Sample records for burning lightweight aggregate

  1. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for... prior to release to the atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes...

  2. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for... prior to release to the atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes...

  3. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  4. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  5. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  6. 77 FR 2535 - Agency Information Collection Activities; Proposed Collection; Comment Request; NESHAP for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... alternative ways to improve the collection activity. 6. Make sure to submit your comments by the deadline... which include hazardous waste burning incinerators, cement kilns, lightweight aggregate kilns...

  7. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...

  8. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...

  9. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...

  10. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as propane; (6) Hydrochloric acid and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen...) Hydrochloric acid and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed...

  11. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as propane; (6) Hydrochloric acid and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen...) Hydrochloric acid and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed...

  12. Moisture and Thermal Conductivity of Lightweight Block Walls

    NASA Astrophysics Data System (ADS)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  13. Effect of lightweight aggregates prepared from fly ash on lightweight concrete performances

    NASA Astrophysics Data System (ADS)

    Punlert, S.; Laoratanakul, P.; Kongdee, R.; Suntako, R.

    2017-09-01

    Lightweight aggregates were prepared from fly ash of by-products from the paper industry. The influence of the ratio of clay to fly ash and processing conditions on lightweight aggregates properties were investigated. It was found that the amount of fly ash directly affected to porosity of lightweight aggregates. Lightweight aggregates with the ratio of clay to fly ash at 80:20 wt% using the sintering temperature at 1210°C exhibits bulk density of 1.66 g cm-3, compressive strength of 25 MPa and water absorption of 0.55%. The replacement of coarse aggregates with lightweight aggregates at 100 wt% for concrete production showed the ultimate properties of concrete with density of 1780 g cm-3, water absorption of 3.55%, compressive strength of 40.94 MPa and thermal conductivity of 0.77 W m-1K-1. The concrete had more than 25% weight reduction while keeping a similar compressive strength to an ordinary concrete. This is revealed that lightweight aggregates could be applied into structural concrete because it was able to reduce work load and increase safety factor of construction.

  14. Lightweight aggregate abrasion study.

    DOT National Transportation Integrated Search

    1963-02-01

    The rapid increase in the use of lightweight aggregates in structural concrete has created a number of problems for the Materials Engineer in evaluating this type aggregate. Exhaustive studies are being made of a number of properties of lightweight a...

  15. Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge

    NASA Astrophysics Data System (ADS)

    Peng, Ching-Fang; Chen, How-Ji

    2018-02-01

    This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.

  16. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  17. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  18. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge.

    PubMed

    Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz

    2016-04-27

    This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production.

  19. Lightweight Concrete Produced Using a Two-Stage Casting Process.

    PubMed

    Yoon, Jin Young; Kim, Jae Hong; Hwang, Yoon Yi; Shin, Dong Kyu

    2015-03-25

    The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa.

  20. Lightweight Concrete Produced Using a Two-Stage Casting Process

    PubMed Central

    Yoon, Jin Young; Kim, Jae Hong; Hwang, Yoon Yi; Shin, Dong Kyu

    2015-01-01

    The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa. PMID:28788007

  1. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge

    PubMed Central

    Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz

    2016-01-01

    This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production. PMID:28773442

  2. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  3. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  4. The Feasibility of Palm Kernel Shell as a Replacement for Coarse Aggregate in Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Issa Ayash, Usama

    2016-03-01

    Implementing sustainable materials into the construction industry is fast becoming a trend nowadays. Palm Kernel Shell is a by-product of Malaysia’s palm oil industry, generating waste as much as 4 million tons per annum. As a means of producing a sustainable, environmental-friendly, and affordable alternative in the lightweight concrete industry, the exploration of the potential of Palm Kernel Shell to be used as an aggregate replacement was conducted which may give a positive impact to the Malaysian construction industry as well as worldwide concrete usage. This research investigates the feasibility of PKS as an aggregate replacement in lightweight concrete in terms of compressive strength, slump test, water absorption, and density. Results indicate that by using PKS for aggregate replacement, it increases the water absorption but decreases the concrete workability and strength. Results however, fall into the range acceptable for lightweight aggregates, hence it can be concluded that there is potential to use PKS as aggregate replacement for lightweight concrete.

  5. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    NASA Astrophysics Data System (ADS)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  6. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent

    PubMed Central

    Lee, Han-Seung; Ismail, Mohamed A.; Woo, Young-Je; Min, Tae-Beom; Choi, Hyun-Kook

    2014-01-01

    Structural lightweight concrete (SLWC) has superior properties that allow the optimization of super tall structure systems for the process of design. Because of the limited supply of lightweight aggregates in Korea, the development of structural lightweight concrete without lightweight aggregates is needed. The physical and mechanical properties of specimens that were cast using normal coarse aggregates and different mixing ratios of foaming agent to evaluate the possibility of creating structural lightweight concrete were investigated. The results show that the density of SLWC decreases as the dosage of foaming agent increases up to a dosage of 0.6%, as observed by SEM. It was also observed that the foaming agent induced well separated pores, and that the size of the pores ranged from 50 to 100 μm. Based on the porosity of concrete specimens with foaming agent, compressive strength values of structural lightweight foam concrete (SLWFC) were obtained. It was also found that the estimated values from proposed equations for compressive strength and modulus of elasticity of SLWFC, and values obtained by actual measurements were in good agreement. Thus, this study confirms that new structural lightweight concrete using normal coarse aggregates and foaming agent can be developed successfully. PMID:28788691

  7. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  8. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  9. Lightweight alumina refractory aggregate. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Objective was to develop a lightweight, high alumina refractory aggregate for use in various high performance insulating (low thermal conductivity) refractory applications (e.g., in the aluminium, glass, cement, and iron and steel industries). A new aggregate process was developed through bench and pilot-scale experiments involving extrusion of a blend of calcined and activated alumina powders and organic extrusion aids and binders. The aggregate, with a bulk density approaching 2.5 g/cc, exhibited reduced thermal conductivity and adequate fired strength compared to dense tabular aggregate. Refractory manufacturers were moderately enthusiastic over the results. Alcoa prepared an economic analysis for producing lightweight aggregate,more » based on a retrofit of this process into existing Alcoa production facilities. However, a new, competing lightweight aggregate material was developed by another company; this material (Plasmal{trademark})had a significantly more favorable cost base than the Alcoa/DOE material, due to cheap raw materials and fewer processing steps. In late 1995, Alcoa became a distributor of Plasmal. Alcoa estimated that {ge}75% of the market originally envisioned for the Alcoa/DOE aggregate would be taken by Plasmal. Hence, it was decided to terminate the contract without the full- scale demonstration.« less

  10. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.

    PubMed

    Kockal, Niyazi Ugur; Ozturan, Turan

    2010-07-15

    Influence of different lightweight fly ash aggregates on the behavior of concrete mixtures was discussed. The performance characteristics of lightweight concretes (LWCs) and normalweight concrete (NWC) were investigated through compressive strength, modulus of elasticity and splitting tensile strength representing the mechanical behavior; through rapid chloride permeability representing the transport properties and through rapid freezing and thawing cycling representing the durability of concrete. In order to investigate the aggregate-cement paste interfacial transition zone (ITZ), SEM observations were performed. Regression and graphical analysis of the experimental data obtained were also performed. An increase in compressive strength was observed with the increase in oven-dry density. The ratios of splitting tensile strength to compressive strength of lightweight aggregate concretes were found to be similar to that of normalweight concrete. All the 28- and 56-day concrete specimens had a durability factor greater than 85 and 90, respectively, which met the requirement for freezing and thawing durability. 2010 Elsevier B.V. All rights reserved.

  11. Utilization of sewage sludge in the manufacture of lightweight aggregate.

    PubMed

    Franus, Małgorzata; Barnat-Hunek, Danuta; Wdowin, Magdalena

    2016-01-01

    This paper presents a comprehensive study on the possibility of sewage sludge management in a sintered ceramic material such as a lightweight aggregate. Made from clay and sludge lightweight aggregates were sintered at two temperatures: 1100 °C (name of sample LWA1) and 1150 °C (name of sample LWA2). Physical and mechanical properties indicate that the resulting expanded clay aggregate containing sludge meets the basic requirements for lightweight aggregates. The presence of sludge supports the swelling of the raw material, thereby causing an increase in the porosity of aggregates. The LWA2 has a lower value of bulk particle density (0.414 g/cm(3)), apparent particle density (0.87 g/cm(3)), and dry particle density (2.59 g/cm(3)) than it is in the case of LWA1 where these parameters were as follows: bulk particle density 0.685 g/cm(3), apparent particle density 1.05 g/cm(3), and dry particle density 2.69 g/cm(3). Water absorption and porosity of LWA1 (WA = 14.4 %, P = 60 %) are lower than the LWA2 (WA = 16.2 % and P = 66 %). This is due to the higher heating temperature of granules which make the waste gases, liberating them from the decomposition of organic sewage sludge. The compressive strength of LWA2 aggregate is 4.64 MPa and for LWA1 is 0.79 MPa. Results of leaching tests of heavy metals from examined aggregates have shown that insoluble metal compounds are placed in silicate and aluminosilicate structure of the starting materials (clays and sludges), whereas soluble substances formed crystalline skeleton of the aggregates. The thermal synthesis of lightweight aggregates from clay and sludge mixture is a waste-free method of their development.

  12. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    NASA Astrophysics Data System (ADS)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  13. Installation and performance of lightweight aggregate asphaltic concrete test sections.

    DOT National Transportation Integrated Search

    1970-01-01

    In 1966 and 1968 test sections of asphaltic concrete overlays fabricated with coarse lightweight aggregate and fine limestone were installed in the Roanoke-Bedford area. The experimental mixes used were designed in an attempt to develop skid resistan...

  14. Influence of aggregate type and chemical admixtures on frost resistance of lightweight mortars

    NASA Astrophysics Data System (ADS)

    Klimek, Beata; Widomski, Marcin K.; Barnat-Hunek, Danuta

    2017-07-01

    The aim of studies presented in this paper covered analyses of type of lightweight aggregate as well as aeration and hydrophobic admixtures influence on absorbability and frost resistance of heat-insulating mortars applied in the energy-efficient construction. In the presented research, expanded perlite (EP) and expanded clay aggregate (ceramsite) were used as lightweight aggregates. The measurements of the basic mechanical and physical characteristics of tested mortars were performed, including, inter alia, compressive and flexural tensile strength, density, effective (open) and total porosity, absorbability, thermal conductivity as well as frost resistance after 25 cycles of freezing and thawing. Substitution of some part of sand fraction by the lightweight aggregates, expanded clay aggregate or perlite, resulted in changes in physical properties of the tested mortars. The observed decrease in density (specific weight), coefficient of heat transport and strength parameters were simultaneously accompanied by the increase in absorbability. Researches concerning frost resistance of mortars containing ceramsite and perlite showed the improved frost resistance of mortar utilizing perlite. Most of the tested mortars shoved satisfactory frost resistance, only samples of mortar containing ceramsite and aeration admixture were destroyed. The significant influence of aerating admixture on frost resistance of mortars was determined. Hydrophobic siloxanes addition failed to adequately protect the mortars against frost erosion, regardless the type of applied aggregate.

  15. Cost-Effective Uses of Lightweight Aggregate Made from Dredged Material in Construction

    DOT National Transportation Integrated Search

    2018-01-31

    Lightweight aggregate (LWA) can be used in concrete to reduce its self-weight and improve its workability and durability. It could potentially be used as borrow for embankment construction, which is expected to reduce the stresses on the subgrade fou...

  16. Evaluation and testing of a lightweight fine aggregate concrete bridge deck in Buchanan County, Iowa : tech transfer summaries.

    DOT National Transportation Integrated Search

    2016-05-01

    Using saturated lightweight fine aggregate (LWFA) in concrete mixtures : can replenish water that is depleted during cement hydration without : influencing the water-to-cement (w/c) ratio. This process, known as : internal curing (IC), can contribute...

  17. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

    PubMed Central

    Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta

    2017-01-01

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates. PMID:29186854

  18. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches.

    PubMed

    Chung, Sang-Yeop; Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta; Stephan, Dietmar

    2017-11-25

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  19. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Technology (MACT) Standards § 270.235 Options for incinerators, cement kilns, lightweight aggregate kilns... malfunction plan, design, and operating history. (2) Retain or add these permit requirements to the permit to... information including the source's startup, shutdown, and malfunction plan, design, and operating history; and...

  20. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    NASA Astrophysics Data System (ADS)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  1. Production of lightweight aggregates from washing aggregate sludge and fly ash

    NASA Astrophysics Data System (ADS)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs manufactured with 75%:25% and 50%:50% proportions of washing aggregate sludge:fly ash, heated at different temperatures and dwell times, were expanded LWAs (BI > 0). They showed the lowest loose bulk density, the lowest dry and apparent particle density, the lowest water absorption and the highest compressive strength. The possible applications of sintered pellets, taking into consideration compressive strength and water absorption values, could be similar to those of Arlita G3 (insulation, geotechnical applications, gardening and/or horticulture) and/or Arlita F3 (prefabricated lightweight structures and insulation lightweight concretes), two varieties of the most widely marketed LWAs in Spain. References - Benbow, J., September 1987. Mineral in fire protection construction support market. Industrial Minerals, 61-73. - Bethanis, S., Cheeseman, C.R., Sollars, C.J., 2004. Effect of sintering temperature on the properties and leaching of incinerator bottom ash. Waste Management and Research 22 (4), 255-264. - De' Gennaro, R., Cappelletti, P., Cerri, G., De' Gennaro, M., Dondi, M., Langella, A., 2004. Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay Science 25 (1-2), 71-81. - Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., López-Galindo, A., Setti, M.,Kooli, F., Zargouni, F., Jamoussi, F., 2007. Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science 35, 228-237. - UNE-EN-13055-1, 2003. Lightweight aggregates - lightweight aggregates for concrete, mortar and grout. - Yasuda, Y., 1991. Sewage-sludge utilization in Tokyo. Water Science and Technology 23 (10-12), 1743-1752.

  2. Artificial lightweight aggregates as utilization for future ashes - A case study.

    PubMed

    Sarabèr, Angelo; Overhof, Robert; Green, Terry; Pels, Jan

    2012-01-01

    In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The influence of aggregates type on W/C ratio on the strength and other properties of concrete

    NASA Astrophysics Data System (ADS)

    Malaiskiene, J.; Skripkiunas, G.; Vaiciene, M.; Karpova, E.

    2017-10-01

    The influence of different types of aggregates and W/C ratio on concrete properties is analysed. In order to achieve this aim, lightweight (with expanded clay aggregate) and normal concrete (with gravel aggregate) mixtures are prepared with different W/C ratios. Different W/C ratios are selected by reducing the amount of cement when the amount of water is constant. The following properties of concrete have been determined: density, compressive strength and water absorption. Additionally, the statistical data analysis is performed and influence of aggregate type and W/C ratio on concrete properties is determined. The empirical equations indicating dependence between concrete strength and W/C and strength of aggregate are obtained for normal concrete and light-weight concrete.

  4. Use of expanded clay aggregate in bituminous construction.

    DOT National Transportation Integrated Search

    1959-01-01

    In an effort to find a solution to the shortage of aggregate, for use in highway construction, Louisiana Department of Highways initiated a study. : In early 1955, we started experimenting with expanded aggregate or lightweight aggregate as commonly ...

  5. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Usingmore » 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant availability and throughput capacity and to produce quality lightweight aggregate for use in commercial applications.« less

  6. Mineral resource of the month: perlite

    USGS Publications Warehouse

    ,

    2010-01-01

    The article talks about perlite, which is a mineral used as an aggregate for lightweight construction products, filler for paints and horticultural soil blends. Perlite comes from viscous lava, mined and processed to produce lightweight material that competes with pumice, exfoliated vermiculite and expanded clay and shale. It is mined in about 35 countries that include Greece, Japan and the U.S. Other uses include insulation, concrete and plaster aggregate, and stonewashing.

  7. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs.

    PubMed

    Farías, Romina D; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-05-15

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.

  8. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    PubMed Central

    Farías, Romina D.; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-01-01

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs. PMID:28772892

  9. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  10. Durability of Geopolymer Lightweight Concrete Infilled LECA in Seawater Exposure

    NASA Astrophysics Data System (ADS)

    Razak, R. A.; Abdullah, M. M. A. B.; Yahya, Z.; Hamid, M. S. A.

    2017-11-01

    This paper describes a development of lightweight concrete using lightweight expanded clay aggregate (LECA) in fly ash (FA) based geopolymer immersed in seawater. The objective of this research is to compare the performance of geopolymer concrete (GPC) with ordinary Portland cement (OPC) concrete infilled lightweight expanded clay aggregate (LECA) in seawater exposure. Geopolymer concrete is produced by using alkaline activator to activate the raw material, FA. The highest compressive strength of this study is 42.0 MPa at 28 days and 49.8 MPa at 60 days. The density for this concrete is in the range of 1580 kg/m3 to 1660 kg/m3. The result for water absorption is in the range of 6.82% to 14.72%. However, the test results of weight loss is in the range between 0.30% to 0.43%.

  11. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.

    PubMed

    Kou, S C; Lee, G; Poon, C S; Lai, W L

    2009-02-01

    This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.

  12. Thermal properties of light-weight concrete with waste polypropylene aggregate

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.

  13. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.

    PubMed

    Akçaözoğlu, Semiha; Atiş, Cengiz Duran; Akçaözoğlu, Kubilay

    2010-02-01

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependent on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.

  14. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcaoezoglu, Semiha, E-mail: sakcaozoglu@nigde.edu.t; Atis, Cengiz Duran; Akcaoezoglu, Kubilay

    2010-02-15

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules usedmore » in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.« less

  15. Effect of basaltic pumice aggregate addition on the material properties of fly ash based lightweight geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Top, Soner; Vapur, Hüseyin

    2018-07-01

    In this study, fly ash (FA) based geopolymer (GP) concretes were produced by using a mixture of basaltic pumice (BP) aggregates and a fly ash (Class F) for lightweight concrete production. ANOVA Yates' test technique was applied to find out the effective curing parameters. BP aggregates were ground four different fractions of particle sizes as -12 + 4 mm, -4+0.425 mm, -0.425 + 0 mm and the one containing the size distribution of Turkish Standard 802. Also, effects of the curing time in the oven were investigated. The uniaxial compressive strength (UCS) (20-55 MPa), the point load strength (4-14 kN), the water absorption (1.05%-17%), the Mohs hardness (5.5-3) and the sonic speed values (4.12-2.72 km/sn) were measured. Stress-strain curves were graphed. The density of the concrete ranged from 1700 kg/m3 to 1792 kg/m3 which confirm the lightweight concretes.

  16. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdem, Savas, E-mail: evxse1@nottingham.ac.uk; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing.more » In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.« less

  17. Using a centrifuge for quality control of pre-wetted lightweight aggregate in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Miller, Albert E.

    Early age shrinkage of cementitious systems can result in an increased potential for cracking which can lead to a reduction in service life. Early age shrinkage cracking can be particularly problematic for high strength concretes, which are often specified due to their high strength and low permeability. However, these high strength concretes frequently exhibit a reduction in the internal relative humidity (RH) due to the hydration reaction (chemical shrinkage) and self-desiccation which results in a bulk shrinkage, termed autogenous shrinkage, which is substantial at early ages. Due to the low permeability of these concretes, standard external curing is not always efficient in addressing this reduction in internal RH since the penetration of water can be limited. Internal curing has been developed to reduce autogenous shrinkage. Internally cured mixtures use internal reservoirs filled with fluid (generally water) that release this fluid at appropriate times to counteract the effects of self-desiccation thereby maintaining a high internal RH. Internally cured concrete is frequently produced in North America using pre-wetted lightweight aggregate. One important aspect associated with preparing quality internally cured concrete is being able to determine the absorbed moisture and surface moisture associated with the lightweight aggregate which enables aggregate moisture corrections to be made for the concrete mixture. This thesis represents work performed to develop a test method using a centrifuge to determine the moisture state of pre-wetted fine lightweight aggregate. The results of the test method are then used in a series of worksheets that were developed to assist field technicians when performing the tests and applying the results to a mixture design. Additionally, research was performed on superabsorbent polymers to assess their ability to be used as an internal curing reservoir.

  18. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.

    2013-12-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.

  19. Utilization of lignite power generation residues for the production of lightweight aggregates.

    PubMed

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.

  20. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0-2mm) and industrial powder wastes by cold-bonding pelletization.

    PubMed

    Tang, P; Brouwers, H J H

    2017-04-01

    The cold-bonding pelletizing technique is applied in this study as an integrated method to recycle municipal solid waste incineration (MSWI) bottom ash fines (BAF, 0-2mm) and several other industrial powder wastes. Artificial lightweight aggregates are produced successfully based on the combination of these solid wastes, and the properties of these artificial aggregates are investigated and then compared with others' results reported in literature. Additionally, methods for improving the aggregate properties are suggested, and the corresponding experimental results show that increasing the BAF amount, higher binder content and addition of polypropylene fibres can improve the pellet properties (bulk density, crushing resistance, etc.). The mechanisms regarding to the improvement of the pellet properties are discussed. Furthermore, the leaching behaviours of contaminants from the produced aggregates are investigated and compared with Dutch environmental legislation. The application of these produced artificial lightweight aggregates are proposed according to their properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modification of Lightweight Aggregates' Microstructure by Used Motor Oil Addition.

    PubMed

    Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech

    2016-10-18

    An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %-8 wt %) caused marked changes in the aggregates' microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%-2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates' bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms.

  2. Mechanical Properties of Lightweight Concrete Using Recycled Cement-Sand Brick as Coarse Aggregates Replacement

    NASA Astrophysics Data System (ADS)

    Joohari, Ilya; Farhani Ishak, Nor; Amin, Norliyati Mohd

    2018-03-01

    This paper presents the result of replacing natural course aggregate with recycled cement-sand brick (CSB) towards the mechanical properties of concrete. Natural aggregates were used in this study as a control sample to compare with recycled coarse aggregates. This study was also carried to determine the optimum proportion of coarse aggregates replacement to produce lightweight concrete. Besides, this study was conducted to observe the crack and its behaviour development during the mechanical testing. Through this study, four types of concrete mixed were prepared, which were the control sample, 25%, 50% and 75% replacement of CSB. The test conducted to determine the effectiveness of recycled CSB as coarse aggregates replacement in this study were slump test, density measurement, compression test, and flexural test and. The strength of concrete was tested at 7 days and 28 days of curing. From the results obtained, the optimum proportion which produced the highest strength is 25% replacement of recycled CSB. The compressive and flexural strength has decreased by 10%-12% and 4%-34% respectively compared to the control sample. The presence of recycled coarse aggregates in sample has decreased the density of concrete by 0.8%-3% compared to the control sample.

  3. Lightweight aggregate production from claystone and shale in Bangladesh

    USGS Publications Warehouse

    Parker, Norbert A.; Khan, M.A.

    1976-01-01

    Muffle furnace tests were made on samples of clay, claystone, and shale collected in the Chittagong and Dacca areas of East Pakistan to determine their amenability to bloating for the commercial production of light-weight aggregate. Several areas, sampled in some detail, were selected for investigation because of their proximity to market, and accessibility to fuel and electricity. Muffle furnace tests show that the clay, claystone, and shale are natural bloaters at temperatures in the 1700? to 2200? F range, and do not require additives. The most desirable deposit, insofar as producing a strong aggregate is concerned, can be determined only by pilot-kiln testing and by crushing-strength tests made on concrete test cylinders. Reserves of suitable raw material are large in both the Chittagong and Dacca areas.

  4. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  5. Porosimetric, Thermal and Strength Tests of Aerated and Nonaerated Concretes

    NASA Astrophysics Data System (ADS)

    Strzałkowski, Jarosław; Garbalińska, Halina

    2017-10-01

    The paper presents the results of porosimetry tests of lightweight concretes, obtained with three research methods. Impact of different porosity structures on the basic thermal and strength properties was also evaluated. Tests were performed, using the pressure gauge method on fresh concrete mixes, as well as using the mercury porosimetry test and optic RapidAir method on specimens prepared from mature composites. The study was conducted on lightweight concretes, based on expanded clay aggregate and fly ash aggregate, in two variants: with non-aerated and aerated cement matrix. In addition, two reference concretes, based on normal aggregate, were prepared, also in two variants of matrix aeration. Changes in thermal conductivity λ and volumetric specific heat cv throughout the first three months of curing of the concretes were examined. Additionally, tests for compressive strength on cubic samples were performed during the first three months of curing. It was found that the pressure gauge method, performed on a fresh mix, gave lowered values of porosity, compared to the other methods. The mercury porosity tests showed high sensitivity in evaluation of pores smaller than 30μm. Unfortunately, this technique is not suitable for analysing pores greater than 300μm. On the other hand, the optical method proves good in evaluation of large pores, greater than 300μm. The paper also presents results of correlation of individual methods of porosity testing. A consolidated graph of the pore structure, derived from both mercury and optical methods, was presented, too. For the all of six tested concretes, differential graphs of porosity, prepared with both methods, show a very broad convergence. The thermal test results indicate usefulness of aeration of the cement matrix of the composites based on lightweight aggregates for the further reduction of the thermal conductivity coefficient λ of the materials. The lowest values of the λ coefficient were obtained for the aerated concretes based of fly ash aggregate. A diminishing influence of aeration on the volumetric heat capacity cv is clearly seen. Simultaneous aeration of the matrix and use of lightweight aggregates brought about also a significant decrease in the average compressive strength fcm of the tested composites.

  6. Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Nazrin Akmal, A. Z. Muhammad; Muthusamy, K.; Mat Yahaya, F.; Hanafi, H. Mohd; Nur Azzimah, Z.

    2017-11-01

    Realization on the increasing demand for river sand supply in construction sector has inspired the current research to find alternative material to reduce the use of natural sand in oil palm shell lightweight aggregate concrete (OPS LWAC) production. The existence of fly ash, a by-product generated from coal power plant, which pose negative impact to the environment when it is disposed as waste, were used in this research. The effect of fly ash content as partial sand replacement towards workability and compressive strength of OPS lightweight aggregate concrete were investigated. Four concrete mixes containing various percentage of fly ash that are 0%, 10%, 20% and 30% by weight of sand were used in the experimental work. All mixes were cast in form of cubes before subjected to water curing until the testing age. Compressive strength test were conducted at 1, 3, 7 and 28 days. The finding shows that the workability of the OPS LWAC decreases when more fly ash are used as sand replacement. It was found that adding of 10% fly ash as sand replacement content resulted in better compressive strength of OPS LWAC, which is higher than the control mix.

  7. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash.

    PubMed

    Huang, Su-Chen; Chang, Fang-Chih; Lo, Shang-Lien; Lee, Ming-Yu; Wang, Chu-Fang; Lin, Jyh-Dong

    2007-06-01

    In this study, artificial lightweight aggregate (LWA) manufactured from recycled resources was investigated. Residues from mining, fly ash from an incinerator and heavy metal sludge from an electronic waste water plant were mixed into raw aggregate pellets and fed into a tunnel kiln to be sintered and finally cooled rapidly. Various feeding and sintering temperatures were employed to examine their impact on the extent of vitrification on the aggregate surface. Microstructural analysis and toxicity characteristic leaching procedure (TCLP) were also performed. The results show that the optimum condition of LWA fabrication is sintering at 1150 degrees C for 15 min with raw aggregate pellets fed at 750 degrees C. The rapidly vitrified surface envelops the gas produced with the increase in internal temperature and cooling by spraying water prevents the aggregates from binding together, thus forming LWA with specific gravity of 0.6. LWA produced by sintering in tunnel kiln shows good vitrified surface, low water absorption rate below 5%, and low cylindrical compressive strength of 4.3 MPa. In addition, only trace amounts of heavy metals were detected, making the LWA non-hazardous for construction use.

  8. The analysis of mechanical properties of non autoclaved aerated concrete with the substitution of fly ash and bottom ash

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Muhammad, F.

    2018-02-01

    Based on PP. No.85 of 1999 on the management of hazardous and toxic (B3), fly ash and bottom ash wastes are categorized into B3 waste because there are heavy metal oxide contents that can pollute the environment. One form of environmental rescue that can be applied is to utilize waste fly ash and bottom ash in the manufacture of concrete. In this research, fly ash and bottom ash waste are used as substitution of cement and fine aggregate to make lightweight concrete. The purpose of this research is to know the mechanical properties of non-autoclaved aerated lightweight concrete (NAAC) with FA and BA substitution to cement and fine aggregate which is expected to improve the quality of concrete. The NAAC lightweight concrete in this study is divided into 4 categories: normal NAAC lightweight concrete, NAAC lightweight NAAC substituted concrete with FA, NAAC lightweight concrete substituted with BA, and NAAC combined light weight from FA and BA with variations of 10%, 20% And 30%. The test specimen used in cylindrical shape, which was tested at the age of 28 days, amounted to 90 pieces and consisted of 10 variations. Each variation amounted to 9 samples. Based on the test results with FA and BA substitutions of 10%, 20%, and 30%, the highest compressive strength was achieved in samples with FA 30% of 12.687 MPa, maximum tensile strength achieved in samples with FA 30% of 1,540 MPa, The highest absorption was achieved in normal NAAC of 5.66%. Based on the weight of the contents of all samples, samples can be categorized in lightweight concrete, since the weight of the contents is less than 1900 kg / m3.

  9. Effect of palm oil fuel ash on compressive strength of palm oil boiler stone lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd

    2018-04-01

    Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.

  10. The influence of partial replacement of hemp shives by expanded perlite on physical properties of hemp-lime composite

    NASA Astrophysics Data System (ADS)

    Brzyski, Przemysław; Widomski, Marcin

    2017-07-01

    The use of waste plants in building materials production is consistent with the principles of sustainable development, including waste management, CO2 balance, biodegradability of the material e.g. after building demolition. The porous structure of plant materials determines their usability as the insulation materials. An example of plant applicable in the construction industry is the industrial hemp. The shives are produced from the wooden core of the hemp stem as lightweight insulating filler in the composite based on lime binder. The discussed hemp-lime composite, due to the presence of lightweight, porous organic aggregates exhibits satisfactory thermal insulation properties and is used as filling and insulation of walls (as well as roofs and floors) in buildings of the wooden frame construction. The irregular shape of shives and their low density causes nonhomogenous compaction of composite and the formation of voids between the randomly arranged shives. In this paper the series of hemp-lime composites were tested. Apart from hemp shives, an additional aggregate - expanded perlite was used as a fine, lightweight, thermal insulating filler. Application of the additional aggregate was aimed to fill the voids between hemp shives and to investigate its influence on the physical properties of composite: apparent density, total porosity, water absorption and thermal conductivity.

  11. Valorisation of different types of boron-containing wastes for the production of lightweight aggregates.

    PubMed

    Kavas, T; Christogerou, A; Pontikes, Y; Angelopoulos, G N

    2011-01-30

    Four boron-containing wastes (BW), named as Sieve (SBW), Dewatering (DBW), Thickener (TBW) and Mixture (MBW) waste, from Kirka Boron plant in west Turkey were investigated for the formation of artificial lightweight aggregates (LWA). The characterisation involved chemical, mineralogical and thermal analyses as well as testing of their bloating behaviour by means of heating microscopy. It was found that SBW and DBW present bloating behaviour whereas TBW and MBW do not. Following the above results two mixtures M1 and M2 were prepared with (in wt.%): 20 clay mixture, 40 SBW, 40 DBW and 20 clay mixture, 35 SBW, 35 DBW, 10 quartz sand, respectively. Two different firing modes were applied: (a) from room temperature till 760 °C and (b) abrupt heating at 760 °C. The obtained bulk density for M1 and M2 pellets is 1.2g/cm(3) and 0.9 g/cm(3), respectively. The analysis of microstructure with electron microscopy revealed a glassy phase matrix and an extended formation of both interconnected and isolated, closed pores. The results indicate that SBW and DBW boron-containing wastes combined with a clay mixture and quartz sand can be valorised for the manufacturing of lightweight aggregates. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.

    PubMed

    Chen, Wenshuai; Li, Qing; Wang, Youcheng; Yi, Xin; Zeng, Jie; Yu, Haipeng; Liu, Yixing; Li, Jian

    2014-01-01

    This article describes the fabrication of nanocellulose fibers (NCFs) with different morphologies and surface properties from biomass resources as well as their self-aggregation into lightweight aerogels. By carefully modulating the nanofibrillation process, four types of NCFs could be readily fabricated, including long aggregated nanofiber bundles, long individualized nanofibers with surface C6 -carboxylate groups, short aggregated nanofibers, and short individualized nanofibers with surface sulfate groups. Free-standing lightweight aerogels were obtained from the corresponding aqueous NCF suspensions through freeze-drying. The structure of the aerogels could be controlled by manipulating the type of NCFs and the concentration of their suspensions. A possible mechanism for the self-aggregation of NCFs into two- or three-dimensional aerogel nanostructures was further proposed. Owing to web-like structure, high porosity, and high surface reactivity, the NCF aerogels exhibited high mechanical flexibility and ductility, and excellent properties for water uptake, removal of dye pollutants, and the use as thermal insulation materials. The aerogels also displayed sound-adsorption capability at high frequencies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Potential of scrap tire rubber as lightweight aggregate in flowable fill.

    PubMed

    Pierce, C E; Blackwell, M C

    2003-01-01

    Flowable fill is a self-leveling and self-compacting material that is rapidly gaining acceptance and application in construction, particularly in transportation and utility earthworks. When mixed with concrete sand, standard flowable fill produces a mass density ranging from 1.8 to 2.3 g/cm(3) (115-145 pcf). Scrap tires can be granulated to produce crumb rubber, which has a granular texture and ranges in size from very fine powder to coarse sand-sized particles. Due to its low specific gravity, crumb rubber can be considered a lightweight aggregate. This paper describes an experimental study on replacing sand with crumb rubber in flowable fill to produce a lightweight material. To assess the technical feasibility of using crumb rubber, the fluid- and hardened-state properties of nine flowable fill mixtures were measured. Mixture proportions were varied to investigate the effects of water-to-cement ratio and crumb rubber content on fill properties. Experimental results indicate that crumb rubber can be successfully used to produce a lightweight flowable fill (1.2-1.6 g/cm(3) [73-98 pcf]) with excavatable 28-day compressive strengths ranging from 269 to 1194 kPa (39-173 psi). Using a lightweight fill reduces the applied stress on underlying soils, thereby reducing the potential for bearing capacity failure and minimizing soil settlement. Based on these results, a crumb rubber-based flowable fill can be used in a substantial number of construction applications, such as bridge abutment fills, trench fills, and foundation support fills.

