Sample records for burning explosive material

  1. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  2. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  3. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  4. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  5. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  6. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  7. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  8. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  9. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  10. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  11. 49 CFR 176.164 - Fire precautions and firefighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Class 1 (explosive) materials other than those of Division 1.4 (explosive). No welding, burning, cutting... compartment, including a closed vehicle deck space, which contains Class 1 (explosive) materials must be...

  12. 49 CFR 176.164 - Fire precautions and firefighting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Class 1 (explosive) materials other than those of Division 1.4 (explosive). No welding, burning, cutting... compartment, including a closed vehicle deck space, which contains Class 1 (explosive) materials must be...

  13. Pressure Amplification Off High Impedance Barriers in DDT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatwole, Eric Mann; Broilo, Robert M.; Kistle, Trevin Joseph

    The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of themore » burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.« less

  14. Chemical, Biological, Radiological, Nuclear, and High-Yield Explosives Consequences Management

    DTIC Science & Technology

    2006-10-02

    cause three types of injuries: blast, thermal and radiation, as well as electromagnetic pulse (EMP) effects described further in a later section. (1...occur with conventional explosives and are further described in the next section. (2) Thermal injuries present as flash burns (burns from direct...exposure to the thermal radiation pulse, typically ultraviolet, visible, and infrared waves) or flame burns (burns from materials set afire by the infrared

  15. Burn Injury and Explosions: An Australian Perspective

    PubMed Central

    Greenwood, John E.

    2009-01-01

    Objectives: Increasingly (but not exclusively), terrorist activity and the use of explosive devices have enjoyed the focus of the global media. This paper aims to bring a range of issues to attention, to highlight how burn injuries are sustained in such incidents and why burn injuries (and thus burn disasters) are so complicated to manage. Materials and Methods: The author's experience with burn injury caused during explosions and his involvement in burn disaster situations has been summarized to form the basis of the article. This has been expanded upon with discussion points which provide a strategy for planning for such events and by a broad sample of the literature. Results: Several strategies are suggested to facilitate planning for burn disasters and to illustrate to those not directly involved why forward planning is pivotal to success when these incidents occur. Conclusions: Disasters generating large numbers of burn-injured are relatively frequent. Explosive devices are widespread in their use both in military and increasingly in civilian fields. Encompassing a large range of aetiologies, geographical sites, populations, and resources; burn disaster management is difficult and planning essential. PMID:19834533

  16. Competency Development Detonator Development and Design

    DTIC Science & Technology

    2007-09-01

    required. Exploding foil initiators ( EFI or Slapper) - The benefits of using an EFI is that the metal bridge is separated from the explosive, the explosive...to the materials ignition temperature to begin a burning reaction that propagates to the next material in the initiator . Exploding bridgewire (EBW...principles "* Initiation capabilities of the MEMS scale detonator DETONATOR BACKGROUND In a typical detonator, an explosive train is used. The explosive train

  17. Feasibility of an advanced thrust termination assembly for a solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A total of 68 quench tests were conducted in a vented bomb assembly (VBA). Designed to simulate full-scale motor operating conditions, this laboratory apparatus uses a 2-inch-diameter, end-burning propellant charge and an insulated disc of consolidated hydrated aluminum sulfate along with the explosive charge necessary to disperse the salt and inject it onto the burning surface. The VBA was constructed to permit variation of motor design parameters of interest; i.e., weight of salt per unit burning surface area, weight of explosive per unit weight of salt, distance from salt surface to burning surface, incidence angle of salt injection, chamber pressure, and burn time. Completely satisfactory salt quenching, without re-ignition, occurred in only two VBA tests. These were accomplished with a quench charge ratio (QCR) of 0.023 lb salt per square inch of burning surface at dispersing charge ratios (DCR) of 13 and 28 lb of salt per lb of explosive. Candidate materials for insulating salt charges from the rocket combustion environment were evaluated in firings of 5-inch-diameter, uncured end-burner motors. A pressed, alumina ceramic fiber material was selected for further evaluation and use in the final demonstration motor.

  18. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein),more » hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.« less

  19. The clinical consequences of an industrial aerosol plant explosion.

    PubMed

    Hull, D; Grindlinger, G A; Hirsch, E F; Petrone, S; Burke, J

    1985-04-01

    The factors relating to the clinical outcome of an industrial aerosol plant explosion are reviewed. Eighteen of 24 workers inside the plant required hospitalization and five died. Proximity to the blast was associated with extensive injuries unless workers were shielded by physical barriers or partitions. Burn severity and mortality were increased in those wearing synthetic garments compared to their counterparts wearing fiber clothing. Facial burns occurred in all unprotected workers. Forearm and hand burns in 11 patients required decompressive escharotomies. Topical treatment with silver sulfadiazine was associated with more significant leukopenia and neutropenia than treatment with silver nitrate. We conclude that industrial design should include safeguards which isolate workers from flammable materials, including isolation of explosive materials from working areas, alarm systems to detect leakage of flammable agents, protective barriers and shields, and the regulation and institution of flame and flash-resistant clothing.

  20. Numerical and experimental study of thermal explosions in LX-10 and PBX 9501: Influence of thermal damage on deflagration processes

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Kercher, J. R.; Springer, H. K.; Glascoe, E. A.; Levie, H. W.; Hsu, P.; Willey, T. M.; Molitoris, J. D.

    2013-07-01

    We employ in-situ flash x-ray imaging, together with a detailed multiphase convective burn model, to demonstrate how explosives' binder characteristics influence the burning processes in thermal explosions. Our study focuses on the HMX-based explosives LX-10 and PBX 9501. While the HMX (cyclotetramethylene-tetranitramine) crystallite size distributions for these two explosives are nearly identical before heating, our experiments and simulations indicate that after heating, variations result due to differences in binder composition. Post-ignition flash x-ray images reveal that the average density decreases at late times more rapidly in PBX 9501 than LX-10, suggesting a faster conductive burning rate in PBX-9501. Heated permeability measurements in LX-10 and PBX 9501 demonstrate that the binder system characteristics influence the evolution of connected porosity. Once ignited, connected porosity provides pathways for product gas heating ahead of the reaction front and additional surface area for burning, facilitating the transition from conductive to convective burning modes. A multiphase convective burn model implemented in the ALE3D code is used to better understand the influence on burn rates of material properties such as porosity and effective thermally damaged particle size. In this context, particles are defined as gas-impermeable binder-coated crystallites and agglomerations with a set of effective radii reff. Model results demonstrate quantitative agreement with containment wall velocity for confined PBX 9501 and LX-10, and qualitative agreement with density as a function of position in the burning explosive. The model predicts a decrease in post-ignition containment wall velocity with larger radii in reff. These experimental data and model results together provide insight into the initiation and propagation of the reaction wave that defines the convective burn front in HMX-based explosives, a necessary step toward predicting violence under a broad range of conditions.

  1. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  2. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  3. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  4. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  5. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  6. Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrier, Danielle; Andersen, Kyle Richard

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test.more » The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate« less

  7. Analysis of Xrage and Flag High Explosive Burn Models with PBX 9404 Cylinder Tests

    NASA Astrophysics Data System (ADS)

    Harrier, Danielle; Fessenden, Julianna; Ramsey, Scott

    2016-11-01

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested, using a copper cylinder expansion test. The test was based off of a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained from the experimental velocity data collected using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results using the Jones-Wilkins-Lee (JWL) equation of state parameters that were determined and adjusted from the experimental tests. This study is important to validate the accuracy of our high explosive burn models and the calibrated EOS parameters, which are important for many research topics in physical sciences.

  8. Reacting Chemistry Based Burn Model for Explosive Hydrocodes

    NASA Astrophysics Data System (ADS)

    Schwaab, Matthew; Greendyke, Robert; Steward, Bryan

    2017-06-01

    Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.

  9. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    PubMed

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  10. Determination of detonation wave boundary angles via hydrocode simulations using CREST

    NASA Astrophysics Data System (ADS)

    Whitworth, N. J.; Childs, M.

    2017-01-01

    A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.

  11. High explosive spot test analyses of samples from Operable Unit (OU) 1111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRae, D.; Haywood, W.; Powell, J.

    1995-01-01

    A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soilmore » and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.« less

  12. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  13. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  14. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  15. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  16. A common explosion mechanism for type Ia supernovae.

    PubMed

    Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang

    2007-02-09

    Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae.

  17. 16 CFR § 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of burns from explosive vapor ignition and flashback fire. § 1145.3 Section § 1145.3 Commercial...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  18. ON THE EFFECT OF EXPLOSIVE THERMONUCLEAR BURNING ON THE ACCRETED ENVELOPES OF WHITE DWARFS IN CATACLYSMIC VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Sparks, Warren, E-mail: edward.sion@villanova.edu, E-mail: warrensparks@comcast.net

    2014-11-20

    The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channelmore » in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.« less

  19. Hydrogen and helium shell burning during white dwarf accretion

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  20. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the responsemore » of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where explosives were subjected to a gradual rise in pressure and did not exhibit reaction. More recent models do distinguish between slow pressure rises and shocks, and have had some success in the describing the response of explosives to single and multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited range. The original formulation is appropriate for sustained shocks, but further work is ongoing to describe the response to short pulses. The HERMES model combines features from these prior models. It describes burning and explosion in damaged reactant, and also will develop a detonation if the gradual rise in pressure from burning steepens into a strong-enough shock. The shock strength needed for detonation in a fixed run distance decreases with increasing porosity.« less

  1. Equations of State and High-Pressure Phases of Explosives

    NASA Astrophysics Data System (ADS)

    Peiris, Suhithi M.; Gump, Jared C.

    Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.

  2. Numerical Simulation of Shock-Dispersed Fuel Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, John B.; Day, Marcus; Beckner, Vincent

    Successfully attacking underground storage facilities for chemical and biological (C/B) weapons is an important mission area for the Department of Defense. The fate of a C/B agent during an attack depends critically on the pressure and thermal environment that the agent experiences. The initial environment is determined by the blast wave from an explosive device. The byproducts of the detonation provide a fuel source that burn when mixed with oxidizer (after burning). Additional energy can be released by the ignition of the C/B agent as it mixes with the explosion products and the air in the chamber. Hot plumes ventingmore » material from any openings in the chamber can provide fuel for additional energy release when mixed with additional oxidizer. Assessment of the effectiveness of current explosives as well as the development of new explosive systems requires a detailed understanding of all of these modes of energy release. Using methodologies based on the use of higher-order Godunov schemes combined with Adaptive Mesh Refinement (AMR), implemented in a parallel adaptive framework suited to the massively parallel computer systems provided by the DOD High-Performance Computing Modernization program, we use a suite of programs to develop predictive models for the simulation of the energetics of blast waves, deflagration waves and ejecta plumes. The programs use realistic reaction kinetic and thermodynamic models provided by standard components (such as CHEMKIN) as well as other novel methods to model enhanced explosive devices. The work described here focuses on the validation of these models against a series of bomb calorimetry experiments performed at the Ernst-Mach Institute. In this paper, we present three-dimensional simulations of the experiments, examining the explosion dynamics and the role of subsequent burning on the explosion products on the thermal and pressure environment within the calorimeter. The effects of burning are quantified by comparing two sets of computations, one in which the calorimeter is filled with nitrogen so there is no after burning and a second in which the calorimeter contains air.« less

  3. Explosion in boiler closes Arkansas utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-23

    A major boiler explosion Aug. 11 that seriously injured one worker at the Independence Unit 2 coal-fired powerplant in Newark, Ark., caused extensive damage that will keep the plant closed for several months. The plant is owned by Arkansas Power Light Co., Little Rock. Officials are still trying to determine cause and are assessing damage, though they expect the boiler can be repaired. Etienne Senac, plant manager, says the explosion [open quotes]puffed out[close quotes] but did not rupture the 271-ft-tall boiler and also buckled several buck stays, which hold the boiler to a steel superstructure. The accident took place atmore » 8:30 a.m. as the 842-Mw unit was operating close to full capacity. Senac says the concussion knocked down workers standing 50 ft from the boiler. The explosion pushed ash and molten material out of the bottom of the unit, causing a small fire. One contract worker was seriously burned and hospitalized. Four AP L workers received minor burns.« less

  4. The Synthesis of 44Ti and 56Ni in Massive Stars

    NASA Astrophysics Data System (ADS)

    Chieffi, Alessandro; Limongi, Marco

    2017-02-01

    We discuss the influence of rotation on the combined synthesis of {}44{Ti} and {}56{Ni} in massive stars. While {}56{Ni} is significantly produced by both complete and incomplete explosive Si burning, {}44{Ti} is mainly produced by complete explosive Si burning, with a minor contribution (in standard non-rotating models) from incomplete explosive Si burning and O burning (both explosive and hydrostatic). We find that, in most cases, the thickness of the region exposed to incomplete explosive Si burning increases in rotating models (initial velocity, v ini = 300 km s-1) and since {}56{Ni} is significantly produced in this zone, the fraction of mass coming from the complete explosive Si burning zone necessary to get the required amount of {}56{Ni} reduces. Therefore the amount of {}44{Ti} ejected for a given fixed amount of {}56{Ni} decreases in rotating models. However, some rotating models at [Fe/H] = -1 develop a very extended O convective shell in which a consistent amount of {}44{Ti} is formed, preserved, and ejected in the interstellar medium. Hence a better modeling of the thermal instabilities (convection) in the advanced burning phases together with a critical analysis of the cross sections of the nuclear reactions operating in O burning are relevant for the understanding of the synthesis of {}44{Ti}.

  5. Co-production of Nitrogen-15 and Oxygen-18 in Explosive Helium Burning and Implications for Supernova Graphite Grains

    NASA Astrophysics Data System (ADS)

    Bojazi, Michael

    My Masters research involves simulations of a supernova whereby a shock wave of constant Mach number is sent through a 15-solar-mass star evolved to the point of core-collapse. The resulting nucleosynthesis is examined with the intent of explaining the overproduction, relative to solar values, of nitrogen-15 and oxygen-18 abundances in supernova presolar graphite grains, as experimentally determined by Groopman et al. via a NanoSIMS analysis. We find such overabundances to be present in the helium-rich zone. Oxygen-18 is leftover from presupernova helium burning while nitrogen-15 is produced by explosive helium burning. Interestingly, anomalous excesses in molybdenum-95 and molybdenum-97 abundances in SiC X grains, discovered by Pellin et al. using the CHARISMA instrument, probably arise from explosive helium burning as well. These results signal the importance of the helium-rich zone for supernova presolar grain growth. We suggest that matter deep from the supernova, which is rich in iron-peak elements, gets injected into the helium-rich zone. Small TiC grains form in this material. These subgrains then traverse the helium-rich zone and serve as seeds for the growth of the graphite or SiC X grains.

  6. Burn Propagation in a PBX 9501 Thermal Explosion

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  7. Explicit 2-D Hydrodynamic FEM Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  8. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  9. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  10. Cost Analysis of 48 Burn Patients in a Mass Casualty Explosion Treated at Chang Gung Memorial Hospital.

    PubMed

    Mathews, Alexandra L; Cheng, Ming-Huei; Muller, John-Michael; Lin, Miffy Chia-Yu; Chang, Kate W C; Chung, Kevin C

    2017-01-01

    Little is known about the costs of treating burn patients after a mass casualty event. A devastating Color Dust explosion that injured 499 patients occurred on June 27, 2015 in Taiwan. This study was performed to investigate the economic effects of treating burn patients at a single medical center after an explosion disaster. A detailed retrospective analysis on 48 patient expense records at Chang Gung Memorial Hospital after the Color Dust explosion was performed. Data were collected during the acute treatment period between June 27, 2015 and September 30, 2015. The distribution of cost drivers for the entire patient cohort (n=48), patients with a percent total body surface area burn (%TBSA)≥50 (n=20), and those with %TBSA <50 (n=28) were analyzed. The total cost of 48 burn patients over the acute 3-month time period was $2,440,688, with a mean cost per patient of $50,848 ±36,438. Inpatient ward fees (30%), therapeutic treatment fees (22%), and medication fees (11%) were found to be the three highest cost drivers. The 20 patients with a %TBSA ≥50 consumed $1,559,300 (63.8%) of the total expenses, at an average cost of $77,965±34,226 per patient. The 28 patients with a %TBSA <50 consumed $881,387 (36.1%) of care expenses, at an average cost of $31,478±23,518 per patient. In response to this mass casualty event, inpatient ward fees represented the largest expense. Hospitals can reduce this fee by ensuring wound dressing and skin substitute materials are regionally stocked and accessible. Medication fees may be higher than expected when treating a mass burn cohort. In preparation for a future event, hospitals should anticipate patients with a %TBSA≥50 will contribute the majority of inpatient expenses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cost Analysis of 48 Burn Patients in a Mass Casualty Explosion Treated at Chang Gung Memorial Hospital

    PubMed Central

    Mathews, Alexandra L.; Cheng, Ming-Huei; Muller, John-Michael; Lin, Miffy Chia-Yu; Chang, Kate W.C.; Chung, Kevin C.

    2016-01-01

    Introduction Little is known about the costs of treating burn patients after a mass casualty event. A devastating Color Dust explosion that injured 499 patients occurred on June 27, 2015 in Taiwan. This study was performed to investigate the economic effects of treating burn patients at a single medical center after an explosion disaster. Methods A detailed retrospective analysis on 48 patient expense records at Chang Gung Memorial Hospital after the Color Dust explosion was performed. Data were collected during the acute treatment period between June 27, 2015 and September 30, 2015. The distribution of cost drivers for the entire patient cohort (n=48), patients with a percent total body surface area burn (%TBSA) ≥ 50 (n=20), and those with %TBSA <50 (n=28) were analyzed. Results The total cost of 48 burn patients over the acute 3-month time period was $2,440,688, with a mean cost per patient of $50,848 ±36,438. Inpatient ward fees (30%), therapeutic treatment fees (22%), and medication fees (11%) were found to be the three highest cost drivers. The 20 patients with a %TBSA ≥50 consumed $1,559,300 (63.8%) of the total expenses, at an average cost of $77,965 ± 34,226 per patient. The 28 patients with a %TBSA <50 consumed $881,387 (36.1%) of care expenses, at an average cost of $31,478 ± 23,518 per patient. Conclusions In response to this mass casualty event, inpatient ward fees represented the largest expense. Hospitals can reduce this fee by ensuring wound dressing and skin substitute materials are regionally stocked and accessible. Medication fees may be higher than expected when treating a mass burn cohort. In preparation for a future event, hospitals should anticipate patients with a %TBSA ≥ 50 will contribute the majority of inpatient expenses. PMID:27553390

  12. Saving Lives With Rocket Power

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Thiokol Propulsion uses NASA's surplus rocket fuel to produce a flare that can safely destroy land mines. Through a Memorandum of Agreement between Thiokol and Marshall Space Flight Center, Thiokol uses the scrap Reusable Solid Rocket Motor (RSRM) propellant. The resulting Demining Device was developed by Thiokol with the help of DE Technologies. The Demining Device neutralizes land mines in the field without setting them off. The Demining Device flare is placed next to an uncovered land mine. Using a battery-triggered electric match, the flare is then ignited. Using the excess and now solidified rocket fuel, the flare burns a hole in the mine's case and ignites the explosive contents. Once the explosive material is burned away, the mine is disarmed and no longer dangerous.

  13. Nonideal detonation regimes in low density explosives

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.

    2016-02-01

    Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.

  14. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  15. Corneoscleral Laceration and Ocular Burns Caused by Electronic Cigarette Explosions

    PubMed Central

    Paley, Grace L.; Echalier, Elizabeth; Eck, Thomas W.; Hong, Augustine R.; Gregory, Darren G.; Lubniewski, Anthony J.

    2016-01-01

    Purpose: To report cases of acute globe rupture and bilateral corneal burns from electronic cigarette (EC) explosions. Methods: Case series. Results: We describe a series of patients with corneal injury caused by EC explosions. Both patients suffered bilateral corneal burns and decreased visual acuity, and one patient sustained a unilateral corneoscleral laceration with prolapsed iris tissue and hyphema. A review of the scientific literature revealed no prior reported cases of ocular injury secondary to EC explosions; however, multiple media and government agency articles describe fires and explosions involving ECs, including at least 4 with ocular injuries. Conclusions: Given these cases and the number of recent media reports, ECs pose a significant public health risk. Users should be warned regarding the possibility of severe injury, including sight-threatening ocular injuries ranging from corneal burns to full-thickness corneoscleral laceration. PMID:27191672

  16. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  17. Deflagration rates of secondary explosives under static MPa - GPa pressure

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Young, Christopher; Glascoe, Elizabeth; Maienschein, Jon; Hart, Elaine; Long, Gregory; Black, Collin; Sykora, Gregory; Wardell, Jeffrey

    2009-06-01

    We discuss our measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Comp B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependant RPRs of TATB, HMX, Nitromethane, and Viton are elucidated using micro -IR and -Raman spectroscopies. The contrast between DAC GPa and strand burner MPa regime measurements yields insight into explosive material burn phenomena. Here we highlight pressure dependent physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  18. Near-Infrared Spectra of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Marion, G. H.; Hoeflich, P.; Vacca, W. D.; Wheeler, J. C.

    2003-01-01

    We report near-infrared (NIR) spectroscopic observations of 12 'branch-normal' Type Ia supernovae (SNe Ia) that cover the wavelength region from 0.8 to 2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within 3 weeks of maximum light. The epochs of observation range from 13 days before maximum light to 18 days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and thus the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from Mg II, Ca II, Si II, Fe II, Co II, Ni II, and possibly Mn II. We find no indications for hydrogen, helium, or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion. Elements synthesized in the outer layers during the explosion appear to remain in distinct layers. That provides strong evidence for the presence of a detonation phase during the explosion as it occurs in delayed detonation or merger models. Mg II velocities are found to exceed 11,000 - 15,000 km/s, depending on the individual SNe Ia. That result suggests that burning during the explosion reaches the outermost layers of the progenitor and limits the amount of unburned material to less than 10% of the mass of the progenitor. Small residuals of unburned material are predicted by delayed detonation models but are inconsistent with pure deflagration or merger models. Differences in the spectra of the individual SNe Ia demonstrate the variety of these events.

  19. MESOSCALE MODELING OF DEFLAGRATION-INDUCED DECONSOLIDATION IN POLYMER-BONDED EXPLOSIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Glascoe, E A; Reaugh, J E

    Initially undamaged polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and the evolution of deflagration-induced damage during the transition to convective burning is not well understood. The objective of this study is to investigate the role of microstructure and initial pressurization on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX-Viton A served as our model explosive.more » A Prout-Tompkins chemical kinetic model, Vielle's Law pressure-dependent burning, Gruneisen equation-of-state, and simplified strength model were used for the HMX. The propensity for deconsolidation increased with increasing defect size and decreasing initial pressurization, as measured by the increase in burning surface area. These studies are important because they enable the development of continuum-scale damage models and the design of inherently safer explosives.« less

  20. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.

    2017-10-01

    We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.

  1. Nucleosynthesis in Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo Rolf; Townsley, Dean M.

    The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light "fuel" nuclei, predominantly carbon and oxygen, into more tightly bound nuclear "ash" dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.

  2. Analysis of Potassium Superoxide/Kerosene Situation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. S. Bullock

    2001-01-16

    A general picture of the processes that could occur in an initiated KO{sub 2}-kerosene reaction with excess kerosene and in contact with K metal has been created. A worst-case estimate of explosion of the dispersed kerosene overlayer has also been created, with a probable value of average pressure surge in the current storage room of less than 0.4 psi. more probable scenarios would put the peak value of pressure surge somewhat lower, with ignition of the K metal and burning of the excess kerosene at a rate between smooth burning and a slow deflagration. The enthalpy release from the combustionmore » of kerosene in this situation 9478,440 cal is much larger than that for the reaction between KO{sub 2} and kerosene (between 2346 and 4589 cal). Thus, kerosene combustion is potentially much more significant than the KO{sub 2} reaction and may provide 99.05 to 99.51% of the total energy of possible explosions. Hence, there is a good reason to separate bulk amounts of flammable or combustible hydrocarbons from explosive material. For this case, in the limit that absolutely all hydrocarbons were removed from the system, there should no longer be an explosive hazard.« less

  3. Proton Radiography of a Thermal Explosion in PBX9501

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.

  4. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay.

  5. Kinetic calculations of explosives with slow-burning constituents

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.

    1998-07-01

    The equilibrium thermochemical code CHEETAH V1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  6. Risk factors for kerosene stove explosion burns seen at Kenyatta National Hospital in Kenya.

    PubMed

    Ombati, Alex N; Ndaguatha, Peter L W; Wanjeri, Joseph K

    2013-05-01

    The kerosene stove is a common cooking appliance in lower and middle income households in Kenya and if it explodes, life threatening thermal burn injuries may be sustained by those using the appliance. Women tend to be victims more frequently since traditionally they are the ones who are involved in cooking. The aim of this study was to determine risk factors predisposing to kerosene stove explosion burns seen at Kenyatta National Hospital. The study was a prospective longitudinal descriptive study carried out at the Kenyatta National Hospital. Forty-eight patients who met the inclusion criteria were recruited into the study over a period of 6 months from November 2010 to April 2011 and the data was collected using a structured questionnaire. The analysis, using SPSS version 17.0 was done by associating occurrence of injury to: age, sex, socioeconomic status and level of education of patient. Charts and tables were used to present the results. The mean age of patients who sustained kerosene stove explosion burns was 23.6 years (SD ± 11.7) with the commonest age group being 20-39 years. More females were affected than males by a ratio of 7:3 and ninety two percent of those who sustained these burns were either from poor or lower middle socio-economic class. Stove explosions occurred mainly during cooking and when kerosene refill was being done. Most of the patients (63%) reported having bought kerosene from fuel vendors and almost all explosions were caused by the wick type of stove (98%). Young females from poor socioeconomic background were found to be at a higher risk for kerosene stove explosion burns. The wick stove is a common cause of burns especially when users unwittingly refill it with kerosene when already lit resulting in an explosion. Prevention can be done through evidence based public health education targeting the groups at risk and enactment of relevant laws. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  7. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; McClelland, Matthew A.

    2004-07-01

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  8. Development and Execution of a Large-scale DDT Tube Test for IHE Material Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Gary Robert; Broilo, Robert M.; Lopez-Pulliam, Ian Daniel

    Insensitive High Explosive (IHE) Materials are defined in Chapter IX of the DOE Explosive Safety Standard (DOE-STD-1212-2012) as being materials that are massdetonable explosives that are so insensitive that the probability of accidental initiation or transition from burning to detonation is negligible1. There are currently a number of tests included in the standard that are required to qualify a material as IHE, however, none of the tests directly evaluate for the transition from burning to detonation (aka deflagration-to-detonation transition, DDT). Currently, there is a DOE complex-wide effort to revisit the IHE definition in DOE-STD-1212-2012 and change the qualification requirements. Themore » proposal lays out a new approach, requiring fewer, but more appropriate tests, for IHE Material qualification. One of these new tests is the Deflagration-to-Detonation Test. According to the redefinition proposal, the purpose of the new deflagration-todetonation test is “to demonstrate that an IHE material will not undergo deflagration-to-detonation under stockpile relevant conditions of scale, confinement, and material condition. Inherent in this test design is the assumption that ignition does occur, with onset of deflagration. The test design will incorporate large margins and replicates to account for the stochastic nature of DDT events.” In short, the philosophy behind this approach is that if a material fails to undergo DDT in a significant over-test, then it is extremely unlikely to do so in realistic conditions. This effort will be valuable for the B61 LEP to satisfy their need qualify the new production lots of PBX 9502. The work described in this report is intended as a preliminary investigation to support the proposed design of an overly conservative, easily fielded DDT test for updated IHE Material Qualification standard. Specifically, we evaluated the aspects of confinement, geometry, material morphology and temperature. We also developed and tested a thermally robust igniter system.« less

  9. Transparent Tube Studies of Burning to Detonation Transition in Granular Explosives 1: Preliminary Framing Camera Studies

    DTIC Science & Technology

    1980-10-27

    Reference 13. The 94/6 RDX/ wax (X893) and 97/3 RDX/ wax (X758) were mechanical mixtures prepared from Class A RDX (X597) and carnauba wax (N134). The...UKLAS9*TE SE,’CRITY CLASSIFICATION OF THIS PAGE (When Data Entered) ionization probes in previous steel tube studies. In charges of 94/6 RDX/ wax ...explosives (picric acid, tetryl, and RDX/ wax ) were among those materials in previous steel tube studies at NSWC which achieved deflagration to

  10. CFD analysis of gas explosions vented through relief pipes.

    PubMed

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  11. Towards a predictive thermal explosion model for energetic materials

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; McClelland, Matthew A.; Maienschein, Jon L.; Wardell, Jeffrey F.

    2005-01-01

    We present an overview of models and computational strategies for simulating the thermal response of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the behavior of energetic materials systems exposed to strong thermal environments such as fires. We apply these models and computational techniques to a thermal explosion experiment involving the slow heating of a confined explosive. The model includes the transition from slow heating to rapid deflagration in which the time scale decreases from days to hundreds of microseconds. Thermal, mechanical, and chemical effects are modeled during all phases of this process. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics. In addition, we investigate the sensitivity of wall expansion rates to numerical strategies and parameters. Results from a one-dimensional model show that violence is influenced by the presence of a gap between the explosive and container. In addition, a comparison is made between 2D model and measured results for the explosion temperature and tube wall expansion profiles.

  12. On beyond the standard model for high explosives: challenges & obstacles to surmount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph Ds

    2009-01-01

    Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spotmore » generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.« less

  13. Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David

    1994-01-01

    In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.

  14. Burn injuries related to liquefied petroleum gas-powered cars.

    PubMed

    Bozkurt, Mehmet; Kulahci, Yalcin; Zor, Fatih; Kapi, Emin

    2008-01-01

    Liquefied petroleum gas (LPG), which is used as a type of fuel, is stored as a liquid under high pressure in tanks. Immediate and sudden explosion of these tanks can release a large amount of gas and energy into the environment and can result in serious burns. In this study, the cases of 18 patients injured due to LPG burns in five incidents were examined, along with their epidemiologic features. The authors also investigated the causes of the LPG tank explosions. Inhalation injury was present in 11 cases with varying degrees of severity, and 7 patients subsequently required mechanical ventilation. The explosions resulted from weakening of the tank wall (n = 2), crash impact (n = 2), and gas leakage from the tank (n = 1). LPG-powered cars are becoming more popular because of their lower operational costs. However, LPG tanks can be hazardous in the event of a tank explosion. Burns caused by explosions of the LPG tanks in cars have significant mortality and morbidity. This danger must be taken into account and public awareness must be increased.

