Sample records for burning plasma simulation

  1. Critical threshold behavior for steady-state internal transport barriers in burning plasmas.

    PubMed

    García, J; Giruzzi, G; Artaud, J F; Basiuk, V; Decker, J; Imbeaux, F; Peysson, Y; Schneider, M

    2008-06-27

    Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor.

  2. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less

  3. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    NASA Astrophysics Data System (ADS)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  4. Stability and Control of Burning Tokamak Plasmas with Resistive Walls: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, George; Brennan, Dylan; Cole, Andrew

    This project is focused on theoretical and computational development for quantitative prediction of the stability and control of the equilibrium state evolution in toroidal burning plasmas, including its interaction with the surrounding resistive wall. The stability of long pulse burning plasmas is highly sensitive to the physics of resonant layers in the plasma, sources of momentum and flow, kinetic effects of energetic particles, and boundary conditions at the wall, including feedback control and error fields. In ITER in particular, the low toroidal flow equilibrium state, sustained primarily by energetic alpha particles from fusion reactions, will require the consideration of allmore » of these key elements to predict quantitatively the stability and evolution. The principal investigators on this project have performed theoretical and computational analyses, guided by analytic modeling, to address this physics in realistic configurations. The overall goal has been to understand the key physics mechanisms that describe stable toroidal burning plasmas under active feedback control. Several relevant achievements have occurred during this project, leading to publications and invited conference presentations. In theoretical efforts, with the physics of the resonant layers, resistive wall, and toroidal momentum transport included, this study has extended from cylindrical resistive plasma - resistive wall models with feedback control to toroidal geometry with strong shaping to study mode coupling effects on the stability. These results have given insight into combined tearing and resistive wall mode behavior in simulations and experiment, while enabling a rapid exploration of plasma parameter space, to identify possible domains of interest for large plasma codes to investigate in more detail. Resonant field amplification and quasilinear torques in the presence of error fields and velocity shear have also been investigated. Here it was found, surprisingly, that the Maxwell torque on resonant layers in the plasma which exhibit finite real frequencies ωr in their response is significantly different from the conventional results based on tearing layers with pure real growth (or damping) rates. This observation suggests the possibility that the torque on the tearing layers can lock the plasma rotation to this finite phase velocity, which may lead to locking in which velocity shear is maintained. More broadly, the sources of all torques driving flows in magnetic confinement experiments is not fully understood, and this theoretical work may shed light on puzzling experimental results. It was also found that real frequencies occur over a wide range of plasma response regimes, and are indeed the norm and not the exception, often leading to profound effects on the locking torque. Also, the influence of trapped energetic ions orbiting over the resistive plasma mode structure, a critical effect in burning plasmas, was investigated through analytic modeling and analysis of simulations and experiment. This effort has shown that energetic ions can drive the development of disruptive instabilities, but also damp and stabilize the instabilities, depending on the details of the shear in the equilibrium magnetic field. This finding could be critical to maintaining stable operations in burning plasmas. In the most recent work, a series of simulations have been conducted to study the effect of differential flow and energetic ion effects on entry to the onset of a disruptive instability in the most realistic conditions possible, with preexisting nonlinearly saturated benign instabilities. Throughout this work, the linear and quasilinear theory of resonant layers with differential flow between them, their interaction with resistive wall and error fields, and energetic ions effects, have been used to understand realistic simulations of mode onset and the experimental discharges they represent. These studies will continue to answer remaining questions about the relation between theoretical results obtained in this project and observations of the onset and evolution of disruptive instabilities in experiment.« less

  5. Physical Simulation of a Prolonged Plasma-Plume Exposure of a Space Debris Object

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. A.; Gorev, N. B.; Tokmak, N. A.; Kochubei, G. S.

    2018-05-01

    A methodology has been developed for the physical (laboratory) simulation of the prolonged exposure of a space debris object to high-energy ions of a plasma plume for removing the object into low-Earth orbit with its subsequent burning in the Earth's atmosphere. The methodology is based on the equivalence criteria of two modes of exposure (in the Earth's ionosphere and in the setup) and the procedure for accelerated resource tests in terms of the sputtering of the space debris material and its deceleration by a plasma jet in the Earth's ionosphere.

  6. Simulation of wave interactions with MHD

    NASA Astrophysics Data System (ADS)

    Batchelor, D.; Alba, C.; Bateman, G.; Bernholdt, D.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  7. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  8. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E. L.; Molvig, K.; Joglekar, A. S.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  9. Simulations of Atmospheric Plasma Arcs

    NASA Astrophysics Data System (ADS)

    Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael

    2017-10-01

    We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.

  10. Mechanism of acute depletion of plasma fibronectin following thermal injury in rats. Appearance of a gelatinlike ligand in plasma.

    PubMed Central

    Deno, D C; McCafferty, M H; Saba, T M; Blumenstock, F A

    1984-01-01

    Plasma fibronectin was depleted within 15 min following sublethal burn, followed by partial recovery at 8 h and complete restoration by 24 h in anesthetized rats. Radiolabeled 75Se-plasma fibronectin, injected intravenously before burn, was rapidly sequestered in burn skin as well as the liver. Fibronectin levels at 2 h postburn as detected by immunoassay vs. 75Se-plasma fibronectin indicated that more fibronectin was in the plasma than detected by electroimmunoassay. Crossed immunoelectrophoretic analysis of fibronectin in early postburn plasma demonstrated a reduced electrophoretic mobility of the fibronectin antigen. Addition of heparin or fibrin, both of which have affinity for fibronectin, to normal plasma was unable to reproduce this altered fibronectin electrophoretic pattern. In contrast, addition of gelatin or native collagen to normal plasma reproduced the abnormal electrophoretic pattern of fibronectin seen in burn plasma. Extracts of burned skin, but not extracts of normal skin, when added to normal plasma, elicited a similar altered electrophoretic pattern for fibronectin. By gel filtration, fibronectin in burn plasma had an apparent molecular weight approximately 40% greater than that observed in normal plasma. These data suggest the release into the blood of a gelatinlike ligand from burned skin, which complexes with plasma fibronectin. Thus, fibronectin deficiency acutely postburn appears mediated by (a) its accumulation at the site of burn injury; (b) its removal from the circulation by the liver; and (c) its presence in the plasma in a form that is less detectable by immunoassay. Images PMID:6690478

  11. Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)

    NASA Astrophysics Data System (ADS)

    Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa

    2017-10-01

    The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, Jill; Corones, James; Batchelor, Donald

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less

  13. Towards a better understanding of critical gradients and near-marginal turbulence in burning plasma conditions

    NASA Astrophysics Data System (ADS)

    Holland, C.; Candy, J.; Howard, N. T.

    2017-10-01

    Developing accurate predictive transport models of burning plasma conditions is essential for confident prediction and optimization of next step experiments such as ITER and DEMO. Core transport in these plasmas is expected to be very small in gyroBohm-normalized units, such that the plasma should lie close to the critical gradients for onset of microturbulence instabilities. We present recent results investigating the scaling of linear critical gradients of ITG, TEM, and ETG modes as a function of parameters such as safety factor, magnetic shear, and collisionality for nominal conditions and geometry expected in ITER H-mode plasmas. A subset of these results is then compared against predictions from nonlinear gyrokinetic simulations, to quantify differences between linear and nonlinear thresholds. As part of this study, linear and nonlinear results from both GYRO and CGYRO codes will be compared against each other, as well as to predictions from the quasilinear TGLF model. Challenges arising from near-marginal turbulence dynamics are addressed. This work was supported by the US Department of Energy under US DE-SC0006957.

  14. Alpha-channeling simulation experiment in the DIII-D tokamak.

    PubMed

    Wong, K L; Budny, R; Nazikian, R; Petty, C C; Greenfield, C M; Heidbrink, W W; Ruskov, E

    2004-08-20

    Alfvén instabilities can reduce the central magnetic shear via redistribution of energetic ions. They can sustain a steady state internal transport barrier as demonstrated in this DIII-D tokamak experiment. Improvement in burning plasma performance based on this mechanism is discussed.

  15. Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.

    2006-10-01

    The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).

  16. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    PubMed

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  17. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  18. Pellet fuelling requirements to allow self-burning on a helical-type fusion reactor

    NASA Astrophysics Data System (ADS)

    Sakamoto, R.; Miyazawa, J.; Yamada, H.; Masuzaki, S.; Sagara, A.; the FFHR Design Group

    2012-08-01

    Pellet refuelling conditions to sustain a self-burning plasma have been investigated by extrapolating the confinement property of the LHD plasma, which appears to be governed by a gyro-Bohm-type confinement property. The power balance of the burning plasma is calculated taking into account the profile change with pellet deposition and subsequent density relaxation. A self-burning plasma is achieved within the scope of conventional pellet injection technology. However, a very small burn-up rate of 0.18% is predicted. Higher velocity pellet injection is effective in improving the burn-up rate by deepening particle deposition, whereas deep fuelling leads to undesirable fluctuation of the fusion output.

  19. High-gain magnetized inertial fusion.

    PubMed

    Slutz, Stephen A; Vesey, Roger A

    2012-01-13

    Magnetized inertial fusion (MIF) could substantially ease the difficulty of reaching plasma conditions required for significant fusion yields, but it has been widely accepted that the gain is not sufficient for fusion energy. Numerical simulations are presented showing that high-gain MIF is possible in cylindrical liner implosions based on the MagLIF concept [S. A. Slutz et al Phys. Plasmas 17, 056303 (2010)] with the addition of a cryogenic layer of deuterium-tritium (DT). These simulations show that a burn wave propagates radially from the magnetized hot spot into the surrounding much denser cold DT given sufficient hot-spot areal density. For a drive current of 60 MA the simulated gain exceeds 100, which is more than adequate for fusion energy applications. The simulated gain exceeds 1000 for a drive current of 70 MA.

  20. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  1. Compression of an Applied Bz field by a z-pinch onto a Tamped DT Fiber for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Nash, Tom

    2009-11-01

    Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.

  2. Simulation of proton-boron nuclear burning in the potential well of virtual cathode at nanosecond vacuum discharge

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu

    2016-11-01

    The neutron-free reaction of proton-boron nuclear burning accompanied with the yield of three alpha particles (p + 11B → α + 8Be* → 3α) is of great fundamental and applied interest. However, the implementation of the synthesis of p +11B requires such extreme plasma parameters that are difficult to achieve at well-known schemes of controlled thermonuclear fusion. Earlier, the yield of DD neutrons in a compact nanosecond vacuum discharge (NVD) of low energy with deuterated Pd anode have been observed. Further detailed particle-in-cell simulation by the electrodynamic code have recognized that this experiment represents the realization of rather old scheme of inertial electrostatic confinement (IEC). This IEC scheme is one of the few where the energies of ions needed for p + 11B reaction are quite possible. The purpose of this work on simulation of proton-boron reaction is studying the features of possible p + 11B burning at the IEC scheme based on NVD, thus, to look forward and planning the real experiment.

  3. Treatment in the healing of burns with a cold plasma source

    PubMed Central

    Betancourt-Ángeles, Mario; Peña-Eguiluz, Rosendo; López-Callejas, Régulo; Domínguez-Cadena, Nicasio Alberto; Mercado-Cabrera, Antonio; Muñoz-Infante, Jorge; Rodríguez-Méndez, Benjamín Gonzalo; Valencia-Alvarado, Raúl; Moreno-Tapia, José Alberto

    2017-01-01

    A cold plasma produced with helium gas was applied to two second-degree burns produced with boiling oil. These burns were located on a thigh and a shin of a 59-years-old male person. After the first treatment as benefit the patient neither presented itching nor pain and, after the second treatment, the patient presented new tissue. This result opens the possibilities of the application of a cold plasma source to health burns. PMID:29348977

  4. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2017-12-09

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less

  6. Development of a real-time simulation tool towards self-consistent scenario of plasma start-up and sustainment on helical fusion reactor FFHR-d1

    NASA Astrophysics Data System (ADS)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2017-06-01

    This study closely investigates the plasma operation scenario for the LHD-type helical reactor FFHR-d1 in view of MHD equilibrium/stability, neoclassical transport, alpha energy loss and impurity effect. In 1D calculation code that reproduces the typical pellet discharges in LHD experiments, we identify a self-consistent solution of the plasma operation scenario which achieves steady-state sustainment of the burning plasma with a fusion gain of Q ~ 10 was found within the operation regime that has been already confirmed in LHD experiment. The developed calculation tool enables systematic analysis of the operation regime in real time.

  7. [Clinical study on the postburn change in the hypothalamus-pituitary-adrenal hormones in severely burned patients].

    PubMed

    Li, Hong-mian; Liang, Zi-qian; Luo, Zuo-jie

    2003-06-01

    To investigate the postburn dynamic changes in the hypothalamus-pituitary-adrenal hormones in severely burned patients. Fifty burn patients were enrolled in the study. The plasma contents of total GC (cortisol), ACTH and aldosterone (ALDO) and urinary contents of 17-OHO and 17-KS were determined with radio-immunological assay (RIA) method after burn injury to compare with the normal values which were well established clinically. The postburn plasma and urinary contents of the above indices were increased evidently with two peak values in shock and infectious stages, whilst the majority of he indices were lower than the normal values after 6 postburn weeks (PBWs). The values of these hormones were the lowest in dying patients. On the other hand, the values approached normal levels in those patients whose burn wounds were healing. Increases of the plasma and urinary levels of hypothalamus-pituitary -adrenal hormones in severely burned patients were constantly seen. Burn shock and infection seemed to be the two major factors in inducing postburn stress reaction in burn victims. Abrupt decrease of the hormone levels in plasma and or urine indicated adrenal failure predicting a poor prognosis of the burn patients.

  8. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Bovet, A.; Fasoli, A.; Ricci, P.; Furno, I.; Gustafson, K.

    2015-04-01

    The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature.

  9. Annual Progress Report on Contract AFOSR-81-0093, March 15, 1984 to March 14, 1985,

    DTIC Science & Technology

    1985-04-30

    reacting DT plasma which is capable of burning in the steady state, or to show what must be done in order to achieve a burning plasma in a larger machine...far beyond the physics data base of the JET experiment, while at the same time designing a quasi-steady state burning plasma experiment that will be

  10. A Burning Plasma Experiment: the role of international collaboration

    NASA Astrophysics Data System (ADS)

    Prager, Stewart

    2003-04-01

    The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.

  11. Analysis of recurrent patterns in toroidal magnetic fields.

    PubMed

    Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua

    2010-01-01

    In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.

  12. Impact of temperature-velocity distribution on fusion neutron peak shape

    DOE PAGES

    Munro, D. H.; Field, J. E.; Hatarik, R.; ...

    2017-02-21

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences amongmore » several lines of sight. Finally, this paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.« less

  13. Impact of temperature-velocity distribution on fusion neutron peak shape

    NASA Astrophysics Data System (ADS)

    Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.

    2017-05-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.

  14. Physics of Alfvén waves and energetic particles in burning plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Liu; Zonca, Fulvio

    2016-01-01

    Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Christopherson, A. R.; Spears, B. K.

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusionmore » experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.« less

  16. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    DOE PAGES

    Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.; ...

    2017-03-07

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less

  17. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; Dendy, R. O.; Chapman, S. C.; Cook, J. W. S.

    2017-03-01

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity PICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, nα/ni, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  18. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission.

    PubMed

    Carbajal, L; Dendy, R O; Chapman, S C; Cook, J W S

    2017-03-10

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P_{ICE} scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n_{α}/n_{i}, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  19. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    DOE PAGES

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; ...

    2015-01-14

    Here, anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D 3He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and 3He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuteriummore » density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.« less

  20. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  1. Comparison of the outcome of burn patients using acute-phase plasma base deficit.

    PubMed

    Salehi, S H; As'adi, K; Mousavi, J

    2011-12-31

    Background. In recent years, plasma base deficit has been used as a marker to determine the status of tissue perfusion in trauma patients and also to predict the outcome of these patients. This study was performed to investigate the effect of plasma base deficit in predicting burn patient outcome. Methods. This prospective cohort study was performed from October 2009 to October 2010 in the acute phase of burn patients who were admitted within 6 h post-injury to Motahari Burn Hospital in Iran. The patients were divided into two groups based on the plasma base deficit in the first 24 h post-injury: group A, in which the mean plasma base deficit was less than or equal to -6 (more negative), and group B, in which the mean plasma base deficit greater than -6. Statistical analysis was performed using SPSS v.16 software. Results. Thirty-eight patients were enrolled in each group. The mean plasma base deficit in group A (-7.76 ± 2.18 mmol) was significantly less than that in group B (-1.19 ± 2.82) mmol (p < 0.05). Although there was no significant difference between the mean of fluid resuscitation and urine output in the first 24 h after injury between the two groups (p > 0.05) and despite removal of interfering factors, there were significant differences between the systemic inflammatory response syndrome and the multiple organ dysfunction syndrome score and the percentage of sepsis between the two groups (p < 0.05). The mortality rate in group A (63.2%) was significantly higher than that in group B (36.8%) (p > 0.05). Conclusion. The plasma base deficit can be used as a valuable marker in the resuscitation of burn patients, along with clinical criteria. Physiological indicators (burn percentage, age, and mucosal burns) are not sufficient to predict mortality and morbidity in burn patients, and it is necessary to investigate the role of biochemical markers such as base deficit in determining the final outcome of burn patients.

  2. Simulations of electron transport and ignition for direct-drive fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.

    2008-11-01

    The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.

  3. Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Sarkar, Arnab; Banerjee, Joydipta; Bhagat, R. K.

    2017-06-01

    Advanced Heavy Water Reactor (AHWR) grade (Th-U)O2 fuel sample and Simulated High Burn-Up Nuclear Fuels (SIMFUEL) samples mimicking the 28 and 43 GWd/Te irradiated burn-up fuel were studied using laser-induced breakdown spectroscopy (LIBS) setup in a simulated hot-cell environment from a distance of > 1.5 m. Resolution of < 38 pm has been used to record the complex spectra of the SIMFUEL samples. By using spectrum comparison and database matching > 60 emission lines of fission products was identified. Among them only a few emission lines were found to generate calibration curves. The study demonstrates the possibility to investigate impurities at concentrations around hundreds of ppm, rapidly at atmospheric pressure without any sample preparation. The results of Ba and Mo showed the advantage of LIBS analysis over traditional methods involving sample dissolution, which introduces possible elemental loss. Limits of detections (LOD) under Ar atmosphere shows significant improvement, which is shown to be due to the formation of stable plasma.

  4. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    PubMed

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  5. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Séguin, F. H.; Rinderknecht, H. G.

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatiallymore » resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  6. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolvedmore » measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  7. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-01

    The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ˜ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  8. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; ...

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolvedmore » measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  9. Impact of energetic-particle-driven geodesic acoustic modes on turbulence.

    PubMed

    Zarzoso, D; Sarazin, Y; Garbet, X; Dumont, R; Strugarek, A; Abiteboul, J; Cartier-Michaud, T; Dif-Pradalier, G; Ghendrih, Ph; Grandgirard, V; Latu, G; Passeron, C; Thomine, O

    2013-03-22

    The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting energetic modes.

  10. Kinetic turbulence simulations at extreme scale on leadership-class systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    2013-01-01

    Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCFmore » and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).« less

  11. Impact of temperature-velocity distribution on fusion neutron peak shape

    NASA Astrophysics Data System (ADS)

    Munro, David

    2016-10-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Imipenem in burn patients: pharmacokinetic profile and PK/PD target attainment.

    PubMed

    Gomez, David S; Sanches-Giraud, Cristina; Silva, Carlindo V; Oliveira, Amanda M Ribas Rosa; da Silva, Joao Manoel; Gemperli, Rolf; Santos, Silvia R C J

    2015-03-01

    Unpredictable pharmacokinetics (PK) in burn patients may result in plasma concentrations below concentrations that are effective against common pathogens. The present study evaluated the imipenem PK profile and pharmacokinetic/pharmacodynamics (PK/PD) correlation in burn patients. Fifty-one burn patients, 38.7 years of age (mean), 68.0 kg, 36.3% total burn surface area (TBSA), of whom 84% (43/51) exhibited thermal injury, 63% inhalation injury and 16% electrical injury (8/51), all of whom were receiving imipenem treatment were investigated. Drug plasma monitoring, PK study (120 sets of plasma levels) and PK/PD correlation were performed in a series of blood samples. Only 250 μl of plasma samples were required for drug plasma measurements using the ultra filtration technique for the purification of biological matrix and quantification using liquid chromatography. Probability of target attainment (PTA) was calculated using a PD target of 40% free drug concentrations above the minimum inhibitory concentration (40%fT>MIC). Significant differences in PK parameters (medians), such as biological half-life (2.2 vs 5.5 h), plasma clearance (16.2 vs 1.4 l h(-1)) and volume of distribution (0.86 vs 0.19 l kg(-1)), were registered in burn patients via comparisons of set periods with normal renal function against periods of renal failure. Correlations between creatinine clearance and total body plasma clearance were also obtained. In addition, the PK profile did not change according to TBSA during sets when renal function was preserved. PTA was >89% for MIC values up to 4 mg l(-1). In conclusion, imipenem efficacy for the control of hospital infection on the basis of PK/PD correlation was guaranteed for burn in patients at the recommended dose regimens for normal renal function (31.1±9.7 mg kg(-1) daily), but the daily dose must be reduced to 17.2±9.7 mg kg(-1) during renal failure to avoid neurotoxicity.

  13. INTERIOR VIEW, LOOKING SOUTHWEST, WITH PLASMA ARC BURNING MACHINE (GALT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING SOUTHWEST, WITH PLASMA ARC BURNING MACHINE (GALT INDUSTRIES) WHICH CUTS STEEL SHAPES AND OPERATOR PHILIP WILLOUBY. - O'Neal Steel, Incorporated, Fabrication Shop, 744 Forty-first Avenue North, Birmingham, Jefferson County, AL

  14. Soluble Suppression of Tumorigenicity-2 Predicts Hospital Mortality in Burn Patients: An Observational Prospective Cohort Pilot Study.

    PubMed

    Ruiz-Castilla, Mireia; Bosacoma, Pau; Dos Santos, Bruce; Baena, Jacinto; Guilabert, Patricia; Marin-Corral, Judith; Masclans, Joan R; Roca, Oriol; Barret, Juan P

    2018-04-10

    The IL33/ST2 pathway has been implicated in the pathogenesis of different inflammatory diseases. Our aim was to analyze whether plasma levels of biomarkers involved in the IL33/ST2 axis might help to predict mortality in burn patients. Single-center prospective observational cohort pilot study performed at the Burns Unit of the Plastic and Reconstructive Surgery Department of the Vall d'Hebron University Hospital (Barcelona). All patients aged ≥18 years old with second or third-degree burns requiring admission to the Burns Unit were considered for inclusion. Blood samples were taken to measure levels of interleukins (IL)6, IL8, IL33, and soluble suppression of tumorigenicity-2 (sST2) within 24 h of admission to the Burns Unit and at day 3. Results are expressed as medians and interquartile ranges or as frequencies and percentages. Sixty-nine patients (58 [84.1%] male, mean age 52 [35-63] years, total body surface area burned 21% [13%-30%], Abbreviated Burn Severity Index 6 [4-8]) were included. Thirteen (18.8%) finally died in the Burns Unit. Plasma levels of sST2 measured at day 3 after admission demonstrated the best prediction accuracy for survival (area under the ROC curve 0.85 [0.71-0.99]; P < 0.001). The best cutoff point for the AUROC index was estimated to be 2,561. In the Cox proportional hazards model, after adjusting for potential confounding, a plasma sST2 level ≥2,561 measured at day 3 was significantly associated with mortality (HR 6.94 [1.73-27.74]; P = 0.006). Plasma sST2 at day 3 predicts hospital mortality in burn patients.