  14. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay.

  15. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    PubMed

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  16. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  17. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments

    PubMed Central

    Chen, How-Ji; Chang, Sheng-Nan; Tang, Chao-Wei

    2017-01-01

    This study aimed to apply the Taguchi optimization technique to determine the process conditions for producing synthetic lightweight aggregate (LWA) by incorporating tile grinding sludge powder with reservoir sediments. An orthogonal array L16(45) was adopted, which consisted of five controllable four-level factors (i.e., sludge content, preheat temperature, preheat time, sintering temperature, and sintering time). Moreover, the analysis of variance method was used to explore the effects of the experimental factors on the particle density, water absorption, bloating ratio, and loss on ignition of the produced LWA. Overall, the produced aggregates had particle densities ranging from 0.43 to 2.1 g/cm3 and water absorption ranging from 0.6% to 13.4%. These values are comparable to the requirements for ordinary and high-performance LWAs. The results indicated that it is considerably feasible to produce high-performance LWA by incorporating tile grinding sludge with reservoir sediments. PMID:29125576

  18. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments.

    PubMed

    Chen, How-Ji; Chang, Sheng-Nan; Tang, Chao-Wei

    2017-11-10

    This study aimed to apply the Taguchi optimization technique to determine the process conditions for producing synthetic lightweight aggregate (LWA) by incorporating tile grinding sludge powder with reservoir sediments. An orthogonal array L 16 (4⁵) was adopted, which consisted of five controllable four-level factors (i.e., sludge content, preheat temperature, preheat time, sintering temperature, and sintering time). Moreover, the analysis of variance method was used to explore the effects of the experimental factors on the particle density, water absorption, bloating ratio, and loss on ignition of the produced LWA. Overall, the produced aggregates had particle densities ranging from 0.43 to 2.1 g/cm³ and water absorption ranging from 0.6% to 13.4%. These values are comparable to the requirements for ordinary and high-performance LWAs. The results indicated that it is considerably feasible to produce high-performance LWA by incorporating tile grinding sludge with reservoir sediments.

  19. Resource recycling through artificial lightweight aggregates from sewage sludge and derived ash using boric acid flux to lower co-melting temperature.

    PubMed

    Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei

    2012-02-01

    This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.

  20. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Use of Reinforced Lightweight Clay Aggregates for Landslide Stabilisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herle, Vitezslav

    2008-07-08

    In spring 2006 a large landslide combined with rock fall closed a highway tunnel near Svitavy in NE part of Czech Republic and cut the main highway connecting Bohemia with Moravia regions. Stabilisation work was complicated by steep mountainous terrain and large inflow of surface and underground water. The solution was based on formation of a stabilisation fill made of reinforced free draining aggregates at the toe of the slope with overlying lightweight fill up to 10 m high reinforced with PET geogrid and steel mesh protecting soft easily degrading sandstone against weathering. Extensive monitoring made possible to compare themore » FEM analysis with real values. The finished work fits very well in the environment and was awarded a special prize in the 2007 transport structures contest.« less

  2. Experimental investigation on the morphology of soot aggregates from the burning of typical solid and liquid fuels

    NASA Astrophysics Data System (ADS)

    Huang, Dongmei; Guo, Chenning; Shi, Long

    2017-03-01

    Soot particles from the burning of typical fuels are one of the critical sources causing environmental problems and human disease. To understand the soot formation of these typical fuels, the size and morphology of soot aggregates produced from the burning of typical solid and liquid fuels, including diesel, kerosene, natural rubber (NR) latex foam, and wood crib, were studied by both extractive sampling and subsequent image analysis. The 2D and 3D fractal dimensions together with the diameter distribution of agglomerate and primary particles were analyzed for these four typical fuels. The average diameters of the primary particles were within 45-85 nm when sampling from different heights above the fire sources. Irregular sheet structures and flake-like masses were observed from the burning of NR latex foam and wood cribs. Superaggregates with a mean maximum length scale of over 100 μm were also found from the burning of all these four tested fuels. The fractal dimension of a single aggregate was 3 for all the tested fuels.

  3. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    PubMed Central

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days. PMID:24982946

  4. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    NASA Astrophysics Data System (ADS)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  5. Medium-term evolution of water repellency and aggregate stability in Mediterranean calcareous soils after wildfire

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel; García-Moreno, Jorge; Zavala, Lorena M.; Jordán, Antonio; Granged, Arturo JP; Gil, Juan

    2013-04-01

    Wildfires are a common feature of Mediterranean ecosystems due to environmental factors and anthropic influence, especially in those areas where land use change and the development of touristic infrastructures are more intense. Wildfires induce a series of soil changes affecting their physical and chemical properties and the hydrological and erosive response. Two of the properties that are commonly affected by burning are soil water repellency (WR) and aggregate stability (AS). Both properties play an important role in the hydrological response of soils and other processes, and may be used as indices for assessing burn severity (Gordillo-Rivero et al., 2013). OBJECTIVES The field study was carried out between August 2006 (date of burning) and August 2011 with the following objectives: [i] to study the changes in SWR and AS immediately after fire and in the medium-term (6 years after burning) and its distribution within aggregate size fractions (<2, 1-2, 0.5-1 and 0.25-0.5 mm), [ii] to assess the relationships between postfire AS and WR, and [iii] to investigate interactions between AS and WR and different factors (site, time since burning, lithology and vegetation type) in calcareous Mediterranean soils. METHODS Five areas affected by wildfires during summer 2006 were selected for this research. Vegetation was characterized by grassland and Mediterranean shrubland. Soils were calcareous, with loam to clayey texture. As shown from adjacent areas, soils were wettable or slightly water-repellent immediately before burning. Soil WR and AS were measured in soil samples (0-15 mm deep) in fine earth (<2 mm) and aggregate sieve fractions (1-2, 0.5-1 and 0.25-0.5 mm). WR was assessed using the WDPT test, and AS was determined as the percentage of stable aggregates after laboratory rainfall simulation. RESULTS Both properties showed different tendencies in different aggregate size fractions. Results showed that soil WR was induced in wettable soils or enhanced in slightly or moderately water-repellent soils after moderate severity burning. WR increased after fire especially in the finer fractions (0.25-0.5 mm) immediately after fire, and WR from finer aggregates (0.5-1 and 0.25-0.5 mm) varied or remained stable during the studied period, but did not contribute to general soil WR assessed in the fine earth fraction. AS increased significantly after the fire and was progressively reduced during the experimental period. Both properties returned progressively to pre-fire conditions during the study period. Soil resilience to low-moderate severity burning in the study area was very high. REFERENCES Gordillo-Rivero, A.J., García-Moreno, J., Jordán, A., Zavala, L.M. 2013. Monitoring fire impacts in soil water repellency and structure stability during 6 years. FLAMMA, 4(2):71-75.

  6. Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste

    NASA Astrophysics Data System (ADS)

    Kismi, M.; Poullain, P.; Mounanga, P.

    2012-07-01

    The development of low-cost lightweight aggregate (LWA) mortars and concretes presents many advantages, especially in terms of lightness and thermal insulation performances of structures. Low-cost LWA mainly comes from the recovery of vegetal or plastic wastes. This article focuses on the characterization of the thermal conductivity of innovative lightweight cementitious composites made with fine particles of rigid polyurethane (PU) foam waste. Five mortars were prepared with various mass substitution rates of cement with PU-foam particles. Their thermal conductivity was measured with two transient methods: the heating-film method and the hot-disk method. The incorporation of PU-foam particles causes a reduction of up to 18 % of the mortar density, accompanied by a significant improvement of the thermal insulating performance. The effect of segregation on the thermal properties of LWA mortars due to the differences of density among the cementitious matrix, sand, and LWA has also been quantified. The application of the hot-disk method reveals a gradient of thermal conductivity along the thickness of the specimens, which could be explained by a non-uniform repartition of fine PU-foam particles and mineral aggregates within the mortars. The results show a spatial variation of the thermal conductivity of the LWA mortars, ranging from 9 % to 19 %. However, this variation remains close to or even lower than that observed on a normal weight aggregate mortar. Finally, a self-consistent approach is proposed to estimate the thermal conductivity of PU-foam cement-based composites.

  7. 77 FR 20387 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... waste incinerators, hazardous waste cement kilns, hazardous waste lightweight aggregate kilns, hazardous..., notification if the owner or operator elects to comply with alternative requirements, initial performance tests...

  8. Internally cured concrete for pavement and bridge deck applications.

    DOT National Transportation Integrated Search

    2015-07-01

    A laboratory and field testing program was conducted to evaluate the performance and usability of internally : cured concrete (ICC) using lightweight aggregates for bridge decks and concrete pavement slabs under Florida : conditions. The laboratory t...

  9. Properties of lightweight cement-based composites containing waste polypropylene

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  10. Bridge decks : mitigation of cracking and increased durability.

    DOT National Transportation Integrated Search

    2016-06-01

    The application of pre-soaked lightweight aggregates (LWA) as an internal curing agent in concrete to reduce the cracking due to drying shrinkage is thoroughly studied in this report. It is determined that although LWA can significantly reduce autoge...

  11. Bridge Decks: Mitigation of Cracking and Increased Durability.

    DOT National Transportation Integrated Search

    2016-06-01

    The application of pre-soaked lightweight aggregates (LWA) as an internal curing agent in concrete to reduce the cracking due to drying shrinkage is thoroughly studied in this report. It is determined that although LWA can significantly reduce autoge...

  12. Evaluation of self-combustion risk in tire derived aggregate fills.

    PubMed

    Arroyo, Marcos; San Martin, Ignacio; Olivella, Sebastian; Saaltink, Maarten W

    2011-01-01

    Lightweight tire derived aggregate (TDA) fills are a proven recycling outlet for waste tires, requiring relatively low cost waste processing and being competitively priced against other lightweight fill alternatives. However its value has been marred as several TDA fills have self-combusted during the early applications of this technique. An empirical review of these cases led to prescriptive guidelines from the ASTM aimed at avoiding this problem. This approach has been successful in avoiding further incidents of self-combustion. However, at present there remains no rational method available to quantify self-combustion risk in TDA fills. This means that it is not clear which aspects of the ASTM guidelines are essential and which are accessory. This hinders the practical use of TDA fills despite their inherent advantages as lightweight fill. Here a quantitative approach to self-combustion risk evaluation is developed and illustrated with a parametric analysis of an embankment case. This is later particularized to model a reported field self-combustion case. The approach is based on the available experimental observations and incorporates well-tested methodological (ISO corrosion evaluation) and theoretical tools (finite element analysis of coupled heat and mass flow). The results obtained offer clear insights into the critical aspects of the problem, allowing already some meaningful recommendations for guideline revision. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Mineral resource potential map of the James River Face Wilderness, Bedford and Rockbridge counties, Virginia

    USGS Publications Warehouse

    Brown, C. Erwin; Gazdik, Gertrude C.

    1982-01-01

    The rocks in the James River Face Wilderness are shales and quartzites that overlie a meta-igneous basement. They are folded into a large southwestward-plunging anticline that is cut off on the east and south by an extensive thrust fault that brings old basement rocks over the younger sedimentary rocks. Geochemical studies of stream sediments, soils, and rocks do not reveal any unusually high metal concentrations, but a large resource of metallurgical-grade quartzite and shale suitable for structural clay products and lightweight aggregate is in the wilderness. Antietam (Erwin) Quartzite has been quarried at three sites in the wilderness as raw material for silicon used in the manufacture of ferrosilicon. Other uses included crushed rock for concrete aggregate, road metal, and railroad ballast, and sand for cement and mortar. Potential uses include ganister for silica brick and specialty sands such as filter and furnace sand. Firing tests on samples of shale from the Harpers (Hampton) Formation show that it could be used for the manufacture of brick and as lightweight aggregate. Of marginal economic interest are heavy-mineral layers in the basal Unicoi (Weverton) Formation.

  14. Alternative complement pathway activation increases mortality in a model of burn injury in mice.

    PubMed Central

    Gelfand, J A; Donelan, M; Hawiger, A; Burke, J F

    1982-01-01

    We have studied the role of the complement system in burn injury in an experimental model in mice. A 25% body surface area, full-thickness scald wound was produced in anesthetized animals. Massive activation of the alternative complement pathway, but not the classical pathway, was seen. This activation was associated with the generation of neutrophil aggregating activity in the plasma, neutrophil aggregates in the lungs, increased pulmonary vascular permeability, and increased lung edema formation. Decomplementation with cobra venom factor (CVF) or genetic C5 deficiency diminished these pathologic changes, and CVF pretreatment substantially reduced burn mortality in the first 24 h. Preliminary data show that human burn patients have a similar pattern of complement activation involving predominantly the alternative pathway, indicating the possible relevance of the murine model to human disease. Images PMID:7174787

  15. The effectiveness of stone ash and volcanic ash of mount Sinabung as a filler on the initial strength of self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.

    2018-02-01

    Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.

  16. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  17. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources (Abstract)

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  18. Development and evaluation of a lightweight sensor system for emission sampling from open area sources

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area sources, such as open burning. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, and black carbon, samplers for particulate matter with ...

  19. 64.1: Display Technologies for Therapeutic Applications of Virtual Reality

    PubMed Central

    Hoffman, Hunter G.; Schowengerdt, Brian T.; Lee, Cameron M.; Magula, Jeff; Seibel, Eric J.

    2015-01-01

    A paradigm shift in image source technology for VR helmets is needed. Using scanning fiber displays to replace LCD displays creates lightweight, safe, low cost, wide field of view, portable VR goggles ideal for reducing pain during severe burn wound care in hospitals and possibly in austere combat-transport environments. PMID:26146424

  20. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    NASA Astrophysics Data System (ADS)

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-02-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.

  1. Internal curing of high performance concrete using lightweight aggregates and other techniques.

    DOT National Transportation Integrated Search

    2014-02-01

    Internally cured concrete has been rapidly emerging over the last decade as an effective way to improve the : performance of concrete. Internal curing (IC) holds promise for producing concrete with an increased : resistance to early-age cracking and ...

  2. Development and evaluation of a lightweight sensor system ...

    EPA Pesticide Factsheets

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter with diameter of 2.5 µm or less (PM2.5), and volatile organic compounds (VOCs). This extended abstract, intended for oral presentation or poster presentation at this summer's AWMA conference, presents some of the first verification data from laboratory and burn calibration of a newly developed sensor and sampler system for ground and aerial sampling.

  3. Effect of different sintering temperature on fly ash based geopolymer artificial aggregate

    NASA Astrophysics Data System (ADS)

    Abdullah, Alida; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Tahir, Muhammad Faheem Mohd

    2017-04-01

    This research was conducted to study the mechanical and morphology of fly ash based geopolymer as artificial aggregate at different sintering temperature. The raw material that are used is fly ash, sodium hydroxide, sodium silicate, geopolymer artificial aggregate, Ordinary Portland Cement (OPC), coarse aggregate and fine aggregate. The research starts with the preparation of geopolymer artificial aggregate. Then, geopolymer artificial aggregate will be sintered at six difference temperature that is 400°C, 500°C, 600°C, 700°C, 800°C and 900°C to known at which temperature the geopolymer artificial aggregate will become a lightweight aggregate. In order to characterize the geopolymer artificial aggregate the X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF) was done. The testing and analyses involve for the artificial aggregate is aggregate impact test, specific gravity test and Scanning Electron Microscopy (SEM). After that the process will proceed to produce concrete with two type of different aggregate that is course aggregate and geopolymer artificial aggregate. The testing for concrete is compressive strength test, water absorption test and density test. The result obtained will be compared and analyse.

  4. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    PubMed

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  5. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    PubMed Central

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  6. Comparison of conventional and internally cured concrete bridge decks in Utah : Mountain View corridor project.

    DOT National Transportation Integrated Search

    2014-12-01

    The objectives of this research were to 1) monitor in-situ moisture and diffusivity for both conventional concrete : and concrete containing pre-wetted lightweight fine aggregate (LWFA), 2) compare deck performance in terms of : early-age cracking, c...

  7. Internal curing as a new tool for infrastructural renewal : reducing repair congestion, increasing service life, and improving sustainability.

    DOT National Transportation Integrated Search

    2014-04-01

    Internal curing has recently been developed as a new concrete technology that has the potential to : dramatically extend the service life of concrete infrastructure elements like bridge decks. Internal curing : uses prewetted lightweight aggregate in...

  8. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less

  9. Properties of cold-bonded lightweight artificial aggregate containing bottom ash with different curing regime

    NASA Astrophysics Data System (ADS)

    Mohamad Ibrahim, Norlia; Nizar Ismail, Khairul; Che Amat, Roshazita; Mohamad Ghazali, Mohamad Iqbal

    2018-03-01

    Cold-bonded pelletizing technique is frequently used in aggregate manufacturing process as it can minimise the energy consumption. It has contributed to both economical and environmental advantages because it helps to reduce the gas emissions problems. Bottom ash collected from municipal solid waste incineration (MSWI) plant was selected as raw material in this study and was utilised as a partial replacement for cement for artificial aggregate production. Several percentage of ash replacement was selected ranged from 10 to 50%. Aggregate pellets were subjected to different types of curing condition which is room-water (RW), room-room (RR), oven-room (OR) and oven-water (OW) condition. Properties of aggregate pellets were examined to obtain its density, water absorption, aggregate impact value (AIV) and specific gravity (SG). The results indicated that the most efficient curing regime is by exposing the aggregate in RW condition. The optimum aggregate was selected at 20% where it has satisfied the required density of 739.5kg/m3, and classified as strong aggregate with AIV 14. However, the water absorption of aggregate increased proportionately with the increment of ash content.

  10. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    PubMed Central

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-01-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25–2 mm), and micro- (0.053–0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics. PMID:28211507

  11. Evaluation and testing of a lightweight fine aggregate concrete bridge deck in Buchanan County, Iowa.

    DOT National Transportation Integrated Search

    2016-05-01

    Internal curing is a relatively new technique being used to promote hydration of portland cement concretes. The fundamental concept is : to provide reservoirs of water within the matrix such that the water does not increase the initial water/cementit...

  12. Modulus of elasticity, creep and shrinkage of concrete, phase II : part 1, creep study, final report.

    DOT National Transportation Integrated Search

    2009-10-01

    A laboratory testing program was performed to evaluate the physical and mechanical properties of typical Class II, IV, V, and VI concrete mixtures made with a Miami Oolite limestone, a Georgia granite, and a lightweight aggregate Stalite, including c...

  13. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management.

    PubMed

    Liu, Rui; Coffman, Reid

    2016-07-23

    More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio's Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow "infiltration" based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900-1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.

  14. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  15. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  16. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  17. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  18. 40 CFR 63.1207 - What are the performance testing requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerators, cement kilns, and lightweight aggregate kilns, you must commence the initial comprehensive... performance test operating conditions, as provided by paragraph (g)(1)(iii) of this section; (xiii) For cement... preheater or preheater/precalciner cement kilns with dual stacks, if you elect to use the emissions...

  19. Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes.

    PubMed

    Moreno-Maroto, José Manuel; González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodríguez, Luis; Acosta, Anselmo

    2017-09-15

    Three different wastes have been assessed for lightweight aggregate (LWA) manufacturing: granite and marble sludge (COR), sepiolite rejections (SEP) and polyethylene-hexene thermoplastics (P). A preliminary study of the physical and chemical properties of the raw materials was carried out to design proper batches. It was mixed 10% SEP with 90% COR to confer plasticity, and in turn, 0, 2.5, 5 and 10% (w/w) of P was added to check its suitability as a bloating agent. The mixtures were milled, kneaded with water, extruded, shaped into pellets, oven-dried and finally fired at 1100, 1125 and 1150 °C for 4, 8 and 16 min. The main technological properties of the aggregates related to bloating, density, porosity, loss on ignition, water absorption and compressive strength were measured. Scanning Electron Microscopy was used to study the microstructure of some LWAs. 23 out of 29 types of aggregate were lightweight, although neither bloating effect was observed, nor the typical cellular structure comprised of shell and core with relatively large pores was obtained, but a structure consisting of micropores and microchannels. The increase of temperature and time of firing involved a greater sintering, which in turn was translated into higher shrinkage, density and compressive strength values, but less porosity and water absorption. The addition of P did not involve any improvement, indeed it caused a significant decrease in compressive strength. The LWA sintered without P at the minimum time (4 min) and temperature of firing (1100 °C) was selected to assess its water suction capability. The results pointed out that this LWA could be suitable in hydroponics and/or water filtration systems, even better than the commercial LWA Arlita G3. A new and most environment-friendly perspective in LWA industry arises from here, promoting LWA production at relative low temperatures (prior to significant sintering occurs) and using non-plastic silty wastes instead of clays as major components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOEpatents

    Boyle, Michael J.

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  1. Effect of fly ash content towards Sulphate resistance of oil palm shell lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Fadzil, M. Y.; Nazrin Akmal, A. Z. Muhammad; Ahmad, S. Wan; Nur Azzimah, Z.; Hanafi, H. Mohd; Mohamad Hafizuddin, R.

    2018-04-01

    Both oil palm shell (OPS) and fly ash are by-product generated from the industries. Disposal of these by-product as wastes cause negative impact to the environment. The use of both oil palm shell and fly ash in concrete is seen as an economical solution for making green and denser concrete. The primary aim of this research is to determine the effects of FA utilization as sand replacement in oil palm shell lightweight aggregate concrete (OPS LWAC) towards sulphate resistance. Five concrete mixes containing fly ash as sand replacement namely 0%, 10%, 20%, 30% and 40% were prepared in these experimental work. All mixes were cast in form of cubes before subjected to sulphate solution for the period of 5 months. It was found that addition of 10% fly ash as sand replacement content resulted in better sulphate resistance of OPS LWAC. The occurrence of pozzolanic reaction due to the presence of FA in concrete has consumed the vulnerable Calcium hydroxide to be secondary C-S-H gel making the concrete denser and more durable.

  2. Landscape Assessment (LA)

    Treesearch

    Carl H. Key; Nathan C. Benson

    2006-01-01

    Landscape Assessment primarily addresses the need to identify and quantify fire effects over large areas, at times involving many burns. In contrast to individual case studies, the ability to compare results is emphasized along with the capacity to aggregate information across broad regions and over time. Results show the spatial heterogeneity of burns and how fire...

  3. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management

    PubMed Central

    Liu, Rui; Coffman, Reid

    2016-01-01

    More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio’s Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow “infiltration” based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900–1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system. PMID:28773734

  4. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    PubMed

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Thermodynamics between RAP/RAS and virgin aggregates during asphalt concrete production : a literature review.

    DOT National Transportation Integrated Search

    2015-09-01

    In hot-mix asphalt (HMA) plants, virgin aggregates are heated and dried separately before being mixed with : RAP/RAS and virgin asphalt binder. RAP/RAS materials are not heated or dried directly by a burner to avoid : burning of aged binder coating o...

  6. Performance of Rehabilitated Lightweight Aggregate Asphalt Concrete Pavements Under Wet and Heated Model Mobile Load Simulator Trafficking: A Comparative Study with the TxMLS

    DOT National Transportation Integrated Search

    2000-03-01

    One-third-scale Model Mobile Load Simulator Mk3 (MMLS3) tests were conducted on US 281 in Jacksboro, Texas, adjacent to the full-scale Texas Mobile Load Simulator (TxMLS). The objectives were to investigate the moisture susceptibility and relative pe...

  7. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    PubMed

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  8. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    PubMed Central

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372

  9. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization.

    PubMed

    Colangelo, Francesco; Cioffi, Raffaele

    2013-07-25

    In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production.

  10. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization

    PubMed Central

    Colangelo, Francesco; Cioffi, Raffaele

    2013-01-01

    In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production. PMID:28811427

  11. Inertial upper stage - Upgrading a stopgap proves difficult

    NASA Astrophysics Data System (ADS)

    Geddes, J. P.

    The technological and project management difficulties associated with the Inertial Upper Stage's (IUS) development and performance to date are assessed, with a view to future prospects for this system. The IUS was designed for use both on the interim Titan 34D booster and the Space Shuttle Orbiter. The IUS malfunctions and cost overruns reported are substantially due to the system's reliance on novel propulsion and avionics technology. Its two solid rocket motors, which were selected on the basis of their inherent safety for use on the Space Shuttle, have the longest burn time extant. A three-dimensional carbon/carbon nozzle throat had to be developed to sustain this long burn, as were lightweight composite wound cases and shirts, insulation, igniters, and electromechanical thrust vector control.

  12. Development of lightweight reinforced plastic laminates for spacecraft interior applications

    NASA Technical Reports Server (NTRS)

    Hertz, J.

    1975-01-01

    Lightweight, Kevlar - reinforced laminating systems that are non-burning, generate little smoke in the space shuttle environment, and are physically equivalent to the fiberglass/polyimide system used in the Apollo program for non-structural cabin panels, racks, etc. Resin systems representing five generic classes were screened as matrices for Kevlar 49 reinforced laminates. Of the systems evaluated, the polyimides were the most promising with the phenolics a close second. Skybond 703 was selected as the most promising resin candidate. With the exception of compression strength, all program goals of physical and mechanical properties were exceeded. Several prototype space shuttle mobility and translation handrail segments were manufactured using Kevlar/epoxy and Kevlar-graphite/epoxy. This application shows significant weight savings over the baseline aluminum configuration used previous. The hybrid Kevlar-graphite/epoxy is more suitable from a processing standpoint.

  13. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year

    USGS Publications Warehouse

    Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

    2011-01-01

    Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

  14. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures

    PubMed Central

    Abdulkareem, Omar A.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Binhussain, Mohammed

    2013-01-01

    This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates. PMID:28788339

  15. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures.

    PubMed

    Abdulkareem, Omar A; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Binhussain, Mohammed

    2013-10-09

    This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.

  16. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  17. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducman, V., E-mail: vilma.ducman@zag.si; Korat, L.; Legat, A.

    2013-12-15

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of poresmore » decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (μcT)« less

  18. "Fire Moss" Cover and Function in Severely Burned Forests of the Western United States

    NASA Astrophysics Data System (ADS)

    Grover, H.; Doherty, K.; Sieg, C.; Robichaud, P. R.; Fulé, P. Z.; Bowker, M.

    2017-12-01

    With wildfires increasing in severity and extent throughout the Western United States, land managers need new tools to stabilize recently burned ecosystems. "Fire moss" consists of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argentum. These mosses colonize burned landscapes quickly, aggregate soils, have extremely high water holding capacity, and can be grown rapidly ex-situ. In this talk, I will focus on our efforts to understand how Fire Moss naturally interacts with severely burned landscapes. We examined 14 fires in Arizona, New Mexico, Washington, and Idaho selecting a range of times since fire, and stratified plots within each wildfire by winter insolation and elevation. At 75+ plots we measured understory plant cover, ground cover, Fire Moss cover, and Fire Moss reproductive effort. On plots in the Southwest, we measured a suite of soil characteristics on moss covered and adjacent bare soil including aggregate stability, shear strength, compressional strength, and infiltration rates. Moss cover ranged from 0-75% with a mean of 16% across all plots and was inversely related to insolation (R2 = .32, p = <.01), directly related to elevation (R2 = .13, p = .02), and not related to slope (R2 = .02, p =.41). Moss covered areas had twice as much shear strength and compressional strength, and three times higher aggregate stability and infiltration rates as adjacent bare ground. These results will allow us to model locations where Fire Moss will naturally increase postfire hillslope soil stability, locations for targeting moss restoration efforts, and suggest that Fire Moss could be a valuable tool to mitigate post wildfire erosion.

  19. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    NASA Astrophysics Data System (ADS)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the original wall component type. Besides, two improved types of prefabricated wall had built-in steel lattice girders. The failure mode was the same for all the tested components: diagonal cracks occurred on the sides of each component due to their insufficient shear-force-capacity. The span deflection was measured during all the tests by means of LVDTs. Load-carrying capacities obtained in the tests were for all wall structure types similar and much higher (many times) than internal forces (i.e. bending moments and shear forces) calculated for a wind load acting on a typical hall building according to the German codes. An increased amount of EPS (up to 30 per cent in volume) did not influence significantly the wall structural strength. The use of the steel lattice girders caused some technological problems and led to a quality loss of the produced components. The future use of the lattice girders would require a change in the production process: it would have to be more labour consuming.

  20. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  1. A method and technique for installing light-weight fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Ballantine, T. J. (Inventor)

    1982-01-01

    A method of installing fragile, light-weight, high-temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is described. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which may be machined to required shape. The machined dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  2. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    PubMed

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  3. Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures

    PubMed Central

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating. PMID:24696666

  4. The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete.

    PubMed

    Kupaei, Ramin Hosseini; Alengaram, U Johnson; Jumaat, Mohd Zamin

    2014-01-01

    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.

  5. The Effect of Different Parameters on the Development of Compressive Strength of Oil Palm Shell Geopolymer Concrete

    PubMed Central

    Kupaei, Ramin Hosseini; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials—low calcium fly ash (FA) and oil palm shell (OPS)—as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength. PMID:25531006

  6. Effect of crumb rubber on the mechanical properties of crushed recycled pavement materials.

    PubMed

    Li, Jie; Saberian, Mohammad; Nguyen, Bao Thach

    2018-07-15

    The low-carbon footprint of using recycled construction and demolition (C&D) aggregates in civil engineering infrastructure applications has been considered to be a significant solution for the replacement of conventional pavement aggregates. Investigations regarding the use of crumb rubber in the base and subbase layers of pavement have been well documented. However, information on the effects of crumb rubber and its size within C&D aggregates as the base/subbase layers is still very limited. In this study, crumb rubber with particle sizes ranging from 400 to 600 μm (fine) to 10-15 mm (coarse), 20 mm recycled crushed concrete (RCC), and 20 mm crushed rock (CR) were used. The crumb rubber was added to the two groups of C&D aggregates at 0.5, 1 and 2% by weight percentages of the aggregates. The effect of crumb rubber on the mechanical properties (such as California bearing ratio, unconfined compressive strength, aggregate crushing value, dynamic lightweight cone penetrometer, Clegg impact value, Los Angeles abrasion values, and resilient modulus) of the C&D aggregates was then examined. Based on the experimental test results, it was found that crumb rubber can be recycled as a waste material for the base and subbase layers in the pavement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Morphologies and elemental compositions of local biomass burning particles at urban and glacier sites in southeastern Tibetan Plateau: Results from an expedition in 2010.

    PubMed

    Hu, Tafeng; Cao, Junji; Zhu, Chongshu; Zhao, Zhuzi; Liu, Suixin; Zhang, Daizhou

    2018-07-01

    Many studies indicate that the atmospheric environment over the southern part of the Tibetan Plateau is influenced by aged biomass burning particles that are transported over long distances from South Asia. However, our knowledge of the particles emitted locally (within the plateau region) is poor. We collected aerosol particles at four urban sites and one remote glacier site during a scientific expedition to the southeastern Tibetan Plateau in spring 2010. Weather and backward trajectory analyses indicated that the particles we collected were more likely dominated by particles emitted within the plateau. The particles were examined using an electron microscope and identified according to their sizes, shapes and elemental compositions. At three urban sites where the anthropogenic particles were produced mainly by the burning of firewood, soot aggregates were in the majority and made up >40% of the particles by number. At Lhasa, the largest city on the Tibetan Plateau, tar balls and mineral particles were also frequently observed because of the use of coal and natural gas, in addition to biofuel. In contrast, at the glacier site, large numbers of chain-like soot aggregates (~25% by number) were noted. The morphologies of these aggregates were similar to those of freshly emitted ones at the urban sites; moreover, physically or chemically processed ageing was rarely confirmed. These limited observations suggest that the biomass burning particles age slowly in the cold, dry plateau air. Anthropogenic particles emitted locally within the elevated plateau region may thus affect the environment within glaciated areas in Tibet differently than anthropogenic particles transported from South Asia. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mineral resource of the month: perlite

    USGS Publications Warehouse

    Bolen, Wallace

    2003-01-01

    Perlite is found in most homes, workplaces and schools. Most of the white ceiling tiles in offices and classrooms are made primarily of perlite. The soil around potted plants also has small white grains of perlite. Other than in these lightweight construction products and horticultural soil mixes, perlite is used in food processing for filtration and in natural gas processing as a low-temperature insulation that aids the gas liquefaction process. Perlite is also an excellent high temperature insulator and resists burning.

  9. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  10. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    PubMed Central

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  11. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.

    PubMed

    Wei, Na

    2015-05-07

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.

  12. Small angle X-ray scattering analysis of the effect of cold compaction of Al/MoO3 thermite composites.

    PubMed

    Hammons, Joshua A; Wang, Wei; Ilavsky, Jan; Pantoya, Michelle L; Weeks, Brandon L; Vaughn, Mark W

    2008-01-07

    Nanothermites composed of aluminum and molybdenum trioxide (MoO(3)) have a high energy density and are attractive energetic materials. To enhance the surface contact between the spherical Al nanoparticles and the sheet-like MoO(3) particles, the mixture can be cold-pressed into a pelleted composite. However, it was found that the burn rate of the pellets decreased as the density of the pellets increased, contrary to expectation. Ultra-small angle X-ray scattering (USAXS) data and scanning electron microscopy (SEM) were used to elucidate the internal structure of the Al nanoparticles, and nanoparticle aggregate in the composite. Results from both SEM imaging and USAXS analysis indicate that as the density of the pellet increased, a fraction of the Al nanoparticles are compressed into sintered aggregates. The sintered Al nanoparticles lost contrast after forming the larger aggregates and no longer scattered X-rays as individual particles. The sintered aggregates hinder the burn rate, since the Al nanoparticles that make them up can no longer diffuse freely as individual particles during combustion. Results suggest a qualitative relationship for the probability that nanoparticles will sinter, based on the particle sizes and the initial structure of their respective agglomerates, as characterized by the mass fractal dimension.

  13. Pumice deposits of the Klamath Indian Reservation, Klamath County, Oregon

    USGS Publications Warehouse

    Walker, George Walton

    1951-01-01

    A large volume of pumice is widely distributed over the Klamath Indian Reservation in 'flow' and 'fall' deposits. The flow material on the Reservation is restricted to the area west of Klamath Marsh, and the fall material is thickest immediately southeast of the Marsh. Tests of the chemical and physical properties of the pumice indicate that the pumice is suitable, with some limitations, for use as an aggregate and as a low-grade abrasive. Preliminary examination also indicates that with proper processing it may have a potential use as pozzuolana. The pumice is similar to material now being marketed for lightweight aggregate in Oregon, but processing of the pumice is necessary to obtain a suitable size distribution of the particles.

