen partial pressure in the shell side. The BCG dense membrane was tested in a membrane reactor for the catalytic oxidative coupling of methane. The BCG membrane is not a complete combustion catalyst, and the catalytic activity of the BCG membrane was found to be much higher than the Argonne dense membrane. As the oxygen partial pressure in the shell side increased, the C2 decreased while the C2 yield remained unchanged, indicating that non-selective, reactions still played a significant role in the membrane reactor.

  16. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  17. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  18. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, November 1991--January 1992

    SciTech Connect

    Not Available

    1992-08-01

    The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Accomplishments for this past quarter are as follows: The 9th quarterly measurements at the Colorado site took place in December, 1991. Permeability and neutron absorption moisture content measurements were made and on site data was collected from the data logger; The 9th quarterly sampling at the Ohio site took place in November 1991. Permeability and moisture content measurements were made, and water samples were collected from the wells and lysimeters; The second quarterly core and water samples from the first Illinois test case were collected in mid November, and field data were collected from the data logger; Chemical analysis of all core and water samples continued; all chemical analyses except for some tests on Illinois second quarter cores are now complete.

  19. Effects of components of synfuels on soot formation. Quarterly technical progress report Number 3, April 1-June 30, 1981

    SciTech Connect

    Haebig, J. E.; Goldberg, P. M.

    1981-08-01

    The objective of this project is to obtain information about the relationships between the rate and amount of soot formation in the combustion of coal-derived synfuels and the chemical composition and molecular constituents of those fuels. Simple bench-scale premixed and diffusion burners will be used at pressures between one and ten atmospheres to observe soot formation from fuel samples varying in their boiling range and contents of aromatic and heteroaromatic compounds. During this reporting period, the Gulf-sponsored development of the experimental system was completed for its use in one atmosphere pressure experiments in this DOE contract. Preparatory acomplishments included assembly of the flow control panel for seven gas streams, initial use of the optical components for laser light scattering, and fabrication and installation of the burner and pressure vessel for it. In the DOE contract activities, Task 1 was completed, the combustion literature was surveyed and used to identify needed features of the experiments to be done, and data on the properties and composition of coal liquids were collected for planning of the slate of coal liquids components to be tested.

  20. Develop data management system for assistance in conducting area of reviews in Texas: Quarterly technical report- 10th quarter, January 1-March 31, 1997

    SciTech Connect

    Wrotenbery, L.; Burgess, D. F.; Weitzel, L.; Williams, D.; Morgan, H.; Matthews, J.

    1997-04-15

    The following technical report provides a detailed status report of the DOE grant project entitled `Develop Data Management System for Assistance in Conducting Area of Reviews (AORS) in Texas.` The grant funding allocated is for the purpose of providing the Railroad Commission of Texas (Commission or RRC) with resources and capabilities to conduct AOR and AOR variance analysis statewide.

  1. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1992--February 24, 1993

    SciTech Connect

    Kadlec, R.H.; Srinivasan, K.R.

    1993-04-02

    During the first quarter of the above contract, all the elements of Task 1 were completed. The first quarterly report presented an overview of a wetland and its increasing use in industrial wastewater treatment. An idealized, reaction engineering description of wetlands was presented to demonstrate how the various processes that occur in a wetland can be modeled. Previous work on the use of wetlands to remove BOD, TSS, Phosphorus and Nitrogen was reviewed. Recent literature on the application of wetland technology to the treatment of petroleum-related wastewater was critically evaluated and an outline of the research plans for the first year was delineated. Further, our literature search (nominally completed under Task 1) unearthed more recent studies (some unpublished) and a summary was included in the second quarterly report. In the second quarterly report, results of our efforts on the construction of a laboratory-type wetland were also reported. Initial studies on the use of wetland amendments such as modified-clays and algae cells were presented and discussed. Adsorption of heavy metal ions, Cu{sup 2+} and Cr(VI) onto soils drawn from the laboratory-type wetland built as a part of this contract has been undertaken and these results are presented and discussed in this quarterly report. A number of studies on the design and preparation of modified-clays for the adsorption of Cr(VI) and {beta}-naphthoic acid (NA) has been carried out during this quarter and these are also described and discussed in this report. The choice of {beta}-naphthoic acid (NA) as an ionogenic organic compound was made on the basis of a recent personal communication to the Project Director that NA is a major contaminant in many oil and gas well wastewaters.

  2. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-07-23

    During this last quarter, evaluations were complete on the motor materials after 500-hr exposures to refrigerants CFC-123, HFC-134a and HCFC-22 at 90{degrees}C. Materials were also evaluated after exposure to nitrogen at 127{degrees}C to determine effect of the thermal exposure. Other exposures were started during this quarter with refrigerants HCFC-124, HFC-125, HFC-143a, HFC-32 and HFC-152a. One 500 hr exposure is set up per week and one is analyzed the same week. This will enable Trane to complete the 500 hour exposures by the end of the year.

  3. Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fourth quarterly technical progress report, Second quarter, 1993

    SciTech Connect

    Eggington, W.J.

    1993-09-01

    The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the second quarter of 1993 was focussed on completion of Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. Also during the report period, Task 6, Ground Support, was completed and a report containing the results was submitted to DOE. This task addressed the complete H.1 Cyclocraft system, i.e. it included the need personnel, facilities and equipment to support cyclocraft operations in wetland areas.

  4. Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fifth quarterly technical progress report, Third quarter, 1993

    SciTech Connect

    Eggington, W.J.

    1993-12-31

    The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. In 1992, Task 1, Environmental Considerations, and Task 2, Transport Requirements, were completed. In the first two quarters of 1993, Task 3, Parametric Analysis, Task 4, Preliminary Design, and Task 6, Ground Support, were completed. Individual reports containing results obtained from each of these tasks were submitted to DOE. In addition, through June 30, 1993, a Subscale Test Plan was prepared under Task 5, Subscale Tests, and work was initiated on Task 7, Environmental Impacts, Task 8, Development Plan, Task 9, Operating Costs, and Task 10, Technology Transfer.

  5. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Quarterly technical progress report No. 11, April 1, 1994--June 30, 1994

    SciTech Connect

    Patel, R.; Borio, R.; Scaroni, A.W.; Miller, B.G.; McGowan, J.G.

    1994-09-23

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the tenth quarter of the program. The four hundred hours ``Proof-of-Concept System Test`` under Task 3 was completed during this quarter. The primary objectives were to obtain steady state operation consistently on coal only and increase carbon conversion efficiency from {approximately}95% to the project goal of 98%. This was to be obtained without increasing NO{sub x} emission above the project goal level of 0.6 lbs/MBtu ({approximately}425 ppM). The testing was also designed to show that consistent, reliable operation could be achieved as another prerequisite to the demonstration. The data were gathered and analyzed for both economic and technical analysis prior to committing to the long term demonstration. The Economic Evaluation was completed and work started on commercialization plan. During this reporting period, activities included sample analysis, data reduction and interpretation from all the testing during March and April. Following preliminary conclusions are drawn based on results evaluated: coal handling/preparation system can be designed to meet technical requirements for retrofitting microfine coal combustion; boiler thermal performance met requirement; NO{sub x} Emission can meet target of 0.6 lb/MBtu; combustion efficiencies of 95% could be met on a daily average basis, somewhat below target of 98%; economic playback very sensitive to fuel differential cost, unit size, and annual operating hours; and continuous long term demonstration needed to quantify ash effect and how to best handle.

  6. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  7. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  8. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, July 1, 1995-- September 30, 1995

    SciTech Connect

    Harb, J.N.

    1995-12-31

    Progress during the eighth quarter of a three-year study was made in three task areas: (1) analysis of coals; (3) parametric testing of the target coals, and (4) analysis of samples from the combustion tests. Routines for automated analysis of coal and mineral associations were completed and are now functional on our new ISIS system. Work on data processing which led to the development of a new means of interpreting composition information from the SEM was also completed during the quarter. This work is expected to yield substantial benefits in understanding the ash transformations during combustion. Several additional ash and deposit samples were collected this quarter. Deposition results have been explained qualitatively and samples has been mounted for quantitative analysis. A detailed characterization of mixing and coalescence was performed during the quarter. Results indicate that combustion under stage conditions does not change the chemistry of the final ash produced. Specifically, both iron and potassium distributions in long residence time ashes did not change as a function of combustion conditions. Some differences were observed in the potassium distribution at shorter residence times. There was also a difference in the size distribution of particles formed during staged combustion. The nature and significance of these differences are still under investigation.

  9. Development of a $10/kW bipolar separator plate. Technical quarterly progress report, July 1--September 30, 1998

    SciTech Connect

    1998-12-31

    The authors have identified a moldable graphite blend separator plate material, have molded complex shape bipolar separator plates, have tested the molded plate properties and function in single fuel cells, and have designed a conceptual rapid manufacturing line. In this quarter, the project received a three-month interim funding period to continue progress while the proposal is in DOE review. Thus, this fourth quarterly report is submitted in place of the originally scheduled final report for this project. All of the objectives of this project have been accomplished. Specifically, the electrical, chemical, and physical properties of the molded separator plates have met or exceeded the DOE specifications. Performance and endurance tests of the molded plates in single cells have shown comparable performance to the state-of-art machined graphite separator plates. The DOE cost target of $10 per kW appears to be achievable with the low cost composite materials.

  10. Surfactant studies for bench-scale operation. Fifth quarterly technical progress report: July 1, 1993--September 30, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-10-22

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the fifth quarter of work. The major accomplishments were: (1) Completion of coal liquefaction autoclave reactor runs and related analysis with Illinois no. 6 coal at 400{degrees}C with and without surfactant and/or catalyst at pressures of 1700 psig; (2) A literature search into the effect that lignin has in the coprocessing of coal; and (3) Presentation of a report summarizing the first year of work on this task at the Annual Liquefaction Contractors Review Conference. Results from this quarter show that lignosulfonate surfactant continues to increase overall MAF conversion of Illinois no. 6 coal at temperatures up to 400{degrees}C and produces an improvement in light boiling fraction distillate over the base case of no surfactant addition.

  11. Characterization and supply of coal based fuels. Quarterly technical progress report, February 1, 1987--April 30, 1987

    SciTech Connect

    Not Available

    1987-07-01

    Contract objectives are as follows: develop fuel specifications to serve combustor requirements; select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. During the second quarter of this contract effort, the primary activities were involved with: continuation of development of fuel requirements (i.e., specifications, quantities, schedule); acquisition and bench-scale characterization of candidate coal samples; selection of coal water slurry fuel manufacturer; procurement of parent coal for fuel production; deep cleaning by froth flotation of parent coal; production of solid fuel (i.e., size reduction of deep cleaned parent coal) and delivery to combustors/experimenters; production of slurry fuel and delivery to combustors/experimenters; and completion of Final Version of First Quarterly Report.

  12. Development of a coal quality expert. [Fourth quarterly] technical progress report No. 15, [October 1--December 31, 1993

    SciTech Connect

    Not Available

    1994-02-14

    During the past quarter, tasks 4, 5, and 6 were active. Under Task 4, work continued on the King, Gaston, and Brayton Point field test reports with completion and release expected in the Spring of 1994. Tasks 5 and 6 activities were directed at design and development of CQE base classes and objects, continued formulation, testing, and integration of CQE algorithms and submodels, and the development of the user interface prototype.

  13. Advanced alternate planar geometry solid oxide fuel cells. Interim quarterly technical progress report, November 1, 1988--January 31, 1989

    SciTech Connect

    Prouse, D.; Elangovan, S.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1989-12-31

    During this quarter, progress was made at Ceramatec in seal development and conductivity measurements of YIG compositions. A creep test was completed on the porous/dense/porous triilayer. IGT provided a discussion on possible interconnect materials. The following tasks are reported on: cell design analysis, program liaison and test facility preparation, cell component fabrication/development, out-of-cell tests. 9 figs, 2 tabs.

  14. Fischer-tropsch synthesis in supercritical fluids. Quarterly technical progress report, October 1, 1994--December 21, 1994

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1995-01-31

    Progress reports are presented for the following two tasks: (1) diffusion coefficients of F-T products in supercritical fluids; and (2) Fischer-Tropsch reaction related studies. The objectives for this quarter for task 1 were to measure molecular diffusion coefficients and effective diffusivities at the same conditions. The objectives for task 2 were to conduct two additional tests with the Ruhrchemie catalyst and a catalyst synthesized in our laboratory under supercritical conditions.

  15. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Harb, J.N.

    1996-02-07

    Progress during the ninth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an enhanced method for classification of CCSEM data. This classification algorithm permits grouping and comparison of particles previously labeled as ``unclassifiable.`` A second analytical advancement, also made this quarter, provides more detailed information on the distribution of minerals in the coal and the potential for coalescence. This new multiple analysis technique is also applicable to ash and will permit identification of heterogeneous ash particles. Additional analyses of ash samples were also performed and it was found that the firing of Pittsburgh {number_sign}8 under staged combustion conditions yields an ash with a significantly larger particle size distribution than that obtained under conventional firing conditions, but without a significant change in composition. the size difference was noted previously, but the new classification algorithm allowed a detailed comparison of all composition groups, including unclassifiable particles, in the ashes. A mechanistic explanation for this behavior has been developed and is provided in the report. Finally, a paper documenting the new classification algorithm has been prepared and is scheduled for presentation at the March ACS meeting in New Orleans.

  16. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect

    Clarke, D.; Ershaghi, I.; Davies, D.; Phillips, C.; Mondragon, J.

    1995-07-28

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 11, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  18. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Morgan, C.D.

    1995-09-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.

  19. Bench-scale testing of on-line control of column flotation using a novel analyzer. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-16

    This document contains the second quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTE{trademark} Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). The project schedule timeline by task series for the twelve month project, as it was laid out in the initial Project Work Plan. At the present time, all tasks are progressing according to schedule with the exception of the Task 800 Circuit Testing and Sample Prep and Task 1000 Circuit Decommissioning, which have slipped approximately five weeks due to delays incurred within in the project.

  20. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  1. Government Information Quarterly. Volume 7, no. 2: National Aeronautics and Space Administration Scientific and Technical Information Programs. Special issue

    NASA Technical Reports Server (NTRS)

    Hernon, Peter (Editor); Mcclure, Charles R. (Editor); Pinelli, Thomas E. (Editor)

    1990-01-01

    NASA scientific and technical information (STI) programs are discussed. Topics include management of information in a research and development agency, the new space and Earth science information systems at NASA's archive, scientific and technical information management, and technology transfer of NASA aerospace technology to other industries.

  2. Uniform-burning matrix burner

    SciTech Connect

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  3. Bench-scale testing of on-line control of column flotation using a novel analyzer. Third quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-08-24

    This document contains the third quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale flotation circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan, as well as the approach to completing the major tasks within the twelve-month project schedule. The project is broken down into three phases, which include: Phase I -- Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing; Phase II -- ET Circuit Installation and Testing: This installation and testing phase of the project was performed at PETC`s CPPRF from January through June, 1993, and was the major focus of the project. It involved testing of the continuous 200--300 lb/hr. circuit; and Phase III -- Project Finalization: The project finalization phase is occurring from July through September, 1993, at PTI`s Calumet offices and involves finalizing analytical work and data evaluation, as well as final project reporting. This Third Quarterly Technical Progress Report principally summarizes the results from the benchscale testing with the second coal (Pittsburgh No. 8 Seam Coal), which occurred in April through June, 1993. It also contains preliminary economic evaluations that will go into the Final Report, as well as the plan for the final reporting task.

  4. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, February 1-April 30, 1980

    SciTech Connect

    Peterson, J. R.

    1980-01-01

    Work has been initiated during this first quarter under all four program tasks and by all major participants as described. Task 1.0 activity (establish power plant reference design) concentrated upon definition of user requirements and establishment of power plant subsystem alternatives and characteristics. Task 2.0 work (stack and cell design development and verification) was initiated with a heavy emphasis upon test facilities preparation. A total of 27 laboratory cells were operated during this reporting period and a total of nine cells continued on test at the end of the quarter. Investigation of alternative anode and cathode materials proceeded; a dual-porosity anode was fabricated and tested. Over 10,000 endurance hours on a state-of-the-art cell carried-over from a previous program has been achieved and 1500 hours endurance has been obtained with sheet metal cells. Results presented for electrolyte structure development include comparative data for spray-dried and modified aqueous slurry process powders. Shake-down tests with a rotating disc electrode apparatus for fundamental measurements are described. Concept designs for both prototype and subscale stacks have been identified. Task 3.0 effort (development capability for full-scale stack tests) included preparation of an overall test plan to commercialization for molten carbonate fuel cells and of a functional specification for the tenth-scale stack test facility; drafts of both documents were completed for internal review. Cost-effective manufacturing assessment of available designs and processes was initiated. Task 4.0 work (develop capabilities for operation of stacks on coal-derived gas) included gathering of available contaminants concentration and effects information and preparation of initial projections of contaminant ranges and concentrations. Accomplishments to date and activities planned for the next quarter are described.

  5. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1993--March 24, 1994

    SciTech Connect

    Kadlec, R.H.; Srinivasan, K.R.