  15. Blood transfusions in severe burn patients: Epidemiology and predictive factors.

    PubMed

    Wu, Guosheng; Zhuang, Mingzhu; Fan, Xiaoming; Hong, Xudong; Wang, Kangan; Wang, He; Chen, Zhengli; Sun, Yu; Xia, Zhaofan

    2016-12-01

    Blood is a vital resource commonly used in burn patients; however, description of blood transfusions in severe burns is limited. The purpose of this study was to describe the epidemiology of blood transfusions and determine factors associated with increased transfusion quantity. This is a retrospective study of total 133 patients with >40% total body surface area (TBSA) burns admitted to the burn center of Changhai hospital from January 2008 to December 2013. The study characterized blood transfusions in severe burn patients. Univariate and Multivariate regression analyses were used to evaluate the association of clinical variables with blood transfusions. The overall transfusion rate was 97.7% (130 of 133). The median amount of total blood (RBC and plasma), RBC and plasma transfusions was 54 units (Interquartile range (IQR), 20-84), 19 units (IQR, 4-37.8) and 28.5 units (IQR, 14.8-51.8), respectively. The number of RBC transfusion in and outside operation room was 7 (0, 14) and 11 (2, 20) units, and the number of plasma was 6 (0.5, 12) and 21 (11.5, 39.3) units. A median of one unit of blood was transfused per TBSA and an average of 4 units per operation was given in the series. The consumption of plasma is higher than that of RBC. On multivariate regression analysis, age, full-thickness TBSA and number of operations were significant independent predictors associated with the number of RBC transfusion, and coagulopathy and ICU length showed a trend toward RBC consumption. Predictors for increased plasma transfusion were female, high full-thickness TBSA burn and more operations. Severe burn patients received an ample volume of blood transfusions. Fully understanding of predictors of blood transfusions will allow physicians to better optimize burn patients during hospitalization in an effort to use blood appropriately. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  16. Plasma NGAL predicts early acute kidney injury no earlier than s-creatinine or cystatin C in severely burned patients.

    PubMed

    Rakkolainen, Ilmari; Vuola, Jyrki

    2016-03-01

    Neutrophil gelatinase-associated lipocalin (NGAL) is a novel biomarker used in acute kidney injury (AKI) diagnostics. Studies on burn patients have highlighted it as a promising biomarker for early detection of AKI. This study was designed to discover whether plasma NGAL is as a biomarker superior to serum creatinine and cystatin C in detecting AKI in severely burned patients. Nineteen subjects were enrolled from March 2013 to September 2014 in the Helsinki Burn Centre. Serum creatinine, cystatin C, and plasma NGAL were collected from the patients at admission and every 12h during the first 48h and thereafter daily until seven days following admission. AKI was defined by acute kidney injury network criteria. Nine (47%) developed AKI during their intensive care unit stay and two (11%) underwent renal replacement therapy. All biomarkers were significantly higher in the AKI group but serum creatinine- and cystatin C values reacted more rapidly to changes in kidney function than did plasma NGAL. Plasma NGAL tended to rise on average 72h±29h (95% CI) later in patients with early AKI than did serum creatinine. Area-under-the-curve values calculated for each biomarker were 0.92 for serum creatinine, 0.87 for cystatin C, and 0.62 for plasma NGAL predicting AKI by the receiver-operating-characteristic method. This study demonstrated serum creatinine and cystatin C as faster and more reliable biomarkers than plasma NGAL in detecting early AKI within one week of injury in patients with severe burns. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  17. SCIDAC Center for simulation of wave particle interactions CompX participation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.W.

    Harnessing the energy that is released in fusion reactions would provide a safe and abundant source of power to meet the growing energy needs of the world population. The next step toward the development of fusion as a practical energy source is the construction of ITER, a device capable of producing and controlling the high performance plasma required for self-sustaining fusion reactions, or “burning” plasma. The input power required to drive the ITER plasma into the burning regime will be supplied primarily with a combination of external power from radio frequency waves in the ion cyclotron range of frequencies andmore » energetic ions from neutral beam injection sources, in addition to internally generated Ohmic heating from the induced plasma current that also serves to create the magnetic equilibrium for the discharge. The ITER project is a large multi-billion dollar international project in which the US participates. The success of the ITER project depends critically on the ability to create and maintain burning plasma conditions, it is absolutely necessary to have physics-based models that can accurately simulate the RF processes that affect the dynamical evolution of the ITER discharge. The Center for Simulation of WavePlasma Interactions (CSWPI), also known as RF-SciDAC, is a multi-institutional collaboration that has conducted ongoing research aimed at developing: (1) Coupled core-to-edge simulations that will lead to an increased understanding of parasitic losses of the applied RF power in the boundary plasma between the RF antenna and the core plasma; (2) Development of models for core interactions of RF waves with energetic electrons and ions (including fusion alpha particles and fast neutral beam ions) that include a more accurate representation of the particle dynamics in the combined equilibrium and wave fields; and (3) Development of improved algorithms that will take advantage of massively parallel computing platforms at the petascale level and beyond to achieve the needed physics, resolution, and/or statistics to address these issues. CompX provides computer codes and analysis for the calculation of the electron and ion distributions in velocity-space and plasma radius which are necessary for reliable calculations of power deposition and toroidal current drive due to combined radiofrequency and neutral beam at high injected powers. It has also contributed to ray tracing modeling of injected radiofrequency powers, and to coupling between full-wave radiofrequency wave models and the distribution function calculations. In the course of this research, the Fokker-Planck distribution function calculation was made substantially more realistic by inclusion of finite-width drift-orbit effects (FOW). FOW effects were also implemented in a calculation of the phase-space diffusion resulting from radiofrequency full-wave models. Average level of funding for CompX was approximately three man-months per year.« less

  18. SEM Characterization of Extinguished Grains from Plasma-Ignited M30 Charges

    NASA Technical Reports Server (NTRS)

    Kinkennon, A.; Birk, A.; DelGuercio, M.; Kaste, P.; Lieb, R.; Newberry, J.; Pesce-Rodriguez, R.; Schroeder, M.

    2000-01-01

    M30 propellant grains that had been ignited in interrupted closed bomb experiments were characterize by scanning electron microscopy (SEM). Previous chemical analysis of extinguished grains had given no indications of plasma-propellant chemical interactions that could explain the increased burning rates that had been previously observed in full-pressure closed bomb experiments. (This does not mean that there is no unique chemistry occurring with plasma ignition. It may occur very early in the ignition event and then become obscured by the burning chemistry.) In this work, SEM was used to look at grain morphologies to determine if there were increases in the surface areas of the plasma-ignited grains which would contribute to the apparent increase in the burning rate. Charges were made using 30 propellant grains (approximately 32 grams) stacked in two tiers and in two concentric circles around a plastic straw. Each grain was notched so that, when the grains were expelled from the bomb during extinguishment, it could be determined in which tier and which circle each grain was originally packed. Charges were ignited in a closed bomb by either a nickel wire/Mylar-capillary plasma or black powder. The bomb contained a blowout disk that ruptured when the pressure reached 35 MPa, and the propellant was vented into a collection chamber packed with polyurethane foam. SEM analysis of the grains fired with a conventional black powder igniter showed no signs of unusual burning characteristics. The surfaces seemed to be evenly burned on the exteriors of the grains and in the perforations. Grains that had been subjected to plasma ignition, however, had pits, gouges, chasms, and cracks in the surfaces. The sides of the grains closest to the plasma had the greatest amount of damage, but even surfaces facing the outer wall of the bomb had small pits. The perforations contained gouges and abnormally burned regions (wormholes) that extended into the web. The SEM photos indicated that a grain from the top tier, which was farther away from the plasma ignition source, sustained more plasma-induced damage to the perforations and the web than did the grains on the bottom tier.

  19. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements.

    PubMed

    Voruganti, V Saroja; Klein, Gordon L; Lu, Hong-Xing; Thomas, Suchmor; Freeland-Graves, Jeanne H; Herndon, David N

    2005-09-01

    Major burns are associated with impaired Zn and Cu status. These micronutrients are essential for bone matrix formation, linear growth, and wound healing. This study evaluated the status of Zn and Cu in burned children and assessed adequacy of supplementation. Six children, mean total body surface area (TBSA), 54+/-9% (S.D.), were recruited. Nutrient intakes, plasma, wound exudate, and 24h urine samples were collected and analyzed for Zn and Cu. Bone mineral content was assessed by dual energy X-ray absorptiometry. Dietary Zn and Cu were three times the dietary reference, and mean plasma concentrations of Zn and Cu were low at admission and discharge. Urinary Zn was elevated at admission, whereas Cu was elevated at both times. Wound Zn and Cu concentrations exceeded plasma concentrations, suggesting that inflammatory wound exudate was a primary route of loss. We demonstrate that burn injury in children results in low plasma levels of Zn and Cu that are inadequately compensated during hospitalization.

  20. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initialmore » density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.« less

  1. From W7-X to a HELIAS fusion power plant: motivation and options for an intermediate-step burning-plasma stellarator

    NASA Astrophysics Data System (ADS)

    Warmer, F.; Beidler, C. D.; Dinklage, A.; Wolf, R.; The W7-X Team

    2016-07-01

    As a starting point for a more in-depth discussion of a research strategy leading from Wendelstein 7-X to a HELIAS power plant, the respective steps in physics and engineering are considered from different vantage points. The first approach discusses the direct extrapolation of selected physics and engineering parameters. This is followed by an examination of advancing the understanding of stellarator optimisation. Finally, combining a dimensionless parameter approach with an empirical energy confinement time scaling, the necessary development steps are highlighted. From this analysis it is concluded that an intermediate-step burning-plasma stellarator is the most prudent approach to bridge the gap between W7-X and a HELIAS power plant. Using a systems code approach in combination with transport simulations, a range of possible conceptual designs is analysed. This range is exemplified by two bounding cases, a fast-track, cost-efficient device with low magnetic field and without a blanket and a device similar to a demonstration power plant with blanket and net electricity power production.

  2. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE PAGES

    Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...

    2015-11-20

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  3. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  4. D-3He Spherical Torus Fusion Reactor System Study

    DTIC Science & Technology

    1992-04-01

    assumed as a reasonable range. A.6 Steady-State Particle Balance The steady-state densities of the various species present in a burning plasma are...determined by a detailed particle balance calculation. In addition to the con- sumption and production of various species in a burning plasma , a

  5. From Lawson to Burning Plasmas: a Multi-Fluid Approach

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca; Betti, Riccardo

    2017-10-01

    The Lawson criterion, easily compared to experimental parameters, gives the value for the triple product of plasma density, temperature and energy confinement time needed for the plasma to ignite. Lawson's inaccurate assumptions of 0D geometry and single-fluid plasma model were improved in recent work, where 1D geometry and multi-fluid (ions, electrons and alphas) physics were included in the model, accounting for physical equilibration times and different energy confinement times between species. A much more meaningful analysis than Lawson's for current and future experiment would be expressed in terms of burning plasma state (Q=5, where Q is the ratio between fusion power and heating power). Minimum parameters for reaching Q=5 are calculated based on experimental profiles for density and temperatures and can immediately be compared with experimental performance by defining a no-alpha pressure. This is done in terms of the pressure that the plasma needs to reach for breakeven once the alpha heating has been subtracted from the energy balance. These calculations can be applied to current experiments and future burning-plasma devices. DE-FG02-93ER54215.

  6. Simulations of the impact of localized defects on ICF implosions

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Robey, Harry; Weber, Christopher; Sepke, Scott; Clark, Daniel; Koning, Joe; Smalyuk, Vladimir; Martinez, David

    2016-10-01

    Recent experiments have identified the tent membranes that support the capsule as a source of a large azimuthal perturbation at the point of departure from the surface. Highly-resolved 2D simulations have shown that vorticity generated by the interaction of the ablated capsule material and the tent allows for the penetration of cold ablator material into the burning hot-spot likely cooling the central burning plasma. These observations have motivated the search for alternative supporting methods. One of the techniques being considered uses the existing fill-tube (needed to deliver the cryogenic fuel) supported against gravity by a thin rod (cantilever) spanning the hohlraum diameter. Recent experiments have assessed the perturbation induced on the target as the rod is positioned along the fill-tube at different distances from the capsule surface and found optical-depth modulations oriented along the cantilever direction, possibly caused by laser spot shadowing or hydro-coupling. To fully understand the data we have undertaken an extensive study of highly-resolved 2D integrated simulations abled to resolve the 12 um diameter cantilever. Results of our computations and comparison with the experiments will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. A general theory for ball lightning structure and light output

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    2018-03-01

    A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.

  8. Burn Control in Fusion Reactors via Isotopic Fuel Tailoring

    NASA Astrophysics Data System (ADS)

    Boyer, Mark D.; Schuster, Eugenio

    2011-10-01

    The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).

  9. Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, S.N.

    1992-12-31

    This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

  10. Cinanserin reduces plasma extravasation after burn plasma transfer in rats.

    PubMed

    Hernekamp, Jochen-Frederick; Hu, Sissi; Schmidt, Karsten; Walther, Andreas; Kneser, Ulrich; Kremer, Thomas

    2013-09-01

    Thermal injuries greater than 20% body surface area (BSA) lead to systemic edema and hypovolemic shock. Capillary leakage is induced by different immunomodulative cytokines. Serotonin (5-HT) plays an important role in inflammation, vasodilatation and vasoconstriction and many other pathways such as systemic inflammation in endotoxemia and burns. Cinanserin, a specific 5-HT2 receptor blocking agent was administered to observe whether burn induced systemic edema can be reduced. Donor animals underwent thermal injury (100°C water, 30% BSA, 12s) for positive controls and negative controls underwent a shamburn procedure (37°C water, 30% BSA, 12s). Donor rat-plasma was transferred to healthy individuals after bolus injection of Cinanserin (5mg/kg body weight) was performed in recipient animals. Intravital microscopy was performed in mesenteric venules (0/60/120min) to asses systemic edema by FITC-albumin extravasation. Additionally, leukocyte activation (cells/mm(2)) was observed. Burnplasma-transfer results in systemic capillary leakage that is not observed in sham burn controls. Intraveneous application of Cinanserin significantly reduces systemic burn edema to shamburn levels. Leukocyte-endothelial interactions are significantly reduced by administration of Cinanserin. Specific 5-HT2 antagonism reduces systemic burn edema and leukocyte activation after plasma transfer. Reduction of capillary leakage may be partially mediated by leukocyte dependent as well as independent mechanisms. Future studies need to evaluate specific 5-HT2 receptor subtypes to distinguish between local and systemic effects of serotonin antagonists. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. The impact of the fast ion fluxes and thermal plasma loads on the design of the ITER fast ion loss detector

    NASA Astrophysics Data System (ADS)

    Kocan, M.; Garcia-Munoz, M.; Ayllon-Guerola, J.; Bertalot, L.; Bonnet, Y.; Casal, N.; Galdon, J.; Garcia-Lopez, J.; Giacomin, T.; Gonzalez-Martin, J.; Gunn, J. P.; Rodriguez-Ramos, M.; Reichle, R.; Rivero-Rodriguez, J. F.; Sanchis-Sanchez, L.; Vayakis, G.; Veshchev, E.; Vorpahl, C.; Walsh, M.; Walton, R.

    2017-12-01

    Thermal plasma loads to the ITER Fast Ion Loss Detector are studied for QDT = 10 burning plasma equilibrium using the 3D field line tracing. The simulations are performed for a FILD insertion 9-13 cm past the port plasma facing surface, optimized for fast ion measurements, and include the worst-case perturbation of the plasma boundary and the error in the magnetic reconstruction. The FILD head is exposed to superimposed time-averaged ELM heat load, static inter-ELM heat flux and plasma radiation. The study includes the estimate of the instantaneous temperature rise due to individual 0.6 MJ controlled ELMs. The maximum time-averaged surface heat load is lesssim 12 MW/m2 and will lead to increase of the FILD surface temperature well below the melting temperature of the materials considered here, for the FILD insertion time of 0.2 s. The worst-case instantaneous temperature rise during controlled 0.6 MJ ELMs is also significantly smaller than the melting temperature of e.g. Tungsten or Molybdenum, foreseen for the FILD housing.

  12. Investigation of key parameters for the development of reliable ITER baseline operation scenarios using CORSICA

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Casper, T. A.; Snipes, J. A.

    2018-05-01

    ITER will demonstrate the feasibility of burning plasma operation by operating DT plasmas in the ELMy H-mode regime with a high ratio of fusion power gain Q ~ 10. 15 MA ITER baseline operation scenario has been studied using CORSICA, focusing on the entry to burn, flat-top burning plasma operation and exit from burn. The burning plasma operation for about 400 s of the current flat-top was achieved in H-mode within the various engineering constraints imposed by the poloidal field coil and power supply systems. The target fusion gain (Q ~ 10) was achievable in the 15 MA ITER baseline operation with a moderate amount of the total auxiliary heating power (~50 MW). It has been observed that the tungsten (W) concentration needs to be maintained low level (n w/n e up to the order of 1.0  ×  10-5) to avoid the radiative collapse and uncontrolled early termination of the discharge. The dynamic evolution of the density can modify the H-mode access unless the applied auxiliary heating power is significantly higher than the H-mode threshold power. Several qualitative sensitivity studies have been performed to provide guidance for further optimizing the plasma operation and performance. Increasing the density profile peaking factor was quite effective in increasing the alpha particle self-heating power and fusion power multiplication factor. Varying the combination of auxiliary heating power has shown that the fusion power multiplication factor can be reduced along with the increase in the total auxiliary heating power. As the 15 MA ITER baseline operation scenario requires full capacity of the coil and power supply systems, the operation window for H-mode access and shape modification was narrow. The updated ITER baseline operation scenarios developed in this work will become a basis for further optimization studies necessary along with the improvement in understanding the burning plasma physics.

  13. Topical local anaesthetics (EMLA) inhibit burn-induced plasma extravasation as measured by digital image colour analysis.

    PubMed

    Jönsson, A; Mattsson, U; Tarnow, P; Nellgård, P; Cassuto, J

    1998-06-01

    Amide local anaesthetics have previously been shown to reduce oedema and improve dermal perfusion following experimental burns. Previous studies have used invasive techniques for burn oedema quantification which do not allow continuous monitoring in the same animal. The present study used digital image colour analysis to investigate the effect of topical local anaesthetics on burn-induced extravasation of Evans blue albumin. A standardised full-thickness burn injury (1 x 1 cm) was induced in the abdominal skin of anaesthetised rats. The burn area was subsequently covered with 0.5 g of lidocaine-prilocaine cream 5% (25 mg of each in 1 g; EMLA, ASTRA, Sweden) or placebo cream during the first hour post-burn. One hour after the burn trauma, animals received Evans blue dye intravenously. Skin colour appearances were recorded by macrophotography before the burn and 5, 60. 65, 90, 120, 150, and 180 min post-burn. Colour slides were digitised and colour changes were analysed using the normalised red-green-blue (n-rgb) colour system. Results showed a significant inhibition of Evans blue extravasation between 60 and 180 min post-burn in EMLA-treated animals versus controls. Topical local anaesthetics are potent inhibitors of burn-induced plasma albumin extravasation, probably by direct action on vascular permeability and by inhibition of various steps of the pathophysiological response after burn injury.

  14. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of themore » turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).« less

  15. Kinetic Plasma and Turbulent Mix Studies using DT Plastic-shell Implosions with Shell-thickness and Pressure Variations

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Kagan, G.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Glebov, V.; Seka, W.; Marshall, F.; Stoeckl, C.; Church, J.

    2014-10-01

    Kinetic plasma and turbulent mix effects on inertial confinement fusion have been studied using a series of DT-filled plastic-shell implosions at the OMEGA laser facility. Plastic capsules of 4 different shell thicknesses (7.4, 15, 20, 29 micron) were shot at 2 different fill pressures in order to vary the ion mean free path compared to the size of fuel region (i.e., Knudsen number). We varied the empirical Knudsen number by a factor of 25. Measurements were obtained from the burn-averaged ion temperature and fuel areal density. Preliminary results indicate that as the empirical Knudsen number increases, fusion performances (e.g., neutron yield) increasingly deviate from hydrodynamic simulations unless turbulent mix and ion kinetic terms (e.g., enhanced ion diffusion, viscosity, thermal conduction, as well as Knudsen-layer fusion reactivity reduction) are considered. We are developing two separate simulations: one is a reduced-ion-kinetics model and the other is turbulent mix model. Two simulation results will be compared with the experimental observables.

  16. Proceedings of the Annual Gaseous Electronics Conference (40th) Held in Atlanta Georgia on 13-16 October 1987

    DTIC Science & Technology

    1988-07-01

    BURNING PLASMA ARC BY A COMBINATION OF HOLOGRAPHIC INTERFEROMETRY AND EMISSION SPECTROSCOPY A. Shah, M. S. Dassanayake and K. Etemadi 5:03 - 5:16 NB...Free- burning Plasma Arc by a Combination of Holo- graphic Interferometry and Emission Spectros- copy, A. SHAH, M. S. DASSANAYAKE,AND K. ETEMA- DI

  17. Energy balance studies and plasma catecholamine values for patients with healed burns.

    PubMed

    Wallace, B H; Cone, J B; Caldwell, F T

    1991-01-01

    We report heat balance studies and plasma catecholamine values for 49 children and young adults with healed burn wounds (age range 0.6 to 31 years and burn range 1% to 82% body surface area burned; mean 41%). All measurements were made during the week of discharge. Heat production for patients with healed burns was not significantly different from predicted normal values. However, compartmented heat loss demonstrated a persistent increment in evaporative heat loss that was secondary to continued elevation of cutaneous water vapor loss immediately after wound closure. A reciprocal decrement in dry heat loss was demonstrated (as a result of a cooler average surface temperature, 0.84 degree C cooler than the average integrated skin temperature of five normal volunteers who were studied in our unit under similar environmental conditions). Mean values for plasma catecholamines were in the normal range: epinephrine = 56 +/- 37 pg/ml, norepinephrine = 385 +/- 220 pg/ml, and dopamine = 34 +/- 29 pg/ml. In conclusion, patients with freshly healed burn wounds have normal rates of heat production; however, there is a residual increment in transcutaneous water vapor loss, which produces surface cooling and decreased average surface temperature, which in turn lowers dry heat loss by an approximately equivalent amount.

  18. PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING

    EPA Science Inventory

    The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...