  14. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    PubMed

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.

  15. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry.

    PubMed

    Kanadasan, Jegathish; Fauzi, Auni Filzah Ahmad; Razak, Hashim Abdul; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-09-22

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.

  16. Modification of Lightweight Aggregates’ Microstructure by Used Motor Oil Addition

    PubMed Central

    Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech

    2016-01-01

    An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %–8 wt %) caused marked changes in the aggregates’ microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%–2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates’ bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms. PMID:28773964

  17. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems

    NASA Technical Reports Server (NTRS)

    Dietz, Anthony

    2014-01-01

    Hybrid turboelectric aircraft-with gas turbines driving electric generators connected to electric propulsion motors-have the potential to transform aircraft design. Decoupling power generation from propulsion enables innovative aircraft designs, such as blended-wing bodies, with distributed propulsion. These hybrid turboelectric aircraft have the potential to significantly reduce emissions, decrease fuel burn, and reduce noise, all of which are required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers.

  18. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    At present, 150 companies produce common clay and shale in 41 US states. According to the United States Geological Survey (USGS), domestic production in 2005 reached 24.8 Mt valued at $176 million. In decreasing order by tonnage, the leading producer states include North Carolina, Texas, Alabama, Georgia and Ohio. For the whole year, residential and commercial building construction remained the major market for common clay and shale products such as brick, drain tile, lightweight aggregate, quarry tile and structural tile.

  19. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  20. Highlights of worldwide production and utilization of coal ash -- A survey for the period 1959--1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, O.E.; Stewart, B.R.

    1997-09-01

    In 1960, the Coal Committee for the United Nations Economic Committee for Europe requested a group of rapporteurs to undertaken work on the utilization of ash from coal fueling thermal power stations. This later became the Group of Experts on the Utilization of Ash. In 1959, out of a world production of 100 million tons of ash, only 2% was put to use, whereas in 1969, about 15% of a production of 200 million tons was used. In 1989, 562 million tons were produced, and 90.5 million tons were used. The main uses of coal ash have been in cementmore » and concrete manufacture; in road construction and as filler on construction sites; in cellular concrete; and in lightweight aggregate and brick. Worldwide, in 1989, 27.7 million tons were used in cement and concrete manufacture, 23.6 million tons in road construction and as filler on construction sites, 2.8 million tons in cellular concrete, and 6.8 million tons in lightweight aggregate and bricks. This paper presents a worldwide survey of the production and utilization of coal ash from 1959 to 1989. The data were collected from various working papers of the US Group of Experts on the utilization of Ash and from two papers by O.E. Manz on the worldwide production and utilization of coal ash.« less

  1. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    PubMed Central

    Bouasker, Marwen; Belayachi, Naima; Hoxha, Dashnor; Al-Mukhtar, Muzahim

    2014-01-01

    The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw. PMID:28788605

  2. In the media: Burns as a method of assault.

    PubMed

    O'Halloran, E; Duke, J; Rea, S; Wood, F

    2013-09-01

    The aims of this study were to determine whether a change occurred in the pattern of assault burn injury cases hospitalised to the adult state burns unit, Western Australia, from 2004 to mid-year of 2012, and to compare patient and burn characteristics of adult assault burns with those admitted for unintentional burns. Study data were obtained from the Royal Perth Hospital (RPH) Burns Minimum Dataset (BMDS). Aggregated data of unintentional burn admissions during the same period were provided by the BMDS data manager to enable comparisons with assault burn patients. Assault burn admissions during 2004-2012 accounted for approximately 1% of all adult burn hospitalisations. All assault victims were burned by either thermal or scald agents. A high rate of intubation (24%) and ICU admission (1 in 3 cases) was observed in the fire assault group. The six assault cases undergoing intubation were severe burns, median TBSA 50%, most commonly affecting the face, head and torso, half of these cases had inhalational injuries and also required escharotomies. Comparison of admissions by calendar period showed no statistically significant differences in demographic, burn cause or TBSA%. However, statistically significant differences were found for pre-morbid psychiatric history (15% vs. 58%, p=0.025) and concomitant fractures or dislocations (46% vs. 2%), p=0.011). While the proportion of assault burn admissions per total burn admissions steadily increased from 0.4% in 2009 to 1.5% in mid-2012, this proportion did not exceed that peak level observed of 2.1% for 2004. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Mineral resource of the month: pumice and pumicite

    USGS Publications Warehouse

    ,

    2009-01-01

    The article offers information on pumice, an important commodity for the construction, horticulture and abrasives industries. The commodity is described as an extremely light, highly porous extrusive volcanic rock which was formed due to the rapid cooling of air-pocketed lava. It is noted that the characteristics of pumice make it as an ideal aggregate material in lightweight building blocks in the U.S. and abroad. The leading countries in terms of pumice production are Greece and the U.S.

  4. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    PubMed Central

    Kanadasan, Jegathish; Ahmad Fauzi, Auni Filzah; Abdul Razak, Hashim; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-01-01

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC. PMID:28793579

  5. An Analysis Framework Using Satellite Remote Sensing to Understand Landscape Patterns of High Severity Burns from Wildfires in Coastal Woodlands of California and Italy

    NASA Astrophysics Data System (ADS)

    Potter, C. S.

    2016-12-01

    The central California coastal landscape has a history of frequent large wildfires that have threatened or destroyed many residential structures at the wildland interface. This study starts with the largest wildfires on the Central Coast over the past 30 years and analyzes the fraction and landscape patterns of high severity burned (HBS) areas from the Landsat-based Monitoring Trends in Burn Severity (MTBS) data base as a function of weather conditions and topographic variations. Results indicate that maximum temperatures at the time of fire and the previous 12 months of rainfall explained a significant portion of the variation in total area burned and the fraction of HBS area. Average patch size and aggregation metrics of HBS areas were included in the analysis framework. Within each burned area, the Landsat (30-meter resolution) differenced Normalized Burn Ratio (dNBR), a continuous index of vegetation burn severity, was correlated against slope, aspect, and elevation to better understand landscape level-controls over HBS patches. The Landsat dNBR analysis framework is being extended next to the island of Sardinia, Italy for a comparison of Mediterranean climates and wildfire patterns since the mid-1980s.

  6. Inflatable partition for fighting mine fires

    DOEpatents

    Conti, Ronald S.; Lazzara, Charles P.

    1995-01-01

    The seal is a lightweight, inflatable, bag which may be inflated by a portable air generator and is used to seal a burning mine passage. A collapsible tube-like aperture extends through the seal and allows passage of high expansion foam through the seal in a feed tube. The foam fills the passageway and extinguishes the fire. In other embodiments, the feed tubes incorporate means to prevent collapse of the aperture. In these embodiments a shroud connects the feed tube to a foam generator. This seal allows creation of a high expansion foam fire fighting barrier even in upward sloping passages.

  7. RSRM-3 (360L003) Ballistics/Mass Properties Report

    NASA Technical Reports Server (NTRS)

    Laubacher, B. A.; Richards, M. C.

    1989-01-01

    The propulsion performance and reconstructed mass properties data from Morton Thiokol's RSRM-3 motors which were assigned to the STS-29 launch are presented. The composite type solid propellant burn rates were close to predicted. The performance of the pair of motors were compared to some CEI Specifications. The performance from each motor as well as matched pair performance values were well within the CEI specification requirements. The nominal thrust time curve and impulse gate information is included. Post flight reconstructed Redesigned Solid Rocket Motor (RSRM) mass properties are within expected values for the lightweight configuration.

  8. Fractal-like Tar Ball Aggregates from Wildfire Smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girotto, Giulia; China, Swarup; Bhandari, Janarjan

    Tar balls are atmospheric particles abundant in slightly aged biomass burning smoke and have a significant, but highly uncertain, role on Earth's radiative balance. Tar balls are typically detected using electron microscopy; they are resistant to the electron beam, and generally, they are observed as individual spheres. Here, we report new observations of a significant fraction of tar ball aggregates (~27% by number) from samples collected in a plume of the Whitewater-Baldy Complex fire in New Mexico. The structure of these aggregates is fractal-like and follows a scale invariant power law similar to that of soot particles, despite the considerablymore » larger size and smaller number of monomers. We also present observations of tar ball aggregates from four other geographical locations, including from a remote high elevation site in the North Atlantic Ocean. Aggregation affects the particle optical properties and therefore, their climatic impact. We performed numerical simulations based on the observed morphology and estimated the effects of aggregation on the tar balls optical properties. We find that aggregation can enhance single scattering albedo by up to 41%.« less

  9. The applicability of different waste materials for the production of lightweight aggregates.

    PubMed

    Ducman, V; Mirtic, B

    2009-08-01

    The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO(2) were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 degrees C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy. With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 degrees C homogeneously porous granules with a density down to 0.42 g/cm(3) were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 degrees C densities from 0.57 to 0.82 g/cm(3) were obtained.

  10. Study on the ratio and properties of the slurry of light insulation masonry with volcanic slag

    NASA Astrophysics Data System (ADS)

    Liguang, Xiao; Dawei, Jiang

    2017-12-01

    Volcanic slag is a kind of natural high quality porous material, and it has a good thermal insulation effect, and it is an extremely rich natural resource. Therefore, this paper adopts the natural volcanic slag as the aggregate to build the insulation mortar mix design for the slag masonry, and tests the related performance of the mortar. The results show that adopts natural volcanic slag as the aggregate and the cement use fly ash to replace, and the appropriate uniform sealing pores were introduced into the mortar mix. The performance of the manufactured products can meet the requirements of JC/T890. The coefficient of thermal conductivity of lightweight masonry mortar is less than 0.14W/(m•K), and the frost resistance is greater than 100 times, and it is with a low price.

  11. Development of advanced diagnostics for characterization of burning droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel droplet diameter, droplet regression rate, and the droplet internal temperature profiles or gradients at very high data rates in microgravity experiments.

  12. Ternary binder based plasters with improved thermal insulating ability

    NASA Astrophysics Data System (ADS)

    Čáchová, M.; Koňáková, D.; Vejmelková, E.; Vyšvařil, M.

    2017-10-01

    New kind of plasters with improved thermal insulating ability are presented in this article. Improvement was reached by utilization of lightweight expanded perlite with high porosity. The second used aggregate was silica sand. Regarding the binder, three kind were combined for the reason of better plaster performance. Pure lime, Portland cement and pozzolanic ceramic powder were employed. Basic physical properties and thermal characteristics were determined. The porosity of plasters reached desired higher value about 50% and the thermal conductivity in dry state was lower than 0.16 Wm-1K-1.

  13. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    NASA Astrophysics Data System (ADS)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  14. Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in common fuel-gas combustion sources and the ambient air

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Bang, J. J.; Esquivel, E. V.; Guerrero, P. A.; Lopez, D. A.

    2004-06-01

    Aggregated multiwall carbon nanotubes (with diameters ranging from ˜3 to 30nm) and related carbon nanocrystal forms ranging in size from 0.4 to 2 μm (average diameter) have been collected in the combustion streams for methane/air, natural gas/air, and propane gas/air flames using a thermal precipitator. Individual particle aggregates were collected on carbon/formvar-coated 3mm nickel grids and examined in a transmission electron microscope, utilizing bright-field imaging, selected-area electron diffraction analysis, and energy-dispersive X-ray spectrometry techniques. The natural gas and propane gas sources were domestic (kitchen) stoves, and similar particle aggregates collected in the outdoor air were correspondingly identified as carbon nanocrystal aggregates and sometimes more complex aggregates of silica nanocrystals intermixed with the carbon nanotubes and other carbon nanocrystals. Finally, and in light of the potential for methane-series gas burning as major sources of carbon nanocrystal aggregates in both the indoor and outdoor air, data for natural gas consumption and corresponding asthma deaths and incidence are examined with a degree of speculation regarding any significance in the correlations.

  15. 7 CFR 993.97 - Exhibit A; minimum standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... condition; (3) end cracks; (4) fermentation; (5) skin or flesh damage; (6) scab; (7) burned; (8) mold; (9... substantially affected. (3) End cracks means callous growth cracks, at the blossom end of prunes, aggregating... flavor is substantially affected. (5) Skin or flesh damage means growth cracks, splits, breaks in skin or...

  16. Study of the elastic behavior of synthetic lightweight aggregates (SLAs)

    NASA Astrophysics Data System (ADS)

    Jin, Na

    Synthetic lightweight aggregates (SLAs), composed of coal fly ash and recycled plastics, represent a resilient construction material that could be a key aspect to future sustainable development. This research focuses on a prediction of the elastic modulus of SLA, assumed as a homogenous and isotropic composite of particulates of high carbon fly ash (HCFA) and a matrix of plastics (HDPE, LDPE, PS and mixture of plastics), with the emphasis on SLAs made of HCFA and PS. The elastic moduli of SLA with variable fly ash volume fractions are predicted based on finite element analyses (FEA) performed using the computer programs ABAQUS and PLAXIS. The effect of interface friction (roughness) between phases and other computation parameters; e.g., loading strain, stiffness of component, element type and boundary conditions, are included in these analyses. Analytical models and laboratory tests provide a baseline for comparison. Overall, results indicate ABAQUS generates elastic moduli closer to those predicted by well-established analytical models than moduli predicted from PLAXIS, especially for SLAs with lower fly ash content. In addition, an increase in roughness, loading strain indicated increase of SLAs stiffness, especially as fly ash content increases. The elastic moduli obtained from unconfined compression generally showed less elastic moduli than those obtained from analytical and ABAQUS 3D predictions. This may be caused by possible existence of pre-failure surface in specimen and the directly interaction between HCFA particles. Recommendations for the future work include laboratory measurements of SLAs moduli and FEM modeling that considers various sizes and random distribution of HCFA particles in SLAs.

  17. Polyimide/Glass Composite High-Temperature Insulation

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon

    2009-01-01

    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  18. Photograph-based diagnosis of burns in patients with dark-skin types: the importance of case and assessor characteristics.

    PubMed

    Boissin, C; Laflamme, L; Wallis, L; Fleming, J; Hasselberg, M

    2015-09-01

    This study assessed whether photographs of burns on patients with dark-skin types could be used for accurate diagnosing and if the accuracy was affected by physicians' clinical background or case characteristics. 21 South-African cases (Fitzpatrick grades 4-6) of varying complexity were photographed using a camera phone and uploaded on a web-survey. Respondents were asked to assess wound depth (3 categories) and size (in percentage). A sample of 24 burn surgeons and emergency physicians was recruited in South-Africa, USA and Sweden. Measurements of accuracy (using percentage agreement with bedside diagnosis), inter- (n=24), and intra-rater (n=6) reliability (using percentage agreement and kappa) were computed for all cases aggregated and by case characteristic. Overall diagnostic accuracy was 67.5% and 66.0% for burn size and depth, respectively. It was comparable between burn surgeons and emergency physicians and between countries of practice. However, the standard deviations were smaller, showing higher similarities in diagnoses for burn surgeons and South-African clinicians compared to emergency physicians and clinicians from other countries. Case characteristics (child/adult, simple/complex wound, partial/full thickness) affected the results for burn size but not for depth. Inter- and intra-rater reliability for burn depth was 55% and 77%. Size and depth of burns on patients with dark-skin types could be assessed at least as well using photographs as at bedside with 67.5% and 66.0% average accuracy rates. Case characteristics significantly affected the accuracy for burn size, but medical specialty and country of practice seldom did in a statistically significant manner. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  19. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    PubMed

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  20. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.

    PubMed

    Gordeyeva, Korneliya S; Fall, Andreas B; Hall, Stephen; Wicklein, Bernd; Bergström, Lennart

    2016-06-15

    Aggregation of dispersed rod-like particles like nanocellulose can improve the strength and rigidity of percolated networks but may also have a detrimental effect on the foamability. However, it should be possible to improve the strength of nanocellulose foams by multivalent ion-induced aggregation if the aggregation occurs after the foam has been formed. Lightweight and highly porous foams based on TEMPO-mediated oxidized cellulose nanofibrils (CNF) were formulated with the addition of a non-ionic surfactant, pluronic P123, and CaCO3 nanoparticles. Foam volume measurements show that addition of the non-ionic surfactant generates wet CNF/P123 foams with a high foamability. Foam bubble size studies show that delayed Ca-induced aggregation of CNF by gluconic acid-triggered dissolution of the CaCO3 nanoparticles significantly improves the long-term stability of the wet composite foams. Drying the Ca-reinforced foam at 60 °C results in a moderate shrinkage and electron microscopy and X-ray tomography studies show that the pores became slightly oblate after drying but the overall microstructure and pore/foam bubble size distribution is preserved after drying. The elastic modulus (0.9-1.4 MPa) of Ca-reinforced composite foams with a density of 9-15 kg/m(3) is significantly higher than commercially available polyurethane foams used for thermal insulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning

    NASA Astrophysics Data System (ADS)

    Khoshnevis, Hamed; Mint, Sandar Myo; Yedinak, Emily; Tran, Thang Q.; Zadhoush, Ali; Youssefi, Mostafa; Pasquali, Matteo; Duong, Hai M.

    2018-02-01

    In this study, we apply an advanced floating catalyst method to fabricate carbon nanotube (CNT) aerogels at super high deposition rate for oil spill cleaning. The aerogels consist of 3D porous network of stacking double-walled CNT bundles with low catalyst impurity (9%) and high thermal stability (650 °C). With high porosity, surface areas, and water contact angles, the CNT aerogels exhibit a high oil adsorption of up to 107 g/g and good reusability of up to four adsorption-burning cycles. This work suggests that the lightweight, porous, and super hydrophobic CNT aerogels can be promising sorbent materials for environmental applications.

  2. Predictive Factors of Mortality in Burn Patients

    PubMed Central

    Fazeli, Shahram; Karami-Matin, Reza; Kakaei, Neda; Pourghorban, Samira; Safari-Faramani, Roya; Safari-Faramani, Bahare

    2014-01-01

    Background: Burn injuries impose a considerable burden on healthcare systems in Iran. It is among the top ten causes of mortality and a main cause of disability. Objectives: This study aimed to examine factors influencing mortality in burn patients admitted to the main educational tertiary referral hospital in Kermanshah. Patients and Methods: All patients admitted to the Imam Khomeini Hospital (from March 2011 to March 2012), due to thermal burn injuries were included in the study. We applied multiple logistic regressions to identify risk and protective factors of mortality. Also we calculated lethal area fifty percent (LA50), as an aggregate index for hospital quality. Results: During the study period, 540 burn patients were admitted. Male to female ratio was 1.12:1. Twenty three percent of the patients were less than 15 years-old. Median of age was 25 years (Inter Quartile Range, 16 - 37). Overall, probability of death was 25.8%. Lethal area fifty percent (LA50) was 50.82 (CI 95%: 47.76 - 54.48). In the final model, after adjustment of sex, age, total body surface area (TBSA), cause of burn and it’s severity, female gender (P < 0.05), age ≥ 60 years (in comparison with age less than 15 years, P < 0.05) and larger burn size (P < 0.0001) were identified as the main risk factors of death in these patients. Conclusions: Findings showed that the main risk factors of death were female gender, burn size and old age. Directing more attention to these vulnerable patients is required to reduce mortality and improve patient survival. PMID:24719826

  3. LA50 in burn injuries.

    PubMed

    Seyed-Forootan, K; Karimi, H; Motevalian, S A; Momeni, M; Safari, R; Ghadarjani, M

    2016-03-31

    Burn injuries put a huge financial burden on patients and healthcare systems. They are the 8th leading cause of mortality and the 13th most common cause of morbidity in our country. We used data from our Burn Registry Program to evaluate risk factors for mortality and lethal area fifty percent (LA50) in all burn patients admitted over two years. We used multiple logistic regressions to identify risk factors for mortality. LA50 is a reliable aggregate index for hospital care quality and a good measure for comparing results, also with those of other countries. 28,690 burn patients sought medical attention in the Emergency Department, and 1721 of them were admitted. Male to female ratio was 1,75:1. 514 patients were under 15 years old. Median age was 25 (range: 3 months - 93 years). Overall, probability of death was 8.4%. LA50 was 62.31% (CI 95%: 56.57-70.02) for patients aged 15 and over and 72.52% (CI 95%: 61.01-100) for those under 15. In the final model, we found that Adjusted OR was significant for age, female sex, TBSA and inhalation injury (P < 0.05). LA50 values showed that children tolerate more extensive burns. Female sex, burn size, age and inhalation injury were the main risk factors for death. Authorities should pay special attention to these variables, especially in prevention programs, to reduce mortality and improve patient outcome. Children have better outcome than adults given equal burn size. Suicide rates are higher for women than men in our country.

  4. Characterization of the particulate emissions from the BP Deepwater Horizon surface oil burns.

    PubMed

    Gullett, Brian K; Hays, Michael D; Tabor, Dennis; Wal, Randy Vander

    2016-06-15

    Sampling of the smoke plumes from the BP Deepwater Horizon surface oil burns led to the unintentional collection of soot particles on the sail of an instrument-bearing, tethered aerostat. This first-ever plume sampling from oil burned at an actual spill provided an opportunistic sample from which to characterize the particles' chemical properties for polycyclic aromatic hydrocarbons (PAHs), organic carbon, elemental carbon, metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) and physical properties for size and nanostructure. Thermal-optical analyses indicated that the particulate matter was 93% carbon with 82% being refractory elemental carbon. PAHs accounted for roughly 68μg/g of the PM filter mass and 5mg/kg oil burned, much lower than earlier laboratory based studies. Microscopy indicated that the soot is distinct from more common soot by its aggregate size, primary particle size, and nanostructure. PM-bound metals were largely unremarkable but PCDD/PCDF formation was observed, contrary to other's findings. Levels of lighter PCDD/PCDF and PAH compounds were reduced compared to historical samples, possibly due to volatilization or photo-oxidation. Published by Elsevier Ltd.

  5. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes.

    PubMed

    Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching

    2016-08-29

    Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40-0.50) decreased the filling ability and led to an increased T 50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC.

  6. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes

    PubMed Central

    Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching

    2016-01-01

    Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40–0.50) decreased the filling ability and led to an increased T50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC. PMID:28773857

  7. Relationship between fire temperature and changes in chemical soil properties: a conceptual model of nutrient release

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Doerr, Stefan H.

    2014-05-01

    The purpose of this study was to evaluate the effects of fire temperatures (i.e., soil heating) on nutrient release and aggregate physical changes in soil. A preliminary conceptual model of nutrient release was established based on results obtained from a controlled burn in a slash-and-burn agricultural system located in Brazil. The study was carried out in clayey subtropical soil (humic Cambisol) from a plot that had been fallow for 8 years. A set of three thermocouples were placed in four trenches at the following depths: 0 cm on the top of the mineral horizon, 1.0 cm within the mineral horizon, and 2 cm within the mineral horizon. Three soil samples (true independent sample) were collected approximately 12 hours post-fire at depths of 0-2.5 cm. Soil chemical changes were more sensitive to fire temperatures than aggregate physical soil characteristics. Most of the nutrient response to soil heating was not linear. The results demonstrated that moderate temperatures (< 400°C) had a major effect on nutrient release (i.e., the optimum effect), whereas high temperatures (> 500 °C) decreased soil fertility.

  8. Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases.

    PubMed

    Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe

    2012-01-01

    Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists ("priming effect"). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic.

  9. Near real-time estimation of burned area using VIIRS 375 m active fire product

    NASA Astrophysics Data System (ADS)

    Oliva, P.; Schroeder, W.

    2016-12-01

    Every year, more than 300 million hectares of land burn globally, causing significant ecological and economic consequences, and associated climatological effects as a result of fire emissions. In recent decades, burned area estimates generated from satellite data have provided systematic global information for ecological analysis of fire impacts, climate and carbon cycle models, and fire regimes studies, among many others. However, there is still need of near real-time burned area estimations in order to assess the impacts of fire and estimate smoke and emissions. The enhanced characteristics of the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m channels on board the Suomi National Polar-orbiting Partnesship (S-NPP) make possible the use of near real-time active fire detection data for burned area estimation. In this study, consecutive VIIRS 375 m active fire detections were aggregated to produce the VIIRS 375 m burned area (BA) estimation over ten ecologically diverse study areas. The accuracy of the BA estimations was assessed by comparison with Landsat-8 supervised burned area classification. The performance of the VIIRS 375 m BA estimates was dependent on the ecosystem characteristics and fire behavior. Higher accuracy was observed in forested areas characterized by large long-duration fires, while grasslands, savannas and agricultural areas showed the highest omission and commission errors. Complementing those analyses, we performed the burned area estimation of the largest fires in Oregon and Washington states during 2015 and the Fort McMurray fire in Canada 2016. The results showed good agreement with NIROPs airborne fire perimeters proving that the VIIRS 375 m BA estimations can be used for near real-time assessments of fire effects.

  10. Lightweight and scalable secure communication in VANET

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoling; Lu, Yang; Zhu, Xiaojuan; Qiu, Shuwei

    2015-05-01

    To avoid a message to be tempered and forged in vehicular ad hoc network (VANET), the digital signature method is adopted by IEEE1609.2. However, the costs of the method are excessively high for large-scale networks. The paper efficiently copes with the issue with a secure communication framework by introducing some lightweight cryptography primitives. In our framework, point-to-point and broadcast communications for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) are studied, mainly based on symmetric cryptography. A new issue incurred is symmetric key management. Thus, we develop key distribution and agreement protocols for two-party key and group key under different environments, whether a road side unit (RSU) is deployed or not. The analysis shows that our protocols provide confidentiality, authentication, perfect forward secrecy, forward secrecy and backward secrecy. The proposed group key agreement protocol especially solves the key leak problem caused by members joining or leaving in existing key agreement protocols. Due to aggregated signature and substitution of XOR for point addition, the average computation and communication costs do not significantly increase with the increase in the number of vehicles; hence, our framework provides good scalability.

  11. Effect of Peat on Physicomechanical Properties of Cemented Brick

    PubMed Central

    Hashim, Roslan; Kurnia, Ryan

    2014-01-01

    The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design. PMID:24982941

  12. Heat shields for aircraft - A new concept to save lives in crash fires.

    NASA Technical Reports Server (NTRS)

    Neel, C. B.; Parker, J. A.; Fish, R. H.; Henshaw, J.; Newland, J. H.; Tempesta, F. L.

    1971-01-01

    A passenger compartment surrounded by a fire-retardant shell, to protect the occupants long enough for the fire to burn out or for fire-fighting equipment to reach the aircraft and extinguish it, is proposed as a new concept for saving lives in crash fires. This concept is made possible by the recent development of two new fire-retardant materials: a very lightweight foam plastic, called polyisocyanurate foam, and an intumescent paint. Exposed to heat, the intumescent paint expands to many times its original thickness and insulates the surface underneath it. Demonstration tests are illustrated, described and discussed. However, some problems, such as preventing fuselage rupture and protecting windows, must be solved before such a system can be used.

  13. 2010 Vehicle Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies thatmore » will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.« less

  14. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; ...

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO 2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercializedmore » as a dry mixed-chemical for bacterial spore decontamination.« less

  15. Fighting Ebola with novel spore decontamination technologies for the military

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO 2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercializedmore » as a dry mixed-chemical for bacterial spore decontamination.« less

  16. Effect of resin infiltration on the thermal and mechanical properties of nano-sized silica-based thermal insulation.

    PubMed

    Lee, Jae Chun; Kim, Yun-Il; Lee, Dong-Hun; Kim, Won-Jun; Park, Sung; Lee, Dong Bok

    2011-08-01

    Several kinds of nano-sized silica-based thermal insulation were prepared by dry processing of mixtures consisting of fumed silica, ceramic fiber, and a SiC opacifier. Infiltration of phenolic resin solution into the insulation, followed by hot-pressing, was attempted to improve the mechanical strength of the insulation. More than 22% resin content was necessary to increase the strength of the insulation by a factor of two or more. The structural integrity of the resin-infiltrated samples could be maintained, even after resin burn-out, presumably due to reinforcement from ceramic fibers. For all temperature ranges and similar sample bulk density values, the thermal conductivities of the samples after resin burn-out were consistently higher than those of the samples obtained from the dry process. Mercury intrusion curves indicated that the median size of the nanopores formed by primary silica aggregates in the samples after resin burn-out is consistently larger than that of the sample without resin infiltration.

  17. Extraterritorial hunting expeditions to intense fire scars by feral cats

    PubMed Central

    McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2016-01-01

    Feral cats are normally territorial in Australia’s tropical savannahs, and hunt intensively with home-ranges only two to three kilometres across. Here we report that they also undertake expeditions of up to 12.5 km from their home ranges to hunt for short periods over recently burned areas. Cats are especially likely to travel to areas burned at high intensity, probably in response to vulnerability of prey soon after such fires. The movements of journeying cats are highly directed to specific destinations. We argue that the effect of this behaviour is to increase the aggregate impact of cats on vulnerable prey. This has profound implications for conservation, considering the ubiquity of feral cats and global trends of intensified fire regimes. PMID:26932268

  18. Extraterritorial hunting expeditions to intense fire scars by feral cats

    NASA Astrophysics Data System (ADS)

    McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2016-03-01

    Feral cats are normally territorial in Australia’s tropical savannahs, and hunt intensively with home-ranges only two to three kilometres across. Here we report that they also undertake expeditions of up to 12.5 km from their home ranges to hunt for short periods over recently burned areas. Cats are especially likely to travel to areas burned at high intensity, probably in response to vulnerability of prey soon after such fires. The movements of journeying cats are highly directed to specific destinations. We argue that the effect of this behaviour is to increase the aggregate impact of cats on vulnerable prey. This has profound implications for conservation, considering the ubiquity of feral cats and global trends of intensified fire regimes.

  19. Extraterritorial hunting expeditions to intense fire scars by feral cats.

    PubMed

    McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2016-03-02

    Feral cats are normally territorial in Australia's tropical savannahs, and hunt intensively with home-ranges only two to three kilometres across. Here we report that they also undertake expeditions of up to 12.5 km from their home ranges to hunt for short periods over recently burned areas. Cats are especially likely to travel to areas burned at high intensity, probably in response to vulnerability of prey soon after such fires. The movements of journeying cats are highly directed to specific destinations. We argue that the effect of this behaviour is to increase the aggregate impact of cats on vulnerable prey. This has profound implications for conservation, considering the ubiquity of feral cats and global trends of intensified fire regimes.

  20. NASA's Aeronautics Vision

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2004-01-01

    Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.

  1. Characterization of the Particulate Emissions from the BP ...

    EPA Pesticide Factsheets

    Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). Emission factors were calculated using previous sampling values of background-adjusted CO2 and particulate matter (PM)-bound C. The mean of five thermal-optical analyses indicated that the burned crude oil particulate matter was 93% carbon (w/w) with the predominance being refractory elemental carbon (82% w/w) on average. PAHs accounted for roughly 60 ug/g of the PM mass or 4.5 mg/kg oil burned, at least an order of magnitude less than earlier laboratory based studies. Microscopy indicates that the soot from the in situ oil burns is distinct from more common soot by its aggregate size, primary particle size, and nanostructure within the primary particles. The PCDD/PCDF concentration of the PM was 1.5 to 3.3 ng toxic equivalency (TEQ)/kg PM sampled, about 10-fold lower than from a previous dedicated gas/solid sample, indicating loss of small particle-bound and more volatile PCDD/PCDF congeners through the aerostat sail. This work presents an analysis of smoke particles opportunistically caught during the in situ surface oil burns during the 2010 BP Deepwater Horizon di

  2. Mineral resource potential map of the Gee Creek Wilderness, Polk and Monroe counties, Tennessee

    USGS Publications Warehouse

    Epstein, Jack B.; Gazdik, Gertrude C.; Behum, Paul T.

    1983-01-01

    The major rock types in the wilderness area consist of sandstone, shale, and conglomerate of the Chilhowee Group of Cambrian and Cambrian(?) age. Faulting appears to have controlled the location of minor subeconomic iron deposits, but no potential mineral resources were detected by the present survey. Shales, useful for brick or lightweight aggregate, and sandstone, useful for crushed stone or sand, have little economic interest because these rock types are common throughout the region and are found closer to potential markets. The possibility of natural gas occurring in untested rocks structurally beneath the Chilhowee strata cannot be discounted. No potential was found for any other mineral resource.

  3. An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives

    NASA Astrophysics Data System (ADS)

    Ghamari, Mohsen

    In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate. In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated. Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also tested at different particle loadings. It was found that dispersing nanoparticles results in higher burning rate by means of enhanced radiative heat absorption and thermal conductivity. An optimum particle loading was found for each particle type at which the maximum burning rate was achieved. It was observed that the burning rate again starts to reduce after this optimum point most likely due to the formation of large aggregates that reduce thermal conductivity and suppress the diffusion of species.

  4. Thrombopoietin as Biomarker and Mediator of Cardiovascular Damage in Critical Diseases

    PubMed Central

    Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe

    2012-01-01

    Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists (“priming effect”). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic. PMID:22577249

  5. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  6. [Changes of platelet rheological behavior and the interventional effects of ulinastatin in rats with high-voltage electrical burns].