    1994-04-15

    In the third quarterly report, adsorption of heavy metals ions such as Cu(II) and Cr(VI) onto soils drawn from the laboratory-type wetland (LW) was shown to be weak. On the other hand, it was shown that modified-clays did adsorb Cr(VI) ions strongly at pH 4.5. Further, studies on the pH dependence of the adsorption of {beta}-naphthoic acid, (NA), a well-documented contaminant in many oil and gas well waste waters (4), onto modified-clays were undertaken and it was shown that uptake of NA by modified-clays was of the high affinity type at pH 4.5 and 7.0, but weak at pH 9.0. Adsorption of heavy metal ions, Cu{sup 2+}, and CR(VI) onto algae, a proposed wetland amendment, was carried out and the results were presented and discussed in the fourth quarterly report. Studies on the dynamics of uptake of phenol and NA by laboratory-type wetlands (LWs) were initiated and preliminary results indicated that both phenol and NA were sorbed onto components of LWs. A mass balance model has been developed to quantify the fate of phenol in LWs. The model is based on the postulate that the fate of phenol in LWs can be attributed to a combination of (1) evaporation of solute and solvent, (2) adsorption of phenol onto various components of LW and (3) its biodegradation, both in solution and at solid-liquid interface. As an initial approximation, the latter two processes have been lumped together and incorporated into the model as an unit operation. Both zero order and first order kinetics for the disappearance of phenol have been considered. Evaporative losses of water and phenol have also been taken into account and this model is presented and discussed in this quarterly report.

  6. Energy from in situ processing of antrim oil shale. Quarterly technical progress report, April-June 1980

    SciTech Connect

    Young, D.C.

    1980-07-01

    Processing of data from the F80 extraction trials continued for much of this quarter. Several computer programs were written so the data could be evaluated or accessed for plotting. Numerous computer generated plots were made for use in the topical reports which are in preparation. Activity at the experimental site has been directed toward an orderly shutdown and dismantling of equipment. All but nine of the wells were filled with cement and capped in accordance with th requirements of the Michigan Department of Natural Resources. Shale characterization work was continued at four universities in Michigan under subcontracts. Work on final reports of several of these projects has begun.

  7. Novel catalysts for upgrading coal-derived liquids. Quarterly technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1993-12-31

    The principal objective of this research is to evaluate the hydrotreatment properties of {gamma}-Al{sub 2}O{sub 3} supported Mo oxynitride and oxycarbide catalysts. This information will be used to assess the potential of these materials for use as commercial catalysts for hydrotreating coal-derived liquids. During this quarter, the authors evaluated the catalytic properties of a series of supported molybdenum nitride catalysts. These catalysts were prepared in the laboratory for comparison with the supported molybdenum oxynitrides. Pyridine hydrodenitrogenation (HDN) was used as the test reaction.

  8. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  9. Composition modification of zinc titanate sorbents for hot gas desulfurization. Quarterly technical report, September 1, 1994--November 30, 1994

    SciTech Connect

    Swisher, J.H.; Datta, R.K.

    1995-03-01

    For new coal gasification systems, zinc titanate sorbents are being developed to remove sulfur from the hot product gas prior to its use in combined cycle turbines and high temperature fuel cells. Although most of the properties of these sorbents are very attractive, there are still concerns about durability over many sulfidation-regeneration cycles and zinc losses due to vaporization. Doping the zinc titanate with other metal ions could alleviate both concerns, which are the objectives of this project. During the first quarter of effort, several sorbent formulations were prepared and testing begun. The dopants presently under study are Ni, Cr, Cu, and Al. Crush strength results obtained to date show that Ni and Cu dopants have a large positive effect, while Cr gives a small improvement. Measurements were also made of sulfur capacity and sulfidation rates with a thermogravimetric analyzer. Of the three formulations, only the one containing Cr had a high sulfur capacity. X-ray measurements will be relied upon heavily to obtain an understanding of solubility effects and sulfidation mechanisms. Screening experiments will continue on the doped sorbents mentioned above next quarter, and Mg will be studied also.

  10. Recovery and utilization of gypsum and limestone from scrubber sludge. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1993-09-01

    Wet flue-gas desulfurization units in coal-fired power plants produce a large amount of sludge which must be disposed of, and which is currently landfilled in most cases. Increasing landfill costs are gradually forcing utilities to find other alternatives. In principle, this sludge can be used to make gypsum (CaSO{sub 4}-2H{sub 2}O) for products such as plaster-of-Paris and wallboard, but only if impurities such as unreacted limestone and soluble salts are removed, and the calcium sulfite (CaSO{sub 3}) is oxidized to calcium sulfate (CaSO{sub 4}). This project is investigating methods for removing the impurities from the sludge so that high-quality, salable gypsum products can be made. Work done in the previous quarter concentrated on developing a low-cost froth flotation process that could remove limestone, unburned carbon, and related contaminants from the sludge while recovering the bulk of the calcium sulfite and gypsum. In the current quarter, experiments to remove impurities from the sludge using a water-only cyclone were conducted. The cyclone has been found to be effective for removing the coarser limestone impurities, as well as removing contaminants such as fine gravel and grinding-ball chips. These results show that the cyclone will be very complementary with froth flotation, which mainly removes the very fine impurities.

  11. Coal combustion: Effect of process conditions on char reactivity. Quarterly technical report, January 1, 1995--March 31, 1995

    SciTech Connect

    Zygourakis, K.

    1995-08-01

    The project will quantify the effect of the following pyrolysis conditions on the macropore structure and on the subsequent reactivity of chars: (a) pyrolysis heating rate; (b) final heat treatment temperature (HTT); (c) duration of heat treatment at HTT (or soak time); (d) pyrolysis atmosphere (N{sub 2} or O{sub 2}/N{sub 2} mixtures); (e) coal particle size (100--1000 {mu}m in diameter); (f) sulfur-capturing additives (limestone); and (g) coal rank. Pyrolysis experiments will be carried out for three coals from the Argonne collection: (1) a high-volatile bituminous coal with high ash content (Illinois {number_sign}6), (2) a bituminous coal with low ash content (Utah Blind Canyon) and (3) a lower rank subbituminous coal (Wyodak-Anderson seam). A systematic study was carried out in the past quarter to validate the mathematical model for ignition phenomena presented in the previous quarterly report. Model predictions of the effect of pyrolysis heating rate, particle size, and oxygen concentration on ignition behavior are in excellent agreement with experimental results. Moreover, our results show that the model can be used to estimate the particle temperature during ignition and the minimum ignition temperature for various process conditions.

  12. Oxidation of phenolics in supercritical water. Combined quarterly technical progress report, December 1, 1995--May 31, 1996

    SciTech Connect

    1996-11-01

    Over the past two quarters, our work has focused on three main areas. The first area of interest involved a reexamination of the rate laws that were formed in past quarters. A possible error was discovered for the analytical methods used in the o-cresol oxidation study and the data were corrected, yielding a new rate equation. The data for hydroxybenzaldehydes were studied again, this time as a system of parallel oxidation and thermolysis reactions. The second area in which progress was made was the study of the thermolysis of nitrophenols and dihydroxybenzenes in supercritical water. These investigations were needed to determine the effect that pyrolysis or hydrolysis had on our previous supercritical water oxidation experiments. Thirdly, we have continued to investigate the use of molecular orbital theory in the determination reactivity indices. A reactivity index, such as the enthalpy of formation, may be used in a structure-reactivity relationship to summarize the kinetics for the oxidation of phenolics in supercritical water. Progress in each of these areas is summarized.

  13. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, July 1996--September 1996

    SciTech Connect

    Anderson, S.A.; Hatcher, P.G.; Radovic, L.R.

    1996-10-01

    The primary objective of this project is to use {sup 129}Xe NMR to characterize the microporous structure of coals. We will use direct information on pore size, as well as indirect information from adsorption rates and evidence for intra/extraparticle diffusion, to characterize the connectivity of the micropore network. A second objective is to use {sup 129}Xe NMR to describe the effect of controlled opening of the micropores in a microporous carbon by oxygen chemi-sorption/desorption. Our experimental focus in this quarter has been the low power presaturation of the NMR signal of {sup 129}Xe adsorbed in coal. Preliminary work on this experiment was reported in the last quarter. Low power presaturation of {sup 129}Xe adsorbed in two coals produces a hole-burning effect in the adsorbed xenon NMR signals, indicating that these signals are broad due to overlap of a series of chemical shifts. Saturation transfer to the entire adsorbed xenon signal and to the extraparticle gas is observed with increasing presaturation time. Differences in timing of saturation transfer to the external gas have implications for the nature of the connectivity of the pore structures in coal.

  14. Preparation and characterization of composite membrane for high temperature gas separation. Quarterly technical report, September 1--November 30, 1994

    SciTech Connect

    Ilias, S.; King, F.G.

    1994-12-31

    To develop a new class of permselective inorganic membranes, the authors have identified electroless plating as a potential route to deposit a thin metal film on a porous substrate. Electroless plating is a controlled autocatalytic deposition of continuous film on the surface of a substrate by the interactions of a metal salt and a chemical reducing agent. This method can give thin films of metals, alloys and composites on both conducting and nonconducting surfaces. The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates. They plan to characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane formation; Characterization of fabricated composite membrane; and Development of theoretical model for hydrogen gas separation. During this quarter, the authors attempted to measure the diffusivity and permeability of hydrogen gas through the palladium composite membrane. While running the diffusion measurements at elevated temperature and pressure, leakage of hydrogen was observed. This is a serious problem and it needs to be resolved. Currently, they are working on this problem. During this quarter, they also designed a diffusion cell to test thin-film palladium membrane in tubular structure. The diffusion cell is being fabricated and assembled by a local machine shop.

  15. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  16. Molten iron oxysulfide as a superior sulfur sorbent. Third quarter technical progress report, June 1--August 31, 1990

    SciTech Connect

    Hepworth, M.T.

    1990-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for determining the most effective operating conditions of the first stage of a combustor are calculated for several Illinois coals. These conditions include contact of the gas with the phase combinations: CaO/CaSO{sub 4}, CaO/CaS, and Fe/FeO/liquid for the temperature range 950{degree} to 1300{degree}C. In the latter system, the minimum dosage of iron required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of SO{sub 2} per million Btu of heat evolution calculated for complete combustion. The calculations indicate that for the Fe-O-S system, higher temperatures give better results approaching 96 percent sulfur removal from a coal containing 4.2% sulfur. For this example, the stack gas emerging from the second stage of combustion under stoichiometric conditions would contain 0.36 pounds of SO{sub 2} per million BTU`s of heat generated. The temperature limits of the sulfate and sulfide forming reactions are defined.

  17. Molten iron oxysulfide as a superior sulfur sorbent. Third quarter technical progress report, March 1, 1990--June 1, 1990

    SciTech Connect

    Hepworth, M.T.

    1990-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions are determined for the operation of the first stage of a combustor which would have as its feed six types of coals. The calculations are made for the four phase equilibrium: FeO(wustite)/Fe/Liquid/Gas over the temperature range 950{degrees} to 1300{degrees}C. The minimum dosage of iron oxide required at equilibrium an the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of S0{sub 2} per million Btu of heat evolution calculated for complete combustion. These preliminary results indicate in the Fe-O-S system that higher temperatures give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. In the prior reporting period, a comparison is made between iron oxide and lime as a desulfurizing agent. With lime, the thermodynamic conditions were chosen: a set of conditions where the compound calcium sulfide is the product and a set of conditions where calcium sulfate is the product. The temperature limits of the sulfate forming and sulfide forming reactions were defined.

  18. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly technical progress report, July--September 1995

    SciTech Connect

    Harrison, D.P.

    1995-10-01

    Both the Antek total sulfur analyzer and the modifications to the Shimadzu GC-14A gas chromatograph to be used for analysis for SO{sub 2} and H{sub 2}S were delivered during the quarter. Problems were faced during the installation and calibration phases of both instruments. By the end of the quarter we believe that the GC problems have been solved, but problems remain with the Antek analyzer. It appears that too much sulfur (as SO{sub 2}) reaches the UV detector and causes it to become saturated. This shows up as a maximum in the instrument calibration curve. At 200 psia, the capillary flow restrictor allows a total flow rate of about 180 sccm, and the maximum occurs at about 1 % H{sub 2}S in the calibration gas. Reducing the pressure so that the total flow is reduced to about 25 sccm shifts the calibration curve maximum to about 5.7% H{sub 2}S. It appears that we must reduce the total flow rate to the detector or provide additional dilution. This may be accomplished by increasing the resistance of the capillary restrictor, by diverting a portion of the flow leaving the pyrotube to vent, or adding an inert such as N{sub 2} to the gases exiting the pyrotube. We are in contact with Antek representatives about the problem. Both the atmospheric pressure and high pressure electrobalances were used during the quarter to study the regeneration of FeS in atmospheres of O{sub 2}/N{sub 2} or H{sub 2}O/N{sub 2}. In the atmospheric pressure unit the effects of temperature (600 - 800{degrees}C), flow rate (130 - 500 sccm), and reactive gas mol fraction (0.005 to 0.03 O{sub 2} and 0.1 to 0.5 H{sub 2}O) are being studied. Regeneration tests completed to date in the high pressure unit have utilized only O{sub 2}/N. and the parameters studied include temperature (600 - 800{degrees}C), flow rate (500 - 1000 sccm), pressure (1 - 15 atm) ad O{sub 2} mol fraction (0.005 - 0.03).

  19. Coal combustion: Effect of process conditions on char reactivity. Ninth quarterly technical report, September 1, 1992--December 1, 1993

    SciTech Connect

    Zygourakis, K.

    1993-12-31

    Our efforts during the past quarter focused on the development of an image processing technique for characterizing the macropore structure of chars produced from Illinois No. 6 coal. Pyrolysis experiments were carried out in a microscope-stage reactor in inert and reacting atmospheres and at various pyrolysis heating rates. Particles from several pyrolysis runs were embedded in an epoxy resin block and polished sections . were prepared. Digital images of char particle cross-sections were acquired and analyzed to measure the structural properties of the chars. The macropore analysis procedure is presented here in detail. Future reports will present the data showing the effects of pyrolysis conditions on the macropore structure of Illinois No. 6 chars.

  20. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper. Quarterly technical progress report, July 1992

    SciTech Connect

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-09-01

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. In the seventh quarter, the screening of the promoted sorbents in the packed bed reactor was continued. The results of this work were presented at the 1992 University Coal Research Contractors, Review Conference at Pittsburgh, PA.

  1. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Darmody, R.G.; Dunker, R.E.; Dreher, G.B.; Roy, W.R.; Steel, J.D.

    1994-03-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the first quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected and dried the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample appears to have a higher pyrite content than the other.

  2. Surfactant studies for bench-scale operation; Sixth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1994-01-21

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the sixth quarter of work. The major accomplishments were (1) Completion of the distillation of the liquid product from coal liquefaction autoclave reactor runs with Illinois No. 6 coal at 400{degree}C, with and without surfactant and/or catalyst at pressures of 1700 psig, (2) Batch autoclave runs at 375 and 400{degree}C with 1 wt % lignin to Illinois No. 6 coal to further define the surfactant effect of sodium lignosulfonate, and (3) a preliminary economic evaluation of the application of the lignosulfonate surfactant in an industrial liquefaction process and a proposed conceptual plant design.

  3. Surfactant studies for bench-scale operation. Fourth quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-07-23

    A phase 2 study has been initiated to investigate surfactant- assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the fourth quarter of work. The major accomplishments were (1) Completion of coal liquefaction autoclave reactor runs and related analysis with Illinois {number_sign}6 coal with time as a variable at 375{degree}C, and pressures of 1800 psig; (2) an investigation into the mechanism of the effect that the lignosulfonate surfactant has in enhancing liquefaction yields; and (3) completion of a bench-scale test with the surfactant in the continuous flow Catalytic Two Stage Liquefaction Process (CTSL) reactor at HRI.

  4. Surfactant studies for bench-scale operation. First quarterly technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1992-12-30

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: (1) the refurbishment of the high-pressure, high-temperature reactor autoclave, (2) the completion of four coal liquefaction runs with Pittsburgh {number_sign}8 coal, two each with and without sodium lignosulfonate surfactant, and (3) the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  5. Surfactant studies for bench-scale operation. Third quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-04-20

    A phase 11 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of, quantifying the enhancement in liquid yields and product quality. This report covers the third quarter of work. The major accomplishments were (1) completion of coal liquefaction autoclave reactor runs and related analysis with Illinois {number_sign}6 coal at a processing temperature of 375{degree}C, and pressures of 1800 and 1500 psig, (2) completion and analysis of two autoclave reactor runs to observe the synergistic effect of the surfactant and an iron catalyst, and (3) setting up a subcontract with HRI Inc. to test the surfactant enhanced liquefaction process in a continuous flow reactor.

  6. Oxygen electrode in molten carbonate fuel cells. Ninth quarterly technical progress report, August 1, 1989--October 31, 1989

    SciTech Connect

    Dave, B.B.; Srinivasan, S.; White, R.E.; Appleby, A.J.

    1989-12-31

    The oxygen reduction reaction on a gold electrode in lithium carbonate melt was investigated to determine the influence of partial pressure of carbon dioxide and temperature on electrode kinetics and oxygen solubility by using cyclic Voltammetry and impedance analysis techniques. During this quarter, the impedance data were analyzed by a Complex Nonlinear Least Square (CNLS) Parameter estimation program to determine the kinetic and the mass transfer related parameters such as charge transfer resistance, double layer capacitance, solution resistance, and Warburg coefficient. The estimated parameters were used to obtain the C0{sub 2} reaction orders and apparent activation energies for the exchange current density and the mass transfer parameter (D{sub o}{sup {1/2}}C{sub o}*).