  15. Effects of combustibles on internal quasi-static loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.

    1984-08-01

    The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less

  16. Criticality and Induction Time of Hot Spots in Detonating Heterogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Hill, Larry

    2017-06-01

    Detonation reaction in physically heterogeneous explosives is-to an extent that depends on multiple material attributes-likewise heterogeneous. Like all heterogeneous reaction, detonation heterogeneous reaction begins at nucleation sites, which, in this case, comprise localized regions of higher-than-average temperature-so-called hot spots. Burning grows at, and then spreads from these nucleation sites, via reactive-thermal (R-T) waves, to consume the interstitial material. Not all hot spots are consequential, but only those that are 1) supercritical, and 2) sufficiently so as to form R-T waves before being consumed by those already emanating from neighboring sites. I explore aspects of these two effects by deriving simple formulae for hot spot criticality and the induction time of supercritical hot spots. These results serve to illustrate the non-intuitive, yet mathematically simplifying, effects of extreme dependence of reaction rate upon temperature. They can play a role in the development of better reactive burn models, for which we seek to homogenize the essentials of heterogeneous detonation reaction without introducing spurious complexity. Work supported by the US Dept. of Energy.

  17. A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle

    Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less

  18. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  19. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2018-03-01

    We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.

  20. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE PAGES

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...

    2018-03-16

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  1. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  2. Properties of convective oxygen and silicon burning shells in supernova progenitors

    NASA Astrophysics Data System (ADS)

    Collins, Christine; Müller, Bernhard; Heger, Alexander

    2018-01-01

    Recent 3D simulations have suggested that convective seed perturbations from shell burning can play an important role in triggering neutrino-driven supernova explosions. Since isolated simulations cannot determine whether this perturbation-aided mechanism is of general relevance across the progenitor mass range, we here investigate the pertinent properties of convective oxygen and silicon burning shells in a broad range of pre-supernova stellar evolution models. We find that conditions for perturbation-aided explosions are most favourable in the extended oxygen shells of progenitors between about 16 and 26 solar masses, which exhibit large-scale convective overturn with high convective Mach numbers. Although the highest convective Mach numbers of up to 0.3 are reached in the oxygen shells of low-mass progenitors, convection is typically dominated by small-scale modes in these shells, which implies a more modest role of initial perturbations in the explosion mechanism. Convective silicon burning rarely provides the high Mach numbers and large-scale perturbations required for perturbation-aided explosions. We also find that about 40 per cent of progenitors between 16 and 26 solar masses exhibit simultaneous oxygen and neon burning in the same convection zone as a result of a shell merger shortly before collapse.

  3. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Behavior of Explosives Under Pressure in a Diamond Anvil Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F

    2006-06-20

    Diamond anvil cell (DAC) studies can yield information about the pressure dependence of materials and reactions under conditions comparable to shock loading. The pressure gradient across the face of the diamonds is often deliberately minimized to create uniform pressure over much of the sample and a simplified data set. To reach very high pressures (30-40 GPa), however, it may be necessary to use ''softer'', high nitrogen content diamonds that are more susceptible to bending under pressure. The resulting enhanced pressure gradient then provides a view of high-pressure behavior under anisotropic conditions similar to those found at the burn front inmore » a bulk sample. We discuss visual observations of pressure-induced changes relative to variations in burn rate of several explosives (Triaminotrinitrobenzene, Nitromethane, CL-20) in the DAC. The burn rate behavior of both Nitromethane (NM) and Triaminotrinitrobenzene (TATB) were previously reported for pressures up to {approx}40 GPa. Nitromethane showed a near monotonic increase in burn rate to a maximum at {approx}30 GPa after which the burn rate decreased, all without color change. At higher pressures, the TATB samples had shiny (metallic) polycrystalline zones or inclusions where the pressure was highest in the sample. Around the shiny zones was a gradation of color (red to yellow) that appeared to follow the pressure gradient. The color changes are believed related to disturbances in the resonance structure of this explosive as the intermolecular separations decrease with pressure. The color and type of residue found in unvented gaskets after the burn was complete also varied with pressure. The four polymorphs of CL-20 ({alpha}, {beta}, {gamma}, {var_epsilon}-Hexanitrohexaazaisowurtzitane, HNIW) did not change color up to the highest pressure applied ({approx}30 GPa), and each polymorph demonstrated a distinctly different burn rate signature. One polymorph {beta} was so sensitive to laser ignition over a narrow pressure range that the sample could not be aligned with a low power laser without ignition. The burn rate for that one polymorph could only be measured at pressures above and below that unique pressure. This anomalous ignition threshold is discussed with respect to the matrix of possible polymorphs, most of which have not been isolated in the laboratory. The changes in behavior, color and reaction rates of all samples are discussed with respect to possible implications to chemistry at high pressure.« less

  5. Identification of explosives and drugs and inspection of material defects with THz radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Mu, Kaijun; Jiang, Xue; Jiao, Yueying; Zhang, Liangliang; Zhou, Qingli; Zhang, Yan; Shen, Jingling; Zhao, Guoshong; Zhang, X.-C.

    2008-03-01

    We report the sensing of explosive materials and illicit drugs by using terahertz time-domain spectroscopy (THz-TDS) and imaging. Several explosive materials, such as γ-HNIW, RDX, 2,4-DNT, TNT, Nitro-aniline, and illicit drugs, such as methamphetamine (MA) etc were researched here. Non-destructive testing, as one of the major applications of THz imaging, can be applied to an area of critical need: the testing of aerospace materials. Composite materials such as carbon fiber are widely used in this industry. The nature of their use requires technologies that are able to differentiate between safe and unsafe materials, due to either manufacturing tolerance or damage acquired while in use. In this paper, we discuss the applicability of terahertz (THz) imaging systems to this purpose, focusing on graphite fiber composite materials, carbon silicon composite materials and so on. We applied THz imaging technology to evaluate the fire damage to a variety of carbon fiber composite samples. Major carbon fiber materials have polarization-dependent reflectivity in THz frequency range, and we show how the polarization dependence changes versus the burned damage level. Additionally, time domain information acquired through a THz time-domain spectroscopy (TDS) system provides further information with which to characterize the damage. We also detect fuel tank insulation foam panel defects with pulse and continuous-wave (CW) terahertz system.

  6. Radiation-stimulated explosive evaporation and burning of hydrogen droplets in hot aerosol mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, V. V.; Marchenko, M. P.; Khasin, M.

    2016-06-13

    We present results of analytical and numerical investigation of explosive evaporation and burning scenarios of hydrogen droplets in hydrogen/oxygen aerosols. The following two scenarios have been elucidated. The first scenario, corresponding to sufficiently large droplets, is characterized by three stages: (i) an essentially homogeneous heating of a droplet to a near-critical temperature by IR radiation from the hot gas; (ii) explosive evaporation; and (iii) burning of hydrogen cloud formed by evaporation. The second scenario, corresponding to small droplets, differs in that a droplet is heated mainly by thermal conduction from the hot gas. The heating is accompanied by evaporation whichmore » can become explosive at the final stage of evaporation. The crossover droplet size separating the two scenarios is calculated. Conservative finite-difference numerical analysis is used to explore the predicted scenarios and verify analytical estimates.« less

  7. Mesoscale Modeling of Deflagration-Induced Deconsolidation in Polymer-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo; Reaugh, J. E.; Glascoe, E. A.; Kercher, J. R.; Friedman, G.

    2011-06-01

    Initially intact polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and deflagration-induced damage on the transition to convective burning is not well understood. The objective of this study is to investigate the role of explosive constituent properties, microstructure, and deflagration velocity on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX was used as the model energetic grain. We used a JWL form for the unreacted and reacted equation-of-state of the HMX. Simplified strength and failure models were used for the HMX and the binder. The propensity for deconsolidation increased with increasing grain volume fraction, increasing porosity, decreasing binder strength, and increasing deflagration velocity. These studies are important because they enable the development of deflagration-induced damage models, as well as the design of inherently safer explosives. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work was funded by the Joint DoD/DOE Munitions Technology Development Program.

  8. Ignition and Combustion Studies of Hazard Division 1.1 and 1.3 Substances

    DTIC Science & Technology

    2010-07-01

    Effect of Time at Temperature on Burning Rate. The burning rate of the HD1.1 explosive PBXN -5 is compared to that of neat cyclotetramethylene...tetranitramine (HMX) in Figure 14. The explosive, PBXN -5, is composed of 95 weight percent HMX and 5 percent Viton A as binder. The HMX burning rate...the closed bomb technique (Reference 18). The PBXN -5 was composed of small agglomerates of HMX coated with the binder (Reference 19). The PBXN -5

  9. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.

    PubMed

    Chatterjee, Soumya; Deb, Utsab; Datta, Sibnarayan; Walther, Clemens; Gupta, Dharmendra K

    2017-10-01

    Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development of an Animal Model for Burn-Blast Combined Injury and Cardiopulmonary System Changes in the Early Shock Stage.

    PubMed

    Hu, Quan; Chai, Jiake; Hu, Sen; Fan, Jun; Wang, Hong-Wei; Ma, Li; Duan, Hong-Jie; Liu, Lingying; Yang, Hongming; Li, Bai-Ling; Wang, Yi-He

    2015-12-01

    The purposes of this study were to establish an animal model for burn-blast combined injury research and elaborate cardiopulmonary system changes in the early shock stage. In this study, royal demolition explosive or RDX (hexagon, ring trimethylene nitramine) was used as an explosive source, and the injury conditions of the canine test subjects at various distances to the explosion (30, 50, and 70 cm) were observed by gross anatomy and pathology to determine a larger animal model of moderate blast injury. The canines were then subjected to a 35 % total body surface area (TBSA) full-thickness flame injury using napalm, which completed the development of a burn-blast combined injury model. Based on this model, the hemodynamic changes and arterial blood gas analysis after the burn-blast combined injury were measured to identify the cardiopulmonary system characteristics. In this research, RDX explosion and flame injury were used to develop a severe burn-blast injury animal model that was stable, close to reality, and easily controllable. The hemodynamic and arterial blood gas changes in the canine subjects after burn-blast injury changed distinctly from the burn and blast injuries. Blood pressure and cardiac output fluctuated, and the preload was significantly reduced, whereas the afterload significantly increased. Meanwhile, the oxygen saturation (SO2) decreased markedly with carbon dioxide partial pressure (PCO2), and lactic acid (Lac) rose, and oxygen partial pressure (PO2) reduced. These changes suggested that immediate clinical treatment is important during burn-blast injury both to stabilize cardiac function and supply blood volume and to reduce the vascular permeability, thereby preventing acute pneumonedema or other complications.

  11. Colored corn starch dust explosion-related ocular injuries at a Taiwan water park: A preliminary report from a single medical center

    PubMed Central

    Liao, Yi-Lin; Yeh, Lung-Kun; Tsai, Yueh-Ju; Chen, Shin-Yi

    2016-01-01

    Purpose: To elucidate the manifestations of ocular injuries in the colored corn starch dust explosion at a Taiwan water park. Methods: This is a retrospective, non-comparative, consecutive-interventional case series. Fifty explosion-injury patients on 27 June 2015 treated at Chang-Gung Memorial Hospital, Linkou, were included. Thorough ophthalmic examinations were based on emergent triage and consecutive ophthalmological consultations. Multiple ocular and systemic parameters were assessed. Results: Of the 100 eyes in the 50 cases reviewed, 22 cases were male and 28 cases were female. The mean age was 22.08 ± 4.64 years, and the mean burn total body surface area (TBSA) of patients was 45.92 ± 20.30%. Of the 50 patients, 20 had Grade 1 ocular burns, and the others were without ocular involvement. Two of the 20 cases that presented Grade 1 ocular burns died within 1 month due to other systemic complications. The most common ocular manifestations among those with ocular injuries included periocular swelling (75%), followed by conjunctival chemosis (65%), conjunctival hyperemia (50%), singed eyelashes (20%), cornea epithelial defects (10%), and punctate keratopathy (5%). It is worth mentioning that one patient developed herpes simplex keratitis due to stress 3 weeks after being burned. Half of the 50 patients had facial burns. Specifically, the patients with a greater TBSA presented more significant ocular-burn manifestations than those patients with lower TBSA. Conclusion: Prompt ophthalmologic consultations are particularly necessary for mass burn-casualty patients with facial burns, inhalation injuries, and greater TBSA. The inspection and control of all ignition sources and the manipulation of dust with low concentrations and in an open space are crucial factors to prevent future dust explosions. PMID:29018726

  12. Optimization of Equation of State and Burn Model Parameters for Explosives

    NASA Astrophysics Data System (ADS)

    Bergh, Magnus; Wedberg, Rasmus; Lundgren, Jonas

    2017-06-01

    A reactive burn model implemented in a multi-dimensional hydrocode can be a powerful tool for predicting non-ideal effects as well as initiation phenomena in explosives. Calibration against experiment is, however, critical and non-trivial. Here, a procedure is presented for calibrating the Ignition and Growth Model utilizing hydrocode simulation in conjunction with the optimization program LS-OPT. The model is applied to the explosive PBXN-109. First, a cylinder expansion test is presented together with a new automatic routine for product equation of state calibration. Secondly, rate stick tests and instrumented gap tests are presented. Data from these experiments are used to calibrate burn model parameters. Finally, we discuss the applicability and development of this optimization routine.

  13. Cardowan coal mine explosion: experience of a mass burns incident.

    PubMed Central

    Allister, C; Hamilton, G M

    1983-01-01

    A coal mine explosion 1700 feet (516 m) underground and two miles (3.2 km) from the pit head resulted in 40 casualties. Two hours elapsed between the explosion and the arrival of patients at hospital. Six patients suffered mechanical injuries, only one of which was life threatening. Thirty six suffered burns; in 18 over 15% of the total body surface area was affected. Nineteen patients had a mild respiratory upset requiring oxygen treatment. The average length of inpatient stay in those admitted was 24 days. Early assessment and treatment in the accident and emergency department was relatively simple because of the large proportion of burn injuries. Lack of communication between site and hospital made administration of the disaster difficult. PMID:6409324

  14. UH cosmic rays and solar system material - The elements just beyond iron

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Schramm, D. N.; Blake, J. B.

    1977-01-01

    The nucleosynthesis of cosmic-ray elements between the iron peak and the rare-earth region is examined, and compositional changes introduced by propagation in interstellar space are calculated. Theories on the origin of elements heavier than iron are reviewed, a supernova model of explosive nucleosynthesis is adopted for the ultraheavy (UH) cosmic rays, and computational results for different source distributions are compared with experimental data. It is shown that both the cosmic-ray data and the nucleosynthesis calculations are not yet of sufficient precision to pinpoint the processes occurring in cosmic-ray source regions, that the available data do provide boundary conditions for cosmic-ray nucleosynthesis, and that these limits may apply to the origin of elements in the solar system. Specifically, it is concluded that solar-system abundances appear to be consistent with a superposition of the massive-star core-helium-burning s-process plus explosive-carbon-burning synthesis for the elements from Cu to As and are explained adequately by the s- and r-processes for heavier elements.

  15. Preliminary burn and impact tests of hybrid polymeric composites. [preventing graphite fiber release

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1978-01-01

    Free graphite fibers released into the environment from resin matrix composite components, as a result of fire and/or explosion, pose a potential hazard to electrical equipment. An approach to prevent the fibers from becoming airborne is to use hybrid composite materials which retain the fibers at the burn site. Test results are presented for three hybrid composites that were exposed to a simulation of an aircraft fire and explosion. The hybrid systems consisted of 16 plies of graphite-epoxy with two plies of Kevlar-, S-glass-, or boron-epoxy on each face. Two different test environments were used. In one environment, specimens were heated by convection only, and then impacted by a falling mass. In the other environment, specimens were heated by convection and by radiation, but were not impacted. The convective heat flux was about 100-120 kW/m in both environments and the radiative flux was about 110 kW/sq m.

  16. Statistical Hotspot Model for Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Nichols, Albert

    2005-07-01

    The presence and need for energy localization in the ignition and detonation of high explosives is a corner stone in our understanding of explosive behavior. This energy localization, known as hot spots, provides the match that starts the energetic response that is integral to the detonation. In our model, we use the life cycle of a hot spot to predict explosive response. This life cycle begins with a random distribution of inhomogeneities in the explosive that we describe as a potential hot spot. A shock wave can transform these into hot spots that can then grow by consuming the explosive around them. The fact that the shock wave can collapse a potential hot spot without causing ignition is required in order to model phenomena like dead pressing. The burn rate of the hot spot is taken directly from experimental data. In our approach we do not assume that every hot spot is burning in an identical environment, but rather we take a statistical approach to the burning process. We also do not make a uniform temperature assumption in order to close the mixture equation of state, but track the flow of energy from reactant to product. Finally, we include both the hot spot burn model and a thermal decomposition path, required to explain certain long time behaviors. Building on work performed by Reaugh et. al., we have developed a set of reaction parameters for an HMX based heterogeneous explosive. These parameters have been determined from computer models on the micron scale, and experimental data. This model will be compared to experimental rate stick data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  17. Relationship between pressure and reaction violence in thermal explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Rodriguez, G.; Remelius, D.; Baca, E.; Oschwald, D.; Suvorova, N.

    2017-01-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX 9502 thermal explosions, and fiber Bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  18. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory Volume 1: Report of Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2006-04-24

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less

  19. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less

  20. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  1. Large Scale Supernova Structure from Pre- and Post-Explosion Convection

    NASA Astrophysics Data System (ADS)

    Young, Patrick A.; Vance, Gregory; Ellinger, Carola; Fryer, Chris

    2017-06-01

    We present results of 3D supernova simulations with initial conditions drawn from 3D models of late stage stellar convection. Simulations are performed with the supernova-optimized smooth particle hydrodynamics code SNSPH and postprocessed using a 522 isotope nuclear reaction network. The simulations also have a non-fixed central compact object that is free to accrete momentum from fall back material. It has been established that neutrino-driven convection can produce large asymmetries in the explosion, but the effects caused by convective anisotropies in late burning shells in the progenitor star and time-varying gravitational potential after the explosion are less well explored. We find that convective motions can result in highly asymmetric overturn of deep layers that are not susceptible to large effects from explosion generated Rayleigh-Taylor and Richtmeyer-Meshkov instabilities. Such overturn can produce regions with a strong alpha-rich freezeout and high iron abundances morphologically similar to the iron-rich structure in the southeast quadrant of Cassiopeia A.

  2. Impact initiation of explosives and propellants via statistical crack mechanics

    NASA Astrophysics Data System (ADS)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using embedded velocity gauges.

  3. Turbulent combustion in aluminum-air clouds for different scale explosion fields

    NASA Astrophysics Data System (ADS)

    Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.

    2017-01-01

    This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.

  4. Cell phone explosion.

    PubMed

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  5. Simulations of multi-component explosives using simplified geometric arrangements of their constituents

    NASA Astrophysics Data System (ADS)

    Butler, George; Pemberton, Steven

    2017-06-01

    Modeling and simulation is extremely important in the design and formulation of new explosives and explosive devices due to the high cost of experiment-based development. However, the efficacy of simulations depends on the accuracy of the equations of state (EOS) and reactive burn models used to characterize the energetic materials. We investigate the possibility of using the components of an explosive fill as discrete elements in a simulation, based on the relative amounts of the constituents. This is accomplished by assembling a mosaic, or ``checkerboard'', in which each cell comprises the relative amounts of the constituents as in the mixture; it is assumed that each constituent has a well-defined set of simulation parameters. We do not consider the underlying microstructure, and recognize there will be limitations to the usefulness of this technique. We are interested in determining whether there are applications for this technique that might prove useful. As a test of the concept, two binary explosives were considered. We considered shapes for a periodic cellular structure and compared results from the checkerboards with those of the baseline explosives; detonation rates, cylinder expansion, and gap test predictions were compared.

  6. Numerical computation of Pop plot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparisonmore » of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.« less

  7. Recent Progress on the Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.Mitchell, A; Hsu, P C; Coburn, M D

    2004-07-06

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to1,3,5-triamino-2,4,6- trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship ofmore » the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a larger scale. In FY 03, a 10 g per batch process was developed with good results. Development for a one pound per batch system is required as part of overall scale up process for producing TATB from the surplus feedstocks.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winstanley, J. L.

    In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division atmore » Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons« less

  9. Endurance of SN 2005ip after a decade: X-rays, radio and Hα like SN 1988Z require long-lived pre-supernova mass-loss

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Kilpatrick, Charles D.; Mauerhan, Jon C.; Andrews, Jennifer E.; Margutti, Raffaella; Fong, Wen-Fai; Graham, Melissa L.; Zheng, WeiKang; Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.

    2017-04-01

    Supernova (SN) 2005ip was a Type IIn event notable for its sustained strong interaction with circumstellar material (CSM), coronal emission lines and infrared (IR) excess, interpreted as shock interaction with the very dense and clumpy wind of an extreme red supergiant. We present a series of late-time spectra of SN 2005ip and a first radio detection of this SN, plus late-time X-rays, all of which indicate that its CSM interaction is still strong a decade post-explosion. We also present and discuss new spectra of geriatric SNe with continued CSM interaction: SN 1988Z, SN 1993J and SN 1998S. From 3 to 10 yr post-explosion, SN 2005ip's Hα luminosity and other observed characteristics were nearly identical to those of the radio-luminous SN 1988Z, and much more luminous than SNe 1993J and 1998S. At 10 yr after explosion, SN 2005ip showed a drop in Hα luminosity, followed by a quick resurgence over several months. We interpret this Hα variability as ejecta crashing into a dense shell located ≲ 0.05 pc from the star, which may be the same shell that caused the IR echo at earlier epochs. The extreme Hα luminosities in SN 2005ip and SN 1988Z are still dominated by the forward shock at 10 yr post-explosion, whereas SN 1993J and SN 1998S are dominated by the reverse shock at a similar age. Continuous strong CSM interaction in SNe 2005ip and 1988Z is indicative of enhanced mass-loss for ˜103 yr before core collapse, longer than Ne, O or Si burning phases. Instead, the episodic mass-loss must extend back through C burning and perhaps even part of He burning.

  10. [Burns in adolescents].

    PubMed

    Ortiz Rodríguez, R; Domínguez Amillo, E; Soto Beauregard, C; Díaz González, M; López Gutiérrez, J C; Ros Mar, Z; Tovar Larrucea, J A

    2012-04-01

    The aim of this study was to know the epidemiology of burns in teenagers. Burn patients over 11 years old admitted in our Institution in the last 10 years were included. Etiology, burn size, hospital stay, quirurgical interventions and long term sequelae were registered. One thousand and eight patients were admitted, 89 were over 11 years (8.8%), 70.7% were boys and 29.3% girls. Fire was the principal agent in 58 cases (65.1%), due to fireworks in 13 (22.4%), alcohol in 7 (12%), explosion of flammable containers (spray) in 4 (6.8%) and gasoline in 3 (5.2%). Fireworks injuries and spray explosions affected face and hand in 88% cases. The median hospital stay was 8 days after admission (1 to 90). 83.1% required surgical treatment with mean of 1.8 +/- 1.4 interventions and 21.3% had long-term sequelaes that required at least one surgical intervention. Fire is the main cause of burns in adolescents. Fireworks injuries represented a quarter of that lesions, and highlights paint spray explosions as new causative agents. Considering the high morbidity in this age group, with permanent functional and aesthetic sequelae, prevention campaigns are needed to reduce such accidents.

  11. Hot-spot contributions in shocked high explosives from mesoscale ignition models

    NASA Astrophysics Data System (ADS)

    Levesque, G.; Vitello, P.; Howard, W. M.

    2013-06-01

    High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.

  12. Synthesis of Al-26 in explosive hydrogen burning

    NASA Technical Reports Server (NTRS)

    Arnould, M.; Norgaard, H.; Thielemann, F.-K.; Hillebrandt, W.

    1980-01-01

    The possibility of Al-26 synthesis during the explosive processing of hydrogen-rich material in the outer layers of a supernova or in nova envelopes is investigated. It is found that in the peak temperature range of 1-3 x 10 to the 8th deg K and for expansion time scales of the order of 1-1000 s, values of (Al-26)/(Al-27) as high as 0.1-1 can be obtained for values of 0.001-100,000 for the product of the peak density in g/cu cm and the proton mass fraction. Such a level of Al-26 production is considerably higher than that of recent carbon/neon burning nucleosynthesis models, and is sufficient to account for the magnesium anomalies detected in certain inclusions from the Leoville and Allende meteorites. Al abundances resulting from a hydrodynamical calculation performed on the grounds of a 25 solar mass presupernova model are also presented, and the influence of uncertainties in the input physics is discussed; in particular, the rates of the (Mg-25)(p,gamma)(Al-26) and (Al-26)(p,gamma)(Si-27) key reactions are studied.

  13. Chemistry of the Burning Surface

    DTIC Science & Technology

    1993-10-12

    simulated combustion and explo- the temperature is nonuniform along the filament length sion events. SUFKS V~V 100 IWAQ10 0 t 1 10 CABRAM OIRV...temperature. Ilee filament is slightly altered by the sample, the power results clearly show that it is the nonuniform temper%- dissipation is essentially...sample explosive and propellant material, was chosen because it is presnt on the filamenL Liquefaction of AMMO is illustrates the laIr amount of chemical

  14. Using optical techniques to measure aluminum burning in post-detonation explosive fireballs

    NASA Astrophysics Data System (ADS)

    Peuker, Jennifer Mott

    The objectives of the current study are twofold: (1) to further the understanding of aluminum combustion in an explosive fireball, specifically where, when, and with what the aluminum is reacting; and (2) to characterize AlO emission measurements from aluminized explosive fireballs in order to determine when and how AlO emission can be used as an indicator of aluminum combustion. Experiments were completed in six different environments using four distinct aluminized charges of varying aluminum particle size---3 microm, 10 microm and 40 microm---and loading amount---20 and 50 percent by mass---to determine with what the aluminum is reacting. In addition, a charge containing 20 percent aluminum oxide (Al2O3) was used as an inert comparison. The effect of the aluminum particle location with respect to the explosive material was tested by using end-loaded charges, and by placing a layer of grease on the aluminized charge tip. Time-resolved overpressure measurements are used to determine when the aluminum is burning. Experiments employing an air-gap between the explosive charge and aluminum powder aid in determining how and when aluminum is activated and combusted in the initial blast wave and the subsequent fireball containing high pressure and high temperature detonation products. Tests in four environments show that even when AlO emission intensity is lower by 90 percent in N2 or CO2 than it is in air for a charge, it is possible to have significant---60 to 70 percent---aluminum particle oxidation. In addition, substantial AlO emission was measured in the absence of unburned aluminum---almost half of the peak AlO emission measured when unburned aluminum was present. Results show that AlO emission intensity measurements are skewed to higher AlO intensities by high transient temperatures within the first 30 micros when the peak AlO emission is usually measured. The aluminum particle location also affects the amount of AlO emission measured such that when more particles are on the fireball surface, then more AlO emission is measured. However, the end-loaded aluminum does not add to the energy output enhancement as much as the pre-loaded aluminum charges since the peak pressures and initial impulse are similar for different amounts of aluminum. A grease layer on the tip of the charge reduces the amount of AlO emission measured by 90 percent, but has the same energy output in the initial blast wave as the same charge not having a grease layer, indicating that the material at the tip of a charge changes the breakout and subsequent AlO emission production. In addition, the overpressure measurements indicate that four distinct stages of aluminum combustion exist. The first stage is the detonation and the activation of the aluminum. In the second stage the aluminum burns to enhance the blast wave which is indicated by higher peak pressures and initial impulses than a charge not containing aluminum. During the third stage, the aluminum continues to burn to increase the overpressure of the chamber. The fireball cools during the fourth stage and any aluminum oxidation does not add to the energy release. The variations in how much AlO emission is measured indicate that interpreting AlO emission measurements from explosive fireballs is not straightforward with respect to correctly determining the amount of aluminum combusted, how long the aluminum reacted, or the energy released. If aluminum is available to burn and AlO emission is measured, then the aluminum is burning---even taking into account AlO emission from the oxide layer. However, when no AlO emission is measured, it does not necessarily mean that the aluminum is not burning. When AlO emission is measured it indicates that the temperatures are high enough to sustain aluminum combustion which produces AlO, and that oxidizers are present which react to produce the AlO emission. The relative intensities for the same time frame of AlO emission measured could be indicators about the temperature or number of reactions occurring. (Abstract shortened by UMI.)

  15. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Nicholas Alexander

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  16. Fates of the most massive primordial stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Almgren, Ann; Woosley, Stan

    2012-09-01

    We present our results of numerical simulations of the most massive primordial stars. For the extremely massive non-rotating Pop III stars over 300Msolar, they would simply die as black holes. But the Pop III stars with initial masses 140 - 260Msolar may have died as gigantic explosions called pair-instability supernovae (PSNe). We use a new radiation-hydrodynamics code CASTRO to study evolution of PSNe. Our models follow the entire explosive burning and the explosion until the shock breaks out from the stellar surface. In our simulations, we find that fluid instabilities occurred during the explosion. These instabilities are driven by both nuclear burning and hydrodynamical instability. In the red supergiant models, fluid instabilities can lead to significant mixing of supernova ejecta and alter the observational signature.

  17. Terahertz Scattering

    NASA Astrophysics Data System (ADS)

    Zurk, L. M.; Schecklman, S.

    Terahertz (THz) Time Domain Spectroscopy (TDS) measurements have the unique ability to detect both the amplitude and phase of the electric field, simultaneously. This eliminates complications introduced by Kramers-Kronig relations typically used in near-infrared spectroscopy. Many materials of interest contain resonant features in their refractive indices in the far-infrared (THz) spectrum, while their packaging materials are generally transparent. Thus, an important application for THz TDS is the ability to see inside packaging materials and detect the material features of their contents. Such applications are promising for security screening (concealed drugs, explosives, etc.) in post offices and airports as well as for non-destructive evaluation (NDE) of products on an assembly line or tissue damage due to burns or cancer [1-6].

  18. Ballistically Initiated Fire Ball Generation Using M&S: Innovation Grant (Briefing Charts)

    DTIC Science & Technology

    2012-01-26

    isotropic in nature Phenomenological models for explosives initiation. – HVRB, forest fire etc. Equation of state – Ideal gas, Mie-Gruneisen, JWL ...perfectly plastic description • EOS • Mie Gruneisen • JWL for explosive • Phenomenological Model for EFP • High Explosive input for programmed burn

  19. Modeling a High Explosive Cylinder Experiment

    NASA Astrophysics Data System (ADS)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  20. Friction on Crack Surfaces During Compression of Explosives - A Source of Hot Spots and Probable Ignition Sites

    DTIC Science & Technology

    2009-05-01

    conditioned at temperature for at least 2 hrs before measurement. The dimensions of all samples at 0.1 MPa (atmospheric pressure) were used to obtain...are often used under conditions of confinement and pressurization. Explosives are confined in projectile cases and are pressurized during launch by...propellants during burning can lead to hazardous burning conditions (ref. 5). The results presented here also indicate the possible hazards associated

  1. Thigh burns from exploding e-cigarette lithium ion batteries: First case series.

    PubMed

    Nicoll, K J; Rose, A M; Khan, M A A; Quaba, O; Lowrie, A G

    2016-06-01

    E-cigarette (EC) use has risen meteorically over the last decade. The majority of these devices are powered by re-chargeable lithium ion batteries, which can represent a fire hazard if damaged, over-heated, over-charged or stored inappropriately. There are currently no reports in the medical literature of lithium ion battery burns related to EC use and no guidance on the appropriate management of lithium ion battery associated injuries. We report two individual cases of burn resulting from explosion of EC re-chargeable lithium ion batteries. Both patients required in-patient surgical management. We provide evidence that lithium ion battery explosions can be associated with mixed thermal and alkali chemical burns, resulting from the significant discharge of thermal energy and the dispersal of corrosive lithium ion compounds. We would recommend, as with other elemental metal exposures, caution in exposing lithium ion battery burns to water irrigation. Early and thorough cleaning and debridement of such burns, to remove residual lithium contamination, may limit the risk of burn wound extension and potentially improve outcomes. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  2. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  3. The Possibility of Using Composite Nanoparticles in High Energy Materials

    NASA Astrophysics Data System (ADS)

    Komarova, M. V.; Vorozhtsov, A. B.; Wakutin, A. G.