    PubMed

    Zhang, Q F; Li, Y; Feng, J K; Xu, Y F; Tu, L L

    2017-12-20

    Objective: To explore the influence of high-voltage electrical burns on the number of platelet aggregation, β-thromboglobulin (β-TG) and platelet factor 4 (PF-4) and the interventional effects of ulinastatin in rats with high-voltage electrical burns. Methods: A total of 240 Sprague-Dawley rats were divided into sham injury (SI) group, simple electrical burn (SEB) group, normal saline (NS) group, and ulinastatin (UTI) group according to the random number table, with 60 rats in each group. The electrical current was applied to the outside proximal part of left forelimb of rats and exited from the outside proximal part of right hind limb of rats. Rats in groups SEB, NS, and UTI were inflicted with high-voltage electrical burn wounds of 1 cm×1 cm at current entrances and exits, with the voltage regulator and experimental transformer. Rats in group SI were sham injured through connecting the same equipments without electricity. At 2 min post injury, rats in group NS were intraperitoneally injected with 2 mL/kg NS, and rats in group UTI were intraperitoneally injected with 2×10(4) U/kg UTI of 10 g/L. At 15 min before injury and 5 min, 1 h, 2 h, 4 h, 8 h post injury, 10 rats in each group were selected to collect 5-7 mL blood of heart respectively. Blood of 0.05 mL were collected to make fresh blood smear for observing the number of platelet aggregation, and serum were separated from the remaining blood to determine content of β-TG and PF-4 with enzyme-linked immunosorbent assay. Data were processed with analysis of factorial design of variance, student-Newman-Keuls test, Kruskal-Wallis H test, Wilcoxon rank sum test, and Bonferroni correction. Results: (1) At 15 min before injury, the numbers of platelet aggregation of rats were close among groups SI, SEB, NS and UTI (5.9±1.2, 5.8±1.2, 5.9±1.3, 5.9±1.1, respectively, with P values above 0.05). At 5 min, 1 h, 2 h, 4 h, 8 h post injury, the numbers of platelet aggregation of rats in group SEB were 57.2±16.3, 59.1±16.9, 60.8±20.6, 83.6±24.9, and 83.4±30.3, respectively, obviously more than those in group SI (6.0±1.3, 6.0±1.4, 5.9±1.4, 5.7±1.1, and 5.8±1.3, respectively, with P values below 0.001); the numbers of platelet aggregation of rats in group UTI were 29.6±7.4, 31.9±10.1, 35.0±14.2, 43.0±13.6, and 35.2±11.1, respectively, obviously more than those in group NS (58.3±16.1, 63.9±18.0, 60.8±17.7, 74.2±23.0, and 82.3±21.9, respectively, with P values below 0.001). There was no significantly statistical difference in the number of platelet aggregation of rats in group SI between each two time points within the same group (with P values above 0.05), but the number of platelet aggregation of rats in the other 3 groups at each time point post injury was significantly more than that of the same group at 15 min before injury (with P values below 0.001). (2) At 2, 4, and 8 h post injury, β-TG content of serum of rats in group SEB was significantly higher than that in group SI (with Z values from -3.780 to -3.477, P values below 0.05). At 5 min and 4 h post injury, β-TG content of serum of rats in group UTI was significantly lower than that in group NS (with Z values respectively -3.477 and -3.780, P values below 0.05). There was no significantly statistical difference in β-TG content of serum of rats in group SI at all time points of the same group ( χ (2)=0.130, P >0.05). At 2, 4, and 8 h post injury, β-TG content of serum of rats in group SEB was significantly higher than that of the same group at 15 min before injury (with Z values from -3.780 to -3.553, P values below 0.05). At 5 min, 1 h, and 4 h post injury, β-TG content of serum of rats in group NS was significantly higher than that of the same group at 15 min before injury (with Z values from -3.780 to -3.477, P values below 0.05). At 1 and 4 h post injury, β-TG content of serum of rats in group UTI was significantly higher than that of the same group at 15 min before injury (with Z values respectively -3.250 and -3.780, P values below 0.05). (3) At 2 and 8 h post injury, PF-4 content of serum of rats in group SEB was significantly higher than that in group SI (with P values below 0.05). At 2 h post injury, PF-4 content of serum of rats in group UTI was significantly higher than that in group NS ( P <0.05), and at 4 and 8 h post injury, PF-4 content of serum of rats in group UTI was significantly lower than that in group NS (with P values below 0.05). At all time points, PF-4 content of serum of rats in group SI was close (with P values above 0.05). At 2 and 8 h post injury, PF-4 content of serum of rats in group SEB was significantly higher than that of the same group at 15 min before injury (with P values below 0.05). At 1, 4, and 8 h post injury, PF-4 content of serum of rats in group NS was significantly higher than that of the same group at 15 min before injury (with P values below 0.05). There were significantly statistical differences in PF-4 content of serum of rats between all time points except for 5 min post injury and 15 min before injury (with P values below 0.05). Conclusions: Increasing number of platelet aggregation and abnormal secretion of β-TG and PF-4 of rats with high-voltage electrical burns can lead to microcirculation disturbance. UTI can alleviate microcirculation disturbance caused by high-voltage electrical burns by reducing the number of platelet aggregation and inhibiting secretion of β-TG and PF-4.

  7. Remote sensing sensitivity to fire severity and fire recovery

    USGS Publications Warehouse

    Key, C.H.

    2005-01-01

    The paper examines fundamental ways that geospatial data on fire severity and recovery are influenced by conditions of the remote sensing. Remote sensing sensitivities are spatial, temporal and radiometric in origin. Those discussed include spatial resolution, the sampling time of year, and time since fire. For standard reference, sensitivities are demonstrated with examples drawn from an archive of burn assessments based on one radiometric index, the differenced Normalized Burn Ratio. Resolution determines the aggregation of fire effects within a pixel (alpha variation), hence defining the detected ecological response, and controlling the ability to determine patchiness and spatial distribution of responses throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation from the complexity of the whole burn. Seasonal timing impacts the radiometric quality of data in terms of transmittance, sun angle, and potential for enhanced contrast between responses within burns. Remote sensing sensitivity can degrade during many fire seasons when snow, incomplete burning, hazy conditions, low sun angles, or extended drought are common. Time since fire (lag timing) most notably shapes severity detection through the first-order fire effects evident in survivorship and delayed mortality that emerge by the growth period after fire. The former effects appear overly severe at first, but diminish, as burned vegetation remains viable. Conversely, the latter signals vegetation that appears healthy at first, but is damaged by heat to the extent that it soon dies. Both responses can lead to either over- or under-estimating severity, respectively, depending on fire behavior and pre-fire composition unique to each burned area. Based on implications of such sensitivities, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within ca. two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Jointly, remote sensing conditions and the way burns are studied yield different tendencies for data quality and information content that impact the objectives and hypotheses that can be studied. Such considerations can be commonly overlooked, but need to be incorporated especially in comparative studies, and to build long-term reference databases on fire severity and recovery.

  8. Self-aggregation of water-dispersible nanocollagen helices.

    PubMed

    Van Duong, Hau; Chau, Trang The Lieu; Dang, Nhan Thi Thanh; Nguyen, Duc Van; Le, Son Lam; Ho, Thang Sy; Vu, Tuyen Phi; Tran, Thi Thi Van; Nguyen, Thanh-Dinh

    2018-02-27

    Inspired by nature, collagen is an outstanding polypeptide utilized to exploit its bioactivity and material design for healthcare technologies. In this study, we describe the self-aggregation of water-dispersible nanocollagen helices upon solidification to fabricate different forms of natural collagen materials. Chemically extracted native collagen fibrils are uniform anisotropic nanoparticles with an average diameter of about 50 nm and a high aspect ratio. The as-prepared collagen nanofibrils are soluble in sodium acetate-acetic acid buffer and are dispersible in water, thus generating collagen liquids that are used as distinct biopolymer precursors for materials development. Our interesting findings indicate that water-dispersible collagen-derived alcogels undergo critical point drying to self-arrange hierarchical nanofibrils into helix bundles in collagen sponge-like aerogels. Notably, using lyophilization to remove water in the biopolymer dispersion, a full regeneration of solidified fibers is achieved, producing collagen aerogels with lightweight characteristics similar to natural cottons. The self-aggregation of water-dispersible collagen occurs under freeze-drying conditions to turn individual nanofibrils into sheets with layered structures in the aerogel networks. The development of transparent, water resistant collagen bioplastic-like membranes was achieved by supramolecular self-assembly of water-dispersible collagen nanofibrils. Our efforts present a reliable concept in soft matter for creating promising collagen examples of liquids, hydrogels, aerogels, and membranes to increase utilization value of native collagen for biomedicine, pharmaceuticals, cosmetics, and nutrients.

  9. Developing a GIS for CO2 analysis using lightweight, open source components

    NASA Astrophysics Data System (ADS)

    Verma, R.; Goodale, C. E.; Hart, A. F.; Kulawik, S. S.; Law, E.; Osterman, G. B.; Braverman, A.; Nguyen, H. M.; Mattmann, C. A.; Crichton, D. J.; Eldering, A.; Castano, R.; Gunson, M. R.

    2012-12-01

    There are advantages to approaching the realm of geographic information systems (GIS) using lightweight, open source components in place of a more traditional web map service (WMS) solution. Rapid prototyping, schema-less data storage, the flexible interchange of components, and open source community support are just some of the benefits. In our effort to develop an application supporting the geospatial and temporal rendering of remote sensing carbon-dioxide (CO2) data for the CO2 Virtual Science Data Environment project, we have connected heterogeneous open source components together to form a GIS. Utilizing widely popular open source components including the schema-less database MongoDB, Leaflet interactive maps, the HighCharts JavaScript graphing library, and Python Bottle web-services, we have constructed a system for rapidly visualizing CO2 data with reduced up-front development costs. These components can be aggregated together, resulting in a configurable stack capable of replicating features provided by more standard GIS technologies. The approach we have taken is not meant to replace the more established GIS solutions, but to instead offer a rapid way to provide GIS features early in the development of an application and to offer a path towards utilizing more capable GIS technology in the future.

  10. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  11. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber.

    PubMed

    Yin, Yichao; Liu, Xiaofang; Wei, Xiaojun; Yu, Ronghai; Shui, Jianglan

    2016-12-21

    Porous carbon nanotubes/cobalt nanoparticles (CNTs/Co) composite with dodecahedron morphology was synthesized by in situ pyrolysis of the Co-based zeolitic imidazolate framework in a reducing atmosphere. The morphology and microstructure of the composite can be well tuned by controlling the pyrolysis conditions. At lower pyrolysis temperature, the CNTs/Co composite is composed of well-dispersed Co nanoparticles and short CNT clusters with low graphitic degree. The increase of pyrolysis temperature/time promotes the growth and graphitization of CNTs and leads to the aggregation of Co nanoparticles. The optimized CNTs/Co composite exhibits strong dielectric and magnetic losses as well as a good impedance matching property. Interestingly, the CNTs/Co composite displays extremely strong electromagnetic wave absorption with a maximum reflection loss of -60.4 dB. More importantly, the matching thickness of the absorber is as thin as 1.81 mm, and the filler loading of composite in the matrix is only 20 wt %. The highly efficient absorption is closely related to the well-designed structure and the synergistic effect between CNTs and Co nanoparticles. The excellent absorbing performance together with lightweight and ultrathin thickness endows the CNTs/Co composite with the potential for application in the electromagnetic wave absorbing field.

  12. Lignin-Modified Carbon Nanotube/Graphene Hybrid Coating as Efficient Flame Retardant

    PubMed Central

    Song, Kunlin; Ganguly, Indroneil; Eastin, Ivan

    2017-01-01

    To reduce fire hazards and expand high-value applications of lignocellulosic materials, thin films comprising graphene nanoplatelets (GnPs) and multi-wall carbon nanotubes (CNTs) pre-adsorbed with alkali lignin were deposited by a Meyer rod process. Lightweight and highly flexible papers with increased gas impermeability were obtained by coating a protective layer of carbon nanomaterials in a randomly oriented and overlapped network structure. Assessment of the thermal and flammability properties of papers containing as low as 4 wt % carbon nanomaterials exhibited self-extinguishing behavior and yielded up to 83.5% and 87.7% reduction in weight loss and burning area, respectively, compared to the blank papers. The maximum burning temperature as measured by infrared pyrometry also decreased from 834 °C to 705 °C with the presence of flame retardants. Furthermore, papers coated with composites of GnPs and CNTs pre-adsorbed with lignin showed enhanced thermal stability and superior fire resistance than samples treated with either component alone. These outstanding flame-retardant properties can be attributed to the synergistic effects between GnPs, CNTs and lignin, enhancing physical barrier characteristics, formation of char and thermal management of the material. These results provide great opportunities for the development of efficient, cost-effective and environmentally sustainable flame retardants. PMID:29117109

  13. The immersion freezing behavior of ash particles from wood and brown coal burning

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike

    2016-11-01

    It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  14. Recent advances in 2D thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Yu, Jiabing; Sun, Qiang; Jena, Puru

    2016-12-01

    The waste heat generated by car engines, power plants, home furnaces and other fossil fuel-burning machinery play an adverse role in the climate. Development of efficient, light-weight, cost-effective, and environmentally-benign thermoelectric materials can help in converting wasted heat into useable energy, thus helping the environment. In this brief review we discuss theoretical methods that can complement experimental search for efficient thermoelectric materials. Using Boltzmann transport theory with a constant relaxation time approximation and non-equilibrium Green's function approach we study thermoelectric parameters by focusing on two dimensional materials ranging from graphene and graphdiyne to phosphorene, transition metal dichalogenides and metal carbides. In some circumstances, the reduced dimension is found to increase the Seebeck coefficient and decrease the thermal conductivity, necessary for improving thermoelectric conversion performance. We also suggest some future studies in this topic.

  15. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  16. Structural characteristics of internally mixed carbonaceous aggregates from Barcelona (Spain) during DAURE winter campaign

    NASA Astrophysics Data System (ADS)

    Coz, Esther; Casuccio, Gary S.; Robinson, Allen L.; Moreno, Teresa; Mohr, Claudia; Prevot, Andre S. H.; Artíñano, Begoña.

    2010-05-01

    Particle structure, understood as the characterization of size, morphology, texture and the spatial distribution of the different compounds at an individual particle level, influences carbonaceous aggregates behavior in the atmosphere and the respiratory system. Additionally, the absorption and scattering of light is modified by the particle structure and also influences water absorption and water vapor nucleation and, hence cloud formation, residence time in the atmosphere and removal processes. Two factors seem determinant in these processes: quantity of scattering material adsorbed onto the light absorbing core during the residence in the atmosphere and subsequent aging, and the spatial distribution of this condensed matter (commonly discussed as internally/externally mixtures). Morning, noon, afternoon, and evening samples were collected for electron microscopy analyses during 3 consecutive days during an atmospheric episode of thermal inversion in February 2009 in an urban background area within the city of Barcelona. The main goal of this study was to quantify the variations in morphology and state of mixture of carbonaceous soot-like aggregate structures observed during different times of the day. The study was part of the winter campaign: "Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean" (DAURE, February/March 2009). The analysis of the aggregate structure was conducted by digital image analysis of several thousand particles to determine variations on size, shape and texture by means of several different mathematical descriptors such as aspect ratio/elongation, compactness and roughness through fractal dimension analysis, textural energy and entropy. Results indicate that carbon aggregates were mostly within 200-400 nm of geometric size, with slightly smaller sizes during time intervals associated to traffic peaks compared to the daily average. The morphological parameters obtained for these ambient aggregates were compared with the same parameters obtained for carbon aggregates obtained from diesel exhaust and wood-burning combustion laboratory studies. Ambient carbon aggregates, independent of the time of the day, had very close values to those of freshly emitted from diesel combustion, with the exception of roughness and textural parameters. These differences were mainly associated to the properties of the coating (soot in internal mixture) presented in the urban carbon aggregates in comparison with the laboratory generated ones. No similarities were found with the carbon aggregates formed by the "tar balls" from wood-burning experiments. Results obtained to date show that freshly-emitted carbonaceous aggregates may become rapidly processed as found for Mexico City during the MILAGRO campaign (Johnson et al., 2005). In addition, carbonaceous aggregates in Barcelona presented similar sizes to internally mixed soot in Mexico City and the associated aspect ratios were also high indicating the tendency to maintain the fresh-structure (Adachi and Buseck, 2008). Whereas ambient soot particles were heavily internally mixed primarily with ammonium sulfate in the case of Mexico, low sulfate concentration was found in the Barcelona aggregates. The extraordinarily high concentration of nitrates and organic compounds during sampling together with the microscopy results suggests a complex coating structure comprised by mixtures of both nitrate and organic compounds. Further analyses are needed to understand more in detail the chemical nature and formation mechanisms of these coatings. References Adachi, K. and P.R. Buseck (2008), Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City, ACP, 8, 6469-6481. Johnson et al., (2005), Processing of soot in an urban environment: case study from the Mexico City Metropolitan Area, ACP, 5, 3033-3043. Acknowledgements The authors acknowledge the coordination of the campaign to Andrés Alastuey, Xavier Querol (IDAEA-CSIC) and Jose Luis Jimenez (U. of Colorado). This part of the study has been financed by the CGL2007-30502-E/CLI, CGL2008-02817-E/CLI, PROFASE (CGL2007-64117) and GRACCIE (CSD2007-00067) projects.

  17. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  18. Ecological and sampling constraints on defining landscape fire severity

    USGS Publications Warehouse

    Key, C.H.

    2006-01-01

    Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal conditions of sampling strategies constrain data quality and ecological information obtained about fire severity. Though commonly overlooked, such considerations determine the objectives and hypotheses that are appropriate for each application, and are especially important when building comparative studies or long-term reference databases on fire severity.

  19. Modelled vs. reconstructed past fire dynamics - how can we compare?

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer R.; Power, Mitch J.

    2015-04-01

    Fire is an important process that affects climate through changes in CO2 emissions, albedo, and aerosols (Ward et al. 2012). Fire-history reconstructions from charcoal accumulations in sediment indicate that biomass burning has increased since the Last Glacial Maximum (Power et al. 2008; Marlon et al. 2013). Recent comparisons with transient climate model output suggest that this increase in global ?re activity is linked primarily to variations in temperature and secondarily to variations in precipitation (Daniau et al. 2012). In this study, we discuss the best way to compare global ?re model output with charcoal records. Fire models generate quantitative output for burned area and fire-related emissions of CO2, whereas charcoal data indicate relative changes in biomass burning for specific regions and time periods only. However, models can be used to relate trends in charcoal data to trends in quantitative changes in burned area or fire carbon emissions. Charcoal records are often reported as Z-scores (Power et al. 2008). Since Z-scores are non-linear power transformations of charcoal influxes, we must evaluate if, for example, a two-fold increase in the standardized charcoal reconstruction corresponds to a 2- or 200-fold increase in the area burned. In our study we apply the Z-score metric to the model output. This allows us to test how well the model can quantitatively reproduce the charcoal-based reconstructions and how Z-score metrics affect the statistics of model output. The Global Charcoal Database (GCD version 2.5; www.gpwg.org/gpwgdb.html) is used to determine regional and global paleofire trends from 218 sedimentary charcoal records covering part or all of the last 8 ka BP. To retrieve regional and global composites of changes in fire activity over the Holocene the time series of Z-scores are linearly averaged to achieve regional composites. A coupled climate-carbon cycle model, CLIMBA (Brücher et al. 2014), is used for this study. It consists of the CLIMBER-2 Earth system model of intermediate complexity and the JSBACH land component of the Max Planck Institute Earth System Model. The fire algorithm in JSBACH assumes a constant annual lightning cycle as the sole fire ignition mechanism (Arora and Boer 2005). To eliminate data processing differences as a source for potential discrepancies, the processing of both reconstructed and modeled data, including e.g. normalisation with respect to a given base period and aggregation of time series was done in exactly the same way. Here, we compare the aggregated time series on a hemispheric and regional scale.

  20. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination.

    PubMed

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-04

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  1. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination

    NASA Astrophysics Data System (ADS)

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-01

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  2. Computer Simulation of Fracture in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2006-01-01

    Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.

  3. Physico-chemical characterization of mortars as a tool in studying specific hydraulic components: application to the study of ancient Naxos aqueduct

    NASA Astrophysics Data System (ADS)

    Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.

    2011-07-01

    Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.

  4. Brief Communication: Buoyancy-Induced Differences in Soot Morphology

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Griffin, Devon W.; Greenberg, Paul S.; Roma, John

    1995-01-01

    Reduction or elimination of buoyancy in flames affects the dominant mechanisms driving heat transfer, burning rates and flame shape. The absence of buoyancy produces longer residence times for soot formation, clustering and oxidation. In addition, soot pathlines are strongly affected in microgravity. We recently conducted the first experiments comparing soot morphology in normal and reduced-gravity laminar gas jet diffusion flames. Thermophoretic sampling is a relatively new but well-established technique for studying the morphology of soot primaries and aggregates. Although there have been some questions about biasing that may be induced due to sampling, recent analysis by Rosner et al. showed that the sample is not biased when the system under study is operating in the continuum limit. Furthermore, even if the sampling is preferentially biased to larger aggregates, the size-invariant premise of fractal analysis should produce a correct fractal dimension.

  5. Regional likelihood of very large wildfires over the 21st century across the western United States: Motivation to study individual events like the Rim Fire, a unique opportunity with unprecedented remote sensing data

    Treesearch

    E. Natasha Stavros; John Abatzoglou; Zachary Tane; Van Kane; Sander Veraverbeke; Bob McGaughey; James A. Lutz; Narasimhan K. Larkin; Donald McKenzie; E. Ashley Steel; Carlos Ramirez; Justin Boland; Dave Schimel

    2015-01-01

    Studies project that a warming climate will likely increase wildfire activity in many areas (Westerling and others 2002; Flannigan and others 2005, 2009; Littell and others 2009). These analyses are often of aggregate statistics like annual area burned, which are insufficient for analyzing changes in seasonality of fire events, the temporal resolution useful for fire...

  6. CRANBERRY WILDERNESS STUDY AREA, WEST VIRGINIA.

    USGS Publications Warehouse

    Meissner, Charles R.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness Study Area, West Virginia contains a large demonstrated resource of bituminous coal of coking quality. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56. 5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout the State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.

  7. GEE CREEK WILDERNESS, TENNESSEE.

    USGS Publications Warehouse

    Epstein, Jack B.; Gazdik, Gertrude C.

    1984-01-01

    On the basis of geologic, geochemical, and mine and prospect surveys, it was determined that the Gee Creek Wilderness, Tennessee has little promise for the occurrence of mineral resources. Iron ore was formerly mined, but the deposits are small, have a high phosphorous content, and are inaccessible. Shale, suitable for brick or lightweight aggregate, and sandstone, which could be utilized for crushed stone or sand, are found in the area, but are also found in areas closer to potential markets. The geologic setting precludes the presence of oil and gas resources in the surface rocks, but the possibility of finding natural gas at depth below the rocks exposed in the area cannot be discounted. Geophysical exploration would be necessary to define the local structure in rocks at depth to properly evaluate the potential of the area for gas.

  8. Diatomite

    USGS Publications Warehouse

    Crangle, R.D.

    2013-01-01

    The United States continues to be the world’s leading producer and consumer of diatomite. Production of diatomite in the United States during 2012 was estimated to be 820 kt (903,000 st), a slight increase compared with 2011 production. The unit value of diatomite varied widely by end use in 2012. Diatomite used as a lightweight aggregate was priced at $11/t ($9.98/st), while specialty-grade diatomite, used in art supplies, cosmetics, or biomedical applications, could be priced as high as $10,000/t ($9,000/st). Filter-grade diatomite had an average unit value of $330/t ($299/st). Seven companies operated 10 mines and nine processing facilities in California, Nevada, Oregon and Washington. U.S. diatomite exports totaled about 96 kt (106,000 st). Imports were much lower at approximately 3.07 kt (3,380 st).

  9. Diatomite

    USGS Publications Warehouse

    Crangle, R.D.

    2012-01-01

    The United States continues to be the world's leading producer and consumer of diatomite. Production of diatomite in the United States during 2011 was estimated to be 600 kt (661,000 st), a slight increase compared with 2010 production. The unit value of diatomite varied widely by end use in 2011. Diatomite used as a lightweight aggregate was priced at $8.82/t ($8/st), while specialty-grade diatomite, used in art supplies, cosmetics, or biomedical applications, was priced as high as $10,000/t ($9,070/st) on a spot basis. Filter-grade diatomite had an average unit value of $394/t ($357/st). Seven companies operated 10 mines an nine processing facilities in California, Nevada, Oregon and Washington. U.S. diatomite exports totaled about 120 kt (132,000 st). Imports were much lower, at approximately 1 kt (1,100 st).

  10. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  11. Armored garment for protecting

    DOEpatents

    Purvis, James W [Albuquerque, NM; Jones, II, Jack F.; Whinery, Larry D [Albuquerque, NM; Brazfield, Richard [Albuquerque, NM; Lawrie, Catherine [Tijeras, NM; Lawrie, David [Tijeras, NM; Preece, Dale S [Watkins, CO

    2009-08-11

    A lightweight, armored protective garment for protecting an arm or leg from blast superheated gases, blast overpressure shock, shrapnel, and spall from a explosive device, such as a Rocket Propelled Grenade (RPG) or a roadside Improvised Explosive Device (IED). The garment has a ballistic sleeve made of a ballistic fabric, such as an aramid fiber (e.g., KEVLAR.RTM.) cloth, that prevents thermal burns from the blast superheated gases, while providing some protection from fragments. Additionally, the garment has two or more rigid armor inserts that cover the upper and lower arm and protect against high-velocity projectiles, shrapnel and spall. The rigid inserts can be made of multiple plies of a carbon/epoxy composite laminate. The combination of 6 layers of KEVLAR.RTM. fabric and 28 plies of carbon/epoxy laminate inserts (with the inserts being sandwiched in-between the KEVLAR.RTM. layers), can meet the level IIIA fragmentation minimum V.sub.50 requirements for the US Interceptor Outer Tactical Vest.

  12. Method and technique for installing light-weight, fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Patel, B. C. (Inventor)

    1983-01-01

    A method of installing fragile, light weight, high temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is discussed. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which is machined to required shape. The machine dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  13. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1987-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burn for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  14. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  15. Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer

    NASA Astrophysics Data System (ADS)

    Nalbantoglu, Zalihe; Tawfiq, Salma

    2006-08-01

    The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.

  16. Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate

    NASA Astrophysics Data System (ADS)

    Giro-Paloma, J.; Ribas-Manero, V.; Maldonado-Alameda, A.; Formosa, J.; Chimenos, J. M.

    2017-10-01

    Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2 - 3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0 - 5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested. The obtained results provide a suitable physico-mechanical formulation using WBA as silica source, as well as a common crop by-product.

  17. Energy markets in the 1990's and beyond: A comparison of energy intensity in the United States and Japan

    NASA Astrophysics Data System (ADS)

    McDonald, S. C.

    1989-10-01

    A comparative analysis is provided of energy intensity in the U.S. and Japan. According to aggregate International Energy Agency (IEA) data, the U.S. has one of the most energy-intensive economies while Japan has one of the least. Energy-intensity measures are constructed and examined which that are more detailed than aggregate measures used by the IEA to see if they can better explain these differences. The year chosen for this analysis is 1985. The issue of energy intensity may become particularly critical if scientific findings on global climate change and greenhouse emissions lead to negotiations on restricting carbon emissions. The burning of fossil fuels is the most important anthropogenic source of carbon emissions. As shown by this analysis, developing a consistent and fair set of goals for each country for carbon emissions, which are interlocked with energy intensity, may be a difficult task.

  18. Carbon nanotubes and other fullerene-related nanocrystals in the environment: A TEM study

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Soto, K. F.; Esquivel, E. V.; Bang, J. J.; Guerrero, P. A.; Lopez, D. A.; Ramirez, D. A.

    2004-06-01

    Carbon nanotubes and other fullerene-related nanocrystals are ubiquitous in the atmospheric environment—both indoor and outdoor. In fact, these nanostructures have been observed even in a 10,000 year-old ice core sample, indicating their natural existence in antiquity, probably as natural gas/methane combustion products. Similar carbon nanotubes and complex carbon nanocrystal aggregates are observed to be emitted from contemporary combustion sources such as kitchen stoves (natural gas and propane), water heater and furnace exhaust vents, natural gas-burning (electric) power plants, and industrial furnace operations, among others. These observations have been made by collecting nanoparticulates and nanocrystal aggregates on carbon/formvar and silicon monoxide/formvarcoated 3 mm grids that were examined with a transmission-electron microscope. This study begins to establish an environmental context for considering the potential impact of future nanostructured particles on human health.

  19. Understanding the Lunar System Architecture Design Space

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  20. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin

    2017-07-01

    The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction error is lower than 5% for the four propellants tested. Results of this study are expected to provide better insight and enrich in the theoretical frame of aluminum agglomeration.

  1. Cranberry Wilderness study area, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meissner, C.R. Jr.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness study area contains a large demonstrated resource of bituminous coal of coking quality according to studies made in 1977. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56.5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout themore » State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.« less

  2. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  3. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  4. The mechanical and physical properties of concrete containing polystyrene beads as aggregate and palm oil fuel ash as cement replacement material

    NASA Astrophysics Data System (ADS)

    Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah

    2017-10-01

    One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.

  5. 78 FR 78335 - Lightweight Thermal Paper from Germany: Preliminary Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... the antidumping duty order on lightweight thermal paper (LWTP) from Germany. The period of review (POR... Order The merchandise covered by the order is lightweight thermal paper. The merchandise subject to the...

  6. 77 FR 28851 - Lightweight Thermal Paper From Germany: Notice of Amended Final Results of the 2009-2010...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... administrative review for lightweight thermal paper (LWTP) from Germany for the period from [[Page 28852... Lightweight Thermal Paper From Germany: Notice of Final Results of the 2009-2010 Antidumping Duty...

  7. 78 FR 23220 - Lightweight Thermal Paper From Germany: Final Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... administrative review of the antidumping duty order on lightweight thermal paper from Germany.\\1\\ The period of... entitled ``Final Results of Review.'' \\1\\ See Lightweight Thermal Paper from Germany; Preliminary Results...

  8. 78 FR 43142 - Lightweight Thermal Paper From the People's Republic of China: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-920] Lightweight Thermal Paper... lightweight thermal paper from the People's Republic of China (``PRC'') because Appleton Papers Inc... antidumping duty order on lightweight thermal paper from the PRC.\\1\\ The period of review (``POR'') is...

  9. Experimental study on microstructure characters of foamed lightweight soil

    NASA Astrophysics Data System (ADS)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  10. Scaling laws for light-weight optics

    NASA Technical Reports Server (NTRS)

    Valente, Tina M.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature has been made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best fit curve for each case. A best fitting curve program tests nineteen different equations and ranks a 'goodness of fit' for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  11. 40 CFR 430.110 - Applicability; description of the fine and lightweight papers from purchased pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PAPERBOARD POINT SOURCE CATEGORY Fine and Lightweight Papers from Purchased Pulp Subcategory § 430.110 Applicability; description of the fine and lightweight papers from purchased pulp subcategory. The provisions of... and lightweight papers from purchased pulp subcategory. 430.110 Section 430.110 Protection of...

  12. 77 FR 21082 - Lightweight Thermal Paper From Germany: Notice of Final Results of the 2009-2010 Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... antidumping duty order on lightweight thermal paper from Germany.\\1\\ The review covers one manufacturer... of Review'' section of this notice. \\1\\ See Lightweight Thermal Paper From Germany: Notice of...

  13. Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis.

    PubMed

    Pielesz, Anna; Paluch, Jadwiga

    2014-08-01

    Non-enzymatic glycation (Maillard reaction) in vitro could be a simple method to obtain glycoconjugates for studying their biological properties. Hence, fucoidan was retained by acetate electrophoresis indicating a strong interaction with the protein. A loss of colour in fucoidan bands was found for samples incubated with collagen as compared with samples of free fucoidan. Also under in vitro conditions at 100°C - simulating a sudden burn incident - fucoidan binds with collagen as a result of the Maillard reaction. In contrast, the colour of the fucoidan bands intensified for samples incubated with collagen, with the addition of glucose. Electrophoretic analyses were carried out after heating the samples to a temperature simulating a burn incident. The bands were found to intensify for samples incubated with collagen during a 30-day-long incubation. Thus, spontaneous in vitro glycation - i.e. without the addition of glucose - was confirmed. This process is highly intensified both by the temperature and time of incubation. For a sample incubated in vitro in a fucoidan solution containing glucose, glycation was confirmed in a preliminary FTIR and acetate electrophoresis examinations, occurring in collagen obtained from chicken skins. In particular, a new band emerging around 1746 cm(-1) was observed for above samples, as was its increasing intensity, as compared with samples without the addition of glucose. In the collagen glycation assay, while glucose reacts with collagen and forms cross-linked aggregates, fucoidan decreases the process of aggregation and recovery of native collagen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of fire on organic matter content and aggregate stability of soils in South of Spain.

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Ruiz-Sinoga, José D.; Jiménez-Donaire, Virginia; Hueso-González, Paloma; Gabarrón-Galeote, Miguel A.

    2014-05-01

    Wildfires affect dramatically to soil physical, chemical and biological properties, which changes the hydrological and erosive soil response. The objectives of this study are to compare some soil properties affected by fire in field conditions. The experimental area is located in the South of Spain, 32 km western of the city of Málaga. In general, the area is characterized by a sub-humid Mediterranean climate (mean annual precipitation: 699 mm year-1; mean annual temperature: 17°C), with a substratum of alkaline metamorphic rocks. Vegetation cover consists on a mixed open wood of Quercus spp. and Pinus spp. with typical degraded Mediterranean scrub, where the dominant genus are Ulex spp. and Cistus spp. This area was partially affected by a wildfire on September 11th 2011. Soil samples were taken in burned and unburned areas: soil covered by shrubs, trees and bare soils. Unburned area was adjacent to the burned one and both of them had the same general conditions. On each microenvironment samples of the first 5 cm of soil were collected on September 19th 2011. The analyzed properties in the laboratory were organic matter (OM) and aggregate stability (AS). In general, fire affected mainly to OM (p<0.01). When we performed the analyses dividing the samples according to vegetal cover, the ANOVA showed that the wildfire only affected the OM content in soil covered by shrubs. In soil covered by trees and bare soil OM decreased, but it was insignificant. AS were not affected in any sampled environment.

  15. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and composition in determining wettability rather than quantity, as evidenced both by the high variation observed in the field and the strong presence of aliphatic functional groups in the absence of WR; and (ii) commonly proposed mechanisms affecting soil aggregate properties - albeit with differing temperature thresholds and longer exposure times employed in this study. Namely, these mechanisms tend to involve: (i) soil OM and WR reduction at low to moderate temperatures, and (ii) thermal fusion of particles within moderate to high temperatures. Overall, results suggest a positive influence of management on soil properties as well as high soil resilience to moderate severity fire disturbance in the studied areas. However, the specific changes in soil OM and mineral composition that are responsible for destruction of WR and subsequent changes in AS remain poorly understood. Based on these results, a key next step within this study will entail a closer examination of OC ratios and their potential links with certain mineral species known to influence soil aggregation and soil WR. Noting the importance of soil OM-mineralogical interactions on run-off and erosion processes, results may contribute to better prediction of post-fire responses in the future and improve the ability to fine-tune site specific management approaches accordingly.