  7. Rock matrix and fracture analysis of flow in western tight gas sands. Quarterly technical progress report, January-March 1986

    SciTech Connect

    Morrow, N.R.; Ward, J.S.; Brower, K.R.; Cather, S.

    1986-01-01

    The overall objective of this project is to show how gas can flow from the rock matrix to natural or induced fracures and be commercially produced. Flow of gas within the rock matrix has been shown to be largely controlled by sheet-like pores at grain boundaries, which are pressure sensitive. In this quarterly report, progress is reported in the following areas of advanced core analysis of low permeability gas sands: (1) surface area measurements; (2) helium porosimetry; (3) comparison of permeabilities for preserved cores and for cores subjected to drying; (4) pore space and fractures as related to diagenesis of multiwell sandstones; and (5) imbibition behavior of tight sands. 5 refs., 8 figs.

  8. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Li, W.B.; Yang, R.T.

    1994-12-31

    During the past quarter, progress was made in three tasks. The poisoning effects of alkali metals (as Na{sub 2}O, K{sub 2}0 and Cs{sub 2}O) on iron oxide pillared clay (Fe-Bentonite) catalyst for selective catalytic reduction (SCR) of NO with NH{sub 3} were investigated. The effects of sulfur dioxide and water vapor on the performance of the high activity catalyst, that is, Ce-doped Fe-Bentonite pillared clay (Ce-Fe-Bentonite) were examined. In addition, an iron ion-exchanged titania pillared clay (Ti-PILC) was prepared and its catalytic activity for the SCR of NO with NH{sub 3} was studied, which showed a high activity and a high S0{sub 2} and H{sub 2}0 resistance at high temperatures (i.e., above 400{degree}C).

  9. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Not Available

    1992-12-31

    The specific objectives for the reporting period of October, 1992 to December, 1992 were as follows: (1) Finish analyzing leachates from the third annual core samples from the Ohio site, collected in August 1992; (2) Collect and analyze the sixth quarterly water samples from the first Illinois test case in August, 1992. Make field measurements and collect data from the data logger; (3) Begin construction of the second Illinois test case; (4) Continue production of a video presentation on the project; (5) Load all remaining EERC data on the Colorado and Ohio sites into the project database; (6) Finalize plans with METC for continued monitoring at the Colorado and Ohio sites beyond the initial three year period, and (7) Submit and the Final Case Report on the Colorado site to the DOE and EPRI.

  10. Removal of CO{sub 2} from flue gases by algae. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Akin, C.; Pradhan, S.

    1993-09-01

    The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO{sub 2} to hydrocarbons. The research program involves the determination of the biocatalytic characteristics of free and immobilized cultures of Botryococcus braunii in bench-scale studies, and the feasibility study and economic analysis of the Botryococcus braunii culture systems for the conversion of flue gas CO{sub 2} to hydrocarbons. The objective of the third quarter of this research program was to determine the growth and hydrogen formation characteristics of free and immobilized cells of Botryococcus braunii in bench-scale photobioreactors. Raceway and inclined surface type bioreactors were used for free cell and immobilized cell studies respectively. The free cell studies with air and CO{sub 2} enriched air [10% (v/v) CO{sub 2} in air] in media with and without NaHCO{sub 3} were conducted.

  11. Surfactant studies for bench-scale operation. Quarterly technical progress report No. 1, 1 July-30 September 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1992-12-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh No. 8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  12. Surfactant studies for bench-scale operation. Second quarterly technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-01-15

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were (1) completion of coal liquefaction autoclave reactor runs with Illinois No. 6 coal at processing temperatures of 300, 325, and 350{degrees}C, and pressures of 1800 psig, (2) analysis of the filter cake and the filtrate obtained from the treated slurry in each run, and (3) correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  13. Surfactant studies for bench-scale operation. Quarterly technical progress report No. 2, 1 October-31 December 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-03-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  14. The development of an integrated multistage fluid bed retorting process. Quarterly technical report, April 1, 1993--June 30, 1993

    SciTech Connect

    Carter, S.; Stehn, J.; Vego, A.

    1993-07-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of April 1, 1993 through June 30, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, U.S. Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The major activities for this quarter included: system leak proofing, cold flow testing, shake down of the data acquisition system, instrumentation verification, and preparation for hot operation. Once the tasks necessary for heat up are completed, shake down and operation of the Process Demonstration Unit will begin.

  15. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Harb, J.N.

    1997-02-13

    The key issues addressed this quarter were related to operational problems in the coal feed system, namely, the inability to accurately measure all of air entering the system, and plugging of coal in the feed lines due to poor entrainment. Both of these problems caused unacceptable uncertainty and/or fluctuations in the operating conditions and therefore required solutions. The coal entrainment problem was solved by installing a new educator designed for entraining solids in gas streams. All of the air entering the reactor now flows through the educator, either as motive air or through the suction air inlet. This ensures that the coal is entrained at relatively high velocity, so that it will flow to the reactor without forming slugs in the lines. A new feeder shroud was also installed with an air jet directed towards the auger to sweep off the tip in order to reduce pulsations when feeding coal. The problems associated with accurately metering the air have been somewhat more difficult to resolve. New strategies for completely closing the system have been tested and look promising. A new flowmeter was also purchased with cost sharing funds to directly measure the air flow rate of the two phase stream (after the coal injection point). If the system can be operated without leaks, then the changes will provide two independent measurements of the air flow to ensure accuracy. If the system cannot be sealed, the new flowmeter will still provide reliable measurement of the air flow and permit proper operation of the combustor. Consequently, we feel that the problems have been resolved and we look forward to a productive next quarter.

  16. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1992--February 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The mixed iron/alumina pillared clay catalysts and clay-supported iron catalysts have been shown in previous reports of this project to significantly improve yields of heptane-soluble products obtained in the liquefaction of both as received and acid-exchanged Wyodak subbituminous coal and Blind Canyon bituminous coal. In this quarter, the soluble product (LSW) obtained from the noncatalytic low-severity liquefaction of Wyodak coal was used as a feed to determine the activity of iron based catalysts for the hydrogenation and depolymerization steps. Comparison data for liquefaction of the soluble LSW with other catalysts were desired, and these data were obtained for a dispersed form of iron sulfide, prepared via iron hydroxyoxide (PETC method). The iron oxyhydroxide catalyst was directly precipitated on LSW product using either water or ethanol as the solvent. An insight into the functioning of the mixed iron/alumina pillared clay in coal liquefaction was investigated by preparing and studying an iron oxoaluminate structure. An investigation of new methods for the production of tetralin soluble iron oxometallate catalysts and the determination of their catalytic activities was continued in this quarter. The hydrogenation activity of iron oxoaluminate was investigated using pyrene and 1-methylnaphthalene as the test compounds, and results were compared with thermal reactions. In order to determine the loss of activity, recovered catalyst was recycled a second time for the hydrotreating of pyrene. Reaction of 1-methylnaphthalene with iron oxoaluminate also gave very high conversion to 1- and 5-methyltetralins and small amount of 2- and 6-methyltetralins. Liquefaction of Wyodak subbituminous and Blind Canyon bituminous coal was investigated using an in situ sulfided soluble iron oxoaluminate catalyst.

  17. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1993--May 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production and utilization of tetralin-soluble iron oxometallate precursors for coal liquefaction catalysts was continued in this quarter. Further descriptions of the catalytic activities of the sulfided forms were obtained. The hydrogenation activities of catalysts derived from iron oxotitanate and cobalt oxoaluminate were investigated using pyrene as a the test compound, and results were compared with thermal reactions. The hydrogenation activity of iron oxotitanate was superior to other catalysts including iron oxoaluminate. The hydrogenation activity of cobalt oxoaluminate was similar to that of iron oxoaluminate reported in previous quarterly report. The liquefaction of Wyodak subbituminous coal was investigated using in situ sulfided iron oxotitanate catalyst. In order to improve the usefulness of iron oxoaluminate as a liquefaction catalyst, iron oxoaluminate was supported on acid-treated montmorillonite (K-10). Supporting the iron oxoaluminate on an acidic support significantly improved the hydrogenation activity of iron oxoaluminate. The hydrocracking activity was increased by a large factor. Thus the aluminate and titanate structures surrounding the pyrrhotite that forms during sulfidation have a beneficial effect in preventing deactivation of the iron sites, and the presence of the acidic sites in the clay results in effective catalytic synergism between catalyst and support. These clay-supported iron oxometallates are highly promising catalysts for coal liquefaction. Iron oxyhydroxide and triiron supported on acid-treated montmorillonite (K-10) were tested for the liquefaction of ion-exchanged Wyodak (IEW) to minimize effects of the coal mineral matter. Both sulfided catalysts gave very high conversions of coal to THF-soluble and heptane-soluble (oils) products.

  18. Microbial strain improvement for organosulfur removal from coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Kilbane, J.J. II

    1993-09-01

    IGT has developed a microbial culture Rhodococcus rhodochrous, designated as IGTS8, that is of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore permit favorable biodesulfurization process conditions. During the past quarter, promoter probe vectors thought to possess promoter inserts were isolated. Two new promoter probe vectors were constructed: pRCAT2; which is pRAT1 (second quarterly report) with the BamHI site removed, and pRCAT3; which is pRCAT2 with a synthetic oligonucleotide inserted at the HindIII site that will allow a wider range of restriction fragments to be examined for promoter activity including the fragments from the twenty mutants isolated from the Rhodococcus strains exhibiting increased resistance to chloramphenicol. Sequence analysis of six of these mutants has been initiated, computer comparisons made, and base change confirmation is in progress. As research to isolate strong Rhodococcus promoters is the goal, the promoter for the 16S ribosomal RNA structural gene is a good candidate for a strong promoter based on analyses of the 16S RNA gene in other species. Since the sequence of the 16S RNA gene is well conserved among species, straightforward techniques are available to isolate the promoter and such efforts are in progress.

  19. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  20. Bench-scale testing of on-line control of column flotation using a novel analyzer. Quarterly technical progress report, September 21, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-01-22

    This document contains the first quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor Control System. The twelve-month project will involve installation of a 300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) and testing of two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan as well as the approach to completing the major tasks within the twelvemonth project. The project is broken down into three phases, which include: Phase I - Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing. Phase II - ET Circuit Installation and Testing: This installation and testing phase of the project will be performed at PETC`s CPPRF from January through May, 1993, and will be the major focus of the project. It will involve testing of the continuous 300 lb/hr. circuit. Phase II - Project Finalization: The project finalization phase will occur from June through September, 1993, at PTI`s Calumet offices and will involve finalizing analytical work and data evaluation, as well as final project reporting. This quarterly progress report principally summarizes the results from the Phase I preparation work and the plan for the early portions of the Phase 11 installation and commissioning, which will occur in January and the first week of February, 1993.

  1. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane: Quarterly technical progress report 15, October 1-December 31, 1996

    SciTech Connect

    McCormick, R.L., Alptekin, G.O.

    1997-04-02

    This document is the fifteenth quarterly technical progress report under Contract No. DE-AC22-92PC921 `Development of Vanadium- Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane` and covers the period October-December, 1996. Vanadium phosphate, vanadyl pyrophosphate specifically, is used commercially to oxidize butane to maleic anhydride and is one of the few examples of an active and selective oxidation catalyst for alkanes. In this project we are examining this catalyst for the methane oxidation reaction. Initial process variable and kinetic studies indicated that vanadyl pyrophosphate is a reasonably active catalyst below 5000{degrees}C but produces CO as the primary product, no formaldehyde or methanol were observed. A number of approaches for modification of the phosphate catalyst to improve selectivity have been tried during this project. During this quarter we have obtained surface areas of catalysts prepared with modified surface acidity. The results confirm the enhanced activity of two of the modified preparations in methanol conversion (a test reaction for surface acid sites). In previous work we noted no improvement in methane oxidation selectivity for these catalysts. Surface areas, surface analysis by XPS, and bulk analysis by ICP-AA have been obtained for vanadyl pyrophosphate promoted by Cr, Cu, and Fe. These data indicate that roughly one tenth of the surface metal atoms are promoter. A similar analysis was obtained for the bulk. Preliminary examination of binding energies suggests a slightly more reduced surface for the Cr and Fe promoted catalysts which exhibit a significant selectivity to formaldehyde in methane oxidation. A more detailed kinetic model has also been developed to aid in comparing the promoted catalysts and is discussed. Plans for the coming months are outlined.

  2. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  3. National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1993-06-01

    Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  4. Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

    1994-06-01

    The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

  5. (Study of the behavioral and biological effects of high intensity 60 Hz electric fields): Quarterly technical progress report No. 29

    SciTech Connect

    Orr, J.L.

    1989-07-14

    Activities this quarter involved all phases of the project plus a meeting of the Joint Committee in Tokyo. Detailed mapping of the exposure facility is scheduled to be completed during the week of August 14, 1989. Both electric and magnetic fields should be available for tests of the components of the tether and blood sampling system for the neuroendocrine pilot study in September 1989. The groups for the social behavior study are stabilizing appropriately. Details on the formation of the groups and their status has been provided. Dr. Coelho has included information related to aspects of the social experiment ranging from age estimation in baboons through the cardiovascular consequences of psychosocial stress. In addition, a draft manuscript is included on the data from the previous experiments which describes the effects of 30 and 60 kV/m electric fields on the social behavior of baboons. Tests of the blood handling procedures and analysis methods have been completed. With the exception of the catecholamine analyses, the handling procedures and variability in replicate measurements are satisfactory. Logistic and practical considerations now weigh strongly against including the analysis of the blood samples for catecholamines. Preliminary tests indicate that a sampling procedure which will work for the other compounds is probably not satisfactory for the catecholamines.

  6. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994

    SciTech Connect

    Darmody, R.G.; Dunker, R.E.; Dreher, G.B.; Roy, W.R.; Steel, J.D.

    1994-06-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

  7. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, November 1, 1981-January 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Mazandarany, F.N.; Marianowski, L.G.

    1982-02-26

    Work proceeded this quarter mainly under three program tasks. Under Task 1.0, the four candidate power plant configurations were ranked and the Steam Injection System was recommended as the reference plant design. The Steam Injection System was chosen based on its overall simplicity, high performance level, balance of plant state-of-technology readiness and economic attractiveness. Work was initiated on refinement of fuel cell piping costs. Under Task 2.0, work continued on cell component (anode, cathode, current collector and electrolyte) development and stack design and analysis. Corrosion test results after 1000 hours in fuel gas and 3000 hours in cathode gas are reported for 310SS, 316SS, 446SS, chromium, IN690, and GE2541. In the cathode environment, 310SS and GE2541 show good thermal cycling properties, whereas the other alloys show scale spalling during thermal cycling. Examination of a Ni-clad 316SS anode current collector tested in a cell for 2000 hours shows second phase precipitates along the grain boundaries of the nickel. Experiments with different grades of nickel in an anode atmosphere were started in order to evaluate the effects of impurities present in the metals. Under Task 4.0, work continued on installation of the bench scale single cell test facilities, one atmospheric and one pressurized (up to 10 atm), which will be used in cell testing with contaminants in the fuel and oxidant. (WHK)

  8. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, August 1, 1982-October 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1983-02-24

    Work proceeded this quarter under three program tasks. Under Task 1.0, work was completed on the reference power plant design description. Under Task 2.0, work continued on the development of materials, anode, cathode and electrolyte, and on stack design and analysis. Long term corrosion tests of current collector alloy specimens continued, with 310SS, GE2541 and Aggalloy showing adherent scale formation in the cathode gas atmosphere after 7000 hours. A number of alternate cathode materials were fabricated and tested for conductivity, solubility and stability. A new conductivity measurement device has been partially constructed. Under Task 4.0, testing of the effects of hydrocarbons in the fuel on the operation of carbonate fuel cells was completed. This series of tests has shown that small amounts of organic compounds do not adversely affect fuel cell operation. Testing of a cell with H/sub 2/S contamination in the fuel has proceeded for over 1700 hours. Cell performance decreased with increasing concentrations of H/sub 2/S, as would be expected, but also recovered substantially when clean fuel gas was introduced for a period of 378 hours. (WHK)

  9. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1, 1982-July 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1982-12-17

    Work proceeded this quarter under three program tasks. Under Task 1.0, work continued on the preparation of the reference power plant design description with Pacific Gas and Electric being one of the major contributors to the effort. Work also continued to further define the power conditioning equipment. Under Task 2.0, work continued on alternate cathode material identification, anode, cathode and electrolyte tile development, and stack design and analysis. A number of candidate cathode materials were fabricated and preliminary conductivity, solubility and stability tests performed. The chemistry of the degradation process of state-of-the-art NiO cathodes was also addressed. Under Task 4.0, studies continued to identify chemical reactions that might occur between fuel cell anode material and a number of organic compounds which could occur in fuel gases. The addition of several substances showed little effect on catalytic activity in a tube furnace or cell performance except for carbon plugging of a fuel line following ethanol addition. In addition, two cells were run this period to determine the effects of H/sub 2/S contamination on cell performance. Both tests were terminated (after 480 hours and 1450 hours of testing) due to test equipment operational problems. (WHK)

  10. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 8, 1993--August 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    High hydrocracking and liquefaction activity can be achieved with 10 wt.% of sulfided clay-supported iron catalysts. Further tests and demonstrations of this activity were required. Iron hydroxyoxide was generated on acid-treated montmorillonite. The new batch of catalyst exhibited high hydrocracking activity, Three hour tests with the solubilized intermediate from low-severity treatment of Wyodak coal (LSW) gave a high conversion (45%) of the heptane-insoluble LSW intermediate to heptane-soluble products. An investigation of new methods for the production of catalysts from tetralin-soluble iron oxometallates and the determination of their catalytic activities was continued in this quarter. Iron oxotitanate and iron oxoaluminate gave very high conversions of LSW to heptane solubles (61% and 54%, respectively). The high yields of heptane soluble products obtained with these catalysts offers a potential for use in liquefaction stages with solubilized coal, or at least serve as a model for producing active catalysts via mixed metal oxides. Methods for successfully testing dispersed iron catalysts with the low-severity intermediate were also devised. Catalyst recovered from the dispersed iron hydroxyoxide-catalyzed reaction of ion-exchanged Wyodak gave a high conversion (47%) of LSW to heptane solubles.