  19. Optimization of air plasma reconversion of UF6 to UO2 based on thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Tundeshev, Nikolay; Karengin, Alexander; Shamanin, Igor

    2018-03-01

    The possibility of plasma-chemical conversion of depleted uranium-235 hexafluoride (DUHF) in air plasma in the form of gas-air mixtures with hydrogen is considered in the paper. Calculation of burning parameters of gas-air mixtures is carried out and the compositions of mixtures obtained via energy-efficient conversion of DUHF in air plasma are determined. With the help of plasma-chemical conversion, thermodynamic modeling optimal composition of UF6-H2-Air mixtures and its burning parameters, the modes for production of uranium dioxide in the condensed phase are determined. The results of the conducted researches can be used for creation of technology for plasma-chemical conversion of DUHF in the form of air-gas mixtures with hydrogen.

  20. Experimental Validation Plan for the Xolotl Plasma-Facing Component Simulator Using Tokamak Sample Exposures

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Wong, C. P. C.; McLean, A. G.; Luo, G. N.; Wirth, B. D.

    2013-10-01

    The Xolotl code under development by PSI-SciDAC will enhance predictive modeling capability of plasma-facing materials under burning plasma conditions. The availability and application of experimental data to compare to code-calculated observables are key requirements to validate the breadth and content of physics included in the model and ultimately gain confidence in its results. A dedicated effort has been in progress to collect and organize a) a database of relevant experiments and their publications as previously carried out at sample exposure facilities in US and Asian tokamaks (e.g., DIII-D DiMES, and EAST MAPES), b) diagnostic and surface analysis capabilities available at each device, and c) requirements for future experiments with code validation in mind. The content of this evolving database will serve as a significant resource for the plasma-material interaction (PMI) community. Work supported in part by the US Department of Energy under GA-DE-SC0008698, DE-AC52-07NA27344 and DE-AC05-00OR22725.

  1. Final case for a stainless steel diagnostic first wall on ITER

    NASA Astrophysics Data System (ADS)

    Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.

    2015-08-01

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.

  2. Modeling and numerical analysis of a magneto-inertial fusion concept with the target created through FRC merging

    NASA Astrophysics Data System (ADS)

    Li, Chenguang; Yang, Xianjun

    2016-10-01

    The Magnetized Plasma Fusion Reactor concept is proposed as a magneto-inertial fusion approach based on the target plasma created through the collision merging of two oppositely translating field reversed configuration plasmas, which is then compressed by the imploding liner driven by the pulsed-power driver. The target creation process is described by a two-dimensional magnetohydrodynamics model, resulting in the typical target parameters. The implosion process and the fusion reaction are modeled by a simple zero-dimensional model, taking into account the alpha particle heating and the bremsstrahlung radiation loss. The compression on the target can be 2D cylindrical or 2.4D with the additive axial contraction taken into account. The dynamics of the liner compression and fusion burning are simulated and the optimum fusion gain and the associated target parameters are predicted. The scientific breakeven could be achieved at the optimized conditions.

  3. Thalidomide decreases the plasma levels of IL-1 and TNF following burn injury: is it a new drug for modulation of systemic inflammatory response.

    PubMed

    Eski, Muhitdin; Sahin, Ismail; Sengezer, Mustafa; Serdar, Muhittin; Ifran, Ahmet

    2008-02-01

    TNF and IL-1, which are produced from phagocytic cells, can produce a significant systemic inflammatory response independently by inducing systemic leukocyte and endothelial cell activation. These cytokines play a pivotal role in development of systemic inflammatory response after severe burn. Thalidomide has been shown to decrease the secretion of TNF from phagocytic cells, therefore suppression of TNF and IL-1 production from activated phagocytic cells might be a successful treatment modality for prevention of systemic inflammatory response following severe burn. To address this issue, we aimed to show whether thalidomide treatment decreased or suppressed plasma levels of TNF and IL-1 following burn in rats. Following the injury, 36 rats were randomly separated into two experimental groups at the third and seventh days. Rats in the experimental group had oral thalidomide (10mg/kg day) treatment for three and seven consecutive days whereas animals in control groups had no treatment. Thalidomide treatment decreased TNF and IL-1 significantly in both experimental groups at both the points (P<0.05). Although in this study we just showed inhibitory effect of thalidomide on plasma the level of TNF and IL-1, we speculate that thalidomide may have modulatory effect on the systemic inflammatory response after burn by decreasing plasma levels of TNF and IL-1.

  4. Pyruvate in oral rehydration salt improves hemodynamics, vasopermeability and survival after burns in dogs.

    PubMed

    Liu, Rui; Hu, Xiao-Hang; Wang, Shu-Ming; Guo, Si-Jia; Li, Zong-Yu; Bai, Xiao-Dong; Zhou, Fang-Qiang; Hu, Sen

    2016-06-01

    To investigate whether pyruvate-enriched oral rehydration solution (Pyr-ORS), compared with citrate-enriched ORS (Cit-ORS), improves hemodynamics and organ function by alleviating vasopermeability and plasma volume loss during intra-gastric fluid rehydration in dogs with severe burn. Forty dogs subjected to severe burn were randomly divided into four groups (n=10): two oral rehydrated groups with Pyr-ORS and Cit-ORS (group PR and group CR), respectively, according to the Parkland formula during the first 24h after burns. Other two groups were the intravenous (IV) resuscitation (group VR) with lactated Ringer's solution with the same dosage and no fluid rehydration (group NR). During the next 24h, all groups received the same IV infusion. The hemodynamics, plasma volume, vasopermeability and water contents and function of various organs were determined. Plasma levels of vascular endothelial growth factor (VEGF) and platelet activating factor (PAF) were detected by ELISA. Hemodynamics parameters were significantly improved in group PR superior to group CR after burns. Levels of VEGF and PAF were significantly lower in group PR than in group CR. Organ function parameters were also greatly preserved in group PR, relative to groups CR and NR. Lactic acidosis was fully corrected and survival increased in group PR (50.0%), compared to group CR (20.0%). Pyr-ORS was more effective than Cit-ORS in improving hemodynamics, visceral blood perfusion and organ function by alleviating vasopermeability-induced visceral edema and plasma volume loss in dogs with severe burn. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  5. Valproic acid treatment attenuates caspase-3 activation and improves survival after lethal burn injury in a rodent model.

    PubMed

    Luo, Hong-Min; Hu, Sen; Bai, Hui-Ying; Wang, Hai-Bin; Du, Ming-Hua; Lin, Zhi-Long; Ma, Li; Wang, Huan; Lv, Yi; Sheng, Zhi-Yong

    2014-01-01

    Burn injury may result in multiple organ dysfunction partially because of apoptotic cell death. The authors have previously shown that valproic acid (VPA) improves survival in a dog burn model. The aim of this study is to examine whether a VPA improves survival in a rodent burn model and whether this was because of inhibition of cell apoptosis. Rats were subjected to third-degree 55% TBSA burns and randomized to treatment with a VPA (300 mg/kg) or normal saline. One group of animals was monitored for 12 hours for survival analysis; another group was killed at 6 hours after injury, and brains, hearts, and blood samples were harvested for examination. Plasma creatine kinase (CK)-MB activities and neuron-specific enolase (NSE) levels were measured to evaluate the cardiac and brain damages. The effects of a VPA on acetylation of histone H3 and caspase-3 activation were also evaluated. Major burn injury resulted in a significant decrease in the acetylation of histone H3, and there was an increase in plasma CK-MB activities, NSE concentrations, and tissue levels of activated caspase-3. A VPA treatment significantly increased the acetylation of histone H3 and survival of the animals after major burn injury. In addition, a VPA treatment significantly attenuated the plasma CK-MB activities, an NSE concentrations, and inhibited caspase-3 activation after major burn injury. These results indicate that a VPA can attenuate cardiac and brain injury, and can improve survival in a rodent model of lethal burn injury. These protective effects may be mediated in part through the inhibition of caspase-3 activation.

  6. Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients

    NASA Astrophysics Data System (ADS)

    Basiuk, V.; Huynh, P.; Merle, A.; Nowak, S.; Sauter, O.; Contributors, JET; the EUROfusion-IM Team

    2017-12-01

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  7. Control of ITBs in Magnetically Confined Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, S. R.; Newman, D. E.; Terry, P. W.; Sanchez, R.

    2017-10-01

    In the magnetically confined burning plasma devices (in this case Tokamaks), internal transport barriers (ITBs) are those regimes in which the turbulence is suppressed by the E X B velocity shear, reducing the turbulent transport. This often occurs at a critical gradient in the profiles. The change in the transport then modifies the density and temperature profiles feeding back on the system. These transport barriers have to be controlled both to form them for improved confinement and remove them to both prevent global instabilities and to remove the ash and unnecessary impurities in the device. In this work we focus on pellet injection and modulated RF heating as a way to trigger and control the ITBs. These have an immediate consequence on density and temperature and hence pressure profiles acting as a control knob. For example, depending upon pellet size and its radial position of injection, it either helps to form or strengthen the barrier or to get rid of ITBs in the different transport channels of the burning plasmas. This transport model is then used to investigate the control and dynamics of the transport barriers in burning plasmas using pellets and RF addition to the NBI power and alpha power.

  8. Burns education: The emerging role of simulation for training healthcare professionals.

    PubMed

    Sadideen, Hazim; Goutos, Ioannis; Kneebone, Roger

    2017-02-01

    Burns education appears to be under-represented in UK undergraduate curricula. However current postgraduate courses in burns education provide formal training in resuscitation and management. Simulation has proven to be a powerful modality to advance surgical training in both technical and non-technical skills. We present a literature review that summarises the format of current burns education, and provides detailed insight into historic, current and novel advances in burns simulation for both technical and non-technical skills, that can be used to augment surgical training. Addressing the economic and practical limitations of current immersive surgical simulation is important, and this review proposes future directions for integration of innovative simulation strategies into training curricula. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  10. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    NASA Astrophysics Data System (ADS)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  11. Ulinastatin Suppresses Burn-Induced Lipid Peroxidation and Reduces Fluid Requirements in a Swine Model

    PubMed Central

    Luo, Hong-Min; Du, Ming-Hua; Lin, Zhi-Long; Hu, Quan; Zhang, Lin; Ma, Li; Wang, Huan; Wen, Yu; Lv, Yi; Lin, Hong-Yuan; Pi, Yu-Li; Hu, Sen; Sheng, Zhi-Yong

    2013-01-01

    Objective. Lipid peroxidation plays a critical role in burn-induced plasma leakage, and ulinastatin has been reported to reduce lipid peroxidation in various models. This study aims to examine whether ulinastatin reduces fluid requirements through inhibition of lipid peroxidation in a swine burn model. Methods. Forty miniature swine were subjected to 40% TBSA burns and were randomly allocated to the following four groups: immediate lactated Ringer's resuscitation (ILR), immediate LR containing ulinastatin (ILR/ULI), delayed LR resuscitation (DLR), and delayed LR containing ulinastatin (DLR/ULI). Hemodynamic variables, net fluid accumulation, and plasma thiobarbituric acid reactive substances (TBARS) concentrations were measured. Heart, liver, lung, skeletal muscle, and ileum were harvested at 48 hours after burn for evaluation of TBARS concentrations, activities of antioxidant enzymes, and tissue water content. Results. Ulinastatin significantly reduced pulmonary vascular permeability index (PVPI) and extravascular lung water index (ELWI), net fluid accumulation, and water content of heart, lung, and ileum in both immediate or delayed resuscitation groups. Furthermore, ulinastatin infusion significantly reduced plasma and tissue concentrations of TBARS in both immediate or delayed resuscitation groups. Conclusions. These results indicate that ulinastatin can reduce fluid requirements through inhibition of lipid peroxidation. PMID:23738046

  12. Perspectives for the high field approach in fusion research and advances within the Ignitor Program

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.

    2015-05-01

    The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.

  13. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures

    NASA Astrophysics Data System (ADS)

    Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.

    2014-10-01

    Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.

  14. Proposing "the burns suite" as a novel simulation tool for advancing the delivery of burns education.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2014-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.

  15. Emissions from open burning of simulated military waste from forward operating bases.

    PubMed

    Aurell, Johanna; Gullett, Brian K; Yamamoto, Dirk

    2012-10-16

    Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenarios, so-called "burn piles/pits" and an air curtain burner/"burn box", were compared using simulated FOB waste from municipal and commercial sources. A comprehensive array of emissions was quantified, including CO(2), PM(2.5), volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins and -furans (PCDDs/PCDFs), polybrominated dibenzodioxins and -furans (PBDDs/PBDFs), and metals. In general, smoldering conditions in the burn box and the burn pile led to similar emissions. However, when the burn box underwent periodic waste charging to maintain sustained combustion, PM(2.5), VOCs, and PAH emissions dropped considerably compared to smoldering conditions and the overall burn pile results. The PCDD/PCDF and PBDD/PBDF emission factors for the burn piles were 50 times higher than those from the burn box likely due to the dominance of smoldering combustion in the burn piles.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, Chris

    The role of this DOE grant was to provide administrative and software support for the U. S. Burning Plasma Organization (USBPO). The USBPO is a grassroots organization of fusion plasma scientists that concentrates broadly on issues of interest in burning plasma physics in general with a particular emphasis on the needs of the ITER program. The particular role of this grant was to provide support of the communication needs of the USBPO primarily through the administration and maintenance of the USBPO server, the public USBPO website, e-mail lists and numerous members-only discussion forums and mail lists.

  17. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats.

    PubMed

    Song, J; Yin, J; Sallam, H S; Bai, T; Chen, Y; Chen, J D Z

    2013-10-01

    Delayed gastric emptying (GE) is common in patients with severe burns. This study was designed to investigate effects and mechanisms of electroacupuncture (EA) on gastric motility in rats with burns. Male rats (intact and vagotomized) were implanted with gastric electrodes, chest and abdominal wall electrodes for investigating the effects of EA at ST-36 (stomach-36 or Zusanli) on GE, gastric slow waves, autonomic functions, and plasma interleukin 6 (IL-6) 6 and 24 h post severe burns. (i) Burn delayed GE (P < 0.001). Electroacupuncture improved GE 6 and 24 h post burn (P < 0.001). Vagotomy blocked the EA effect on GE. (ii) Electroacupuncture improved burn-induced gastric dysrhythmia. The percentage of normal slow waves was increased with EA 6 and 24 h post burn (P = 0.02). (iii) Electroacupuncture increased vagal activity assessed by the spectral analysis of heart rate variability (HRV). The high-frequency component reflecting vagal component was increased with EA 6 (P = 0.004) and 24 h post burn (P = 0.03, vs sham-EA). (iv) Electroacupuncture attenuated burn-induced increase in plasma IL-6 at both 6 (P = 0.03) and 24 h post burn (P = 0.003). Electroacupuncture at ST-36 improves gastric dysrhythmia and accelerates GE in rats with burns. The improvement seems to be mediated via the vagal pathway involving the inflammatory cytokine IL-6. © 2013 John Wiley & Sons Ltd.

  18. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.

    2017-06-01

    We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.

  19. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of thismore » research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.« less

  20. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-01

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstad, M.D.; DeMichele, S.J.; Istfan, N.

    The effects of burn and first-pass splanchnic leucine extraction (FPE) on protein kinetics and energy expenditure were assessed by measuring O/sub 2/ consumption, CO/sub 2/ production, nitrogen balance, leucine kinetics, and tissue fractional protein synthetic rates (FSR-%/day) in enterally fed rats. Anesthetized male rats (200 g) were scalded on their dorsum with boiling water (25-30% body surface area) and enterally fed isovolemic diets that provided 60 kcal/day and 2.4 g of amino acids/day for 3 days. Controls were not burned. An intravenous or intragastric infusion of L-(1-/sup 14/C)leucine was used to assess protein kinetics on day 3. FPE was takenmore » as the ratio of intragastric to intravenous plasma leucine specific activity. There was a 69% reduction in cumulative nitrogen balance (P less than 0.001) and a 17-19% increase in leucine oxidation (P less than 0.05) and total energy expenditure (P less than 0.01) in burned rats. A 15% decrease in plasma leucine clearance (P less than 0.05) was accompanied by a 20% increase in plasma (leucine) (P less than 0.01) in burned rats. Burn decreased rectus muscle FSR from 5.0 +/- 0.4 to 3.5 +/- 0.5 (P less than 0.05) and increased liver FSR from 19.0 +/- 0.5 to 39.2 +/- 3.4 (P less than 0.01). First pass extraction of dietary leucine by the splanchnic bed was 8% in controls and 26% in burned rats. Leucine kinetics corrected for FPE showed increased protein degradation with burn that was not evident without FPE correction. This hypermetabolic burn model can be useful in the design of enteral diets that optimize rates of protein synthesis and degradation.« less

  2. Effects of energetic particle phase space modifications by instabilities on integrated modeling

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.

    2016-11-01

    Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.

  3. Effects of energetic particle phase space modifications by instabilities on integrated modeling

    DOE PAGES

    Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; ...

    2016-07-22

    Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effectivemore » tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Furthermore, those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.« less

  4. Large Survey of Neutron Spectrum Moments Due to ICF Drive Asymmetry

    NASA Astrophysics Data System (ADS)

    Field, J. E.; Munro, D.; Spears, B.; Peterson, J. L.; Brandon, S.; Gaffney, J. A.; Hammer, J.; Langer, S.; Nora, R. C.; Springer, P.; ICF Workflow Collaboration Collaboration

    2016-10-01

    We have recently completed the largest HYDRA simulation survey to date ( 60 , 000 runs) of drive asymmetry on the new Trinity computer at LANL. The 2D simulations covered a large space of credible perturbations to the drive of ICF implosions on the NIF. Cumulants of the produced birth energy spectrum for DD and DT reaction neutrons were tallied using new methods. Comparison of the experimental spectra with our map of predicted spectra from simulation should provide a wealth of information about the burning plasma region. We report on our results, highlighting areas of agreement (and disagreement) with experimental spectra. We also identify features in the predicted spectra that might be amenable to measurement with improved diagnostics. Prepared by LLNL under Contract DE-AC52-07NA27344. IM release #: LLNL-PROC-697321.

  5. Enhancement of burning velocity by dissociated oxygen atoms

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2015-09-01

    Green technology, such as preventing global warming, has been developed for years. Researches on plasma assisted combustion is one of the technologies and have been done for investigating more efficient combustion, more efficient use of fossil fuel with plasmas or applying electric fields. In the ignition time delay analyses with the dissociated oxygen atoms which is generated by non-equilibrium plasma had significant effect on the ignition time. In this paper, dissociated oxygen could effect on burning velocity or not has been examined using CHEMKIN. As a result, no effect can be seen with dissociation degree of lower than 10-3. But there is an effect on the enhancement of burning velocity with higher degree of 10-3. At the dissociation degree of 5×10-2, the burning velocity is enhanced at a factor of 1.24. And it is found that the distributions of each species in front of preheat zone are completely different. The combustion process is proceeded several steps in advance, and generation of H2O, CO and CO2 can be seen before combustion in higher dissociation case. This work was supported by KAKENHI (22340170).

  6. [Transfusional requirements for escharectomy in burned children].

    PubMed

    Julia, Analía R; Basílico, Hugo; Magaldi, Gustavo; Demirdjian, Graciela

    2010-02-01

    Early excision has considerably improved outcome in extensive burns, but massive resections usually mean copious bleeding that must be conveniently corrected. The purpose of this study was to measure blood component use during escharectomies in children. All pediatric patients with acute burns excised at the Burn Unit of the Hospital Garrahan during one year were included. Volume of blood component used during and immediately after surgery was analyzed and related to percent excised, time post-burn, and the coexistence of infection and autograft at the time of excision. Ninety-four surgeries in 51 children aged 0-14 years with total burned body surface areas of 5-80% who underwent resections of 3-70% were studied. Total blood use (intra + post-operatively) was 2.07 ml/kg/%excised for red blood cells (60% during surgery) and 0.7 ml/kg/% excised for plasma. Only 12% of patients required platelet transfusion. There was no significant requirement variation with the existence of infection, grafting or time post-burn. Approximately 2 ml/kg/% excised of red blood cells (2/3 for surgery) and 1 ml/kg/% excised of plasma are needed for escharectomies in children. The need for platelets must be judged considering the individual patient.

  7. Kinetic physics in ICF: present understanding and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less

  8. Kinetic physics in ICF: present understanding and future directions

    DOE PAGES

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; ...

    2018-03-19

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less

  9. Kinetic physics in ICF: present understanding and future directions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.

    2018-06-01

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.

  10. Simulation of Chirping Avalanche in Neighborhood of TAE gap

    NASA Astrophysics Data System (ADS)

    Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin

    2016-10-01

    A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).

  11. Extracorporeal Blood Purification in Burns: A Review

    DTIC Science & Technology

    2014-09-01

    Nester T, Heimbach DM, Gibran NS. The beneficial effects of plasma exchange after severe burn injury. J Burn Care Res 2005;30:243 8. [29] Venkataraman R...hemoadsorption on cytokine removal and short term survival in septic rats. Crit Care Med 2008;36:1573 7. [48] Kellum F a, Song M, Venkataraman R

  12. Terminal Maturation of Orthochromatic Erythroblasts Is Impaired in Burn Patients.

    PubMed

    Hasan, Shirin; Mosier, Michael J; Conrad, Peggie; Szilagyi, Andrea; Gamelli, Richard L; Muthumalaiappan, Kuzhali

    2018-02-20

    Mechanisms of erythropoietin (Epo)-resistant anemia in burn patients are poorly understood. We have recently found that administering a nonselective beta 1,2-adrenergic blocker propranolol (PR) was effective in reversing myelo-erythroid commitment through MafB regulation and increase megakaryocyte erythrocyte progenitors in burn patients' peripheral blood mononuclear cell (PBMC)-derived ex vivo culture system. Having known that Epo-dependent proliferation of early erythroblasts is intact after burn injury, here we inquired whether or not Epo-independent maturation stage of erythropoiesis is affected by burn injury and the relative role of PR on late-stage erythropoiesis. While majority of erythropoiesis occurs in the bone marrow, maturation into reticulocytes is crucial for their release into sinusoids to occupy the peripheral circulation for which enucleation is vital. peripheral blood mononuclear cells (PBMCs) from burn patients were extended beyond commitment and proliferation stages to late maturation stage in ex vivo culture to understand the role of PR in burn patients. Burn impedes late maturation of orthochromatic erythroblasts into reticulocytes by restricting the enucleation step. Late-stage erythropoiesis is impaired in burn patients irrespective of PR treatment. Further, substituting the microenvironment with control plasma (homologous) in place of autologous plasma rescues the conversion of orthochromatic erythroblasts to reticulocytes. Results show promise in formulating interventions to regulate late-stage erythropoiesis, which can be used in combination with PR to reduce the number of transfusions.

  13. Inductive flux usage and its optimization in tokamak operation

    DOE PAGES

    Luce, Timothy C.; Humphreys, David A.; Jackson, Gary L.; ...