  16. The relative importance of hydrophobicity in determining runoff-infiltration processes in burned forest soils

    NASA Astrophysics Data System (ADS)

    Wittenberg, Lea; Malkinson, Dan; Voogt, Annelies; Leska, Danny; Argaman, Eli; Keesstra, Saskia

    2010-05-01

    Wildfires induce fundamental changes to vegetation and soil structure/texture which conseqeuntly have major impacts on infiltration capacity, overland flow generation, runoff and sediment yields. The relative importance, however, of fire-induced soil water repellency (WR) on hydrological and erosional processes is somewhat controversial, partially, as the direct effects of soil WR in-situ field conditions have been difficult to isolate. It is generally accepted that hydrophobicity is caused by the formation of organic substances in forest soils, while burning is considered to enhance this process. Given the complex response of the soil-vegetation system to burning, soil WR is only one of several affecting soil hydrology. Other factors include the physical sealing of soils triggered by rain drops energy, the increase in soil erodibility due to changes in soil aggregates, and the role of the ash in sealing the burned surface. The degree and spatial distribution of WR burned varies considerably with fire severity, soil and vegetation type, soil moisture content and time since burning. Nevertheless, given the inverse relationship between soil moisture and hydrophobicity, the role of the latter in determining overland flow during wet winters when the soil is mostly inundated, is marginal. Following a 60 ha wildfire, which took place at the Pe'eram catchment during July 2009, we assessed the spatio-temporal distribution of WR in a burned Pinus halepensis forest. The site, located in the Upper Galille, Israel, was severely burned; the combustion removed all understory vegetation and burned down some of the trunks, leaving a thick layer of ash. The soils composed of reddish-brown clay loam forest soil and terra rossa on limestone bedrock, greyish light rendzina characterises the marl and chalk exposures. To consider the effect of distance from trees, in-situ hydrophobicity was assessed within a week, month and five months after the fire, using the WDPT test. Measurements were taken in concentric circles around the burned trees at two soil depths. We complemented this investigation by conducting a series of laboratory simulations. Non-burned soil was taken for laboratory analysis and rainfall simulations. Four treatment types were conducted: non-burned soil, non-burned soil + pine needles, burned soil without ash (300°C/15 min. after adding pine needles) and burned soil with the residue ash (300°C/15 min. after adding pine needles). Hydrophobicity was measured in all trays. Constant rainfall intensity of 30 mm/hr was simulated until terminal infiltration rates were reached. The experimental trays were oven dried and simulated again to imitate the effect of second rainstorm. Preliminary results indicate strong surface WR (60% >180s) at a distance of 1m and at the subsurface (50% >180s) directly by the trunk. In the control non-burned site stronger WR was found in proximity to the trunks. While in the burned sites extreme values (>300s) were apparent (15-35%) and correlated with distance from the trunk, no corresponding patterns were noticed in the control trees. The attempt to create homogeneous layer of WR under controlled laboratory conditions yielded a scattered pattern of repellency, similar to the field conditions. In contrast to expected, the bare soil and bare soil covered by needles exhibited the highest and lowest infiltration rates, respectively, while the burned hydrophobic soils demonstrated intermediate rates. It is thus suggested that in some soils, WR might enhance infiltration capacity by creating a complex mosaic of runoff-generating and runoff-absorbing micro-patches. In the experimental non-burned soil a rapid crusting of the surface provided lateral connectivity whilst the accumulation of litter and organic matter blanket the surface and enhance the vertical conductivity. To better understand the role of WR in generating hydrological response, it is required to consider the 3D 'sponge like' properties of the WR soils.

  17. The Impact of Fire on Mercury Cycling in Watershed Systems

    NASA Astrophysics Data System (ADS)

    Lopez, S.; Mendez, C.; Hogue, T.; Jay, J.

    2006-12-01

    Mercury methylation is a process by which the less-toxic inorganic mercury is transformed into methylmercury (MeHg). MeHg is a potent neurotoxin with a strong tendency to biomagnify within the food chain. Limited studies suggest that wildfires change the soil characteristics and contribute to Hg transport and possibly methylation in downstream ecosystems. We propose that post-fire Hg cycling can be related to various soil properties and burn characteristics. In order to better understand the effects of wildfires on Hg cycling, studies were undertaken within a burned watershed and a neighboring unburned site, Malibu Creek and Cold Creek, respectively. Soil sampling of the burned and control (unburned) regions were composed of 25 square foot grids with nine equidistant sampling points. Sediment samples for soil sieve analysis were collected at all grid points to determine the particle size distribution of the fine and coarse grain aggregates. Total Hg sediments were collected from the three middle points of the grid at two soil horizons to provide a vertical profile. Total Hg concentrations of the sediment samples were measured using the Direct Mercury Analyzer (DMA80). Initial analysis of the soil profiles reveals a decrease in Hg concentration at the soil surface (89 percent loss). Preliminary results indicate sites with the lowest concentration of Hg are characterized by a higher percentage of finer grain aggregates. Runoff from the first post-fire storm was extremely turbid and dark gray in color due to high levels of suspended solids (3980 mg/L). Total Hg concentrations in unfiltered and filtered samples (0.2 micron) were 196 and 4.7 ng/L, respectively, compared to the control which had unfiltered and filtered Hg levels of 6.1 and 2.3 ng/L, respectively, and 450 mg/L total suspended solids. The concentration of Hg on the particles was six times higher than the Hg content of suspended particles at the control site. Results also show much stronger partitioning (three-fold higher Kd's) to the solid phase in the fire- impacted site. On-going work includes: 1) analysis of Hg and ancillary geochemical parameters overlying water and porewater from samples collected in the streambed downstream of the fire, 2) analysis of Hg concentrations in various particle size fractions of soil; and 3) preliminary characterization of recovery through analysis of soil properties and Hg levels at the burned and control sites, one-year post-fire.

  18. Combustion-Generated Nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects

    PubMed Central

    Murr, L. E.; Soto, K. F.; Garza, K. M.; Guerrero, P. A.; Martinez, F.; Esquivel, E. V.; Ramirez, D. A.; Shi, Y.; Bang, J. J.; Venzor, J.

    2006-01-01

    In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter (DPM), tire particulate matter (TPM), wood burning particulate matter, and other soot (or black carbons (BC)) along with carbon nanotube and related fullerene nanoparticle aggregates in the outdoor air, as well as carbon nanotube aggregates in the indoor air; and with reference to specific gas combustion sources. These TEM investigations include detailed microstructural and microdiffraction observations and comparisons as they relate to the aggregate morphologies as well as their component (primary) nanoparticles. We have also conducted both clinical surveys regarding asthma incidence and the use of gas cooking stoves as well as random surveys by zip code throughout the city of El Paso. In addition, we report on short term (2 day) and longer term (2 week) in vitro assays for black carbon and a commercial multiwall carbon nanotube aggregate sample using a murine macrophage cell line, which demonstrate significant cytotoxicity; comparable to a chrysotile asbestos nanoparticulate reference. The multi-wall carbon nanotube aggregate material is identical to those collected in the indoor and outdoor air, and may serve as a surrogate. Taken together with the plethora of toxic responses reported for DPM, these findings prompt concerns for airborne carbonaceous nanoparticulates in general. The implications of these preliminary findings and their potential health effects, as well as directions for related studies addressing these complex issues, will also be examined. PMID:16823077

  19. Lightweight panel study 2012: Perceptions and usage by North American wood products manufacturers

    Treesearch

    Urs Buehlmann; Matt Bumgardner; Karl D. Forth

    2012-01-01

    Lightweight panels (panels made of two thin panels on the outside and a lightweight material in the core) can offer enhanced performance, reduced material use, and new design opportunities over traditional types of panels. Opportunities exist for the adoption of lightweight panels by the secondary wood industry in North America, as 62 percent of respondents to a recent...

  20. FY2016 Lightweight Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  1. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand

    2016-03-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling formore » Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses.« less

  2. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars.

    PubMed

    Durán-Herrera, A; Campos-Dimas, J K; Valdez-Tamez, P L; Bentz, D P

    2016-07-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity ( k ) of the composite. Mortars were produced for three different water/binder ratios by mass ( w/b ), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kg f /cm 2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator.

  3. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars

    PubMed Central

    Durán-Herrera, A.; Campos-Dimas, J. K.; Valdez-Tamez, P.L.; Bentz, D. P.

    2015-01-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity (k) of the composite. Mortars were produced for three different water/binder ratios by mass (w/b), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kgf/cm2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator. PMID:27453717

  4. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside air near the tropopause at the operating altitude of 10 ~ 12 km. We shall compare some of these data with the data from the ultra-light aircraft at remote locations, albeit at lower altitudes. References http://www.cgsplus.si/portals/0/WGF/wglfPage.htm Science, 335 (6074), p. 1286, 16 March 2012

  5. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    NASA Astrophysics Data System (ADS)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  6. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    NASA Astrophysics Data System (ADS)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  7. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  8. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and inmore » the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.« less

  9. Prediction of space shuttle fluctuating pressure environments, including rocket plume effects

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.; Robertson, J. E.

    1973-01-01

    Preliminary estimates of space shuttle fluctuating pressure environments have been made based on prediction techniques developed by Wyle Laboratories. Particular emphasis has been given to the transonic speed regime during launch of a parallel-burn space shuttle configuration. A baseline configuration consisting of a lightweight orbiter and monolithic SRB, together with a typical flight trajectory, have been used as models for the predictions. Critical fluctuating pressure environments are predicted at transonic Mach numbers. Comparisons between predicted environments and wind tunnel test results, in general, showed good agreement. Predicted one-third octave band spectra for the above environments were generally one of three types: (1) attached turbulent boundary layer spectra (typically high frequencies); (2) homogeneous separated flow and shock-free interference flow spectra (typically intermediate frequencies); and (3) shock-oscillation and shock-induced interference flow spectra (typically low frequencies). Predictions of plume induced separated flow environments were made. Only the SRB plumes are important, with fluctuating levels comparable to compression-corner induced separated flow shock oscillation.

  10. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Steve

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing andmore » material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.« less

  11. Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain

    NASA Astrophysics Data System (ADS)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2014-01-01

    Most fire protection agencies throughout the world have developed forest fire risk forecast systems, usually building upon existing fire danger indices and meteorological forecast data. In this context, the daily predictability of wildfires is of utmost importance in order to allow the fire protection agencies to issue timely fire hazard alerts. In this study, we address the predictability of daily fire occurrence using the components of the Canadian Fire Weather Index (FWI) System and related variables calculated from the latest ECMWF (European Centre for Medium Range Weather Forecasts) reanalysis, ERA-Interim. We develop daily fire occurrence models in peninsular Spain for the period 1990-2008 and, considering different minimum burned area thresholds for fire definition, assess their ability to reproduce the inter-annual fire frequency variability. We based the analysis on a phytoclimatic classification aiming the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climate/fuel conditions. We then extend the analysis in order to assess the predictability of monthly burned areas. The sensitivity of the models to the level of spatial aggregation of the data is also evaluated. Additionally, we investigate the gain in model performance with the inclusion of socioeconomic and land use/land cover (LULC) covariates in model formulation. Fire occurrence models have attained good performance in most of the phytoclimatic zones considered, being able to faithfully reproduce the inter-annual variability of fire frequency. Total area burned has exhibited some dependence on the meteorological drivers, although model performance was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, highlighting the adequacy of the FWI system for fire occurrence prediction in the study area. The results were improved when using aggregated data across regions compared to when data were sampled at the grid-box level. The inclusion of socioeconomic and LULC covariates contributed marginally to the improvement of the models, and in most cases attained no relevant contribution to total explained variance - excepting northern Spain, where anthropogenic factors are known to be the major driver of fires. Models of monthly fire counts performed better in the case of fires larger than 0.1 ha, and for the rest of the thresholds (1, 10 and 100 ha) the daily occurrence models improved the predicted inter-annual variability, indicating the added value of daily models. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as a response variable. Our results leave the door open to the development a more complex modelling framework based on daily data from numerical climate model outputs based on the FWI system.

  12. Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest

    USGS Publications Warehouse

    Barrett, Kirsten; Loboda, Tatiana; McGuire, A. David; Genet, Hélène; Hoy, Elizabeth; Kasischke, Eric

    2016-01-01

    Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we employ some of these new data to analyze variations in fire activity by developing three explanatory models to examine the occurrence of (1) seasonal periods of elevated fire activity using the number of MODIS active fire detections data set (MCD14DL) within an 11-day moving window, (2) unburned patches within a burned area using the Monitoring Trends in Burn Severity fire severity product, and (3) short-to-moderate interval (<60 yr) fires using areas of burned area overlap in the Alaska Large Fire Database. Explanatory variables for these three models included dynamic variables that can change over the course of the fire season, such as weather and burn date, as well as static variables that remain constant over a fire season, such as topography, drainage, vegetation cover, and fire history. We found that seasonal periods of high fire activity are associated with both seasonal timing and aggregated weather conditions, as well as the landscape composition of areas that are burning. Important static inputs to the model of seasonal fire activity indicate that when fire weather conditions are suitable, areas that typically resist fire (e.g., deciduous stands) may become more vulnerable to burning and therefore less effective as fire breaks. The occurrence of short-to-moderate interval fires appears to be primarily driven by weather conditions, as these were the only relevant explanatory variables in the model. The unique importance of weather in explaining short-to-moderate interval fires implies that fire return intervals (FRIs) will be sensitive to projected climate changes in the region. Unburned patches occur most often in younger stands, which may be related to a greater deciduous fraction of vegetation as well as lower fuel loads compared with mature stands. The fraction of unburned patches may therefore increase in response to decreasing FRIs and increased deciduousness in the region, or these may decrease if fire weather conditions become more severe.

  13. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs andmore » public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.« less

  14. GFRP reinforced lightweight precast bridge deck.

    DOT National Transportation Integrated Search

    2011-03-01

    The present research project investigates lightweight and normal weight concrete precast panels for highway : bridge decks. The deck panels are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the : lack of research on lightweight c...

  15. Experimental Study on Fatigue Performance of Foamed Lightweight Soil

    NASA Astrophysics Data System (ADS)

    Qiu, Youqiang; Yang, Ping; Li, Yongliang; Zhang, Liujun

    2017-12-01

    In order to study fatigue performance of foamed lightweight soil and forecast its fatigue life in the supporting project, on the base of preliminary tests, beam fatigue tests on foamed lightweight soil is conducted by using UTM-100 test system. Based on Weibull distribution and lognormal distribution, using the mathematical statistics method, fatigue equations of foamed lightweight soil are obtained. At the same time, according to the traffic load on real road surface of the supporting project, fatigue life of formed lightweight soil is analyzed and compared with the cumulative equivalent axle loads during the design period of the pavement. The results show that even the fatigue life of foamed lightweight soil has discrete property, the linear relationship between logarithmic fatigue life and stress ratio still performs well. Especially, the fatigue life of Weibull distribution is more close to that derived from the lognormal distribution, in the instance of 50% guarantee ratio. In addition, the results demonstrated that foamed lightweight soil as subgrade filler has good anti-fatigue performance, which can be further adopted by other projects in the similar research domain.

  16. Vehicle lightweighting energy use impacts in U.S. light-duty vehicle fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sujit; Graziano, Diane; Upadhyayula, Venkata K. K.

    In this article, we estimate the potential energy benefits of lightweighting the light-duty vehicle fleet from both vehicle manufacturing and use perspectives using plausible lightweight vehicle designs involving several alternative lightweight materials, low- and high-end estimates of vehicle manufacturing energy, conventional and alternative powertrains, and two different market penetration scenarios for alternative powertrain light-duty vehicles at the fleet level. Cumulative life cycle energy savings (through 2050) across the nine material scenarios based on the conventional powertrain in the U.S. vehicle fleet range from -29 to 94 billion GJ, with the greatest savings achieved by multi-material vehicles that select different lightweightmore » materials to meet specific design purposes. Lightweighting alternative-powertrain vehicles could produce significant energy savings in the U.S. vehicle fleet, although their improved powertrain efficiencies lessen the energy savings opportunities for lightweighting. A maximum level of cumulative energy savings of lightweighting the U.S. light-duty vehicle through 2050 is estimated to be 66.1billion GJ under the conventional-vehicle dominated business-as-usual penetration scenario.« less

  17. Lightweight Combat Vehicle S&T Initiatives

    DTIC Science & Technology

    2015-08-01

    1 U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Lightweight Combat Vehicle S &T Initiatives Dr. Richard Gerth Ground Systems...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Lightweight Combat Vehicle S &T Initiatives Global Automotive Lightweight Materials 2015 - August...18-20 2015 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Richard Gerth 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  18. Lightweight Zerodur Mirror Technology

    DTIC Science & Technology

    1982-10-01

    17 September 1981 Contract Expiration Date: 15 May 1982 Short Title of Work: Lightweight Zerodur Mirror Technology Program Code Number: 1LIO Period of...iepRA LIGHTWEIGHT ZERODUR MIRROR TECHNOLOGY 21 Sep 81 - 21 May 82 1. PERFORMING 0,10. REPORT NUMWERn 15512 7: AUTHOR(*J S. CONTRACT OR GRANT NUMSER[JlII...1S. KIEV WORDS (Continue on reverse aide If necesery 1nd Identify b? block nwi nhm ) Zerodur Lightweight Mirrors Mirror Blank Fabrication Frit

  19. Fabrication of High Strength Lightweight Metals for Armor and Structural Applications: Large Scale Equal Channel Angular Extrusion Processing of Aluminum 5083 Alloy

    DTIC Science & Technology

    2017-06-01

    ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for Armor and Structural...to the originator. ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for...Fabrication of High -Strength Lightweight Metals for Armor and Structural Applications: Large-Scale Equal Channel Angular Extrusion Processing of

  20. Lightweight Face Mask

    NASA Technical Reports Server (NTRS)

    Cason, W. E. I.; Baucom, R. M.; Evans, R. C.

    1982-01-01

    Lightweight face mask originally developed to protect epileptic patients during seizures could have many other medical and nonmedical applications such as muscular distrophy patients, football linesmen and riot-control police. Masks are extremely lightweight, the lightest of the configurations weighing only 136 grams.

  1. Porting Extremely Lightweight Intrusion Detection (ELIDe) to Android

    DTIC Science & Technology

    2015-10-01

    ARL-TN-0681 ● OCT 2015 US Army Research Laboratory Porting Extremely Lightweight Intrusion Detection (ELIDe) to Android by...Lightweight Intrusion Detection (ELIDe) to Android by Ken F Yu and Garret S Payer Computational and Information Sciences Directorate, ARL...

  2. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  3. Characterizing dichotomous fire regimes of southern California: climate, vegetation and topography

    NASA Astrophysics Data System (ADS)

    Kolden, C.; Abatzoglou, J. T.

    2013-12-01

    Southern California Mediterranean ecosystems have long been a subject of wildfire research, in part because of the extensive Wildland Urban Interface in the region. This mix of homes and vegetation at the edge of wildlands has resulted in several of the costliest wildfire events in US history due to the number of homes burned, and its extent is projected to increase significantly over the next 50 years. As such, there has been considerable investment is identifying fire regime characteristics and potential mitigation measures in the region. However, all previous wildfire research in the region has initiated from the assumption that the dominant fire regime is associated with autumn katabatic winds, known locally as Santa Ana winds or Sundowners. To-date, there has been no effort to determine whether this is an accurate assumption, or whether the fire regime is more complex. Here, we utilize a dataset of large wildfires (>40ha) from 1948-2010 and a chronology of Santa Ana (SA) wind occurrence to disaggregate two distinct fire regimes in southwestern California: wildfires associated with SA wind occurrence events, and those not associated with Santa Ana conditions (NSA) that are fuel- and topography-driven instead. By decomposing burned area into SA and NSA fires, significant differences in seasonal, biogeographic and topographic characteristics were found, as well as distinct and significantly stronger climate-fire relationships than previously reported. NSA area burned was associated with summer fires, peaking in July, and significantly higher elevation, greater forested area, steeper slopes, and broadly across all aspects. SA area burned was associated with autumn fires, peaking in October, and significantly lower elevation, greater shrubland area, lower slopes, and more southeastern aspects. Annual burned area in NSA fires was associated with low spring precipitation, high vapor pressure deficit and low fuel moistures during the summer months that increase the seasonal window for fuel flammability. Furthermore, annual burned area in forested lands was correlated to concurrent long-term drought, whereas annual burned area in shrublands was correlated with pluvial conditions during the prior growing season. By contrast, annual area burned in SA fires did not show any robust relationship to climate anomalies in preceding months. Rather, large annual area burned in SA fires was associated with a delay in the onset of cool season precipitation that enables persistent low fuel moisture into a time of the year when SA events become more frequent. A significant increase in NSA annual burned area, the number of large fires in early summer (May-Jul) and the timing of fuel-driven wildfires was observed over the 60-year record, potentially due to increased early summer vegetation stress in recent decades. Such changes are consistent with projected climate change for southern California suggesting that NSA wildfires may play a more dominant role in landscape disturbances and hazards. These findings suggest that previous research aggregating SA and NSA wildfires may produce considerably different results if these two distinct fire regimes are uncoupled and addressed individually.

  4. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    NASA Astrophysics Data System (ADS)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with better damage tolerance but the Elastic Modulus would be reduced. After evaluation of rubberized concrete at elevated temperatures, it has been found that very high temperature would have adverse effects to the concrete like excessive spalling, pop-outs and cracking on the surface and therefore it is proposed to use this kind of concrete where temperature would not exceed 100°C (212°F) for extended periods. Observation of concrete at microscopic level showed that it consists of three phases; interfacial transition zone (ITZ), bulk hydrated cement paste and aggregate. The ITZ was seen to contain micro pores and microcracks and was considered the weakest phase in concrete therefore exercises a far greater influence on the mechanical behavior of concrete than is reflected by its size. Existence of the ITZ explains why concrete strength is lower and behaves inelastically while the aggregate and cement paste if tested separately behave elastically and have higher strength than concrete. A 3-Dimensional nonlinear Finite Element Model (FEM) for a concrete beam is proposed and developed using ABAQUS. Smeared crack model in ABAQUS is used to define material properties. The developed FEM is capable of predicting the ultimate load, deflections, Stress-deflection/strain curves and crack initiation which are all verified against the experimental tests. ABAQUS was found to be a useful tool for modeling of concrete. In conclusion, this research provides a clear understanding on the effects of using scrap tires as an aggregate in concrete. The pros and cons of TDA are explored, ways of overcoming the shortcomings suggested and a way of predicting concrete properties when using TDA provided.

  5. Strength properties of cement slurries with lightweights applied in oil and gas wells

    NASA Astrophysics Data System (ADS)

    Bubnov, A. S.; Boyko, I. A.; Khorev, V. S.

    2015-02-01

    The article is focused on the cement stone strength properties resulted from lightweight cement slurries that meet GOST-1581-96 (state Standards) requirements. Exfoliated vermiculite, hollow aluminosilicate microspheres (HAMs), diatomite and perlite were used as lightweighting additives.

  6. Literature Review of Shear Performance of Light-weight Steel Framing Wall Panels

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuangnan; Liu, Shen; Liu, Hong

    2018-03-01

    In this paper, a comprehensive review of light-weight steel framing wall panels was carried out. The structure and force characteristics of light-weight steel framing wall panels were introduced. The testing and theoretical research results on the shear behaviour of light-weight steel framing wall panels were summarized in the domestic and foreign. And combined with the existing standards in China, the author's views and ideas are put forward to the problems in the research field of this kind of structural system.

  7. Development of a lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, D. L.; Reid, M. A.

    1984-01-01

    Nickel electrodes made using lightweight plastic plaque are about half the weight of electrodes made from state of the art sintered nickel plaque. This weight reduction would result in a significant improvement in the energy density of batteries using nickel electrodes (nickel hydrogen, nickel cadmium and nickel zinc). These lightweight electrodes are suitably conductive and yield comparable capacities (as high as 0.25 AH/gm (0.048 AH/sq cm)) after formation. These lightweight electrodes also show excellent discharge performance at high rates.

  8. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5

    NASA Astrophysics Data System (ADS)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent

    2016-07-01

    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  9. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges.

    DOT National Transportation Integrated Search

    2011-07-01

    This report details results from testing that was conducted to determine the bond and time-dependent : characteristics of two lightweight concrete mixes. The lightweight mixes were evaluated to possibly : provide a more cost-effective solution to rep...

  10. High-flexibility, noncollapsing lightweight hose

    DOEpatents

    Williams, David A.

    1993-01-01

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  11. 46 CFR 170.200 - Estimated lightweight vertical center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...

  12. 46 CFR 170.200 - Estimated lightweight vertical center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...

  13. 46 CFR 170.200 - Estimated lightweight vertical center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...

  14. 46 CFR 170.200 - Estimated lightweight vertical center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...

  15. 46 CFR 170.200 - Estimated lightweight vertical center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Estimated lightweight vertical center of gravity. 170.200 Section 170.200 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and...

  16. High-flexibility, noncollapsing lightweight hose

    DOEpatents

    Williams, D.A.

    1993-04-20

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  17. Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    NASA Technical Reports Server (NTRS)

    Vukobratovich, Daniel; Richard, Ralph M.; Valente, Tina M.; Cho, Myung K.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  18. Persistent Identifiers: a Prerequisite to Establish the Framework for Scholarly Link Exchange—Scholix

    NASA Astrophysics Data System (ADS)

    Stocker, M.; Mokrane, M.; Burton, A.; Koers, H.

    2016-12-01

    The Scholix framework—Scholarly Link Exchange—is a set of aspirational principles and practical guidelines developed under the umbrella of a joint Working Group of the Research Data Alliance (RDA) and the World Data System (WDS). It supports a global open information ecosystem unveiling the links between scholarly literature and underpinning research data. The core objectives of the framework are to (1) increase visibility and discoverability of data and articles, (2) place data in context to enable re-use, and (3) support credit attribution mechanisms. Thus, facilitating reproducibility and the transparent evaluation of science. Scholix provides an evolving lightweight set of Guidelines to increase interoperability rather than a normative standard. It consists initially of a conceptual and information models, information standards and encoding guidelines, and options for encoding and exchange protocols. An essential prerequisite to enable the proposed framework is the use of global, unique and persistent identifiers for research objects (such as data and literature). Scholix provides incentives and encourages best practice in the use of such identifiers and standardised referencing. The Data and Literature Interlinking Service (DLI: dliservice.research-infrastructures.eu) is the first exemplar of an aggregation and query service supported by the Scholix framework which will allow the emergence of third party services such as domain-specific aggregations, integrations with other global services, discovery tools, impact assessments, etc. Scholix is already implemented by existing hubs or global aggregators of data-literature link information such as DataCite, CrossRef, OpenAIRE, and EMBL-EBI building on the capacities of existing Persistent Identifier Systems (PIDs) such as Digital Object Identifiers (DOI) and Accession Numbers. These hubs in turn work with their natural communities of data centres or literature publishers to collect the information through existing community-specific workflows and standards. Scholix as a technical solution to wholesale information aggregation will need to be complemented by other policy, practice and cultural change advocacy initiatives. This approach could be extended over time to other types of research objects in and beyond research.

  19. Evaluation of vegetation post-fire resilience in the Alpine region using descriptors derived from MODIS spectral index time series

    NASA Astrophysics Data System (ADS)

    Di Mauro, Biagio; Fava, Francesco; Busetto, Lorenzo; Crosta, Giovanni Franco; Colombo, Roberto

    2013-04-01

    In this study a method based on the analysis of MODerate-resolution Imaging Spectroradiometer (MODIS) time series is proposed to estimate the post-fire resilience of mountain vegetation (broadleaf forest and prairies) in the Italian Alps. Resilience is defined herewith as the ability of a dynamical system to counteract disturbances. It can be quantified by the amount of time the disturbed system takes to resume, in statistical terms, an ecological functionality comparable with its undisturbed behavior. Satellite images of the Normalized Difference Vegetation Index (NDVI) and of the Enhanced Vegetation Index (EVI) with spatial resolution of 250m and temporal resolution of 16 days in the 2000-2012 time period were used. Wildfire affected areas in the Lombardy region between the years 2000 and 2010 were analysed. Only large fires (affected area >40ha) were selected. For each burned area, an undisturbed adjacent control site was located. Data pre-processing consisted in the smoothing of MODIS time series for noise removal and then a double logistic function was fitted. Land surface phenology descriptors (proxies for growing season start/end/length and green biomass) were extracted in order to characterize the time evolution of the vegetation. Descriptors from a burned area were compared to those extracted from the respective control site by means of the one-way analysis of variance. According to the number of subsequent years which exhibit statistically meaningful difference between burned and control site, five classes of resilience were identified and a set of thematic maps was created for each descriptor. The same method was applied to all 84 aggregated events and to events aggregated by main land cover. EVI index results more sensitive to fire impact than NDVI index. Analysis shows that fire causes both a reduction of the biomass and a variation in the phenology of the Alpine vegetation. Results suggest an average ecosystem resilience of 6-7 years. Moreover, broadleaf forest and prairies show different post-fire behavior in terms of land surface phenology descriptors. In addition to the above analysis, another method is proposed, which derives from the qualitative theory of dynamical systems. The (time dependent) spectral index of a burned area over the period of one year was plotted against its counterpart from the control site. Yearly plots (or scattergrams) before and after the fire were obtained. Each plot is a sequence of points on the plane, which are the vertices of a generally self-intersecting polygonal chain. Some geometrical descriptors were obtained from the yearly chains of each fire. Principal Components Analysis (PCA) of geometrical descriptors was applied to a set of case studies and the obtained results provide a system dynamics interpretation of the natural process.

  20. 77 FR 27437 - Lightweight Thermal Paper From the People's Republic of China: Rescission of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-921] Lightweight Thermal Paper From the People's Republic of China: Rescission of Countervailing Duty Administrative Review AGENCY... review of the countervailing duty order on lightweight thermal paper from the People's Republic of China...

  1. 75 FR 9397 - Lightweight Thermal Paper From the People's Republic of China: Rescission of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-921] Lightweight Thermal Paper... opportunity to request an administrative review of the countervailing duty order on lightweight thermal paper...), the Department received a timely request from Appleton Papers, Inc., the petitioner, to conduct an...

  2. 77 FR 73615 - Lightweight Thermal Paper From Germany; Preliminary Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... thermal paper (LWTP) from Germany for the period November 1, 2010, through October 31, 2011. We have.... SUPPLEMENTARY INFORMATION: Scope of the Order The merchandise covered by the order is lightweight thermal paper...

  3. 76 FR 40689 - Lightweight Thermal Paper From Germany: Extension of Time Limits for the Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper From Germany: Extension of Time Limits for the Preliminary Results of Antidumping Duty Administrative... duty order on lightweight thermal paper from Germany (LTWP), covering the period November 1, 2009, to...

  4. X-Ray System, Lightweight Medical (XRSLM)

    DTIC Science & Technology

    1992-08-10

    AD-25805 DTIC ELECTE DEC 3 1992 C~ontract No. DAMD 17-88(1-8058 X-Ray System , Lightweight Medical kXRSLM) M el in P .Siedba nl Frank C. G-reuzow’)N...Craig A. Hellman Robert C. Bruce rl 4 1W ý~( rf A&*- ~ko~.$~._ LO Contract No. DAMD17-88C-8058 X-Ray System , Lightweight Medical (XRSLM) Melvin P... System , Lightweight Medical (XRSLM) Contract No. DAMD17-88-C-805 8 6. AUTHOR(S)Melvin P. Siedband 63807A Frank C. Grenzow 3M463807L2336 HE 041 Craig A

  5. Lightweight Composite Materials for Heavy Duty Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weightmore » savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.« less

  6. Water repellency and soil moisture variations under Rosmarinus officinalis in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    Mediterranean semi-arid landscapes are characterised by the patchiness of the vegetation cover, in which variations in the distribution pattern of soil water repellency (SWR) can be of major importance for their hydrological and geomorphological effects in burned areas, and also for their ecological implications concerning to the re-establishment of their plant cover. Within a broader research framework, the present work studies the influence of Rosmarinus officinalis vegetated patches on SWR in burned and unburned soils and its relationship with the field soil moisture content (SMC). The results presented here are the first step analysing the spatial pattern of sink and source runoff areas in a burned hillslope. The study area is located in the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occurred in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12 ° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight at the nearest unburned area were selected. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for soil sampling (1 sample per zone at each microsite, n= 84, form the first 2 cm of the mineral A horizon) and field soil moisture measurements determined by means of the moisture meter HH2 with ThetaProbe sensor type ML2x (5 measurements per zone at each microsite, n= 420), which were taken one day after the first rainfall event after fire, when 11 mm were registered in the study area. Results showed that the largest repellency persistence (measured by means of the Water Drop Penetration Time test, WDPT) was found close to the burned R. officinalis stumps, where all soil samples showed water repellency, with mean WDPT of 68 seconds. Generally, we observed a sharp hydrophobic/hydrophilic boundary between the zones I (stump) and II (intermediate). Soil samples from bare soil (zone III) were entirely wettable. At control microsites, SWR was present only in one of the unburned R. officinalis samples. On the basis that unburned microsites are representative of the pre-fire conditions at the burned ones, these results imply that fire caused a significant increase in SWR occurrence at the soil surface. Field SMC showed statistically significant differences between the three zones. Both control and burned microsites showed the same trend, with an increasing gradient towards the outer zone. Furthermore, burned microsites showed larger differences in SMC between zone I and zone III (18% and 27%, respectively) than the unburned ones. It could be explained because at burned stumps, the largest persistence of water repellency and the highest SOM content might decrease the wettability of aggregates, slowing their rates of wetting, which might not occur at all during the rainstorms. In fact, there was obtained a significant and negative Pearson's correlation coefficients between SMC and WDPT, and between SMC and SOM at burned microsites. However, no correlation between field SMC and WDPT was found from control microsites. Moreover, at the burned microsites, the partial correlation analysis with SOM as control variable revealed that SMC and WDPT were influenced by the SOM. In addition, it is necessary to consider the existence of root channels with the development of preferential flow pathways, which could enhance deeper water infiltration in the stump areas. These results provide evidences of the importance of microsite soil surface properties on SMC variability on semiarid burned slopes. The existence of SWR and lowest SMC detected at burned stumps opposite to the highest SMC after rainfall and the absence of SWR in burned bare soil zones could be key factors for the differences in overland flow and erosional response of burned areas characterised by the patchiness of the vegetation cover.

  7. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materialsmore » database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.« less

  8. High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum.

    PubMed

    Wu, H M; Rätsep, M; Young, C S; Jankowiak, R; Blankenship, R E; Small, G J

    2000-09-01

    Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll c (BChl c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of -0.44 and -0.54 cm(-1)/MPa were observed for the chlorosome BChl c Q(y)-band at 100 K and the lowest Q(y)-exciton level at 12 K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl c monomer, fDeltamu++ = 0.35 D, where Deltamu+ is the dipole moment change for the Q(y) transition and f is the local field correction factor. The data establish that Deltamu+ is dominated by the matrix-induced contribution. The change in polarizability (Deltaalpha) for the Q(y) transition of the BChl c monomer is estimated at 19 A(3), which is essentially identical to that of the Chl a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10(5) V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl c aggregates.