  11. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  12. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    1994-01-30

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing the system modification installation designs, completing the TSCA ash testing, and conducting additional industry funded testing. Final detailed installation designs for the integrated test system configuration are being completed.

  13. Development of the Selective Hydrophobic Coagulation process. Fifth quarterly technical progress report, October 1, 1992--December 30, 1992

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-12-31

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy (Contracts AC22-86PC91221 and AC22-90PC90174). The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (1) induce the coagulation of coal particles and (2) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. During the quarter, the Anutech Mark IV surface force apparatus was used to generate surface force-distance data for the mica/dodecylamine hydrochloride system (Task 2.1.1). Work to characterize the hydrophobicity of this system and the mica/DDOA{sup {minus}} system was also initiated (Task 2.1.2). In Task 3, the mixing/coagulation characteristics of a small Kenics static mixer/agitation system have been investigated (Task 3.2.1), a lamella thickener for the recovery of coagula has been built (Task 3.3.1), and the test program for the recovery of coagula by column flotation has been initiated (Task 3.3.4).

  14. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  15. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, through March 31, 1995

    SciTech Connect

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Accomplishments for this quarter are described.

  16. Superior catalysts for selective catalytic reduction of nitric oxides; Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Chen, J.P.; Cheng, L.S.; Kikkinides, E.S.; Yang, R.T.

    1993-12-31

    Work was done in three tasks during the first quarter. In Task 1, a new SCR reactor system has been built, complete with on-line GC and MS analyses. The GC is used to monitor the N{sub 2} product so the NO{sub x} > N{sub 2} conversion can be calculated. The MS is used to analyze the N{sub 2}0 concentration. In addition, a wet analytical technique has been established for SO{sub 3} analysis. The new SCR system and the SO{sub 3} analytical technique have been subjected to shakedown tests with success. Along with the existing SCR reactor system, there are now two systems that are being run independently. In Task 2, a procedure for the synthesis of stable Fe{sub 2}O{sub 3} Pillared clay has been established. Inductive coupled plasma spectrometric analysis (ICP) has been used to analyze the chemical composition of the Fe{sub 2}O{sub 3} Pillared clay. Preliminary results for the SCR activities of the Fe{sub 2}O{sub 3} pillared clay are obtained in Task 3. The results show that the activities are near that of the commercial V{sub 2}O{sub 5}/TiO{sub 2} catalysts. However, the SO{sub 2}-to-SO{sub 3} conversion is substantially lower with the pillared clay catalyst, which could be an important advantage.

  17. Bench-scale testing of the micronized magnetite process. Sixth quarterly technical progress report, October--December, 1995

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  18. Bench-scale testing of the micronized magnetite process. Eighth quarterly technical progress report, April--June, 1996

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  19. Bench-scale testing of the micronized magnetite process. Fourth quarterly technical progress report, April--June 1995

    SciTech Connect

    1995-08-10

    The main accomplishments of Custom Coals and the project subcontractors, during this period, included: continued purchase of small equipment and supplies for the circuit; completed the circuit commissioning task; procured one lot of PennMag Grade-K and one lot Grade-L magnetite; completed work on analytical investigations; completed Classifying Circuit Component Testing on Pittsburgh No. 8 coal; completed the final Heavy-Media cyclone component testing on the Pittsburgh No. 8 seam using Grade-K and Grade-L magnetites; continued QA/QC tests on wet screening, wet splitting, Marcy Balance, and reproducibility checks on component tests and component test samples; and completed the magnetite recovery circuit component testing with and without screens using the Grade-K magnetite and the Pittsburgh No. 8 coal seam. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  20. Bench-scale testing of the micronized magnetite process. Seventh quarterly technical progress report, January--March, 1996

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  1. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 2, January 1-March 31, 1980

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, Jr., J. L.; Louis, G. A.; Abrams, M. L.; Bushnell, C. L.; Nickols, R. C.; Gelting, R. L.; Katz, M.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Steuernagel, W. H.; Smith, R.; Smith, S. W.; Szymanski, S. T.

    1980-08-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, effort was continued in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - developing the capability for operation of stacks on coal-derived gas. In the system study activity of Task 1, preliminary module and cell stack design requirements were completed. Fuel processor characterization has been completed by Bechtel National, Inc. Work under Task 2 defined design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication has been made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated under Task 3. In Task 4, theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects. Components for the mobile test facility are being ordered.

  2. Development of the Selective Hydrophobic Coagulation process. Seventh quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1993-11-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied under the sponsorship of the US Department of Energy since 1986 (Contracts DE-AC22-86PC91221 and DE-AC22-90PC90174). The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (i) induce the coagulation of coal particles, and (ii) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the quarter, work was completed on the development of the hydrophobic interaction energy function (Subtask 2.1) and the extended DLVO equation (Subtask 2.2.). Work to predict optimum operating conditions using the extended DLVO equation (Subtask 2.3) is underway. In Task 3 -- Process Development, work was completed on the study to determine the effect of mixing on coagula growth (Subtask 3.2) and on the use of column flotation for the recovery of coal coagula (subtask 3.3.4). Work is underway on the use of the lamella thickener and filter for the recovery of coagula (Subtasks 3.3.1 and 3.3.2).

  3. Development of the selective hydrophobic coagulation process. Tenth quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1994-08-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied since 1986. The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (1) induced the coagulation of coal particles, and (2) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the past quarter, calculations were carried out under Subtask 2.3 (Predicting Optimum Conditions Using the Extended DLVO Equation) to explain the selectivity window that occurs between pH 7--9 in the SHC process. These calculations suggest that particle interactions involving the edge surfaces of clay are the most important, while interactions involving silica and face surfaces of clay are not as important. Experiments were also continued under Subtask 3.3 (Advanced Separation Methods) to investigate the performance of a centrifuge for separating hydrophobic coagula from dispersed mineral matter. These tests show that coagula recovery increases with centrifugal field strength and decreases with solids content and feed flow rate. Work is now in progress to evaluate the performance of a vacuum filter for coagula recovery.

  4. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    SciTech Connect

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  5. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000

    SciTech Connect

    Moore, J.P.

    2000-08-18

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

  6. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000

    SciTech Connect

    Moore, J.P.

    2000-10-23

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

  7. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  8. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 October--31 December 1988

    SciTech Connect

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  9. Magnetic relaxation -- coal swelling, extraction, pore size. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Doetschman, D.C.

    1993-12-31

    During this quarter, the CW (continuous wave) and pulsed EPR (electron paramagnetic resonance) have been examined of the swelled Argonne Premium whole coals and the swelled residues of these coals. The CW EPR spectra will not be of high quality due to the unexpectedly microwave-lossy character of the pyridine used for swelling. Being relatively unaffected by this characteristic, the pulsed EPR measurements of the spin relaxation times of the broad (non-inertinite) and narrow (inertinite) macerals have been completed. Although detailed analyses of these results have not yet been done, marked differences have been found between the relaxation times of the swelled and unswelled coals and residues. The most startling are the less than 200 nsec times T{sub 1} of the spin-lattice relaxation of the inertinite radicals in the swelled samples. The T{sub 1} of this maceral in the unswelled coal were approaching 1 millisecond. The T{sub 1} contrast was much less pronounced between the swelled and non-swelled non-inertinite macerals. The prospects of significant progress in coal pore size measurements with xenon and NMR (nuclear magnetic resonance) have dimmed since the beginning of this project. This assessment is based on the dearth of these types of studies, a paper at a contractors` meeting on this subject that did not materialize, and discussions with colleagues with experience with the technique in coals. Instead, the authors have been developing a pulsed EPR technique for the spin probing of molecular motion to be applied to pores in carbonaceous materials. This report contains a copy of a nearly final draft of a paper being prepared on the development of this technique, entitled {open_quotes}Physical Characterization of the State of Motion of the Phenalenyl Spin Probe in Cation-Exchanged Faujasite Zeolite Supercages with Pulsed EPR.{close_quotes}

  10. Particulate hot gas stream cleanup technical issues: Task 1.0, Assessment of ash characteristics. Quarterly report, October-- December 1994

    SciTech Connect

    1995-03-01

    This is the first in a series of quarterly reports describing the activities performed under Task 1. The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance presented in this report were designed to address the problems with filter operation that are apparently linked to the characteristics of the collected ash. This task is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APF`s) and to relate these ash properties to the operation and performance of these filters and their components. Observations of the filter assembly during site visits to the Tidd Demonstration Plant APF have led to the conclusion that that tenacious ash deposits that form in the APF apparently induce stresses that result in bent and/or broken ceramic candle filter elements. A site visit, was made to the Tidd APF on October 27, 1994 to collect ash samples from various locations in the filter vessel and to document the condition of the APF. A variety of laboratory analyses were performed on ash samples collected during this site visit to assess whether recent attempts to introduce larger particles into the ash deposits by derating the cyclone upstream of the APF have been successful. Some particles larger than 45 Jim were identified in various ash samples from the APF, but they account for less than 5 % of the mass of the ash. Although Scanning Electron Microscope EDX spectra and elemental maps lack the resolution to identify the bonds between particles in the ash agglomerates found in the APF, an excellent stereographic image of the structure of an ash nodule collected from the APF was generated with the Scanning Electron Microscope. The stereographic image was very enlightening as to the structure of the nodule.

  11. Vhf EPR quantitation and speciation of organic sulfur in coal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Clarkson, R.B.; Belford, R.I.

    1994-06-01

    The existence of free electrons in coals` natural site offers a great attraction for Electron Paramagnetic Resonance (EPR) analysis to aid in the study of the structure and composition of coal. This direct and non-destructive approach to coal analysis has been hindered by the problem of resolution using the conventional 9.5 GHz EPR spectrometers. In the past few years, we have developed techniques including W-band Very High Frequency EPR spectroscopy as a means of determining the quantity and structure of organic sulfur in native and desulfurized coals. The state of the art 95 GHz (W-band) EPR spectrometer which we have constructed shows a well resolved spectrum including the interaction between unpaired electrons and the heteroatom like sulfur. The spectra also provide quantitative as well as qualitative information regarding different sulfur species. In collaboration with researchers at the University of Kentucky, we are also analyzing the result of desulfurization techniques on the presence of various sulfur species in coal. In the past, we have tried to synthesize various model compounds comparing their W-band spectra with other models, the predictions of theoretical models, and with the W-band spectra of coal specimens. In this quarter, we have been concentrating our efforts on developing a new standard protocol in handling and preparing the coal samples for EPR measurements to provide a quantitative comparison between the EPR spectra of coal in the natural state and desulfurized. Ten coal samples, both native and desulfurized, have been provided to us. These samples have been run in both laboratories. The simulation of coal EPR spectra has been carried out using several mathematical models. EPR results now are being compared with XANES data.

  12. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  13. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, July-September 1983

    SciTech Connect

    Wiltsee, G.A. Jr.

    1983-01-01

    Two long gasification tests were accomplished (66 and 72 hours of slagging operation) this quarter, and the balance of the wastewater needed for the second cooling tower (CT) test (approx. 11,000 gallons) was generated. Eleven thousand gallons of slagging fixed-bed gasifier (SFBG) wastewater were solvent extracted and ammonia stripped (AS) to nominal levels of 160 mg/1 phenol and 600 mg/1 NH/sub 3/. This wastewater is being further treated by activated sludge (AS) and granular activated carbon (GAC) processing to prepare a high quality makeup for the second CT test. Phenol mass balances indicated that > 90 pct of the phenol was stripped from the tower, indicating that previous assumptions of high levels of biodegradation were erroneous. Over 80 pct of the ammonia and about 25 pct of the methanol were also stripped. Data collected during steady state operation of the bench-scale rotating biological contractor indicate complete removal of phenolics and alcohols, and 94 pct removal of BOD. Nitrification also occurred in this unit, with over 30 pct removal of ammonia. Problems due to individual bacteria, present in the biotreated wastewater, passing through the multi-media filter and thus decreasing the carbon adsorption efficiency of the GAC system, have resulted in lower treatment rates than originally anticipated. As a result, to achieve the desired treatment, the contact time of the wastewater with the carbon in the granular activated carbon system has been increased. Since this has decreased the treatment rate, a larger carbon adsorption system has been designed and is presently being constructed.

  14. Charge distribution analysis of catalysts under simulated reaction conditions. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Freund, F.

    1993-11-01

    New furnaces were built based on fused silica with NiChrome heating elements custom-wound on alumina ceramic to self-compensate for induced magnetic fields during operation. During tests these furnaces failed due to thermal stresses caused by the high temperature cement used to hold the alumina ceramic in place. As a third solution pieces of boron nitride have been procured from which new furnace bodies will be machined during the third quarter. In order to increase the in-house capacity for machining ceramic parts a small lathe was ordered. The implementation of the LabView data acquisition software from National Instruments, Inc. took more time than anticipated and is still not completed. Major difficulties had to be overcome during the integration of the separate positive and negative high voltage supplies ({plus_minus}1000V). It became apparent that a custom-designed switch had to be installed to safeguard the data acquisition modules and the Apple Macintosh Quadra 700 computer again inadvertent exposure to the high voltages during switching operations. Martin Vasey, the software consultant, has made significant progress but the task is far from complete. Major time was spent on integrating the National Instruments GPIB Board with the Omega Temperature Controller via an the RS 232 port and to overcome compatibility problems. Because the Omega Temperature Controller failed catastrophically during tests completion of this task has been put on hold. To proceed with the work one of the PERKIN-ELMER Pt-wound furnaces which is available in the P.I.`s laboratory has been installed for the initial runs.

  15. Reactivity of young chars via energetic distribution measurement. Quarterly technical progress report, 1 October 1992--31 December 1992

    SciTech Connect

    Calo, J.M.; Mackinnon, J.A.; Zhang, L.H.

    1992-12-31

    The correlation and prediction of kinetic rates and mechanisms of the reactions of gas phase species with coal chars represent a difficulty undertaking under the best of circumstances. Solid phase heterogeneity and impurities, complex pore structure, transport limitation, and evolution of active surface represent just a few of the well known problems. Temperature programmed desorption (TPD) has become a standard technique for investigating the physics-chemical state of adsorbed species on surfaces. The predecessor of TPD-type methods was the flash filament technique, whereby gases adsorbed on wire filaments are rapidly desorbed upon rapid heating in an ultrahigh vacuum. This technique was subsequently adapted to catalytic surfaces. Experimental methods and interpretation of TPD spectra for well defined crystalline surfaces have been well established. However, corresponding techniques for polycrystalline, amorphous, and heterogeneous materials are not as well developed. TPD spectra usually consist of one or more peaks. The shapes of the peaks and the position of the peak maxima with respect to temperature are related in a fundamental manner to the desorption process, and, therefore, provide basic information regarding the energetics of the desorbed species. The current project is directed at developing related techniques for the characterization and prediction/correlation of the reactivity of ``young`` chars to steam and oxygen. Of particular interest is mapping of the reactivity behavior of the resultant chars, as revealed by the energetic heterogeneity of the complexes with char preparation conditions; i.e., heating rate and ultimate temperature. In this quarterly report, TPD results on two CO{sub 2}-gasified chars are summarized.

  16. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1991--February 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The investigation of methods for the production and testing of iron-pillared clay catalysts was continued in this quarter. The surface area of the mixed alumina/iron pillared clay catalyst decreased to 51 m{sup 2}/g on sulfidation. Thus the stability of the alumina pillars during the sulfidation and thermal treatments prevented the total collapse that occurred in the case of the iron-pillared clays. Previously the mixed alumina/iron pillared clays were tested for hydrocracking activities with bibenzyl. This testing was extended to a determination of activity with a second model compound substrate (pyrene), representative of the polynuclear aromatic systems present in coal. Testing of the mixed alumina/iron-pillared catalysts with 1-methylnaphthalene gave interesting results that demonstrate shape selectivity. The clay-supported iron hydroxyoxide catalysts prepared by impregnation of iron species on acidic clays were further investigated. Sulfidation of these catalysts using the carbon disulfide in situ method gave hydrocracking activities with bibenzyl that were somewhat less than those obtained by presulfidation with H{sub 2}/H{sub 2}S mixtures. Liquefaction of Wyodak subbituminous coal was very successful with the iron impregnated clay catalyst, giving a highly soluble product. High conversions were also obtained with the mixed alumina/iron-pillared clay catalyst, but the yield of oil-solubles was considerably lower. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. These catalysts were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars. Finally the iron component was added either before or after thermal removal of organic pillars.