    2014-07-30

    The energy flow from the poloidal field coils of a tokamak to the electromagnetic and kinetic stored energy of the plasma are considered in the context of optimizing the operation of ITER. The goal is to optimize the flux usage in order to allow the longest possible burn in ITER at the desired conditions to meet the physics objectives (500 MW fusion power with energy gain of 10). A mathematical formulation of the energy flow is derived and applied to experiments in the DIII-D tokamak that simulate the ITER design shape and relevant normalized current and pressure. The rate ofmore » rise of the plasma current was varied, and the fastest stable current rise is found to be the optimum for flux usage in DIII-D. A method to project the results to ITER is formulated. The constraints of the ITER poloidal field coil set yield an optimum at ramp rates slower than the maximum stable rate for plasmas similar to the DIII-D plasmas. Finally, experiments in present-day tokamaks for further optimization of the current rise and validation of the projections are suggested.« less

  14. Emissions from Open Burning of Simulated Military Waste from Forward Operating Bases

    EPA Science Inventory

    Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenar...

  15. Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Giruzzi, G.; Ide, S.; Kessel, C.; Luce, T. C.; Snipes, J. A.; Stober, J. K.

    2015-02-01

    The development of operating scenarios is one of the key issues in the research for ITER which aims to achieve a fusion gain (Q) of ˜10, while producing 500 MW of fusion power for ≥300 s. The ITER Research plan proposes a success oriented schedule starting in hydrogen and helium, to be followed by a nuclear operation phase with a rapid development towards Q ˜ 10 in deuterium/tritium. The Integrated Operation Scenarios Topical Group of the International Tokamak Physics Activity initiates joint activities among worldwide institutions and experiments to prepare ITER operation. Plasma formation studies report robust plasma breakdown in devices with metal walls over a wide range of conditions, while other experiments use an inclined EC launch angle at plasma formation to mimic the conditions in ITER. Simulations of the plasma burn-through predict that at least 4 MW of Electron Cyclotron heating (EC) assist would be required in ITER. For H-modes at q95 ˜ 3, many experiments have demonstrated operation with scaled parameters for the ITER baseline scenario at ne/nGW ˜ 0.85. Most experiments, however, obtain stable discharges at H98(y,2) ˜ 1.0 only for βN = 2.0-2.2. For the rampup in ITER, early X-point formation is recommended, allowing auxiliary heating to reduce the flux consumption. A range of plasma inductance (li(3)) can be obtained from 0.65 to 1.0, with the lowest values obtained in H-mode operation. For the rampdown, the plasma should stay diverted maintaining H-mode together with a reduction of the elongation from 1.85 to 1.4. Simulations show that the proposed rampup and rampdown schemes developed since 2007 are compatible with the present ITER design for the poloidal field coils. At 13-15 MA and densities down to ne/nGW ˜ 0.5, long pulse operation (>1000 s) in ITER is possible at Q ˜ 5, useful to provide neutron fluence for Test Blanket Module assessments. ITER scenario preparation in hydrogen and helium requires high input power (>50 MW). H-mode operation in helium may be possible at input powers above 35 MW at a toroidal field of 2.65 T, for studying H-modes and ELM mitigation. In hydrogen, H-mode operation is expected to be marginal, even at 2.65 T with 60 MW of input power. Simulation code benchmark studies using hybrid and steady state scenario parameters have proved to be a very challenging and lengthy task of testing suites of codes, consisting of tens of sophisticated modules. Nevertheless, the general basis of the modelling appears sound, with substantial consistency among codes developed by different groups. For a hybrid scenario at 12 MA, the code simulations give a range for Q = 6.5-8.3, using 30 MW neutral beam injection and 20 MW ICRH. For non-inductive operation at 7-9 MA, the simulation results show more variation. At high edge pedestal pressure (Tped ˜ 7 keV), the codes predict Q = 3.3-3.8 using 33 MW NB, 20 MW EC, and 20 MW ion cyclotron to demonstrate the feasibility of steady-state operation with the day-1 heating systems in ITER. Simulations using a lower edge pedestal temperature (˜3 keV) but improved core confinement obtain Q = 5-6.5, when ECCD is concentrated at mid-radius and ˜20 MW off-axis current drive (ECCD or LHCD) is added. Several issues remain to be studied, including plasmas with dominant electron heating, mitigation of transient heat loads integrated in scenario demonstrations and (burn) control simulations in ITER scenarios.

  16. Clinical and protein metabolic efficacy of glutamine granules-supplemented enteral nutrition in severely burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2005-05-01

    As an abundant amino acid in the human body, glutamine has many important metabolic roles that may protect or promote tissue integrity and enhance the immune system. A relative deficiency of glutamine in such patients could compromise recovery and result in prolonged illness and an increase in late mortality. The purpose of this clinical study is to observe the effects of enteral supplement with glutamine granules on protein metabolism in severely burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trial. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, glutamine and B group patents were supplemented with glutamine granules or placebo (glycine) at 0.5 g/kg per day for 14 days with oral feeding or tube feeding, respectively. The level of plasma glutamine, plasma protein content, urine nitrogen and urine 3-methylhistidine (3-MTH) excretion were determined, wound healing rate of the burned area and hospital stay were recorded. The results showed that there were significant reductions in plasma glutamine level and abnormal protein metabolism. After supplement with glutamine granules for 14 days, the plasma glutamine concentration was significantly higher than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P<0.01) and the plasma prealbumin and transferrin in Gln group were remarkably higher than those in B group (P<0.01), but the concentration of total protein and albumin were not significantly changed compared with B group (P>0.05). On the other hand, the amount of urine nitrogen and 3-MTH excreted in Gln group were significantly lower than that in B group. In addition, wound healing was faster and hospital stay days were shorter in Gln group than B group (46.59+/-12.98 days versus 55.68+/-17.36 days, P<0.05). These indicated that supplement glutamine granules with oral feeding or tube feeding could abate the degree of glutamine depletion, promote protein synthesis, inhibit protein decompose, improve wound healing and reduce hospital stay.

  17. Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor

    NASA Astrophysics Data System (ADS)

    Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.

    2017-10-01

    We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.

  18. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.

    PubMed

    Nassar, Muammar A Y; Eldien, Heba M Saad; Tawab, Hanem S Abdel; Saleem, Tahia H; Omar, Hossam M; Nassar, Ahmed Y; Hussein, Mahmoud Rezk Abdelwahed

    2012-10-01

    Thermal tissue injury is partly mediated by reactive oxygen metabolites. Oxygen free radicals are contributory to local tissue damage following thermal injury and accordingly an interventional therapy using antioxidants may be beneficial. Copper nicotinate complex can scavenge reactive oxygen species (i.e., has antioxidant activity). To examine time-related morphological and biochemical changes following skin thermal injury and their modulation by copper nicotinate complex. An animal model composed of 80 albino rats was established. Ten rats (nonburn group) served as a control group. Seventy rats (burn group) were anesthetized, given a 10% total body surface area, full-thickness burn. Ten rats (from the postburn group) were sacrificed after 24 h (without treatment, i.e., untreated-burn group). The remaining rats were divided into three subgroups (20 rats, each) and were treated topically either with soft paraffin, moist exposed burn ointment (MEBO, a standard therapeutic treatment for burns), or copper nicotinate complex. Five animals from each subgroup were sacrificed every week over a period of 4 weeks. The morphological and biochemical changes were evaluated and compared among the different groups. High levels of the plasma and skin nitiric oxide (marker of oxidative stress) were observed in the untreated-burn group. These levels were significantly low following the application of copper nicotinate complex. Low levels of plasma and skin superoxide dismutase (marker of oxidative stress) and plasma ceruloplasmin were observed in the untreated-burn group. These levels were significantly high following copper nicotinate complex treatment. The total and differential leukocyte counts were low following the onset of the thermal injury. They gradually returned to normal levels over a 4-week period following the application of MEBO or copper nicotinate complex. Compared to untreated-burn group, postburn-healing changes (resolution of the inflammatory reaction, reepithelization of the epidermis, angiogenesis, deposition of collagen fibers, and recovery of the subcellualr organelles) were significantly accelerated following the application of either MEBO or copper nicotinate complex. Application of copper nicotinate complex was associated with improved healing of the thermal burns of the skin. The underlying molecular changes underlying these effects await further investigations.

  19. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  20. Edge-localized-modes in tokamaks

    DOE PAGES

    Leonard, Anthony W.

    2014-09-11

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heatmore » flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. As a result, encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.« less

  1. Edge-localized-modes in tokamaksa)

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.

    2014-09-01

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.

  2. Developing DIII-D To Prepare For ITER And The Path To Fusion Energy

    NASA Astrophysics Data System (ADS)

    Buttery, Richard; Hill, David; Solomon, Wayne; Guo, Houyang; DIII-D Team

    2017-10-01

    DIII-D pursues the advancement of fusion energy through scientific understanding and discovery of solutions. Research targets two key goals. First, to prepare for ITER we must resolve how to use its flexible control tools to rapidly reach Q =10, and develop the scientific basis to interpret results from ITER for fusion projection. Second, we must determine how to sustain a high performance fusion core in steady state conditions, with minimal actuators and a plasma exhaust solution. DIII-D will target these missions with: (i) increased electron heating and balanced torque neutral beams to simulate burning plasma conditions (ii) new 3D coil arrays to resolve control of transients (iii) off axis current drive to study physics in steady state regimes (iv) divertors configurations to promote detachment with low upstream density (v) a reactor relevant wall to qualify materials and resolve physics in reactor-like conditions. With new diagnostics and leading edge simulation, this will position the US for success in ITER and a unique knowledge to accelerate the approach to fusion energy. Supported by the US DOE under DE-FC02-04ER54698.

  3. The First 3D Simulations of Carbon Burning in a Massive Star

    NASA Astrophysics Data System (ADS)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.

    2017-11-01

    We present the first detailed three-dimensional hydrodynamic implicit large eddy simulations of turbulent convection for carbon burning. The simulations start with an initial radial profile mapped from a carbon burning shell within a 15 M⊙ stellar evolution model. We considered 4 resolutions from 1283 to 10243 zones. These simulations confirm that convective boundary mixing (CBM) occurs via turbulent entrainment as in the case of oxygen burning. The expansion of the boundary into the surrounding stable region and the entrainment rate are smaller at the bottom boundary because it is stiffer than the upper boundary. The results of this and similar studies call for improved CBM prescriptions in 1D stellar evolution models.

  4. Identification of Neopterin as a Potential Indicator of Infection in Burned Patients,

    DTIC Science & Technology

    1992-01-01

    Patients (43361) DAVID G. BURLESON,’ AVERY JOHNSON, MARVIN SALIN, ARTHUR D. MASON, JR., AND BASIL A. PRUITT, JR. U.S. Army Institute of Surgical...precipitated whole blood or plasma from burned patients . Perchloric acid supematants of sera from infected, but not uninfected, burned rats contained a...fluorescent substance with maximum emission at 420 nm at 355-nm excitation (355 ex/420 em). In this study Mm of serum from burned human patients , several

  5. Plasma L-5-oxoproline kinetics and whole blood glutathione synthesis rates in severely burned adult humans.

    PubMed

    Yu, Yong-Ming; Ryan, Colleen M; Fei, Zhe-Wei; Lu, Xiao-Ming; Castillo, Leticia; Schultz, John T; Tompkins, Ronald G; Young, Vernon R

    2002-02-01

    Compromised glutathione homeostasis is associated with increased morbidity in various disease states. We evaluated the kinetics of L-5-oxoproline, an intermediate in the gamma-glutamyl cycle of glutathione production, in fourteen severely burned adults by use of a primed, constant intravenous infusion of L-5-[1-(13)C]oxoproline. In nine of these patients, whole blood glutathione synthesis and plasma kinetics of glycine and leucine were also measured with [(15)N]glycine and L-[(2)H(3)]leucine tracers. Patients were studied under a "basal" condition that provided a low dose of glucose and total parenteral nutrition. For comparison with control subjects, whole blood glutathione synthesis was estimated in six healthy adults. Burn patients in a basal condition showed significantly higher rates of plasma oxoproline clearance and urinary D- and L-oxoproline excretion compared with fasting healthy control subjects. Whole blood glutathione concentration and absolute synthesis rate in the basal state were lower than for control subjects. Total parenteral feeding without cysteine but with generous methionine did not affect oxoproline kinetics or whole blood glutathione synthesis. The estimated rate of glycine de novo synthesis was also lower in burn patients, suggesting a possible change in glycine availability for glutathione synthesis. The roles of precursor amino acid availability, as well as alterations in metabolic capacity, in modulating whole blood glutathione production in burns now require investigation.

  6. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    2015-02-15

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay inmore » the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.« less

  7. Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2004-03-01

    Glutamine is an important energy source in intestinal mucosa, the small intestine is the major organ of glutamine uptake and metabolism and plays an important role in the maintenance of whole body glutamine homeostasis. The purpose of this clinical study is to observe the protection effects of enteral supplement with glutamine granules on intestinal mucosal barrier function in severe burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-85%) were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). Glutamine granules 0.5 g/kg were supplied orally for 14 days in Gln group, and the same dosage of placebo were given for 14 days in B group. The plasma level of glutamine, endotoxin and the activity of diamine oxidase (DAO), as well as intestinal mucosal permeability were determined. The results showed that the levels of plasma endotoxin, activity and urinary lactulose and mannitol (L/M) ratio in all patients were significant higher than that of normal control. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 microM/l versus 447.63 +/- 132.28 microM/l, P < 0.01). On the other hand, the levels of plasma DAO activity and urinary L/M ratio in Gln group were lower than those in B group. In addition, the wound healing was better and hospital stay days were reduced in the Gln group (46.59 +/- 12.98 days versus 55.68 +/- 17.36 days, P < 0.05). These results indicated that glutamine granules taken orally could abate the degree of intestine injury, lessen intestinal mucosal permeability, ameliorate wound healing and reduce hospital stay.

  8. 3D hydrodynamic simulations of carbon burning in massive stars

    NASA Astrophysics Data System (ADS)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.

    2017-10-01

    We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.

  9. Characterization of Emissions and Residues from Simulations of the Deepwater Horizon Surface Oil Burns

    EPA Science Inventory

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent...

  10. Falsely raised whole blood chloride caused by systemic absorption of cerium nitrate cream for burns.

    PubMed

    Ha, Leah Y; Woollard, Gerald A; Chiu, Weldon W

    2015-03-01

    Whole blood, serum or plasma chloride is almost exclusively measured by potentiometry with an ion-selective chloride electrode which utilizes membrane selectivity to chloride ions. Other anions such as bromide, iodide and thiosulphate can interfere but usually are not present in high enough concentration to cause significant cross reactivity. A patient from our burns unit had serial chloride measurements on a Radiometer ABL800 blood gas analyser. The results were higher in contrast to plasma measurements on the Abbott Architect Ci8200, which were within reference intervals and in line with the patient's pathophysiological status. This indicated a likely interference with the blood gas analyser chloride estimation. The chloride results on the ABL800 for 3rd, 4th and 5th day after the burn accident were 170, 137 and 119 mmol/L. Corresponding plasma chloride results on the Ci8200 were all around 105 mmol/L. Nitrate was found to be markedly elevated in these samples, and the results were 6.7, 4.9 and 1.1 mmol/L, respectively (reference limit < 0.08 mmol/L). To further demonstrate nitrate was the causative agent, pooled plasma spiked with 7 mmol/L of sodium nitrate caused a rise in the ABL800 chloride from 105 to 202 mmol/L. Later we confirmed that the patient was topically medicated with cerium nitrate cream (Flammacerium®, Sinclair IS Pharma, UK) for his burns. In summary, the results clearly indicated nitrate was the interferent with the ABL800 chloride estimation and the source was the topical burns cerium nitrate cream. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in paediatric burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors.

    PubMed

    Weremijewicz, Artur; Matuszczak, Ewa; Sankiewicz, Anna; Tylicka, Marzena; Komarowska, Marta; Tokarzewicz, Anna; Debek, Wojciech; Gorodkiewicz, Ewa; Hermanowicz, Adam

    2018-06-01

    The purpose of this study was the determination of matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in the blood plasma of burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors. 31 children scalded by hot water who were managed at the Department of Paediatric Surgery between 2014-2015, after primarily presenting with burns in 4-20% TBSA were included into the study (age 9 months up to 14 years, mean age 2,5+1 years). There were 10 girls and 21 boys. Venous blood samples were drawn 2-6h, and 12-16h after the thermal injury, and on the subsequent days 3, 5 and 7. The matrix metalloproteinase-2, collagen type IV and laminin-5 concentrations were assessed using Surface Plasmon Resonance Imaging by the investigators blinded to the other data. The MMP-2, laminin-5 and collagen type IV concentrations in the blood plasma of patients with burns, were highest 12-16h after thermal injury, the difference was statistically significant. The MMP-2, laminin-5 and collagen type IV concentrations measured 3 days, 5 days and 7 days after the thermal injury, slowly decreased over time, and on the 7th day reached the normal range, when compared with the concentration measured in controls. Current work is the first follow-up study regarding MMP-2 in burns. MMP-2, laminin-5 and collagen type IV levels were elevated early after burn injury in the plasma of studied patients, and were highest 12-16h after the injury. MMP-2, laminin-5 and collagen type IV levels were not proportional to the severity of the burn. We believe in the possibility that the gradual decrease of MMP-2, collagen type IV and laminin-5 concentrations could be connected with the process of healing, but to prove it, more investigation is needed in this area. The SPR imaging biosensor is a good diagnostic tool for determination of MMP-2, laminin-5 and collagen type IV in blood plasma of patients with burns. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  12. Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target

    NASA Astrophysics Data System (ADS)

    Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.

    2016-10-01

    We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. High-fidelity plasma codes for burn physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooley, James; Graziani, Frank; Marinak, Marty

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less

  14. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. This work was supported by the FZP and SPbGU

  15. Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and lymphoid organ apoptosis in severely burned rats.

    PubMed

    Fan, Jun; Wu, Jing; Wu, Li-Dong; Li, Guo-Ping; Xiong, Meng; Chen, Xi; Meng, Qing-Yan

    2016-11-01

    The aim of this study is to investigate the effects of parenteral glutamine(GLN) supplementation combined with enteral nutrition (EN) on heat shock protein 90(Hsp90) expression, apoptosis of lymphoid organs and circulating lymphocytes, immunological function and survival in severely burned rats. Male SD rats were randomly assigned into 4 groups: a sham burn+EN+GLN-free amino acid (AA) group (n=10), a sham burn+EN+GLN group (n=10), a burn+EN+AA group (n=10), and a burn +EN +GLN group (n=10). Two hours after a 30% total body surface area (TBSA), full-thickness scald burn injury on the back was made, the burned rats in two experimental groups (the burn+EN+AA group and the burn+EN +GLN group) were fed with a conventional enteral nutrition solution by oral gavage for 7 days. Simultaneously, the rats in the burn+EN+GLN group were given 0.35g GLN/kg body weight/day once via a tail vein injection for 7 days, whereas those in the burn+EN+AA group were administered isocaloric/isonitrogenous GLN-free amino acid solution (Tyrosine) for comparison. The rats in two sham burn control groups (the sham burn+EN+AA group and the sham burn+EN +GLN group) were treated in the same procedure as above, except for burn injury. All rats in each of the four groups were given 175kcal/kg body wt/day. There was isonitrogenous, isovolumic and isocaloric intake among four groups. At the end of the 7th day after nutritional programme were finished, all rats were anesthetized and samples were collected for further analysis. Serum immunoglobulin quantification was conducted by ELISA. Circulating lymphocyte numbers were counted by Coulter LH-750 Analyzer. The percentages and apoptotic ratio of CD4 and CD8T lymphocytes in circulation were determined by flow cytometry (FCM). The neutrophil phagocytosis index (NPI) was examined. The GLN concentrations in plasma, thymus, spleen and skeletal muscle were measured by high performance liquid chromatography (HPLC). The organ index evaluation and TUNEL analysis of thymus and spleen were carried out. The expression of Hsp90 in thymus and spleen was analyzed by western blotting. Moreover, the survival in burned rats was observed. The results revealed that parenteral GLN supplementation combined with EN significantly increased the GLN concentrations of plasma and tissues, the serum immunoglobulin content, the circulating lymphocyte number, the CD4/CD8 ratio, the indexes of thymus and spleen, NPI and survival as compared with the burn+EN+AA group (p<0.05). The expression of Hsp90 in thymus and spleen in the burn+EN+GLN group was significantly up-regulated as compared with the burn+EN+AA group (p<0.05). The apoptosis in circulating CD4 and CD8 lymphocytes, thymus and spleen in the burn+EN+GLN group was significantly decreased as compared with the burn+EN+AA group (p<0.05). The results of this study show that parenteral GLN supplementation combined with EN may increase the GLN concentrations of plasma and tissues, up-regulate the expression of Hsp90, attenuate apoptosis in lymphoid organ and circulating lymphocyte, enhance the immunological function and improve survival in severely burned rats. Clinically, therapeutic efforts at the modulation of the immune dysfunction may contribute to a favorable outcome in severely burned patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  16. A small single-nozzle rainfall simulator to measure erosion response on different burn severities in southern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Covert, Ashley; Jordan, Peter

    2010-05-01

    To study the effects of wildfire burn severity on runoff generation and soil erosion from high intensity rainfall, we constructed an effective yet simple rainfall simulator that was inexpensive, portable and easily operated by two people on steep, forested slopes in southern British Columbia, Canada. The entire apparatus, including simulator, pumps, hoses, collapsible water bladders and sample bottles, was designed to fit into a single full-sized pick-up truck. The three-legged simulator extended to approximately 3.3 metres above ground on steep slopes and used a single Spraying Systems 1/2HH-30WSQ nozzle which can easily be interchanged for other sized nozzles. Rainfall characteristics were measured using a digital camera which took images of the raindrops against a grid. Median drop size and velocity 5 cm above ground were measured and found to be 3/4 of the size of natural rain drops of that diameter class, and fell 7% faster than terminal velocity. The simulator was used for experiments on runoff and erosion on sites burned in 2007 by two wildfires in southern British Columbia. Simulations were repeated one and two years after the fires. Rainfall was simulated at an average rate of 67 mm hr-1 over a 1 m2 plot for 20 minutes. This rainfall rate is similar to the 100 year return period rainfall intensity for this duration at a nearby weather station. Simulations were conducted on five replicate 1 m2 plots in each experimental unit including high burn severity, moderate burn severity, unburned, and unburned with forest floor removed. During the simulation a sample was collected for 30 seconds every minute, with two additional samples until runoff ceased, resulting in 22 samples per simulation. Runoff, overland flow coefficient, infiltration and sediment yield were compared between treatments. Additional simulations were conducted immediately after a 2009 wildfire to test different mulch treatments. Typical results showed that runoff on plots with high burn severity and with forest floor removed was similar, reaching on average a steady rate of about 60% of rainfall rate after about 7 minutes. Runoff on unburned plots with intact forest floor was much lower, typically less than 20% of rainfall rate. Sediment yield was greatest on plots with forest floor removed, followed by severely burned plots. Sediment yield on unburned and moderately burned plots was very low to zero. These results are consistent with qualitative observations made following several extreme rainfall events on recent burns in the region.