  9. [Dynamic change in microcirculation of pancreas after experimental high-voltage electric burn].

    PubMed

    Zhang, Qing-fu; Bai, Yong-qiang

    2009-10-01

    To observe the changes in surface microcirculation of pancreas after high-voltage electric burn (HEB). Thirty rabbits were divided into electrical injury (E) group and control (C) group in a simple random method, with 15 rabbits in each group. Rabbit model of HEB was reproduced from E group with TC-30-20KVA type voltage regulator and YDJ-10KVA type experimental transformer. Rabbits in C group were shamly burned with the same equipment as in E group but not electrified. Intravenous blood of rabbits in both groups was drawn 15 mins before HEB and 0, 1, 2, 4, 8 h after to determine the levels of serum amylase and blood glucose. The morphology of the pancreas microvessels and its surrounding tissues, and the dynamic changes in microvascular blood flow were observed with WX-9 microscope and its image analytical system. The level of serum amylase of rabbits in E group increased gradually and peaked (849 +/- 39) U/L at 8 post HEB h (PHH), which decreased gradually reaching the nadir (153 +/- 21) U/L at 8 PHH in C group (P < 0.05). The blood glucose levels of rabbits in E group and C group increased gradually, with the former level obviously higher than the latter (P < 0.05). Arteriole, venule and capillary network on the surface of pancreatic lobules of rabbits in both groups were clearly seen and well-distributed in the natural way before HEB. In E group, arterioles of rabbits contracted at 0 PHH, and increased gradually in caliber size at 1 PHH; venules of rabbits were unevenly thickened at 2 PHH, and dilated at 8 PHH; the capillaries were contracted or with interrupted flow or completely obstructed at 0 PHH, and their thickness were uneven at 2 PHH, showing exudation at 8 PHH. There was no obvious change of microvessels in rabbits in C group at each time point. There was no exudation and bleeding around the microvessels on the pancreas surface of rabbits in both groups before HEB. In E group exudation was observed around microvessels at 1 PHH, bleeding was observed at 2 PHH and became obvious at 4 PHH; exudation and diffuse bleeding from capillaries were observed at 8 PHH. There was no exudation and bleeding in rabbits in C group as observed at each time point. Before HEB, blood flow speed in microvessels of rabbits in 2 groups was similar to each other (P > 0.05), and no erythrocyte aggregation or microthrombus was found in both groups. In E group, blood flow speed slowed down at 0 PHH as compared with that before HEB, it accelerated at 1 h and slowed down later; erythrocyte aggregation in venules and capillaries was found at 0 PHH, and it aggregated gradually. No above-mentioned change was found in C group. HEB produces microcirculation disturbance and functional disturbance of pancreas.

  10. Synthesis and evaluation of lightweight concrete research relevant to the AASHTO LRFD bridge design specifications : potential revisions for definition and mechanical properties.

    DOT National Transportation Integrated Search

    2012-11-01

    Much of the fundamental basis for the current lightweight concrete provisions in the AASHTO LRFD Bridge : Design Specifications is based on research of lightweight concrete (LWC) from the 1960s. The LWC that was : part of this research used tradition...

  11. Adhesives for assembly of lightweight wood containers

    Treesearch

    R. S. Kurtenacker

    1964-01-01

    This report discusses the screening of various adhesive and mastic systems for possible use in assembling lightweight wood containers. Results showed that dynamic tests of simulated box corners correlated reasonably well with rough handling evaluations of eight selected systems when used to assemble lightweight wood boxes made from a Group I container wood....

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  13. New technologies for the actuation and controls of large aperture lightweight quality mirrors

    NASA Technical Reports Server (NTRS)

    Lih, S. S.; Yang, E. H.; Gullapalli, S. N.; Flood, R.

    2003-01-01

    This paper presents a set of candidate components: MEMS based large stroke (>100 microns) ultra lightweight (0.01 gm) discrete inch worm actuator technology, and a distributed actuator technology, in the context of a novel lightweight active flexure-hinged substrate concept that uses the nanolaminate face sheet.

  14. 46 CFR 30.10-38 - Lightweight-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Lightweight-TB/ALL. 30.10-38 Section 30.10-38 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-38 Lightweight—TB/ALL. The term lightweight means the displacement of a vessel in metric tons without cargo, oil...

  15. 46 CFR 30.10-38 - Lightweight-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Lightweight-TB/ALL. 30.10-38 Section 30.10-38 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-38 Lightweight—TB/ALL. The term lightweight means the displacement of a vessel in metric tons without cargo, oil...

  16. 46 CFR 30.10-38 - Lightweight-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Lightweight-TB/ALL. 30.10-38 Section 30.10-38 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-38 Lightweight—TB/ALL. The term lightweight means the displacement of a vessel in metric tons without cargo, oil...

  17. 46 CFR 30.10-38 - Lightweight-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Lightweight-TB/ALL. 30.10-38 Section 30.10-38 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-38 Lightweight—TB/ALL. The term lightweight means the displacement of a vessel in metric tons without cargo, oil...

  18. 46 CFR 30.10-38 - Lightweight-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Lightweight-TB/ALL. 30.10-38 Section 30.10-38 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-38 Lightweight—TB/ALL. The term lightweight means the displacement of a vessel in metric tons without cargo, oil...

  19. 75 FR 11135 - Lightweight Thermal Paper from Germany: Notice of Partial Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... antidumping duty order on lightweight thermal paper (thermal paper) from Germany for the period of review (POR... Papers Inc. (petitioner) to conduct an administrative review of Mitsubishi HiTec Paper Flensburg GmbH...

  20. 75 FR 14574 - Lightweight Thermal Paper From the People's Republic of China: Rescission of the 2008-2009...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-920] Lightweight Thermal Paper... administrative review of the antidumping duty order on lightweight thermal paper (``LWTP'') from the People's... 19 CFR 351.213(b), the Department received a timely request from Appleton Papers, Inc. (``petitioner...

  1. 76 FR 20951 - Lightweight Thermal Paper from Germany: Notice of Partial Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... antidumping duty order on lightweight thermal paper (thermal paper) from Germany for the period of review (POR... November 30, 2010, the Department received a timely request filed on behalf of Appleton Papers Inc...

  2. 77 FR 22560 - Lightweight Thermal Paper From Germany: Notice of Partial Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... antidumping duty order on lightweight thermal paper (thermal paper) from Germany for the period of review (POR... Papers Inc. (petitioner) to conduct an administrative review of Mitsubishi HiTec Paper Flensburg GmbH...

  3. Lightweight fuel cell powerplant components program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1980-01-01

    A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.

  4. Multi-component lightweight gearwheels with deep-drawn wheel body for automotive applications

    NASA Astrophysics Data System (ADS)

    Benkert, Tim; Hiller, Maria; Volk, Wolfram

    2017-09-01

    Multi-component gearwheels offer great lightweight opportunities for automotive applications. An assembly of a gear ring and a wheel body joined by press fit replaces the monolithic gearwheel. To save weight, the wheel body uses lightweight design. This lightweight design influences the assembled gearwheel’s mechanical properties like stiffness, weight and torque capacity. Further, the wheel body material influences the mentioned properties as well. In this paper, the effects of the lightweight wheel body manufactured by deep-drawing on the mechanical properties of the assembled gearwheel are investigated. Three different wheel body designs are examined regarding their stiffness and weight compared to a reference gearwheel. Using the best design, the influence of five materials with increasing yield strength on the maximum torque the gearwheel can transmit is studied. All research is done virtually using Abaqus 6.12-3.

  5. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill.

    PubMed

    Zhang, Tao; Cai, Guojun; Duan, Weihong

    2018-02-01

    The disposal of scrap rubber tires has induced critical environmental issue worldwide due to the rapid increase in the number of vehicles. Recycled scrap tires as a construction material in civil engineering have significant environmental benefits from a waste management perspective. A systematic study that deals with strength and microstructure characteristics of the rubber-sand mixtures is initiated, and mechanical response of the mixtures is discussed in this investigation. Experiments were conducted to evaluate the effects of rubber fraction on the basic properties including mass density (ρ), stress-strain characteristics, shear strength, and unconfined compression strength (q u ) of the rubber-sand mixtures. Additionally, scanning electron microscopy (SEM) was carried out to reveal the microstructure characteristics of the mixtures with various rubber fractions. A discussion on the micromechanics of the mixtures also was conducted. This study demonstrates that the ρ, friction angle, and q u decrease linearly with an increase in rubber fraction, whereas shear strain at peak increases. The stress-strain characteristics of the rubber-sand mixtures shift from brittle to ductile as the rubber fraction increase. These changes are attributed to remarkably lower stiffness and higher compressibility of the rubber particle compared with those of the conventional mineral aggregates. With an increase in the rubber fraction, the mechanical response of rubber-sand mixtures exhibits two types: sand-like material and rubber-like material. Rubber particle possesses the capacity to prevent the contacted sand particles from sliding at lower rubber fraction, whereas it transmits the applied loadings as the rubber fraction increased. This outcome reinforces the practicability of using recycled rubber tire-sand mixtures as a lightweight backfill in subbase/base applications.

  6. Lightweight design of automobile frame based on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lyu, R.; Jiang, X.; Minoru, O.; Ju, D. Y.

    2018-06-01

    The structural performance and lightweighting of car base frame design is a challenging task due to all the performance targets that must be satisfied. In this paper, three kinds of materials (iron, aluminum and magnesium alloy) replacement along with section design optimization strategy is proposed to develop a lightweight car frame structure to satisfy the tensile and safety while reducing weight. Two kinds of cross-sections are considered as the design variables. Using Ansys static structure, the design optimization problem is solved, comparing the results of each step, structure of the base flame is optimized for lightweight.

  7. Light-weight plastination.

    PubMed

    Steinke, Hanno; Rabi, Suganthy; Saito, Toshiyuki; Sawutti, Alimjan; Miyaki, Takayoshi; Itoh, Masahiro; Spanel-Borowski, Katharina

    2008-11-20

    Plastination is an excellent technique which helps to keep the anatomical specimens in a dry, odourless state. Since the invention of plastination technique by von Hagens, research has been done to improve the quality of plastinated specimens. In this paper, we have described a method of producing light-weight plastinated specimens using xylene along with silicone and in the final step, substitute xylene with air. The finished plastinated specimens were light-weight, dry, odourless and robust. This method requires less use of resin thus making the plastination technique more cost-effective. The light-weight specimens are easy to carry and can easily be used for teaching.

  8. Arsenic(V) Removal in Wetland Filters Treating Drinking Water with Different Substrates and Plants.

    PubMed

    Wu, Min; Li, Qingyun; Tang, Xianqiang; Huang, Zhuo; Lin, Li; Scholz, Miklas

    2014-05-01

    Constructed wetlands are an attractive choice for removing arsenic (As) within water resources used for drinking water production. The role of substrate and vegetation in As removal processes is still poorly understood. In this study, gravel, zeolite (microporous aluminosilicate mineral), ceramsite (lightweight expanded clay aggregate) and manganese sand were tested as prospective substrates while aquatic Juncus effuses (Soft Rush or Common Rush) and terrestrial Pteris vittata L. (Chinese Ladder Brake; known as As hyperaccumulator) were tested as potential wetland plants. Indoor batch adsorption experiments combined with outdoor column experiments were conducted to assess the As removal performances and process mechanisms. Batch adsorption results indicated that manganese sand had the maximum As(V) adsorption rate of 4.55 h -1 and an adsorption capacity of 42.37 μg/g compared to the other three aggregates. The adsorption process followed the pseudo-first-order kinetic model and Freundlich isotherm equations better than other kinetic and isotherm models. Film-diffusion was the rate-limiting step. Mean adsorption energy calculation results indicated that chemical forces, particle diffusion and physical processes dominated As adsorption to manganese sand, zeolite and gravel, respectively. During the whole running period, manganese sand-packed wetland filters were associated with constantly 90% higher As(V) reduction of approximate 500 μg/L influent loads regardless if planted or not. The presence of P. vittata contributed to no more than 13.5% of the total As removal. In contrast, J. effuses was associated with a 24% As removal efficiency.

  9. Effect of cementitious permanent formwork on moisture field of internal-cured concrete under drying

    NASA Astrophysics Data System (ADS)

    Wang, Jiahe; Zhang, Jun; Ding, Xiaoping; Zhang, Jiajia

    2018-02-01

    Drying shrinkage of concrete may still be the main source of cracking in concrete structures, even though the autogenous shrinkage of concrete can be effectively reduced by using internal curing. In the present paper, the effect of internal curing with pre-soaked lightweight aggregate and engineered cementitious composite permanent formwork (ECC-PF) on a moisture distribution in three kinds of concrete in a drying environment are investigated from both aspects of experiments and theoretical modeling. The test results show that the combination use of ECC-PF and internal curing can well maintain the humidity at a relatively high level not only at a place far from drying surface, but also at a place close to the drying surfaces. The developed model can well catch the characteristics of the moisture distribution in concrete under drying and the impacts of internal curing and ECC-PF can well be reflected as well. The model can be used for the design of concrete structures with combination use of internal curing and permanent formwork.

  10. Co-melting technology in resource recycling of sludge derived from stone processing.

    PubMed

    Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei

    2012-12-01

    Stone processing sludge (SPS) is a by-product of stone-processing wastewater treatment; it is suitable for use as a raw material for making artificial lightweight aggregates (ALWAs). In this study, boric acid was utilized as a flux to lower sintering temperature. The formation of the viscous glassy phase was observed by DTA curve and changes in XRD patterns. Experiments were conducted to find the optimal combination of sintering temperature, sintering time, and boric acid dosage to produce an ALWA of favorable characteristics in terms of water absorption, bulk density, apparent porosity, compressive strength and weight loss to satisfy Taiwan's regulatory requirements for construction and insulation materials. Optimal results gave a sintering temperature of 850 degrees C for 15 min at a boric acid dosage of 15% by weight of SPS. Results for ALWA favorable characteristics were: 0.21% (water absorption), 0.35% (apparent porosity), 1.67 g/cm3 (bulk density), 66.94 MPa (compressive strength), and less than 0.1% (weight loss).

  11. Co-melting technology in resource recycling of sludge derived from stone processing.

    PubMed

    Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei

    2012-12-01

    Stone processing sludge (SPS) is a by-product of stone-processing wastewater treatment; it is suitable for use as a raw material for making artificial lightweight aggregates (ALWAs). In this study, boric acid was utilized as a flux to lower sintering temperature. The formation of the viscous glassy phase was observed by DTA curve and changes in XRD patterns. Experiments were conducted to find the optimal combination of sintering temperature, sintering time, and boric acid dosage to produce an ALWA of favorable characteristics in terms of water absorption, bulk density, apparent porosity, compressive strength and weight loss to satisfy Taiwan's regulatory requirements for construction and insulation materials. Optimal results gave a sintering temperature of 850 °C for 15 min at a boric acid dosage of 15 % by weight of SPS. Results for ALWA favorable characteristics were: 0.21 % (water absorption), 0.35 %(apparent porosity), 1.67 g/cm3 (bulk density), 66.94 MPa (compressive strength), and less than 0.1% (weight loss). [Box: see text].

  12. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NASA Astrophysics Data System (ADS)

    Zemskov, Serguey V.; Ahmad, Bilal; Copuroglu, Oguzhan; Vermolen, Fred J.

    2013-02-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, which is incorporated into the impregnation of the sodium mono-fluorophosphate (Na-MFP) solution. The model of the self-healing process is built under the assumption that the position of the carbonation front changes in time where the rate of diffusion of Na-MFP into the carbonated cement matrix and the reaction rates of the free phosphate and fluorophosphate with the components of the cement are comparable to the speed of the carbonation front under accelerated carbonation conditions. The model is based on an initial-boundary value problem for a system of partial differential equations which is solved using a Galerkin finite element method. The results obtained are discussed and generalized to a three-dimensional case.

  13. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    PubMed

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  14. Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan; Yang, Bipeng

    2017-10-01

    Carbon black (CB) is an excellent filler to reinforce polymers because of its unique thermal and mechanical properties. Thus, a type of modified carbon black (MCB) was developed, which led to reduced filler aggregation in methyl methacrylate (MMA) monomers and resulted in homogeneous dispersion in the polymethyl methacrylate (PMMA) substrate. The PMMA-MCB composite particles that were prepared in this work possessed remarkable and stable properties. Therefore, they can be used as an ultra-lightweight proppant (ULWP). Fourier transform infrared spectroscopy showed that CB was successfully modified and the MCB was well dispersed in the PMMA matrix. Results of crushing rate and differential scanning calorimetry demonstrated that MCB could significantly enhance the thermal and mechanical performance of the ULWP. Heat treatment of the ULWP under a nitrogen atmosphere could also clearly enhance its performance in various aspects. The process of modifying CB, the approach of synthesizing PMMA-MCB composite particles, and their mechanism were systematically investigated in this work.

  15. Multiscale Computer Simulation of Failure in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2008-01-01

    Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.

  16. Synthesis and evaluation of lightweight concrete research relevant to the AASHTO LRFD bridge design specifications : identification of articles for further evaluation and potential revision.

    DOT National Transportation Integrated Search

    2012-11-01

    Much of the fundamental basis for the current lightweight concrete provisions in the AASHTO LRFD Bridge : Design Specifications is based on research of lightweight concrete (LWC) from the 1960s. The LWC that was : part of this research used tradition...

  17. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger aircraft, not only in meeting the regulatory requirements, but also in competing with aircraft of different advanced designs within this N+2 timeframe and goal framework.

  18. Full Scale Software Support on Mobile Lightweight Devices by Utilization of All Types of Wireless Technologies

    NASA Astrophysics Data System (ADS)

    Krejcar, Ondrej

    New kind of mobile lightweight devices can run full scale applications with same comfort as on desktop devices only with several limitations. One of them is insufficient transfer speed on wireless connectivity. Main area of interest is in a model of a radio-frequency based system enhancement for locating and tracking users of a mobile information system. The experimental framework prototype uses a wireless network infrastructure to let a mobile lightweight device determine its indoor or outdoor position. User location is used for data prebuffering and pushing information from server to user’s PDA. All server data is saved as artifacts along with its position information in building or larger area environment. The accessing of prebuffered data on mobile lightweight device can highly improve response time needed to view large multimedia data. This fact can help with design of new full scale applications for mobile lightweight devices.

  19. Comparing optical test methods for a lightweight primary mirror of a space-borne Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Yu, Zong-Ru; Lin, Yu-Chuan; Ho, Cheng-Fong; Huang, Ting-Ming; Chen, Cheng-Huan

    2014-09-01

    A Cassegrain telescope with a 450 mm clear aperture was developed for use in a spaceborne optical remote-sensing instrument. Self-weight deformation and thermal distortion were considered: to this end, Zerodur was used to manufacture the primary mirror. The lightweight scheme adopted a hexagonal cell structure yielding a lightweight ratio of 50%. In general, optical testing on a lightweight mirror is a critical technique during both the manufacturing and assembly processes. To prevent unexpected measurement errors that cause erroneous judgment, this paper proposes a novel and reliable analytical method for optical testing, called the bench test. The proposed algorithm was used to distinguish the manufacturing form error from surface deformation caused by the mounting, supporter and gravity effects for the optical testing. The performance of the proposed bench test was compared with a conventional vertical setup for optical testing during the manufacturing process of the lightweight mirror.

  20. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    DTIC Science & Technology

    2008-09-01

    Silicon Carbide Technologies for Lightweighted Aerospace Mirrors Lawrence E. Matson (1) Ming Y. Chen (1) Brett deBlonk (2) Iwona A...glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs...for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive

  1. Analysis and trade-off studies of large lightweight mirror structures. [large space telescope

    NASA Technical Reports Server (NTRS)

    Soosaar, K.; Grin, R.; Ayer, F.

    1975-01-01

    A candidate mirror, hexagonally lightweighted, is analyzed under various loadings using as complete a procedure as possible. Successive simplifications are introduced and compared to an original analysis. A model which is a reasonable compromise between accuracy and cost is found and is used for making trade-off studies of the various structural parameters of the lightweighted mirror.

  2. Scalability of Classical Terramechanics Models for Lightweight Vehicle Applications

    DTIC Science & Technology

    2013-08-01

    Models for Lightweight Vehicle Applications Paramsothy Jayakumar Daniel Melanz Jamie MacLennan U.S. Army TARDEC Warren, MI, USA Carmine...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paramsothy Jayakumar ; Daniel Melanz; Jamie MacLennan; Carmine Senatore; Karl Iagnemma 5d. PROJECT...GVSETS), UNCLASSIFIED Scalability of Classical Terramechanics Models for Lightweight Vehicle Applications, Jayakumar , et al., UNCLASSIFIED Page 1 of 19

  3. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.

    PubMed

    Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L

    2017-08-01

    The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.

  4. Innovation of Iron Reinforcing Column of Partical From Frame of Light Steel

    NASA Astrophysics Data System (ADS)

    Ramadhan, M. R.; Faslih, A.; Umar, M. Z.

    2018-05-01

    Almost half of houses in Indonesia are using lightweight steel roof truss today. The phenomenon in the field is that lightweight steel roof truss can blend with mortar mixture. Thus this phenomenon is captured for later applied dynamically, creatively, and innovatively with new idioms such as reinforcement for columns. This research aims to investigate the comparison of the way of making and the price of the materials between the column material made of the light steel and the column material made of the iron reinforcement which is the most efficient. Type of research is qualitative with a comparative causal approach. This research is divided into several stages, namely; Literature study, column creation, and validation. This study concluds that the manufacture of column material from reinforcement is more efficient, than the lightweight steel column material. The reinforcement column material is more efficient because of the more effective way of making and the price of the working materials more economical than the lightweight steel column material. Lightweight steel columns can be used for public housing on condition made by experienced craftsmen to make the process faster, and the dimensions of lightweight steel can be scaled down to make it more economical.

  5. Reducing supply chain energy use in next-generation vehicle lightweighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta

    Vehicle lightweighting reduces the amount of fuel consumed in a vehicle's use phase, but depending on what lightweight materials replace the conventional materials, and in what amounts, the manufacturing energy may increase or decrease. For carbon fiber reinforced polymer (CFRP), a next-generation lightweighting material, the increase in vehicle manufacturing energy is greater than the fuel savings, resulting in a net increase in energy consumption over a vehicle's manufacturing and use relative to a standard non-lightweighted car. [1] This work explores ways to reduce the supply chain energy of CFRP lightweighted vehicles through alternative production technologies and energy efficiency improvements. Themore » objective is to determine if CFRP can offer energy savings comparable to or greater than aluminum, a conventional lightweighting material. Results of this analysis can be used to inform additional research and development efforts in CFRP production and future directions in lightweight vehicle production. The CFRP supply chain is modeled using the Material Flows through Industry (MFI) scenario modeling tool, which calculates 'mine to materials' energy consumption, material inventories and greenhouse gas emissions for industrial supply chains. In this analysis, the MFI tool is used to model the supply chains of two lightweighted vehicles, an aluminum intensive vehicle (AIV) and a carbon fiber intensive vehicle (CFV), under several manufacturing scenarios. Vehicle specifications are given in [1]. Scenarios investigated cover alternative carbon fiber (CF) feedstocks and energy efficiency improvements at various points in the vehicle supply chains. The alternative CF feedstocks are polyacrylonitrile, lignin and petroleum-derived mesophase pitch. Scenarios in which the energy efficiency of CF and CFRP production increases are explored using sector efficiency potential values, which quantify the reduction in energy consumption achievable when process equipment is upgraded to the most efficient available. Preliminary analyses indicate that producing CF from lignin instead of polyacrylonitrile, the most commonly used feedstock, reduces energy consumption in the CFRP supply chain by 7.5%, and that implementing energy efficient process equipment produces an additional 8% reduction. Final results will show if these potential reductions are sufficient to make the CFV energy savings comparable with AIV energy savings. [1] Das, S., Graziano, D., Upadhyayula, V. K., Masanet, E., Riddle, M., & Cresko, J. (2016). Vehicle lightweighting energy use impacts in US light-duty vehicle fleet. Sustainable Materials and Technologies, 8, 5-13.« less

  6. The identification of meteorite inclusions with isotope anomalies

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Brigham, C. A.

    1989-01-01

    Ca-Al refractory inclusions with characteristic chemical and mineralogical compositions show an enhanced occurrence of 20 pct of isotope anomalies reflecting unknown nucleosynthetic effects for O and Mg. The anomalies are characterized by large isotope fractionation in Mg, apparent deficits in Mg-26/Mg-24, and large correlated effects for isotopes of Ca, Ti, and Cr. These isotope patterns define exotic components depleted in the most neutron-rich isotopes of Ca, Ti, and Cr, or components depleted in isotopes produced in explosive O and Si burning. An opaque assemblage within one of the inclusions yields isotope anomalies in Cr similar to the bulk inclusion and must be intrinsically part of the inclusion and not a trapped, foreign grain aggregate.

  7. Temporal evolution of water repellency and preferential flow in the post-fire

    NASA Astrophysics Data System (ADS)

    Alanís, Nancy; Jordán, Antonio; Zavala, Lorena M.

    2015-04-01

    Forest fires usually intensify erosive process due to the reduction of vegetation cover and degradation of aggregation in the topsoil. Another common effect of wildifres is the development of soil water repellency, which in turn favors the formation of runoff, inhibiting or delaying infiltration. Under these conditions, infiltration occurs only when ponded water or runoff flow finds macropores and cracks in the soil surface, producing preferential flow pathways. When water infiltrates through these paths, a significant portion of the soil remains dry, limiting the supply of nutrients to the roots, favoring the rapid leaching of nutrients and agrochemicals, and other impacts on flora and hydrological processes at hillslope- or basin-scale. The existence of irregular wetting fronts has been observed frequently in burned or unburned water repellent soils. Although some authors have suggested that preferential flow paths may be more or less permanent in the case of unburned soils, the temporal evolution of preferential flow has been rarely studied in burned soils during the post-fire, after water repellency decreases or disappears. This research focuses on the temporal evolution of water repellency and preferential flows in an area affected by fire.

  8. Influence of different propellant systems on ablation of EPDM insulators in overload state

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei

    2018-04-01

    This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.

  9. A Terminal Area Analysis of Continuous Ascent Departure Fuel Use at Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Roach, Keenan; Robinson, John E., III

    2010-01-01

    Aircraft departing from the Dallas/Fort Worth International Airport (DFW) encounter vertical restrictions that prevent continuous ascent operations. The result of these restrictions are temporary level-offs at 10,000 feet. A combination of flow direction, specific Area Navigation (RNAV) route geometry, and arrival streams have been found to be the biggest factors in the duration and frequency of a temporary level-offs. In total, 20% of DFW departures are affected by these level-offs, which have an average duration of just over 100 seconds. The use of continuous descent approaches at DFW are shown to lessen the impact arrivals have on the departures and allow more continuous ascents. The fuel used in a continuous ascent and an ascent with a temporary level-off have been calculated using a fuel burn rate model created from a combination of actual aircraft track data, aircraft manufacturer flight operations manuals, and Eurocontrol's Base of Aircraft Data (BADA) simulation tool. This model represents the average aggregate burn rates for the current fleet mix at DFW. Continuous ascents would save approximately seven gallons of fuel out of 450 gallons used to climb to a cruise altitude of 31,000ft per departure.

  10. The Development of Lightweight Electronics Enclosures for Space Applications

    NASA Technical Reports Server (NTRS)

    Fenske, Matthew T.; Barth, Jane L.; Didion, Jeffrey R.; Mule, Peter

    1999-01-01

    This paper outlines the end to end effort to produce lightweight electronics enclosures for NASA GSFC electronics applications with the end goal of presenting an array of lightweight box options for a flight opportunity. Topics including the development of requirements, design of three different boxes, utilization of advanced materials and processes, and analysis and test will be discussed. Three different boxes were developed independently and in parallel. A lightweight machined Aluminum box, a cast Aluminum box and a composite box were designed, fabricated, and tested both mechanically and thermally. There were many challenges encountered in meeting the requirements with a non-metallic enclosure and the development of the composite box employed several innovative techniques.

  11. Development of advanced lightweight containment systems

    NASA Technical Reports Server (NTRS)

    Stotler, C.

    1981-01-01

    Parametric type data were obtained on advanced lightweight containment systems. These data were used to generate design methods and procedures necessary for the successful development of such systems. The methods were then demonstrated through the design of a lightweight containment system for a CF6 size engine. The containment concept evaluated consisted basically of a lightweight structural sandwich shell wrapped with dry Kevlar cloth. The initial testing was directed towards the determination of the amount of Kevlar required to result in threshold containment for a specific set of test conditions. A relationship was then developed between the thickness required and the energy of the released blade so that the data could be used to design for conditions other than those tested.

  12. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  13. Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.

    2014-09-01

    Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.

  14. Lightweight ZERODUR mirror blanks: recent advances supporting faster, cheaper, and better spaceborne optical telescope assemblies

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas

    2014-10-01

    While there is no single material solution ideal for all missions, recent advances by SCHOTT in fabricating lightweight mirror blanks makes ZERODUR® a highly viable solution for many spaceborne telescopes. ZERODUR® is a well-characterized very low-expansion material. Monolithic mirrors are made without bonding or fusing out of highly homogeneous and isotropic blanks currently available in sizes up to 4m plus. We will summarize results recently given in a series of papers on the characteristics of these lightweight mirror blanks in sizes from 0.3m up, and describe the method of blank fabrication, with its compatibility to contemporary optical fabrication techniques that control of all optical spatial frequencies. ZERODUR® has a 35 year heritage in space on numerous missions, including the secondary mirror of Hubble, and all the Chandra mirrors. With the lightweighting we will discuss, ZERODUR® is now a high performing, affordable and rapidly produced mirror substrate suitable for lightweight imaging telescopes.

  15. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  16. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    NASA Technical Reports Server (NTRS)

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.

    2003-01-01

    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density at the material and structural levels, while at the same time maintaining or increasing mechanical and other properties.

  17. Post-wildfire management effects on short-term evolution of soil properties (Catalonia, Spain, SW-Europe).

    PubMed

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavier

    2018-08-15

    Post-fire management practices after wildfires have an important impact on soil properties. Nevertheless, little research has been carried out. The aim of this study is to examine the impact of different post-wildfire forest management practices in a 10-month period immediately after a severe wildfire on soil properties. Two months after a wildfire, three experimental areas were designed, each one with different post-fire management: Cut and Remove (CR) where burned trunks were cut after fire and removed manually from the area; No Treatment (NT) where no intervention was carried out; and, Cut and Leave (CL) where burned trunks were cut and left randomly on topsoil. In each treatment, we collected nine samples (0-5cm deep). In total, we sampled 27 samples in each sampling date, two and ten months after the wildfire. The properties analyzed were aggregate stability (AS), total nitrogen (TN), soil organic matter (SOM), inorganic carbon (IC), C/N ratio, pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na) and potassium (K). Soil C/N ratio was significantly higher in CR and CL treatments 10months after fire comparing to 2months after. On the other hand, pH, extractable Ca, Mg and K were significantly higher in all the treatments 2months after fire than 10months after. Aggregate stability, TN and SOM were significantly higher in CR comparing to CL, 10months after the fire. IC was significantly higher in CL than in NT treatment, also, 10months after the fire. Electrical conductivity was significantly higher in CR and CL treatments 2months after fire comparing to 10months after. According to the results, CR and CL post-fire management did not differ importantly from the NT scenario, showing that manual wood management does not have detrimental impacts on soil properties compared to mechanical operations. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    USGS Publications Warehouse

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  19. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    NASA Astrophysics Data System (ADS)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquín; Gutiérrez, José M.; San Miguel-Ayanz, Jesús; Camia, Andrea; Keeley, Jon E.; Moreno, José M.

    2015-11-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire-weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  20. Operation Borderstar Field Evaluation of the Ration, Lightweight, 30-Day

    DTIC Science & Technology

    1985-05-01

    Lightweight, 30-Day (RLW-30) was conducted at Ft. Bliss, TX as part of work unit # AH99BF034 "Sensory and Behavioral Engineering of Low-Volume Rations...corresponding hedonic ratings obtained from the final questionnaire. B. Amounts of Ration Comsumed Daily self-reports of the amounts of each ration...Lightweight, 30-Day Food Packet Assault 23 LIGHT WEIGHT RATION QUESTIONNAIRE Behavioral Sciences Division U.S. Army Natick Research & Development Center

  1. Fabrication of lightweight Si/SiC LIDAR mirrors

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S.; Taylor, Raymond L.

    1991-01-01

    A new, chemical vapor deposition (CVD) process was developed for fabricating lightweight, polycrystalline silicon/silicon-carbide (Si/SiC) mirrors. The process involves three CVD steps: (1) to produce the mirror faceplate; (2) to form the lightweight backstructure, which is deposited integral to the faceplate; and (3) to deposit a layer of optical-grade material, e.g., Si, onto the front surface of the faceplate. The mirror figure and finish are fabricated into the faceplate.

  2. Analysis of the possibilities of using dielectric foam in the construction of composite high voltage post-insulators

    NASA Astrophysics Data System (ADS)

    Mączka, T.; Paściak, G.; Jarski, A.; Piątek, M.

    2016-02-01

    This paper presents the construction and basic performance parameters of the innovative tubular construction of high voltage composite insulator filled with the lightweight foamed electroinsulating material. The possibility of using of the commercially available expanding foams for preparing the lightweight foamed dielectric materials was analysed. The expanding foams of silicone RTV and compositions based on epoxy resin and LSR silicone were taken into account. The lightweight foamed dielectric materials were prepared according to the own foaming technology. In this work the experimental results on the use of the selected foams for the preparing of the lightweight filling materials to the tubular structure of composite insulator of 110 kV are presented.

  3. Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films

    PubMed Central

    Zhao, Yingjun; Schagerl, Martin; Viechtbauer, Christoph

    2017-01-01

    The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film’s electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film’s bulk conductivity was characterized by finite element modeling. PMID:28773084

  4. Effect of acoustic resonance phenomenon on fluid flow with light dust

    NASA Astrophysics Data System (ADS)

    Hamakawa, Hiromitsu; Arshad, Azim B. M.; Ohta, Mitsuo

    2011-10-01

    In the present paper, the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena. The acoustic resonance was excited by using a controlled speaker at the middle of a test duct. We measured the sound pressure level, frequency response characteristics, acoustic damping ratio, mode shape, and lightweight materials response to acoustic resonance excited by a speaker. As a result, the acoustic damping ratio decreased as the mode number of acoustic resonance increased. The tissue strips and the lightweight materials were collected at the node of acoustic pressure when the acoustic resonance was excited. It was made clear that it is possible to control lightweight materials using acoustic resonance excited by a speaker.