  17. Near-neutral oxidation of pyrite in coal slurry solids. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect

    Frost, J.K.; Dreher, G.B.

    1994-12-31

    In this research project we plan to determine the rate of oxidation of pyrite associated with coaly particles (coal slurry solid) when the pH of the surrounding environment is held at approximately 7.8. Coaly particles that contain pyrite are generated during the preparation of Illinois Basin coal for market. These particles are discharged to an impoundment, which eventually must be reclaimed. The purpose for reclamation is either to prevent the generation of acidic solution as the pyrite in the coal slurry solid reacts with air, or to prevent the migration of the acidic solution to a groundwater aquifer. The reclamation is usually accomplished by covering the impoundment with a four-foot-thick layer of topsoil. One possible alternative method for reclamation of a coal slurry impoundment is to mix in alkaline residue from the fluidized-bed combustion of coal. This codisposal would slow the production of acid and would also neutralize any acid produced. If the codisposal method is found to be environmentally acceptable, it will save the coal mining companies part of their cost of reclamation, and also provide a safe and useful disposal outlet for a portion of the residue that is generated by the fluidized-bed combustion of coal. During this quarter we purchased and set up two automatic titrators, which will be used in determining the rate of pyrite oxidation at nearly neutral pH. The titrators will provide a means for maintaining the pH at the desired level. The rate at which sulfate ion is produced as a result of pyrite oxidation will be used to measure the amount of pyrite oxidized over time.

  18. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase 3 research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing some of the system modification installation designs, completing industry funded testing, developing a surrogate TSCA ash composition, and completing the TSCA ash Test Plan. The installation designs will be used for the equipment modifications planned for the end of CY 93. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe, recyclable glass product. Some results from this testing are provided in Section 2.2.1. The surrogate TSCA ash composition was developed with input from various DOE laboratories and subcontractors. The surrogate ash consists of a mixture of MSW fly ash and bottom ash spiked with heavy metal contaminants. The levels of metal additives are sufficient to ascertain the partitioning of the contaminants between the glass and effluent flow streams. Details of the surrogate composition and the planned testing is provided in Section 4.2.2.

  19. Preparation and characterization of composite membrane for high temperature gas separation. Quarterly technical report, December 1, 1996--February 28, 1997

    SciTech Connect

    Ilias, S.; King, F.G.

    1997-12-31

    To develop a new class of permselective inorganic membranes, the authors have identified electroless plating as a potential route to deposit a thin metal film on a porous substrate. Electroless plating is a controlled autocatalytic deposition of continuous film on the surface of a substrate by the interactions of a metal salt and a chemical reducing agent. This method can give thin films of metals, alloys and composites on both conducting and nonconducting surfaces. The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates. They plan to characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: (1) development of a process for composite membrane formation; (2) characterization of fabricated composite membrane; and (3) development of theoretical model for hydrogen gas separation. During this quarter they extended their single-staged complete-mixing and cross-flow models to design a Two-Unit-Series (TUS), a Two-Stage Counter-Current Recycle Membrane Cascade (CRMC) and a Five-Stage CRMC arrangement. These designs have been used to study the performance of membrane modules for the separation of hydrogen through Palladium-ceramic composite membranes. The results show that for high-selective membrane, the effect of flow arrangement is of no consequence. Multi-staged cascading significantly improve the product purity and product separation.

  20. Studies of incipient oxidation of pyrite for improved rejection. Fifth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1993-12-31

    Oxidation of fresh surfaces of coal- and mineral-pyrite has been studied using electrochemical and photoelectrochemical techniques. This work was undertaken to better understand the oxidation processes that cause self-induced flotation of pyrite. Fresh surfaces were created by fracturing pyrite in situ, i.e., in solution. Chronoamperometry was used to determine the potential at which a newly created surface does not show oxidation or reduction currents. The ``stable`` potentials for pyrite are {minus}0.28 V (SHE) at pH 9.2 and 0 V at pH 4.6. Subsequent cyclic voltammograms show the incipient oxidation mechanism that involves the formation of sulfur products, which are believed to be hydrophobic. It is shown that the lower flotation edge of pyrite coincides with its incipient oxidation potential. The photocurrent generated at fractured pyrite surfaces by chopped illumination was used to determine the semiconducting characteristics of the electrodes. The results indicate that a spontaneous depletion layer is formed on the fresh surfaces of n-type pyrite. The depletion layer is attributed to an intrinsic, acceptor-like surface state. Charge storage in this surface state pins the band edges over a wide potential range, accounting for the metallic-like electrochemical behavior that has been reported for pyrite. The existence of an intrinsic surface state is consistent with XPS studies on pyrite surfaces prepared in vacuum, which reveal an FeS-like species in the surface region. During this report period, all of the data previously obtained has been analyzed in an attempt to better understand the mechanism of pyrite flotation with respect to its oxidation. The results of this analysis are included in this quarterly report. In addition, samples of pyrite from seven different sources were obtained. In situ fracture, photoelectrochemical and cyclic voltammetry studies have been conducted on electrodes made from these pyrites.

  1. Controlling incipient oxidation of pyrite for improved rejection. Technical progress report for the ninth quarter, October 1--December 31, 1994

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1995-07-01

    The major objectives of this work are (1) to determine the Eh-pH conditions under which pyrite is stable, (2) to determine the mechanism of the initial stages of pyrite oxidation, and (3) to determine if the semi-conducting properties of pyrite effects its oxidation behavior. It is known that moderate oxidation of pyrite produces a hydrophobic surface product. This hydrophobic product makes it extremely difficult to depress pyrite in coal flotation circuits. The eventual objective of this work is to prevent pyrite oxidation in order to better depress pyrite in coal flotation circuits. It has been shown that by holding the potential of pyrite at its stable potential during fracture, pyrite undergoes neither oxidation nor reduction. It has also been found that fresh pyrite surfaces created by fracture in an electrochemical begin to oxidize at potentials that are about 200 mV more negative than the potentials reported in the literature for pyrite oxidation. This report period, electrochemical impedance spectroscopy (EIS) studies were continued. As discussed in the seventh quarterly progress report, the impedance of pyrite does not show the characteristics expected for either semi-conducting or metallic electrodes. Additional studies were conducted to confirm the anomalous impedance behavior. For this purpose, freshly fractured surfaces were progressively polished on 600 and 1,200 grit silicon carbide paper, and with 0.3 {micro} {alpha}-alumina and 0.05 {micro} {gamma}-alumina micropolish. Polishing is known to introduce defects in the lattice structure of semi-conducting electrodes and it was anticipated that the defects would effect the interfacial capacitance.

  2. Direct liquefaction of low-rank coal. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Hetland, M.D.

    1995-11-01

    A multistep direct liquefaction process specifically aimed at low-rank coals (LRCs) has been developed at the Energy & Environmental Research Center (EERC). The process consists of a preconversion treatment to prepare the coal for solubilization, solubilization of the coal in the solvent, and polishing using a phenolic solvent or solvent blend to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrogenation step. This project addresses two research questions necessary for the further development and scaleup of this process: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for effective hydrotreatment of the liquid product. The project is being performed as two tasks, the first consisting of ten recycle tests and the second consisting of twelve hydrotreatment tests performed at various conditions. Several activities were performed during this quarter. (1) A paper entitled {open_quotes}Solvent Recyclability in a Multistep Direct Liquefaction Process{close_quotes} was presented at the 1995 Coal Liquefaction and Gas Conversion Contractors{close_quote} Review Conference that was held in Pittsburgh, PA, August 29-31, 1995. (2) The Task 1 solvent recyclability tests were completed. (3) The Task 1 quality assurance/quality control checks were performed. (4) The first seven Task 2 hydrotreatability tests were completed. Analysis of the Task 1 data indicates that (1) the multistep process produces adequate quantities of excess solvent for recycle and (2) the product slates of all of the tests were fairly consistent.

  3. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1992--May 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of iron-pillared clay catalysts and clay-supported iron hydroxyoxide catalysts and the determination of their catalytic activities was continued in this quarter. Previous work in this project showed that a catalyst prepared by adding ferric nitrate and ammonia to an acid-washed clay gave an active catalyst following sulfidation. Further testing of this catalyst with a model compound showed that its hydrocracking activity was considerably lower when used in 10% concentration rather than 50%. In contrast, the mixed iron/alumina pillared clay catalysts were still highly effective at 10% concentration and gave good conversions at one and two hour reaction times. An investigation of preparation methods demonstrated that calcination of both the iron hydroxyoxide-impregnated clay and the mixed iron/alumina pillared clays is essential for activity. High activity was obtained for these catalysts only when they were removed from the aqueous media rapidly, dried, and calcined. The use of ferric sulfate to prepare a clay-supported sulfated iron catalyst was attempted, the resulting catalyst was relatively inactive for hydrocracking. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. A zirconia-pillared clay with low pillar density was prepared and intercalated with triiron complex. The hydrocracking activity of this catalyst was somewhat lower than that of the mixed alumina/iron-pillared catalyst. Other new catalysts, that were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars, and finally the iron component, were also tested. The mixed alumina/iron-pillared catalysts was further tested at low concentration for pyrene hydrogenating and hydrocracking activities.

  4. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 9, 1992--August 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of mixed pillared clay catalysts and clay-supported catalysts and determination of their catalytic activities were continued in this quarter. To demonstrate the reproducibility of the preparative method for high activity iron/alumina-pillared montmorillonite catalysts, a new batch of the catalyst was prepared and tested for hydrocracking activity with bibenzyl. This preparation gave conversion and product distribution similar to that reported previously. The mixed iron/alumina-pillared clay was also prepared using a pillaring solution that was aged for longer period of time. To determine the importance of the type of pillaring support in hydrocracking activity, iron/zirconia-pillared montmorillonite was prepared using the same technique as that for iron/alumina-pillared montmorillonite. The reaction of bibenzyl with the sulfided iron/zirconia-pillared catalyst gave a lower hydrocracking conversion than the iron/alumina-pillared catalyst. Addition of a second catalytic metal to the clay support was attempted to determine if a synergistic effect could improve liquefaction. Ferric nitrate and stannous chloride were added to the clay, but the resulting catalyst was relatively poor for hydrocracking and hydrogenation compared with ferric nitrate supported on the clay. New disposable iron catalysts with high acidity and surface area are desired for coal liquefaction. Synthetic iron aluminosilicates were prepared by methods similar to those used for the nickel-substituted synthetic mica montmorillonite (NiSMM) catalysts, which are very effective for hydrogenation and reforming of hydrocarbons. The iron aluminosilicate catalysts were tested for hydrocracking and hydrogenation of bibenzyl, naphthalene and pyrene. Pyrene hydrogenation was effectively catalyzed by the sulfided synthetic iron catalyst.

  5. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, 1 January 1994--31 March 1994

    SciTech Connect

    Chen, J.P.; Cheng, L.S.; Hausladen, M.C.; Kikkinides, E.S.; Yang, R.T.

    1994-05-01

    During the past quarter, progress has been made in four tasks as summarized below: Task 1: A delaminated Fe{sub 2}O{sub 3} pillared clay was synthesized and carefully characterized. The chemical composition was measured by ICP atomic emission spectrometry. The structural changes in the clay as well as the iron oxide particle sizes were characterized by X-ray diffraction techniques. Task 2: The Selective Catalytic Reduction (SCR, i.e., NO reduction with NH{sub 3}) activities of the delaminated pillared clay were tested and compared with four other most active SCR catalysts: a commercial V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst, a Fe{sub 2}O{sub 3}-pillared clay, and two supported Fe{sub 2}O{sub 3} catalysts (on Al{sub 2}O{sub 3} and TiO{sub 2}). The delaminated Fe{sub 2}O{sub 3} pillared clay exhibited the highest SCR activities. Catalyst stability test showed that the delaminated sample was also stable. Task 3: To further increase the SCR activity of the delaminated pillared clay, Cr{sub 2}O{sub 3} was doped as a promoter by incipient wetness. Task 4: Deactivation effects of SO{sub 2} and H{sub 2}O on the SCR activities of the delaminated Fe{sub 2}O{sub 3} pillared clay were studied, and compared with other SCR catalysts. The delaminated clay catalyst showed the least deactivation.

  6. Transition metal catalysis of hydrogen shuttling in coal liquefaction. Quarterly technical progress report, September 1, 1985-November 30, 1985

    SciTech Connect

    Eisch, J.J.

    1986-01-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines and ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes under moderate conditions of temperature and pressure. During the fifth quarter of this three-year grant the following phases of this study received particular attention: (a) the principal investigator completed his three-month period as visiting scientist at Cornell University, October 1 to December 31, 1985, with Professor Roald Hoffmann on the topic of Extended Hueckel Molecular Orbital calculations of organometallic structure; (b) final gas evolution studies between LiAlH/sub 4/ and bipyridyl(1,5-cyclooctadiene) nickel have been made and the related manuscript written for publication; (c) gas evolution studies between diisobutylaluminum hydride and phosphine complexes of Pt(0) and Ni(0) have been undertaken, as part of our trying to understand how powerful reducing agents can be generated from such combinations; (d) hydrogen shuttling studies continue between dihydroaromatic hydrocarbons and Ni(0) complexes; (e) studies on the cleavage of benzylic C-C bonds by Ni(0) and Cr(0) complexes are being intensified; and (f) attempts are being made to isolate crystalline samples of several organonickel intermediates in the foregoing cleavage reactions, so that x-ray structure determinations can be carried out.

  7. Development of the selective hydrophobic coagulation process. Technical progress report for the ninth quarter, October 1--December 31, 1993

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1994-07-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied under the sponsorship of the U.S. Department of Energy since 1986 (Contracts DE-AC22-86PC91221 & DE-AC22- 9OPC90174). The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (i) induce the coagulation of coal particles, and (ii) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the past quarter, stability calculations were carried out to develop a better understanding of the selective coagulation of fine coal and associated mineral matter. The calculations were performed for interactions involving coal, silica and clay particles. The analyses suggest that the heterocoagulation of the edges of clay particles with coal particles controls the overall selectivity of the SHC process. In Subtask 3.3, froth flotation was explored as a possible technique for recovering hydrophobic coagula. Experimental test data obtained using this technique were analyzed using a statistical regression program. The analyses indicate that froth flotation can be used to successfully recover hydrophobic coagula provided that adequate precautions are taken to minimize coagula breakage due to turbulence. Recommendations include the use of low aeration rates and little or no additions of wash water.

  8. Enhanced oil recovery utilizing high-angle wells in the Frontier Formation, Badger Basin Field, Park County, Wyoming. Quarterly technical progress report, 1 March 1993--30 June 1993

    SciTech Connect

    Fortmann, R.G.; Walker, J.P.

    1993-07-10

    Sierra Energy Company`s targeted goals during the third quarter of this Cooperative Agreement included the following objectives from the Statement of Work: in Phase 2A, completion of subtask 2.1.2--acquire best possible field data in the 3-D seismic program; and initiation of Subtask 2.1.3--process acquired 3-D seismic data. Technical progress is described for these tasks.

  9. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 13, April 1996--June 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-07-30

    This document is the thirteenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes} and covers the period April-June 1996. The basic premise of this project is that vanadyl pyrophosphate (VPO), a catalyst used commercially in the selective oxidation of butane to maleic anhydride, can be developed as a catalyst for selective methane oxidation. Data supporting this idea include published reports indicating moderate to high selectivity in oxidation of ethane, propane, and pentane, as well as butane. Methane oxidation is a much more difficult reaction to catalyze than that of other alkanes and it is expected that considerable modification of vanadyl pyrophosphate will be required for this application. It is well known that VPO can be modified extensively with a large number of different promoters and in particular that promoters can enhance selectivity and lower the temperature required for butane conversion.

  10. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit. Quarterly technical progress report, October 1-December 21, 1981

    SciTech Connect

    Not Available

    1982-01-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis, Phase II - Prototype Plant Construction and Phase III - Start-Up and Operation during the period October 1, 1981 through December 31, 1981. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. Seven shakedown tests were run. Start-up and shakedown testing was completed. Four parametric tests were run. Performance data are presented with the exception of boiler efficiency which will be reported once chemical analyses are completed. Total boiler operation time through the end of this quarter - 1225 h, 50 min; operating time on culm and culm/limestone - 682 h, 43 min. Inspection revealed no problems with boiler tube wear. Sulfur capture greater than 94% was demonstrated (design is 88%). A turndown of better than 4 to 1 was shown (design is 2.5 to 1). Computer control of most of the loops has been successful and manual control was also demonstrated.

  11. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 25, October 1, 1994--December 31, 1994

    SciTech Connect

    1994-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  12. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  13. Porous radiant burners having increased radiant output

    DOEpatents

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  14. Computational fluid dynamics in oil burner design

    SciTech Connect

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  15. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 7, April 1, 1994--June 30, 1994

    SciTech Connect

    Singleton, A.H.