    2017-01-01

    The effect of nanopowders on the burning rate varying with the metal content in mixtures of different high energy composition is investigated. Experiments were performed on compositions based on an active tetrazol binder and electroexplosive nanoaluminum with addition of copper, nickel, or iron nanopowders, and of Al-Ni, Al-Cu, or Al-Fe composite nanoparticles produced by electrical explosion of heterogeneous metal wires. The results obtained from thermogravimetric analysis of model metal-based compositions are presented. The advantages of the composite nanoparticles and the possibility of using them in high energy materials are discussed.

  4. Detonation Velocity Calculations of Explosives with Slowly-Burning Constituents

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.

    1997-07-01

    The thermochemical code Equilbrium CHEETAH has been modified to allow partial reaction of constituents and partial flow of heat. Solid or liquid reactants are described by Einstein oscillators, whose temperatures can be changed to allow heat transfer. Hydroxy-terminated-poly-budadiene, mixed with RDX or HMX, does not react, as shown by the effect on the calculated detonation velocity. Aluminum and ammonium perchlorate in composites also do not react. Only partial heat flow also takes place in the unreacted materials. These results show that the usual assumption of total burn in a thermochemical code is probably incorrect, at least in the sonic reaction zone that drives the detonation velocity. A kinetic code would be the logical extension of this work.

  5. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-06-01

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100μs. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  6. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography.

    PubMed

    Smilowitz, L; Henson, B F; Romero, J J; Asay, B W; Schwartz, C L; Saunders, A; Merrill, F E; Morris, C L; Kwiatkowski, K; Hogan, G; Nedrow, P; Murray, M M; Thompson, T N; McNeil, W; Rightley, P; Marr-Lyon, M

    2008-06-06

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 micros. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  7. Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX

    NASA Astrophysics Data System (ADS)

    Springer, H. K.; Tarver, C. M.; Bastea, S.

    2017-01-01

    The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase to primarily include pore collapse and growth phase to primarily include post-collapse grain burning. We are able to track late-time, post-collapse burning due to the unique loading conditions employed in these calculations. We find that (dF/dt)gr > (dF/dt)ig for all pressures considered. (dF/dt)gr changes more significantly from 25 to 38 GPa (from 0.05/µs to >10-100/µs) than from 15 to 25 GPa (from 0.005/µs to 0.05/µs). There is a three order-of-magnitude difference in the reaction from 15 to 38 GPa just after pore collapse. This is qualitatively consistent with fitting the (macroscopic) Ignition and Growth model to high pressure shock initiation data, where much larger reaction fractions are needed to capture the early stages of reaction. Calculated burn rates demonstrate better agreement with data at intermediate times in the growth phase for 15 to 25 GPa and late times for 30 GPa then at any time in the growth phase for 38 GPa. Our calculations are much higher than burn rate data at the earliest times in the growth phase for all pressures, which may reflect the higher localized pressures and temperatures just after pore collapse in the ignition phase. Our calculations with spherical, conical, and elliptical pores show that the influence of morphology on reaction rate is pressure dependent and the most influential pore shapes at lower pressures aren't the same at higher pressures in the regime studied. Altogether these studies provide the basis for developing microstructure-aware models that can be used to design new explosives with optimal performance-safety characteristics. Such models can be used to guide additive manufacturing of explosives and fully exploit their disruptive nature.

  8. Modelling of Deflagration to Detonation Transition in Porous PETN of Density 1.4 g / cc with HERMES

    NASA Astrophysics Data System (ADS)

    Reaugh, John; Curtis, John; Maheswaran, Mary-Ann

    2017-06-01

    The modelling of Deflagration to Detonation Transition in explosives is a severe challenge for reactive burn models because of the complexity of the physics; there is mechanical and thermal interaction of the gaseous burn products with the burning porous matrix, with resulting compaction, shock formation and subsequent detonation. Experiments on the explosive PETN show a strong dependence of run distance to detonation on porosity. The minimum run distance appears to occur when the density is approximately 1.4 g / cc. Recent research on the High Explosive Response to Mechanical Stimulation (HERMES) model for High Explosive Violent Reaction has included the development of a model for PETN at 1.4 g / cc., which allows the prediction of the run distance in the experiments for PETN at this density. Detonation and retonation waves as seen in the experiment are evident. The HERMES simulations are analysed to help illuminate the physics occurring in the experiments. JER's work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344 and partially funded by the Joint US DoD/DOE Munitions Technology Development Program. LLNL-ABS-723537.

  9. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  10. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  11. Modelling shock to detonation transition in PETN using HERMES and CREST

    NASA Astrophysics Data System (ADS)

    Maheswaran, Mary-Ann; Curtis, John; Reaugh, Jack

    2013-06-01

    The High Explosive Response to MEchanical Stimulus (HERMES) model has been developed to address High Explosive Violent Response (HEVR). It is a material model for use in the both the LS-DYNA finite element and ALE3D hydrocodes that enables the modelling of both shock to detonation (SDT) and deflagration to detonation (DDT) transition. As part of its ongoing development and application, model parameters for the explosive PETN were found by using experimental data for PETN at different densities. PETN was selected because of the availability of both SDT and DDT data. To model SDT and DDT, HERMES uses a subset of the CREST reactive burn model with the Mie-Gruneisen equation of state (EOS) for the unreacted explosive and a look-up table for the gas EOS as generated by Cheetah. The unreacted EOS parameters were found first by calculating the principal isentrope of unreacted PETN at TMD from PETN shock Hugoniot data. Then Pop-plot data for PETN was used to fit the CREST parameters at each density. The resulting new PETN HERMES material model provides a platform for further investigations of SDT and DDT in low density PETN powder. JER's activity was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344, and partially funded by the Joint US DoD/DOE Munitions Technology Development Program.

  12. [Severe ocular burns by calcium carbide in a speleologist: a case report].

    PubMed

    Testud, F; Voegtlé, R; Nordmann, J P; Descotes, J

    2002-03-01

    A case of severe ocular burns in an amateur speleologist is reported. The explosion of his acetylene lamp caused the projection of calcium carbide particles, which induced burning of the cornea and conjunctiva in both eyes. He slowly recovered in several months. The pathophysiology of the burns, linked to the in situ production of lime, and their management are discussed.

  13. Exploring Systematic Effects in Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Jackson, Aaron Perry

    Type Ia supernovae (SNe) are bright astrophysical explosions that form a remarkably homogeneous class of objects serving as the premier distance indicators for studying the expansion history of the Universe and the nature of dark energy. Despite the widespread acceptance of the surprising discovery of the acceleration of the expansion of the Universe and the existence of the mysterious dark energy driving it that followed from these studies, the progenitor systems of these explosions are unknown. Knowledge of the progenitor system is required to understand possible systematic effects due to properties of the parent stellar population or host galaxy. While several scenarios have been proposed, the most widely accepted one is the thermonuclear explosion of a near-Chandrasekharmass, carbon-oxygen white dwarf (WD). Under this scenario, the explosive burning begins near the center as a deflagration (subsonic burning) that transitions to a detonation (supersonic burning) some time later after the WD has expanded in response to the energy release. Turbulence, either pre-existing or generated by burning, serves to increase the surface area of the burning front, thus enhancing the fuel consumption rate. In addition, turbulence--flame interaction (TFI) may be responsible for deflagration--detonation transition (DDT). Simulations of this explosion scenario typically parameterize the DDT to occur when the flame reaches a particular density. I performed a suite of two-dimensional (2D) simulations with the compressible, hydrodynamics code FLASH to evaluate the influence of the DDT density on the average yield of radioactive 56Ni that powers the SN light curve. In addition, I considered the compositional dependence of the DDT density to explore one way in which metallicity may influence the explosion outcome. My results have confirmed a new pathway to explain observed trends in the average peak brightness of SNe Ia with host galaxy metallicity. In a separate study, I address the basic physics of modeling flames and turbulent combustion. The disparate length scales in the SN necessitate use of a flame model to capture the effect of burning on unresolved scales. I implemented a method to measure the strength of unresolved turbulence, which is used to estimate the amount of wrinkling of the unresolved flame surface. In addition, the measure of turbulent strength may be used to improve the criterion by which DDT is initiated. These improvements will allow three-dimensional (3D) simulations of the early flame evolution in the presence of strong pre-existing turbulence. The research conducted for this dissertation has led to important insights into the explosion mechanism of SNe Ia. In addition, improvements to the model have allowed and will continue to allow simulations of unprecedented realism of the complex process of exploding WDs in a thermonuclear SN.

  14. A Comparative Study of Very High Burning Rate Materials - HIVELITE compositions 300511 and 300435

    DTIC Science & Technology

    1982-08-01

    explosives and more or as sensitive as RDX and HMX . Thermal Sensitivity Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA) Simultaneous...impact than Comp B end RDX but is less sensitive than lead azide. HIVELITE 30051i on the other hand, is less sensitive than Comp B and RDX on the ERL...represents the alpha to beta phase transition of KNO 3 . This endotherm is followed by four exotherms with peaks at 538 K (265*C), 567 K (2940C), 598 K

  15. Survey of Hydrogen Combustion Properties

    NASA Technical Reports Server (NTRS)

    Drell, Isadore L; Belles, Frank E

    1958-01-01

    This literature digest of hydrogen-air combustion fundamentals presents data on flame temperature, burning velocity, quenching distance, flammability limits, ignition energy, flame stability, detonation, spontaneous ignition, and explosion limits. The data are assessed, recommended values are given, and relations among various combustion properties are discussed. New material presented includes: theoretical treatment of variation in spontaneous ignition lag with temperature, pressure, and composition, based on reaction kinetics of hydrogen-air composition range for 0.01 to 100 atmospheres and initial temperatures of 0 degrees to 1400 degrees k.

  16. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  17. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Sim, S. A.; Fink, M.; Röpke, F. K.; Seitenzahl, I. R.; Hillebrandt, W.

    2010-08-01

    In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and γ-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

  18. Friction on Crack Surfaces During Compression of Explosives - A Possible Ignition Source for Unplanned Explosions Due to Accidental Deformations

    DTIC Science & Technology

    2008-12-01

    samples were conditioned at temperature for at least two hours before measurement. The dimensions of all samples at 0.1 MPa (atmospheric pressure...1. INTRODUCTION Explosives and propellants are often used under conditions of confinement and pressurization. Explosives are confined...lead to hazardous burning conditions (Nicolaides et al, 2000). The results presented here also indicate the possible hazards associated with crack

  19. Comparison of combat and non-combat burns from ongoing U.S. military operations.

    PubMed

    Kauvar, David S; Cancio, Leopoldo C; Wolf, Steven E; Wade, Charles E; Holcomb, John B

    2006-05-15

    Military burns result from either combat or non-combat causes. We compared these etiologies from patients involved in ongoing conflicts to evaluate their impact and provide prevention recommendations. All military patients with significant burns treated at the United States Army Institute of Surgical Research from April 2003 to May 2005 were reviewed. Injuries were categorized as having resulted from combat or non-combat causes. Demographics, burn severity and pattern, mortality, and early outcomes were compared. There were 273 burn patients seen with 63% injured in combat. A high early rate of non-combat injuries was noted. Feedback on non-combat burn prevention was provided to the combat theater, and the incidence of non-combat burns decreased. Mean age and time from injury to admission did not differ. The majority of combat injuries resulted from explosive device detonation. Waste burning, ammunition handling, and gasoline caused most non-combat injuries. Combat casualties had more associated and inhalation injuries and greater full-thickness burn size; total body surface area burned was equivalent. The hands and the face were the most frequently burned body areas. Mortality was 5% in combat and 2% in non-combat patients. The majority of survivors in both groups returned to military duty. The disparity in full-thickness burn size and incidence of inhalation and associated injuries resulted from differing mechanisms of injury, with explosions and penetrating trauma more common in combat wounds. Despite the severity of combat burns, mortality was low and outcomes generally good. Non-combat burns are preventable and have decreased in incidence.

  20. Determining nucleosynthesis yields in supernovae with spectral modelling

    NASA Astrophysics Data System (ADS)

    Jerkstrand, Anders

    2018-04-01

    The methodology to estimate element masses in supernova ejecta from nebular spectroscopy is discussed. Results using the SUMO spectral synthesis code are reviewed with regard to two key elements; oxygen (a hydrostatic burning ash) and nickel (an explosive burning ash). The typical oxygen mass in both Type IIP and IIb supernovae is found to be ˜0.5 M⊙, and points to progenitor stars in the 8 - 17 M⊙ range. For nickel, a new diagnostic method has been developed that shows Ni/Fe production close to solar in most cases, but sometimes larger by a factor of a few. It is shown that the larger values require the burning of silicon shell layers in the progenitor, a unique constraint on explosion theory.

  1. Elements of a CERCLA action at a former Army ammunition plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, D.F.; Marotz, G.A.; Frazier, G.F.

    1999-07-01

    The Sunflower Army Ammunition Plant covers 44 km{sup 2} and is located near several large population centers. Leased sites within the plant are now being used for various activities including recreation and manufacturing. Plans are in place for conversion of an additional 3,000 ha to a commercial amusement park. Some 400 structures from the plant remain and most must be removed if further ventures are to take place. Many of the buildings are structurally unsound or contain potentially hazardous materials, such as explosive residues, lead sheathing or asbestos shingles, that were stored or used in the construction of the structures.more » State and federal agencies agreed that the buildings should be destroyed, but the method to do so was unclear. Analysis on building by building basis revealed that in many cases explosive residue made it unsafe to remove the buildings by any other method rather than combustion. Completion of a comprehensive destruction plan that included ground-level monitoring of combustion plumes, and burn scheduling under tightly prescribed micro and mesoscale meteorological conditions was approved by the EPA as a non-time critical removal action under CERCLA in 1996; the US Army was designated as the lead agency. Personnel at the University of Kansas assisted in developing the destruction plan and helped conduct two test burns using the comprehensive plan protocols. Results of one test burn scenario on June 26, 1997, intended as a test of probable dispersion safety margin and covered extensively by print and television media, the EPA and State agencies, are described in this paper. The selected building was smaller than typical of the buildings on the plant site. The events leading to a burn decision on the test day are used to illustrate the decision-making process.« less

  2. Propagation of Reactions in Thermally-damaged PBX-9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J W; Glascoe, E A; Kercher, J R

    A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosivemore » and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.« less

  3. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  4. Successful management of esophageal perforation diagnosed 3 days after injury caused by an explosion in the workplace: report of a case.

    PubMed

    Sawada, Shigeaki; Kusama, Akio; Shimakage, Naohiro; Tanabe, Tadashi; Okamura, Takanao; Uchida, Katsuyuki; Tsukada, Kazuhiro; Tajima, Kenzo

    2006-01-01

    We report a case of esophageal perforation caused by an explosion, but which was not diagnosed until 3 days after the injury. A 53-year-old worker sustained superficial dermal burns to his trachea, face, neck, and legs during an explosion. The burns were treated conservatively at a local hospital, but he was transferred to our hospital 3 days after the injury, when mediastinal emphysema and bilateral pleural effusion became evident. An esophagogram followed by computed tomography showed an esophageal perforation caused by the blast injury, and we performed an esophagectomy with recontruction of the gastric tube. After the operation, an X-ray showed a foreign body in the lower abdomen, which we found in the upper thoracic esophagus on the day of injury. We surmised that the patient had inadvertently swallowed a foreign body, which had been heated and scattered by the explosion, and it had melted the upper thoracic esophagus.

  5. Testing of Flame Screens and Flame Arresters as Devices Designed to Prevent the Passage of Flame (DPPF) into Tanks Containing Flammable Atmospheres According to an IMO Standard

    DTIC Science & Technology

    1989-10-01

    flashback tests FM does not speci- fy the type of enclosure to contain the explosive fuel/air mix -ture. 3.4 INTERNATIONAL CONVENTION FOR THE SAFETY OF...2) Continuous burn tests: ... "Same mix - ture and concentration as for explosion tests; flow rate of the gasoline vapor-air mixture is specified as a...gas temperature of the flammable hexane/air mix - ture on the tank side was used as the representative endu ance burn test temperature for the following

  6. Supernova simulations from a 3D progenitor model - Impact of perturbations and evolution of explosion properties

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Melson, Tobias; Heger, Alexander; Janka, Hans-Thomas

    2017-11-01

    We study the impact of large-scale perturbations from convective shell burning on the core-collapse supernova explosion mechanism using 3D multigroup neutrino hydrodynamics simulations of an 18M⊙ progenitor. Seed asphericities in the O shell, obtained from a recent 3D model of O shell burning, help trigger a neutrino-driven explosion 330 ms after bounce whereas the shock is not revived in a model based on a spherically symmetric progenitor for at least another 300 ms. We tentatively infer a reduction of the critical luminosity for shock revival by ˜ 20 {per cent} due to pre-collapse perturbations. This indicates that convective seed perturbations play an important role in the explosion mechanism in some progenitors. We follow the evolution of the 18M⊙ model into the explosion phase for more than 2 s and find that the cycle of accretion and mass ejection is still ongoing at this stage. With a preliminary value of 7.7 × 1050 erg for the diagnostic explosion energy, a baryonic neutron star mass of 1.85M⊙, a neutron star kick of ˜ 600 km s^{-1} and a neutron star spin period of ˜ 20 ms at the end of the simulation, the explosion and remnant properties are slightly atypical, but still lie comfortably within the observed distribution. Although more refined simulations and a larger survey of progenitors are still called for, this suggests that a solution to the problem of shock revival and explosion energies in the ballpark of observations is within reach for neutrino-driven explosions in 3D.

  7. Nebular Phase Observations of the Type Ia Supernova 2014J in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Diamond, Tiara

    2018-01-01

    Late-time spectra of SNe Ia show numerous strong emission features of iron and cobalt throughout the near infrared region. As the spectrum ages, the cobalt features fade as is expected from the decay of 56Co to 56Fe. The strong 1.6440 μm [Fe II] feature is sensitive to the central density of the white dwarf just prior to the runaway because of electron capture in the early stages of burning, hence the line profile width and evolution can be used to probe possible progenitor scenarios. The line profile is dependent on the extent of mixing during any deflagration burning in addition to asymmetries in the distribution of burning products or an off-center ignition. We present observations of SN 2014J from 300–500 days post-explosion. The data are consistent with spherical models of a MCh explosion with a deflagration-to-detonation transition, central density of 0.7×109 g/cm3, and limited mixing. An asymmetry in the line profile of the last spectrum could indicate an off-center ignition or burning products that are not centered on the kinetic center of the explosion. These and other late-time spectroscopic observations in the infrared of a significant sample of SNe Ia will provide insight into the natural variety of these objects, improving our understanding of the underlying physical processes and their usability in cosmology.

  8. Hospital bioterrorism planning and burn surge.

    PubMed

    Kearns, Randy D; Myers, Brent; Cairns, Charles B; Rich, Preston B; Hultman, C Scott; Charles, Anthony G; Jones, Samuel W; Schmits, Grace L; Skarote, Mary Beth; Holmes, James H; Cairns, Bruce A

    2014-01-01

    On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity.

  9. Hospital Bioterrorism Planning and Burn Surge

    PubMed Central

    Myers, Brent; Cairns, Charles B.; Rich, Preston B.; Hultman, C. Scott; Charles, Anthony G.; Jones, Samuel W.; Schmits, Grace L.; Skarote, Mary Beth; Holmes, James H.; Cairns, Bruce A.

    2014-01-01

    On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity. PMID:24527874

  10. Numerical modelling of underwater detonation of non-ideal condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Schoch, Stefan; Nikiforakis, Nikolaos

    2015-01-01

    The interest in underwater detonation tests originated from the military, since the expansion and subsequent collapse of the explosive bubble can cause considerable damage to surrounding structures or vessels. In military applications, the explosive is typically represented as a pre-burned material under high pressure, a reasonable assumption due to the short reaction zone lengths, and complete detonation of the unreacted explosive. Hence, numerical simulations of underwater detonation tests have been primarily concerned with the prediction of target loading and the damage incurred rather than the accurate modelling of the underwater detonation process. The mining industry in contrast has adopted the underwater detonation test as a means to experimentally characterise the energy output of their highly non-ideal explosives depending on explosive type and charge configuration. This characterisation requires a good understanding of how the charge shape, pond topography, charge depth, and additional charge confinement affect the energy release, some of which can be successfully quantified with the support of accurate numerical simulations. In this work, we propose a numerical framework which is able to capture the non-ideal explosive behaviour and in addition is capable of capturing both length scales: the reaction zone and the pond domain. The length scale problem is overcome with adaptive mesh refinement, which, along with the explosive model, is validated against experimental data of various TNT underwater detonations. The variety of detonation and bubble behaviour observed in non-ideal detonations is demonstrated in a parameter study over the reactivity of TNT. A representative underwater mining test containing an ammonium-nitrate fuel-oil ratestick charge is carried out to demonstrate that the presented method can be readily applied alongside experimental underwater detonation tests.

  11. Swedish Defence Research Abstracts 82/83-3 (Froe Foersvars Forsknings Referat 82/83-3)

    DTIC Science & Technology

    1983-12-01

    A PROTECTION - ATOMIC A3 Effects of nuclear explosions , and protective measures (I 13) Radioactive fallout from nuclear weapons. A review of airborne...AND WEAPON TECHNOLOGY DI Technology of explosives (119) Boron-containing fuel-rich HTPB propellants. Manufacturing, burning experiments and specific...technology (122) TRYCK. A command procedure for presenting the param.ters of the shock wave •.:’. from detonating high- explosive charges D8 System studies (123

  12. A review of the burns caseload of a physician-based helicopter emergency medical service.

    PubMed

    Hall, Karina; Burns, Brian

    2017-08-01

    The aim of this study was to describe patient demographics, injuries, physiology and interventions performed by retrieval physicians in the care of burns patients in both a pre-hospital and interhospital setting. A retrospective review of patient records from a large Australian Helicopter Emergency Medical Service was conducted. Demographics, injury, burn type, physiology and intervention data were extracted into a database for statistical analysis. Basic descriptive statistics were calculated, and patient physiology measures were compared at arrival and destination. A total of 490 burns cases were identified from a 5 year period (January 2010-August 2015). The majority (78.6%) were interhospital transfers conducted by road (49.4%) or helicopter (36.9%). Patients were predominantly men (75.7%) with a median age of 37 years (interquartile range [IQR] 23-50). Median estimated total body surface area burned was 15% (IQR 8.5-20) and 18% (IQR 10-30) in pre-hospital and interhospital groups, respectively; however, retrieval physicians tended to overestimate total body surface area burned in comparison to destination burns units. Flash burn or explosion were the predominant aetiology of burn (49.4%), although the majority (95.3%) of patients had no associated traumatic injuries. Sixty patients were intubated by the Service. Escharotomies were performed on eight occasions resulting in improvement in circulation or ventilation. Overall mortality was 3.7% at 24 h. The Service cares for 80-100 burns patients annually, a proportion of whom require complex interventions such as intubation and escharotomy, which was performed by retrieval physicians appropriately. Associated traumatic injuries were infrequent in patients who sustained burns from flashes or explosions. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  13. Model Independent Determination of Electron Fraction for Individual SNIa

    NASA Astrophysics Data System (ADS)

    De, Soma; Timmes, F.; Hawley, W.; Chamulak, D.; Athanassiadou, T.; Jack, D.; Calder, A.; Brown, E.; Townsley, D.

    2013-01-01

    Ye of individual supernova Type Ia at the time of explosion by using the silicon, sulfur, and calcium features from single epoch and multi-epoch spectra near maximum light. Most one-dimensional Chandrasekhar mass models of supernova Type Ia in the single-degenerate scenario produce their intermediate-mass elements in a burn to quasi-nuclear statistical equilibrium between the mass shells 0.8 and 1.1 M. We find a near linear dependence of the intermediate-mass element nuclear yields on the white dwarf’s initial metallicity from such SNe Ia explosion models, and the effect this dependence has on synthetic spectra near maximum light. We demonstrate that these metallicity signatures are only due to material achieving the necessary thermodynamic conditions. In addition, we find that global abundance of silicon is insensitive to change in metallicity but sulfur and calcium abundances change significantly

  14. Exposing Hierarchical Parallelism in the FLASH Code for Supernova Simulation on Summit and Other Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papatheodore, Thomas L.; Messer, Bronson

    Since roughly 100 million years after the big bang, the primordial elements hydrogen (H), helium (He), and lithium (Li) have been synthesized into heavier elements by thermonuclear reactions inside of the stars. The change in stellar composition resulting from these reactions causes stars to evolve over the course of their lives. Although most stars burn through their nuclear fuel and end their lives quietly as inert, compact objects, whereas others end in explosive deaths. These stellar explosions are called supernovae and are among the most energetic events known to occur in our universe. Supernovae themselves further process the matter ofmore » their progenitor stars and distribute this material into the interstellar medium of their host galaxies. In the process, they generate ∼1051 ergs of kinetic energy by sending shock waves into their surroundings, thereby contributing to galactic dynamics as well.« less

  15. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Merger)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows the merger of two white dwarfs. A white dwarf is an extremely dense remnant of a star that can no longer burn nuclear fuel at its core. This is another way that a "type Ia" supernova occurs. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22353

  16. The velocity and composition of supernova ejecta

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1971-01-01

    In case of the Gum nebula, a pulsar - a presumed neutron star - is believed to be a relic of the supernova explosion. Regardless of the mechanism of the explosion, the velocity distribution and composition of the ejected matter will be roughly the same. The reimploding mass fraction is presumed to be neutron rich. The final composition is thought to be roughly 1/3 iron and 2/3 silicon, with many small fractions of elements from helium to iron. The termination of helium shell burning occurs because the shell is expanded and cooled by radiation stress. The mass fraction of the helium burning shell was calculated.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, David Charles

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. Themore » area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.« less

  18. Measurement of the flow properties within a copper tube containing a deflagrating explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Larry G; Morris, John S; Jackson, Scott I

    2009-01-01

    We report on the propagation of deflagration waves in the high explosive (HE) PBX 9501 (95 wt % HMX, 5 wt% binder). Our test configuration, which we call the def1agration cylinder test (DFCT), is fashioned after the detonation cylinder test (DTCT) that is used to calibrate the JWL detonation product equation of state (EOS). In the DFCT, the HE is heated to a uniform slightly subcritical temperature, and is ignited at one end by a hot wire. For some configurations and initial conditions, we observe a quasi-steady wave that flares the tube into a funnel shape, stretching it to themore » point of rupture. This behavior is qualitatively like the DTCT, such that, by invoking certain additional approximations that we discuss, its behavior can be analyzed by the same methods. We employ an analysis proposed by G.I. Taylor to infer the pressure-volume curve for the burning, expanding flow. By comparing this result to the EOS of HMX product gas alone. we infer that only {approx}20 wt% of the HMX has burned at tube rupture. This result confirms pre-existing observations about the role of convective burning in HMX cookoff explosions.« less

  19. Effect of slow energy releasing on divergent detonation of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui

    2014-03-01

    There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.

  20. Mass Burns Disaster in Abule-egba, Lagos, Nigeria from a Petroleum Pipeline Explosion Fire

    PubMed Central

    Fadeyibi, I.O.; Omosebi, D.T.; Jewo, P.I.; Ademiluyi, S.A.

    2009-01-01

    Summary The aim of this paper is to review the basic principles of triage in mass burns disasters and discuss the experience of the Lagos State University Teaching Hospital (LASUTH), Ikeja, Nigeria, in the December 2006 disaster at Abule-Egba, Lagos, Nigeria. It is hoped that the experience gained will help in the planning for and management of similar disasters in the developing countries with limited facilities. Burn injury has been described as the severest form of trauma and its management is very challenging as it is often accompanied by numerous pathophysiological changes. Successful management requires expert management by well-trained personnel in equipped and dedicated centres. In mass disasters the total number of victims may exceed the capability of the facility and its staff and a system for sorting out the patients and caring for those that will benefit from the facilities available needs to be developed. Other patients will either be sent to other medical facilities for further treatment or discharged after initial care for future follow-up. Documented experiences in the management of mass burns disasters from petroleum pipeline explosions from developing countries are rare. However, petroleum pipeline explosions, especially in the Lagos area of Nigeria, are relatively common. These cases have been associated with a variety of factors. The resulting morbidity and mortality have been high. LASUTH has a dedicated burns centre, which has received and managed many burn patients. Triage is the medical process of screening patients according to their need of treatment and the resources available. The aims and objectives of triage are discussed, its various levels described, and the final goals elaborated. All the burn victims involved in the 2006 disaster were studied, together with the triage carried out at different levels and the consequent sorting of the patients. Standard burns management was carried out. A total of 385 patients sustained burns of various degrees from the fire resulting from the explosion. On site, emergency department (ED) and intra-hospital triage were carried out. Ninety patients were brought to the LASUTH ED. Of these, 51 patients (56.67%) received first-aid treatment and were either discharged for out-patient follow-up or referred to secondary health care facilities. Twenty-eight (31.11%) out of the remaining 39 patients with burns in more than 70% total body surface area (TBSA) were categorized as unsalvageable and 11 (12.22%) with less than 70% TBSA as salvageable. All the patients in the unsalvageable group died (i.e. 100% mortality), while one patient died in the salvageable group (mortality rate, 9.09%). The mortality rate for the ruptured petroleum product pipeline incident was 84.16%; the fatality rate for all patients seen at LASUTH was 32.22%. The need for caution in the handling of petroleum products is discussed and the effectiveness of the triage system used is highlighted. In conclusion, burns from flammable petroleum products can be very dangerous and proper triage should therefore be carried out, with salvageable patients being managed by experts in dedicated burns centres. PMID:21991163

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Gary R. Jr.; Holmes, Matthew D.; Dickson, Peter

    Conventional high explosives (e.g. PBX 9501, LX-07) have been observed to react violently following thermal insult: (1) Fast convective and compressive burns (HEVR); (2) Thermal explosions (HEVR); and (3) Deflagration-to-detonation transition (DDT). No models exist that sufficiently capture/predict these complex multiphase and multiscale behaviors. For now, research is focused on identifying vulnerabilities and factors that control this behavior.