  5. Structural stability of rubble-pile asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2013-03-01

    Granular aggregates, like fluids, do not admit all manners of shapes and rotation rates. It is hoped that an analysis of a suspected granular asteroid’s equilibrium shape and its structural stability will help confirm its rubble-pile nature, and, perhaps, even constrain the asteroid’s material parameters. Equilibrium shapes have been analyzed in the past by several investigators (Holsapple, K.A. [2001]. Icarus 154, 432-448; Harris, A.W., Fahnestock, E.G., Pravec, P. [2009]. Icarus 199, 310-318; Sharma, I., Jenkins, J.T., Burns, J.A. [2009]. Icarus 200, 304-322). Here, we extend the classical Lagrange-Dirichlet stability theorem to the case of self-gravitating granular aggregates. This stability test is then applied to probe the stability of several near-Earth asteroids, and explore the influence of material parameters such as internal friction angle and plastic bulk modulus. Finally, we consider their structural stability to close planetary encounters. We find that it is possible for asteroids to be stable to small perturbations, but unstable to strong and/or extended perturbations as experienced during close flybys. Conversely, assuming stability in certain situations, it is possible to estimate material properties of some asteroids like, for example, 1943 Anteros.

  6. Arsenic(V) Removal in Wetland Filters Treating Drinking Water with Different Substrates and Plants

    PubMed Central

    Li, Qingyun; Tang, Xianqiang; Huang, Zhuo; Lin, Li; Scholz, Miklas

    2014-01-01

    Constructed wetlands are an attractive choice for removing arsenic (As) within water resources used for drinking water production. The role of substrate and vegetation in As removal processes is still poorly understood. In this study, gravel, zeolite (microporous aluminosilicate mineral), ceramsite (lightweight expanded clay aggregate) and manganese sand were tested as prospective substrates while aquatic Juncus effuses (Soft Rush or Common Rush) and terrestrial Pteris vittata L. (Chinese Ladder Brake; known as As hyperaccumulator) were tested as potential wetland plants. Indoor batch adsorption experiments combined with outdoor column experiments were conducted to assess the As removal performances and process mechanisms. Batch adsorption results indicated that manganese sand had the maximum As(V) adsorption rate of 4.55 h–1 and an adsorption capacity of 42.37 μg/g compared to the other three aggregates. The adsorption process followed the pseudo-first-order kinetic model and Freundlich isotherm equations better than other kinetic and isotherm models. Film-diffusion was the rate-limiting step. Mean adsorption energy calculation results indicated that chemical forces, particle diffusion and physical processes dominated As adsorption to manganese sand, zeolite and gravel, respectively. During the whole running period, manganese sand-packed wetland filters were associated with constantly 90% higher As(V) reduction of approximate 500 μg/L influent loads regardless if planted or not. The presence of P. vittata contributed to no more than 13.5% of the total As removal. In contrast, J. effuses was associated with a 24% As removal efficiency. PMID:24771958

  7. On development of an inexpensive, lightweight thermal micrometeroid garment for space suits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A lightweight and inexpensive coverlayer developed for space suits is described. Material selection, procurement, and testing, pattern design, and prototype fabrication are discussed. By using the minimum required cross section necessary for earth orbital mission, by utilizing the lightest weight materials possible, and by decreasing the use of weight costly taping a lightweight and economical thermal micrometeroid garment was developed. Simplification of manufacturing techniques and use of off-the-shelf materials helped to reduce costs.

  8. 46 CFR 170.174 - Specific applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170.174 Specific applicability. This subpart applies to each vessel for which the lightweight displacement...

  9. 46 CFR 170.174 - Specific applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170.174 Specific applicability. This subpart applies to each vessel for which the lightweight displacement...

  10. 46 CFR 170.174 - Specific applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170.174 Specific applicability. This subpart applies to each vessel for which the lightweight displacement...

  11. 46 CFR 170.174 - Specific applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170.174 Specific applicability. This subpart applies to each vessel for which the lightweight displacement...

  12. 46 CFR 170.174 - Specific applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170.174 Specific applicability. This subpart applies to each vessel for which the lightweight displacement...

  13. The effect of foaming agent doses on lightweight geopolymer concrete metakaolin based

    NASA Astrophysics Data System (ADS)

    Risdanareni, Puput; Hilmi, Aldi; Susanto, Prijono Bagus

    2017-04-01

    The aims of this study is to obtain optimal doses of foaming agent on lightweight geopolymer concrete using fly Ash (FA) and metakaolin (MK) as raw materials. Several test was conducted in order to obtained characteristics of geopolymer lightweight concrete using foaming agent with different doses. The levels of foaming agent used was 0%, 0.3%, 0.6% and 0.9% from the binder weight. Level of metakolin content of 25% by precursor mass were applied in this research. In addition, activator solution with the ratio of Na2SiO3 / NaOH of 2 and Concentration of NaOH of 10 Molar were performed in this research. Doses of foaming agent of 0%, 0.3%, 0.6% and 0.9% by weight of the binder was used. Based on test results obtained, the best mechanical and physical properties of lightweight concrete was owned by speciment with doses of foam 0%. The recommended foam dosage is 0.3% due to its fair enough mechanical and physical properties of lightweight geopolymer concrete produced.

  14. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted themore » conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.« less

  15. Non-microbial methane emissions from soils

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Hou, Longyu; Liu, Wei; Wang, Zhiping

    2013-12-01

    Traditionally, methane (CH4) is anaerobically formed by methanogenic archaea. However, non-microbial CH4 can also be produced from geologic processes, biomass burning, animals, plants, and recently identified soils. Recognition of non-microbial CH4 emissions from soils remains inadequate. To better understand this phenomenon, a series of laboratory incubations were conducted to examine effects of temperature, water, and hydrogen peroxide (H2O2) on CH4 emissions under both aerobic and anaerobic conditions using autoclaved (30 min, 121 °C) soils and aggregates (>2000 μm, A1; 2000-250 μm, A2; 250-53 μm, M1; and <53 μm, M2). Results show that applying autoclaving to pre-treat soils is effective to inhibit methanogenic activity, ensuring the CH4 emitted being non-microbial. Responses of non-microbial CH4 emissions to temperature, water, and H2O2 were almost identical between aerobic and anaerobic conditions. Increasing temperature, water of proper amount, and H2O2 could significantly enhance CH4 emissions. However, the emission rates were inhibited and enhanced by anaerobic conditions without and with the existence of H2O2, respectively. As regards the aggregates, aggregate-based emission presented an order of M1 > A2 > A1 > M2 and C-based emission an order of M2 > M1 > A1 > A2, demonstrating that both organic carbon quantity and property are responsible for CH4 emissions from soils at the scale of aggregate. Whole soil-based order of A2 > A1 > M1 > M2 suggests that non-microbial CH4 release from forest soils is majorly contributed by macro-aggregates (i.e., >250 μm). The underlying mechanism is that organic matter through thermal treatment, photolysis, or reactions with free radicals produce CH4, which, in essence, is identical with mechanisms of other non-microbial sources, indicating that non-microbial CH4 production may be a widespread phenomenon in nature. This work further elucidates the importance of non-microbial CH4 formation which should be distinguished from the well-known microbial CH4 formation in order to define both roles in the atmospheric CH4 global budget.

  16. 46 CFR 170.175 - Stability test: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170... and longitudinal centers of gravity and its lightweight displacement. (b) An authorized Coast Guard...

  17. 46 CFR 170.175 - Stability test: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170... and longitudinal centers of gravity and its lightweight displacement. (b) An authorized Coast Guard...

  18. 46 CFR 170.175 - Stability test: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170... and longitudinal centers of gravity and its lightweight displacement. (b) An authorized Coast Guard...

  19. 46 CFR 170.175 - Stability test: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170... and longitudinal centers of gravity and its lightweight displacement. (b) An authorized Coast Guard...

  20. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    NASA Astrophysics Data System (ADS)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  1. 46 CFR 170.175 - Stability test: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS FOR ALL INSPECTED VESSELS Determination of Lightweight Displacement and Centers of Gravity § 170... and longitudinal centers of gravity and its lightweight displacement. (b) An authorized Coast Guard or...

  2. Making a Lightweight Battery Plaque

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Post, R. E.; Soltis, D.

    1986-01-01

    Plaque formed in porous plastic by electroless plating. Lightweight plaque prepared by electroless plating of porous plastic contains embedded wire or expanded metal grid. Plastic may or may not be filled with soluble pore former. If it contains soluble pore former, treated to remove soluble pore former and increase porosity. Porous plastic then clamped into rig that allows plating solutions to flow through plastic. Lightweight nickel plaque used as electrode substrate for alkaline batteries, chiefly Ni and Cd electrodes, and for use as electrolyte-reservoir plates for fuel cells.

  3. Lightweight, Thermally Insulating Structural Panels

    NASA Technical Reports Server (NTRS)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  4. Development of Lightweight CubeSat with Multi-Functional Structural Battery Systems

    NASA Technical Reports Server (NTRS)

    Karkkainen, Ryan L.; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This collaborative multi-disciplinary effort aims to develop a lightweight, 1-unit (1U) CubeSat (10x10x10 cm) which utilizes improved and fully integrated structural battery materials for mission life extension, larger payload capability, and significantly reduced mass.The electrolytic carbon fiber material serves the multifunctional capacitive energy system as both a lightweight, load bearing structure and an electrochemical battery system. This implementation will improve traditional multifunctional energy storage concepts with a highly effective energy storage capability.

  5. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  6. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  7. Acoustic Modeling of Lightweight Structures: A Literature Review

    NASA Astrophysics Data System (ADS)

    Yang, Shasha; Shen, Cheng

    2017-10-01

    This paper gives an overview of acoustic modeling for three kinds of typical lightweight structures including double-leaf plate system, stiffened single (or double) plate and porous material. Classical models are citied to provide frame work of theoretical modeling for acoustic property of lightweight structures; important research advances derived by our research group and other authors are introduced to describe the current state of art for acoustic research. Finally, remaining problems and future research directions are concluded and prospected briefly

  8. Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky

    USGS Publications Warehouse

    Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield

    1962-01-01

    The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram mixtures of kaolinite, illite, and mixed-layer clays by leaching in swamps to the deposition of the beds overlying the clay. The refractory properties of the clay vary directly with the purity of the kaolinite, and refractoriness decreases as the proportions of illite and mixed-layer clays increase. Certain nonclay minerals, chiefly siderite, pyrite, and iron oxide-bearing minerals, also act as fiuxes, reducing the refractory properties of the clay. The entire resources of clay in the Olive Hill clay bed are roughly and tentatively estimated to include 105,000,000 tons in the Haldeman quadrangle and 175,000,000 tons in the Wrigley quadrangle. Much of this clay is of poor quality and the amount that is better than the minimum requirements for use in refractories is probably about 30,000,000 tons. Only a fraction of this tonnage is suitable for superheat-duty products. Limestone is the only nonmetallic mineral resource other than refractory clay that has been developed in the two quadrangles, but 1arge amounts of shale suitable for use in making lightweight aggregate and structural clay products may also be present. Most of the limestone, which is quarried. in both quadrangles, is used for road-metal, concrete aggregate, and agriculture stone, but some of the limestone is of the quality that would be suitable for other uses. Virtually all the Mississippian Beech Creek limestone of Malott, 1919 which is as much as 18 feet thick, consists of high-calcium limestone. Shale beds that appear most favoralble for making lightweight aggregate are in the shale facies of the Lee formation of Pennsylvanian age. Shale that is probably suitable for structural clay products is present in the shale flacles of the Lee formation and in the Muldraugh formation of Mississippian age. Several dry holes have been drilled in search for oil and gas within the area of the two quadrangles. Though no commercial production was ever attained, one well furnished a supply of gas f

  9. Research and Development on Ultra-Lightweight Low-Loss Optical Fiber Communication Cable.

    DTIC Science & Technology

    FIBER OPTICS TRANSMISSION LINES, LIGHTWEIGHT), GLASS , FIBERS , ORGANIC COATINGS, POLYURETHANE RESINS, SOLUTIONS(GENERAL), POWDERS, ELECTROSTATICS...EXTRUSION, RUGGEDIZED EQUIPMENT, BROADBAND, OPTICAL COMMUNICATIONS, TACTICAL COMMUNICATIONS, FIBER OPTICS, LOSSES.

  10. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA)

    PubMed Central

    Brancher, Luiza R.; Nunes, Maria Fernanda de O.; Grisa, Ana Maria C.; Pagnussat, Daniel T.; Zeni, Mára

    2016-01-01

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite. PMID:28787851

  11. Scalability of Several Asynchronous Many-Task Models for In Situ Statistical Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille; Kolla, Hemanth

    This report is a sequel to [PB16], in which we provided a first progress report on research and development towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system. This earlier work included a prototype implementation of a proposed solution, using a proxy mini-application as a surrogate for a full-scale scientific simulation code. The first scalability studies were conducted with the above on modestly-sized experimental clusters. In contrast, in the current work we have integrated our in situ analysis engines with a full-size scientific application (S3D, using the Legion-SPMD model), and have conducted nu- mericalmore » tests on the largest computational platform currently available for DOE science ap- plications. We also provide details regarding the design and development of a light-weight asynchronous collectives library. We describe how this library is utilized within our SPMD- Legion S3D workflow, and compare the data aggregation technique deployed herein to the approach taken within our previous work.« less

  12. Mashup Model and Verification Using Mashup Processing Network

    NASA Astrophysics Data System (ADS)

    Zahoor, Ehtesham; Perrin, Olivier; Godart, Claude

    Mashups are defined to be lightweight Web applications aggregating data from different Web services, built using ad-hoc composition and being not concerned with long term stability and robustness. In this paper we present a pattern based approach, called Mashup Processing Network (MPN). The idea is based on Event Processing Network and is supposed to facilitate the creation, modeling and the verification of mashups. MPN provides a view of how different actors interact for the mashup development namely the producer, consumer, mashup processing agent and the communication channels. It also supports modeling transformations and validations of data and offers validation of both functional and non-functional requirements, such as reliable messaging and security, that are key issues within the enterprise context. We have enriched the model with a set of processing operations and categorize them into data composition, transformation and validation categories. These processing operations can be seen as a set of patterns for facilitating the mashup development process. MPN also paves a way for realizing Mashup Oriented Architecture where mashups along with services are used as building blocks for application development.

  13. The Virtual Solar Observatory: Still a Small Box

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.

    2005-01-01

    Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.

  14. Airborne Detection and Dynamic Modeling of Carbon Dioxide and Methane Plumes

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Taylor; Whyte, Seabrook

    2015-11-01

    To facilitate safe storage of greenhouse gases such as CO2 and CH4, airborne monitoring is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft that measures gas concentration and is combined with other atmospheric diagnostics, including thermodynamic data and velocity from hot-wire and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted over controlled rangeland burns and over simulated leaks. In the former case, since fire produces carbon dioxide over a large area, this was an opportunity to test in an environment that while only vaguely similar to a carbon sequestration leak source, also exhibits interesting plume behavior. In the simulated field tests, compressed gas tanks are used to mimic leaks and generate gaseous plumes. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in (x , y , z , t) . Results are compared with simulations using combined flight and atmospheric dynamic models. Supported by Department of Energy Award DE-FE0012173.

  15. Evaluation of performance of light-weight profilometers

    DOT National Transportation Integrated Search

    2003-10-01

    Several lightweight, non-contact profilometers (LWP) are now available to measure profiles of newly constructed Portland Cement Concrete Pavement (PCCP). As constructed smoothness measurements by four LWP's and the California-type profilograph were c...

  16. Volume changes in unrestrained structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-08-01

    In this study a comparator-type measuring system was developed to accurately determine volume change characteristics of one structural lightweight concrete. The specific properties studied were the coefficient of linear thermal expansion and unrestra...

  17. The Importance of Powertrain Downsizing in a Benefit-Cost Analysis of Vehicle Lightweighting

    NASA Astrophysics Data System (ADS)

    Ward, J.; Gohlke, D.; Nealer, R.

    2017-04-01

    Reducing vehicle weight is an important avenue to improve energy efficiency and decrease greenhouse gas emissions from our cars and trucks. Conventionally, models have estimated acceptable increased manufacturing cost as proportional to the lifetime fuel savings associated with reduced vehicle weight. Vehicle lightweighting also enables a decrease in powertrain size and significant reductions in powertrain cost. Accordingly, we propose and apply a method for calculating the maximum net benefits and breakeven cost of vehicle lightweighting that considers both efficiency and powertrain downsizing for a conventional internal combustion engine vehicle, a battery electric vehicle with a range of 300 miles (BEV300), and a fuel cell electric vehicle (FCEV). We find that excluding powertrain downsizing cost savings undervalues the potential total net benefits of vehicle lightweighting, especially for the BEV300 and FCEV.

  18. Effects of sodium hydroxide (NaOH) solution concentration on fly ash-based lightweight geopolymer

    NASA Astrophysics Data System (ADS)

    Ibrahim, W. M. W.; Hussin, K.; Abdullah, M. M. A.; Kadir, A. A.; Deraman, L. M.

    2017-09-01

    In this study, the effects of NaOH concentration on properties of fly ash-based lightweight geopolymer were investigated. Lightweight geopolymer was produced using fly ash as source materials and synthetic foaming agents as air entraining agent. The alkaline solutions used in this study are combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solution. Different molarities of NaOH solution (6M, 8M, 10M, 12M, and 14M) are taken for preparation of 50 x 50 x 50 mm cubes of lightweight geopolymer. The ratio of fly ash/alkaline solution, Na2SiO3/NaOH solution, foaming agent/water and foam/geopolymer paste were kept constant at 2.0, 2.5, 1:10 and 1:1 respectively. The samples were cured at 80°C for 24 hours and left at room temperature for tested at 7 days of ageing. Physical and mechanical properties such as density, water absorption, compressive strength and microstructure property were determined from the cube dried samples. The results show that the NaOH molarity had effects on the properties of lightweight geopolymer with the optimum NaOH molarity found is 12M due to the high strength of 15.6 MPa, lower water absorption (7.3%) and low density (1440 kg/m3). Microstructure analysis shows that the lightweight geopolymer contain some porous structure and unreacted fly ash particles remains.

  19. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    NASA Astrophysics Data System (ADS)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  20. Alkali-activated concrete with Serbian fly ash and its radiological impact.

    PubMed

    Nuccetelli, Cristina; Trevisi, Rosabianca; Ignjatović, Ivan; Dragaš, Jelena

    2017-03-01

    The present paper reports the results of a study on different types of fly ash from Serbian coal burning power plants and their potential use as a binder in alkali-activated concrete (AAC) depending on their radiological and mechanical properties. Five AAC mixtures with different types of coal burning fly ash and one type of blast furnace slag were designed. Measurements of the activity concentrations of 40 K, 226 Ra and 232 Th were done both on concrete constituents (fly ash, blast furnace slag and aggregate) and on the five solid AAC samples. Experimental results were compared by using the activity concentration assessment tool for building materials - the activity concentration index I, as introduced by the EU Basic Safety Standards (CE, 2014). All five designed alkali-activated concretes comply with EU BSS screening requirements for indoor building materials. Finally, index I values were compared with the results of the application of a more accurate index - I(ρd), which accounts for thickness and density of building materials (Nuccetelli et al., 2015a). Considering the actual density and thickness of each concrete sample index - I(ρd) values are lower than index I values. As an appendix, a synthesis of main results concerning mechanical and chemical properties is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Retrospective Analysis of Esophageal Heat Transfer for Active Temperature Management in Post-cardiac Arrest, Refractory Fever, and Burn Patients.

    PubMed

    Naiman, Melissa; Markota, Andrej; Hegazy, Ahmed; Dingley, John; Kulstad, Erik

    2018-03-01

    Core temperature management is an important aspect of critical care; preventing unintentional hypothermia, reducing fever, and inducing therapeutic hypothermia when appropriate are each tied to positive health outcomes. The purpose of this study is to evaluate the performance of a new temperature management device that uses the esophageal environment to conduct heat transfer. De-identified patient data were aggregated from three clinical sites where an esophageal heat transfer device (EHTD) was used to provide temperature management. The device was evaluated against temperature management guidelines and best practice recommendations, including performance during induction, maintenance, and cessation of therapy. Across all active cooling protocols, the average time-to-target was 2.37 h and the average maintenance phase was 22.4 h. Patients spent 94.9% of the maintenance phase within ±1.0°C and 67.2% within ±0.5°C (574 and 407 measurements, respectively, out of 605 total). For warming protocols, all of the patient temperature readings remained above 36°C throughout the surgical procedure (average 4.66 h). The esophageal heat transfer device met performance expectations across a range of temperature management applications in intensive care and burn units. Patients met and maintained temperature goals without any reported adverse events.

  2. Additive manufactured x-ray optics for astronomy

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Feldman, Charlotte; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Doel, Peter; Willingale, Richard; Hugot, Emmanuel

    2017-08-01

    Additive manufacturing, more commonly known as 3D printing, has become a commercially established technology for rapid prototyping and the fabrication of bespoke intricate parts. Optical components, such as mirrors and lenses, are now being fabricated via additive manufacturing, where the printed substrate is polished in a post-processing step. One application of additively manufactured optics could be within the astronomical X-ray community, where there is a growing need to demonstrate thin, lightweight, high precision optics for a beyond Chandra style mission. This paper will follow a proof-of-concept investigation, sponsored by the UK Space Agency's National Space Technology Programme, into the feasibility of applying additive manufacturing in the production of thin, lightweight, precision X-ray optics for astronomy. One of the benefits of additive manufacturing is the ability to construct intricate lightweighting, which can be optimised to minimise weight while ensuring rigidity. This concept of optimised lightweighting will be applied to a series of polished additively manufactured test samples and experimental data from these samples, including an assessment of the optical quality and the magnitude of any print-through, will be presented. In addition, the finite element analysis optimisations of the lightweighting development will be discussed.

  3. Reducing CO2 Emissions through Lightweight Design and Manufacturing

    NASA Astrophysics Data System (ADS)

    Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.

    2011-05-01

    To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.

  4. Reuse of thermosetting plastic waste for lightweight concrete.

    PubMed

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  5. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, RIGHT, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, TALKS WITH GREG LAUE, DIRECTOR OF AEROSPACE PRODUCTS FOR NEXOLVE, MANUFACTURER OF THE THIN-FILM TECHNOLOGY AND A PARTNER IN THE PROJECT.

  6. Lightweight concrete: development of mild steel in tension.

    DOT National Transportation Integrated Search

    2014-02-01

    Concrete with a unit weight between that of traditional lightweight : concrete (LWC) and normal weight concrete (NWC) : is not covered in the American Association of State Highway : Transportation Officials (AASHTO) Load and Resistance Factor : Desig...

  7. Grips for Lightweight Tensile Specimens

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Gibson, Walter D.

    1987-01-01

    Set of grips developed for tensile testing of lightweight composite materials. Double-wedge design substantially increases gripping force and reduces slippage. Specimen held by grips made of hardened wedges. Assembly screwed into load cell in tensile-testing machine.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles.

  9. Rapid Fabrication of Lightweight SiC Optics using Reactive Atom Plasma (RAP) Processing

    NASA Technical Reports Server (NTRS)

    Fiske, Peter S.

    2006-01-01

    Reactive Atom Plasma (RAP) processing is a non-contact, plasma-based processing technology that can be used to generate damage-free optical surfaces. We have developed tools and processes using RAP that allow us to shape extremely lightweight mirror Surfaces made from extremely hard-to-machine materials (e.g. SiC). We will describe our latest results using RAP in combination with other technologies to produce finished lightweight SiC mirrors and also discuss applications for RAP in the rapid fabrication of mirror segments for reflective and grazing incidence telescopes.

  10. The Study on Development of Light-Weight Foamed Mortar for Tunnel Backfill

    NASA Astrophysics Data System (ADS)

    Ma, Sang-Joon; Kang, Eun-Gu; Kim, Dong-Min

    This study was intended to develop the Light-Weight Foamed Mortar which is used for NATM Composite lining backfill. In the wake of the study, the mixing method which satisfies the requirements for compressive strength, permeability coefficient, fluidity, specific gravity and settlement was developed and moreover field applicability was verified through the model test. Thus the mixing of Light-Weight Foamed Mortar developed in this study is expected to be applicable to NATM Composite lining, thereby making commitment to improving the stability and drainage performance of lining.

  11. Filling material for a buried cavity in a collapse area using light-weighted foam and active feldspar

    NASA Astrophysics Data System (ADS)

    Cho, Jin Woo; Lee, Ju-hyoung; Kim, Sung-Wook; Choi, Eun-Kyeong

    2017-04-01

    Concrete which is generally used as filling material for a buried cavity has very high strength but significantly high self-load is considered its disadvantage. If it is used as filling material, the second collapse due to additional load, causing irreversible damage. If light-weighted foam and active feldspar are used to solve this problem, the second collapse can be prevented by reducing of self-load of filling material. In this study, the specimen was produced by mixing light-weighted foam, active feldspar and cement, and changes in the density, unconfined compressive strength and hydraulic conductivity were analyzed. Using the light-weighted foam could enable the adjustment of density of specimen between 0.5 g/cm3 and 1.7 g/cm3, and if the mixing ratio of the light-weighted foam increases, the specimen has more pores and smaller range of cross-sectional area. It is confirmed that it has direct correlation with the density, and if the specimen has more pores, the density of the specimen is lowered. The density of the specimen influences the unconfined compressive strength and the hydraulic conductivity, and it was also confirmed that the unconfined compressive strength could be adjusted between 0.6 MPa and 8 MPa and the hydraulic conductivity could be adjusted between 10-9cm/sec and 10-3cm/sec. These results indicated that we can adjust unconfined compressive strength and hydraulic conductivity of filling materials by changing the mixing amount of lightweight-weighted foam according to the requirements of the field condition. Keywords: filling material, buried cavity, light-weighted foam, feldspar Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.

  12. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  13. Performance of prestressed girders cast with LWSCC : part II.

    DOT National Transportation Integrated Search

    2012-08-01

    While much research has been performed on lightweight concrete and self-consolidating concrete (SCC), the knowledge of prestress losses in lightweight self-consolidating concrete (LWSCC) is still limited. LWSCC has the benefits of increased flowabili...

  14. LIGHTWEIGHT GREEN ROOF SYSTEMS

    EPA Science Inventory

    Applying a Lightweight Green Roof System to a building can achieve in managing storm water runoff, decreasing heat gain, yielding energy savings, and mitigating the heat island effect. Currently, Most green roof systems are considerably heavy and require structural reinforceme...

  15. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  16. Physique traits of lightweight rowers and their relationship to competitive success

    PubMed Central

    Slater, G; Rice, A; Mujika, I; Hahn, A; Sharpe, K; Jenkins, D

    2005-01-01

    Objectives: Physique traits and their relationship to competitive success were assessed amongst lightweight rowers competing at the 2003 Australian Rowing Championships. Methods: Full anthropometric profiles were collected from 107 lightweight rowers (n = 65 males, n = 45 females) competing in the Under 23 and Open age categories. Performance assessments were obtained for 66 of these rowers based on results in the single sculls events. The relationship between physique traits and competitive success was then determined. Results: Lower body fat (heat time estimate –8.4 s kg–1, p<0.01), greater total body mass (heat time estimate –4.4 s kg–1, p = 0.03), and muscle mass (heat time estimate –10.2 s kg–1, p<0.01) were associated with faster 2000 m heat times. Conclusions: The more successful lightweight rowers were those who had lower body fat and greater total muscle mass. PMID:16183770

  17. A path planning method used in fluid jet polishing eliminating lightweight mirror imprinting effect

    NASA Astrophysics Data System (ADS)

    Li, Wenzong; Fan, Bin; Shi, Chunyan; Wang, Jia; Zhuo, Bin

    2014-08-01

    With the development of space technology, the design of optical system tends to large aperture lightweight mirror with high dimension-thickness ratio. However, when the lightweight mirror PV value is less than λ/10 , the surface will show wavy imprinting effect obviously. Imprinting effect introduced by head-tool pressure has become a technological barrier in high-precision lightweight mirror manufacturing. Fluid jet polishing can exclude outside pressure. Presently, machining tracks often used are grating type path, screw type path and pseudo-random path. On the edge of imprinting error, the speed of adjacent path points changes too fast, which causes the machine hard to reflect quickly, brings about new path error, and increases the polishing time due to superfluous path. This paper presents a new planning path method to eliminate imprinting effect. Simulation results show that the path of the improved grating path can better eliminate imprinting effect compared to the general path.

  18. Experimental analysis of energy absorption behaviour of Al-tube filled with pumice lightweight concrete under axial loading condition

    NASA Astrophysics Data System (ADS)

    Rajak, D. K.; Deshpande, P. G.; Kumaraswamidhas, L. A.

    2017-08-01

    This Paper aimed at experimental investigation of compressive behaviour of square tube filled with pumice lightweight concrete (PLC). Square section of 20×20×30 mm is investigated, which is the backbone structure. The compression deformation result shows the better folding mechanism, displacement value, and energy absorption. PLC concrete filled with aluminium thin-wall tubes has been revealed superior energy absorption capacity (EAC) under low strain rate at room temperature. Superior EAC resulted as a result of mutual deformation benefit between aluminium section and PLC is also analysed. PLC was characterised by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectrometry (EDX) analysis for better understanding of material behaviour. Individual and comparative load bearing graphs is logged for better prospective of analysing. Novel approach aimed at validation of porous lightweight concrete for better lightweight EA filler material.

  19. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  20. A new multispectral imaging instrument for in-situ characterization of flocs and colloidal aggregates in natural waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.

    2016-05-01

    In-situ sampling, characterization and quantification of colloidal aggregates and flocs in ambient water is complex but needed in order to understand their role in development and maintenance of moving fluid muds, muck, bottom boundary lutocline layers and nephelometric interfaces in aquatic systems. These bottom boundary interfaces and associated processes contribute to sedimentation, particle deposition and resuspension of total particulate matter and associated nutrients. Increasing the scientific understanding of the above requires advances in environmental sensing instrumentation (passive and active) to successfully understand these aquatic interfaces. Standalone in-situ sensors that automatically perform multiple steps including sampling, separation, and detection have the potential to greatly advance analytical science. A new in-situ multispectral optical camera system for environmental monitoring and surveillance of delicate flocs and related aggregate structures is described. Results of the system show that flocs - 0.1 mm -10.2 mm diameter (mean diameter of 2.77 mm), with a variance of 5.952 mm and a median effective cross-section area of 30 mm2 can be measured using the passive multispectral optical imaging system. The system is lightweight, compact and suitable for shallow or deep water deployment. When combined with fixed station acoustic echogram instruments, nephelometric (turbidity) waves can be easily observed. Time sequential analysis of imagery allows the system to be used as an optical particle velocimetry system (OPVS). Initial shallow water testing resulted in Lagrangian particle velocities of 0.3 to 3 cm sec-1 to be measured. Similar results were obtained from an acoustic velocity current meter (MAVS3) and a Marsh McBirney 201D electromagnetic current meters. When combined with results from direct methods using sondes for estimating sediment mass fluxes, the combined systems provide data necessary for sediment and water quality modeling. The new optical sensor system will help address analytical needs reported in past studies and provides a new standard method and protocol for measuring the movement of sediment and particulates in the aquatic bottom boundary layers.

  1. Lightweight Tactical Client: A Capability-Based Approach to Command Post Computing

    DTIC Science & Technology

    2015-12-01

    bundles these capabilities together is proposed: a lightweight tactical client. In order to avoid miscommunication in the future, it is... solutions and almost definitely rules out most terminal-based thin clients. UNCLASSIFIED Approved for public release

  2. Relationship between critical mechanical properties and age for structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-02-25

    The necessity to use structural lightweight concrete has created : a need for investigations into its critical mechanical properties that : affect the design and performance of structures. The primary critical : properties were found to be direct ten...

  3. 76 FR 42137 - Certain Lightweight Thermal Paper From Germany; Remand Proceedings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1127 (Final) (Remand)] Certain Lightweight Thermal Paper From Germany; Remand Proceedings AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The U.S. International Trade Commission (``Commission'') hereby gives...

  4. ARPA-E LITECAR Challenge

    ScienceCinema

    Liu, Ping; Salvi, Ashwin

    2018-01-16

    With more than 250 conceptual designs submitted, we are pleased to highlight the winners of the LIghtweighting Technologies Enabling Comprehensive Automotive Redesign (LITECAR) Challenge. These innovative conceptual designs seek to lightweight a vehicle while maintaining or exceeding current U.S. automotive safety standards.

  5. Light-weighting, polishing and bonding for the SEOSAT/Ingenio telescope mirrors

    NASA Astrophysics Data System (ADS)

    Harel, Emmanuelle

    2017-11-01

    Sagem presents its recent developments in light-weighting, polishing, bonding and testing of Zerodur space mirrors equipped with pads and fixation devices. The presentation is based on Sagem's recent successful project for the SEOSAT/Ingenio satellite.

  6. Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Callahan, B. J.; Avedisian, C. T.; Hertzog, D. E.; Berkery, J. W.

    1999-01-01

    Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting the test droplet by a fiber fixes the droplet position but the fiber can perturb the burning process especially for a sooting fuel. Prior studies on heptane showed little evidence for soot formation due to g-droplets of similar size the relationship between sooting and droplet diameter. For nonane droplets we expect increased sooting due to the greater number of carbon atoms. As a sooting droplet burns and its diameter decreases, proportionally less soot should form. This reduced soot, as well as the influence of soot formed earlier in the burning process which collects in a 'shell', on heat transport to the flame offers the potential for a time-varying burning rate. Such an effect was investigated and revealed in results reported here. Speculation is offered for the cause of this effect and its possible relation to soot formation.