    1995-05-31

    This project`s goal is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column (SBC) reactor. During the seventh quarter, significant progress in several areas has enabled us to make a number of important conclusions. Preliminary catalyst preparation of 3 batches of a Ru-promoted 20% Co/Al{sub 2}O{sub 3} has confirmed the similarity in catalysts prepared by Energy International and by Calsicat using the same procedure. This similarity was evident in both fixed and SBC reactor studies. All TiO{sub 2}-supported Co catalysts have been found to have poor F-T properties in both the fixed-bed and SBC reactors. These catalysts had been prepared following exactly the procedures given in the Exxon patents. One of the main problems in using TiO{sub 2} as a support is the fact that it has low surface area for supporting a 20 wt % Co catalyst. Another problem is that it does not seem to be robust enough for use in a SBC reactor. Ru promotion of Co/SiO{sub 2} does not have as dramatic an effect on catalyst activity as seen for Co/Al{sub 2}O{sub 3}. However, it does play a major role in maintaining higher activity (factor of 2 in the SBCR) when K is added to Co/Sr/SiO{sub 2}. Zr has been clearly shown by us to significantly enhance the F-T activity of Co/SiO{sub 2}. Such promotion is a basis for many of the Shell cobalt F-T patents. Latest results indicate that Zr also improves the activity of Co/Al{sub 2}O{sub 3}, although the methane selectivity is also slightly elevated. Finally, for our design of a ``benchmark`` Co F- T catalyst, research has now shown using both fixed-bed and SBC reactors that 0.3 wt % K is the optimum amount to use with Ru- promoted 20 wt % Co/Al{sub 2}O{sub 3}. This amount of K greatly improves higher hydrocarbon selectivity without causing an unacceptable loss of activity.

  16. Regeneration of FGD waste liquors: Production of ammonium and potassium sulfate mixed fertilizer. Quarterly technical report, October 1993--December 1993

    SciTech Connect

    Randolph, A.D.

    1993-12-31

    In the 2nd quarterly report, we discussed the lime/limestone process which precipitates N-S containing compounds by adding lime/limestone in a narrow pH range, and which can be an alternative to the K{sub 2}SO{sub 4} process. In this report, we focused on investigations of the lime/limestone process. First, we established an overall flow diagram for the lime/limestone process. Based on the diagram, we performed preliminary experimental investigations to outline practical process conditions. Out major investigations concerned about effects of pH on precipitation of the N-S compounds and precipitation characteristics of N-S compounds in a continuous crystallization system. We also performed an experimental investigation to study crystallization characteristic of the ammonium sulfate in the hydrolysis liquor. In studying effects of pH, we performed batch precipitation of the N-S compounds in a broad range of pH and investigated the effects of pH on the amount of required lime, the amount of the precipitate, and the fraction of N-S compounds precipitated. The result revealed the optimum range for precipitation of N-S compounds to be pH = 7.6--8.6. In studying continuous crystallization characteristics of the N-S compounds, a bench scale 4-liter continuous crystallization system was built to compare a typical Mixed-Suspension-Mixed-Product-Removal (MSMPR) crystallizer and Double-Draw-Off (DDO) crystallizer. In a preliminary test, the DDO was shown to be superior by increasing the average size of the precipitated crystals of N-S compounds from 97 {mu}m to 142 {mu}m and thus enhancing the filterability. In order to obtain information for a practical design of the lime/limestone process, we also set up a material balance for a 300 MWe power plant facility. A preliminary calculation showed that a process on the scale could produce approximately 56 tons ammonium sulfate fertilizer per day.

  17. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    SciTech Connect

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  18. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, April 1, 1996--June 30, 1996

    SciTech Connect

    Buckley, J.S.; Ouenes, A.

    1996-10-01

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Subcontractors from Stanford University and the University of Texas at Austin are collaborating on the project. Several members of the Petroleum Recovery Research Center are participating in the development of the improved reservoir description by integration of the field and laboratory data, as well as in the development of quantitative reservoir models to aid performance predictions. Technical progress is summarized for geologic studies and field operations at Sulimar Queen Field, New Mexico, and technology transfer from this study.

  19. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology: Final quarterly technical progress no. 2, 1 July - 30 September 1995

    SciTech Connect

    Toseland, B.A.; Tischer, R.E.

    1997-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  20. Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report, November 1, 1994--January 31, 1995

    SciTech Connect

    1995-03-08

    The objective of this project is to develop high yield syntheses of oxygenate products that are liquid at room temperature using as starting materials dimethy ether (DME) or methanol. The identified products include: Dimethyl Carbonate (DMC), 1,1-Dimethoxyethane (DMOE), C{sub 2}{sup +} Alcohols/Ethers (C{sub 2}AE). The technical strategy is outlined below: (A) Synthesis of DMC via oxidative carbonylation of DME instead of methanol. Since this synthesis would not co-produce water as a byproduct, there is a potential for very high DME conversions in contrast to the low (ca 20%) conversions obtained in conventional plants. Technical emphasis will be placed on development of a supported copper catalyst with a capability for cleavage of DME into its chemisorbed organic moieties. (B) Synthesis of 1,1-dimethoxymethane (DMOE) from acetylene/CO/H{sub 2} process streams obtained from commercial methane oxidative pyrolysis processes. In the overall processing scheme the syngas would be converted to DME. The wet acetylene stream would be partially condensed to retain an equivalent of water and then condensed with DME to produce EMOE. (C) Direct conversion of DME or DME/methanol to ethanol/propanol or their methyl ethers. Under the influence of functionalized alcohol condensation catalysts developed exclusively at Amoco it should be possible to achieve direct conversion of dimethyl ether (or methanol) to ethanol/propanol and/or the methyl ethers of these alcohols. Although this reaction is not currently known, a combination of key catalyst components from identified systems should result in a DME conversion catalyst to C{sub 2}+ oxygenates. (D) Reaction of DME or acetylene with synthesis gas (CO/H{sub 2}) or methanol. A variety of catalysts will be tested for conversion of acetylene/CO/H{sub 2} or acetylene/methanol to propylene and conversion of DME/CO/H{sub 2} or DME/methanol to dimenthyoxymethane (DMM) and/or other oxygenates.

  1. Burner retrofits reduce brewery emissions

    SciTech Connect

    Not Available

    1993-04-01

    In 1988, the South Coast Air Quality Management District in California (SCAQMD) tightened its grip on industrial emissions of nitrogen oxides (NOx). The new statute, Rule 1146, mandates a 75% reduction in NOx emissions over a five-year period ending this July. Anheuser-Busch Inc.'s second-largest brewery in Van Nuys fell under the new law's jurisdiction. Under the new law, the maximum allowable NOx emission must be reduced from 120 to 30 ppm for the two largest boilers. There were two alternatives: either prevent its formation inside the boiler, or remove it from the off-gases via selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR). Prevention was chosen, because the NOx-removal technologies are unproven in the US on natural-gas-fired boilers. In addition, it was not known whether SCR or SNCR could respond to the wide swings in boiler demand. At any given time, loads between 30 and 100% of capacity would be required from the boilers. The brewery retrofitted the 125,000-lb/h boilers with Variflame burners, based upon an earlier retrofit at Anheuser-Busch's Merrimack, N.H., brewery. The paper describes this burner and its performance.

  2. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  3. Studies of granular flow down an inclined chute. Quarterly technical progress report, 13 June 1992--12 September 1992

    SciTech Connect

    Hanes, D.M.

    1992-12-01

    The driving force for the granular flow in the experimental region is gravity. The vehicle which re-circulates this flow is an 46 cm Corra-Trough belt conveyor manufactured by Buck-El, Inc. A drawing of this conveyor is shown in Figure 3. Entrance and exit chambers were designed to route the flow between the chute and the conveyor. Both devices had to be flexible because the position of the chute relative to the conveyor changes each time the angle of the chute is changed. Finally, to control the entering flow more accurately, an adjustable gate apparatus was constructed. The first step in setting up the chute is angle adjustment. The granular material used in the experiments described in this report are technical quality glass spheres, three millimeters in diameter. These beads are produced by Cataphote, Inc. Cataphote lists the tolerances for the 3mm spheres at {plus_minus}0.2 mm. The average mass of a single bead was measured to be 0.034 g which gives an average measured specific gravity of the glass at 2.42 g/cm{sup 3}.

  4. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report for period October--December 1995

    SciTech Connect

    1996-02-01

    Progress reports are presented for: Task 1 management plan; Task 2.1 laboratory support (University of Kentucky/Center for Applied Energy Research); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.); Task 4.1 process modeling; and Task 4.4 preliminary technical assessment (LDP Associates). Some of the high points for this period are: the activity of the base catalyst prepared by pressure filtration of the Wilsonville Run 262E V-1082 ashy resid was determined and compared with the conversion of coal in the absence of any added catalyst; this material was found to contain 740 mg Mo/kg; in the catalyst screening test, the pressure filtered solids that had been added to the reaction mixture to a level equivalent to the solids contained in Wilsonville Run 263J gave coal conversion of 98.2% with a resid conversion of 24%; and the effect of presulfiding conditions on activating a Mo-impregnated coal with different H{sub 2}S/H{sub 2} mixtures at different temperatures and reaction times was investigated.

  5. Prototype anthracite culm combustion boiler/heater unit. Quarterly technical report No. 4, July 1-September 30, 1979

    SciTech Connect

    Not Available

    1980-01-01

    There are currently about 910 million cubic yards of anthracite culm (mine refuse) contained in 800 separate banks in a 480 square mile area in the Wilkes-Barre (W-B) anthracite mining region. Although this material represents a significant fuel value, equivalent to approximately 1.25 billion barrels of fuel oil, the culm banks have accumulated because no satisfactory method of combusting this fuel was available until the relatively recent development of the atmospheric fluidized bed (AFB) steam generator. A program was initiated in October 1978 to design, construct and evaluate a 100,000 pph AFB steam generator burning anthracite culm with the addition of fresh anthracite, if required. The unit is to demonstrate the technical, economical and environmental feasibility of producing 150 psig saturated steam for district heating in downtown W-B. Phase I of the program consists of the design of the atmospheric fluidized bed (AFB) plant and a hot model test program. Phase II of the program consists of construction, operation, testing and evaluation of the boiler and boiler plant.

  6. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 4 wt% ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt% ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases.

  7. Improvement of hydrogen solubility and entrainment in hydrocracker feedstocks. Quarterly technical report, January 1, 1995--March 31, 1995

    SciTech Connect

    Kabadi, V.N.

    1995-07-01

    The objective of this project is to determine the conditions for the hydrogen-heavy oil feed preparation so as to optimize the yield of hydrocracking reactions. Proper contacting of hydrogen with heavy oil on the catalytic bed is necessary to improve the yields of the hydrocracking reactions. It is most desirable to have the necessary amount of hydrogen available either in the dissolved or in entrained state, so that hydrogen diffusion to the reaction site does not provide rate controlling resistance to the overall rates of hydrocracking reactions. This project proposes to measure solubility and entrainment data for hydrogen in heavy oils at conditions such as in hydrocrackers, and investigate the improvement of these properties by usage of appropriate additives. Specifically, measurements will be carried out at temperatures up to 300{degrees}C and pressures up to 120 atmospheres. Correlations for solubility and entrainment kinetics will be developed from the measured data, and a method for estimating yield of hydrocracking reactions using these correlations will be suggested. Exxon Research and Engineering Company will serve as private sector collaborator providing A&T with test samples and some technical expertise that will assure successful completion of the project. Results are presented for solubility of hydrogen in hydrocarbons and in heavy petroleum fractions. Comparison with experimental data shows good agreements. It is also demonstrated that the model is easily applied to compute solubility of hydrogen in heavy petroleum fractions with fair degree of accuracy. Detailed results are presented.

  8. Advanced turbine design for coal-fueled engines. Quarterly technical report, [July 1, 1989--September 30, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Coal-fueled gas turbines require the development of a number of new technologies which are being identified by METC and its Heat Engines Contractors. Three significant problems, that were Identified early in the development of coal-fueled engines, are the rapid wear of the turbine airfoils due to particulate erosion, the accumulation of deposits on portions of the airfoil surfaces due to slag deposition and the rapid corrosion of airfoils after the breakdown of surface coatings. The technology development study contained in this program is focused on improving the durability of the turbine through the development of erosion and deposition resistant airfoils and turbine operating conditions. The baseline turbine meanline design vas modified to prevent a local shock on the suction side of the rotor airfoil. New particle dimensionless parameters to be varied were determined. Three first-stage turbine meanline designs have been completed. The design of nev turbine airfoil shapes has been initiated. The calculation of particle trajectories has been completed for the baseline turbine vane and blade airfoils. The erosion model described in the previous technical report vas incorporated in the Post Processing Trajectory Analysis Code.

  9. Development of enhanced sulfur rejection processes. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Yoon, R.H.; Luttrell, G.; Adel, G.; Richardson, P.E.

    1993-06-14

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern US coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR). The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The technical research was initiated on October 1, 1992, and a detailed work plan and work schedule were developed. During this reporting period, research was conducted to evaluate the liberation characteristics of various pyrite samples, to determine the electrochemical reactions that influence the hydrophobicity of pyrite, and to examine the potential use of electrochemical methods for controlling the flotation and depression of pyrite.

  10. Projects at the Western Environmental Technology Office. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    1996-01-01

    The goal of this project is to demonstrate the technical and economic feasibility of commercializing a biotechnology that uses plants to remediate soils, sediments, surface waters, and groundwaters contaminated by heavy metals and radionuclides. This technology, known as phytoremediation, is particularly suited to remediation of soils or water where low levels of contaminants are widespread. Project objectives are to provide an accurate estimate of the capability and rate of phytoremediation for removal of contaminants of concern from soils and groundwaters at Department of Energy (DOE) sites and to develop data suitable for engineering design and economic feasibility evaluations, including methods for destruction or final disposition of plants containing contaminants of concern. The bioremediation systems being evaluated could be less expensive than soil removal and treatment systems, given the areal extent and topography of sites under consideration and the investment of energy and money in soil-moving and -treating processes. In situ technology may receive regulatory acceptance more easily than ex situ treatments requiring excavation, processing, and replacement of surface soils. In addition, phytoremediation may be viable for cleanup of contaminated waters, either as the primary treatment or the final polishing stage, depending on the contaminant concentrations and process economics considerations.

  11. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  12. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  13. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    SciTech Connect

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  14. Technology development for cobalt F-T catalysts. Quarterly technical progress report number 10, January 1--March 31, 1995

    SciTech Connect

    Singleton, A.H.

    1995-06-28

    The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting period include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.

  15. Advanced emissions control development program. Quarterly technical progress report {number_sign}4, July 1--September 30, 1995

    SciTech Connect

    Farthing, G.A.

    1995-12-31

    Babcock and Wilcox (B and W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the US Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B and W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  16. Burners

    MedlinePlus

    ... among people who play contact sports such as football and wrestling. Symptoms How do I know if ... each stretch for 20 seconds. If you play football, wear extra neck protection. Questions to Ask Your ...

  17. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  18. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Ninth quarterly technical progress report, September 1, 1992-- December 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-12-31

    This is the 9th quarterly technical progress report for the project entitled ``Pyrite surface characterization and control for advanced fine coal desulfurization technologies``, DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS{sub 2} + B(OH){sub 4}{sup =} ------> [S{sub 2}Fe-B(OH){sub 4}]{sub surf} + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results.

  19. Computational modeling and experimental studies on NO{sub x} reduction under pulverized coal combustion conditions. Third quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Kumpaty, S.K.; Subramanian, K.

    1995-12-31

    An experimental plan outlining the first year`s activity was sent to Dr. Lori Gould, Project Officer/Contracting Officer`s Technical Representative on April 24, 1995. An approval was received with some questions on June 15, 1995. However, with some foresight of the director of the in-house combustion group of the PETC, Dr. Ekmann, a tentative hold-off on the purchase of the equipment was requested by the project officer on June 29, 1995. Enclosed with that request were some of Dr. Ekmann`s concerns. The research team spent the month of July in study of pertinent literature as well as in the preparation of the responses to Dr. Gould`s comments and Dr. Ekmann`s concerns. These responses included the choice of the reactor, reactor design, rate of gas heating, detailed test matrix and answers to host of other comments. Upon review of the above information submitted on July 24, 1995 by the Rust research team, the project officer called for a conference call on September 6, 1995 which involved the PI (Dr. Kumpaty), the research consultant (Mr. Subramanian), Dr. Gould and Dr. Ekmann. Dr. Ekmann insisted that further calculations be made on the rate of gas heating without taking radiation into account. Accordingly, calculations pertaining to the rate of gas heating based on convection were performed and submitted to Dr. Ekmann on September 13, 1995. This report contains the information emerged through the dialogue between the Rust College research team and the PETC represented by Dr. Gould and Dr. Ekmann during this quarter.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994

    SciTech Connect

    Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

    1994-05-06

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 3, April--June 1993

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-07-28

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the quarter from April 1 to June 30, 1993. The project has three major objectives: (1) the primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) a secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics; and (3) a third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  2. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  3. Industrial burner and process efficiency program

    NASA Astrophysics Data System (ADS)

    Huebner, S. R.; Prakash, S. N.

    1981-03-01

    A laboratory prototype burner which is compatible with a FM (frequency modulation) combustion control system where temperature control is accomplished by regulating the ratio of burner on-time to burner off-time was developed. This multifuel (natural gas and No. 2 fuel oil) high velocity burner is capable of repeated pulse ignition at maximum rated capability (1 million Btu-hour) with preheated air (from ambient to 1100F). A digital control in the FM mode was developed. Experimental data from tests in a laboratory furnace indicated that when applied to a batch type thermal process where appreciable turndown is presently obtained by excess air operation, the FM combustion system provides improvements in process fuel efficiency and gains in productivity.