  2. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  3. Thermoplasmonic Ignition of Metal Nanoparticles.

    PubMed

    Mutlu, Mehmet; Kang, Ju-Hyung; Raza, Søren; Schoen, David; Zheng, Xiaolin; Kik, Pieter G; Brongersma, Mark L

    2018-03-14

    Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.

  4. The Material Point Method and Simulation of Wave Propagation in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bardenhagen, S. G.; Greening, D. R.; Roessig, K. M.

    2004-07-01

    The mechanical response of polycrystalline materials, particularly under shock loading, is of significant interest in a variety of munitions and industrial applications. Homogeneous continuum models have been developed to describe material response, including Equation of State, strength, and reactive burn models. These models provide good estimates of bulk material response. However, there is little connection to underlying physics and, consequently, they cannot be applied far from their calibrated regime with confidence. Both explosives and metals have important structure at the (energetic or single crystal) grain scale. The anisotropic properties of the individual grains and the presence of interfaces result in the localization of energy during deformation. In explosives energy localization can lead to initiation under weak shock loading, and in metals to material ejecta under strong shock loading. To develop accurate, quantitative and predictive models it is imperative to develop a sound physical understanding of the grain-scale material response. Numerical simulations are performed to gain insight into grain-scale material response. The Generalized Interpolation Material Point Method family of numerical algorithms, selected for their robust treatment of large deformation problems and convenient framework for implementing material interface models, are reviewed. A three-dimensional simulation of wave propagation through a granular material indicates the scale and complexity of a representative grain-scale computation. Verification and validation calculations on model bimaterial systems indicate the minimum numerical algorithm complexity required for accurate simulation of wave propagation across material interfaces and demonstrate the importance of interfacial decohesion. Preliminary results are presented which predict energy localization at the grain boundary in a metallic bicrystal.

  5. Violent Mergers

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger

    The progenitor systems and explosion scenarios of Type Ia supernovae (SNe Ia) are still heavily debated. The violent merger scenario is a recent addition to explosion scenarios for SNe Ia. Here, two white dwarfs (WDs) in a binary system approach each other owing to the emission of gravitational waves. The interaction between the two WDs preluding or during the merger creates a hotspot on the surface of the primary, more massive, WD that ignites a detonation. If the detonation is a carbon detonation, it completely burns the primary WD leading to a SN Ia. If instead the detonation is a helium detonation in the helium shell of a carbon-oxygen WD, it burns around the primary WD in its helium shell and sends a shock wave into its core that ignites a carbon detonation. Again the primary WD is fully burned. Synthetic observables for explosion models of SNe Ia in the violent merger scenario show good agreement with normal SNe Ia and the subclass of faint, slowly evolving 02es-like SNe Ia for different masses of the primary WD. The violent merger scenario can also explain the delay time distribution and brightness distribution of normal SNe Ia. This chapter discusses in detail the mechanism that leads to ignition in the violent merger scenario, summarizes the properties of explosions in the violent merger scenario and compares to observations. It ends with a summary of the main properties of the population of normal SNe Ia and discusses to which degree they can be explained in the violent merger scenario.

  6. Properties of Deflagration Fronts and Models for Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Domínguez, I.; Höflich, P.

    2000-01-01

    Detailed models of the explosion of a white dwarf that include self-consistent calculations of the light curve and spectra provide a link between observational quantities and the underlying explosion model. These calculations assume spherical geometry and are based on parameterized descriptions of the burning front. Recently, the first multidimensional calculations for nuclear burning fronts have been performed. Although a fully consistent treatment of the burning fronts is beyond the current state of the art, these calculations provide a new and better understanding of the physics. Several new descriptions for flame propagation have been proposed by Khokhlov et al. and Niemeyer et al. Using various descriptions for the propagation of a nuclear deflagration front, we have studied the influence on the results of previous analyses of Type Ia supernovae, namely, the nucleosynthesis and structure of the expanding envelope. Our calculations are based on a set of delayed detonation models with parameters that give a good account of the optical and infrared light curves and of the spectral evolution. In this scenario, the burning front first propagates in a deflagration mode and subsequently turns into a detonation. The explosions and light curves are calculated using a one-dimensional Lagrangian radiation-hydro code including a detailed nuclear network. We find that the results of the explosion are rather insensitive to details of the description of the deflagration front, even if its speed and the time from the transition to detonation differ almost by a factor of 2. For a given white dwarf (WD) and a fixed transition density, the total production of elements changes by less than 10%, and the distribution in the velocity space changes by less than 7%. Qualitatively, this insensitivity of the final outcome of the explosion to the details of the flame propagation during the (slow) deflagration phase can be understood as follows: for plausible variations in the speed of the turbulent deflagration, the duration of this phase is several times longer than the sound crossing time in the initial WD. Therefore, the energy produced during the early nuclear burning can be redistributed over the entire WD, causing a slow preexpansion. In this intermediate state, the WD is still bound but its binding energy is reduced by the amount of nuclear energy. The expansion ratio depends mainly on the total amount of burning during the deflagration phase. Consequently, the conditions are very similar under which nuclear burning takes place during the subsequent detonation phase. In our example, the density and temperature at the burning front changes by less than 3%, and the expansion velocity changes by less than 10%. The burning conditions are very close to previous calculations which used a constant deflagration velocity. Based on a comparison with observations, those required low deflagration speeds (~2%-3% of the speed of sound). Exceptions to the similarity are the innermost layers of ~0.03-0.05 Msolar. Still, nuclear burning is in nuclear statistical equilibrium, but the rate of electron capture is larger for the new descriptions of the flame propagation. Consequently, the production of very neutron-rich isotopes is increased. In our example, close to the center Ye is about 0.44, compared to 0.46 in the model with constant deflagration speed. This increases the 48Ca production by more than a factor of 100 to 3.E-6 Msolar. Conclusions from previous analyses of light curves and spectra on the properties of the WD and the explosions will not change, and even with the new descriptions, the delayed detonation scenario is consistent with the observations. Namely, the central density results with respect to the chemical structure of the progenitor and the transition density from deflagration to detonation do not change. The reason for this similarity is the fact that the total amount of burning during the long deflagration phase determines the restructuring of the WD prior to the detonation. Therefore, we do not expect that the precise, microphysical prescription for the speed of a subsonic burning front has a significant effect on the outcome. However, at the current level of uncertainties for the burning front, the relation between properties of the burning front and of the initial white dwarf cannot be obtained from a comparison between observation and theoretical predictions by one-dimensional models. Multidimensional calculations are needed (1) to get inside the relations between model parameters such as central density and properties of the deflagration front and its relation to the transition density between deflagration and detonation and (2) to make use of information on asphericity that is provided by polarization measurements. These questions are essential to test, estimate, and predict some of the evolutionary effects of SNe Ia and their use as cosmological yardsticks.

  7. Analysis report for 241-BY-104 Auger samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1994-11-10

    This report describes the analysis of the surface crust samples taken from single-shell tank (SST) BY-104, suspected of containing ferrocyanide wastes. This sampling and analysis will assist in ascertaining whether there is any hazard due to combustion (burning) or explosion of these solid wastes. These characteristics are important to future efforts to characterize the salt and sludge in this type of waste tank. This report will outline the methodology and detail the results of analyses performed during the characterization of this material. All analyses were performed by Westinghouse Hanford Company at the 222-S laboratory unless stated otherwise.

  8. Benefit of extracorporeal membrane oxygenation in major burns after stun grenade explosion: Experience from a single military medical center.

    PubMed

    Hsu, Po-Shun; Tsai, Yi-Ting; Lin, Chih-Yuan; Chen, Shyi-Gen; Dai, Niann-Tzyy; Chen, Cheng-Jung; Chen, Jia-Lin; Tsai, Chien-Sung

    2017-05-01

    Explosion injury is very common on the battlefield and is associated with major burn and inhalation injuries and subsequent high mortality and morbidity rates. Here we report six victims who suffered from explosion injuries caused by stun grenade; all were treated with extracorporeal membrane oxygenation (ECMO) as salvage therapy. This study was aimed to evaluate the indications and efficacy of ECMO in acute and critically ill major burn patients. This was a retrospective analysis of six patients from Tri-Service General Hospital, National Defense Medical Center in Taiwan. All suffered from major burns with 89.0±19.1% average of total body surface area over second degree (TBSA; range, 50-99%). ECMO was used due to inhalation injury in five patients and cardiogenic shock in one patient. The average interval to start ECMO was 26.5±19.0h (range, 14-63h). Venoarterial ECMO was used on in four patients due to unstable hemodynamic status, whereas venovenous ECMO was used in two patients for sustained hypoxemia. All patients had rhabdomyolysis with acute renal failure. The average duration of ECMO was 169.6±180.9h (range, 27-401h). All patients developed coagulopathy and needed debridement surgery during ECMO support, and five underwent torso escharotomy due to inspiratory compromise. Only one patient whose second and third degree burns covered 50% TBSA was successfully weaned from ECMO and survived; he was discharged after 221 hospital days. All patients who died had second and third degree burns covering over 90% of their TBSA. Three patients died of multiple organ failure, one died of septic shock, and the other died of cardiogenic shock. Overall survival rate was 16.7%. In acute and critically ill major burn patients, ECMO could be considered as a salvage therapy, particularly in those with inhalation injury and burn-related acute respiratory distress syndrome. However, ECMO does not seem to provide benefits for circulatory support in those with hemodynamic compromise. The use of ECMO in these patients is still investigational, as our data provided no benefit in terms of the outcomes or survival, particularly in those with more than 90% TBSA burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. The Status of Multi-Dimensional Core-Collapse Supernova Models

    NASA Astrophysics Data System (ADS)

    Müller, B.

    2016-09-01

    Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.

  10. Burns from illegal drug manufacture: case series and management.

    PubMed

    Porter, C J W; Armstrong, J R

    2004-01-01

    This case series presents our experience with burns sustained while manufacturing illegal drugs. All adult burn admissions in an 18-month period were retrospectively reviewed. All patients suspected of sustaining burns from illegal drug manufacture were contacted. Information regarding the burn mechanism was sought. Nine of the 64 adult burn admissions were caused by explosions during the manufacture of cannabis oil. Young males with hand and face burns were heavily represented. First-aid treatment was often ignored in favor of hiding incriminating evidence. Only two patients gave honest admission histories. Illegal drug manufacture is becoming more common as synthetic drugs become more consumer desirable. Burns sustained may be thermal and/or chemical. Dishonest patient histories negatively influence burn management. A high level of suspicion is required for diagnosing and treating burns from illegal drug manufacture. Public education is unlikely to be effective as the financial rewards outweigh the perceived risks.

  11. β-delayed p-decay of proton-rich nuclei ^23Al and ^31Cl and explosive H-burning in novae

    NASA Astrophysics Data System (ADS)

    Trache, L.; Banu, A.; Hardy, J. C.; McCleskey, M.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Aysto, J.; Jokinen, A.; Saastamoinen, A.; Davinson, T.; Woods, P. J.; Achouri, L.; Roeder, B.

    2008-10-01

    We developed a technique to measure β-delayed proton-decay of proton-rich nuclei produced and separated with MARS at TAMU. In particular, we studied the decay of ^23Al and ^31Cl, both important for understanding explosive H-burning in novae. We have pulsed the beam, implanting the source nuclei moving at about 40 MeV/u in a thin Si strip detector, and then measured β-p and β-γ coincidences simultaneously. The states populated above the proton threshold in ^23Mg and ^31S, respectively, may proton decay. They are resonances in the reaction ^22Na(p,γ)^23Mg (crucial for the depletion of ^22Na in ONe novae) and in ^30P(p,γ)^31S (critical point in explosive H-burning in novae), but the protons emitted have very low energies, starting at about 200 keV, an experimental challenge. The setup and the results are described. The β-decay schemes were established for both nuclei, and IAS identified. The technique has shown a remarkable selectivity to β-delayed charged particle emission and shown to work even at radioactive beam rates of a few pps, for rare isotopes with lifetimes as low as 10s msec.

  12. Systematic approach to verification and validation: High explosive burn models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the samemore » experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code, run a simulation, and generate a comparison plot showing simulated and experimental velocity gauge data. These scripts are then applied to several series of experiments and to several HE burn models. The same systematic approach is applicable to other types of material models; for example, equations of state models and material strength models.« less

  13. METHOD 529, DETERMINATION OF EXPLOSIVES AND RELATED COMPOUNDS IN DRINKING WATER BY SOLID PHASE EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a military explosive which is known to have contaminated groundwater on and near military installations where it has been used and stored. Historical disposal practices such as open burning and detonation have contributed to envir...

  14. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  15. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.

    2007-12-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.

  16. Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications

    NASA Astrophysics Data System (ADS)

    Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2017-06-01

    We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.

  17. Development of a reactive burn model based upon an explicit visco-plastic pore collapse model

    NASA Astrophysics Data System (ADS)

    Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert

    2015-06-01

    Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.

  18. [Entering the Dawn of a New Life: A Discussion of Life for Survivors of the Formosa Fun Coast Water Park Explosion].

    PubMed

    Wen, Hui-Min

    2016-02-01

    A dust explosion at the Formosa Fun Coast water park in Taiwan caused nearly 500 burn injury cases. One hundred of these cases involved burns over more than 20% of the total body surface area. This tragedy inundated hospitals across northern Taiwan with an unprecedented number of burn patients. Significant manpower and medical resources were targeted on related resuscitation and treatment efforts, with support and assistance provided by agencies and organizations nationwide. Most of the burn patients were young people in their teens and twenties, whose severe burns posed the greatest threat and challenge to their lives so far. Furthermore, their experience presented major psychosocial and physical health challenges. Patients received an array of clinical treatments such as debridement, skin grafting, dressing, and rehabilitation. Debilitating pain, skin damage, changes to body image, physical disabilities, helplessness, sadness, and anxiety have not only deeply affected the patients physically and psychologically but also created significant life stresses for their family members / companions, which requires counseling in order to facilitate emotional healing. Although burn patients gradually recover as they pass through the acute, recovery, and rehabilitation phases, they will face the challenges of lifelong rehabilitation after discharge. I hope that these young victims will take courage and be brave and strong in dealing with the difficulties and challenges of daily life and will embrace the future with hope as they enter the dawn of their new life.

  19. The ins and outs of terrorist bus explosions: injury profiles of on-board explosions versus explosions occurring adjacent to a bus.

    PubMed

    Golan, Ron; Soffer, Dror; Givon, Adi; Peleg, Kobi

    2014-01-01

    Terrorist explosions occurring in varying settings have been shown to lead to significantly different injury patterns among the victims, with more severe injuries generally arising in confined space attacks. Increasing numbers of terrorist attacks have been targeted at civilian buses, yet most studies focus on events in which the bomb was detonated within the bus. This study focuses on the injury patterns and hospital utilisation among casualties from explosive terrorist bus attacks with the bomb detonated either within a bus or adjacent to a bus. All patients hospitalised at six level I trauma centres and four large regional trauma centres following terrorist explosions that occurred in and adjacent to buses in Israel between November 2000 and August 2004 were reviewed. Injury severity scores (ISS) were used to assess severity. Hospital utilisation data included length of hospital stay, surgical procedures performed, and intensive care unit (ICU) admission. The study included 262 victims of 22 terrorist attacks targeted at civilian bus passengers and drivers; 171 victims were injured by an explosion within a bus (IB), and 91 were injured by an explosion adjacent to a bus (AB). Significant differences were noted between the groups, with the IB population having higher ISS scores, more primary blast injury, more urgent surgical procedures performed, and greater ICU utilisation. Both groups had percentages of nearly 20% for burn injury, had high percentages of injuries to the head/neck, and high percentages of surgical wound and burn care. Explosive terrorist attacks detonated within a bus generate more severe injuries among the casualties and require more urgent surgical and intensive level care than attacks occurring adjacent to a bus. The comparison and description of the outcomes to these terrorist attacks should aid in the preparation and response to such devastating events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The delayed-detonation model of a type Ia supernovae. 1: The deflagration phase

    NASA Technical Reports Server (NTRS)

    Arnett, David; Livne, Eli

    1994-01-01

    The nature of the 'delayed detonation' mechanism of Khokhlov for the explosion of Type Ia supernovae is investigated by using two-dimensional numerical hydrodynamics simulations. A new algorithm is used to treat the deflagration front. Assuming that it propagates locally at the laminar flame speed, the deflagration is insufficient to unbind the star. Expansion shuts of the flame; much of this small production of iron group nuclei occurs at lower densities, which reduces the electron-capture problem. The burning front does become wrinkled, but the wavelength of the instability is much larger than the computational grid size and is resolved; this is consistent with previous analysis. Because the degenerate star has an adiabatic exponent only slightly above 4/3, the energy released by deflagration drives a pulsation of large amplitude. During the first expansion phase, adiabatic cooling shuts off the burning, and a Rayleigh-Taylor instability then gives mixing of high-entropy ashes with low-entropy fuel. During the first contraction phase, compressional heating reignites the material. This paper deals with the deflagration phase, from the onset of burning, through expansion and quenching of the flame, to the first contraction.

  1. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  2. Shear Wave Generation by Explosions in Anisotropic Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Rogers-Martinez, M. A.; Sammis, C. G.; Stroujkova, A. F.

    2015-12-01

    The use of seismic waves to discriminate between earthquakes and underground explosions is complicated by the observation that explosions routinely radiate strong S waves. Whether these S waves are primarily generated by non-linear processes at the source, or by mode conversions and scattering along the path remains an open question. It has been demonstrated that S waves are generated at the source by any mechanism that breaks the spherical symmetry of the explosion. Examples of such mechanisms include tectonic shear stress, spall, and anisotropy in the emplacement medium. Many crystalline rock massifs are transversely isotropic because they contain aligned fractures over a range of scales from microfractures at the grain scale (called the rift) to regional sets of joints. In this study we use a micromechanical damage mechanics to model the fracture damage patterns and seismic radiation generated by explosions in a material in which the initial distribution of fractures has a preferred direction. Our simulations are compared with a set of field experiments in a granite quarry in Barre, VT conducted by New England Research and Weston Geophysical. Barre granite has a strong rift plane of aligned microfractures. Our model captures two important results of these field studies: 1) the spatial extent of rock fracture and generation of S waves depends on the burn-rate of the explosion and 2) the resultant damage is anisotropic with most damage occurring in the preferred direction of the microfractures (the rift plane in the granite). The physical reason damage is enhanced in the rift direction is that the mode I stress intensity factor is large for each fracture in the array of parallel fractures in the rift plane. Tensile opening on the rift plane plus sliding on the preexisting fractures make strong non-spherical contributions to the moment tensor in the far-field.

  3. Ignition Behavior of alpha-AlH3

    DTIC Science & Technology

    2010-01-01

    nitromethane (Weiser et al., 2007) and Ammonium Perchlorate= HTPB propellants (Deluca et al., 2007) compared to similarly aluminized versions may...aluminum burning times. Combustion, Explosives , and Shockwaves, 41, 533–546. Benson, S.W. 1976. Thermochemical Kinetics, 2nd ed., Wiley Interscience, New...flat-flame burner. 16th International Colloquium on the Dynamic Explosions and Reactive Systems, Krakow, Poland. Brzustowski, T.A., and Glassman, I. 1964

  4. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  5. Testing of a work bench for handling of explosives in the laboratory

    NASA Astrophysics Data System (ADS)

    Hank, R.; Johansson, K.; Lagman, L.

    1981-01-01

    A prototype work station was developed at which jobs can be carried out with explosives up to 10 gr and deflagrating products up to 50 gr. Tests were made to investigate the consequences of a spontaneous accident during work. Conclusions are: the workbench offers good protection against splinters provided the inside walls are coated with a shock absorber; the carbonate glass should be a minimum of eight mm thick; the risk of burns, except on arms and hands, is very low; the bench withstands the explosion with the given weight of explosives (10 gr); the risk of lesions on the lung are very low, for the operator as well as for somebody nearby.

  6. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, Bradley

    2007-06-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.

  7. Explosive Venting Technology for Cook-Off Response Mitigation

    DTIC Science & Technology

    2010-07-01

    endplate blew off 188.3 PAX-28 Go 6.4 Explode, HE boiled out, body banana peeled 177.8 PAX-28 No go 7.6 Burn, HE boiled out of fixture, smoking, then burn...PAX-28 5.1-mm diameter vent test was to blow off the top fixture and peel off three out of the four heating bands while leaving the fixture in its

  8. Screening Level Assessment of Risks Due to Dioxin Emissions from Burning Oil from the BP Deepwater Horizon Gulf of Mexico Spill

    EPA Science Inventory

    Between April 28 and July 19 of 2010, the U.S. Coast Guard conducted in situ oil burns as one approach used for the management of oil spilled after the explosion and subsequent sinking of the BP Deepwater Horizon platform in the Gulf of Mexico. The purpose of this paper is to des...

  9. California Fires

    Atmospheric Science Data Center

    2014-05-15

    ... title:  Smoke from Station Fire Blankets Southern California     View Larger Image ... that had not burned in decades, and years of extended drought contributed to the explosive growth of wildfires throughout southern ...

  10. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.

    2017-07-01

    While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.

  11. Open Burn/Open Detonation (OBOD) Area Management Using Lime For Explosives Transformation And Metals Immobilization

    DTIC Science & Technology

    2012-01-01

    14 Figure 7. The column study used to test treatment options and longevity by tracking pH in the leachate from the APG OD soil...during baseline characterization of the APG OD site. ............................................................. 39 Table 8. Runoff water and leachate ...et al. 2006). Off-site migration of explosives from OBOD area soils is possible through horizon- tal transport in surface water and vertical leachate

  12. Early Leakage Protection System of LPG (Liquefied Petroleum Gas) Based on ATMega 16 Microcontroller

    NASA Astrophysics Data System (ADS)

    Sriwati; Ikhsan Ilahi, Nur; Musrawati; Baco, Syarifuddin; Suyuti'Andani Achmad, Ansar; Umrianah, Ejah

    2018-04-01

    LPG (Liquefied Petroleum Gas). LPG is a hydrocarbon gas production from refineries and gas refinery with the major components of propane gas (C3H8) and butane (C4H10). Limit flame (Flammable Range) or also called gas with air. Value Lower Explosive Limit (LEL) is the minimum limit of the concentration of fuel vapor in the air which if there is no source of fire, the gas will be burned. While the value of the Upper Explosive Limit (UEL), which limits the maximum concentration of fuel vapor in the air, which if no source of fire, the gas will be burned. Protection system is a defend mechanism of human, equipment, and buildings around the protected area. Goals to be achieved in this research are to design a protection system against the consequences caused by the leakage of LPG gas based on ATmega16 microcontroller. The method used in this research is to reduce the levels of leaked LPG and turned off the power source when the leakage of LPG is on the verge of explosive limit. The design of this protection system works accurately between 200 ppm up to 10000 ppm, which is still below the threshold of explosive. Thus protecting the early result of that will result in the leakage of LPG gas.

  13. Wavelet feature extraction for reliable discrimination between high explosive and chemical/biological artillery

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi V.; Bass, Henry E.; Chambers, Jim

    2005-03-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition.

  14. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The clinical and microbiological characteristics of infections in burn patients from the Formosa Fun Coast Dust Explosion.

    PubMed

    Lin, Tzu-Chao; Wu, Rui-Xin; Chiu, Chih-Chien; Yang, Ya-Sung; Lee, Yi; Lin, Jung-Chung; Chang, Feng-Yee

    2018-04-01

    Bloodstream infection is a leading cause of mortality among burn patients. This study aimed to evaluate the risk factors, causative pathogens, and the relationship between bloodstream infections and other infections among burn patients from the Formosa Fun Coast Dust Explosion. This retrospective study evaluated the demographic and clinical characteristics, infection types, causative pathogen(s), and isolates' antibiotic susceptibilities from patients who were hospitalized between June 27 and September 31, 2015. Fifty-eight patients were admitted during the study period (36 males, mean age: 22.6 years). The mean burned total body surface area (TBSA) was 40% for all patients. Eighteen (31%) patients with mean TBSA of 80% had 66 episodes of bloodstream infections caused by 92 isolates. Twelve (18.2%) episodes of bloodstream infections were polymicrobial. Acinetobacter baumannii (19, 20.7%), Ralstonia pickettii (17, 18.5%), and Chryseobacterium meningosepticum (13, 14.1%) were the most common pathogens causing bloodstream infections. A high concordance rate of wound cultures with blood cultures was seen in Staphylococcus aureus (3, 75%) and C. meningosepticum (8, 61.5%) infections. However, no Ralstonia isolate was found in burn wounds of patients with Ralstonia bacteremia. A high concordance rate of central venous catheter cultures with blood cultures was noted in Ralstonia mannitolilytica (5, 62.5%) and Chryseobacterium indologenes (3, 60%) infections. Approximately 21.1% of A. baumannii strains were resistant to carbapenem. All S. aureus isolates were susceptible to methicillin. Waterborne bacteria should be considered in patients of burns with possible water contact. Empirical broad-spectrum antibiotics should be considered for patients who were hospitalized for severe sepsis, or septic shock with a large burn. Antibiotic treatment should be administered based on the specific pathogens and their detection points. Copyright © 2017. Published by Elsevier B.V.

  16. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials on....166 Transport of Class 1 (explosive) materials on passenger vessels. (a) Only the following Class 1 (explosive) materials may be transported as cargo on passenger vessels: (1) Division 1.4 (explosive...

  17. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials on....166 Transport of Class 1 (explosive) materials on passenger vessels. (a) Only the following Class 1 (explosive) materials may be transported as cargo on passenger vessels: (1) Division 1.4 (explosive...

  18. Baseline geochemistry of soil and bedrock Tshirege Member of the Bandelier Tuff at MDA-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, R.G.; McDonald, E.V.; Ryti, R.T.

    1997-08-01

    This report provides baseline geochemistry for soils (including fill), and for bedrock within three specific areas that are planned for use in the remediation of Material Disposal Area P (MDA-P) at Technical Area 16 (TA-16). The baseline chemistry includes leachable element concentrations for both soils and bedrock and total element concentrations for all soil samples and for two selected bedrock samples. MDA-P operated from the early 1950s to 1984 as a landfill for rubble and debris generated by the burning of high explosives (HE) at the TA-16 Burning Ground, HE-contaminated equipment and material, barium nitrate sand, building materials, and trash.more » The aim of this report is to establish causes for recognizable chemical differences between the background and baseline data sets. In many cases, the authors conclude that recognizable differences represent natural enrichments. In other cases, differences are best attributed to analytical problems. But most importantly, the comparison of background and baseline geochemistry demonstrates significant contamination for several elements not only at the two remedial sites near the TA-16 Burning Ground, but also within the entire region of the background study. This contamination is highly localized very near to the surface in soil and fill, and probably also in bedrock; consequently, upper tolerance limits (UTLs) calculated as upper 95% confidence limits of the 95th percentile are of little value and thus are not provided. This report instead provides basic statistical summaries and graphical comparisons for background and baseline samples to guide strategies for remediation of the three sites to be used in the restoration of MDA-P.« less

  19. 49 CFR 176.100 - Permit for Divisions 1.1 and 1.2 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Permit for Divisions 1.1 and 1.2 (explosive... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials § 176.100 Permit for Divisions 1.1 and 1.2 (explosive) materials. Before Divisions 1.1 and 1.2 (explosive) materials may be...

  20. 49 CFR 176.100 - Permit for Divisions 1.1 and 1.2 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Permit for Divisions 1.1 and 1.2 (explosive... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials § 176.100 Permit for Divisions 1.1 and 1.2 (explosive) materials. Before Divisions 1.1 and 1.2 (explosive) materials may be...

  1. A novel method for the measurement of the von Neumann spike in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  2. 46 CFR 197.420 - Operations manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dive team. (b) The operations manual must be modified in writing when adaptation is required because of...) Hand-held power tools; (ii) Welding and burning equipment; and (iii) Explosives. specific diving mode...

  3. Camp Minden Fact Sheet July 2015

    EPA Pesticide Factsheets

    The Louisiana Military Department (LMD) led a Community Meeting on June 30, 2015. The LMD contractor, Explosive Service Intl., and its subcontractor El Dorado Engineering, presented details of Contained Burn System (CBS).

  4. Thermonuclear runaways in nova outbursts

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David; Fryxell, Bruce A.

    1992-01-01

    Results of exploratory, two-dimensional numerical calculations of a local thermonuclear runaway on the surface of a white dwarf are reported. It is found that the energy released by the runaway can induce a significant amount of vorticity near the burning region. Such mass motions account naturally for mixing of core matter into the envelope during the explosion. A new mechanism for the lateral spread of nuclear burning is also discussed.

  5. Trace impurities analysis of aluminum nanopowder and its air combustion product

    NASA Astrophysics Data System (ADS)

    Kabanov, Denis V.; Merkulov, Viktor G.; Mostovshchikov, Andrey V.; Ilyin, Alexander P.

    2018-03-01

    Neutron activation analysis (NAA) allows estimating micro-concentrations of chemicals and analyzes tens of elements at one measurement. In this paper we have used NAA to examine metal impurities in the electroexplosive aluminum nanopowder (ANP) and its air-combustion products produced by burning in crucibles in an electric and magnetic field and without application of fields. It has been revealed that in the air-combustion products impurities content is reduced. The presence of impurities in the ANP is associated with electric explosion technology (erosion of electrode and chamber materials) and with the previous development of various nanopowders in the composition of this electric explosive device. NAA is characterized by a high sensitivity and reproducibility to elements content and low metering error. According to the obtained results it has been concluded that NAA metering error does not exceed 10% in the wide concentration range, from 0.01 to 2100 ppm, particularly. Besides, there is high reproducibility of the method that has been proved on macro-elements of Ca (>1000 ppm), Fe (>2000 ppm), and micro-elements as Sm, U, Ce, Sb, Th, etc. (<0.9 ppm). It is recommended to use an individual unit for the production of pure metal powders for electric explosion and production of nanopowders, which is possible with mass production of nanopowders.

  6. Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives.

    PubMed

    Yang, Kun; Wu, Yanqing; Huang, Fenglei

    2018-08-15

    A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 30 CFR 57.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Separation of transported explosive material... MINES Explosives Transportation-Surface and Underground § 57.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives...

  8. 30 CFR 57.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of transported explosive material... MINES Explosives Transportation-Surface and Underground § 57.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives...

  9. 30 CFR 56.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Separation of transported explosive material... Explosives Transportation § 56.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives except as follows: (a) Detonators in...

  10. 30 CFR 56.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of transported explosive material... Explosives Transportation § 56.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives except as follows: (a) Detonators in...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, B.E.; Kanna, R.L.; Chambers, R.D.

    There is a great need for alternatives to open burn/open detonation of explosives and propellants from dismantled munitions. LANL has investigated the use of base hydrolysis for the demilitarization of explosives. Hydrolysates of Comp B, Octol, Tritonal, and PBXN-109 were processed in the pilot molten salt unit (in building 191). NOx and CO emissions were found to be low, except for CO from PBXN-109 processing. This report describes experimental results of the destruction of the base hydrolysates.