  17. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity distribution produced after the supersonic exhaust molecules charge exchanged with ambient oxygen ions. Based on the success of the first SEITE mission, a second dedicated burn of the OMS engine was scheduled to intercept the C/NOFS satellite, this time at an initial range of 430 km. The trajectory of this exhaust cloud was not centered on the satellite so the turbulent edge was sampled by the C/NOFS instruments. The electromagnetic pulse and the in situ plasma turbulence was recorded during the second SEITE experiment. A comparison of the data from the two OMS burns shows that a wide range of plasma waves are consistently produced with rocket engines are fired in the ionosphere.

  18. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  19. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolshov, M A; Kuritsyn, Yu A; Liger, V V

    2015-04-30

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less

  20. Determination of burn patient outcome by large-scale quantitative discovery proteomics

    PubMed Central

    Finnerty, Celeste C.; Jeschke, Marc G.; Qian, Wei-Jun; Kaushal, Amit; Xiao, Wenzhong; Liu, Tao; Gritsenko, Marina A.; Moore, Ronald J.; Camp, David G.; Moldawer, Lyle L.; Elson, Constance; Schoenfeld, David; Gamelli, Richard; Gibran, Nicole; Klein, Matthew; Arnoldo, Brett; Remick, Daniel; Smith, Richard D.; Davis, Ronald; Tompkins, Ronald G.; Herndon, David N.

    2013-01-01

    Objective Emerging proteomics techniques can be used to establish proteomic outcome signatures and to identify candidate biomarkers for survival following traumatic injury. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and multiplex cytokine analysis to profile the plasma proteome of survivors and non-survivors of massive burn injury to determine the proteomic survival signature following a major burn injury. Design Proteomic discovery study. Setting Five burn hospitals across the U.S. Patients Thirty-two burn patients (16 non-survivors and 16 survivors), 19–89 years of age, were admitted within 96 h of injury to the participating hospitals with burns covering >20% of the total body surface area and required at least one surgical intervention. Interventions None. Measurements and Main Results We found differences in circulating levels of 43 proteins involved in the acute phase response, hepatic signaling, the complement cascade, inflammation, and insulin resistance. Thirty-two of the proteins identified were not previously known to play a role in the response to burn. IL-4, IL-8, GM-CSF, MCP-1, and β2-microglobulin correlated well with survival and may serve as clinical biomarkers. Conclusions These results demonstrate the utility of these techniques for establishing proteomic survival signatures and for use as a discovery tool to identify candidate biomarkers for survival. This is the first clinical application of a high-throughput, large-scale LC-MS-based quantitative plasma proteomic approach for biomarker discovery for the prediction of patient outcome following burn, trauma or critical illness. PMID:23507713

  1. Burn severity mapping using simulation modeling and satellite imagery

    Treesearch

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  2. Reacting Chemistry Based Burn Model for Explosive Hydrocodes

    NASA Astrophysics Data System (ADS)

    Schwaab, Matthew; Greendyke, Robert; Steward, Bryan

    2017-06-01

    Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.

  3. The P38alpha and P38delta MAP kinases may be gene therapy targets in the future treatment of severe burns.

    PubMed

    Wang, Shuyun; Huang, Qiaobing; Guo, Xiaohua; Brunk, Ulf T; Han, Jiahuai; Zhao, Keseng; Zhao, Ming

    2010-08-01

    Microvascular barrier damage, induced by thermal injury, imposes life-threatening problems owing to the pathophysiological consequences of plasma loss and impaired perfusion that finally may lead to multiple organ failure. The aim of the present study was to define the signaling role of selected mitogen-activated protein kinases (MAPKs) in general vessel hyperpermeability caused by burns and to look for a potential gene therapy. Rearrangement of cytoskeletons and cell tight junctions were evaluated by phalloidin labeling of actin and immunocytochemical demonstration of the ZO-1 protein, whereas blood vessel permeability was evaluated by a fluorescence ratio technique. The p38 MAPK inhibitor SB203580 largely blocked burn serum-induced stress-fiber formation and tight-junction damage. Using the adenoviral approach to transfect dominant negative forms of p38 MAPKs, we found that p38alpha and p38delta had similar effects. The in vivo part of the study showed that transfection of these two constructs significantly lowered general venular hyperpermeability and enhanced the survival of burned animals. Because the p38 MAPK pathway seems to play a crucial role in burn-induced vascular hyperpermeability, general transfection with p38 MAP dominant negative constructs might become a new therapeutic method to block burn-induced plasma leakage.

  4. Plasma IL-8 signature correlates with pain and depressive symptomatology in patients with burning mouth syndrome: Results from a pilot study.

    PubMed

    Barry, Alison; O'Halloran, Ken D; McKenna, Joseph P; McCreary, Christine; Downer, Eric J

    2018-02-01

    Burning mouth syndrome (BMS) is a neuropathic orofacial pain condition of unknown aetiology that encompasses intra-oral burning pain without abnormal clinical findings. Psychological, neural and inflammatory processes are associated with BMS pathogenesis. Currently, studies characterising plasma cytokine/chemokine profiles with pain and depression in patients with BMS are lacking. Considering that inflammation is associated with the pathophysiology of BMS, and that inflammation is closely associated with pain and depression, we aimed to correlate depressive symptomatology and oral cavity pain with plasma cytokine/chemokine signatures in a cohort of patients with BMS. In this study, plasma protein levels of Th1 cytokines (IFN-γ, IL-2, IL-12p70, TNF-α), Th2 cytokines (IL-4, IL-10, IL-6, IL-13) and the chemokine IL-8 were assessed in patients with BMS (n = 10) and healthy volunteers (n = 10), using pro-inflammatory-10-plex assays. Clinical histories, alongside self-rated oral cavity pain intensities and depressive symptomatology were assessed using a visual analogue scale and the 16-item Quick Inventory of Depressive Symptomatology questionnaires, respectively. We present evidence that BMS is associated with increased depressive symptomatology and enhanced oral cavity pain. Plasma isolated from BMS patients display enhanced expression of the pro-inflammatory chemokine IL-8, when compared to plasma from healthy individuals. Plasma IL-8 signature correlates with pain and depressive symptomatology in the study cohort. Overall, these findings indicate that plasma IL-8 profiles are dysregulated in BMS and that modulation of IL-8 production in the disorder may be a tool in the management of BMS symptomatology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  6. Effects of inhomogeneity at stagnation in 3D simulations of ICF implosions

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian

    2016-10-01

    The stagnation phase of an ICF implosion is characterized by a hotspot and dense fuel layer that are spatially and temporally inhomogeneous. Perturbation growth during the implosion results in significant asymmetry at stagnation while the hotspot size, density and temperature change rapidly, even in non-igniting capsules. Diagnosing these inhomogeneities is necessary to increase yield in ICF experiments. In this work, 3D radiation hydrodynamic simulations of perturbed indirect drive ICF capsules are carried out using the CHIMERA code. During the stagnation phase a suite of novel and computationally efficient simulation tools are used to produce synthetic time-resolved neutron spectra and images. These tools allow a detailed study of the effects of hotspot inhomogeneities on diagnostic signals. Results show that the burn-averaged ion temperature drops rapidly during thermonuclear burn as the hotspot evolves from a localised, shock-heated region to a more massive, non-uniform plasma. Primary DD and DT neutron spectra show that there is significant residual bulk fluid motion at stagnation, complicating the measurement of ion temperature. Different perturbation modes cause different levels of anisotropic spectra shifts and broadening. However, in all cases the discrepancies between the DD and DT spectra are a reliable indicator of residual motion at stagnation. The simulations are used to examine the relationship between neutron scattering and areal density (ρR). Three measures of areal density are simulated: downscattered neutron ratio, attenuated primary neutron yield and nT backscatter edge. Each of these diagnoses the magnitude and anisotropy of the ρR with varying success, with accuracy decreasing for higher mode perturbations. Contributions to the neutron energy spectra from T +T reactions, secondary DT reactions and deuteron break-up are also evaluated.

  7. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch

    NASA Astrophysics Data System (ADS)

    Shumlak, Uri

    2016-10-01

    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  8. Multi-energy x-ray imaging and sensing for diagnostic and control of the burning plasma.

    PubMed

    Stutman, D; Tritz, K; Finkenthal, M

    2012-10-01

    New diagnostic and sensor designs are needed for future burning plasma (BP) fusion experiments, having good space and time resolution and capable of prolonged operation in the harsh BP environment. We evaluate the potential of multi-energy x-ray imaging with filtered detector arrays for BP diagnostic and control. Experimental studies show that this simple and robust technique enables measuring with good accuracy, speed, and spatial resolution the T(e) profile, impurity content, and MHD activity in a tokamak. Applied to the BP this diagnostic could also serve for non-magnetic sensing of the plasma position, centroid, ELM, and RWM instability. BP compatible x-ray sensors are proposed using "optical array" or "bi-cell" detectors.

  9. Recent gyrokinetic turbulence insights with GENE and direct comparison with experimental measurements

    NASA Astrophysics Data System (ADS)

    Goerler, Tobias

    2017-10-01

    Throughout the last years direct comparisons between gyrokinetic turbulence simulations and experimental measurements have been intensified substantially. Such studies are largely motivated by the urgent need for reliable transport predictions for future burning plasma devices and the associated necessity for validating the numerical tools. On the other hand, they can be helpful to assess the way a particular diagnostic experiences turbulence and provide ideas for further optimization and the physics that may not yet be accessible. Here, synthetic diagnostics, i.e. models that mimic the spatial and sometimes temporal response of the experimental diagnostic, play an important role. In the contribution at hand, we focus on recent gyrokinetic GENE simulations dedicated to ASDEX Upgrade L-mode plasmas and comparison with various turbulence measurements. Particular emphasis will be given to density fluctuation spectra which are experimentally accessible via Doppler reflectometry. A sophisticated synthetic diagnostic involving a fullwave code has recently been established and solves the long-lasting question on different spectral roll-overs in gyrokinetic and measured spectra as well as the potentially different power laws in the O- and X-mode signals. The demonstrated agreement furthermore extends the validation data base deep into spectral space and confirms a proper coverage of the turbulence cascade physics. The flux-matched GENE simulations are then used to study the sensitivity of the latter to the main microinstability drive and investigate the energetics at the various scales. Additionally, electron scale turbulence based modifications of the high-k power law spectra in such plasmas will be presented and their visibility in measurable signals be discussed.

  10. CHARACTERIZATION OF AIR EMISSIONS AND RESIDUAL ASH FROM OPEN BURNING OF ELECTRONIC WASTES DURING SIMULATED RUDIMENTALRY RECYCLING OPERATIONS

    EPA Science Inventory

    Air emissions and residual ash measurements were made from open, uncontrolled combustion of electronic waste (e-waste) during simulations of practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were separately burned to simulate p...

  11. X-ray spectroscopic diagnostics and modeling of polar-drive implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hakel, P.; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Tregillis, I. L.; Kanzleieter, R. J.; Batha, S. H.; Fontes, C. J.; Sherrill, M. E.; Kilcrease, D. P.; Regan, S. P.

    2014-06-01

    A series of experiments featuring laser-imploded plastic-shell targets filled with hydrogen or deuterium were performed on the National Ignition Facility. The shells (some deuterated) were doped in selected locations with Cu, Ga, and Ge, whose spectroscopic signals (indicative of local plasma conditions) were collected with a time-integrated, 1-D imaging, spectrally resolved, and absolute-intensity calibrated instrument. The experimental spectra compare well with radiation hydrodynamics simulations post-processed with a non-local thermal equilibrium atomic kinetics and spectroscopic-quality radiation-transport model. The obtained degree of agreement between the modeling and experimental data supports the application of spectroscopic techniques for the determination of plasma conditions, which can ultimately lead to the validation of theoretical models for thermonuclear burn in the presence of mix. Furthermore, the use of a lower-Z dopant element (e.g., Fe) is suggested for future experiments, since the ˜2 keV electron temperatures reached in mixed regions are not high enough to drive sufficient H-like Ge and Cu line emissions needed for spectroscopic plasma diagnostics.

  12. Platelet-Rich Plasma Injection in Burn Scar Areas Alleviates Neuropathic Scar Pain

    PubMed Central

    Huang, Shu-Hung; Wu, Sheng-Hua; Lee, Su-Shin; Lin, Yun-Nan; Chai, Chee-Yin; Lai, Chung-Sheng; Wang, Hui-Min David

    2018-01-01

    Objective: No effective treatments have yet been developed for burn-induced neuropathic pain. Platelet-rich plasma (PRP) has been reported to ameliorate various types of inflammation pain. However, the effect of PRP on burn-induced neuropathic pain is unclear. Methods: Burn-induced neuropathic pain Sprague-Dawley rat model was confirmed using a mechanical response test 4 weeks after the burn injuries were sustained, following which PRP was injected in the scar area. The rats were divided into four groups (n = 6) as following: Group A, Sham; Group B, Sham + PRP; Group C, Burn; and Group D, Burn + PRP. Four weeks after the PRP injection, the animals were subjected to behavior tests and then sacrificed; specimens were collected for inflammation tests, Masson's trichrome stain and chromosome 10 (PTEN) in the injured skin; and PTEN, phosphorylated mammalian target of rapamycin (p-mTOR), p38, nuclear factor κB (NFκB), chemokine (CC motif) ligand 2 (CCL2), and CCL2 cognate receptor (CCR2) in spinal cord dorsal horns through immunohistochemistry and immunofluorescence staining. Results: PRP significantly alleviated allodynia in burn-induced neuropathic pain 4 weeks after treatment, and PTEN expression in the skin and spinal cord were significantly increased in group D compared with the group C. p-PTEN, p-mTOR, and CCL2 expression in neuron cells; p-p38 and p-NFκB expression in microglia; and p-JNK and p-NFκB activation in spinal astrocytes decreased significantly in the group D compared with the group C. Conclusions: PRP is effective in treating burn-induced neuropathic pain and may be used in clinical practice. PMID:29483815

  13. [Evaluation of NMR relaxation method as a diagnostic tool for donor blood analysis and patients with hematologic diseases and burns].

    PubMed

    Gangardt, M G; Popova, O V; Shmarov, D A; Kariakina, N F; Papish, E A; Kozinets, G I

    2002-08-01

    Diagnostic value of the NMR-relaxation method in the blood plasma was estimated in the patients with different pathologies. The time of hydrogen nuclei longitudinal relaxation (T1) in the health donors of the blood, in the patients with oncopathology (hemoblastoses) and in the cases with anemia and burning disease were investigated. The time of the longitudinal relaxation (T1) was measured by automated NMR-relaxometer "Palma" (Russia). The working frequency was equal to 35 MHz, the temperature was 45 +/- 0.1 degrees C. For the single measurement 0.2 ml of blood obtained from heparinized venous blood 1.5 hours after its taking was used. The time of the longitudinal relaxation (T1) was shown to be 1.78 +/- 0.02 in the health donors, 1.70 +/- 0.06 s in cases with anemia, 1.97 +/- 0.48 c in patients with leucosis, 2.40 +/- 0.12 s in patients with burns. The sensitivity and the specificity of diagnostics of leucosis based upon the results of the only single T1 measurement in blood plasma were concluded to be 75%. It proves the significant T1 change both in patients with anemia and burning disease of the II-III degree. However it is evidently insufficient for selective use of NMR-relaxation blood plasma (serum) in the diagnostics of anemia and leucosis. The data obtained prove also the possibility of use of NMR-relaxation blood plasma (serum) for control of the hemostasis state during treatment or remission.

  14. Continental-scale simulation of burn probabilities, flame lengths, and fire size distribution for the United States

    Treesearch

    Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley

    2010-01-01

    Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...

  15. Joint simulation of regional areas burned in Canadian forest fires: A Markov Chain Monte Carlo approach

    Treesearch

    Steen Magnussen

    2009-01-01

    Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...

  16. Assessment of dermal hazard from acid burns with fire retardant garments in a full-size simulation of an engulfment flash fire.

    PubMed

    Mackay, Christopher E; Vivanco, Stephanie N; Yeboah, George; Vercellone, Jeff

    2016-09-01

    There have been concerns that fire-derived acid gases could aggravate thermal burns for individuals wearing synthetic flame retardant garments. A comparative risk assessment was performed on three commercial flame retardant materials with regard to relative hazards associated with acidic combustion gases to skin during a full engulfment flash fire event. The tests were performed in accordance with ASTM F1930 and ISO 13506: Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Three fire retardant textiles were tested: an FR treated cotton/nylon blend, a low Protex(®) modacrylic blend, and a medium Protex(®) modacrylic blend. The materials, in the form of whole body coveralls, were subjected to propane-fired flash conditions of 84kW/m(2) in a full sized simulator for a duration of either 3 or 4s. Ion traps consisting of wetted sodium carbonate-impregnated cellulose in Teflon holders were placed on the chest and back both above and under the standard undergarments. The ion traps remained in position from the time of ignition until 5min post ignition. Results indicated that acid deposition did increase with modacrylic content from 0.9μmol/cm(2) for the cotton/nylon, to 12μmol/cm(2) for the medium modacrylic blend. The source of the acidity was dominated by hydrogen chloride. Discoloration was inversely proportional to the amount of acid collected on the traps. A risk assessment was performed on the potential adverse impact of acid gases on both the skin and open wounds. The results indicated that the deposition and dissolution of the acid gases in surficial fluid media (perspiration and blood plasma) resulted in an increase in acidity, but not sufficient to induce irritation/skin corrosion or to cause necrosis in open third degree burns. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Semi-analytic model of plasma-jet-driven magneto-inertial fusion

    DOE PAGES

    Langendorf, Samuel J.; Hsu, Scott C.

    2017-03-01

    A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less

  18. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  19. DIII-D Upgrade to Prepare the Basis for Steady-State Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Buttery, R. J.; Guo, H. Y.; Taylor, T. S.; Wade, M. R.; Hill, D. N.

    2014-10-01

    Future steady-state burning plasma facilities will access new physics regimes and modes of plasma behavior. It is vital to prepare for this both experimentally using existing facilities, and theoretically in order to develop the tools to project to and optimize these devices. An upgrade to DIII-D is proposed to address the three critical aspects where research must go beyond what we can do now: (i) torque free electron heating to address the energy, particle and momentum transport mechanisms of burning plasmas using electron cyclotron (EC) heating and full power balanced neutral beams; (ii) off-axis heating and current drive to develop the path to true fusion steady state by reorienting neutral beams and deploying EC and helicon current drive; (iii) a new divertor with hot walls and reactor relevant materials to develop the basis for benign detached divertor operation compatible with wall materials and a high performance fusion core. These elements with modest incremental cost and enacted as a user facility for the whole US program will enable the US to lead on ITER and take a decision to proceed with a Fusion Nuclear Science Facility. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  20. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less

  1. Improved Confinement Regimes and the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Coppi, B.; Detragiache, P.

    2013-10-01

    The Ignitor experiment is the only one designed and planned to reach ignition under controlled DT burning conditions. The machine prameters have been established on the basis of existing knowledge of the confinement properties of high density plasmas. The optimal plasma evolution in order to reach ignition by means of Ohmic heating only, without the contribution of transport barriers has been identified. Improved confinement regimes are expected to be accessible by means of the available ICRH additional heating power and the injection of pellets for density profile control. Moreover, ECRH of the outer edge of the (toroidal) plasma column has been proposed using very high frequency sources developed in Russia. Ignition can then be reached at slightly reduced machine parameters. Significant exploration of the behavior of burning, sub-ignited plasmas can be carried out in less demanding operational conditions than those needed for ignition with plasmas accessing the I or H-regimes. These conditions will be discussed together with the provisions made in order to maintain the required (for ignition) degree of plasma purity. Sponsored in part by the U.S. DOE.

  2. The Laser Mega-Joule : LMJ & PETAL status and Program Overview

    NASA Astrophysics Data System (ADS)

    Miquel, J.-L.; Lion, C.; Vivini, P.

    2016-03-01

    The laser Megajoule (LMJ), developed by the French Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), will be a cornerstone of the French Simulation Program, which combines improvement of physics models, high performance numerical simulation, and experimental validation. The LMJ facility is under construction at CEA CESTA near Bordeaux and will provide the experimental capabilities to study High-Energy Density Physics (HEDP). One of its goals is to obtain ignition and burn of DT-filled capsules imploded, through indirect drive scheme, inside rugby-shape hohlraum. The PETAL project consists in the addition of one short-pulse (ps) ultra-high-power, high-energy beam (kJ) to the LMJ facility. PETAL will offer a combination of a very high intensity multi-petawatt beam, synchronized with the nanosecond beams of the LMJ. This combination will expand the LMJ experimental field on HEDP. This paper presents an update of LMJ & PETAL status, together with the development of the overall program including targets, plasma diagnostics and simulation tools.

  3. Non-inductive current generation in fusion plasmas with turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.

    2017-10-01

    It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  4. Experimental Investigation of the Interaction of Electrothermal Plasmas with Solid Propellants

    DTIC Science & Technology

    2007-09-14

    formation increases propellant burning rate (Koleczko, et al . 2001). The experiments described here were designed to create time and spatially resolved...Pesce-Rodriguez 2004, Koleczko, et al . 2001). Most tests involving plasma propellant interactions involve higher plasma energies than the 3.1 kJ of...product that scatters light. The large jump in pressurization seen in closed bomb plasma ignition tests (Lieb, et al . 2001) during the plasma discharge

  5. Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios

    NASA Astrophysics Data System (ADS)

    Rodrigues, P.; Figueiredo, A. C. A.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.

    2016-11-01

    A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfvén eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the {{I}\\text{p}}=15 MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of 1% ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas.

  6. Erosive burning research. [for solid-propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Strand, L.; Yang, L. C.; Nguyen, M. H.; Cohen, N. S.

    1986-01-01

    A status report is given on the results for the completed tests in a series of motor firings being carried out to measure the effects of the parameters that are considered to most strongly influence the scaling to larger rocket motor sizes of the transition to/or threshold conditions for erosive burning rate augmentation. Propellant burning rates at locations along the axis of the test motors are measured with a newly developed plasma capacitance gauge technique. The measured results are compared with erosive-burning predictions from a supporting ballistics analysis. The completed motor firings have successfully demonstrated response to the designed test variables. The trends with varying propellant burning rate, chamber pressure, and mass flow rate are consistent with existing results, but no pronounced effect of surface roughness has been observed. Rather, the influence of propellant oxidizer particle size on erosive burning is through its effect on the base, no-corssflow burning rate.

  7. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  8. Simulated Rainfall experiments on burned areas

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina

    2010-05-01

    Simulated Rainfall experiments were carried out in a Mediterranean area located in Italy, immediately after a forest fire occurrence, to evaluate the effects of forest fire on soil hydraulic properties, runoff and erosion. The selected study area was frequently affected by fire in the last years. Two adjacent 30 mq plots were set up with common physiographic features, and the same fire history, except for the last fire, which burned only one of them. Since both plots were previously subject to the passage of fire 6 years before the last one, one compares the hydrologic response and erosion of an area recently burned (B00) with that of an area burnt 6 years before (B06). Several rainfall simulations were carried out considering different pre-event soil moisture conditions where each rainfall simulation consisted of a single 60 minute application of rainfall with constant intensity of about 76 mm/h. The results show runoff ratio, evaluated for different pre-event soil moisture conditions, ranging from 0 to 2% for B06 plot, and from 21 to 41% for B00. Runoff ratio for the recently burned plot was 60 times higher than for the plot burned six years before, under wet conditions, and 20 times higher, under very wet conditions. A large increase in sediment production also was measured in B00 plot, as compared with that in B06 plot. Suspended sediment yield from B00 plot was more than two orders of magnitude higher than that from B06 plot in all the simulated events. The high runoff and soil losses measured immediately after burning indicate that effective post-fire rehabilitation programs must be carried out to reduce flood risk and soil erosion in recently burned areas. However, the results for the plot burned six year prior show that recovery of the hydrological properties of the soil occurs after the transient post fire modification.