  4. Reverberatory screen for a radiant burner

    DOEpatents

    Gray, Paul E.

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  5. Alzeta porous radiant burner. CRADA final report

    SciTech Connect

    1995-12-01

    An Alzeta Pyrocore porous radiant burner was tested for the first time at elevated pressures and mass flows. Mapping of the burner`s stability limits (flashback, blowoff, and lean extinction limits) in an outward fired configuration and hot wall environment was carried out at pressures up to 18 atm, firing rates up to 180 kW, and excess air rates up to 100%. A central composite experimental design for parametric testing within the stability limits produced statistically sound correlations of dimensionless burner temperature and NO{sub x} emissions as functions of equivalence ratio, dimensionless firing rate, and reciprocal Reynolds number. The NO{sub x} emissions were below 4 ppmvd at 15% O{sub 2} for all conditions tested, and the CO and unburned hydrocarbon levels were simultaneously low. As a direct result of this cooperative research effort between METC and Alzeta, Solar Turbines has already expressed a strong interest in this novel technology.

  6. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be shielding to protect parts adjacent to the burner flame, and the occupants, from heat effects. (c... to the maximum thermal shock for temperature affected elements; (ii) Seven and one-half hours at...

  7. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be shielding to protect parts adjacent to the burner flame, and the occupants, from heat effects. (c... to the maximum thermal shock for temperature affected elements; (ii) Seven and one-half hours at...

  8. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be shielding to protect parts adjacent to the burner flame, and the occupants, from heat effects. (c... to the maximum thermal shock for temperature affected elements; (ii) Seven and one-half hours at...

  9. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be shielding to protect parts adjacent to the burner flame, and the occupants, from heat effects. (c... to the maximum thermal shock for temperature affected elements; (ii) Seven and one-half hours at...

  10. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be shielding to protect parts adjacent to the burner flame, and the occupants, from heat effects. (c... to the maximum thermal shock for temperature affected elements; (ii) Seven and one-half hours at...

  11. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  12. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  13. The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Quarterly technical progress report No. 5, first quarter fiscal year 1993, October 1, 1992--December 31, 1992

    SciTech Connect

    Reagan, W.J.

    1995-01-01

    Amoco Oil Company, under a contract with the United States Department of Energy, is investigating a selective catalytic cracking process to convert the Fischer-Tropsch gasoline and wax fractions to high value transportation fuels. This report describes the work in the first quarter, fiscal year, 1993.

  14. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, September 13, 1995--December 12, 1995

    SciTech Connect

    1995-12-12

    The main emphasis this quarter was on the geostatistics and reservoir simulation. Assimilation of data with the geostatistics was conducted to determine the specific well locations for the demonstration program. Reservoir characterization and performance information is also included.

  15. Multi-fuel low-NOx burner development, phase 2

    NASA Astrophysics Data System (ADS)

    Abbasi, H. A.; Khinkis, M. J.; Waibel, R. T.

    1982-05-01

    The development of high efficiency, low nitrogen-oxides producing multi-fuel industrial burners with flame and heat transfer characteristics suitable for specific industrial processes was investigated. Burners for three industrial processes were designed to achieve a reduction in NOx emissions compared with currently used standard burners: (1) a high excess air burner used in direct air dryers for applications in the food processing industry; (2) a hot air burner with high convective heat transfer for direct fired metal processing furnaces; and (3) a hot air burner with a long, luminous flame for direct fired process furnaces in the steel, aluminum, and glass industries. The high convective, hot air burner achieved NOx emission reduction of up to 50%. NOx emissions from the hot air burner with a long, luminous flame were 45 to 60% lower than the standard burner.

  16. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  17. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  18. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. First quarterly technical progress report, [January--March 1995

    SciTech Connect

    1995-12-31

    The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: Advanced overfire air (AOFA), Low NO{sub x} burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NO{sub x} emission levels to be near 0.65 lb/MBtu. This NO{sub x} level represents a 48 percent reduction when compared to the baseline, full load value of 1. 24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NO{sub x} emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NO{sub x} level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NO{sub x} emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is in progress. During first quarter 1995, design of the advanced control and optimization software and strategies continued. Process data collected from the DCS is being archived to a server on the plant information network and subsequently transferred to SCS offices in Birmingham for analysis and use in training the neural network combustion models.

  19. Mass spectral study of organic sulfur in the polymeric matrix of coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Hanley, L.

    1993-09-01

    This report reviews the seventh quarter progress of a two year project to examine the chemical environment of organic sulfur in the polymeric matrix of Illinois coal by laser desorption ion trap mass spectrometry. This project is attempting to develop new laser desorption-ionization schemes for coal which preserve the polymeric matrix. From work this quarter, we have concluded that ultraviolet matrix assisted laser desorption is not an appropriate method to volatilize high molecular weight material extracted from coal. However, we have found that direct 355 nm laser desorption of neat samples of pyridine extracts from Illinois No. 6 coal gives what appears to be intact molecular ions. Direct laser desorption of the extract using both IR and UV wavelengths produces a distribution of ions between 150 and 1500 amu, with a peak near 500 amu. Work is continuing into the final quarter of this project to obtain such spectra from separated coal macerals and from various other coals.

  20. Sealed, nozzle-mix burners for silica deposition

    DOEpatents

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  1. Computational modeling and experimental studies on NO{sub x} reduction under pulverized coal combustion conditions. Technical progress report, second quarter, April 1, 1995--June 30, 1995

    SciTech Connect

    Kumpaty, S.K.

    1995-12-01

    Presented in this second quarterly report are the computational results of NO reburning with (a) a combination of methane and acetylene (i) with the reaction mechanism listed in the first quarterly report and (ii) with the updated reaction mechanism (Table 1 of this report); and (b) a combination of methane and ammonia. The impact of the updated reaction scheme was not significant on the results of NO reburning with methane/acetylene; however, the reaction scheme needed changes to improve the accuracy of some reactions of crucial intermediates in methane/ammonia reburning. An extensive literature survey was made in order to update the mechanism.

  2. Low NO.sub.x burner system

    DOEpatents

    Kitto, Jr., John B.; Kleisley, Roger J.; LaRue, Albert D.; Latham, Chris E.; Laursen, Thomas A.

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  3. Industrial Energy Conservation, Forced Internal Recirculation Burner

    SciTech Connect

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  4. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... opacity limit is EPA Method 9. A complete description of this method is found in 40 CFR part 60, appendix... woodwaste burner must shut down and dismantle the woodwaste burner by no later than two years after the... down, visible emissions from the woodwaste burner must not exceed 20% opacity, averaged over...

  5. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... opacity limit is EPA Method 9. A complete description of this method is found in 40 CFR part 60, appendix... woodwaste burner must shut down and dismantle the woodwaste burner by no later than two years after the... down, visible emissions from the woodwaste burner must not exceed 20% opacity, averaged over...

  6. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... A complete description of this method is found in 40 CFR part 60, appendix A. (2) (e) Are there... provided by paragraph (c)(3) of this section, the owner or operator of a woodwaste burner must shut down... woodwaste burners are currently operational. Until the woodwaste burner is shut down, visible emissions...

  7. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  8. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  9. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  10. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  11. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  12. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  13. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  14. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  15. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  16. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  17. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  18. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 17, August 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  19. Automatic gas burner block for thermal units

    SciTech Connect

    Kryzhanovskii, K.S.; Senatov, V.I.

    1987-01-01

    The authors describe a new computerized control system and gas burner configuration for natural gas furnaces used for the heat treatment of ceramics and porcelain which is designed to control and monitor combustion and temperature regimes in the furnace and optimize fuel efficiency. The system permits simultaneous operation and thermal load control of up to 12 burners, automatic maintenance of the desired fuel-air ratio over the entire temperature range, and protection of the furnace against overload by the use of a fuel cutoff switch. Specifications on productivity and efficiency and results of performance evaluations are listed.

  20. Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit

    SciTech Connect

    Not Available

    1992-03-18

    The overall objectives of the full-Scale Low-NO{sub x} Cell{trademark} Burner (LNCB{trademark}) Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the LNCB{trademark} retrofits are the most cost-effective alternative to emerging, or commercially- available NO{sub x} control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NO{sub x} reduction capabilities without adversely impacting plant performance, operation and maintenance. In particular, the prototype evaluations will resolve many technical issues not possible to address fully in the previous pilot-scale work and the single full-scale burner installation.

  1. Short-term energy outlook. Quarterly projections, third quarter 1996

    SciTech Connect

    1996-07-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the third quarter of 1996 through the fourth quarter of 1997. Values for the second quarter of 1996, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled in the third quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

  2. Short-term energy outlook: Quarterly projections. Second quarter 1995

    SciTech Connect

    1995-05-02

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

  3. Close Quarters.

    ERIC Educational Resources Information Center

    Williams, Jennifer G.

    2000-01-01

    Greenville (South Carolina) Technical Charter High School (GTCHS) is a "middle college" located on the campus of Greenville Technical College. GTCHS trains students through project-based learning and increased hands-on training. (JOW)

  4. Emissions from gas fired agricultural burners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  5. Burner swirls NO{sub x} away

    SciTech Connect

    Zink, J.C.

    1997-11-01

    Cleaner boilers that will help reduce acid rain, photochemical smog and tropospheric ozone are now coming on-line, partly as a result of a new burner design for power-generation boilers based on MIT research and now commercialized under exclusive license to ABB C-E Services Inc. The rapidly stratified flame core (RSFC) burner achieved very large nitrogen oxide reductions of up to 90% with natural gas as fuel, and 70 to 80% when burning pulverized coal and heavy fuel oil, respectively. The RSFC design provides a fuel-rich (oxygen deficient), high-temperature environment early in the flame to allow the chemical conversion of the NO{sub x} precursors to harmless molecular nitrogen. A subsequent lower-temperature, fuel-lean environment, in which the remainder of the air is mixed with the remaining fuel, then ensures complete combustion. Another integral feature of the RSFC burner register is its uniquely shaped refractory throat quarl. The throat collimates the airflow as opposed to the divergent airflow from a traditional burner (bell mouth) nozzle shape. The cylindrical shape tends to enforce stratification.

  6. Post waterflood CO2 miscible flood in light oil fluvial - dominated deltaic reservoirs. Technical progress report, October 1, 1994--December 30, 1994. 1st Quarter, fiscal year 1995

    SciTech Connect

    1994-01-15

    Production is averaging about 450 BOPD for the quarter. The fluctuation was primarily due to a temporary shutdown of CO{sub 2} delivery and maturing of the first WAG cycle. CO{sub 2} and water injection were reversed again in order to optimize changing yields and water cuts in the producing wells. Measured BHP was close to the anticipated value. A limited CO{sub 2} volume of 120 MMCF was injected to stimulate well Kuhn No. 6 to test the Huff-Puff process, since the well did not respond to CO{sub 2} injection from the main reservoir. The well will be placed on February 1, 1995. Total CO{sub 2} injection averaged this quarter about 8.8 MMCFD, including 3.6 MMCFD purchased CO{sub 2} from Cardox. The stratigraphy of the sand deposits is also discussed.

  7. Developing a cost effective environmental solution for produced water and creating a new water resource. Quarterly technical report, October 1, 1996--December 31, 1996

    SciTech Connect

    Doran, G.

    1997-01-01

    This report summarizes the status of this project for the quarter October 1, 1996 to December 31, 1996. Phase I has been completed and Phase II will start in the first quarter of 1997. A membrane process treatment train has been selected for the pilot study and the estimated treated water cost is 21-27 cents per barrel for a 42,000 barrel per day full scale treatment plant. The pilot study will provide information to refine the design and cost estimate. The project is slightly behind schedule. A no cost extension is being requested. The anticipated completion date is December 31, 1997 rather than the current June 24, 1997. The project is on budget.

  8. Market assessment for the fan atomized oil burner

    SciTech Connect

    Westphalen, D.

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  9. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry reservoir. Quarterly technical report, April 1, 1996--June 30, 1996

    SciTech Connect

    Schechter, D.

    1996-11-01

    Progress has been made in the area of laboratory analysis of Spraberry oil/brine/rock interactions during this quarter. Water imbibition experiments were conducted under ambient conditions, using cleaned Spraberry cores, synthetic Spraberry reservoir brine, and Spraberry oil. It has been concluded that the Spraberry reservoir cores are weakly water-wet. The average Amott wettability index to water is about 0.55. The average oil recovery due to spontaneous water imbibition is about 50% of original oil in place.

  10. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  11. Controlling Btu input with high-velocity burners

    SciTech Connect

    Lukacs, J.J.

    1995-09-01

    StepFire{trademark} (sometimes called pulse fire) controls heat input through a burner by rapidly cycling from high fire to low fire (or from high fire to off) to control the temperature of either an entire kiln or a zone within a kiln. In the StepFire process, each burner, rather than an entire zone of burners, is controlled. The StepFire process provides a better approach to temperature control: high-velocity burners improve temperature distribution across the load, whether the burners are fired vertically downward or horizontally; reentrainment effect of the burners breaks up crown drift and allows dissipation of energy into the product; high-velocity burners generate less NO{sub x} and co than injector-type burners; high-velocity burners put most of the combustion air through the burners and do not have to rely on the mass flow of air from the cooling zone to complete combustion and provide uniformity; individual cycling of the burners does not radically change the total input of gases to the furnace, thereby allowing pressure control; because burners are cycled individually, the entire zone of the furnace does not go from a heating to a cooling mode, but continues at an input rate to maintain uniformity of energy input through the stepping process. StepFire use on all types of kilns results in improved product properties and quality, reduced fuel use, increased production, fewer rejects and reduction of NO{sub x} and CO emissions. Because the burners operate under their optimum conditions during most of the firing cycles, NO{sub x} formation is reduced, and the quenching effect of the flame by excess air is not present, reducing the generation of CO.

  12. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  13. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

  14. Identification and validation of heavy metal and radionuclide accumulating terrestrial plant species. Quarterly technical progress report, June 21, 1995--September 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-31

    This quarterly report describes experiments on uptake of a variety of heavy metals by plants. Titles of report sections are (1) Alleviation of heavy-metal induced micronutrient deficiency through foliar fertilization, (2) Second screen for Zn, Cu, and Cd accumulation, (3) Characterization of the root Zn hyperaccumulation by Thlaspi caerulescens, (4) Comparison of commercial Brassica accessions obtained from the Iowa seed bank, (5) Second screening experiment for the accumulation of Cs and Sr by plants, (6) Effect of Ca on Cs and Sr accumulation by selected dicot species, and (7) Preliminary investigations into the forms of uranium taken up by plants.

  15. Diffusion of gases in coals and chars: Technical progress report, quarterly report No. 5, 9/15/86-12/14/86

    SciTech Connect

    Smith, D.M.

    1986-01-01

    Work during the past quarter involved: (1) surface area measurement; (2) mercury porosimetry; (3) NMR pore structure analysis; and (4) diffusion measurements. Surface area measurements via both nitrogen and carbon dioxide adsorption were completed for all group A coals. Four particle sizes of three coals were studied with mercury porosimetry. NMR relaxation experiments were used to determine continuous pore size distributions. Activity concerning diffusion measurements has been in the area of improving experimental design for both the pellet string reactor and batch desorption experiments. 1 ref.

  16. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly technical progress report, September 15, 1995--January 15, 1996

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, He

    1996-01-26

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) f or coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Many of those objectives have already been achieved and others are still in progress. This quarterly report covers further progress toward those objectives.

  17. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    SciTech Connect

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  18. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 4, October 1, 1994--December 31, 1994

    SciTech Connect

    1996-08-20

    The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this fourth quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the bench-scale testing and pilot-plant testing results enabled the design and procurement activities to move forward. On that basis, activities in the areas of design and procurement that had been initiated during the previous quarter were conducted and completed.

  19. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Third quarterly technical progress report, March 16--June 15, 1994

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1994-09-21

    The threat of global warming, mounting concerns about air and water pollution, prospective food shortages, and declining reserves of low-cost fossil fuels, have spawned a burgeoning interest in photobiological processes using microalgae as a method of large-scale utilization of CO{sub 2} for the production of fuels, food, and waste treatment. Background to this technology can be found in prior progress reports. During this quarterly period, the following main subjects were investigated: (1) Wastewater treatment with microalgae as a sink for CO{sub 2} derived from power plants. (2) Exploration of a method to increase in photosynthetic efficiencies by a factor of two to three fold with microalgae cultures. This quarterly report reflects this work only partially, as some of it is still in progress. In addition to the specific work reported on here, work also progressed on several other areas, in particular the economics of the construction of a large-scale pond system and the review of prior efforts in this area. These will be reported on in later reports.

  20. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 4, July 1, 1991--September 30, 1991

    SciTech Connect

    Evans, A.; Newhall, J.; England, G.; Seeker, W.R.