  12. 27 CFR 555.205 - Movement of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Movement of explosive materials. 555.205 Section 555.205 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... Movement of explosive materials. All explosive materials must be kept in locked magazines meeting the...

  13. 30 CFR 57.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage practices. 57.6102... Storage-Surface and Underground § 57.6102 Explosive material storage practices. (a) Explosive material... instructions and the date-plant-shift code are maintained with the product. Storage—Surface Only ...

  14. 30 CFR 57.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage practices. 57.6102... Storage-Surface and Underground § 57.6102 Explosive material storage practices. (a) Explosive material... instructions and the date-plant-shift code are maintained with the product. Storage—Surface Only ...

  15. Population Explosion in Africa: Further Implications.

    ERIC Educational Resources Information Center

    Hidore, John J.

    1978-01-01

    Explains that population growth in Africa has caused a deterioration of vegetation and soil resources. This deterioration has resulted from overgrazing, too frequent and too extensive burning of the vegetation, and overcultivation. (Author/AV)

  16. Augmented shock wave fracture/severance of materials

    NASA Technical Reports Server (NTRS)

    Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor)

    1995-01-01

    The present invention related generally to severing materials, and more particularly to severing or weakening materials through explosively induced, augmented shock waves. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.

  17. 30 CFR 57.6960 - Mixing of explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...

  18. 30 CFR 57.6960 - Mixing of explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...

  19. 30 CFR 57.6960 - Mixing of explosive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...

  20. 30 CFR 57.6960 - Mixing of explosive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...

  1. 30 CFR 57.6960 - Mixing of explosive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...

  2. 30 CFR 56.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...

  3. 30 CFR 56.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...

  4. The delayed-detonation model of Type Ia supernovae. 2: The detonation phase

    NASA Technical Reports Server (NTRS)

    Arnett, David; Livne, Eli

    1994-01-01

    The investigation, by use of two-dimensional numerical hydrodynamics simulations, of the 'delayed detonation' mechanism of Khokhlov for the explosion of Type Ia supernovae is continued. Previously we found that the deflagration is insufficient to unbind the star. Expansion shuts off the flame; much of this small production of iron group nuclei occurs at lower densities, which reduces the electron-capture problem. Because the degenerate star has an adiabatic exponent only slightly above 4/3, the energy released by deflagration drives a pulsation of large amplitude. During the first expansion phase, adiabatic cooling shuts off the burning, and a Rayleigh-Taylor instability then gives mixing of high-entropy ashes with low-entropy fuel. During the first contraction phase, compressional heating reignites the material. The burning was allowed to develop into a detonation in these nonspherical models. The detonation grows toward spherical symmetry at late times. At these densities (rho approx. 10(exp 7) to 10(exp 8) g cm(exp -3)), either Ni-56 or nuclei of the Si-Ca group are the dominant products of the burning. The bulk yields are sensitive to the density of the star when the transition to detonation occurs. The relevance of the abundances, velocities, mixing, and total energy release to the theory and interpretation of Type Ia supernovae is discussed.

  5. Hydrodynamic Simulations of the Consequences of Accretion onto ONe White Dwarfs

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William Raphael; Woodward, Charles E.; Wagner, Robert M.; José, Jordi; Hernanz, Margarita; Feng, Wanda

    2018-06-01

    Mass and luminosity variations of the white dwarf, combined with changes in the mass accretion rate and composition of the accreted material affect the evolution of the thermonuclear runaway (TNR) in classical and recurrent novae. Here we highlight continued investigations of these effects on accreting Oxygen-Neon (ONe) white dwarfs. We now use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only solar matter, which show that sufficient core material is dredged-up during the TNR to agree with the measurements of ejecta abundances in classical nova explosions. Therefore, we first accrete solar material and follow the evolution until a TNR is ongoing. We then switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR through peak nuclear burning and decline. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We will report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. We will also compare these results to our companion studies, done in a similar fashion, where we have followed the consequences of accretion onto Carbon-Oxygen white dwarfs. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics.

  6. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...

  7. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  8. 49 CFR 176.174 - Transport of Class 1 (explosive) materials in shipborne barges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.174 Transport of Class 1 (explosive) materials in shipborne barges. (a...

  9. 49 CFR 176.174 - Transport of Class 1 (explosive) materials in shipborne barges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.174 Transport of Class 1 (explosive) materials in shipborne barges. (a...

  10. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  11. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...

  12. Liquefied Natural Gas (LNG) Import Terminals: Siting, Safety and Regulation

    DTIC Science & Technology

    2004-05-27

    LNG Natural gas is combustible , so an uncontrolled release of LNG poses a hazard of fire or, in confined spaces, explosion. LNG also poses hazards...ignition source, the evaporating gas in a combustible gas-air concentration will burn above the LNG pool.8 The resulting “pool fire” would spread as the...serious LNG hazard.10 Other Safety Hazards. LNG spilled on water could (theoretically) regasify almost instantly in a “ flameless explosion,” but an Idaho

  13. ESTCP Cost and Performance Report (ER-200742) Open Burn/Open Detonation (OBOD) Area Management Using Lime for Explosives Transformation and Metals Immobilization

    DTIC Science & Technology

    2011-10-01

    vertical transport of water on the APG OD area. ............................................................... 33  Table 5. Runoff water and leachate ...untreated control soil (study average). There was an insignificant change in leachate pH from Day 1 to Day 9 showing that, while the increase was...explosives from OB/OD area soils have occurred through horizontal transport in surface water and vertical leachate water transport. These pathways

  14. Electronic cigarette explosions involving the oral cavity.

    PubMed

    Harrison, Rebecca; Hicklin, David

    2016-11-01

    The use of electronic cigarettes (e-cigarettes) is a rapidly growing trend throughout the United States. E-cigarettes have been linked to the risk of causing explosion and fire. Data are limited on the associated health hazards of e-cigarette use, particularly long-term effects, and available information often presents conflicting conclusions. In addition, an e-cigarette explosion and fire can pose a unique treatment challenge to the dental care provider because the oral cavity may be affected heavily. In this particular case, the patient's injuries included intraoral burns, luxation injuries, and alveolar fractures. This case report aims to help clinicians gain an increased knowledge about e-cigarette design, use, and risks; discuss the risk of spontaneous failure and explosion of e-cigarettes with patients; and understand the treatment challenges posed by an e-cigarette explosion. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  15. Procalcitonin as a diagnostic biomarker for septic shock and bloodstream infection in burn patients from the Formosa Fun Coast dust explosion.

    PubMed

    Wu, Rui-Xin; Chiu, Chih-Chien; Lin, Tzu-Chao; Yang, Ya-Sung; Lee, Yi; Lin, Jung-Chung; Chang, Feng-Yee

    2017-12-01

    Infection is the most common cause of death following burn injury. The study was conducted to compare the diagnostic value of serum procalcitonin (PCT) with the other current benchmarks as early predictors of septic shock and bloodstream infection in burn patients. We included 24 patients admitted to the Burn Unit of a medical center from June 2015 to December 2015 from the Formosa Fun Coast dust explosion. We categorized all patients at initial admission into either sepsis or septic shock groups. Laboratory tests including the worst PCT and C-reactive protein (CRP) levels, platelet (PLT), and white blood cell (WBC) count were performed at <48 h after admission. Patients were also classified in two groups with subsequent bacteremia and non-bacteremia groups during hospitalization. Significantly higher PCT levels were observed among participants with septic shock compared to those with sepsis (47.19 vs. 1.18 ng/mL, respectively; p < 0.001). Patients with bacteremia had significantly elevated PCT levels compared to patients without bacteremia (29.54 versus 1.81 ng/mL, respectively, p < 0.05). No significant differences were found in CRP levels, PLT, and WBC count between the two groups. PCT levels showed reasonable discriminative power (cut-off: 5.12 ng/mL; p = 0.01) in predicting of bloodstream infection in burn patients and the area under receiver operating curves was 0.92. PCT levels can be helpful in determining the septic shock and bloodstream infection in burn patients but CRP levels, PLT, and WBC count were of little diagnostic value. Copyright © 2017. Published by Elsevier B.V.

  16. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    NASA Astrophysics Data System (ADS)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollier, A., E-mail: arnaud.sollier@cea.fr; Bouyer, V.; Hébert, P.

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressuremore » lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.« less

  18. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off-center ignition of the underlying WD in the double detonation scenario for Type Ia supernovae.

  19. The ODTX System for the Study of Thermal Sensitivity and Thermal Explosion Violence of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Hsu, Peter; Hust, Gary; Reynolds, John; Springer, Keo; Fried, Larry; Maienschein, Jon

    2013-06-01

    Incidents caused by fire and combat operations in battlefields can expose energetic materials to unexpected heat that may cause thermal explosion, structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. In this paper, we will present some recent ODTX experimental data and compare thermal explosion violence of different energetic materials. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Recent Advances in the Synthesis of High Explosive Materials

    DTIC Science & Technology

    2015-12-29

    explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials...This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary

  1. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    NASA Astrophysics Data System (ADS)

    Hsu, P. C.; Hust, G.; Zhang, M. X.; Lorenz, T. K.; Reynolds, J. G.; Fried, L.; Springer, H. K.; Maienschein, J. L.

    2014-05-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  2. Source spectral variation and yield estimation for small, near-source explosions

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Mayeda, K. M.

    2012-12-01

    Significant S-wave generation is always observed from explosion sources which can lead to difficulty in discriminating explosions from natural earthquakes. While there are numerous S-wave generation mechanisms that are currently the topic of significant research, the mechanisms all remain controversial and appear to be dependent upon the near-source emplacement conditions of that particular explosion. To better understand the generation and partitioning of the P and S waves from explosion sources and to enhance the identification and discrimination capability of explosions, we investigate near-source explosion data sets from the 2008 New England Damage Experiment (NEDE), the Humble-Redwood (HR) series of explosions, and a Massachusetts quarry explosion experiment. We estimate source spectra and characteristic source parameters using moment tensor inversions, direct P and S waves multi-taper analysis, and improved coda spectral analysis using high quality waveform records from explosions from a variety of emplacement conditions (e.g., slow/fast burning explosive, fully tamped, partially tamped, single/ripple-fired, and below/above ground explosions). The results from direct and coda waves are compared to theoretical explosion source model predictions. These well-instrumented experiments provide us with excellent data from which to document the characteristic spectral shape, relative partitioning between P and S-waves, and amplitude/yield dependence as a function of HOB/DOB. The final goal of this study is to populate a comprehensive seismic source reference database for small yield explosions based on the results and to improve nuclear explosion monitoring capability.

  3. Burning Phosphorus under Water Safely

    NASA Astrophysics Data System (ADS)

    Taylor, Larry C.

    1997-09-01

    A safer method for demonstrating the burning of white phosphorous under water is described. This demonstration uses 3% hydrogen peroxide solution and manganese dioxide as the oxygen source, eliminating the use of potentially explosive potassium chlorate. The oxygen generation is manually controlled by means of a stopcock on the dropping funnel. The apparatus has been designed to provide a most spectacular display, especially in the dark, lasting an hour or longer if desired, and eliminates the noxious phosphorous odor.

  4. Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hristov, Boyan; Collins, David C.; Hoeflich, Peter; Weatherford, Charles A.; Diamond, Tiara R.

    2018-05-01

    This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ({M}Ch}) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh–Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to {10}12 {{G}} of various orientations. We find an increasing suppression of RT instabilities starting at about {10}9 {{G}}. The front speed tends to decrease with increasing magnitude up to about {10}11 {{G}}. For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman–Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.

  5. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2012-05-01

    We report proton transmission images obtained subsequent to the laser assisted thermal ignition of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)). We describe the laser assisted thermal ignition technique as a means to synchronize a non-linear thermal ignition event while preserving the subsequent post-ignition behavior. We have obtained dynamic proton transmission images at two spatial magnifications and viewed both the radial and transverse axis of a solid cylindrical sample encased in aluminum. Images have been obtained with 3 to 15 μs temporal resolution and approximately 100 μm spatial resolution at the higher magnification. We observe case expansion from very early in the experiment, until case fragmentation. We observe spatially anisotropic features in the transmission which we attribute to cracking in the solid explosive, in agreement with previous measurements conducted on two dimensional samples with optical viewing. Digital analysis of the images also reveals spatially isotropic features which we attribute to the evolution of the loss of density by burning subsequent to thermal ignition.

  6. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  7. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  8. Insensitive detonator apparatus for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  9. A five-year review of burn injuries in Irrua

    PubMed Central

    Dongo, Andrew E; Irekpita, Eshobo E; Oseghale, Lilian O; Ogbebor, Charles E; Iyamu, Christopher E; Onuminya, John E

    2007-01-01

    Background The management of burns remains a challenge in developing countries. Few data exist to document the extent of the problem. This study provides data from a suburban setting by documenting the epidemiology of burn injury and ascertaining outcome of management. This will help in planning strategies for prevention of burns and reducing severity of complications. Methods A total of 72 patients admitted for burns between January 1st, 2002 and December 31st, 2006 at the Irrua specialist teaching hospital were studied retrospectively. Sources of information were the case notes and operation registers. Data extracted included demographics as well as treatment methods and outcome Results The results revealed male to female ratio of 2.1:1. Over 50% of the injuries occurred at home. There was a seasonal variation with over 40% of injuries occurring between November and January. The commonest etiologic agent was flame burn from kerosene explosion. There were 7 deaths in the series. Conclusion Burns are preventable. We recommend adequate supply of unadulterated petroleum products and establishment of burn centers. PMID:17956614

  10. Fracture/Severance of Materials

    NASA Technical Reports Server (NTRS)

    Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor); DuBrucq, Glenn F., Jr. (Inventor); Klein, Edward A. (Inventor)

    1998-01-01

    A method for severing or weakening materials is discussed. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.

  11. Turbulence in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Radice, David; Abdikamalov, Ernazar; Ott, Christian D.; Mösta, Philipp; Couch, Sean M.; Roberts, Luke F.

    2018-05-01

    Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relic-perturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.

  12. Installation Restoration General Environmental Technology Development. Task 2. Incineration Test of Explosives Contaminated Soils at Savanna Army Depot Activity, Savanna, Illinois.

    DTIC Science & Technology

    1984-04-01

    800OF and afterburner temperatures below 112000F. Explosives were detected in the combustion gases leaving the primary chamber for one test burn (i.e... combustion chamber. (c) Temperature in the secondary combustion chamber. l These key parameters were selected since they directly re- late to the...4523A 5.4 Heat exchanger (waste heat boiler) . The f lue gases discharged from the secondary combustion chamber were directed, via refractory-lined duct

  13. Gulf War Illnesses: DOD’s Conclusions about U.S. Troops’ Exposure Cannot be Adequately Supported

    DTIC Science & Technology

    2004-06-01

    well fires, fumes from jet fuel , fumes from burning jet fuel in tents, petroleum in drinking water, depleted uranium munitions, smoking, alcohol use...Explosive 31 Figure 6: Boundary Layer Characteristics 32 Figure 7: Three Types of Plume Geometry 33 Figure 8: The Impact of Nocturnal Jets on a...ignited by thermite grenades—alone and with the addition of diesel fuel —as well as by fused initiation of the burster explosive charge. According to

  14. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  15. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  16. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  17. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  18. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  19. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  20. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  1. 49 CFR 173.59 - Description of terms for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... other material containing only propellant explosive. The term excludes charges, shaped, commercial...-flammable materials, in which only the explosive component is the primer. Cases, combustible, empty, without...

  2. 49 CFR 173.59 - Description of terms for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... other material containing only propellant explosive. The term excludes charges, shaped, commercial...-flammable materials, in which only the explosive component is the primer. Cases, combustible, empty, without...

  3. NASA Lewis Research Center lean-, rich-burn materials test burner rig

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Robinson, R. C.

    1994-01-01

    The lean-, rich-burn materials test burner rig at NASA LeRC is used to evaluate the high temperature environmental durability of aerospace materials. The rig burns jet fuel and pressurized air, and sample materials can be subjected to both lean-burn and rich-burn environments. As part of NASA's Enabling Propulsion Materials (EPM) program, an existing rig was adapted to simulate the rich-burn quick-quench lean-burn (RQL) combustor concept which is being considered for the HSCT (high speed civil transport) aircraft. RQL materials requirements exceed that of current superalloys, thus ceramic matrix composites (CMC's) emerged as the leading candidate materials. The performance of these materials in the quasi reducing environment of the rich-burn section of the RQL is of fundamental importance to materials development. This rig was developed to conduct such studies, and its operation and capabilities are described.

  4. Analysis of different materials subjected to open-air explosions in search of explosive traces by Raman microscopy.

    PubMed

    Zapata, Félix; García-Ruiz, Carmen

    2017-06-01

    Post-explosion scenes offer such chaos and destruction that evidence recovery and detection of post-blast residues from the explosive in the surrounding materials is highly challenging and difficult. The suitability of materials to retain explosives residues and their subsequent analysis has been scarcely investigated. Particularly, the use of explosive mixtures containing inorganic oxidizing salts to make improvised explosive devices (IEDs) is a current security concern due to their wide availability and lax control. In this work, a wide variety of materials such as glass, steel, plywood, plastic bag, brick, cardboard or cotton subjected to open-air explosions were examined using confocal Raman microscopy, aiming to detect the inorganic oxidizing salts contained in explosives as black powder, chloratite, dynamite, ammonium nitrate fuel oil and ammonal. Post-blast residues were detected through microscopic examination of materials surfaces. In general, the more homogeneous and smoother the surface was, the less difficulties and better results in terms of identification were obtained. However, those highly irregular surfaces were the most unsuitable collectors for the posterior identification of explosive traces by Raman microscopy. The findings, difficulties and some recommendations related to the identification of post-blast particles in the different materials studied are thoroughly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  6. On silicon group elements ejected by supernovae type IA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Soma; Timmes, F. X.; Brown, Edward F.

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejectamore » in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.« less

  7. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  8. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  9. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  10. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  11. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  12. 14 CFR § 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... weapons, explosives, or other dangerous materials. § 1204.1005 Section § 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... description of the consequences for unauthorized introduction of firearms or weapons, explosives, or other...

  13. 30 CFR 56.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...

  14. 30 CFR 56.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...

  15. 30 CFR 56.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...

  16. Modeling of the jack rabbit series of experiments with a temperature based reactive burn model

    NASA Astrophysics Data System (ADS)

    Desbiens, Nicolas

    2017-01-01

    The Jack Rabbit experiments, performed by Lawrence Livermore National Laboratory, focus on detonation wave corner turning and shock desensitization. Indeed, while important for safety or charge design, the behaviour of explosives in these regimes is poorly understood. In this paper, our temperature based reactive burn model is calibrated for LX-17 and compared to the Jack Rabbit data. It is shown that our model can reproduce the corner turning and shock desensitization behaviour of four out of the five experiments.

  17. Shock Detector for SURF model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  18. Mutagenicity and oxidative damage induced by an organic extract of the particulate emissions from a simulation of the deepwater horizon surface oil burns.

    PubMed

    DeMarini, David M; Warren, Sarah H; Lavrich, Katelyn; Flen, Alexis; Aurell, Johanna; Mitchell, William; Greenwell, Dale; Preston, William; Schmid, Judith E; Linak, William P; Hays, Michael D; Samet, James M; Gullett, Brian K

    2017-04-01

    Emissions from oil fires associated with the "Deepwater Horizon" explosion and oil discharge that began on April 20, 2010 in the Gulf of Mexico were analyzed chemically to only a limited extent at the time but were shown to induce oxidative damage in vitro and in mice. To extend this work, we burned oil floating on sea water and performed extensive chemical analyses of the emissions (Gullett et al., Marine Pollut Bull, in press, ). Here, we examine the ability of a dichloromethane extract of the particulate material with an aerodynamic size ≤ 2.5 µm (PM 2.5 ) from those emissions to induce oxidative damage in human lung cells in vitro and mutagenicity in 6 strains of Salmonella. The extract had a percentage of extractable organic material (EOM) of 7.0% and increased expression of the heme oxygenase (HMOX1) gene in BEAS-2B cells after exposure for 4 hr at 20 µg of EOM/ml. However, the extract did not alter mitochondrial respiration rate as measured by extracellular flux analysis. The extract was most mutagenic in TA100 +S9, indicative of a role for polycyclic aromatic hydrocarbons (PAHs), reflective of the high concentrations of PAHs in the emissions (1 g/kg of oil consumed). The extract had a mutagenicity emission factor of 1.8 ± 0.1 × 10 5 revertants/megajoule thermal in TA98 +S9, which was greater than that of diesel exhaust and within an order of magnitude of open burning of wood and plastic. Thus, organics from PM 2.5 of burning oil can induce oxidative responses in human airway epithelial cells and are highly mutagenic. Environ. Mol. Mutagen. 58:162-171, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  20. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.; Hust, G.; McClelland, M.

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurationsmore » (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).« less

  1. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HSU, P C; Hust, G; May, C

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performedmore » detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.« less

  2. Reaction of Shocked but Undetonated HMX-Based Explosive

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Salisbury, D. A.; Markland, L. S.; Winter, R. E.; Andrew, M. I.

    2002-07-01

    Cylindrical samples of the pressed plastic bonded HMX based explosive EDC37, backed by metal discs, were shocked through a stainless steel attenuator by an explosive donor. Reaction of the EDC37 sample was diagnosed with embedded PVDF pressure gauges and a distance to detonation for the geometry was determined. Sample length was then reduced to less than the observed detonation distance and laser interferometry was used to record the free surface velocity of the metal backing disc. The results provide data on the metal driving energy liberated by explosive which is shocked and reacting but not detonated. The results are compared with 2-D Eulerian calculations incorporating a 3-term ignition and growth reactive burn model with desensitisation. It is found that a parameter set for the reaction model which replicates the PVDF pressure profiles before reflection also gives good agreement to the metal disc velocity history at early times. The results show that an appreciable fraction of the metal driving potential of an explosive can be released without detonation being established.

  3. Study of the Characteristics of Elementary Processes in a Chain Hydrogen Burning Reaction in Oxygen

    NASA Astrophysics Data System (ADS)

    Bychkov, M. E.; Petrushevich, Yu. V.; Starostin, A. N.

    2017-12-01

    The characteristics of possible chain explosive hydrogen burning reactions in an oxidizing medium are calculated on the potential energy surface. Specifically, reactions H2 + O2 → H2O + O, H2 + O2 → HO2 + H, and H2 + O2 → OH + OH are considered. Special attention is devoted to the production of a pair of fast highly reactive OH radicals. Because of the high activation threshold, this reaction is often excluded from the known kinetic scheme of hydrogen burning. However, a spread in estimates of kinetic characteristics and a disagreement between theoretical predictions with experimental results suggest that the kinetic scheme should be refined.

  4. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    PubMed Central

    Margutti, Raffaella; Kamble, A.; Milisavljevic, D.; Zapartas, E.; de Mink, S. E.; Drout, M.; Chornock, R.; Risaliti, G.; Zauderer, B. A.; Bietenholz, M.; Cantiello, M.; Chakraborti, S.; Chomiuk, L.; Fong, W.; Grefenstette, B.; Guidorzi, C.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M.; Gehrels, N. C.; Harrison, F.

    2017-01-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ~40 keV. SN 2014C shows ordinary explosion parameters (Ek ~ 1.8 × 1051 erg and Mej ~ 1.7 M⊙). However, over an ~1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ~1 M⊙of hydrogen-rich material at ~6 × 1016 cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ~10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 103–104 years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role. PMID:28684881

  5. Thermonuclear Explosions from Hybrid C/O/Ne White Dwarf Progenitors Ignited Centrally After Interior Mixing

    NASA Astrophysics Data System (ADS)

    Augustine, Carlyn

    2018-01-01

    Type Ia Supernovae are thermonuclear explosions of white dwarf (WD) stars. Past studies predict the existence of "hybrid" white dwarfs, made of a C/O/Ne core with a O/Ne shell, and that these are viable progenitors for supernovae. More recent work found that the C/O core is mixed with the surrounding O/Ne while the WD cools. Inspired by this scenario, we performed simulations of thermonuclear supernovae in the single degenerate paradigm from these hybrid progenitors. Our investigation began by constructing a hybrid white dwarf model with the one-dimensional stellar evolution code MESA. The model was allowed to go through unstable interior mixing ignite carbon burning centrally. The MESA model was then mapped to a two-dimensional initial condition and an explosion simulated from that with FLASH. For comparison, a similar simulation of an explosion was performed from a traditional C/O progenitor WD. Comparing the yields produced by explosion simulations allows us to determine which model produces more 56Ni, and therefore brighter events, and how explosions from these models differ from explosions from previous models without the mixing during the WD cooling.

  6. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  7. Fluorescence based explosive detection: from mechanisms to sensory materials.

    PubMed

    Sun, Xiangcheng; Wang, Ying; Lei, Yu

    2015-11-21

    The detection of explosives is one of the current pressing concerns in global security. In the past few decades, a large number of emissive sensing materials have been developed for the detection of explosives in vapor, solution, and solid states through fluorescence methods. In recent years, great efforts have been devoted to develop new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. This review article starts with a brief introduction on various sensing mechanisms for fluorescence based explosive detection, and then summarizes in an exhaustive and systematic way the state-of-the-art of fluorescent materials for explosive detection with a focus on the research in the recent 5 years. A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.

  8. Transfusion medicine in the Formosa Fun Coast water park explosion: The role of combined tissue and blood banking.

    PubMed

    Chang, Chih-Chun; Yeh, Chin-Chuan; Chu, Fang-Yeh

    2016-10-01

    The Formosa Fun Coast explosion, occurring in a recreational water park located in the Northern Taiwan on 27 June 2015, made 499 people burn-injured. For those who had severe burn trauma, surgical intervention and fluid resuscitation were necessary, and potential blood transfusion therapy could be initiated, especially during and after broad escharotomy. Here, we reviewed the literature regarding transfusion medicine and skin grafting as well as described the practicing experience of combined tissue and blood bank in the burn disaster in Taiwan. It was reported that patients who were severely burn-injured could receive multiple blood transfusions during hospitalization. Since the use of skin graft became a mainstay alternative for wound coverage after the early debridement of burn wounds at the beginning of the 20th century, the development of tissue banking program was initiated. In Taiwan, the tissue banking program was started in 2006. And the first combined tissue and blood bank was established in Far Eastern Memorial Hospital in 2010, equipped with the non-sterile, clean and sterile zones distinctly segregated with a unidirectional movement in the sterile area. The sterile zone was a class 10000 clean room equipped with high efficiency particulate air filter (HEPAF) and positive air pressure ventilation. The combined tissue and blood bank has been able to provide the assigned blood products and tissue graft timely and accurately, with the concepts of centralized management. In the future, the training of tissue and blood bank technicians would be continued and fortified, particularly on the regulation and quality control for further bio- and hemovigilance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Full-Scale Incineration System Demonstration Verification Test Burns at the Naval Battalion Construction Center, Gulfport, Mississippi. Volume 3. Treatability Tests. Part 2

    DTIC Science & Technology

    1991-07-01

    1525 C1:y: daho Falls State: r Zip: 83413 Telephoue Hunber: (2 16) 65-1763 4. Facilities Location: Number & Steet: Naval Construction Bat.tallcn...ed into the POTW: (a) Pollutants which create a fire or explosion hazard in the POTW; (b) Pollutants which will cause corrosive structural damage to...Haylon Located in the laboratory (1) 15-1b C02 Located in the trailer 482 / 4.3.8 Maximum Hypothetical Accident ( Explosion ) The maximum hypothetical

  10. Impact waves and detonation. Part I

    NASA Technical Reports Server (NTRS)

    Becker, R

    1929-01-01

    Among the numerous thermodynamic and kinetic problems that have arisen in the application of the gaseous explosive reaction as a source of power in the internal combustion engine, the problem of the mode or way by which the transformation proceeds and the rate at which the heat energy is delivered to the working fluid became very early in the engine's development a problem of prime importance. The work of Becker here given is a notable extension of earlier investigations, because it covers the entire range of the explosive reaction in gases - normal detonation and burning.

  11. A Coordinated Emergency Response: A Color Dust Explosion at a 2015 Concert in Taiwan

    PubMed Central

    Yang, Chih-Ching

    2016-01-01

    In June 2015, nearly 500 concert attendees suffered injuries from smoke inhalation and severe burns following a color-dust explosion at a waterpark in Taiwan. We report on the progressions of the incident and government responses, share cross-departmental mobilization and case management lessons, and reflect on clinical and complex policy issues emerged. The timely and coordinated emergency responses, a high-quality universal health care system, and dedicated clinicians voluntarily working overtime resulted in an unprecedented 2.4% mortality rate (international statistics predicted 26.8%). PMID:27459446

  12. Semiconductor bridge (SCB) igniter

    DOEpatents

    Bickes, Jr., Robert W.; Schwarz, Alfred C.

    1987-01-01

    In an explosive device comprising an explosive material which can be made to explode upon activation by activation means in contact therewith; electrical activation means adaptable for activating said explosive material such that it explodes; and electrical circuitry in operation association with said activation means; there is an improvement wherein said activation means is an electrical material which, at an elevated temperature, has a negative temperature coefficient of electrical resistivity and which has a shape and size and an area of contact with said explosive material sufficient that it has an electrical resistance which will match the resistance requirements of said associated electrical circuitry when said electrical material is operationally associated with said circuitry, and wherein said electrical material is polycrystalline; or said electrical material is crystalline and (a) is mounted on a lattice matched substrate or (b) is partially covered with an intimately contacting metallization area which defines its area of contact with said explosive material.

  13. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    PubMed

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  14. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  15. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  16. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  17. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  18. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  19. Determination of parameters used to prevent ignition of stored materials and to protect against explosions in food industries.

    PubMed

    Ramírez, Alvaro; García-Torrent, Javier; Aguado, Pedro J

    2009-08-30

    There are always risks associated with silos when the stored material has been characterized as prone to self-ignition or explosion. Further research focused on the characterization of agricultural materials stored in silos is needed due to the lack of data found in the literature. The aim of this study was to determine the ignitability and explosive parameters of several agricultural products commonly stored in silos in order to assess the risk of ignition and dust explosion. Minimum Ignition Temperature, with dust forming a cloud and deposited in a layer, Lower Explosive Limit, Minimum Ignition Energy, Maximum Explosion Pressure and Maximum Explosion Pressure Rise were determined for seven agricultural materials: icing sugar, maize, wheat and barley grain dust, alfalfa, bread-making wheat and soybean dust. Following characterization, these were found to be prone to producing self-ignition when stored in silos under certain conditions.

  20. Burning mechanism and regression rate of RX-35-AU and RX-35-AV as a function of HMX particle size measured by the hybrid closed bomb-strand burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, W.C.; Costantino, M.S.; Ornellas, D.L.