  9. Impacts of Particulate Pollution from Fossil Fuel and Biomass Burnings on the Air Quality and Human Health in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.

    2017-12-01

    Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.

  10. Neutron generation from Z-pinches

    NASA Astrophysics Data System (ADS)

    Vikhrev, V. V.; Korolev, V. D.

    2007-05-01

    Recent advances in both experimental and theoretical studies on neutron generation in various Z-pinch facilities are reviewed. The main methods for enhancing neutron emission from the Z-pinch plasma are described, and the problems of igniting a thermonuclear burn wave in this plasma are discussed.

  11. Bridging burn care education with modern technology, an integration with high fidelity human patient simulation.

    PubMed

    Reeves, Patrick T; Borgman, Matthew A; Caldwell, Nicole W; Patel, Leela; Aden, James; Duggan, John P; Serio-Melvin, Maria L; Mann-Salinas, Elizabeth A

    2018-08-01

    The Advanced Burn Life Support (ABLS) program is a burn-education curriculum nearly 30 years in the making, focusing on the unique challenges of the first 24h of care after burn injury. Our team applied high fidelity human patient simulation (HFHPS) to the established ABLS curriculum. Our hypothesis was that HFHPS would be a feasible, easily replicable, and valuable adjunct to the current curriculum that would enhance learner experience. This prospective, evidenced-based practice project was conducted in a single simulation center employing the American Burn Association's ABLS curriculum using HFHPS. Participants managed 7 separate simulated polytrauma and burn scenarios with resultant clinical complications. After training, participants completed written and practical examinations as well as satisfaction surveys. From 2012 to 2013, 71 students participated in this training. Simulation (ABLS-Sim) participants demonstrated a 2.5% increase in written post-test scores compared to traditional ABLS Provider Course (ABLS Live) (p=0.0016). There was no difference in the practical examination when comparing ABLS-Sim versus ABLS Live. Subjectively, 60 (85%) participants completed surveys. The Educational Practice Questionnaire showed best practices rating of 4.5±0.7; with importance of learning rated at 4.4±0.8. The Simulation Design Scale rating for design was 4.6±0.6 with an importance rating of 4.4±0.8. Overall Satisfaction and Self-Confidence with Learning were 4.4±0.7 and 4.5±0.7, respectfully. Integrating HFHPS with the current ABLS curriculum led to higher written exam scores, high levels of confidence, satisfaction, and active learning, and presented an evidenced-based model for education that is easily employable for other facilities nationwide. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  12. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; hide

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  13. Plasma wall interaction, a key issue on the way to a steady state burning fusion device

    NASA Astrophysics Data System (ADS)

    Philipps, V.

    2006-04-01

    The International Tokamak Experimental Reactor (ITER), the first burning fusion plasma experiment based on the tokamak principle, is ready for construction. It is based on many years of fusion research resulting in a robust design in most of the areas. Present day fusion research concentrates on the remaining critical issues which are, to a large extent, connected with processes of plasma wall interaction. This is mainly due to extended duty cycle and the increase of the plasma stored energy in comparison with present-day machines. Critical topics are the lifetime of the plasma facing components (PFC) and the long-term tritium retention. These processes are controlled mainly by material erosion, both during steady state operation and transient power losses (disruptions and edge localized modes (ELMs)) and short- and long-range material migration and re-deposition. The extrapolation from present-day 'full carbon wall' devices suggests that the long-term tritium retention in a burning fusion device would be unacceptably high under these conditions allowing for only an unacceptable limited number of pulses in a D T mixture. As a consequence of this, research activities have been strengthened to understand in more detail the underlying processes of material erosion and re-deposition, to develop methods to remove retained tritium from the PFCs and remote areas of a fusion device and to explore these processes and the plasma performance in more detail with metallic PFC, such as beryllium (Be) and tungsten (W), which are foreseen for the ITER experiment. This paper outlines the main physical mechanisms leading to material erosion, migration and re-deposition and the associated fuel retention. It addresses the experimental database in these areas and describes the further research strategies that will be needed to tackle critical issues.

  14. Edge Mechanisms for Power Excursion Control in Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Hill, M. D.; Stacey, W. M.

    2017-10-01

    ITER must have active and preferably also passive control mechanisms that will limit inadvertent plasma power excursions which could trigger runaway fusion heating. We are identifying and investigating the potential of ion-orbit loss, impurity seeding, and various divertor ``choking'' phenomena to control or limit sudden increases in plasma density or temperature by reducing energy confinement, increasing radiation loss, etc., with the idea that such mechanisms could be tested on DIII-D and other existing tokamaks. We are assembling an edge-divertor code (GTEDGE-2) with a neutral transport model and a burn dynamics code, for this purpose. One potential control mechanism is the enhanced ion orbit loss from the thermalized ion distribution that would result from heating of the thermalized plasma ion distribution. Another possibility is impurity seeding with ions whose emissivity would increase sharply if the edge temperature increased. Enhanced radiative losses should also reduce the thermal energy flux across the separatrix, perhaps dropping the plasma into the poorer L-mode confinement regime. We will present some initial calculations to quantify these ideas. Work supported by US DOE under DE-FC02-04ER54698.

  15. CHARACTERIZATION OF EMISSIONS FROM THE SIMULATED OPEN BURNING OF SCRAP TIRES

    EPA Science Inventory

    The report gives results of a small-scale combustion study, designed to collect, identify, and quantify products emitted during the simulated open burning of scrap tires. Fixed combustion gas, volatile and semi-volatile organic, particulate, and airborne metals data were collecte...

  16. A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet

    NASA Astrophysics Data System (ADS)

    Boekema, B. K. H. L.; Vlig, M.; Guijt, D.; Hijnen, K.; Hofmann, S.; Smits, P.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P.; Middelkoop, E.

    2016-02-01

    Cold plasma has been shown to provide a promising alternative antimicrobial treatment for wound healing. We developed and tested a flexible surface dielectric barrier discharge (DBD) and compared it to an argon gas based plasma jet operated remotely with a distance between plasma plume and sample of 8 mm. Tests were conducted using different models: on cultured cells, on ex vivo human skin and on bacteria (Pseudomonas aeruginosa) (on agar, in suspension, in collagen/elastin matrix or on ex vivo human skin), allowing us to directly compare bactericidal with safety aspects under identical conditions. Both plasma devices were highly efficient when used on bacteria in non-buffered solutions, but DBD was faster in reaching the maximum bacterial reduction. Treatment of bacteria on intact skin with DBD resulted in up to 6 log reductions in 3 min. The jet was far less efficient on intact skin. Even after 8 min treatment no more than 2 log reductions were obtained with the jet. Treatment of bacteria in burn wound models with DBD for 6 min resulted in a 4.5 log reduction. Even when using DBD for 6 min on infected burn wound models with colonizing or biofilm phase bacteria, the log reductions were 3.8 or 3.2 respectively. DBD plasma treatment for 6 min did not affect fibroblast viability, whereas a treatment for 8 min was detrimental. Similarly, treatment with DBD or plasma jet for 6 min did also not affect the metabolic activity of skin biopsies. After treatment for 8 min with DBD or plasma jet, 78% or 60% of activity in skin biopsies remained, respectively. Multiple treatments of in vitro burn wound models with surface DBD for 6 min or with plasma jet for 8 min did not affect re-epithelialization. With the flexible surface DBD plasma strip we were able to quickly inactivate large numbers of bacteria on and in skin. Under the same conditions, viability of skin cells or re-epithelialization was not affected. The DBD source has potential for treating larger wound areas.

  17. Nuclear system that burns its own wastes shows promise

    NASA Technical Reports Server (NTRS)

    Atchison, K.

    1975-01-01

    A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.

  18. Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon

    DTIC Science & Technology

    2013-06-01

    temeratures of electrons and heavy particles was demonstrated. The plasma chemistry is important but yet just one element of the complex arc...description. Therefore, the present work is aimed at the analysis of the plasma chemistry in a way that the model enables a deeper look into the polulations... PLASMA CHEMISTRY The present study aims at analyzing the collisional and radiative processes in argon with a view toward application to non

  19. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    DOE PAGES

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-05-08

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k yρ s < 1) and short wavelength electron-scale (k yρ s > 1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. We observe significant nonlinear cross-scale couplings in the multiscalemore » simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E x B shearing rate γ E x B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. And while the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Though computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.« less

  20. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    NASA Astrophysics Data System (ADS)

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-06-01

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k y ρ s  <  1) and short wavelength electron-scale (k y ρ s  >  1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. Significant nonlinear cross-scale couplings are observed in the multiscale simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E  ×  B shearing rate γ E×B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. While the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Although computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.

  1. Evolution of space open electric arc burning in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusova, I. R.; Urusova, T. E.

    2018-06-01

    The calculation was made for open DC electric arc burning in an external uniform axial magnetic field. It was performed within the framework of a nonstationary three-dimensional mathematical model in approximation of partial local thermodynamic equilibrium of plasma. A "schematic" analog of electron temperature fluctuations was proposed for numerical realization of the open electric arc column of a helical shape. According to calculations, it was established that the column of the open electric arc takes a helical space shape. Plasma rotates around a longitudinal axis of the arc, at that the directions of plasma rotation near the cathode and the anode are opposite. In the arc cross-sections, the velocity of plasma rotation is unequal and the deviation value of the same part of the arc from the central axis varies in time. A helical shape of the open arc is not stable and varies in time. Apparently, the open arc cannot remain stable and invariable in the time helical shape in the external axial magnetic field.

  2. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  3. Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2006-08-01

    Glutamine is an important energy source for immune cells. It is a necessary nutrient for cell proliferation, and serves as specific fuel for lymphocytes, macrophages, and enterocytes when it is present in appropriate concentrations. The purpose of this clinical study was to observe the effects of enteral nutrition supplemented with glutamine granules on immunologic function in severely burned patients. Forty-eight severely burned patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trail. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, Gln and B group patents were given glutamine granules or placebo (glycine) at 0.5 g/kgd for 14 days with oral feeding or tube feeding, respectively. The plasma level of glutamine and several indices of immunologic function including lymphocyte transformation ratio, neutrophil phagocytosis index (NPI), CD4/CD8 ratio, the content of immunoglobulin, complement C3, C4 and IL-2 levels were determined. Moreover, wound healing rate of burn area was observed and then hospital stay was recorded. The results showed significantly reduced plasma glutamine and damaged immunological function after severe burn Indices of cellular immunity function were remarkably decreased from normal controls. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P<0.01). On the other hand, cellular immunity functions were improved in Gln group, such as lymphocyte transformation ratio, NPI, CD4/CD8 ratio and IL-2 compared those in the B group (P<0.05-0.01). However, for humoral immunity function such as the concentration of IgG, IgM, C3, C4, no marked changes were seen compared with the B group (P>0.05). In addition, wound healing was better and hospital stay days were reduced in Gln group (46.59+/-12.98 days versus 55.68+/-17.36 days, P<0.05). These indicated that immunological function damage is present after severe burn; supplemented glutamine granules with oral feeding or tube feeding abate the degree of immunosuppression, improve immunological function especially cellular immunity function, ameliorate wound healing and reduce hospital stay.

  4. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  5. Smoke incursions into urban areas: simulation of a Georgia prescribed burn

    Treesearch

    Y. Liu; S. Goodrick; G. Achtemeier

    2009-01-01

    This study investigates smoke incursion into urban areas by examining a prescribed burn in central Georgia,USA, on 28 February 2007. Simulations were conducted with a regional modeling framework to understand transport, dispersion,and structure of smoke plumes, the air quality effects, sensitivity to emissions,...

  6. Gastrointestinal Fluid Resuscitation of Thermally Injured Patients

    DTIC Science & Technology

    2006-10-01

    optimiza- tion of ORT solutions.44–47 Further research on oral fluids for plasma-volume expansion has been performed by NASA . Prolonged space flight is...222 (4.4) 60 44 4 28 370 Burn Jiang’s Burn Drink 252 (5.0) 48 28 0 20 347 Burn Ricelyte (3.0) 50 45 25 34 200 Dehydration AstroAde ( NASA ) 0 164 76 0 40...hemorrhagic shock from gastritis during a trek in Nepal. One liter of double-strength solution followed by 2 liters of standard-strength so- lution were

  7. Porcine intact and wounded skin responses to atmospheric nonthermal plasma.

    PubMed

    Wu, Andrew S; Kalghatgi, Sameer; Dobrynin, Danil; Sensenig, Rachel; Cerchar, Ekaternia; Podolsky, Erica; Dulaimi, Essel; Paff, Michelle; Wasko, Kimberly; Arjunan, Krishna Priya; Garcia, Kristin; Fridman, Gregory; Balasubramanian, Manjula; Ownbey, Robert; Barbee, Kenneth A; Fridman, Alexander; Friedman, Gary; Joshi, Suresh G; Brooks, Ari D

    2013-01-01

    Thermal plasma is a valued tool in surgery for its coagulative and ablative properties. We suggested through in vitro studies that nonthermal plasma can sterilize tissues, inactive pathogens, promote coagulation, and potentiate wound healing. The present research was undertaken to study acute toxicity in porcine skin tissues. We demonstrate that floating electrode-discharge barrier discharge (FE-DBD) nonthermal plasma is electrically safe to apply to living organisms for short periods. We investigated the effects of FE-DBD plasma on Yorkshire pigs on intact and wounded skin immediately after treatment or 24h posttreatment. Macroscopic or microscopic histological changes were identified using histological and immunohistochemical techniques. The changes were classified into four groups for intact skin: normal features, minimal changes or congestive changes, epidermal layer damage, and full burn and into three groups for wounded skin: normal, clot or scab, and full burn-like features. Immunohistochemical staining for laminin layer integrity showed compromise over time. A marker for double-stranded DNA breaks, γ-H2AX, increased over plasma-exposure time. These findings identified a threshold for plasma exposure of up to 900s at low power and <120s at high power. Nonthermal FE-DBD plasma can be considered safe for future studies of external use under these threshold conditions for evaluation of sterilization, coagulation, and wound healing. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  9. Simulating Oil Spill Burns to Improve Clean Up and Protect Air Quality

    EPA Pesticide Factsheets

    EPA experts are joining the U.S. Department of Interior’s Bureau of Safety and Environmental Enforcement (BSEE) to investigate ways to improve oil burn procedures that can lead to more efficient burning and, thus, less emissions and residue.

  10. Temporal Cytokine Profiles in Severely Burned Patients: A Comparison of Adults and Children

    PubMed Central

    Finnerty, Celeste C; Jeschke, Marc G; Herndon, David N; Gamelli, Richard; Gibran, Nicole; Klein, Matthew; Silver, Geoff; Arnoldo, Brett; Remick, Daniel; Tompkins, Ronald G

    2008-01-01

    A severe burn leads to hypermetabolism and catabolism resulting in compromised function and structural changes of essential organs. The release of cytokines has been implicated in this hypermetabolic response. The severity of the hypermetabolic response following burn injury increases with age, as does the mortality rate. Due to the relationship between the hypermetabolic and inflammatory responses, we sought to compare the plasma cytokine profiles following a severe burn in adults and in children. We enrolled 25 adults and 24 children who survived a flame burn covering more than 20% of total body surface area (TBSA). The concentrations of 22 cytokines were measured using the Linco multiplex array system (St. Charles, MO, USA). Large perturbations in the expression of pro- and anti-inflammatory cytokines were seen following thermal injury. During the first week following burn injury, IFN-γ, IL-10, IL-17, IL-4, IL-6, and IL-8 were detected at significantly higher levels in adults compared with children, P < 0.05. Significant differences were measured during the second week post-burn for IL-1β (higher in children) and IL-5 (higher in adults), P < 0.05. IL-18 was more abundant in children compared with adults during the third week post-burn, P < 0.05. Between post-burn d 21 and d 66, IL-1α was detected at higher concentrations in pediatric compared with adult patients, P < 0.05. Only GM-CSF expression was significantly different at all time points; it was detected at lower levels in pediatric patients, P < 0.05. Eotaxin, G-CSF, IL-13, IL-15, IP-10, MCP-1, and MIP-1α were detected at significantly different concentrations in adult compared with pediatric patients at multiple time points, P < 0.05. There were no differences in IL-12, IL-2, IL-7, or TNF levels in adult compared with pediatric burn patients at any of these time points. Following severe flame burns, the cytokine profiles in pediatric patients differ compared with those in adult patients, which may provide insight with respect to the higher morbidity rate in adults. Furthermore, the dramatic discrepancies observed in plasma cytokine detection between children and adults suggest that these two patient populations may benefit from different therapeutic interventions to achieve attenuation of the post-burn inflammatory response. PMID:18548133

  11. Plasma-Jet Magneto-Inertial Fusion Burn Calculations

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2010-11-01

    Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  12. Rainfall simulations on a fire disturbed mediterranean area

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; Bozzi, Silvia; Spada, Matteo; Bocchiola, Daniele; Rosso, Renzo

    2006-08-01

    SummaryRainfall simulator experiments were carried out in the Liguria region, Italy, immediately after a forest fire in early August, 2003, to evaluate the effects of forest fire on soil hydraulic properties, runoff and erosion. Two adjacent 30 m 2 plots were set up with common physiographic features, and the same fire history, except for the fire of August 2003, which burned only one of them. Since both plots were previously subject to the passage of fire in March 1997, one compares the hydrologic and sedimentologic response of an area burned in year 2003 (B03) with that of an area burnt 6 years before (B97). Each rainfall simulation consisted of a single 60 min application of rainfall with constant intensity of about 76 mm h -1. The results show runoff ratio, evaluated for different pre-event soil moisture conditions, ranging from 0% to 2% for B97 plot, and from 21% to 41% for B03. Runoff ratio for the recently burned plot was 60 times higher than for the plot burned six years before, under wet conditions, and 20 times higher, under very wet conditions. A large increase in sediment production also was measured in B03 plot, as compared with that in B97 plot. Suspended sediment yield from B03 plot was more than two orders of magnitude higher than that from B97 plot in all the simulated events. The high soil losses measured immediately after burning indicate that effective post-fire rehabilitation programs must be carried out to reduce soil erosion in recently burned areas. However, the results for the plot burned six year prior show that recovery of the hydrological properties of the soil occurs after the transient post-fire modification.

  13. Optimizing implosion yields using rugby-shaped hohlraums

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Robey, H.; Amendt, P.; Philippe, F.; Casner, A.; Caillaud, T.; Bourgade, J.-L.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Glebov, V. Yu.

    2009-11-01

    We present the first experimental results on optimizing capsule implosion experiments by using rugby-shaped hohlraums [1] on the Omega laser, University of Rochester. This campaign compared D2-filled capsule performance between standard cylindrical Au hohlraums and rugby-shaped hohlraums for demonstrating the energetics advantages of the rugby geometry. Not only did the rugby-shaped hohlraums show nearly 20% more x-ray drive energy over the cylindrical hohlraums, but also the high-performance design of the capsules provided nearly 20 times more DD neutrons than in any previous Omega hohlraum campaigns, thereby enabling use of neutron temporal diagnostics. Comparison with simulations on neutron burn histories, x-ray core imaging, backscattered laser light and radiation temperature are presented. [1] P. Amendt et al., Phys. Plasmas 15, 012702 (2008)

  14. Shapes of Spectral Lines of Nonuniform Plasma of Electric Arc Discharge Between Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Babich, Ida L.; Boretskij, Viacheslav F.; Veklich, Anatoly N.

    2007-09-01

    The radial profiles of the temperature and electron density in the plasma of the free burning electric arc between copper electrodes are studied by optical spectroscopy techniques. The electron density and the temperature in plasma as initial parameters were used in the calculation of the plasma composition in local thermodynamic equilibrium (LTE) assumption. We used the Saha's equation for copper, nitrogen and oxygen, dissociation equation for nitrogen and oxygen, the equation of plasma electrical neutrality and Dalton's law as well. So, it would be possible to determine the amounts of metal vapours in plasma.

  15. Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.

    2018-01-01

    In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.

  16. [Clinical evaluation of the postburn retention and the metabolism of Imipenem in the third space].

    PubMed

    Rong, Xin-Zhou; Bei, Chun-Hua; Huang, Xiao-Hua; Li, Qing-Hui

    2003-04-01

    To explore the half life and retention of Imipenem in the third space. Eight severely burned patients and eight healthy volunteers were enrolled as the burn group (B) and normal control group (C), respectively. HPLC (high performance liquid chromatography) was employed to determine the contents of Imipenem in the plasma, subeschar tissue fluid (STF) and the changes in its pharmacokinetics. Furthermore, the Imipenem content in the third space was calculated according to the systemic edema degree. The half life of Imipenem in STF (2.53 h) was longer than that in plasma (1.73 h), P < 0.05). The Imipenem content in STF increased gradually along with the lapse of time after repeated intravenous infusion of Imipenem, and at the same the total content of imipenem was increased significantly in the third space. There was antibiotic retention in the third space after severe burn injury, and a prolonged action of the drug could be expected when the drug re-entered the blood stream.

  17. In-place burning of crude oil in broken ice: 1985 testing at OHMSETT (Oil and Hazardous Materials Simulated Environmental Test Tank)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N.K.; Diaz, A.

    1985-08-01

    In January and March of 1985, in-place oil burning tests were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank. (OHMSETT) facility in Leonardo, New Jersey. In-place combustion of Prudhoe Bay and Amauligak crude oil slicks was attempted in varying ice coverages, oil conditions, and ambient conditions. An emulsion of Amauligak crude oil and water was also ignited three times and burned in 80% ice cover, removing nearly 50% of the emulsion.

  18. Radiation reaction in fusion plasmas.

    PubMed

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  19. A mobile app for measuring the surface area of a burn in three dimensions: comparison to the Lund and Browder assessment.

    PubMed

    Goldberg, Harry; Klaff, Justin; Spjut, Aaron; Milner, Stephen

    2014-01-01

    The aim of this study was to compare the ease and accuracy of measuring the surface area of a severe burn through the use of a mobile software application (BurnMed) to the traditional method of assessment, the Lund and Browder chart. BurnMed calculates the surface area of a burn by enabling the user to first manipulate a three-dimensional model on a mobile device and then by touching the model at the locations representing the patient's injury. The surface area of the burn is calculated in real time. Using a cohort of 18 first-year medical students with no experience in burn care, the surface area of a simulated burn on a mannequin was made using BurnMed and compared to estimates derived from the Lund and Browder chart. At the completion of this study, students were asked to complete a questionnaire designed to assess the ease of use of BurnMed. Users were able to easily and accurately measure the surface area of a simulated burn using the BurnMed application. In addition, there was less variability in surface area measurements with the application compared to the results obtained using the Lund and Browder chart. Users also reported that BurnMed was easier to use than the Lund and Browder chart. A software application, BurnMed, has been developed for a mobile device that easily and accurately determines the surface area of a burn. This system uses a three-dimensional model that can be rotated, enlarged, and transposed by the health care provider to easily determine the extent of a burn. Results show that the variability of measurements using BurnMed is lower than the measurements obtained using the Lund and Browder chart. BurnMed is available at no charge in the Apple™ Store.