    1992-06-23

    CombiNO{sub x} is a NO{sub x} reduction process which incorporates three different NO{sub x} control technologies: reburning, selective non-catalytic reduction (SNCR), and methanol injection. Gas reburning is a widely used technology that has been proven to reduce NO{sub x} up to 60% on full-scale applications. The specific goals of the CombiNO{sub x} project are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; Demonstrate coal reburning; Identify all undesirable by-products of the process and their controlling parameters; Demonstrate 95% N0{sub 2} removal in a wet scrubber. Before integrating all three of CombiNO{sub x}`s technologies into a combined process, it is imperative that the chemistry of each individual process is well understood. Pilot-scale SNCR tests and the corresponding computer modeling were studied in detail and discussed in the previous quarterly report. This quarterly report will present the results obtained during the pilot-scale advanced reburning tests performed on EER`s Boiler Simulation Facility (BSF). Since methanol injection is a relatively new NO{sub x} control technology, laboratory-scale tests were performed to better understand the conditions at which methanol is most effective. The experimental set-up and results from these tests will be discussed.

  1. Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, 1 January 1996--31 March 1996

    SciTech Connect

    Joyce, P.C.; Thies, M.C.

    1996-09-01

    The objective of this research project is to evaluate the potential of supercritical fluid extraction for separating the catalyst slurry of a Fischer-Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200--300 {degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. During this quarter work focused on task 1b, experimental measurement of selected model systems. Vapor-liquid equilibrium experiments for the n- hexane/squalane system, which we initiated in the previous quarter, were continued and results are discussed in this report.

  2. Studies of the mechanism of Coal Hydrogenation by Electron Spin Resonance. Quarterly technical progress report, March 1-May 31, 1980. [For high-temperature, high pressure measurements

    SciTech Connect

    Goldberg, Ira B.

    1980-07-01

    This is the first quarterly report on the program Studies of Coal Hydrogenation by Electron Spin Resonance. This quarter has been devoted to constructing apparatus for high temperature-high pressure electron paramagnetic resonance (EPR) measurements, characterizing the performance of the microwave cavity, and carrying out preliminary room temperature studies on coals and coal products. At the start of this program, there were no microwave cavities available to study high pressure-high temperature reactions. A system was constructed which can be used to study coal hydrogenation, and satisfies the conditions described in the report. This cavity was constructed using funding from Rockwell International, and will be used on this program. Because of the dependence of the work to be done with this device for this program, the construction is described in detail. This report, therefore, considers the design philosophy, construction of the device, a preliminary discussion of its performance, and application of the cavity for room temperature studies on several varieties of coal.

  3. Heater with zone-controlled radiant burners

    SciTech Connect

    Kendall, R.M.; Schreiber, R.J.; Minden, A.C.; Wong, T.

    1987-05-12

    A radiant burner is described for use in a process heater. The burner comprises the combination of a fiber matrix shell of elongate cylindrical shape, the matrix having interstitial spaces between the fibers for diffusing fuel and air therethrough. Baffle means divide the internal shell volume into separate plena which extend lengthwise of the shell. Inlet means direct independent streams of gas into the separate plena, with a first one of the plena receiving a first stream comprising a fuel and air mixture which flows through the fiber matrix and flamelessly combusts on the outer surface portion of the shell which surrounds the first plenum forming an active combustion zone to transfer heat outwardly primarily by radiation.

  4. Refinery burner simulation design architecture summary.

    SciTech Connect

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  5. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  6. Field testing the prototype BNL fan-atomized oil burner

    SciTech Connect

    McDonald, R.; Celebi, Y.

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  7. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  8. A heated chamber burner for atomic absorption spectroscopy.

    PubMed

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable.

  9. Industrial burner modeling: Final report for the CIEE

    SciTech Connect

    Cloutman, L.D.

    1994-12-01

    The COYOTE computer program was used as basis for a comprehensive numerical model of industrial burners. This program is based on the full multicomponent Navier-Stokes equations and includes a subgrid-scale turbulence model. The model was used to simulate the flows in a laboratory-scale burner being studied experimentally at UC-Irvine. We summarize what has been learned in the last 3 years from simulations of this burner. This model provides detailed information about the flow field in the furnace, making it a useful tool for studying the physics of burners.

  10. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  11. Hydrocarbon-oil encapsulate bubble flotation of fine coal. Technical progress report for the twelfth quarter, July 1--September 30, 1993

    SciTech Connect

    Peng, F.F.

    1993-12-31

    Two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal. Five different coal samples were used in the column flotation test program. They are Mammoth, Lower Kittanning, Upper Freeport, Pittsburgh No. 8, and Illinois No. 6 seam coals, which correspond to anthracite-, low volatile-, medium volatile-, and high volatile-seam coals, respectively. In this quarterly report, the test results for the Upper Freeport seam coal and Pittsburgh No. 8 seam coal are reported.

  12. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report

    SciTech Connect

    Murphy, M.B.

    1996-04-22

    The overall objective of this project is to demonstrate that development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. specific goals to attain the objective are (1) to demonstrate that development drilling program and pressure maintenance program, based on advanced reservoir management methods , can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. This is the second quarterly progress report on the project. Results obtained to date are summarized.

  13. The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Srivastava, V.J.

    1992-08-01

    The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the pre-combustion removal of sulfur from coal. Microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal; however, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal samples for subsequent biodesulfurization. During the current quarter, chemical comminution and combined chemical treatment/explosive comminution experiments have been performed to generate coal samples with increased surface area and porosity. Ammonia vapor was found to be the most effective chemical comminution agent and the optimum conditions for combined chemical treatment/explosive comminution have not yet been determined.

  14. Catalytic reduction of SO{sub 2} with methane over molybdenum catalyst. Quarterly technical report, September 1, 1994--November 30, 1994

    SciTech Connect

    Wiltowski, T.

    1995-03-01

    One of the primary concerns in coal utilization is the emission of sulfur compounds, especially SO{sub 2}. This project deals with catalytic reduction of SO{sub 2} with methane using molybdenum sulfide catalyst supported on different activated carbons: Darco TRS, Norit ROZ-3, and an activated carbon prepared from Illinois coal IBC-110. The work conducted during this quarter has concentrated on catalyst preparation and characterization along with synthesis of activated carbon from IBC-110 coal, as well as, construction of the apparatus for catalytic tests of SO{sub 2} reduction with methane. It was found that Darco TRS supported catalysts have larger surface area than the pure activated carbon, whereas the impregnation of Norit ROZ-3 did not significantly change the BET surface area. Also, the synthesis of activated carbon support from IBC-110 is in progress.

  15. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-07-25

    Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

  16. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 4, January--March, 1995

    SciTech Connect

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.

  17. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  18. Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly MCLR program technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1995-04-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  19. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes; Quarterly MCLR program technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1994-01-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The AirConditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  20. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly technical progress report, 1 July 1993--30 September 1993

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1993-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  1. Federal Assistance Program Quarterly Project Progress Report. Geothermal Energy Program: Information Dissemination, Public Outreach, and Technical Analysis Activities. Reporting Period: January 1 - March 31, 2001 [Final report

    SciTech Connect

    Lund, John W.

    2002-03-22

    The final report of the accomplishments of the geothermal energy program: information dissemination, public outreach and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association and the Washington State University Energy Program.

  2. Short-term energy outlook. Quarterly projections, first quarter 1996

    SciTech Connect

    1996-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Outlook. The forecast period for this issue of the Outlook extends from the first quarter of 1996 through the fourth quarter of 1997. Values for the fourth quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook.

  3. Short-term energy outlook: Quarterly projections, second quarter 1997

    SciTech Connect

    1997-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the second quarter of 1997 through the fourth quarter of 1998. Values for the first quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the second quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the Short-Term Integrated Forecasting System (STIFS). 34 figs., 19 tabs.

  4. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  5. Residential oil burners with low input and two stages firing

    SciTech Connect

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  6. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    EPA Science Inventory

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  7. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  8. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  9. Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Hill, A.H.; Abbasian, J.; Flytzani-Stephanopoulos, M.; Li, Li

    1993-09-01

    The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degrees} to 850{degrees}C. In this program, structural and kinetic studies are conducted on various compositions of the two selected copper-based sorbents to determine the optimum sorbent composition. The effect of operating conditions on the performance of the sorbents alone with the stability and regenerability of the selected sorbents in successive sulfidation/regeneration operation are determined. Parametric multicycle desulfurization tests were conducted this quarter in a bench-scale (5-cm-diameter) quartz reactor at one atmosphere using the CuCr{sub 2}O{sub 4} and CuO/CeO{sub 2} sorbents. The parameters studied included temperature, space velocity, and feed gas composition. Both sorbents were able to reduce the H{sub 2}S concentration of the reactor feed gas to <10 ppM under all conditions tested. The apparent reactivity of the CuO/CeO{sub 2} sorbent was lower after the first cycle which may be attributed to incomplete regeneration caused by sulfate formation.

  10. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending December 31, 1986

    SciTech Connect

    Not Available

    1986-12-31

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream`s composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  11. Separation of flue-gas scrubber sludge into marketable products. Quarterly technical progress report No. 12, June 1, 1996--August 30, 1996

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1996-09-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite, gypsum, and unreacted limestone or lime, with miscellaneous objectionable impurities such as iron oxides, silicates, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather then landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product. In this quarter, the installation of a laboratory-scale flotation column was completed. In addition to the installation of the flotation column, research on the determination of the surface properties of the components of the scrubber sludge was continued. Auger electron spectroscopy was investigated as a method for determining the composition of the first few monolayers of unreacted limestone and calcium sulfite/sulfate particles.

  12. Characterization of coal particles using rule base on-line image analysis. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Yen, S.C.M.; Chu, T.C.

    1994-06-01

    Different materials in coal reflect light in a different manner and, therefore, can be identified based on their image of light reflectance characteristics (i.e. shade of gray). Furthermore, liberated and nonliberated pyrite particles are surrounded by media of different shades of gray. With these two pieces of information, the degree of pyrite liberation and the degree of purity of coal macerals can be analyzed through a computer program. Ultimately, this image analysis computer program will acquire and analyze different frames of coal image automatically without any intervention of an operator. During the past one year, an in-depth database of the light reflectance characteristics of different materials of coal has been established. This process is still being continued to extend the database of coal images. During this quarter, a C-language computer program has been developed. This program reads an image and analyzes it according to the database and decision-making criteria developed in the previous study. Thus far this computer program tends to account more particles than what are presented in an image. This is attributed to the electronic noise produced through the CCD camera. The electronic noises are in the order of 1 or two pixels and can be rectified through an additional decision-making rule. In general, this computer program picked up the particles without any intervention from an operator. In other words, this computer can replace an operator to perform the analysis of ultafine coal particles.

  13. Post waterflood CO{sub 2} miscible flood in light oil fluvial dominated deltaic reservoirs. Second quarterly technical progress report, [January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    Production from the Marg Area 1 at Port Neches is averaging 392 barrels of oil per day (BOPD) for this quarter. The production drop is due to fluctuation in both GOR and BS&W on various producing well, coupled with low water injectivity in the reservoir. We were unable to inject any tangible amount of water in the reservoir since late January. Both production and injection problems are currently being evaluated to improve reservoir performance. Well Kuhn (No. 6) was stimulated with 120 MMCF of CO{sub 2}, and was placed on production in February 1, 1995. The well was shut in for an additional month after producing dry CO{sub 2} initially. The well was opened again in early April and is currently producing about 40 BOPD. CO{sub 2} injection averaged 11.3 MMCFD including 4100 MMCFD purchased from Cardox, while water injection averaged 1000 BWPD with most of the injection occurring in the month of January.

  14. Improvement of storage, handling and transportability of fine coal. Quarterly technical progress report No. 3, July 1, 1994--September 30, 1994

    SciTech Connect

    1996-08-16

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this third quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the feedstock coal options at the Chetopa Plant was conducted and mulling characteristics determined to enable a decision to be made regarding the feedstock selection. It was decided that the froth concentrate will be the feedstock wet fine coal used for the project. On that basis, activities in the areas of design and procurement were initiated.

  15. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  16. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal. Quarterly technical progress report No. 13, September 1, 1995--November 30, 1995

    SciTech Connect

    Fuerstenau, D.W.

    1995-12-01

    The objective of this research is the development of improved technology of the preparation of coal-water slurries that have potential for replacing fuel oil in direct combustion. Research accomplishments are summarized for: standardization of experimental procedures; investigation of effect of high-pressure roll mill/ball mill grinding on the energetics of fine grinding and the rheology of coal-water slurries prepared with such fines; study of aging behavior of slurries; and ways of improving rheology of slurries. The rheological behavior of slurries is a manifestation of particle-particle and particle-fluid interactions in the slurry. Improvement in the rheology of slurries could be brought about by suitably altering these interactions. The research directed towards investigation of the influence of co-addition of sodium hexametaphosphate and vacuum oil, with CoalMaster as the primary dispersant, showed that co-addition of the reagents significantly improved the rheology of coal-water slurries. Further research conducted in this quarter indicated that co-addition of reagents also improves the long-term rheological behavior of coal-water slurries.

  17. Novel microorganism for selective separation of coal from ash and pyrite. Fourth quarterly technical progress report, July 1, 1994--September 30, 1994

    SciTech Connect

    Misra, M.; Smith, R.W.

    1995-12-31

    This report summarizes the progress made during the fourth quarter of the research 9 project entitled {open_quotes}A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite{close_quotes}. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash forming minerals. During the reporting period, the adhesion of M phlei on the surface of quartz was investigated as a function of pH and conditioning time. Results showed that the little adhesion of M phlei onto quartz occurred. The amount of M phlei adsorbed onto the surface of quartz was less compared to coal. These results suggest that it would be possible to flocculate coal selectively from ash forming minerals. Flocculation tests conducted with Illinois No. 6 coal showed that rapid flocculation takes place in the pH range of 3-4. Flocculation efficiency is highly dependent upon the M. phlei concentration.

  18. Innovative coke oven gas cleaning system for retrofit applications. Quarterly technical progress report No. 4, October 1, 1990 to December 31, 1990

    SciTech Connect

    Kwasnoski, D.

    1993-10-22

    Work on this coke oven gas cleaning demonstration project (CCT-II) this quarter has been focused on Phase IIB tasks, and include engineering, procurement, construction, and training. Additionally, plans for changes in the operating schedule of the coke plant that affect the demonstration project are described. Engineering efforts are nearly complete. Remaining to be finalized is an assessment of electrical heat tracing/insulation needs for pipe lines, assessment of fire protection requirements, and instrument modifications. Procurement of all major equipment items is complete, except for possible additions to fire fighting capabilities. Major focus is on expediting pipe and structural steel to the project site. Civil construction is complete except for minor pads and bases as required for pipe supports, etc. Erection of the hydrogen sulfide and ammonia scrubber vessels is complete. Installation of scrubber vessel internals is underway. A subcontractor has been retained to develop a computerized program for operations and maintenance training for the coke oven gas treatment plant. Recent developments in the coke plant operating plans will result in reductions in the rate of production of coke oven gas to be processed in the demonstration project.

  19. Production and use of activated char for combined SO{sub 2}/NO{sub x} removal. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect

    Lizzio, A.A.; DeBarr, J.A.; Donnals, G.L.; Feizoulof, C.A.; Kruse, C.W.; Lytle, J.M.; Rood, M.J.; Gangwal, S.K.; Honea, F.

    1994-12-31

    Carbon adsorbents have been shown to remove sulfur oxides from flue gas, and also serve as a catalyst for reduction of nitrogen oxides at temperatures between 80 and 150{degree}C. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of activated char which could be used as a catalyst for combined SO{sub 2}/NO{sub x} removal, and to evaluate the potential application of the products in flue gas cleanup. During this quarter, further analyses of SO{sub 2} adsorption and TPD data revealed that SO{sub 2} adsorption was directly proportional to the number of unoccuppied (free) adsorption sites on the carbon surface. The SO{sub 2} capacity of a series of prepared IBC-102 chars and commercial activated carbons normalized with respect to the number of free sites varied by less than a factor of two, which indicated an excellent correlation. Based on these results, a mechanism for SO{sub 2} adsorption on carbon and conversion to H{sub 2}SO{sub 4} was proposed. To study NO{sub x} reduction by activated char, a packed bed flow through system was designed and constructed. A quadrupole mass spectrometer was installed to monitor the [NO] and [NO{sub 2}]; NO breakthrough curves were obtained for a commercial activated carbon at various [NO].

  20. Low cost hydrogen/novel membranes technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending June 30, 1987

    SciTech Connect

    Not Available

    1987-12-31

    During this quarter, work continued on the development of high-flux palladium-silver membranes for the separation of hydrogen from carbon dioxide. Palladium-silver/poly(etherimide) composite membranes were prepared by a vacuum sputtering technique. The influence of different poly(etherimide) support membranes on the performance of palladium-silver membranes was investigated. All membranes tested showed a hydrogen/carbon dioxide selectivity lower than that of the uncoated poly(etherimide)/poly(dimethylsiloxane) membranes. This is probably due to damage of the skin layer of the asymmetric poly(etherimide) support membranes during the palladium-silver electron bombardment. Polysulfone/poly(dimethylsiloxane) / poly(ether-ester-amide) composite membranes were also prepared. Membrane samples consistently showed a carbon dioxide/hydrogen selectivity of 9 to 10 and a normalized carbon dioxide flux of 2 to 4 {times} 10{sup {minus}4} cm{sup 3} (STP)/cm{sup 2}{center_dot}sec{center_dot}cmHg. These are extremely good values, superior to any commercially available membranes for this separation. 2 figs., 4 tabs.