    1990-04-01

    In this study, the average surface regression rate of two HMX-based cast explosives, RX-35-AU and RX-35-AV, is measured to pressures above 750 MPa using a hybrid closed bomb-strand burner. The hybrid design allows the simultaneous measurement of pressure and regression rate over a large range of pressures in each experiment. Nitroglycerin/Triacetin (75/25) and polyethylene glycol (PEG) are used as the energetic plasticizer and polymeric binder, respectively, in both formulations. The HMX solids loading in each formulation is 50 wt %, consisting of a narrow particle size distribution of 6--8 {mu}m for RX-35-AU and 150--177 {mu}m for RX-35-AV. Of special interestmore » are the regression rate and burning mechanism as a function of the initial particle size distribution and the mechanical properties fo the cast explosives. In general, the regression rate for the larger particle size formulation, RX-35-AV, is two to three times faster compared to that for RX-35-AU. Up to 750 MPa and independent of the initial confinement pressure, RX-35-AU exhibits a planar burning mechanism with the regression rate obeying the classical aP{sup n} formalism. For RX-35-AV, however, the burning behavior is erratic for samples ignited at 200 MPa confinement pressure. At confinement pressures above 400 MPa, the regression exhibits more of a planar burning mechanism. The unstable combustion behavior for RX-35-AV at lower confinement pressures is related to several mechanisms: (1) an abrupt increase in surface area due to particle fracture and subsequent translation and rotation, resulting in debonding and creating porosity, (2) thixotropic'' separation of the binder and nitramine, causing the significantly greater fracture damage to the nitramine during the loading cycle, (3) microscopic damage to the nitramine crystals that increase its intrinsic burning rate. 12 refs., 8 figs., 2 tabs.« less

  1. [Discussion of the Roles of Medical Social Workers in the Response to the Explosion Incident at Formosa Fun Coast].

    PubMed

    Yueh, Hsin-Tien; Sung, Hsien-Yi; Wu, Chia-Feng

    2016-02-01

    Medical social workers apply the theories of "person in the environment" (PIE) and "ecological perspective" as practical foundations. Furthermore, they emphasize the people, the environment, and the interactions between these two. When burn patients from the explosion at Formosa Fun Coast were sent to hospitals, social workers not only provided care and assessed the impact on burn patients but also assisted in supporting the family members of these patients. This article discusses the various roles of social workers within different systems. In the individual system, we use Eric Erickson's theory of psychosocial development to evaluate the patient's crisis and the tasks of social workers. Secondly, in the systems of family, school, and work, we assess the relationships between a patient, his/her significant others, and caregivers as well as the interactions among sub-systems in the family. In the community and cultural systems, we focus on the social resources that may be utilized by the burn patients after discharge. Moreover, we add a time frame to examine our major tasks, including the initial stage, the middle stage, and the preparation-for-discharge stage. We explore the roles of social workers, the applicable theories, and the goals for each stage.

  2. High spatial resolution spectroscopy of Tycho’s SNR with Chandra

    NASA Astrophysics Data System (ADS)

    Guo, Yun-Dong; Yang, Xue-Juan

    2017-02-01

    We present high spatial resolution X-ray spectroscopy of Tycho’s supernova remnant (SNR) using observational data from Chandra. The whole remnant was divided into 26 × 27 regions, with each of them covering 20\\prime\\prime × 20\\prime\\prime. We selected 536 pixels with enough events to generate spectra and fit them with an absorbed two component non-equilibrium ionization model. We obtained maps of absorbing column density, weight-averaged temperature, ionization age and abundances for O, Ne, Mg, Si, S and Fe, with emission used to determine the weight. The abundance maps and the finding that Fe abundance is not correlated with any other element suggest that Fe is located at a smaller radius than other elements, supporting the onion shell model with emission from more massive elements peaking more toward the center. A tight correlation between Si and S abundances support both Si and S coming from explosive O-burning and/or incomplete Si-burning. O and Ne abundances show no correlation with any other element. Considering that O, Ne and Mg are all synthesized in the same process (C/Ne-burning), we suggest that O/Ne/Mg might mix well with other elements during the explosion of the supernova and the expansion of the SNR.

  3. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  4. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  5. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  6. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  7. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  8. The epidemiology of burns in young children from Mexico treated at a U.S. hospital.

    PubMed

    Patel, Dipen D; Rosenberg, Laura; Rosenberg, Marta; Leal, Jesus; Andersen, Clark R; Foncerrada, Guillermo; Lee, Jong O; Jimenez, Carlos J; Branski, Ludwik; Meyer, Walter J; Herndon, David N

    2016-12-01

    Young children are the most vulnerable for sustaining burns. At this pediatric burn hospital we have provided medical care to young children with severe burns from Mexico for many years. This study identified modifiable risk factors that could be used to assist in prevention of burns in this age group. A retrospective chart review was performed with children <5 years of age from Mexico who were injured from 2000 to 2013. The medical records of 447 acute patients were reviewed. There were 187 females and 260 males with large burns >20% total body surface area (TBSA) burned. Primary causes of burns were flame and scalds. Children with flame injuries were older (3.0±1.5 years of age) than those with scalds (2.6±1.2 years of age). Admissions attributed to flame burns were largely from explosions by propane tanks, gas line leaks, and house fires. Most admissions for scalds were predominantly from falling in large containers of hot water, food, or grease; and fewer were attributed to spills from hot liquids. Most cases reported to a social service agency were to find resources for families. Mortality rate for flame and scald burns was low. It is important take into account demographic, cultural, and socioeconomic variables when developing and implementing prevention programs. Burn prevention instruction for parents is crucial. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blink, J A

    2011-03-23

    Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. Formore » on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007] adds a fourth high-level category: time required to transform the materials. For the situation of an orphaned surface storage facility, the categories are applicable, but the evaluations of each category and subcategory will be significantly different for later radionuclide dispersion than for later processing and fabrication into a nuclear explosive. The fabrication stage of Cleary has three high-level categories (difficulty associated with design, handling difficulties, and knowledge and skills needed to design and fabricate). King replaces the first two high-level categories with the Figure of Merit for Nuclear Explosives Utility (FOM), with subcategories of bare critical mass, heat content of transformed material, dose rate of transformed material, and SQs available for theft. The next section of this report describes the FOM in more detail.« less

  10. Textbook of Military Medicine. Part 1. Warfare, Weaponry, and the Casualty. Part 5. Conventional Warfare. Ballistic, Blast, and Burn Injuries

    DTIC Science & Technology

    1991-01-01

    United States. Because the vast majority of our patients are not active -duty military personnel, it may seem that our day-to-day ac- tivities are far... activated . A designated time-delay fuse uses an Source: Reference 8 15 Conventional Warfare: Ballistic, Blast, and Burn Injuries explosion and the...be found embedded and unexploded in tissue. The fuse is located at the tip of the warhead, and is activated and will deionate on contact only after

  11. Modeling the Propagation of Shock Waves in Metals

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael

    2005-07-01

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.

  12. A full scale hydrodynamic simulation of pyrotechnic combustion

    NASA Astrophysics Data System (ADS)

    Kim, Bohoon; Jang, Seung-Gyo; Yoh, Jack

    2017-06-01

    A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A series of small scale gap tests and detailed hydrodynamic simulations were used to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The energetic component system is composed of four main components, namely a donor unit (HNS + HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BKNO3) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (ωc = 8.3 kHz). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

  13. Full and Partial Thickness Burns from Spontaneous Combustion of E-Cigarette Lithium-Ion Batteries with Review of Literature.

    PubMed

    Treitl, Daniela; Solomon, Rachele; Davare, Dafney L; Sanchez, Rafael; Kiffin, Chauniqua

    2017-07-01

    In recent years, the use of electronic cigarettes (e-cigarettes) has increased worldwide. Most electronic nicotine delivery systems use rechargeable lithium-ion batteries, which are relatively safe, but in rare cases these batteries can spontaneously combust, leading to serious full and partial thickness burn injuries. Explosions from lithium-ion batteries can cause a flash fire and accelerant-related burn injuries. A retrospective chart review was conducted of 3 patients with lithium-ion battery burns seen at our Level I community-based trauma center. Clinical presentation, management, and outcome are presented. All 3 patients sustained burn injuries (total body surface area range 5-13%) from the spontaneous combustion of lithium-ion batteries used for e-cigarettes. All patients were treated with debridement and local wound care. All fully recovered without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians can expect to treat burn cases due to spontaneous lithium-ion battery combustion as e-cigarette use continues to increase. The cases presented here are intended to bring attention to lithium-ion battery-related burns, prepare physicians for the clinical presentation of this burn mechanism, and facilitate patient education to minimize burn risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Educational Materials - Burn Wise

    EPA Pesticide Factsheets

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  15. Raman detection of improvised explosive device (IED) material fabricated using drop-on-demand inkjet technology on several real world surfaces

    NASA Astrophysics Data System (ADS)

    Farrell, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    The requirement to detect hazardous materials (i.e., chemical, biological, and explosive) on a host of materials has led to the development of hazard detection systems. These new technologies and their capabilities could have immediate uses for the US military, national security agencies, and environmental response teams in efforts to keep people secure and safe. In particular, due to the increasing use by terrorists, the detection of common explosives and improvised explosive device (IED) materials have motivated research efforts toward detecting trace (i.e., particle level) quantities on multiple commonly encountered surfaces (e.g., textiles, metals, plastics, natural products, and even people). Non-destructive detection techniques can detect trace quantities of explosive materials; however, it can be challenging in the presence of a complex chemical background. One spectroscopic technique gaining increased attention for detection is Raman. One popular explosive precursor material is ammonium nitrate (AN). The material AN has many agricultural applications, however it can also be used in the fabrication of IEDs or homemade explosives (HMEs). In this paper, known amounts of AN will be deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair, textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this report the detection and identification of AN will be demonstrated.

  16. 27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555.221 Section 555.221 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling...

  17. 27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555.221 Section 555.221 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling...

  18. Real time recognition of explosophorous group and explosive material using laser induced photoacoustic spectroscopy associated with novel algorithm for time and frequency domain analysis.

    PubMed

    El-Sharkawy, Yasser H; Elbasuney, Sherif

    2018-06-07

    Energy-rich bonds such as nitrates (NO 3 - ) and percholorates (ClO 4 - ) have an explosive nature; they are frequently encountered in high energy materials. These bonds encompass two highly electronegative atoms competing for electrons. Common explosive materials including urea nitrate, ammonium nitrate, and ammonium percholorates were subjected to photoacoustic spectroscopy. The captured signal was processed using novel digital algorithm designed for time and frequency domain analysis. Frequency domain analysis offered not only characteristic frequencies for NO 3 - and ClO 4 - groups; but also characteristic fingerprint spectra (based on thermal, acoustical, and optical properties) for different materials. The main outcome of this study is that phase-shift domain analysis offered an outstanding signature for each explosive material, with novel discrimination between explosive and similar non-explosive material. Photoacoustic spectroscopy offered different characteristic signatures that can be employed for real time detection with stand-off capabilities. There is no two materials could have the same optical, thermal, and acoustical properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wu, C.; Wang, B.; Liu, D.; Han, Z.

    2017-07-01

    Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.

  20. Burn Wise Educational Materials for Businesses

    EPA Pesticide Factsheets

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  1. 27 CFR 555.182 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...

  2. 27 CFR 555.182 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...

  3. Multidimensional pair-instability supernova simulations and their multi-messenger signals

    NASA Astrophysics Data System (ADS)

    Gilmer, Matthew; Kozyreva, Alexandra; Hirschi, Raphael; Fröhlich, Carla; Wright, Warren; Kneller, James P.; Yusof, Norhasliza

    2018-01-01

    Pair-Instability supernovae (PISNe) are an exotic class of supernovae which, in addition to being fascinating in its own right (its very existence is a topic of debate), may be important for many areas of astrophysics (early stellar populations, galaxy/chemical evolution, cosmic reionization, etc.). At present, PISNe are one of the three proposed mechanisms for explaining superluminous supernovae, though one major drawback is that PISN models predict longer rise times to peak luminosity than seen in observations of superluminous supernovae. Model rise times can be reduced by having shallower progenitor envelopes and/or outward mixing of radioactive material during the explosions. Here, we present explosions and light curves for four progenitor models, with relatively shallow envelopes, that span the PISN mass range. Our light curves exhibit significantly shorter rise times than other PISNe light curves. In addition, we investigate the effects of a multidimensional treatment during the explosive burning phase of PISNe, including the first such treatment in 3D. We find a small amount of outward mixing of radioactive Ni-56 that increases with the number of dimensions, however this mixing is insufficient to significantly alter the light curve rise time. We find significant mixing between the silicon and oxygen rich layers, especially in 3D, that may affect model spectra and should be investigated in the future. Finally, we present the neutrino signals expected from our most massive and least massive PISN models. Accounting for neutrino oscillations, we compute the expected event rates for current and future neutrino detectors.

  4. Technical note: Headspace analysis of explosive compounds using a novel sampling chamber.

    PubMed

    DeGreeff, Lauryn; Rogers, Duane A; Katilie, Christopher; Johnson, Kevin; Rose-Pehrsson, Susan

    2015-03-01

    The development of instruments and methods for explosive vapor detection is a continually evolving field of interest. A thorough understanding of the characteristic vapor signatures of explosive material is imperative for the development and testing of new and current detectors. In this research a headspace sampling chamber was designed to contain explosive materials for the controlled, reproducible sampling and characterization of vapors associated with these materials. In a detonation test, the chamber was shown to contain an explosion equivalent to three grams of trinitrotoluene (TNT) without damage to the chamber. The efficacy of the chamber in controlled headspace sampling was evaluated in laboratory tests with bulk explosive materials. Small quantities of TNT, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were separately placed in the sampling chamber, and the headspace of each material was analyzed by gas chromatography/mass spectrometry (GC/MS) with online cryogenic trapping to yield characteristic vapor signatures for each explosive compound. Chamber sampling conditions, temperature and sampling time, were varied to demonstrate suitability for precise headspace analysis. Published by Elsevier Ireland Ltd.

  5. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ships, freight containers containing Class 1 (explosive) materials must be stowed only in the lowest... freight containers. 176.170 Section 176.170 Transportation Other Regulations Relating to Transportation... and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  6. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ships, freight containers containing Class 1 (explosive) materials must be stowed only in the lowest... freight containers. 176.170 Section 176.170 Transportation Other Regulations Relating to Transportation... and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  7. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ships, freight containers containing Class 1 (explosive) materials must be stowed only in the lowest... freight containers. 176.170 Section 176.170 Transportation Other Regulations Relating to Transportation... and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  8. 49 CFR 176.144 - Segregation of Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation of Class 1 (explosive) materials. 176... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.144 Segregation of Class... any ferrous metal or aluminum alloy, unless separated by a partition. (e) Segregation on deck: When...

  9. 49 CFR 176.144 - Segregation of Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation of Class 1 (explosive) materials. 176... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.144 Segregation of Class... any ferrous metal or aluminum alloy, unless separated by a partition. (e) Segregation on deck: When...

  10. 27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...

  11. 27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...

  12. 27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...

  13. 27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...

  14. 27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...

  15. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  16. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  17. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  18. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  19. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  20. Civilian blast-related burn injuries

    PubMed Central

    Patel, J.N.; Tan, A.; Dziewulski, P.

    2016-01-01

    Summary There is limited English literature describing the experience of a civilian hospital managing blast-related burn injuries. As the largest regional burn unit, we reviewed our cases with the aim of identifying means to improve current management. A 6-year retrospective analysis of all patients coded as sustaining blast-related burns was conducted through the unit’s burns database. Medical case notes were reviewed for information on burn demographics, management and outcomes. 42 patients were identified. Male to female ratio was 37:5. Age range was 12-84 years, (mean=33 years). Total body surface area (%TBSA) burn ranged from 0.25% to 60%, (median=1%). The most common burn injury was flame (31/42, 73.8%). Gas explosions were the most common mechanism of injury (19 cases; 45.2%). 7/42 cases (16.7%) had full ATLS management pre-transfer to the burns unit. The Injury Severity Score (ISS) ranged from 0-43 (median=2). 17/42 (40.4%) patients required admission. 37/36 (88.1%) patients were managed conservatively of which 1 patient later required surgery due to deeper burns. 5/42 (11.9%) patients required surgical management at presentation and these were noted to be burns with >15% TBSA requiring resuscitation. One case required emergency escharotomies and finger amputations. All patients survived their burn injuries. Blast-related burn injuries are generally uncommon in the civilian setting. Following proper assessment, most of these cases can be deemed as minor injuries and managed conservatively. Improvement in burns management education and training at local emergency departments would provide efficient patient care and avoid unnecessary referrals to a burns unit. PMID:27857651

  1. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  2. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  3. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  4. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  5. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  6. Aerostat-Lofted Instrument Platform and Sampling Method for Determination of Emissions from Open Area Sources

    EPA Science Inventory

    Sampling emissions from open area sources, particularly sources of open burning, is difficult due to fast dilution of emissions and safety concerns for personnel. Representative emission samples can be difficult to obtain with flaming and explosive sources since personnel safety ...

  7. Cement-related injuries: review of a series, the National Burn Repository, and the prevailing literature.

    PubMed

    Chung, Joseph Y; Kowal-Vern, Areta; Latenser, Barbara A; Lewis, Robert W

    2007-01-01

    The spectrum of cement-related injuries encompasses contact dermatitis, abrasions, ulcerations, chemical burns, and burns from explosions during the manufacturing process. The purpose of this study was to compile cement-related conditions seen in two burn units (1999-2005), literature case reports and series (1950-2006) and the (1989-2001) National Burn Repository (NBR). There were 3597 admissions in two Midwestern burn units, of which 12 cases (0.8%) were cement burns. They occurred in men, aged 15 to 64 years with a burn range of 0.25 to 10% TBSA, exposure time of 1 to 6 hours, treatment delay of 1 day to 2 weeks, hospitalization (2-14 days). Literature review of 109 cases indicated that cement-related injuries were predominantly seen in men, aged 26 to 45 years; with a cement-exposure time of 1.5 to 4 hours, treatment delay (1 day to 5 weeks), hospitalization (10-33 days), and healing time (2-7 weeks). There were 52,219 burn admissions in the NBR, of which 44 (0.08%) were cement-related burns; 95% were men with a mean age of 41 years, 6% TBSA cement burn and an 8-day hospital stay. The demographic characteristics of the burn units and NBR cases were similar to those in the literature. This preventable injury occurred primarily in the working age male patient and was associated with long healing times. Public awareness and enhanced manufacturer package warnings and education may decrease future cement-related injuries.

  8. Thermal injuries from exploding electronic cigarettes.

    PubMed

    Hickey, Sean; Goverman, Jeremy; Friedstat, Jonathan; Sheridan, Robert; Schulz, John

    2018-03-01

    There are an estimated 2.75 million electronic cigarette (EC) users in the United States. ECs have become the most commonly used nicotine-containing product in young adults ages 18-24 years. Thermal, blast, and missile injuries from EC explosions has grown rapidly in recent years. Burn surgeons must remain up to date regarding management and treatment of burn injuries related to EC device ignition. An IRB approved retrospective review of all patients admitted to the Massachusetts General Hospital Burn Center from January 2015 to April 2017 was performed. Fourteen patients with injuries associated with EC use were identified. Patient demographics, injury location, size and degree of burn, treatments required, length of stay (LOS), time to 95% closure, associated complications and injuries, and the circumstances that led to the injury were identified. The mean age was 28.6±8.6 years with a range of 19-50 years (n=14). EC burns occurred in males 93% (13/14) of the time. The majority of EC explosions caused 2nd and 3rd degree burns (57%) within the same wound bed, followed by deep 2nd degree (29%), and superficial 2nd degree (14%). The average TBSA from EC burns was 4.7±2.4% with a range of 1-10%. The most common location of the device or battery at the time of the injury was a pant pocket 86% (12/14), followed by 7% hand (1/14) and 7% purse (1/14). Isolated lower extremity burns occurred in 43% (6/14) of patients, while lower extremity and hand burns occurred in 21% (3/14) of patients. Nine of 14 patients required an operating room encounter under general anesthesia. Eight of 14 patients required skin grafting for definitive wound closure. The mean hospital length of stay was 6.6±4.7 days with a range of 0-15 days. Time to 95% wound closure was 18.4±10.8 with a range of 8-40 days. Thermal and blast injuries associated with EC device failure tend to cause small TBSA burns that are deep 2nd and 3rd degree wounds. The most common location for EC device storage among males was the front pants pocket. EC device users should be made aware of the dangers associated with EC use and advised to carry EC devices away from their body in dedicated carrying cases without loose metallic items. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  9. Thermodynamic States in Explosion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. Formore » example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.« less

  10. 30 CFR 57.6100 - Separation of stored explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall not be stored in the same magazine with other explosive material. (b) When stored in the same magazine, blasting agents shall be separated from explosives, safety fuse, and detonating cord to prevent...

  11. Nucleosynthesis during a Thermonuclear Supernova Explosion

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Glazyrin, S. I.; Röpke, F. K.; Blinnikov, S. I.

    2018-05-01

    Supernovae are such bright objects that they can be observed even at high redshifts. Some types of such events, for example, type Ia (thermonuclear), have peculiarities of the light curve, which allows them to be used for cosmological applications. The light curve is determined by the details of the explosion dynamics and nucleosynthesis: in particular, it depends on the amount of iron-peak elements produced during the explosion. We discuss the burning processes in such objects and the peculiarities of turbulence simulations in them, which is needed for a proper hydrodynamic description of the explosion process. A direct nucleosynthesis calculation is performed for the temperature and density profiles derived in the available 3D hydrodynamic explosion simulations. We show that in the supernova progenitor model considered the calculated abundances of elements from carbon to iron-peak elements are in good agreement both with the observations and with the calculations of other authors. At the same time, no r-elements are produced even at the maximum neutron excess for this model ( Y e 0.47) due to the slow evolution of the density and temperature.

  12. Gut microbiota trajectory in patients with severe burn: A time series study.

    PubMed

    Wang, Xinying; Yang, Jianbo; Tian, Feng; Zhang, Li; Lei, Qiucheng; Jiang, Tingting; Zhou, Jihong; Yuan, Siming; Wang, Jun; Feng, Zhijian; Li, Jieshou

    2017-12-01

    This time series experiments aimed to investigate the dynamic change of gut microbiomes after severe burn and its association with enteral nutrition (EN). Seven severely burned patients who suffered from a severe metal dust explosion injury were recruited in this study. The dynamic changes of gut microbiome of fecal samples at six time points (1-3days, 2, 3, 4, 5 and 6weeks after severe burn) were detected using 16S ribosomal RNA pyrosequencing technology. Following the post-burn temporal order, gut microbiota dysbiosis was detected in the gut microbiome after severe burn, then it was gradually resolved. The bio-diversity of gut bacteria was initially decreased, and then returned to normal level. In addition, at the early stage (from 2 to 4weeks), the majority of those patients' gut microbiome were opportunistic pathogen genus, Enterococcus and Escherichia; while at the end of this study, the majority was a beneficial genus, Bacteroides. EN can promote the recovery of gut microbiota, especially in EN well-tolerated patients. Severe burn injury can cause a dramatic dysbiosis of gut microbiota. A trend of enriched beneficial bacteria and diminished opportunistic pathogen bacteria may serve as prognosis microbiome biomarkers of severe burn patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. ONE-DIMENSIONAL TIME TO EXPLOSION (THERMAL SENSITIVITY) TESTS ON PETN, PBX-9407, LX-10, AND LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Peter C.; Strout, Steve; McClelland, Matthew

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to thermal explosion, threshold thermal explosion temperature, and determine the kinetic parameters of thermal decomposition of energeticmore » materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the results of our recent ODTX experiments on PETN powder, PBX-9407 pressed part, LX-10 pressed part, LX-17 pressed part and compares the test data that were obtained decades ago with the older version of ODTX system. Test results show the thermal sensitivity of various materials tested in the following order: PETN> PBX-9407 > LX-10 > LX-17.« less

  14. Shock interactions with heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  15. Shock interactions with heterogeneous energetic materials

    DOE PAGES

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-14

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  16. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  17. A simulation study of fast neutron interrogation for standoff detection of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Heider, S. A.; Dunn, W. L.

    2015-11-01

    The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.

  18. He-accreting carbon-oxygen white dwarfs and Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Podsiadlowski, Philipp; Han, Zhanwen

    2017-12-01

    He accretion on to carbon-oxygen white dwarfs (CO WDs) plays a fundamental role when studying the formation of Type Ia supernovae (SNe Ia). Employing the MESA stellar evolution code, we calculated the long-term evolution of He-accreting CO WDs. Previous studies usually supposed that a WD can grow in mass to the Chandrasekhar limit in the stable He burning region and finally produce an SN Ia. However, in this study, we find that off-centre carbon ignition occurs in the stable He burning region if the accretion rate is above a critical value (∼2.05 × 10-6 M⊙ yr-1), resulting in accretion-induced collapse rather than an SN Ia. If the accretion rate is below the critical value, explosive carbon ignition will eventually happen in the centre producing an SN Ia. Taking into account the possibility of off-centre carbon ignition, we have re-determined the initial parameter space that produces SNe Ia in the He star donor channel, one of the promising channels to produce SNe Ia in young populations. Since this parameter space is smaller than was found in the previous study of Wang et al. (2009), the SN Ia rates are also correspondingly smaller. We also determined the chemical abundance profile of the He-accreting WDs at the moment of explosive carbon ignition, which can be used as initial input for SN Ia explosion models.

  19. 27 CFR 555.30 - Reporting theft or loss of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting theft or loss of... and Miscellaneous Provisions § 555.30 Reporting theft or loss of explosive materials. (a) Any licensee or permittee who has knowledge of the theft or loss of any explosive materials from his stock shall...

  20. Macro-Scale Reactive Flow Model for High-Explosive Detonation in Support of ASCI Weapon Safety Milepost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E

    2002-01-03

    Explosive grain-scale simulations are not practical for weapon safety simulations. Indeed for nearly ideal explosives with reaction zones of order 500 {micro}m, even reactive flow models are not practical for weapon safety simulations. By design, reactive flow models must resolve the reaction zone, which implies computational cells with dimension of order 50 {micro}m for such explosives. The desired result for a simulation in which the reaction zone is not resolved is that the explosive behaves as an ideal one. The pressure at the shock front rises to the Chapman-Jouget (CJ) pressure with a reaction zone dimension that is like thatmore » of a shock propagating in an unreactive medium, on the order of a few computational cells. It should propagate with the detonation velocity that is determined by the equation of state of the products. In the past, this was achieved in one dimensional simulations with ''beta-burn'', a method in which the extent of conversion to final product is proportional to the approach of the specific volume in the shock front to the specific volume of the CJ state. One drawback with this method is that there is a relatively long build-up to steady detonation that is typically 50 to 100 computational cells. The need for relatively coarsely zoned simulations in two dimensions lead to ''program-burn'' by which the time to detonation can be determined by a simple ray-tracing algorithm when there are no barriers or shadows. Complications arise in two and three dimensions to the extent that some calculations of the lighting time in complex geometry can give incorrect results. We sought to develop a model based on reactive flow that might help the needs of the Weapon Safety Simulation milepost. Important features of the model are: (1) That it be useable with any equation of state description of the explosive product gases including both JWL and LEOS table forms. (2) That it exhibits the desired dependence on zone size. We believe that the model described here does exhibit these features.« less

  1. Electronic nicotine delivery system (ENDS) battery-related burns presenting to US emergency departments, 2016.

    PubMed

    Corey, Catherine G; Chang, Joanne T; Rostron, Brian L

    2018-03-05

    Currently, an estimated 7.9 million US adults use electronic nicotine delivery systems (ENDS). Although published reports have identified fires and explosions related to use of ENDS since 2009, these reports do not provide national estimates of burn injuries associated with ENDS batteries in the US. We analyzed nationally representative data provided in the National Electronic Injury Surveillance System (NEISS) to estimate the number of US emergency department (ED) visits for burn injuries associated with ENDS batteries. We reviewed the case narrative field to gain additional insights into the circumstances of the burn injury. In 2016, 26 ENDS battery-related burn cases were captured by NEISS, which translates to a national estimate of 1007 (95%CI: 357-1657) injuries presenting in US EDs. Most of the burns were thermal burns (80.4%) and occurred to the upper leg/lower trunk (77.3%). Examination of the case narrative field indicated that at least 20 of the burn injuries occurred while ENDS batteries were in the user's pocket. Our study provides valuable information for understanding the current burden of ENDS battery-related burn injuries treated in US EDs. The nature and circumstances of the injuries suggest these incidents were unintentional and would potentially be prevented through battery design requirements, battery testing standards and public education related to ENDS battery safety.

  2. Detection of explosives in soils

    DOEpatents

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  3. Molecular hydrodynamics of high explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belak, J.

    1994-11-01

    High explosives release mechanical energy through chemical reactions. Applications of high explosives are vast in the mining and military industries and are beginning to see more civilian applications such as the deployment of airbags in modern automobiles. One of the central issues surrounding explosive materials is decreasing their sensitivity, necessary for their safe handling, while maintaining a high yield. Many practical tests have been devised to determine the sensitivity of explosive materials to shock, to impact, to spark, and to friction. These tests have great value in determining yield and setting precautions for safe handling but tell little of themore » mechanisms of initiation. How is the mechanical energy of impact or friction transformed into the chemical excitation that initiates explosion? The answer is intimately related to the structure of the explosive material, the size and distribution of grains, the size and presence of open areas such as voids and gas bubbles, and inevitably the bonding between explosive molecules.« less

  4. Detonation Properties Measurements for Inorganic Explosives

    NASA Astrophysics Data System (ADS)

    Morgan, Brent A.; Lopez, Angel

    2005-03-01

    Many commonly available explosive materials have never been quantitatively or theoretically characterized in a manner suitable for use in analytical models. This includes inorganic explosive materials used in spacecraft ordnance, such as zirconium potassium perchlorate (ZPP). Lack of empirical information about these materials impedes the development of computational techniques. We have applied high fidelity measurement techniques to experimentally determine the pressure and velocity characteristics of ZPP, a previously uncharacterized explosive material. Advances in measurement technology now permit the use of very small quantities of material, thus yielding a significant reduction in the cost of conducting these experiments. An empirical determination of the explosive behavior of ZPP derived a Hugoniot for ZPP with an approximate particle velocity (uo) of 1.0 km/s. This result compares favorably with the numerical calculations from the CHEETAH thermochemical code, which predicts uo of approximately 1.2 km/s under ideal conditions.

  5. Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph W.; Vandersall, Kevin S.; Reaugh, John E.; Levie, Harold W.; Henson, Bryan F.; Smilowitz, Laura B.; Parker, Gary R.

    2017-01-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (˜1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a more temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder.

  6. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    PubMed

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Understanding and Predicting the Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Experimental Measurements of Material Properties and Reaction Violence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F; Weese, R K

    The violence of thermal explosions with energetic materials is affected by many material properties, including mechanical and thermal properties, thermal ignition kinetics, and deflagration behavior. These properties must be characterized for heated samples as well as pristine materials. We present available data for these properties for two HMX-based formulations--LX-04 and PBX-9501, and two RDX-based formulations--Composition B and PBXN-109. We draw upon separately published data on the thermal explosion violence with these materials to compare the material properties with the observed violence. We have the most extensive data on deflagration behavior of these four formulations, and we discuss the correlation ofmore » the deflagration data with the violence results. The data reported here may also be used to develop models for application in simulation codes such as ALE3D to calculate and Dredict thermal explosion violence.« less

  8. Issuance of a final RCRA Part B Subpart X permit for open burning/open detonation (OB/OD) of explosives at Eglin AFB, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.E.; Culp, J.C.; Jenness, S.R.