  7. Scaling Irregular Applications through Data Aggregation and Software Multithreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morari, Alessandro; Tumeo, Antonino; Chavarría-Miranda, Daniel

    Bioinformatics, data analytics, semantic databases, knowledge discovery are emerging high performance application areas that exploit dynamic, linked data structures such as graphs, unbalanced trees or unstructured grids. These data structures usually are very large, requiring significantly more memory than available on single shared memory systems. Additionally, these data structures are difficult to partition on distributed memory systems. They also present poor spatial and temporal locality, thus generating unpredictable memory and network accesses. The Partitioned Global Address Space (PGAS) programming model seems suitable for these applications, because it allows using a shared memory abstraction across distributed-memory clusters. However, current PGAS languagesmore » and libraries are built to target regular remote data accesses and block transfers. Furthermore, they usually rely on the Single Program Multiple Data (SPMD) parallel control model, which is not well suited to the fine grained, dynamic and unbalanced parallelism of irregular applications. In this paper we present {\\bf GMT} (Global Memory and Threading library), a custom runtime library that enables efficient execution of irregular applications on commodity clusters. GMT integrates a PGAS data substrate with simple fork/join parallelism and provides automatic load balancing on a per node basis. It implements multi-level aggregation and lightweight multithreading to maximize memory and network bandwidth with fine-grained data accesses and tolerate long data access latencies. A key innovation in the GMT runtime is its thread specialization (workers, helpers and communication threads) that realize the overall functionality. We compare our approach with other PGAS models, such as UPC running using GASNet, and hand-optimized MPI code on a set of typical large-scale irregular applications, demonstrating speedups of an order of magnitude.« less

  8. Multiscale Computer Simulation of Tensile and Compressive Strain in Polymer- Coated Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2009-01-01

    While the low thermal conductivities of silica aerogels have made them of interest to the aerospace community as lightweight thermal insulation, the application of conformal polymer coatings to these gels increases their strength significantly, making them potentially useful as structural materials as well. In this work we perform multiscale computer simulations to investigate the tensile and compressive strain behavior of silica and polymer-coated silica aerogels. Aerogels are made up of clusters of interconnected particles of amorphous silica of less than bulk density. We simulate gel nanostructure using a Diffusion Limited Cluster Aggregation (DLCA) procedure, which produces aggregates that exhibit fractal dimensions similar to those observed in real aerogels. We have previously found that model gels obtained via DLCA exhibited stress-strain curves characteristic of the experimentally observed brittle failure. However, the strain energetics near the expected point of failure were not consistent with such failure. This shortcoming may be due to the fact that the DLCA process produces model gels that are lacking in closed-loop substructures, compared with real gels. Our model gels therefore contain an excess of dangling strands, which tend to unravel under tensile strain, producing non-brittle failure. To address this problem, we have incorporated a modification to the DLCA algorithm that specifically produces closed loops in the model gels. We obtain the strain energetics of interparticle connections via atomistic molecular statics, and abstract the collective energy of the atomic bonds into a Morse potential scaled to describe gel particle interactions. Polymer coatings are similarly described. We apply repeated small uniaxial strains to DLCA clusters, and allow relaxation of the center eighty percent of the cluster between strains. The simulations produce energetics and stress-strain curves for looped and nonlooped clusters, for a variety of densities and interaction parameters.

  9. Geopolymers based on the valorization of Municipal Solid Waste Incineration residues

    NASA Astrophysics Data System (ADS)

    Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Barbieri, L.; Chimenos, J. M.; Lancellotti, I.

    2017-10-01

    The proper management of Municipal Solid Waste (MSW) has become one of the main environmental commitments for developed countries due to the uncontrolled growth of waste caused by the consumption patterns of modern societies. Nowadays, municipal solid waste incineration (MSWI) is one of the most feasible solutions and it is estimated to increase in Europe where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion, which is classified as a non-hazardous residue that can be revalorized as a secondary aggregate in road sub-base, bulk lightweight filler in construction. In this way, revalorization of weathered BA (WBA) for the production of geopolymers may be a good alternative to common reuse as secondary aggregate material; however, the chemical process to obtain these materials involves several challenges that could disturb the stability of the material, mainly from the environmental point of view. Accordingly, it is necessary that geopolymers are able to stabilize heavy metals contained in the WBA in order to be classified as non-hazardous materials. In this regard, the SiO2/Al2O3 ratio plays an important role for the encapsulation of heavy metals and other toxic elements. The aim of this research is to formulate geopolymers starting from the 0 - 2 mm particle size fraction of WBA, as a unique raw material used as aluminumsilicate precursor. Likewise, leaching tests of the geopolymers formulated were performed to assess their environmental impact. The findings show that it is possible to formulate geopolymers using 100 % WBA as precursor, although more investigations are needed to sustain that geopolymer obtained can be considered as non-hazardous materials.

  10. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  11. Process for producing nickel electrode having lightweight substrate

    NASA Technical Reports Server (NTRS)

    Lim, Hong S. (Inventor)

    1996-01-01

    A nickel electrode having a lightweight porous nickel substrate is subjected to a formation cycle involving heavy overcharging and under-discharging in a KOH electrolyte having a concentration of 26% to 31%, resulting in electrodes displaying high active material utilization.

  12. Data Base for Light-Weight Automotive Diesel Power Plants : Volume 3. Miscellaneous Data.

    DOT National Transportation Integrated Search

    1979-12-01

    The effects of fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...

  13. Lightweight Concrete : Mechanical Properties : TechBrief

    DOT National Transportation Integrated Search

    2013-06-01

    There is a limited amount of test data on the mechanical properties of high-strength lightweight concrete (LWC) with a concrete unit weight (wc) between that of traditional LWC and normal weight concrete (NWC). Concrete with a wc in this range is als...

  14. Durability of lightweight concrete : Phase I : concrete temperature study.

    DOT National Transportation Integrated Search

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  15. Data Base for Light-Weight Automotive Diesel Power Plants. Volume 2: Discussion and Results.

    DOT National Transportation Integrated Search

    1979-12-01

    The effects on fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...

  16. Data Base for Light-Weight Automotive Diesel Power Plants: Volume 1. Executive Summary.

    DOT National Transportation Integrated Search

    1979-12-01

    The effects on fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...

  17. Evaluation of Lightweight Non-Contact Profilers for Use in Quality Assurance Specifications on Pavement Smoothness

    DOT National Transportation Integrated Search

    1999-12-01

    Various devices that qualify as lightweight profilers were evaluated as part of a Federal Highway Administration cooperative partnership with nine states. Connecticut offered the opportunity to seven companies to showcase their equipment. Five vendor...

  18. Dolly For Heavy Towbar

    NASA Technical Reports Server (NTRS)

    Soper, Terry A.

    1992-01-01

    Proposed lightweight dolly enables operator to cart heavy towbar to remote site over unpaved roads or rough terrain. Acts as simple, lightweight towed vehicle to support rear of towbar. Removed quickly at point of use. Saves labor, and eliminates need for truck and forklift.

  19. Comfortable, lightweight safety helmet holds radio transmitter, receiver

    NASA Technical Reports Server (NTRS)

    Atlas, N. D.

    1964-01-01

    For two-way radio communication where safety gear is required, a lightweight helmet with few protrusions has been designed. The electronics components and power supply are mounted between the inner and outer shells, and resilient padding is used for the lining.

  20. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  1. Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    NASA Technical Reports Server (NTRS)

    Miao, D.; Barber, J. R.; Dewitt, R. L.

    1977-01-01

    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.

  2. Progress in the development of lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1992-01-01

    The use of the lightweight nickel electrode, in place of the heavy-sintered state-of-the-art nickel electrode, will lead to improvements in specific energy and performance of the nickel-hydrogen cell. Preliminary testing indicates that a nickel fiber mat is a promising support candidate for the nickel hydroxide active material. Nickel electrodes made from fiber mats, with nickel and cobalt powder added to the fiber, were tested at LeRC. To date, over 8000 cycles have been accumulated, at 40 percent depth-of-discharge, using the lightweight fiber electrode, in a boiler plate nickel-hydrogen cell.

  3. The Evaluation of Vehicle Mass Reduction and Material ...

    EPA Pesticide Factsheets

    Developments in the realm of lightweight materials for automotive use continue to be announced by the industry and by academia. This session will provide new and updated information on new generation of materials. Additionally, this session will focus on the key topics involved in Life-Cycle-Analysis of light-weight materials including practices and developments in material recyclability. This presentation will review key findings from recent LCAs for vehicle mass reduction. Presentation for panel session on advanced materials/lightweighting for light duty vehicles at the Society of Automotive Engineers (SAE) Government/Industry Meeting, Washington, DC (January 25, 2017)

  4. Preliminary Analysis of the 30-m UltraBoom Flight Test

    NASA Technical Reports Server (NTRS)

    Agnes, Gregory S.; Abelson, Robert D.; Miyake, Robert; Lin, John K. H.; Welsh, Joe; Watson, Judith J.

    2005-01-01

    Future NASA missions require long, ultra-lightweight booms to enable solar sails, large sunshields, and other gossamer-type spacecraft structures. The space experiment discussed in this paper will flight validate the non-traditional ultra lightweight rigidizable, inflatable, isogrid structure utilizing graphite shape memory polymer (GR/SMP) called UltraBoom(TradeMark). The focus of this paper is the analysis of the 3-m ground test article. The primary objective of the mission is to show that a combination of ground testing and analysis can predict the on-orbit performance of an ultra lightweight boom that is scalable, predictable, and thermomechanically stable.

  5. Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties.

    PubMed

    Kim, Hansoo; Suh, Dong-Woo; Kim, Nack J

    2013-02-01

    Adding a large amount of light elements such as aluminum to steels is not a new concept recalling that several Fe-Al-Mn-C alloys were patented in 1950s for replacement of nickel or chromium in corrosion resistance steels. However, the so-called lightweight steels or low-density steels were revisited recently, which is driven by demands from the industry where steel has served as a major structural material. Strengthening without loss of ductility has been a triumph in steel research, but lowering the density of steel by mixing with light elements will be another prospect that may support the competitiveness against emerging alternatives such as magnesium alloys. In this paper, we review recent studies on lightweight steels, emphasizing the concept of alloy design for microstructures and mechanical properties. The influence of alloying elements on the phase constituents, mechanical properties and the change of density is critically reviewed. Deformation mechanisms of various lightweight steels are discussed as well. This paper provides a reason why the success of lightweight steels is strongly dependent on scientific achievements even though alloy development is closely related to industrial applications. Finally, we summarize some of the main directions for future investigations necessary for vitalizing this field of interest.

  6. Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties

    PubMed Central

    Kim, Hansoo; Suh, Dong-Woo; Kim, Nack J

    2013-01-01

    Adding a large amount of light elements such as aluminum to steels is not a new concept recalling that several Fe–Al–Mn–C alloys were patented in 1950s for replacement of nickel or chromium in corrosion resistance steels. However, the so-called lightweight steels or low-density steels were revisited recently, which is driven by demands from the industry where steel has served as a major structural material. Strengthening without loss of ductility has been a triumph in steel research, but lowering the density of steel by mixing with light elements will be another prospect that may support the competitiveness against emerging alternatives such as magnesium alloys. In this paper, we review recent studies on lightweight steels, emphasizing the concept of alloy design for microstructures and mechanical properties. The influence of alloying elements on the phase constituents, mechanical properties and the change of density is critically reviewed. Deformation mechanisms of various lightweight steels are discussed as well. This paper provides a reason why the success of lightweight steels is strongly dependent on scientific achievements even though alloy development is closely related to industrial applications. Finally, we summarize some of the main directions for future investigations necessary for vitalizing this field of interest. PMID:27877553

  7. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles

    DOE PAGES

    Kim, Hyung Chul; Wallington, Timothy J.

    2016-08-17

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e/(100 km 100 kg), than those for ICEVs which are in the rangesmore » 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.« less

  8. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A

    2015-08-18

    Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.

  9. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2016-10-18

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e /(100 km 100 kg), than those for ICEVs which are in the ranges 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.

  10. Evaluation of lightweight material concepts for aircraft turbine engine rotor failure protection

    DOT National Transportation Integrated Search

    1997-07-01

    Results of the evaluation of lightweight materials for aircraft turbine engine rotor failure protection are presented in this report. The program consisted of two phases. Phase 1 was an evaluation of a group of composite materials which could possibl...

  11. Pavement evaluation using a portable lightweight deflectometer.

    DOT National Transportation Integrated Search

    2012-12-01

    The use of Zorn ZFG-3000 portable Lightweight Deflectometer (LWD) in the in-situ : assessment of pavement quality was investigated in this research. A lower load and a : shorter load pulse duration are used in a LWD as compared to a Falling Weight : ...

  12. Shear strength of a PCBT-53 girder fabricated with lightweight self-consolidating concrete.

    DOT National Transportation Integrated Search

    2009-01-01

    Lightweight self-consolidating concrete (LWSCC) is advantageous in the bridge industry because members fabricated with this material have a significantly lower self weight and in its fresh state, LWSCC has a low viscosity that eliminates the need for...

  13. Developments in Emission Measurements Using Lightweight Sensors and Samplers.

    EPA Science Inventory

    Lightweight emission measurement systems making use of miniaturized sensors and samplers have been developed for portable and aerial sampling for an array of pollutants. Shoebox-sized systems called “Kolibri”, weighing 3-5 kg, have been deployed on NASA-flown unmanned...

  14. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  15. Lightweight concrete with enhanced neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  16. Investigation of transfer length, development length, flexural strength, and prestress losses in lightweight prestressed concrete girders.

    DOT National Transportation Integrated Search

    2003-01-01

    Encouraged by the performance of high performance normal weight composite girders, the Virginia Department of Transportation has sought to exploit the use of high performance lightweight composite concrete (HPLWC) girders to achieve economies brought...

  17. Experimental project : use of shredded tires for lightweight fill.

    DOT National Transportation Integrated Search

    1991-02-01

    Shredded rubber tires have been used as lightweight fill in repair of a landslide that occurred under a highway embankment in mountainous terrain on Highway US 42 (Oregon State route #35). The force driving the slide was decreased by removing the soi...

  18. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    DOT National Transportation Integrated Search

    2011-04-01

    The purpose of this research was to characterize the performance of High Strength Lightweight Concrete (HSLW) in precast, prestressed bridge girders and to evaluate their performance in a highway bridge. The mechanical properties and long-term time-d...

  19. Pain and quality of life after inguinal hernia surgery: a multicenter randomized controlled trial comparing lightweight vs heavyweight mesh (Supermesh Study).

    PubMed

    Bona, Stefano; Rosati, Riccardo; Opocher, Enrico; Fiore, Barbara; Montorsi, Marco

    2018-03-01

    Mesh repair has significantly reduced recurrence rate after groin hernia surgery. Recently, attention has shifted to issues such as chronic pain and discomfort, leading to development of lightweight and partially re-absorbable meshes. The aim of the study was to evaluate the effect of lightweight mesh vs heavyweight mesh on post-operative pain, discomfort and quality of life in short and medium term after inguinal hernia surgery. Eight hundred and eight patients with primary inguinal hernia were allocated to anterior repair (Lichtenstein technique) using a lightweight mesh (Ultrapro ® ) or a heavyweight mesh (Prolene ® ). Primary outcomes were incidence of chronic pain and discomfort at 6-month follow-up. Secondary endpoints were quality of life (QoL), pain and complication at 1 week, 1 and 6 months. At 6 months, 25% of patients reported pain of some intensity; severe pain was reported by 1% of patients in both groups. A statistically significant difference in favour of lightweight mesh was found at multivariable analysis for pain (1 week and 6 months after surgery: p = 0.02 and p = 0.04, respectively) and QoL at 1 month and 6 months (p = 0.05 and p = 0.02, respectively). There was no difference in complication rate and no hernia recurrences were detected. The use of lightweight mesh in anterior Lichtenstein inguinal hernia repair significantly reduced the incidence of pain and favourably affected the perceived quality of life at 6 months after surgery compared to heavyweight mesh.

  20. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels.

    PubMed

    Ginn, B R

    2017-07-01

    Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINs), tend to be diploid while haploidy tends to be restricted to relatively simple organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain).

    PubMed

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Mataix-Solera, Jorge; Úbeda, Xavier

    2016-12-01

    Intense rainfall events after severe wildfires can have an impact on soil properties, above all in the Mediterranean environment. This study seeks to examine the immediate impact and the effect after a year of an intense rainfall event on a Mediterranean forest affected by a high severity wildfire. The work analyses the following soil properties: soil aggregate stability, total nitrogen, total carbon, organic and inorganic carbon, the C/N ratio, carbonates, pH, electrical conductivity, extractable calcium, magnesium, sodium, potassium, available phosphorous and the sodium and potassium adsorption ratio (SPAR). We sampled soils in the burned area before, immediately after and one year after the rainfall event. The results showed that the intense rainfall event did not have an immediate impact on soil aggregate stability, but a significant difference was recorded one year after. The intense precipitation did not result in any significant changes in soil total nitrogen, total carbon, inorganic carbon, the C/N ratio and carbonates during the study period. Differences were only registered in soil organic carbon. The soil organic carbon content was significantly higher after the rainfall than in the other sampling dates. The rainfall event did increase soil pH, electrical conductivity, major cations, available phosphorous and the SPAR. One year after the fire, a significant decrease in soil aggregate stability was observed that can be attributed to high SPAR levels and human intervention, while the reduction in extractable elements can be attributed to soil leaching and vegetation consumption. Overall, the intense rainfall event, other post-fire rainfall events and human intervention did not have a detrimental impact on soil properties in all probability owing to the flat plot topography. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission

    NASA Astrophysics Data System (ADS)

    Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.

    In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a summary of the deterministic impulsive delta-V budget required to establish the baseline mission trajectory design is presented.

  3. Production of dried shrimp mixed with turmeric and salt by Spouted Bed technique enter the rectangular chamber.

    NASA Astrophysics Data System (ADS)

    Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.

    2017-09-01

    Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.

  4. First bridge structure with lightweight high-performance concrete beams and deck in Virginia.

    DOT National Transportation Integrated Search

    2005-01-01

    This study involved the construction and early performance of the first bridge in Virginia constructed with lightweight high-performance concrete (LWHPC) having a density of 120 lb/ft3 in the beams and deck. The design strength and permeability were ...

  5. Developments in Emission Measurements Using Lightweight Sensors and Samplers

    EPA Science Inventory

    Lightweight emission measurement systems making use of miniaturized sensors and samplers have been developed for portable and aerial sampling for an array of pollutants. Shoebox-sized systems called “Kolibri”, weighing 3-5 kg, have been deployed on NASA-flown unmanned aerial syst...

  6. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    DOT National Transportation Integrated Search

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  7. Optimal design of hybrid electric-human powered lightweight transportation

    DOT National Transportation Integrated Search

    2001-07-01

    The goal of this project was to develop a lightweight and efficient hybrid bicycle design. A series approach to design of the hybrid bicycle was used to allow for more technical advances to be made. This approach required the project to be divided in...

  8. Lightweight, variable solidity knitted parachute fabric. [for aerodynamic decelerators

    NASA Technical Reports Server (NTRS)

    Matthews, F. R., Jr.; White, E. C. (Inventor)

    1973-01-01

    A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection.

  9. Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures

    NASA Astrophysics Data System (ADS)

    Meschut, G.; Janzen, V.; Olfermann, T.

    2014-05-01

    Driven by increasing costs for energy and raw material and especially by the European CO2-emission laws, automotive industry faces the challenge to develop more lightweight and at the same time still rigid and crash-stable car bodies, that are affordable for large-scale production. The implementation of weight-reduced constructions depends not only on the availability of lightweight materials and related forming technologies, but also on cost-efficient and reliable joining technologies suitable for multi-material design. This article discusses the challenges and requirements for these technologies, based on the example of joining aluminium with press-hardened boron steels, what is considered as a very important material combination for affordable future lightweight mobility. Besides a presentation of recent developments for extending the process limits of conventional mechanical joining methods, new promising technologies such as resistance element welding are introduced. In addition, the performance, advantages, and disadvantages of the presented technologies are compared and discussed.

  10. Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions

    NASA Technical Reports Server (NTRS)

    Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations

  11. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    NASA Astrophysics Data System (ADS)

    Matson, L.; Chen, M.; Deblonk, B.; Palusinski, I.

    The use of monolithic glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs, environmental effects and launch load/weight requirements. New material solutions and manufacturing processes are required to meet DoD's directed energy weapons, reconnaissance/surveillance, and secured communications needs. Over the past several years the Air Force, MDA, and NASA has focused their efforts on the fabrication, lightweighting, and scale-up of numerous silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive evaluation methods being investigated to help eliminate risk. Mirror structural substrates made out of advanced engineered materials (far term solutions) such as composites, foams, and microsphere arrays for ultra lightweighting will also be briefly discussed.

  12. Lightweight bipolar storage battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  13. Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.

  14. Next-Generation MKIII Lightweight HUT/Hatch Assembly

    NASA Technical Reports Server (NTRS)

    McCarthy, Mike; Toscano, Ralph

    2013-01-01

    The MK III (H-1) carbon-graphite/ epoxy Hard Upper Torso (HUT)/Hatch assembly was designed, fabricated, and tested in the early 1990s. The spacesuit represented an 8.3 psi (˜58 kPa) technology demonstrator model of a zero prebreathe suit. The basic torso shell, brief, and hip areas of the suit were composed of a carbon-graphite/epoxy composite lay-up. In its current configuration, the suit weighs approximately 120 lb (˜54 kg). However, since future planetary suits will be designed to operate at 0.26 bar (˜26 kPa), it was felt that the suit's re-designed weight could be reduced to 79 lb (˜35 kg) with the incorporation of lightweight structural materials. Many robust, lightweight structures based on the technologies of advanced honeycomb materials, revolutionary new composite laminates, metal matrix composites, and recent breakthroughs in fullerene fillers and nanotechnology lend themselves well to applications requiring materials that are both light and strong. The major problem involves the reduction in weight of the HUT/ Hatch assembly for use in lunar and/or planetary applications, while at the same time maintaining a robust structural design. The technical objective is to research, design, and develop manufacturing methods that support fa b rica - tion of a lightweight HUT/Hatch assembly using advanced material and geometric redesign as necessary. Additionally, the lightweight HUT/Hatch assembly will interface directly with current MK III hardware. Using the new operating pressure and current MK III (H-1) interfaces as a starting block, it is planned to maximize HUT/Hatch assembly weight reduction through material selection and geometric redesign. A hard upper torso shell structure with rear-entry closure and corresponding hatch will be fabricated. The lightweight HUT/Hatch assembly will retrofit and interface with existing MK III (H-1) hardware elements, providing NASA with immediate "plug-andplay" capability. NASA crewmembers will have a lightweight, robust, life-support system that will minimize fatigue during extraterrestrial surface sojourns. Its unique feature is the utilization of a new and innovative family of materials used by the aerospace industry, which at the time of this reporting has not been used for the proposed application.

  15. Southern Regional Center for Lightweight Innovative Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstemeyer, Mark F.; Wang, Paul

    The three major objectives of this Phase III project are: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios.

  16. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low Earth orbit regime at 40 and 80 percent depths-of-discharge.

  17. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low earth orbit regime at 40 and 80 percent depths-of-discharge.

  18. Evaluation and comparison of a lightweight bamboo composite

    NASA Astrophysics Data System (ADS)

    Loth, Andreas; Berwing, Michael; Förster, Ralf

    2016-10-01

    The demand for fast changing production lines and other facilities needs new lightweight and stable systems for partitioning walls. There is also a need for ecological products for this application. The wood like grass bamboo provides a wide potential to substitute conventional wood. A composite lightweight honeycomb like bamboo board was developed and compared with reinforced and unreinforced plywood specimen. The acquired mechanical properties gave a promising result for the usability of bamboo as basis material for wide span boards. It can be manufactured with minimal technical investments, that suits also well for regions with little industry. The ecological assessment of the structure is very positive.

  19. Reflective Coating for Lightweight X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Windt, David; Hong, Mao-Ling; Saha, Timo; McClelland, Ryan; Sharpe, Marton; Dwivedi, Vivek H.

    2012-01-01

    X-ray reflective coating for next generation's lightweight, high resolution, optics for astronomy requires thin-film deposition that is precisely fine-tuned so that it will not distort the thin sub-mm substrates. Film of very low stress is required. Alternatively, mirror distortion can be cancelled by precisely balancing the deformation from multiple films. We will present results on metallic film deposition for the lightweight optics under development. These efforts include: low-stress deposition by magnetron sputtering and atomic layer deposition of the metals, balancing of gross deformation with two-layer depositions of opposite stresses and with depositions on both sides of the thin mirrors.

  20. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov Websites

    interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the

  1. Evaluation of a Highway Bridge Constructed Using High Strength Lightweight Concrete Bridge Girders : final report.

    DOT National Transportation Integrated Search

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  2. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    NASA Technical Reports Server (NTRS)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  3. Thermal optimum design for tracking primary mirror of Space Telescope

    NASA Astrophysics Data System (ADS)

    Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei

    2011-08-01

    In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.

  4. CeSiCò - a new technology for lightweight and cost effective space instruments structures and mirrors

    NASA Astrophysics Data System (ADS)

    Devilliers, Christophe; Krödel, Matthias

    2017-11-01

    Alcatel Alenia Space and ECM have jointly developed a new ceramic material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument the CesicÒ. Its intrinsic properties, added to ample manufacturing capabilities allow to manufacture stiff and lightweight cost effective mirrors and structure for space instruments. Different scale 1 flight representative CesicÒ optical structures have been manufactured and successfully tested under very strong dynamic environment and cryogenic condition down to 30K CesicÒ is also envisaged for large and lightweight space telescopes mirrors, a large CesicÒ 1 meter class mirror with an area mass of less than 25 Kg/m2 has been sized again launch loads and WFE performance and manufactured. CesicÒ applicability for large focal plane have been demonstrated through different scale 1 breadboards. Based on these successful results, AlcatelAleniaSpace and ECM are now in position to propose for space this technology with new innovative concepts thanks to the CesicÒ manufacturing capabilities. CesicÒ has therefore been selected for the structure and mirrors parts of a flight instrument payload and the manufacturing of the flight hardware is already underway. An high temperature high gain lightweight antenna breadboard is also under manufacturing for Bepi colombo mission. CesicÒ is therefore a good candidate for future challenging space instruments and is currently proposed for Japan and US space projects.

  5. FY 2012 Lightweight Materials Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, David C.

    2013-04-15

    The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  6. Reinforced Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.; Akutagawa, Wesley; Wang, Taylor G.; Barber, Dan

    1989-01-01

    New honeycomb panel structure has increased strength and stiffness with little increase in weight. Some or all of walls of honeycomb cells reinforced with honeycomb panels having smaller cells, lightweight foam, or other reinforcing material. Strong, lightweight reinforced panels used in aircraft, car and truck bodies, cabinets for equipment and appliances, and buildings.

  7. Using shredded waste tires as a lightweight fill material for road subgrades : summary report

    DOT National Transportation Integrated Search

    1994-04-01

    Waste tires have been a disposal problem in the past and are continuing to accumulate throughout the U.S. today. Using shredded waste tires as a lightweight fill material for road construction has proven to be a beneficial use of this waste product. ...

  8. Using shredded waste tires as a lightweight fill material for road subgrades. Summary report

    DOT National Transportation Integrated Search

    1994-04-01

    Waste tires have been a disposal problem in the past and are continuing to accumulate throughout the U.S. today. Using shredded waste tires as a lightweight fill material for road construction has proven to be a beneficial use of this waste product. ...

  9. Experimental verification of a model of a two-link flexible, lightweight manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Huggins, James David

    1988-01-01

    Experimental verification is presented for an assumed modes model of a large, two link, flexible manipulator design and constructed in the School of Mechanical Engineering at Georgia Institute of Technology. The structure was designed to have typical characteristics of a lightweight manipulator.

  10. Durability of lightweight concrete : Phase II : wetting and drying tests, Phase III : freezing and thawing tests.

    DOT National Transportation Integrated Search

    1966-12-01

    This report describes a laboratory research program on the durability of lightweight concrete. Two phases of a three phase study are covered by this report, while the remaining phase is still under study. The two phases being reported are Phase II - ...

  11. CRITICAL MECHANICAL PROPERTIES OF STRUCTURAL LIGHT-WEIGHT CONCRETE AND THE EFFECTS OF THESE PROPERTIES ON THE DESIGN OF THE PAVEMENT STRUCTURE.

    DOT National Transportation Integrated Search

    1965-01-01

    In this study, critical mechanical properties of structural lightweight concrete were determined and utilized in the evaluation of a design of concrete pavements. Also presented are the critical mechanical properties resulting from unrestrained and r...

  12. Lightweight solar concentrator structures, phase 2

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Kaplan, Richard B.

    1993-01-01

    This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.

  13. 76 FR 22078 - Lightweight Thermal Paper From Germany: Notice of Final Results of the First Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-428-840] Lightweight Thermal Paper... initiation of this antidumping duty administrative review naming Mitsubishi HiTec Paper Flensburg GmbH, Mitsubishi HiTec Paper Bielefeld GmbH and Mitsubishi International Corporation (``collectively, Mitsubishi...

  14. Solar cell submodule design facilitates assembly of lightweight arrays

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1966-01-01

    Solar cell submodules with bus bars that leave tabs along one end of the submodule and wires with raised portions along the other end are assembled by interlocking the tabs and wires of adjacent submodules. This structural design is lightweight and reliable and requires no metallic substructure.

  15. Biochar, Tool for Climate Change Mitigation and Soil Management

    NASA Astrophysics Data System (ADS)

    Shackley, Simon; Sohi, Saran; Ibarrola, Rodrigo; Hammond, Jim; Mašek, Ondřej; Brownsort, Peter; Cross, Andrew; Prendergast-Miller, Miranda; Haszeldine, Stuart

    Biochar is the solid remains of any organic material that has been heated to at least 350oC in a zero-oxygen or oxygen-limited environment, which is intended to be mixed with soils. If the solid remains are not suitable for addition to soils, or will be burned as a fuel or used as an aggregate in construction, it is defined as char not biochar. There is a very wide range of potential biochar feedstocks, e.g., wood waste, timber, agricultural residues and wastes (straws, bagasse, manure, husks, shells, fibers, etc.), leaves, food wastes, paper and sewage sludge, green waste, distiller's grain, and many others. Pyrolysis is usually the technology of choice for producing biochar, though biomass gasification also produces smaller char yields. Syngas and pyrolytic bio-liquids, which have a potential use as energy carriers, are produced alongside biochar.

  16. A Powerful New Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through Small Business Innovation Research (SBIR) funding from NASA's Glenn Research Center, Moller International created a new coating for rotary engines, which significantly improves the fuel consumption of a vehicle while reducing emissions. The new coatings are offered in the new Rotapower(R) engine, which is produced and distributed by Moller subsidiary, Freedom Motors, Inc. The coating allows the Rotapower engine to function smoother than other models, reducing wear and protecting the engine. The Rotapower engine has the ability to operate on a variety of fuels, including gasoline, natural gas, diesel, alcohol, and kerosene. A small and lightweight engine, it is projected to replace many of today's bulkier versions. The 10 horsepower model fits in the palm of one's hand, while the 160 horsepower model fits into a 5-gallon bucket. The clean running Rotapower engine is environmentally appealing, because it eliminates over 98 percent of the total emissions given off by traditional piston engines. Fewer pollutants are spewed into the air, making it especially attractive in areas where air pollution is a major problem. Due to the clean-burning nature of the engine, it meets the stringent standards set by the California Air Resources Board. The engine also has numerous commercial benefits in several types of recreational, industrial, and transportation applications, including personal watercraft, snowmobiles, portable generators. and pumps.

  17. Risk to the public from carbon fibers released in civil aircraft accidents

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Because carbon fibers are strong, stiff, and lightweight, they are attractive for use in composite structures. Because they also have high electrical conductivity, free carbon fibers settling on electrical conductors can cause malfunctions. If released from the composite by burning, the fibers may become a hazard to exposed electrical and electronic equipment. As part of a Federal study of the potential hazard associated with the use of carbon fibers, NASA assessed the public risk associated with crash fire accidents of civil aircraft. The NASA study projected a dramatic increase in the use of carbon composites in civil aircraft and developed technical data to support the risk assessment. Personal injury was found to be extremely unlikely. In 1993, the year chosen as a focus for the study, the expected annual cost of damage caused by released carbon fibers is only $1000. Even the worst-case carbon fiber incident simulated (costing $178,000 once in 34,000 years) was relatively low-cost compared with the usual air transport accident cost. On the basis of these observations, the NASA study concluded that exploitation of composites should continue, that additional protection of avionics is unnecessary, and that development of alternate materials specifically to overcome this problem is not justified.

  18. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  19. Present status of titanium removable dentures--a review of the literature.

    PubMed

    Ohkubo, C; Hanatani, S; Hosoi, T

    2008-09-01

    Although porcelain and zirconium oxide might be used for fixed partial dental prostheses instead of conventional dental metals in the near future, removable partial denture (RPD) frameworks will probably continue to be cast with biocompatible metals. Commercially pure (CP) titanium has appropriate mechanical properties, it is lightweight (low density) compared with conventional dental alloys, and has outstanding biocompatibility that prevents metal allergic reactions. This literature review describes the laboratory conditions needed for fabricating titanium frameworks and the present status of titanium removable prostheses. The use of titanium for the production of cast RPD frameworks has gradually increased. There are no reports about metallic allergy apparently caused by CP titanium dentures. The laboratory drawbacks still remain, such as the lengthy burn-out, inferior castability and machinability, reaction layer formed on the cast surface, difficulty of polishing, and high initial costs. However, the clinical problems, such as discoloration of the titanium surfaces, unpleasant metal taste, decrease of clasp retention, tendency for plaque to adhere to the surface, detachment of the denture base resin, and severe wear of titanium teeth, have gradually been resolved. Titanium RPD frameworks have never been reported to fail catastrophically. Thus, titanium is recommended as protection against metal allergy, particularly for large-sized prostheses such as RPDs or complete dentures.

  20. Adaptive Peer Sampling with Newscast

    NASA Astrophysics Data System (ADS)

    Tölgyesi, Norbert; Jelasity, Márk

    The peer sampling service is a middleware service that provides random samples from a large decentralized network to support gossip-based applications such as multicast, data aggregation and overlay topology management. Lightweight gossip-based implementations of the peer sampling service have been shown to provide good quality random sampling while also being extremely robust to many failure scenarios, including node churn and catastrophic failure. We identify two problems with these approaches. The first problem is related to message drop failures: if a node experiences a higher-than-average message drop rate then the probability of sampling this node in the network will decrease. The second problem is that the application layer at different nodes might request random samples at very different rates which can result in very poor random sampling especially at nodes with high request rates. We propose solutions for both problems. We focus on Newscast, a robust implementation of the peer sampling service. Our solution is based on simple extensions of the protocol and an adaptive self-control mechanism for its parameters, namely—without involving failure detectors—nodes passively monitor local protocol events using them as feedback for a local control loop for self-tuning the protocol parameters. The proposed solution is evaluated by simulation experiments.

Top