  20. Examination of the Entry to Burn and Burn Control for the ITER 15 MA Baseline and Other Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesse, Charles E.; Kim, S-H.; Koechl, F.

    2014-09-01

    The entry to burn and flattop burn control in ITER will be a critical need from the first DT experiments. Simulations are used to address time-dependent behavior under a range of possible conditions that include injected power level, impurity content (W, Ar, Be), density evolution, H-mode regimes, controlled parameter (Wth, Pnet, Pfusion), and actuator (Paux, fueling, fAr), with a range of transport models. A number of physics issues at the L-H transition require better understanding to project to ITER, however, simulations indicate viable control with sufficient auxiliary power (up to 73 MW), while lower powers become marginal (as low asmore » 43 MW).« less

  1. Determination of Optimal Amikacin Dosing Regimens for Pediatric Patients With Burn Wound Sepsis.

    PubMed

    Yu, Tian; Stockmann, Chris; Healy, Daniel P; Olson, Jared; Wead, Stephanie; Neely, Alice N; Kagan, Richard J; Spigarelli, Michael G; Sherwin, Catherine M T

    2015-01-01

    This study aimed to develop optimal amikacin dosing regimens for the empirical treatment of Gram-negative bacterial sepsis in pediatric patients with burn injuries. A pharmacodynamic (PD) target in which the peak concentration (Cmax) is ≥8 times the minimum inhibitory concentration (MIC) (Cmax/MIC ≥ 8) is reflective of optimal bactericidal activity and has been used to predict clinical outcomes. Population pharmacokinetic modeling was performed in NONMEM 7.2 for pediatric patients with and without burn injuries. Amikacin pharmacokinetic parameters were compared between the two groups and multiple dosing regimens were simulated using MATLAB to achieve the PD target in ≥90% of patients with burn injuries. The pharmacokinetic analysis included 282 amikacin concentrations from 70 pediatric patients with burn injuries and 99 concentrations from 32 pediatric patients without burns. A one-compartment model with first-order elimination described amikacin pharmacokinetics well for both groups. Clearance (CL) was significantly higher in patients with burn injuries than in patients without (7.22 vs 5.36 L/h, P < .001). The volume of distribution (V) was also significantly increased in patients with burn injuries (22.7 vs 18.7 L, P < .01). Weight significantly influenced amikacin CL (P < .001) and V (P < .001) for both groups. Model-based simulations showed that a higher amikacin dose (≥25 mg/kg) achieved a Cmax/MIC ≥8 in ≥90% of patients with assumed infections of organisms with an MIC = 8 mg/L. Amikacin pharmacokinetics are altered in patients with burn injuries, including a significant increase in CL and V. In simulations, increased doses (≥25 mg/kg) led to improved PD target attainment rates. Further clinical evaluation of this proposed dosing regimen is warranted to assess clinical and microbiological outcomes in pediatric patients with burn wound sepsis.

  2. PNU-282987 improves the hemodynamic parameters by alleviating vasopermeability and tissue edema in dogs subjected to a lethal burns shock.

    PubMed

    Hu, Quan; Du, Ming-Hua; Hu, Sen; Chai, Jia-ke; Luo, Hong-Min; Hu, Xiao-Han; Zhang, Lin; Lin, Zhi-Long; Ma, Li; Wang, Huan; Sheng, Zhi-Yong

    2014-01-01

    Excessive inflammation and high vasopermeability can lead to blood volume loss and tissue edema, which can affect the resuscitation and prognosis for serious burn patients. In this experiment, we investigated the effect of PNU-282987, an α7 nicotine cholinergic receptor agonist on the hemodynamic parameters and survival rate by inhibiting vasopermeability and tissue edema during the fluid resuscitation for lethal burn shock. Forty Beagle dogs with intubation of the carotid artery and jugular vein 24 hours before the injury were subjected to 50% TBSA full-thickness burns, and were randomly divided into following four groups: no resuscitation group (group NR), venous fluid resuscitation group (group R), PNU-282987 treatment group (group P), and fluid resuscitation group plus PNU-282987 group (group RP), with 10 dogs in each group. Hemodynamic variables and biochemical parameters were determined with animals in a conscious and cooperative state. The plasma volume and the vasopermeability were determined by indocyanine green and fluorescein isothiocyanate-dextran, respectively. The level of tumor necrosis factor-α and interleukin-1β in plasma, and the water content of different organs were also determined. The mean arterial pressure, cardiac output, and plasma volume of all dogs decreased significantly, and the lung extravascular water index and pulmonary vascular permeability index increased remarkably after burn. The hemodynamic parameters deteriorated continually in group N dogs, and then anuria, hyperlactacidemia, and multiple organ dysfunctions developed. The mean arterial pressure and cardiac output of dogs in group R and group RP returned to preinjury levels at 48 hours postburn. The lung extravascular water index and pulmonary vascular permeability in group R were higher than those before preinjury. The dogs in group RP were found to have a significant increase in plasma volume and urine output, and a remarkable decrease in the levels of tumor necrosis factor-α, interleukin-1α, lactic acid, and organ functions compared with those of group R (P <.05). The survival rate of RP group (100%; 10/10) was significantly higher than that of group N (0; 0/10), group P (20%; 2/10), and group R (60%; 6/10). PNU-282987 combined with intravenous fluid resuscitation significantly improved hemodynamics and the survival rate in the early period after this lethal burn shock. The mechanism may be attributable to the lowering of the level of proinflammatory mediators, amelioration of vasopermeability-induced visceral edema, less of blood volume loss, and protection of vital organs through activation of cholinergic anti-inflammatory pathway.

  3. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  4. Tridimensional Thermonuclear Instability in Subignited Plasmas and on the Surface of the Pulsars

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.

    2017-10-01

    Tridimensional modes involving an increase of the electron temperature can be excited as a result of alpha-particle heating in subignited D-T fusion burning plasmas when a nearly time- independent external source of heating is applied. The analyzed modes are shown to emerge from an axisymmetric toroidal configurations and are radially localized around rational magnetic surfaces corresponding to q(r =r0) =m0 /n0 where m0 and n0 are the relevant poloidal and toroidal mode numbers. The radial width of the mode is of the order of the thermal scale distance. The mode has a rather severe damping rate, that has to be overcome by the relevant heating rate. Thus the temperature range to be considered is that where the D-T plasma reactivity undergoes a relatively large increase as a function of temperature. This kind of theory has been applied to the plasmas that are envisioned to be associated with surface of pulsar and be subjects to (spatially) inhomogenous thermonuclear burning. Sponsored in part by the U.S. DoE.

  5. Survival and growth of Pinus echinata and Quercus seedlings in response to simulated summer and winter prescribed burns

    Treesearch

    Michael D. Cain; Michael G. Shelton

    2000-01-01

    First-year seedlings of shortleaf pine (Pinus echinata Mill.), southern red oak (Quercus falcata Michx.), and white oak (Quercus alba L.) were subjected to simulated prescribed burns during August (growing season) or January (dormant season) on an Upper Coastal Plain site in southeastern Arkansas, U.S.A. Survival...

  6. Simulating Building Fires for Movies

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ricardo C.; Johnson, Randall P.

    1987-01-01

    Fire scenes for cinematography staged at relatively low cost in method that combines several existing techniques. Nearly realistic scenes, suitable for firefighter training, produced with little specialized equipment. Sequences of scenes set up quickly and easily, without compromising safety because model not burned. Images of fire, steam, and smoke superimposed on image of building to simulate burning of building.

  7. A novel perspective for burn-induced myopathy: Membrane repair defect

    PubMed Central

    Wang, Chao; Wang, Hongyu; Wu, Dan; Hu, Jianhong; Wu, Wei; Zhang, Yong; Peng, Xi

    2016-01-01

    Myopathy is a common complication of severe burn patients. One potential cause of this myopathy could be failure of the plasma membrane to undergo repair following injuries generated from toxin or exercise. The aim of this study is to assess systemic effect on muscle membrane repair deficiency in burn injury. Skeletal muscle fibers isolated from burn-injured mice were damaged with a UV laser and dye influx imaged confocally to evaluate membrane repair capacity. Membrane repair failure was also tested in burn-injured mice subjected to myotoxin or treadmill exercise. We further used C2C12 myotubules and animal models to investigate the role of MG53 in development of burn-induced membrane repair defect. We demonstrated that skeletal muscle myofibers in burn-injured mice showed significantly more dye uptake after laser damage than controls, indicating a membrane repair deficiency. Myotoxin or treadmill exercise also resulted in a higher-grade repair defect in burn-injured mice. Furthermore, we observed that burn injury induced a significant decrease in MG53 levels and its dimerization in skeletal muscles. Our findings highlight a new mechanism that implicates membrane repair failure as an underlying cause of burn-induced myopathy. And, the disorders in MG53 expression and MG53 dimerization are involved in this cellular pathology. PMID:27545095

  8. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    USGS Publications Warehouse

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  9. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE PAGES

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; ...

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  10. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  11. Bulk hydrodynamic stability and turbulent saturation in compressing hot spots

    NASA Astrophysics Data System (ADS)

    Davidovits, Seth; Fisch, Nathaniel J.

    2018-04-01

    For hot spots compressed at constant velocity, we give a hydrodynamic stability criterion that describes the expected energy behavior of non-radial hydrodynamic motion for different classes of trajectories (in ρR — T space). For a given compression velocity, this criterion depends on ρR, T, and d T /d (ρR ) (the trajectory slope) and applies point-wise so that the expected behavior can be determined instantaneously along the trajectory. Among the classes of trajectories are those where the hydromotion is guaranteed to decrease and those where the hydromotion is bounded by a saturated value. We calculate this saturated value and find the compression velocities for which hydromotion may be a substantial fraction of hot-spot energy at burn time. The Lindl (Phys. Plasmas 2, 3933 (1995)] "attractor" trajectory is shown to experience non-radial hydrodynamic energy that grows towards this saturated state. Comparing the saturation value with the available detailed 3D simulation results, we find that the fluctuating velocities in these simulations reach substantial fractions of the saturated value.

  12. Development and evaluation of a novel smart device-based application for burn assessment and management.

    PubMed

    Godwin, Zachary; Tan, James; Bockhold, Jennifer; Ma, Jason; Tran, Nam K

    2015-06-01

    We have developed a novel software application that provides a simple and interactive Lund-Browder diagram for automatic calculation of total body surface area (TBSA) burned, fluid formula recommendations, and serial wound photography on a smart device platform. The software was developed for the iPad (Apple, Cupertino, CA) smart device platforms. Ten burns ranging from 5 to 95% TBSA were computer generated on a patient care simulator using Adobe Photoshop CS6 (Adobe, San Jose, CA). Burn clinicians calculated the TBSA first using a paper-based Lund-Browder diagram. Following a one-week "washout period", the same clinicians calculated TBSA using the smart device application. Simulated burns were presented in a random fashion and clinicians were timed. Percent TBSA burned calculated by Peregrine vs. the paper-based Lund-Browder were similar (29.53 [25.57] vs. 28.99 [25.01], p=0.22, n=7). On average, Peregrine allowed users to calculate burn size significantly faster than the paper form (58.18 [31.46] vs. 90.22 [60.60]s, p<0.001, n=7). The smart device application also provided 5 megapixel photography capabilities, and acute burn resuscitation fluid calculator. We developed an innovative smart device application that enables accurate and rapid burn size assessment to be cost-effective and widely accessible. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  13. Aircraft Data of the Rodeo/Chediski Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images of Arizona's Rodeo-Chediski wildfire, which according to news reports is the largest in the state's history, have been acquired by NASA's MODIS Airborne Simulator flying aboard the space agency's ER-2 aircraft. The images show the extent of the burn area-now more than 450,000 acres-and pinpoint areas of active burning as of the morning of July 1. The images below include both true-color images and false-color images designed to highlight the burned areas. They were acquired during a transit of the ER-2 aircraft from NASA's Dryden Flight Research Center, Edwards, Calif. to Key West Naval Air Facility, Fla. in preparation for an upcoming field experiment. The newly acquired wildfire images will be used to validate rapid response wildfire maps produced by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft. They will also be provided to the U.S. Forest Service for potential use in post-fire damage assessments. The false-color image (top) shows the southern portion of the fire, and reveals that not all the terrain within the fire's perimeter burned to the same degree. Burned areas are red and remaining vegetation is green. In the center of the image, the bright orange pixels are actively burning fire, and the smoke drifting southward from the blaze appears blue. Burned area at the top of the true-color image (bottom) appears charcoal, and a smoke plume drifting southwest from the center of the image reveals the location of actively burning fire. See more images at MODIS Airborne Simulator Images of the Rodeo/Chediski Fire, Arizona and the Earth Observatory's Natural Hazards section. Images courtesy of MODIS Airborne Simulator ER-2 team, NASA GSFC and NASA Dryden Flight Research Center

  14. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu

    2013-06-01

    Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.

  15. U. S. fusion programs: Struggling to stay in the game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, M.

    Funding for the US fusion energy program has suffered and will probably continue to suffer major cuts. A committee hand-picked by Energy Secretary James Watkins urged the Department of Energy to mount an aggressive program to develop fusion power, but congress cut funding from $323 million in 1990 to $275 million in 1991. This portends dire conditions for fusion research and development. Projects to receive top priority are concerned with the tokamaks and to keep the next big machine, the Burning Plasma Experiment, scheduled for beginning of construction in 1993 on schedule. Secretary Watkins is said to want to keepmore » the International Thermonuclear Energy Reactor (ITER) on schedule. ITER would follow the Burning Plasma Experiment.« less

  16. Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: a Georgia case study.

    PubMed

    Tian, Di; Hu, Yongtao; Wang, Yuhang; Boylan, James W; Zheng, Mei; Russell, Armistead G

    2009-01-15

    Biomass burning is a major and growing contributor to particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5). Such impacts (especially individual impacts from each burning source) are quantified using the Community Multiscale Air Quality (CMAQ) Model, a chemical transport model (CTM). Given the sensitivity of CTM results to uncertain emission inputs, simulations were conducted using three biomass burning inventories. Shortcomings in the burning emissions were also evaluated by comparing simulations with observations and results from a receptor model. Model performance improved significantly with the updated emissions and speciation profiles based on recent measurements for biomass burning: mean fractional bias is reduced from 22% to 4% for elemental carbon and from 18% to 12% for organic matter; mean fractional error is reduced from 59% to 50% for elemental carbon and from 55% to 49% for organic matter. Quantified impacts of biomass burning on PM2.5 during January, March, May, and July 2002 are 3.0, 5.1, 0.8, and 0.3 microg m(-3) domainwide on average, with more than 80% of such impacts being from primary emissions. Impacts of prescribed burning dominate biomass burning impacts, contributing about 55% and 80% of PM2.5 in January and March, respectively, followed by land clearing and agriculture field burning. Significant impacts of wildfires in May and residential wood combustion in fireplaces and woodstoves in January are also found.

  17. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGES

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  18. Investigation of burn effect on skin using simultaneous Raman-Brillouin spectroscopy, and fluorescence microspectroscopy

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav

    2017-02-01

    Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  19. [Autogenous platelet-rich plasma gel with acellular xenogeneic dermal matrix for treatment of deep II degree burns].

    PubMed

    Hao, Tianzhi; Zhu, Jingmin; Hu, Wenbo; Zhang, Hua; Gao, Zhenhui; Wen, Xuehui; Zhou, Zhi; Lu, Gang; Liu, Jingjie; Li, Wen

    2010-06-01

    To investigate the effectiveness of autogenous platelet-rich plasma (PRP) gel with acellular xenogeneic dermal matrix in the treatment of deep II degree burns. From January 2007 to December 2009, 30 cases of deep II degree burns were treated. There were 19 males and 11 females with an average age of 42.5 years (range, 32-57 years). The burn area was 10% to 48% of total body surface area. The time from burn to hospitalization was 30 minutes to 8 hours. All patients were treated with tangential excision surgery, one side of the wounds were covered with autogenous PRP gel and acellular xenogeneic dermal matrix (PRP group), the other side of the wounds were covered with acellular xenogeneic dermal matrix only (control group). The healing rate, healing time, infection condition, and scar formation were observed. At 7 days after operation, the infection rate in PRP group (6.7%, 2/30) was significantly lower than that in control group (16.7%, 5/30, P < 0.05). The healing times were (18 +/- 4) days and (22 +/- 4) days respectively in PRP group and control group, showing significant difference (P < 0.05). The healing rates at 14 days and 21 days were 75% +/- 7% and 88% +/- 5% in PRP group, were 62% +/- 15% and 73% +/- 7% in control group, showing significant difference (P < 0.05). RPR group was superior to control group in elasticity, color, appearance, softness, scar formation, and healing quality. Autogenous PRP gel with acellular xenogeneic dermal matrix can accelerate the wound healing of deep II degree burns as well as alleviate the scar proliferation.

  20. Spatial interpolation and simulation of post-burn duff thickness after prescribed fire

    Treesearch

    Peter R. Robichaud; S. M. Miller

    1999-01-01

    Prescribed fire is used as a site treatment after timber harvesting. These fires result in spatial patterns with some portions consuming all of the forest floor material (duff) and others consuming little. Prior to the burn, spatial sampling of duff thickness and duff water content can be used to generate geostatistical spatial simulations of these characteristics....

  1. Viability of litter-stored Pinus taeda L. seeds after simulated prescribed winter burns

    Treesearch

    Michael D. Cain; Michael G. Shelton

    1998-01-01

    Stratified loblolly pine (Pinus taeda L.) seeds were placed at three depths in a reconstructed forest floor and subjected to simulated prescribed winter burns. Within the forest floor, pine seeds were placed at the L/upper-F interface, upper-F/lower-F interface, and lower-F/mineral-soil interface. Wind was generated by electric box-fans. Seeds that...

  2. Viability of litter-stored Quercus falcata Michx. acorns after simulated prescribed winter burns

    Treesearch

    Michael D. Cain; Michael G. Shelton

    1998-01-01

    Partially stratified (11 days) southern red oak (Quercus falcata Michx.) acorns were placed at three depths in a reconstructed forest floor and subjected to simulated prescribed winter burns. Within the forest floor, acorns were placed within the L layer, at the upper-F/ lower-F interface, and at the lower-F/mineral-soil interface. Winds for a...

  3. Use of artificial landscapes to isolate controls on burn probability

    Treesearch

    Marc-Andre Parisien; Carol Miller; Alan A. Ager; Mark A. Finney

    2010-01-01

    Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of...

  4. Transport and scavenging of biomass burning aerosols in the maritime continent

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Wang, C.

    2014-12-01

    Biomass burning frequently occurs in summertime over the maritime continent, especially in Malaysia peninsula, Sumatra, and Borneo. Under certain weather conditions, particulate matters emitted from such fires cause degrade of air quality and thus occurrence of often weekly long haze in downwind locations such as Singapore. It is possible that these biomass burning aerosols may have influenced convective clouds in the maritime continent though such cases have not been well simulated and understood. In order to improve understanding of the spatiotemporal coverage and influence of biomass burning aerosols in the maritime continent, we have used the Weather Research and Forecasting (WRF) model to study the transport of biomass burning aerosols from Malaysia peninsula, Sumatra, and Borneo, using biomass burning emissions from the Fire INventory from NCAR (FINN) version 1.0. We choose to use emissions from the month of August because the annual emissions peak often occurs within this month. Based on a multi-year ensemble simulation, we have examined the influences of various meteorological regimes on the aerosol transport and wet removal.

  5. Formation of an optical pulsed discharge in a supersonic air flow by radiation of a repetitively pulsed CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malov, Aleksei N; Orishich, Anatolii M

    Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less

  6. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsky, S. L., E-mail: s.l.sinitsky@inp.nsk.su; Arzhannikov, A. V.; Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090

    2016-03-25

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  7. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  8. Present Status and Prospects of FIREX Project

    NASA Astrophysics Data System (ADS)

    Mima, K.

    2008-07-01

    The goal of the first phase of Fast Ignition Realization EXperiment (FIREX) project (FIREX-I) is to demonstrate ignition temperature of 5-10 keV, followed by the second phase to demonstrate ignition and burn. Since starting FIREX-I project, plasma physics study in ILE has been devoted to increase the coupling efficiency and to improve compression performance. The heating efficiency can be increased by the following two ways. 1) A previous experiments indicate that the coupling of heating laser to imploded plasmas increases with coating a low-density. foam used in the experiment, low-Z plastic foam is desired for efficient electron transport. (Lei et al. 2006). 2) Electrons generated in the inner surface of the double cone will return by sheathe potential generated between two cones. A 2-D PIC simulation indicates that hot electron confinement is improved by a factor of 1.7 (Nakamura et al. 2007). Further optimization of cone geometry by 2-D simulation will be presented in the workshop. The implosion performance can be improved by three ways. 1) Low-Z plastic layer coating on the outer surface of the cone: The 2D hydro-simulation PINOCO predicts that the target areal density increases by a factor of 2. 2) Br doped plastic layer on a fuel pellet may significantly moderate the Rayleigh-Taylor instability (Fujioka et al. 2004), making implosion more stable. 3) Reducing vapor gas pressure in a pellet is necessary to suppress strength of a jet that will destroy the cone tip. (Stephens et al. 2005). As for the cryogenic target fabrication, R&D of fabricating foam cryogenic cine shell target are under development by the joint group between Osaka Univ. and NIFS. The amplifier system of the heating laser LFEX is completed in March 2008. The amplification test has demonstrated laser energy of 3 kJ/beam at 3nm bandwidth. The equivalent 12 kJ in 4 beams meets the specification of LFEX. The large tiled gratings for pulse compressor are completed and installed. The short pulse laser will be delivered on a target in September, 2008. The fully integrated fast ignition experiments is scheduled on February 2009 until the end of 2010. If subsequent FIREX-II will start as proposed, the ignition and burn will be demonstrated in parallel to that at NIF and LMJ, providing a scientific database of both central and fast ignition.

  9. Uncertainty propagation in modeling of plasma-assisted hydrogen production from biogas

    NASA Astrophysics Data System (ADS)

    Zaherisarabi, Shadi; Venkattraman, Ayyaswamy

    2016-10-01

    With the growing concern of global warming and the resulting emphasis on decreasing greenhouse gas emissions, there is an ever-increasing need to utilize energy-production strategies that can decrease the burning of fossil fuels. In this context, hydrogen remains an attractive clean-energy fuel that can be oxidized to produce water as a by-product. In spite of being an abundant species, hydrogen is seldom found in a form that is directly usable for energy-production. While steam reforming of methane is one popular technique for hydrogen production, plasma-assisted conversion of biogas (carbon dioxide + methane) to hydrogen is an attractive alternative. Apart from producing hydrogen, the other advantage of using biogas as raw material is the fact that two potent greenhouse gases are consumed. In this regard, modeling is an important tool to understand and optimize plasma-assisted conversion of biogas. The primary goal of this work is to perform a comprehensive statistical study that quantifies the influence of uncertain rate constants thereby determining the key reaction pathways. A 0-D chemical kinetics solver in the OpenFOAM suite is used to perform a series of simulations to propagate the uncertainty in rate constants and the resulting mean and standard deviation of outcomes.