    1997-12-31

    Treatment and disposal of explosives and munitions items have represented a significant management challenge for Department of Defense (DOD) facilities, particularly in light of increased regulatory scrutiny under the Federal Facilities Compliance Act provisions of the Resource Conservation and Recovery Act (RCRA). Subpart X of the RCRA regulations for storage, treatment, and disposal of hazardous wastes was drafted specifically to address explosive wastes. Until just recently, any DOD facility that was performing open burning/open detonation (OB/OD) of explosives was doing so under interim status for RCRA Part B Subpart X. In August 1996, Eglin Air Force Base (AFB), Florida becamemore » the first Air Force facility to be issued a final Part B Subpart X permit to perform OB/OD operations at two Eglin AFB active test ranges. This presentation will examine how Eglin AFB worked proactively with the State of Florida Department of Environmental Protection (FDEP) and EPA Region IV to develop permit conditions based upon risk assessment considerations for both air and ground-water exposure pathways. It will review the role of air emissions and air dispersion modeling in assessing potential exposure and impacts to both onsite and offsite receptors, and will discuss how air monitoring will be used to assure that the facility remains in compliance during OB/OD activities. The presentation will also discuss the soil and ground-water characterization program and associated risk assessment provisions for quarterly ground-water monitoring to assure permit compliance. The project is an excellent example of how a collaborative working relationship among the permittee, their consultant and state, and EPA can result in an environmentally protective permit that assures operational flexibility and mission sensitivity.« less

  9. Suicide bombers form a new injury profile.

    PubMed

    Aharonson-Daniel, Limor; Klein, Yoram; Peleg, Kobi

    2006-12-01

    Recent explosions of suicide bombers introduced new and unique profiles of injury. Explosives frequently included small metal parts, increasing severity of injuries, challenging both physicians and healthcare systems. Timely detonation in crowded and confined spaces further increased explosion effect. Israel National Trauma Registry data on hospitalized terror casualties between October 1, 2000 and December 31, 2004 were analyzed. A total of 1155 patients injured by explosion were studied. Nearly 30% suffered severe to critical injuries (ISS > or = 16); severe injuries (AIS > or = 3) were more prevalent than in other trauma. Triage has changed as metal parts contained in bombs penetrate the human body with great force and may result in tiny entry wounds easily concealed by hair, clothes etc. A total of 36.6% had a computed tomography (CT), 26.8% had ultrasound scanning, and 53.2% had an x-ray in the emergency department. From the emergency department, 28.3% went directly to the operating room, 10.1% to the intensive care unit, and 58.4% directly to the ward. Injuries were mostly internal, open wounds, and burns, with an excess of injuries to nerves and to blood vessels compared with other trauma mechanisms. A high rate of surgical procedures was recorded, including thoracotomies, laparotomies, craniotomies, and vascular surgery. In certain cases, there were simultaneous multiple injuries that required competing forms of treatment, such as burns and blast lung. Bombs containing metal fragments detonated by suicide bombers in crowded locations change patterns and severity of injury in a civil population. Specific injuries will require tailored approaches, an open mind, and close collaboration and cooperation between trauma surgeons to share experience, opinions, and ideas. Findings presented have implications for triage, diagnosis, treatment, hospital organization, and the definition of surge capacity.

  10. Explosive scabbling of structural materials

    DOEpatents

    Bickes, Jr., Robert W.; Bonzon, Lloyd L.

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  11. Method and apparatus for detecting explosives

    DOEpatents

    Moore, David Steven [Santa Fe, NM

    2011-05-10

    A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

  12. Nanoscience for Insensitive Munitions Development (Briefing Charts)

    DTIC Science & Technology

    2008-12-03

    reactive material Ni/Al Hypervelocity collisions of ND Melting of nitromethane Shocked energetic materials Self-sustained detonation of model explosive ...deformation by compressing, stretching or twisting the bond. First Observed by Bridgeman as Explosion of Common Substances Subjected to Pressure and Shear...in Energetic Materials as New Means for Designing Nonconventional High Explosives : An analysis of Soviet Research, Tech Report 1991. A. M

  13. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    NASA Astrophysics Data System (ADS)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  14. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  15. The Enhancement of Gas Pressure Diagnostics in the P-ODTX System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Peter C.; Jones, Aaron; Tesillo, Lynda

    The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory is a useful tool for thermal safety assessment of energetic material. It has been used since 1970s to measure times to explosion, threshold thermal explosion temperature, thermal explosion violence, and determine decomposition kinetic parameters of energetic materials. ODTX data obtained for the last 40 years can be found elsewhere.

  16. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  18. System for fracturing an underground geologic formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.

    2017-03-14

    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacentmore » to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.« less

  19. 27 CFR 555.182 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive...

  20. Synthesis, Chemical and Physical Characterization of TKX-50

    NASA Astrophysics Data System (ADS)

    Klapoetke, Thomas

    2015-06-01

    TKX-50 (bis(hydroxylammonium) 5,5'-bis(tetrazolate-1 N-oxide)) is one of the most promising ionic salts as a possible replacement for RDX. The thermal behavior of TKX-50 (bis(hydroxylammonium) 5,5'-(tetrazolate-1 N-oxide)) and the kinetics of its thermal decomposition were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The calculated results of the detonation parameters and equations of state for the detonation products (EOS DP) of explosive materials TKX-50 and MAD-X1 and several of their derivatives were obtained using the computer program EXPLO5 V.6.01. These values were also calculated for standard explosive materials which are commonly used such as TNT, PETN, RDX, HMX as well as for the more powerful explosive material CL-20 to allow comparisons to be made. The determination of the detonation parameters and EOS DP was conducted both for explosive materials having the maximum crystalline density and for porous right up to 50% in volume materials. The influence of the content of plastic binder polyisobutylene used (up to 20% in volume) on all of the investigated properties was also examined. Calculated results on shock wave loading of different inert barriers in a wide range of their dynamic properties under explosion on their surfaces of concrete size charges of different explosive materials in various initial states were obtained with the use of the one-dimensional computer hydrocode EP. Barriers due to materials such as polystyrene, textolite, magnesium, aluminum, zinc, copper, tantalum or tungsten were examined (Fig. 1). Initial values of pressure and other parameters of loading on the interface explosive-barrier were determined in the process of conducted calculations. Phenomena of propagation and attenuation of shock waves in barrier materials were considered too for all possible situations. From these calculations, an essentially complete overview of the explosion properties and characteristics of shock wave action onto barriers was obtained for several new and also for several standard explosive materials as a comparison. Work done in collaboration with Golubev/Fischer/Stierstorfer/Bohanek/Dobrilovic.

  1. Controlling Explosive Sensitivity of Energy-Related Materials by Means of Production and Processing in Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Sokolov, P. N.

    2016-08-01

    The present work is one of the world first attempts to develop effective methods for controlling explosive sensitivity of energy-related materials with the help of weak electric (up to 1 mV/cm) and magnetic (0.001 T) fields. The resulting experimental data can be used for purposeful alternation of explosive materials reactivity, which is of great practical importance. The proposed technology of producing and processing materials in a weak electric field allows forecasting long-term stability of these materials under various energy impacts.

  2. Development of Methodology and Technology for Identifying and Quantifying Emission Products from Open Burning and Open Detonation Thermal Treatment Methods. Field Test Series A, B, and C. Volume 1. Test Summary

    DTIC Science & Technology

    1992-01-01

    3-37 Table 3.2 Nominal Composition of Explosive D ............................. 3-38 Table 3.3 Nominal Composition of PBXN -6...RDX used during Phase C was PBXN -6, a mixture of RDX and Viton An* (hereafter referred to as 3 RDX), The nominal composition of this explosive is...given in table 3.3. I I I I 3-38 3 I I Table 3.3 Nominal Composition of PBXN -6. II Carbon Content (%) Ingredient Weight (%)I __ .1• •,, ,,,,i, RDX 95.0

  3. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  4. Ion spectrometric detection technologies for ultra-traces of explosives: a review.

    PubMed

    Mäkinen, Marko; Nousiainen, Marjaana; Sillanpää, Mika

    2011-01-01

    In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods. Copyright © 2011 Wiley Periodicals, Inc.

  5. Nanoengineered explosives

    DOEpatents

    Makowiecki, D.M.

    1996-04-09

    A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.

  6. 27 CFR 555.182 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive that, by April... 555.182 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES...

  7. 27 CFR 555.182 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive that, by April... 555.182 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES...

  8. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    DOEpatents

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  9. Hydrogen burning of oxygen-17

    NASA Astrophysics Data System (ADS)

    Newton, Joseph

    Classical novae are explosive binary systems involving the accretion of hydrogen rich material from a main sequence star onto the surface of a white dwarf partner, reaching peak temperatures of T = 0.1-0.4 GK. Observed elemental abundances from the ejecta provide much needed constraints for the modeling of these explosions. Novae are thought to be the most significant source of 15 N and 17 O in the universe. The 17 O(p,g) 18 F and 17 O(p,g) 14 N reactions have an important effect on nucleosynthesis in novae, since they determine the creation and destruction of 17 O and 18 F, which produces detectable g- radiation. The dominant contributor to the 17 O(p,g) 14 N reaction is a resonance at [Special characters omitted.] = 193 keV. The strength of this resonance has been measured and the results are presented. For the 17 O(p,g) 18 F reaction, the dominant contribution comes from the nonresonant direct capture process. The literature direct capture cross sections currently differ by a factor of two. This cross section has been measured in the current work and the results are also presented. New reaction rates have been calculated with these measured cross sections using a new Monte Carlo technique and these new rates have significantly reduced uncertainties compared to the current literature.

  10. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into themore » experiment configuration has been explored.« less

  11. Wolf-Rayet stars of type WN/WC and mixing processes during core helium burning of massive stars

    NASA Technical Reports Server (NTRS)

    Langer, N.

    1991-01-01

    Consequences of the recent finding that most WN/WC spectra probably originate from individual Wolf-Rayet stars for the internal structure of massive stars are discussed. Numerical models including the effect of slow-down or prevention of convective mixing due to molecular weight gradients are presented, in which a transition layer with a composition mixture of H- and He-burning ashes is formed above the convective He-burning core. These models are able to qualitatively account for the observed WN/WC frequency and agree quantitatively with the only WN/WC-composition determination so far. It is argued that the same transition layer may be responsible for the final blue loop which the SN 1987 A progenitor performed some 10,000 yr before explosion. These results indicate that composition barriers may be efficient in restricting convection during central helium burning, in contrast to computations relying on the Schwarzschild criterion for convection, with or without overshooting.

  12. Petrol--something nasty in the woodshed? A review of gasoline-related burns in a British burns unit.

    PubMed

    Wilson, D I; Bailie, F B

    1995-11-01

    Petrol (gasoline) is probably the fuel most easily available and widely in use today. Indeed, most households have a can lurking in the garden shed or basement for domestic use. It's chemical properties make it a highly explosive as well as a combustible fluid, a fact that is sometimes poorly appreciated. We looked at the incidence of petrol-related burns seen in our unit over a 2-year period. Nearly 33 per cent of the adult male admissions were petrol-related and 16 per cent were in children under the age of 16 years. The commonest cause of injury was attempting to start or accelerate a bonfire (38 per cent) with only a small number of barbecue injuries (4 per cent). Petrol causes a significant number of burn injuries a year, and particularly worrying were the number of children injured. However, we feel there is a need for greater public education and perhaps stricter control of this substance.

  13. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  14. M/V Elias explosion and fire at Fort Mifflin, Pa. , on 9 April 1974 with loss of life. Marine casualty report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-09-09

    At approximately 10 P.M. on 9 April 1974 while the M/V ELIAS was in the process of completing the discharge of a full cargo of Bachaquero crude oil at the Atlantic Richfield Oil (ARCO) Terminal, Fort Mifflin, Pennsylvania on the Delaware River the vessel sustained a series of three massive explosions, burned and sank. Nine members of the crew and four visitors (relatives of the master) perished or are missing. The M/V ELIAS was a total loss and the SS EDWARD L. STEINGER and the ARCO Terminal sustained extensive damages. The report contains the U.S. Coast Guard Marine Board ofmore » Investigation report and the Action taken by the Commandant to determine the probable cause of the casualty and the recommendations to prevent recurrence. The Commandant concurred with the Marine Board that source, and location of the initial explosion cannot be determined. Evidence of internal explosion in the after pump room, the cofferdam in the number 3 starboard cargo tanks, and in several of the cargo tanks indicate a varied path of the explosions.« less

  15. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  16. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  17. Smokeless Propellants as Vehicle Borne IED Main Charges: An Initial Threat Assessment

    DTIC Science & Technology

    2008-01-01

    uci: • danger clasa : (B) critical detonation height I 45 - 65 em. detonation danger , during fillin. material in mixing trough, in barrels as a in...Appendix A Examples ofMorphology Appendix B ATF List of Explosives Materials Appendix C Cabella Web Page Appendix D ATF Intelligence Report on Explosives...available for exploitation by violent extremist organizations and individuals. Discussion: Conventional explosive materials remain the most probable

  18. Unreacted Hugoniots for porous and liquid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, R.L.; Sheffield, S.A.

    1993-08-01

    Numerous authors have measured the Hugoniots of a variety of granular explosives pressed to different densities. Each explosive at each density was typically then treated as a unique material having its own Hugoniot. By combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. We discuss application of this method to several materials including HMX, PETN, TNT,more » and Tetryl, as well as HNS. We also show that the ``Universal Liquid Hugoniot`` can be used to calculate the unreacted Hugoniot for liquid explosives. With this method only the ambient pressure sound speed and density are needed to predict the Hugoniot. Applications presented include nitromethane and liquid TNT.« less

  19. The challenge of improvised explosives

    DOE PAGES

    Maienschein, Jon L.

    2012-06-14

    Energetic materials have been developed for decades, and indeed centuries, with a common set of goals in mind. Performance (as a detonating explosive, a propellant, or a pyrotechnic) has always been key, equally important have been the attributes of safety, stability, and reproducibility. Research and development with those goals has led to the set of energetic materials commonly used today. In the past few decades, the adoption and use of improvised explosives in attacks by terrorists or third-world parties has led to many questions about these materials, e.g., how they may be made, what threat they pose to the intendedmore » target, how to handle them safely, and how to detect them. The unfortunate advent of improvised explosives has opened the door for research into these materials, and there are active programs in many countries. I will discuss issues and opportunities facing research into improvised explosives.« less

  20. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  1. The Betelgeuse Project II: Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nance, S.; Sullivan, J. M.; Diaz, M.; Wheeler, J. Craig

    2018-06-01

    We explore the question of whether the interior state of massive red supergiant supernova progenitors can be effectively probed with asteroseismology. We have computed a suite of ten models with ZAMS masses from 15 to 25 M⊙ in intervals of 1 M⊙ including the effects of rotation, with the stellar evolutionary code MESA. We estimate characteristic frequencies and convective luminosities of convective zones at two illustrative stages, core helium burning and off-center convective carbon burning. We also estimate the power that might be delivered to the surface to modulate the luminous output considering various efficiencies and dissipation mechanisms. The inner convective regions should generate waves with characteristic periods of ˜ 20 days in core helium burning, ˜10 days in helium shell burning, and 0.1 to 1 day in shell carbon burning. Acoustic waves may avoid both shock and diffusive dissipation relatively early in core helium burning throughout most of the structure. In shell carbon burning, years before explosion, the signal generated in the helium shell might in some circumstances be weak enough to avoid shock dissipation, but is subject to strong thermal dissipation in the hydrogen envelope. Signals from a convective carbon-burning shell are very likely to be even more severely damped by within the envelope. In the most optimistic case, early in core helium burning, waves arriving close to the surface could represent luminosity fluctuations of a few millimagnitudes, but the conditions in the very outer reaches of the envelope suggest severe thermal damping there.

  2. Accelerant-related burns and drug abuse: Challenging combination.

    PubMed

    Leung, Leslie T F; Papp, Anthony

    2018-05-01

    Accelerants are flammable substances that may cause explosion when added to existing fires. The relationships between drug abuse and accelerant-related burns are not well elucidated in the literature. Of these burns, a portion is related to drug manufacturing, which have been shown to be associated with increased burn complications. 1) To evaluate the demographics and clinical outcomes of accelerant-related burns in a Provincial Burn Centre. 2) To compare the clinical outcomes with a control group of non-accelerant related burns. 3) To analyze a subgroup of patients with history of drug abuse and drug manufacturing. Retrospective case control study. Patient data associated with accelerant-related burns from 2009 to 2014 were obtained from the British Columbia Burn Registry. These patients were compared with a control group of non-accelerant related burns. Clinical outcomes that were evaluated include inhalational injury, ICU length of stay, ventilator support, surgeries needed, and burn complications. Chi-square test was used to evaluate categorical data and Student's t-test was used to evaluate mean quantitative data with the p value set at 0.05. A logistic regression model was used to evaluate factors affecting burn complications. Accelerant-related burns represented 28.2% of all burn admissions (N=532) from 2009 to 2014. The accelerant group had higher percentage of patients with history of drug abuse and was associated with higher TBSA burns, ventilator support, ICU stay and pneumonia rates compared to the non-accelerant group. Within the accelerant group, there was no difference in clinical outcomes amongst people with or without history of drug abuse. Four cases were associated with methamphetamine manufacturing, all of which underwent ICU stay and ventilator support. Accelerant-related burns cause significant burden to the burn center. A significant proportion of these patients have history of drug abuse. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic.more » A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.« less

  4. Turbulent Nuclear Burning of Carbon Fuel in Double-Degenerate White Dwarfs

    NASA Astrophysics Data System (ADS)

    Mozumdar, Pritom; Fisher, Robert

    2018-01-01

    Type Ia supernovae (SNe Ia) are of interest as standardizable cosmological candles, though their stellar progenitors are still poorly understood. The double-degenerate (DD) channel is promising, but the mechanism for the explosion remains a matter of active investigation. A long-standing problem in modeling SNe Ia is the fact that 3D simulations leave the length scales crucial for a possible detonation unresolved. In this work, we have performed local 3D hydrodynamical adaptive mesh refinement simulations of driven turbulence for various initial conditions characteristic of the DD scenario, which are capable of capturing length scales relevant to the Zel’dovich gradient mechanism. Because the carbon burning rate is highly sensitive to temperature in this regime, we demonstrate that turbulence can dramatically enhance the nuclear burning rate, and we investigate the connection to a possible detonation.

  5. Wireless sensor for detecting explosive material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  6. 2010 Joint Chemical Biological Radiological Nuclear (CBRN) Conference and Exhibition (BRIEFING CHARTS)

    DTIC Science & Technology

    2010-06-24

    control Defensive Test Chamber • Certified for Chem-Bio simulants • Man-in-simulant (MIST) testing Bang Box • Explosive material synthesis and testing...Explosive material synthesis and testing Bang Box –Peroxide Explosives Properties – HMTD, TATP, DADP –Peroxide Explosives as Initiators –TATP... Synthesis –HMTD Synthesis –RDX Synthesis –ANFO Mixture Mustang VILLAGE Approved for public release; distribution is unlimited. • Hotel, Post Office

  7. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  8. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margutti, Raffaella; Kamble, A.; Milisavljevic, D.

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum,more » from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.« less

  9. Explosive simulants for testing explosive detection systems

    DOEpatents

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  10. Terror-inflicted thermal injury: A retrospective analysis of burns in the Israeli-Palestinian conflict between the years 1997 and 2003.

    PubMed

    Haik, Josef; Tessone, Ariel; Givon, Adi; Liran, Alon; Winkler, Eyal; Mendes, David; Goldan, Oren; Bar-Meir, Eran; Regev, Eli; Orenstein, Arie; Peleg, Kobi

    2006-12-01

    Terror attacks have changed in the past decade, with a growing tendency toward explosives and suicide bombings, which led to a rise in the incidence of thermal injuries among victims. The Israeli-Palestinian conflict of October 2000 marked a turning point when an organized terror campaign commenced. This article presents data of terror-associated burns from the Israeli National Trauma Registry (ITR) during the years 1997 to September 2000 and October 2000 to 2003. We analyzed demographic and clinical characteristics of 219 terror-related burn patients and 6,546 other burn patients admitted to hospitals in Israel between 1997 and 2003. Data were obtained from the ITR. Burns contributed about 9% of all terror related trauma and about 5% of all other trauma (p < 0.0001). These percentages have not changed significantly before and after October 2000. Terror-related burns afflict Jewish males more than predicted by their percentage in the population, whereas other burns afflict non-Jewish males more than predicted. Adults and young adults (15-59 years) are the predominant group in terror-related burns (80%), whereas children younger than 15 years are the predominant group in other burns (50%). Large burns (20% to 89% total body surface area) are more common in terror casualties, with greater mortality (6.4% in terror-related versus 3.4% in others; p = 0.0258). Although the incidence of burns has risen because of an organized campaign, this change was noticeable in other trauma forms as well in similar proportions. Terror-related burns afflict a targeted population, and generally take on a more severe course with greater mortality rates, thus requiring appropriate medical treatment.

  11. Nuclear Physical Uncertainties in Modeling X-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Regis, Eric; Amthor, A. Matthew

    2017-09-01

    Type I x-ray bursts occur when a neutron star accretes material from the surface of another star in a compact binary star system. For certain accretion rates and material compositions, much of the nuclear material is burned in short, explosive bursts. Using a one-dimensional stellar model, Kepler, and a comprehensive nuclear reaction rate library, ReacLib, we have simulated chains of type I x-ray bursts. Unfortunately, there are large remaining uncertainties in the nuclear reaction rates involved, since many of the isotopes reacting are unstable and have not yet been studied experimentally. Some individual reactions, when varied within their estimated uncertainty, alter the light curves dramatically. This limits our ability to understand the structure of the neutron star. Previous studies have looked at the effects of individual reaction rate uncertainties. We have applied a Monte Carlo method ``-simultaneously varying a set of reaction rates'' -in order to probe the expected uncertainty in x-ray burst behaviour due to the total uncertainty in all nuclear reaction rates. Furthermore, we aim to discover any nonlinear effects due to the coupling between different reaction rates. Early results show clear non-linear effects. This research was made possible by NSF-DUE Grant 1317446, BUScholars Program.

  12. Analyses of battle casualties by weapon type aboard U.S. Navy warships.

    PubMed

    Blood, C G

    1992-03-01

    The number of casualties was determined for 513 incidents involving U.S. Navy warships sunk or damaged during World War II. Ship type and weapon were significant factors in determining the numbers of wounded and killed. Multiple weapon attacks and kamikazes yielded more wounded in action than other weapon types. Multiple weapons and torpedos resulted in a higher incidence of killed in action than other weapons. Penetrating wounds and burns were the most prominent injury types. Kamikaze attacks yielded significantly more burns than incidents involving bombs, gunfire, torpedos, mines, and multiple weapons. Mine explosions were responsible for more strains, sprains, and dislocations than the other weapon types.

  13. Self-deflagration rates of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). [burning tate, thermal stability

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Zurn, D. E.; Atwood, A. I.; Eisel, J. L.

    1980-01-01

    The thermal stability and resistance to impact was investigated for the ingredient TABA. Particular attention was given to determining the use of TABA as a possible alternative ingredient or substitute for HMX in explosives and high energy propellants. The burn rate of TABA was investigated as a function of pressure. It was concluded that the self deflagration rate of TABA is an order of magnitude lower than HMX over the range 2000-15000 psi; TABA will not sustain self deflagration at low pressures (less than or equal to 1500 psi) in the sample configuration and apparatus used.

  14. Benefit from NASA

    NASA Image and Video Library

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for the new flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes

  15. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for new the flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes.

  16. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for the new flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes

  17. DoD Contractors’ Safety Manual for Ammunition and Explosives.

    DTIC Science & Technology

    1997-09-01

    grit, and other foreign material into operating buildings. 9. Windows and skylights . Non-shatterable glazing is preferred where an explosion...with the explosives being processed. Dull or damaged tools shall not be used for machining high explosives. k. The explosives products resulting from

  18. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P A; Fried, L E; Howard, W M

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less

  19. IMPACT OF NEW GAMOW–TELLER STRENGTHS ON EXPLOSIVE TYPE IA SUPERNOVA NUCLEOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka

    2016-12-20

    Recent experimental results have confirmed a possible reduction in the Gamow–Teller (GT{sub +}) strengths of pf-shell nuclei. These proton-rich nuclei are of relevance in the deflagration and explosive burning phases of SNe Ia. While prior GT strengths result in nucleosynthesis predictions with a lower-than-expected electron fraction, a reduction in the GT{sub +} strength can result in a slightly increased electron fraction compared to previous shell model predictions, though the enhancement is not as large as previous enhancements in going from rates computed by Fuller, Fowler, and Newman based on an independent particle model. A shell model parametrization has been developed thatmore » more closely matches experimental GT strengths. The resultant electron-capture rates are used in nucleosynthesis calculations for carbon deflagration and explosion phases of SNe Ia, and the final mass fractions are compared to those obtained using more commonly used rates.« less

  20. Impact of New Gamow-Teller Strengths on Explosive Type Ia Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Suzuki, Toshio; Hidaka, Jun; Honma, Michio; Iwamoto, Koichi; Nomoto, Ken'ichi; Otsuka, Takaharu

    2016-12-01

    Recent experimental results have confirmed a possible reduction in the Gamow-Teller (GT+) strengths of pf-shell nuclei. These proton-rich nuclei are of relevance in the deflagration and explosive burning phases of SNe Ia. While prior GT strengths result in nucleosynthesis predictions with a lower-than-expected electron fraction, a reduction in the GT+ strength can result in a slightly increased electron fraction compared to previous shell model predictions, though the enhancement is not as large as previous enhancements in going from rates computed by Fuller, Fowler, and Newman based on an independent particle model. A shell model parametrization has been developed that more closely matches experimental GT strengths. The resultant electron-capture rates are used in nucleosynthesis calculations for carbon deflagration and explosion phases of SNe Ia, and the final mass fractions are compared to those obtained using more commonly used rates.

  1. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2011-10-01 2011-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...

  2. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2013-10-01 2013-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...

  3. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2014-10-01 2014-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...

  4. 30 CFR 57.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...

  5. 30 CFR 57.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...

  6. 30 CFR 57.6102 - Explosive material storage practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...

  7. BP, Corporate R&D, and the University

    ERIC Educational Resources Information Center

    Lea, Russ

    2010-01-01

    April 20, 2010, and the days following, provided the world with graphic images of a burning oil rig, a perception that the oil industry and state and federal governments were helpless, and a pervasive sense of the devastation wrought on coastal residents by the rig explosion and the oil spill. The residents of the Gulf Coast soon realized that…

  8. Metallicity as a Source of Dispersion in the SNIa Bolometric Light Curve Luminosity-Width Relationship

    NASA Astrophysics Data System (ADS)

    Bravo, E.; Domínguez, I.; Badenes, C.; Piersanti, L.; Straniero, O.

    2010-03-01

    The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of 56Ni, M(56Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M 0 = 2-7 M sun and metallicities Z = 10-5-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, η, and leads to a smaller 56Ni yield, but does not change substantially the dependence of M(56Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M(56Ni). Our main results are: (1) a sizeable amount of 56Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M(56Ni) on Z than obtained by assuming that 56Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M(56Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.

  9. Detection of vehicle-based improvised explosives using ultra-trace detection equipment

    NASA Astrophysics Data System (ADS)

    Fisher, Mark; Sikes, John; Prather, Mark; Wichert, Clint

    2005-05-01

    Vehicle-borne improvised explosive devices (VBIEDs) have become the weapon of choice for insurgents in Iraq. At the same time, these devices are becoming increasingly sophisticated and effective. VBIEDs can be difficult to detect during visual inspection of vehicles. This is especially true when explosives have been hidden behind a vehicle"s panels, inside seat cushions, under floorboards, or behind cargo. Even though the explosive may not be visible, vapors of explosive emanating from the device are often present in the vehicle, but the current generation of trace detection equipment has not been sensitive enough to detect these low concentrations of vapor. This paper presents initial test results using the Nomadics Fido sensor for detection of VBIEDs. The sensor is a small, explosives detector with unprecedented levels of sensitivity for detection of nitroaromatic explosives. Fido utilizes fluorescence quenching of novel polymer materials to detect traces of explosive vapor emanating from targets containing explosives. These materials, developed by collaborators at the Massachusetts Institute of Technology (MIT), amplify the quenching response that occurs when molecules of explosive bind to films of the polymer. These materials have enabled development of sensors with performance approaching that of canines trained to detect explosives. The ability of the sensor to detect explosives in vehicles and on persons who have recently been in close proximity to explosives has recently been demonstrated. In these tests, simulated targets were quickly and easily detected using a Fido sensor in conjunction with both direct vapor and swipe sampling methods. The results of these tests suggest that chemical vapor sensing has utility as a means of screening vehicles for explosives at checkpoints and on patrols.

  10. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  11. Stabilization of soils contaminated with explosives and metals from the ammunition demolition activity area and miscellaneous sites at the Umatilla Depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lear, P.R.; Gemarr, D.

    1997-12-31

    The US Army Umatilla Depot (UMD) was established as an ordnance depot in 1941 to store, preserve, and perform minor maintenance on conventional and chemical munitions. From the 1940`s until the present, UMD operated periodically at the 32 miscellaneous sites identified as OU-5. OU-4 consists of twenty sites within the Ammunition Demolition Activity Area. Typical activities conducted at these sites consisted of operations to burn, detonate, and otherwise dispose of ordnance, munitions casings, and other solids wastes. Five sites were selected for remedial action. The remediation contaminants of concern for the sites encompassed both metallic and non-metallic elements and bothmore » inorganic and organic compounds. The remedial action selected for the contaminated soil at these sites was stabilization/solidification (S/S). The site remediation activities for the five sites were performed by OHM Remediation Services Corp. (OHM) under the supervision of the US Army Corps of Engineers (USACE) Seattle District. The remedial action included treatability mix design testing, mobilization and field setup, soil excavation and processing, and S/S treatment. Stabilized soil samples were collected as grab samples from the pugmill discharge conveyor at a rate of every 75 tons of soil feed, corresponding to an individual production lot. None of the 437 production lots failed to meet the UCS requirement of 50 psi, however, 31 (7%) of the 437 lots failed for either TCLP-leachable metals or explosives. With one exception, all production lots which failed were due to exceedances of the TCLP-leachable explosives requirements. Of these 30 lots, 22 lots were from the OU-5 metals sites and were not expected to contain significant amounts of explosives. The areas in the landfill corresponding to these lots were excavated and the material reprocessed.« less

  12. CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Cole; Guillochon, James; De Colle, Fabio

    2013-07-01

    Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range betweenmore » 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.« less

  13. 32 CFR 182.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Federal property or Federal governmental functions. Explosives or munitions emergency. A situation... explosives or munitions, an improvised explosive device (IED), other potentially explosive material or device, or other potentially harmful military chemical munitions or device, that creates an actual or...

  14. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  15. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  16. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  17. Edge-localized-modes in tokamaks

    DOE PAGES

    Leonard, Anthony W.

    2014-09-11

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heatmore » flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. As a result, encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.« less

  18. Edge-localized-modes in tokamaksa)

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.

    2014-09-01

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.

  19. The evolution of massive stars including mass loss - Presupernova models and explosion

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.

    1993-01-01

    The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.

  20. Explosive Characteristics of Carbonaceous Nanoparticles

    NASA Astrophysics Data System (ADS)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  1. 49 CFR 172.202 - Description of hazardous material on shipping papers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE... description must be indicated (by mass or volume, or by activity for Class 7 materials) and must include an... mass. For an explosive that is an article, such as Cartridges, small arms, the net explosive mass may...

  2. 49 CFR 176.140 - Segregation from other classes of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation from other classes of hazardous... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.140 Segregation from other classes of hazardous materials. (a) Class 1 (explosive) materials must be segregated...

  3. 49 CFR 176.140 - Segregation from other classes of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation from other classes of hazardous... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.140 Segregation from other classes of hazardous materials. (a) Class 1 (explosive) materials must be segregated...

  4. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Transport of Class 1 (explosive) materials in vehicle spaces. 176.168 Section 176.168 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed...

  5. 49 CFR 173.59 - Description of terms for explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... perforating guns, charged, oil well, without detonator. Articles consisting of a steel tube or metallic strip... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... fiber, metal or other material containing only propellant explosive. The term excludes charges, shaped...

  6. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol dinitrate]. Erythritol tetranitrate explosives..., trinitroglycerine]. Nitroglycide. Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives...

  7. An Experimental Study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, S.; Taylor, P.; Burns, M.

    2007-12-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a "tap density" granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionisation probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive and is initiated on axis from below by a smaller diameter cylinder of granular explosive or a booster charge. Four experiments were performed on a granular Ammonium Nitrate based non-ideal explosive (NIE). Two experiments were initiated directly with the PE4 booster and two were initiated from a train including a booster charge and a 1″ diameter copper cylinder containing the same NIE. Experimental data from the four experiments was reproducible and the observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster-initiated geometries with a higher input shock pressure into the granular explosive gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  8. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  9. Explosives and pyrotechnic propellants for use in long term deep space missions

    NASA Technical Reports Server (NTRS)

    Gorzynski, C. S., Jr.; Maycock, J. N.

    1973-01-01

    Explosives and pyrotechnic propellant materials which will withstand heat sterilization cycling at 125 C and ten year deep space aging under 10 to the minus 6th power torr and 66 C have been selected. The selection was accomplished through a detailed literature survey and an analytical evaluation of the physicochemical properties of the materials. The chemical components of the electroexplosive devices used in U.S. missiles and spacecraft were categorized into primary explosives, secondary explosives, and propellant ingredients. Kinetic data on such parameters as thermal decomposition and sublimation were obtained for these materials and used as a basis for the ten year life prediction. From these experimental data and some analytical calculations, a listing of candidate materials for deep space missions was made.

  10. Proposed Iraq/Afghanistan War-Lung Injury (IAW-LI) Clinical Practice Recommendations: National Academy of Sciences' Institute of Medicine Burn Pits Workshop.

    PubMed

    Szema, Anthony; Mirsaidi, Niely; Patel, Bhumika; Viens, Laura; Forsyth, Edward; Li, Jonathan; Dang, Sophia; Dukes, Brittany; Giraldo, Jheison; Kim, Preston; Burns, Matthew

    2017-11-01

    High rates of respiratory symptoms (14%) and new-onset asthma in previously healthy soldiers (6.6%) have been reported among military personnel post-deployment to Iraq and Afghanistan. The term Iraq/Afghanistan War-Lung Injury (IAW-LI) is used to describe the constellation of respiratory diseases related to hazards of war, such as exposure to burning trash in burn pits, improvised explosive devices, and sandstorms. Burnpits360.org is a nonprofit civilian website which voluntarily tracks medical symptoms among soldiers post-deployment to the Middle East. Subsequent to initiation of the Burnpits360.org website, the Department of Veterans Affairs started the Airborne Hazards and Open Burn Pit registry. This paper: (a) analyzes the latest 38 patients in the Burnpits360.org registry, validated by DD214 Forms; (b) compares strengths and weaknesses of both registries as outlined at the National Academy of Sciences Institute of Medicine Burn Pits Workshop; (c) further characterizes the spectrum of disease in IAW-LI; (d) describes the risk factors of affected populations; (e) summarizes current practices regarding management of the condition; and (f) defines future research objectives.

  11. Proposed Iraq/Afghanistan War-Lung Injury (IAW-LI) Clinical Practice Recommendations: National Academy of Sciences’ Institute of Medicine Burn Pits Workshop

    PubMed Central

    Szema, Anthony; Mirsaidi, Niely; Patel, Bhumika; Viens, Laura; Forsyth, Edward; Li, Jonathan; Dang, Sophia; Dukes, Brittany; Giraldo, Jheison; Kim, Preston; Burns, Matthew

    2015-01-01

    High rates of respiratory symptoms (14%) and new-onset asthma in previously healthy soldiers (6.6%) have been reported among military personnel post-deployment to Iraq and Afghanistan. The term Iraq/Afghanistan War-Lung Injury (IAW-LI) is used to describe the constellation of respiratory diseases related to hazards of war, such as exposure to burning trash in burn pits, improvised explosive devices, and sandstorms. Burnpits360.org is a nonprofit civilian website which voluntarily tracks medical symptoms among soldiers post-deployment to the Middle East. Subsequent to initiation of the Burnpits360.org website, the Department of Veterans Affairs started the Airborne Hazards and Open Burn Pit registry. This paper: (a) analyzes the latest 38 patients in the Burnpits360.org registry, validated by DD214 Forms; (b) compares strengths and weaknesses of both registries as outlined at the National Academy of Sciences Institute of Medicine Burn Pits Workshop; (c) further characterizes the spectrum of disease in IAW-LI; (d) describes the risk factors of affected populations; (e) summarizes current practices regarding management of the condition; and (f) defines future research objectives. PMID:26669772

  12. Combustion of Gaseous Mixtures

    NASA Technical Reports Server (NTRS)

    Duchene, R

    1932-01-01

    This report not only presents matters of practical importance in the classification of engine fuels, for which other means have proved inadequate, but also makes a few suggestions. It confirms the results of Withrow and Boyd which localize the explosive wave in the last portions of the mixture burned. This being the case, it may be assumed that the greater the normal combustion, the less the energy developed in the explosive form. In order to combat the detonation, it is therefore necessary to try to render the normal combustion swift and complete, as produced in carbureted mixtures containing benzene (benzol), in which the flame propagation, beginning at the spark, yields a progressive and pronounced darkening on the photographic film.

  13. Reliable classification of high explosive and chemical/biological artillery using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Desai, Sachi V.; Hohil, Myron E.; Bass, Henry E.; Chambers, Jim

    2005-05-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation utilizing a generic acoustic sensor. Based on the transient properties of the signature blast distinct characteristics arise within the different acoustic signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. The algorithm enables robust classification of various airburst signatures using acoustics. It is capable of being integrated within an existing chemical/biological sensor, a stand-alone generic sensor, or a part of a disparate sensor suite. When emplaced in high-threat areas, this added capability would further provide field personal with advanced battlefield knowledge without the aide of so-called "sniffer" sensors that rely upon air particle information based on direct contact with possible contaminated air. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km while maintaining temporal sequence of the data to keep relevance to the transient differences of the airburst signatures. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition the neural network then is capable of classifying new airburst signatures as Chemical/Biological or High Explosive.

  14. In Situ Bioremediation of Chlorinated Solvent Source Areas with Enhanced Mass Transfer

    DTIC Science & Technology

    2008-09-01

    immerse in cold water. Do not apply ointment , grease or Vaseline. Cover burns with thick, dry sterile dressings. Keep burned feet or legs elevated...about six to eight barrels per month of waste TCE and POL may have been disposed. These materials were also used to aid in burning other wastes...These consist of man-made fill in the trench areas and include debris and burned material. These materials typically extend to less than 12 ft bgs

  15. 49 CFR 176.156 - Defective packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... packages. (a) No leaking, broken, or otherwise defective package containing Class 1 (explosive) materials.... (b) No Class 1 (explosive) material, which for any reason has deteriorated or undergone a change of...

  16. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  17. Computational Modeling of Causal Mechanisms of Blast Wave Induced Traumatic Brain Injury - A Potential Tool for Injury Prevention

    DTIC Science & Technology

    2009-10-01

    detonation and expansion of the TNT explosive materials was described using the JWL (Jones-Wilkins-Lee) equation of state (EOS) along with a high...explosive material definition (Dobratz 1981). The JWL equation is described as: Where V= ρ0 (initial density of an explosive)/ρ (density of detonation...gas). E is specific internal energy. A, B, R1, R2, ω are JWL fitting parameters (Table 2). ρ0 Detonation velocity CJ pressure Material

  18. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.

  19. Non-detonable explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  20. 49 CFR 176.108 - Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  1. Thermal safety characterization on PETN, PBX-9407, LX-10-2, LX-17-1 and detonator in the LLNL's P-ODTX system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P. C.; Strout, S.; Reynolds, J. G.

    Incidents caused by fire and other thermal events can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Thus, it is important to understand the response of energetic materials to thermal insults. The One-Dimensional-Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) has been used for decades to characterize thermal safety of energetic materials. In this study, an integration of a pressure monitoring element has been added into the ODTX system (P-ODTX) to perform thermal explosion (cook-off) experiments (thermal runaway) on PETN powder, PBX-9407, LX-10-2, LX-17-1, and detonator samples (cupmore » tests). The P-ODTX testing generates useful data (thermal explosion temperature, thermal explosion time, and gas pressures) to assist with the thermal safety assessment of relevant energetic materials and components. This report summarizes the results of P-ODTX experiments that were performed from May 2015 to July 2017. Recent upgrades to the data acquisition system allows for rapid pressure monitoring in microsecond intervals during thermal explosion. These pressure data are also included in the report.« less

  2. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  3. Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: a tool for testing and developing sensitive and selective substrates for explosive detection.

    PubMed

    Bonnot, Karine; Bernhardt, Pierre; Hassler, Dominique; Baras, Christian; Comet, Marc; Keller, Valérie; Spitzer, Denis

    2010-04-15

    Among various methods for landmine detection, as well as soil and water pollution monitoring, the detection of explosive compounds in air is becoming an important and inevitable challenge for homeland security applications, due to the threatening increase in terrorist explosive bombs used against civil populations. However, in the last case, there is a crucial need for the detection of vapor phase traces or subtraces (in the ppt range or even lower). A novel and innovative generator for explosive trace vapors was designed and developed. It allowed the generation of theoretical concentrations as low as 0.24 ppq for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in air according to Clapeyron equations. The accurate generation of explosive concentrations at subppt levels was verified for RDX and 2,4,6-trinitrotoluene (TNT) using a gas chromatograph coupled to an electron capture detector (GC-ECD). First, sensing material experiments were conducted on a nanostructured tungsten oxide. The sensing efficiency of this material determined as its adsorption capacity toward 54 ppb RDX was calculated to be five times higher than the sensing efficiency of a 54 ppb TNT vapor. The material sensing efficiency showed no dependence on the mass of material used. The results showed that the device allowed the calibration and discrimination between materials for highly sensitive and accurate sensing detection in air of low vapor pressure explosives such as TNT or RDX at subppb levels. The designed device and method showed promising features for nanosensing applications in the field of ultratrace explosive detection. The current perspectives are to decrease the testing scale and the detection levels to ppt or subppt concentration of explosives in air.

  4. Elaboration of the Charge Constructions of Explosives for the Structure of Facing Stone

    NASA Astrophysics Data System (ADS)

    Khomeriki, Sergo; Mataradze, Edgar; Chikhradze, Nikoloz; Losaberidze, Marine; Khomeriki, Davit; Shatberashvili, Grigol

    2017-12-01

    Increased demand for high-strength facing material caused the enhancement of the volume of explosives use in modern technologies of blocks production. The volume of broken rocks and crushing quality depends on the rock characteristics and on the properties of the explosive, in particular on its brisance and serviceability. Therefore, the correct selection of the explosive for the specific massif is of a considerable practical importance. For efficient mining of facing materials by explosion method the solving of such problems as determination of the method of blasthole drilling as well as of the regime and charge values, selection of the explosive, blastholes distribution in the face and their order is necessary. This paper focuses on technical solutions for conservation of rock natural structure in the blocks of facing material, mined by the use of the explosives. It has been established that the efficient solving of mentioned problem is attained by reducing of shock pulse duration. In such conditions the rigidity of crystalline lattice increases in high pressure area. As a result, the hazard if crack formation in structural unites and the increases of natural cracks are excluded. Short-time action of explosion pulse is possible only by linear charges of the explosives, characterized by high detonation velocity which detonate by the velocity of 7-7.5 km/sec and are characterized by very small critical diameter.

  5. Mapping Calcium Rich Ejecta in Two Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2016-10-01

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.

  6. Spall response of annealed copper to direct explosive loading

    NASA Astrophysics Data System (ADS)

    Finnegan, S. G.; Burns, M. J.; Markland, L.; Goff, M.; Ferguson, J. W.

    2017-01-01

    Taylor wave spall experiments were conducted on annealed copper targets using direct explosive loading. The targets were mounted on the back of an explosive disc which was being used for a shock to detonation transition (SDT) test in a gas gun. This technique allows two experiments to be conducted with one piece of explosive. Explosive loading creates a high stress state within the target with a lower strain rate than an equivalent plate impact experiment, although the shock front will also have some curvature. Three shots were performed on two differently annealed batches of copper to investigate the viability of the technique and the effect of annealing on the spall response. One pair of targets was annealed at 850°C for four hours and the other target was annealed at 600°C for one hour. The free surface velocity (FSV) profiles were recorded using a Photonic Doppler Velocimetry (PDV) probe focused on the center of the target. The profiles were compared to predictions from the CREST reactive burn model. One profile recorded a significantly lower peak velocity which was attributed to the probe being located off center. Despite this, all three calculated spall strengths closely agreed and it was concluded that the technique is a viable one for loading an inert target.

  7. Final report for SERDP WP-2209 Replacement melt-castable formulations for Composition B

    DTIC Science & Technology

    2017-05-19

    Chemical reaction of the materials in the melt ............................................................... 5 Thermal degradation of materials...reasons other than the hazard of explosion, these include: • Chemical reaction of the materials in the melt • Thermal degradation at low...temperature • Sublimation and condensation of explosive material on equipment and exposure to workers Chemical reaction of the materials in the melt

  8. A Novel Classification System for Injuries After Electronic Cigarette Explosions.

    PubMed

    Patterson, Scott B; Beckett, Allison R; Lintner, Alicia; Leahey, Carly; Greer, Ashley; Brevard, Sidney B; Simmons, Jon D; Kahn, Steven A

    Electronic cigarettes (e-cigarettes) contain lithium batteries that have been known to explode and/or cause fires that have resulted in burn injury. The purpose of this article is to present a case study, review injuries caused by e-cigarettes, and present a novel classification system from the newly emerging patterns of burns. A case study was presented and online media reports for e-cigarette burns were queried with search terms "e-cigarette burns" and "electronic cigarette burns." The reports and injury patterns were tabulated. Analysis was then performed to create a novel classification system based on the distinct injury patterns seen in the study. Two patients were seen at our regional burn center after e-cigarette burns. One had an injury to his thigh and penis that required operative intervention after ignition of this device in his pocket. The second had a facial burn and corneal abrasions when the device exploded while he was inhaling vapor. The Internet search and case studies resulted in 26 cases for evaluation. The burn patterns were divided in direct injury from the device igniting and indirect injury when the device caused a house or car fire. A numerical classification was created: direct injury: type 1 (hand injury) 7 cases, type 2 (face injury) 8 cases, type 3 (waist/groin injury) 11 cases, and type 5a (inhalation injury from using device) 2 cases; indirect injury: type 4 (house fire injury) 7 cases and type 5b (inhalation injury from fire started by the device) 4 cases. Multiple e-cigarette injuries are occurring in the United States and distinct patterns of burns are emerging. The classification system developed in this article will aid in further study and future regulation of these dangerous devices.

  9. Environmental Studies on Open Burn/Open Detonation Disposal Sites. Transport and Fate of Nitroaromatic and Nitramine Explosives in Soils from Open Burning/Open Detonation Operations: Milan Army Ammunition Plant (MAAP)

    DTIC Science & Technology

    1993-12-01

    purposes of advertisement . This report has been approved for release to the public. Registered users should request additional copies from the Defense...DNT had a lower criterion of detection value than 2,6-DNT (ə.8 vs . ɛ.5 mg L-1 ); however, the 2,6-DNT values are also distributed about. this same...a.-. -4 .. ’ ’A- gm I- - rn I-. .s LA r-. LCu 4=, * *.,I, * * .,!, * ’ -4 n r-. 4=. c- vs LmJ Appendix B A ew% I.MA, m °= r-r Apdo o a

  10. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  11. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1995-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  12. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  13. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  14. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  15. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  16. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  17. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  18. Understanding ultrafine nanodiamond formation using nanostructured explosives

    PubMed Central

    Pichot, Vincent; Risse, Benedikt; Schnell, Fabien; Mory, Julien; Spitzer, Denis

    2013-01-01

    The detonation process is able to build new materials with a bottom-up approach. Diamond, the hardest material on earth, can be synthesized in this way. This unconventional synthesis route is possible due to the presence of carbon inside the high-explosive molecules: firing high-explosive mixtures with a negative oxygen balance in a non-oxidative environment leads to the formation of nanodiamond particles. Trinitrotoluene (TNT) and hexogen (RDX) are the explosives primarily used to synthesize nanodiamonds. Here we show that the use of nanostructured explosive charges leads to the formation of smaller detonation nanodiamonds, and it also provides new understanding of nanodiamond formation-mechanisms. The discontinuity of the explosive at the nanoscale level plays the key role in modifying the diamond particle size, and therefore varying the size with microstructured charges is impossible. PMID:23831716

  19. Modeling a Material's Instantaneous Velocity during Acceleration Driven by a Detonation's Gas-Push Process

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph E.

    2005-07-01

    This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.

  20. Strength of the phase change materials on loading with the products of electric explosion of conductors

    NASA Astrophysics Data System (ADS)

    Savenkov, Georgiy; Morozov, Viktor; Kats, Victor

    2018-05-01

    Results of the experimentation on the destruction of the phase change materials (beeswax and paraffin) by the electric explosion of conductors are presented. The process of the explosion of copper and nickel titanium wires in both pure PCM and its mixture with nonosized additives of cuprous oxide is analyzed. The effect of this additive on the process of the expansion of the electric-discharge plasma during the electric explosion of conductors and on the strength of composite materials is demonstrated. The piezoprobe-based method of measurement of the radial pressure during samples destruction is developed. The experiments made it possible to determine the dimensions of the melting channel formed inside the samples during the explosion and the subsequent expansion of the electric-discharge plasma. The experiments are performed on the generator of short-term high-voltage pulses capable to shape the voltage of (10-24) kV.

  1. Development of a reactive burn model based on an explicit viscoplastic pore collapse model

    NASA Astrophysics Data System (ADS)

    Bouton, E.; Lefrançois, A.; Belmas, R.

    2017-01-01

    The aim of this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the shock-initiation of pressed TATB high explosives. Such a model has been implemented in a lagrangian hydrodynamic code. In our calculations, 8 pore radii, ranging from 40 nm to 0.63 μm, have been taken into account and the porosity fraction associated to each void radius has been deduced from the Ultra-Small-Angle X-ray Scattering measurements (USAXS) for PBX-9502. The last parameter of our model is a burn rate that depends on three variables. The first two are the reaction progress variable and the lead shock pressure, the last one is the chemical reaction site number produced in the flow and calculated by the microscopic model. This burn rate has been calibrated by fitting pressure, velocity profiles and run distances to detonation. As the computed results are in close agreement with the measured ones, this model is able to perform a wide variety of numerical simulations including single, double shock waves and the desensitization phenomenon.

  2. Aluminum nanoparticles burning - still a puzzle?

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Popenko, E. M.

    2009-09-01

    The experimental data on the aluminum nanopowders (nAl) combustion in oxidizing media (air, propellants AP/HTPB/Al/HMX, and energetic compositions) assuming the phenomenon of nitrides formation with the high yield is generalized. In the present work, the nAl produced by electrical explosion of wires was studied. The temperature, burning rate, and radiation were measured at combustion and the actual burning process was recorded by a videocamera. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and chemical analysis were performed on the both initial powders and final condensed products. It was experimentally proved that the combustion process of aluminum nanoparticles was two staged independently of burning conditions in nitrogen-containing media. The formation of nitrides in presence of molecular nitrogen is the determining stage in the particles combustion. A qualitative discussion is given on the kinetic limitation for AlN (AlON) oxidation due to rapid condensation and encapsulation of solid AlN (AlON).

  3. A simple model for the dependence on local detonation speed of the product entropy

    NASA Astrophysics Data System (ADS)

    Hetherington, David C.; Whitworth, Nicholas J.

    2012-03-01

    The generation of a burn time field as a pre-processing step ahead of a hydrocode calculation has been mostly upgraded in the explosives modelling community from the historical model of singlespeed programmed burn to DSD/WBL (Detonation Shock Dynamics / Whitham Bdzil Lambourn). The problem with this advance is that the previously conventional approach to the hydrodynamic stage of the model results in the entropy of the detonation products (s) having the wrong correlation with detonation speed (D). Instead of being higher where D is lower, the conventional method leads to s being lower where D is lower, resulting in a completely fictitious enhancement of available energy where the burn is degraded! A technique is described which removes this deficiency of the historical model when used with a DSD-generated burn time field. By treating the conventional JWL equation as a semi-empirical expression for the local expansion isentrope, and constraining the local parameter set for consistency with D, it is possible to obtain the two desirable outcomes that the model of the detonation wave is internally consistent, and s is realistically correlated with D.

  4. A Simple Model for the Dependence on Local Detonation Speed (D) of the Product Entropy (S)

    NASA Astrophysics Data System (ADS)

    Hetherington, David

    2011-06-01

    The generation of a burn time field as a pre-processing step ahead of a hydrocode calculation has been mostly upgraded in the explosives modelling community from the historical model of single-speed programmed burn to DSD. However, with this advance has come the problem that the previously conventional approach to the hydrodynamic stage of the model results in S having the wrong correlation with D. Instead of being higher where the detonation speed is lower, i.e. where reaction occurs at lower compression, the conventional method leads to S being lower where D is lower, resulting in a completely fictitious enhancement of available energy where the burn is degraded! A technique is described which removes this deficiency of the historical model when used with a DSD-generated burn time field. By treating the conventional JWL equation as a semi-empirical expression for the local expansion isentrope, and constraining the local parameter set for consistency with D, it is possible to obtain the two desirable outcomes that the model of the detonation wave is internally consistent, and S is realistically correlated with D.

  5. β -decay rate of 59Fe in shell burning environment and its influence on the production of 60Fe in a massive star

    NASA Astrophysics Data System (ADS)

    Li, K. A.; Lam, Y. H.; Qi, C.; Tang, X. D.; Zhang, N. T.

    2016-12-01

    We deduced the stellar β -decay rate of 59Fe at typical carbon-shell burning temperature by taking the experimental Gamow-Teller transition strengths of the 59Fe excited states. The result is also compared with those derived from large-scale shell model calculations. The new rate is up to a factor of 2.5 lower than the theoretical rate of Fuller, Fowler, and Newman (FFN) and up to a factor of 5 higher than decay rate of Langanke and Martínez-Pinedo (LMP) in the temperature region 0.5 ≤T ≤2 GK. We estimated the impact of the newly determined rate on the synthesis of cosmic γ emitter 60Fe in C-shell burning and explosive C/Ne burning using a one-zone model calculation. Our results show that 59Fe stellar β decay plays an important role in 60Fe nucleosynthesis, even though the uncertainty of the decay rate is rather large due to the error of B (GT) strengths.

  6. Numerical study on tailoring the shock sensitivity of TATB-based explosives using mesostructural features

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo

    2017-06-01

    Advanced manufacturing techniques offer control of explosive mesostructures necessary to tailor its shock sensitivity. However, structure-property relationships are not well established for explosives so there is little material design guidance for these techniques. The objective of this numerical study is to demonstrate how TATB-based explosives can be sensitized to shocks using mesostructural features. For this study, we use LX-17 (92.5%wt TATB, 7.5%wt Kel-F 800) as the prototypical TATB-based explosive. We employ features with different geometries and materials. HMX-based explosive features, high shock impedance features, and pores are used to sensitive the LX-17. Simulations are performed in the multi-physics hydrocode, ALE3D. A reactive flow model is used to simulate the shock initiation response of the explosives. Our metric for shock sensitivity in this study is run distance to detonation as a function of applied pressure. These numerical studies are important because they guide the design of novel energetic materials. This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-724986.

  7. Novel laser induced photoacoustic spectroscopy for instantaneous trace detection of explosive materials.

    PubMed

    El-Sharkawy, Yasser H; Elbasuney, Sherif

    2017-08-01

    Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Detection of circumstellar material in a normal type Ia supernova.

    PubMed

    Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M

    2007-08-17

    Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.

  9. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  10. 49 CFR 176.146 - Segregation from non-hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation from non-hazardous materials. 176.146... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.146 Segregation from non... for “away from” segregation apply. (2) An explosive substance or article which has a secondary...

  11. 49 CFR 176.146 - Segregation from non-hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation from non-hazardous materials. 176.146... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.146 Segregation from non... for “away from” segregation apply. (2) An explosive substance or article which has a secondary...

  12. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  13. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  14. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  15. Do burns increase the severity of terror injuries?

    PubMed

    Peleg, Kobi; Liran, Alon; Tessone, Ariel; Givon, Adi; Orenstein, Arie; Haik, Josef

    2008-01-01

    The use of explosives and suicide bombings has become more frequent since October 2000. This change in the nature of terror attacks has marked a new era in the Israeli-Palestinian conflict. We previously reported that the incidence of thermal injuries has since risen. However, the rise in the incidence of burns among victims of terror was proportionate to the rise in the incidence of burns among all trauma victims. This paper presents data from the Israeli National Trauma Registry during the years 1997--2003, to compare the severity of injuries and outcome (mortality rates) in terror victims with and without burn injuries. We also compare the severity of injuries and outcome (mortality rates) for patients with terror-attack related burns to non terror-attack related burns during the same period. Data was obtained from the Israeli National Trauma Registry for all patients admitted to 8 to 10 hospitals in Israel between 1997 and 2003. We analyzed and compared demographic and clinical characteristics of 219 terror-related burn patients (terror/burn), 2228 terror patients with no associated burns (Terror/no-burn) and 6546 non terror related burn patients (burn/no-terror). Severity of injuries was measured using the injury severity score, and burn severity by total body surface percentage indices. Admission rates to Intensive Care Units (ICU) and total length of hospitalization were also used to measure severity of injuries. In-hospital mortality rates were used to indicate outcome. Of burn/terror patients, 87.2% suffered other accompanying injuries, compared with 10.4% of burn/no-terror patients. Of burn/terror patients, 49.8% were admitted to ICU compared with only 11.9% of burn/no-terror patients and 23.8% of no-burn/terror patients. Mean length of hospital stay was 18.5 days for the terror/burn group compared with 11.1 days for the burn/no-terror group and 9.5 days for the terror/no-burn group. Burn/terror patients had a significantly higher injury severity score compared with the other groups. In-hospital mortality rate for the burn/no-terror group was 3.4%. The burn/terror group had a mortality rate of 6.4% which was similar to the no-burn/terror group (6.6%). Terror-attack injuries with accompanying burns have a more complex presentation, are of higher severity, and are associated with increased length of hospital stay and a higher ICU admissions rate, compared with terror-attack injuries without burns and non terror-attack related burns. However, mortality rates in terror-attack injuries are not affected by burns.

  16. Cervical spine injuries in civilian victims of explosions: Should cervical collars be used?

    PubMed

    Klein, Yoram; Arieli, Izhar; Sagiv, Shaul; Peleg, Kobi; Ben-Galim, Peleg

    2016-06-01

    Semirigid cervical collars (SRCCs) are routinely applied to victims of explosions as part of the prehospital trauma protocols. Previous studies have shown that the use of SRCC in penetrating injuries is not justified because of the scarcity of unstable cervical spine injuries and the risk of obscuring other neck injuries. Explosion can inflict injuries by fragments penetration, blast injury, blunt force, and burns. The purpose of the study was to determine the occurrence of cervical spine instability without irreversible neurologic deficit and other potentially life-threatening nonskeletal neck injuries among victims of explosions. The potential benefits and risks of SRCC application in explosion-related injuries were evaluated. This is a retrospective cohort study of all explosion civilian victims admitted to Israeli hospitals during the years 1998 to 2010. Data collection was based on the Israeli national trauma registry and the hospital records and included demographic, clinical, and radiologic details of all patients with documented cervical spine injuries. The cohort included 2,267 patients. All of them were secondary to terrorist attacks. SRCC was applied to all the patients at the scene. Nineteen patients (0.83%) had cervical spine fractures. Nine patients (0.088%) had unstable cervical spine injury. All but one had irreversible neurologic deficit on admission. A total of 151 patients (6.6%) had potentially life-threatening penetrating nonskeletal neck injuries. Unstable cervical spine injuries secondary to explosion are extremely rare. The majority of unstable cervical spine fractures were secondary to penetrating injuries, with irreversible neurologic deficits on admission. The application of SRCC did not seem to be of any benefit in these patients and might pose a risk of obscuring other neck injuries. We recommend that SRCC will not be used in the prehospital management of victims of explosions. Prognostic/epidemiologic study, level III.

  17. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  18. 40 CFR 49.133 - Rule for agricultural burning permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (v) A description of the burning method(s) to be used (pile or stack burn, open field or broadcast burn, windrow burn, mobile field sanitizer, etc.) and the amount of material to be burned with each... person must comply with § 49.131 General rule for open burning or the EPA-approved Tribal open burning...

  19. NDIA 2018 IM and EM Technology Symposium: Innovative Insensitive Munition Solutions for Enhanced Warfighter Effectiveness

    DTIC Science & Technology

    2018-04-26

    decomposition of explosives, test materials and their mixtures. A DSC for each individual explosive, test material and mixture shall be run in duplicate... run in duplicate • Explosives and test materials are mixed in a 1:1 (w/w) ratio • Samples are heated at a rate of 5°C/min from room temperature to...warrants it. If a reaction occurs in ten trials, the load is reduced until there are no reactions observed in ten trials. The ESD test was run per a

  20. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

Top