  10. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  11. Using "The Burns Suite" as a Novel High Fidelity Simulation Tool for Interprofessional and Teamwork Training.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2016-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. The authors recently published the concept of "The Burns Suite" (TBS) as a novel tool to advance the delivery of burns education for residents/clinicians. Effectively, TBS represents a low-cost, high-fidelity, portable, immersive simulation environment. Recently, simulation-based team training (SBTT) has been advocated as a means to improve interprofessional practice. The authors aimed to explore the role of TBS in SBTT. A realistic pediatric burn resuscitation scenario was designed based on "advanced trauma and life support" and "emergency management of severe burns" principles, refined utilizing expert opinion through cognitive task analysis. The focus of this analysis was on nontechnical and interpersonal skills of clinicians and nurses within the scenario, mirroring what happens in real life. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's alpha was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twenty-two participants completed TBS resuscitation scenario. Mean face and content validity ratings were high (4.4 and 4.7 respectively; range 4-5). The internal consistency of questions was high. Qualitative data analysis revealed two new themes. Participants reported that the experience felt particularly authentic because the simulation had high psychological and social fidelity, and there was a demand for such a facility to be made available to improve nontechnical skills and interprofessional relations. TBS provides a realistic, novel tool for SBTT, addressing both nontechnical and interprofessional team skills. Recreating clinical challenge is crucial to optimize SBTT. With a better understanding of the theories underpinning simulation and interprofessional education, future simulation scenarios can be designed to provide unique educational experiences whereby team members will learn with and from other specialties and professions in a safe, controlled environment.

  12. Human impact on wildfires varies between regions and with vegetation productivity

    NASA Astrophysics Data System (ADS)

    Lasslop, Gitta; Kloster, Silvia

    2017-11-01

    We assess the influence of humans on burned area simulated with a dynamic global vegetation model. The human impact in the model is based on population density and cropland fraction, which were identified as important drivers of burned area in analyses of global datasets, and are commonly used in global models. After an evaluation of the sensitivity to these two variables we extend the model by including an additional effect of the cropland fraction on the fire duration. The general pattern of human influence is similar in both model versions: the strongest human impact is found in regions with intermediate productivity, where fire occurrence is not limited by fuel load or climatic conditions. Human effects in the model increases burned area in the tropics, while in temperate regions burned area is reduced. While the population density is similar on average for the tropical and temperate regions, the cropland fraction is higher in temperate regions, and leads to a strong suppression of fire. The model shows a low human impact in the boreal region, where both population density and cropland fraction is very low and the climatic conditions, as well as the vegetation productivity limit fire. Previous studies attributed a decrease in fire activity found in global charcoal datasets to human activity. This is confirmed by our simulations, which only show a decrease in burned area when the human influence on fire is accounted for, and not with only natural effects on fires. We assess how the vegetation-fire feedback influences the results, by comparing simulations with dynamic vegetation biogeography to simulations with prescribed vegetation. The vegetation-fire feedback increases the human impact on burned area by 10% for present day conditions. These results emphasize that projections of burned area need to account for the interactions between fire, climate, vegetation and humans.

  13. Simulating high spatial resolution high severity burned area in Sierra Nevada forests for California Spotted Owl habitat climate change risk assessment and management.

    NASA Astrophysics Data System (ADS)

    Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.

    2017-12-01

    Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.

  14. X-ray GEM Detectors for Burning Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.

    2009-11-01

    The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.

  15. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and tomore » provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.« less

  16. Control of plasma stored energy for burn control using DIII-D in-vessel coils

    DOE PAGES

    Hawryluk, Richard J.; Eidietis, Nicholas W.; Grierson, Brian A.; ...

    2015-04-09

    A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator that modifies the confinement time can be used to adjust the fusion power. In relativelymore » low collisionality DIII-D discharges, the application of nonaxisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Furthermore, gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.« less

  17. Plasma medicine in the Netherlands

    NASA Astrophysics Data System (ADS)

    Kroesen, Gerrit

    2012-10-01

    Eindhoven, the Netherlands was one of the locations were Plasma Medicine originated: Eva Stoffels was one of the founders of the field. Since then, the attention for the field steadily increased. Nowadays, strong collaborations exist between the Eindhoven University of Technology (TU/e) and the Red Cross Burn Wound Hospital in Beverwijk, the Amsterdam Medical Center, the Maxima Medical Center in Eindhoven, the Radboud University in Nijmegen, the Free University in Amsterdam, and also companies, both large industries (Philips) and SME's (Vabrema, Lavoisier, Plastech). At TU/e we focus on the plasma itself: developing real time non-invasive diagnostics like TALIF, LIF, IF absorption, Thomson, Rayleigh and Raman scattering, mass spectroscopy, etc, while at the same time developing numerical models on the MD2D platform. For the biology, microbiology and medical aspects we rely on our colleagues who have specialized in those areas. Lesions that are studied are burn wounds, permanent inflammations, diabetic feet, skin infections, and internal diseases like Crohn's disease.

  18. Burning plasma regime for Fussion-Fission Research Facility

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  19. Duloxetine Plasma Concentrations and Its Effectiveness in the Treatment of Nonorganic Chronic Pain in the Orofacial Region.

    PubMed

    Kobayashi, Yuka; Nagashima, Wataru; Tokura, Tatsuya; Yoshida, Keizo; Umemura, Eri; Miyauchi, Tomoya; Arao, Munetaka; Ito, Mikiko; Kimura, Hiroyuki; Kurita, Kenichi; Ozaki, Norio

    The purpose of this study was to examine the relationship between the pain-relieving effects of duloxetine and its plasma concentrations in patients with burning mouth syndrome and atypical odontalgia characterized by chronic nonorganic pain in the orofacial region. We administered duloxetine to 77 patients diagnosed as having burning mouth syndrome or atypical odontalgia for 12 weeks. The initial dose of duloxetine was established as 20 mg/d and was increased to 40 mg/d after week 2. We evaluated pain using the visual analog scale and depressive symptoms using the Structured Interview Guide for the Hamilton Depression Rating Scale at weeks 0, 2, 4, 6, 8, 10, and 12 and measured plasma concentrations of duloxetine 12 weeks after the start of its administration. Visual analog scale scores were significantly lower 12 weeks after than at the start of the administration of duloxetine (paired t test, t = 6.65, P < 0.0001). We examined the relationship between the rate of decreases in visual analog scale scores and plasma concentrations of duloxetine. There was no significant linear regression or quadratic regression. Duloxetine significantly relieved pain in patients with chronic nonorganic pain in the orofacial region. However, no relationship was observed between its pain-relieving effects and plasma concentrations.

  20. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph; Kraut, Isabel; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-07-01

    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  1. A polygon-based modeling approach to assess exposure of resources and assets to wildfire

    Treesearch

    Matthew P. Thompson; Joe Scott; Jeffrey D. Kaiden; Julie W. Gilbertson-Day

    2013-01-01

    Spatially explicit burn probability modeling is increasingly applied to assess wildfire risk and inform mitigation strategy development. Burn probabilities are typically expressed on a per-pixel basis, calculated as the number of times a pixel burns divided by the number of simulation iterations. Spatial intersection of highly valued resources and assets (HVRAs) with...

  2. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDACmore » GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.« less

  3. Impact of E × B shear flow on low-n MHD instabilities.

    PubMed

    Chen, J G; Xu, X Q; Ma, C H; Xi, P W; Kong, D F; Lei, Y A

    2017-05-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al. , Phys. Plasmas 23 , 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E  ×  B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E  ×  B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the E r shear. Adopting the much more general shape of E  ×  B shear ([Formula: see text]) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.

  4. Impact of E × B shear flow on low-n MHD instabilities

    NASA Astrophysics Data System (ADS)

    Chen, J. G.; Xu, X. Q.; Ma, C. H.; Xi, P. W.; Kong, D. F.; Lei, Y. A.

    2017-05-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear ( ω E = E r / R B θ ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.

  5. Impact of E × B shear flow on low-n MHD instabilities

    PubMed Central

    Chen, J. G.; Ma, C. H.; Xi, P. W.; Lei, Y. A.

    2017-01-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear (ωE=Er/RBθ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode. PMID:28579732

  6. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achtemeier, Gary, L.; Goodrick, Scott, A.; Liu, Yongqiang

    2011-08-19

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric environment, multiple-core updrafts, and detrainment of particulate matter. The number of empirical coefficients appearing in the model theory is reduced through a sensitivity analysis with the Fourier Amplitude Sensitivity Test (FAST). Daysmoke simulations for 'bent-over' plumes compare closely with Briggs theory although the two-thirds law is not explicit in Daysmoke. However, the solutions for themore » 'highly-tilted' plume characterized by weak buoyancy, low initial vertical velocity, and large initial plume diameter depart considerably from Briggs theory. Results from a study of weak plumes from prescribed burns at Fort Benning GA showed simulated ground-level PM2.5 comparing favorably with observations taken within the first eight kilometers of eleven prescribed burns. Daysmoke placed plume tops near the lower end of the range of observed plume tops for six prescribed burns. Daysmoke provides the levels and amounts of smoke injected into regional scale air quality models. Results from CMAQ with and without an adaptive grid are presented.« less

  7. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less

  8. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE PAGES

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  9. Wildfire exposure and fuel management on western US national forests.

    PubMed

    Ager, Alan A; Day, Michelle A; McHugh, Charles W; Short, Karen; Gilbertson-Day, Julie; Finney, Mark A; Calkin, David E

    2014-12-01

    Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework. Published by Elsevier Ltd.

  10. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.

    1987-11-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less

  11. A review of astrophysics experiments on intense lasers

    NASA Astrophysics Data System (ADS)

    Remington, B. A.

    1999-11-01

    Modern, high power laser facilities open new possibilities for simulating astrophysical systems in the laboratory.(S.J. Rose, Laser & Part. Beams 9, 869 (1991); B.H. Ripin et al., Laser & Part. Beams 8, 183 (1990); B.A. Remington et al., Science 284, 1488 (1999); H. Takabe et al., Plasma Phys. Contr. Fusion 41, A75 (1999); R.P. Drake, J. Geophys. Res. 104, 14505 (1999).) Scaled investigations of the hydrodynamics.(J. Kane et al., Phys. Plasmas 6, 2065 (1999); R.P. Drake et al., Ap. J. 500, L157 (1998); D. Ryutov et al., Ap. J. 518, 821 (1999).) and radiative transfer.(J. Wark et al., Phys. Plasmas 4, 2004 (1997); P.K. Patel et al., JQSRT 58, 835 (1997).) relevant to supernovae, and opacities relevant to stellar interiors.(F.J. Rogers and C.A. Iglesias, Science 263, 50 (1994); H. Merdji et al., JSQRT 58, 783 (1997).) are now possible with laser experiments. Equations of state relevant to the interiors of giant planets and brown dwarfs are also being experimentally accessed.(G.W. Collins et al., Science 281, 1178 (1998); A. Benuzzi et al., Phys. Rev. E 54, 2162 (1996).) With the construction of the NIF laser in the U.S., and the LIL and LMJ lasers in France, controlled investigations of thermonuclear burn physics will become possible in the next decade. And with existing and future ultra-high intensity short pulse lasers, investigations of relativistic astrophysical plasmas are becoming possible.(M.H. Key et al., Phys. Plasmas 5, 1966 (1998); F. Pegoraro et al., Plasma Phys. Contr. Fus. 39, B261 (1997).) A review of laboratory astrophysics experiments using intense lasers will be presented, and the potential for the future will be discussed.

  12. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  13. Tridimensional Thermonuclear Instability in Subignited Plasmas and on the Surface of the Pulsars

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.

    2016-10-01

    Tridimensional modes involving an increase of the electron temperature can be excited as a result of α-particle heating in subignited D-T fusion burning plasmas when a nearly time- independent external source of heating is applied. The analyzed modes are shown to emerge from an axisymmetric toroidal configurations and are radially localized around rational magnetic surfaces corresponding to q(r =r0) =m0 /n0 where m0 and n0 are the relevant poloidal and toroidal mode numbers. The radial width of the mode is of the order of the thermal scale distances δT =D⊥e th /D∥e th 1/4 (R0 /n0) 1/2(dlnq/dr)0-1/2. The mode has a rather severe damping rate, that has to be overcome by the relevant heating rate. Thus the temperature range to be considered is that where the D-T plasma reactivity undergoes a relatively large increase as a function of temperature. This kind of theory has been applied to the plasmas that are envisioned to be associated with surface of pulsar and be subjects to (spatially) inhomogenous thermonuclear burning. Sponsored in part by the US DOE.

  14. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    PubMed Central

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  15. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial.

    PubMed

    Zhou, Ye-Ping; Jiang, Zhu-Ming; Sun, Yong-Hua; Wang, Xiu-Rong; Ma, En-Ling; Wilmore, Douglas

    2003-01-01

    This research was conducted to evaluate the effect of enterally administered glutamine (gln) dipeptide on metabolic, gastrointestinal, and outcome parameters after severe burn injury. Forty thermally injured patients with total body surface burns ranging between 50% and 80%, and third-degree burns ranging between 20% and 40% and without respiratory injuries, were randomized into a prospective, double-blind, controlled clinical trial. One group received gln-enriched enteral nutrition and the other group received the standard enteral formulation. Tube feedings were initiated on postburn day 1 (PBD +1), and isocaloric and isonitrogenous feedings were administered to both groups until PBD +12. The gln was given as the dipeptide of alanyl-gln (Ajinomoto, Tokyo, Japan), which provided 0.35 g gln/kg body weight/d. Plasma amino acid profiles, serum endotoxin concentrations, and the lactulose/mannitol absorption ratio (which reflects gut permeability) were measured at specific times throughout the clinical course. Wound healing at day 30 was assessed, and length of hospital stay and total costs were determined at discharge. The 2 groups were similar in terms of age and extent of injury. Plasma gln concentrations were approximately 300 umol/L in both groups on PBD +1 and remained low in the control group (399 +/- 40 umol/L, mean +/- SD) but increased toward normal in the supplemented group to 591 +/- 74 (p = .048). Lactulose/mannitol ratios were increased above normal on POD +1 (control, 0.221 +/- 0.169; gln, 0.268 +/- 0.202; not significant), reflecting increased intestinal permeability after burn injury. On POD +3, the ratio in the gln group was lower than control (0.025 +/- 0.008 versus 0.049 +/- 0.016; p = .0001), and both groups returned toward normal ratios with time. Endotoxin levels on PBD +1 were elevated in both groups (control, 0.089 +/- 0.023 EU/mL; gln, 0.103 +/- 0.037 EU/mL; NS) but decreased significantly on PBD +3 in the patients receiving gln. Hospital stay was significantly shorter in the gln group than controls (67 +/- 4 days versus 73 +/- 6; p = .026). On day 30, wound healing was 86% +/- 2% complete in the gln group compared with 72% +/- 3% in controls (p = .041). Total cost of hospitalization was 62794 +/- 6178 RMB (dollar 7593 +/- 747 US dollars) in the gln group and 68996 +/- 8620RMB (dollar 8343 +/- 1042, p = .031) in controls, although the cost of the enteral nutrition was higher in the gln-supplemented patients. Enteral gln supplementation using a commercially available dipeptide supported plasma gln levels, improved gut permeability, and initially decreased plasma endotoxin levels in severely thermally injured patients. These alterations were associated with a reduction in the length of hospitalization and lower costs.

  16. Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds

    Treesearch

    Xiangyang Zhou; Shankar Mahalingam; David Weise

    2007-01-01

    This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...

  17. A modified surgical technique in the management of eyelid burns: a case series

    PubMed Central

    2011-01-01

    Introduction Contractures, ectropion and scarring, the most common sequelae of skin grafts after eyelid burn injuries, can result in corneal exposure, corneal ulceration and even blindness. Split-thickness or full-thickness skin grafts are commonly used for the treatment of acute eyelid burns. Plasma exudation and infection are common early complications of eyelid burns, which decrease the success rate of grafts. Case presentation We present the cases of eight patients, two Chinese women and six Chinese men. The first Chinese woman was 36 years old, with 70% body surface area second or third degree flame burn injuries involving her eyelids on both sides. The other Chinese woman was 28 years old, with sulfuric acid burns on her face and third degree burn on her eyelids. The six Chinese men were aged 21, 31, 38, 42, 44, and 55 years, respectively. The 38-year-old patient was transferred from the ER with 80% body surface area second or third degree flame burn injuries and third degree burn injuries to his eyelids. The other five men were all patients with flame burn injuries, with 7% to 10% body surface area third degree burns and eyelids involved. All patients were treated with a modified surgical procedure consisting of separation and loosening of the musculus orbicularis oculi between tarsal plate and septum orbital, followed by grafting a large full-thickness skin graft in three days after burn injury. The use of our modified surgical procedure resulted in 100% successful eyelid grafting on first attempt, and all our patients were in good condition at six-month follow-up. Conclusions This new surgical technique is highly successful in treating eyelid burn injuries, especially flame burn injuries of the eyelid. PMID:21843322

  18. Evaluating alternative prescribed burning policies to reduce net economic damages from wildfire

    Treesearch

    D. Evan Mercer; Jeffrey P. Prestemon; David T. Butry; John M. Pye

    2007-01-01

    We estimate a wildfire risk model with a new measure of wildfire output, intensity-weighted risk and use it in Monte Carlo simulations to estimate welfare changes from alternative prescribed burning policies. Using Volusia County, Florida as a case study, an annual prescribed burning rate of 13% of all forest lands maximizes net welfare; ignoring the effects on...

  19. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Treesearch

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  20. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Treesearch

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  1. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Masanori; Park, Jin Myung; Giruzzi, G.

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less

  2. Emissions from small-scale burns of simulated deployed U.S. military waste.

    PubMed

    Woodall, Brian D; Yamamoto, Dirk P; Gullett, Brian K; Touati, Abderrahmane

    2012-10-16

    U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM(10), PM(2.5)), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.

  3. Alternative complement pathway activation increases mortality in a model of burn injury in mice.

    PubMed Central

    Gelfand, J A; Donelan, M; Hawiger, A; Burke, J F

    1982-01-01

    We have studied the role of the complement system in burn injury in an experimental model in mice. A 25% body surface area, full-thickness scald wound was produced in anesthetized animals. Massive activation of the alternative complement pathway, but not the classical pathway, was seen. This activation was associated with the generation of neutrophil aggregating activity in the plasma, neutrophil aggregates in the lungs, increased pulmonary vascular permeability, and increased lung edema formation. Decomplementation with cobra venom factor (CVF) or genetic C5 deficiency diminished these pathologic changes, and CVF pretreatment substantially reduced burn mortality in the first 24 h. Preliminary data show that human burn patients have a similar pattern of complement activation involving predominantly the alternative pathway, indicating the possible relevance of the murine model to human disease. Images PMID:7174787

  4. The relative importance of hydrophobicity in determining runoff-infiltration processes in burned forest soils

    NASA Astrophysics Data System (ADS)

    Wittenberg, Lea; Malkinson, Dan; Voogt, Annelies; Leska, Danny; Argaman, Eli; Keesstra, Saskia

    2010-05-01

    Wildfires induce fundamental changes to vegetation and soil structure/texture which conseqeuntly have major impacts on infiltration capacity, overland flow generation, runoff and sediment yields. The relative importance, however, of fire-induced soil water repellency (WR) on hydrological and erosional processes is somewhat controversial, partially, as the direct effects of soil WR in-situ field conditions have been difficult to isolate. It is generally accepted that hydrophobicity is caused by the formation of organic substances in forest soils, while burning is considered to enhance this process. Given the complex response of the soil-vegetation system to burning, soil WR is only one of several affecting soil hydrology. Other factors include the physical sealing of soils triggered by rain drops energy, the increase in soil erodibility due to changes in soil aggregates, and the role of the ash in sealing the burned surface. The degree and spatial distribution of WR burned varies considerably with fire severity, soil and vegetation type, soil moisture content and time since burning. Nevertheless, given the inverse relationship between soil moisture and hydrophobicity, the role of the latter in determining overland flow during wet winters when the soil is mostly inundated, is marginal. Following a 60 ha wildfire, which took place at the Pe'eram catchment during July 2009, we assessed the spatio-temporal distribution of WR in a burned Pinus halepensis forest. The site, located in the Upper Galille, Israel, was severely burned; the combustion removed all understory vegetation and burned down some of the trunks, leaving a thick layer of ash. The soils composed of reddish-brown clay loam forest soil and terra rossa on limestone bedrock, greyish light rendzina characterises the marl and chalk exposures. To consider the effect of distance from trees, in-situ hydrophobicity was assessed within a week, month and five months after the fire, using the WDPT test. Measurements were taken in concentric circles around the burned trees at two soil depths. We complemented this investigation by conducting a series of laboratory simulations. Non-burned soil was taken for laboratory analysis and rainfall simulations. Four treatment types were conducted: non-burned soil, non-burned soil + pine needles, burned soil without ash (300°C/15 min. after adding pine needles) and burned soil with the residue ash (300°C/15 min. after adding pine needles). Hydrophobicity was measured in all trays. Constant rainfall intensity of 30 mm/hr was simulated until terminal infiltration rates were reached. The experimental trays were oven dried and simulated again to imitate the effect of second rainstorm. Preliminary results indicate strong surface WR (60% >180s) at a distance of 1m and at the subsurface (50% >180s) directly by the trunk. In the control non-burned site stronger WR was found in proximity to the trunks. While in the burned sites extreme values (>300s) were apparent (15-35%) and correlated with distance from the trunk, no corresponding patterns were noticed in the control trees. The attempt to create homogeneous layer of WR under controlled laboratory conditions yielded a scattered pattern of repellency, similar to the field conditions. In contrast to expected, the bare soil and bare soil covered by needles exhibited the highest and lowest infiltration rates, respectively, while the burned hydrophobic soils demonstrated intermediate rates. It is thus suggested that in some soils, WR might enhance infiltration capacity by creating a complex mosaic of runoff-generating and runoff-absorbing micro-patches. In the experimental non-burned soil a rapid crusting of the surface provided lateral connectivity whilst the accumulation of litter and organic matter blanket the surface and enhance the vertical conductivity. To better understand the role of WR in generating hydrological response, it is required to consider the 3D 'sponge like' properties of the WR soils.

  5. Effect of the self-pumped limiter concept on the tritium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-01-01

    The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs.

  6. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    NASA Astrophysics Data System (ADS)

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-01

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  7. Geospatial Data Combined With The Automated Geospatial Watershed Assessment (AGWA) Tool For Rapid Post-Fire Watershed Assessments

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Clifford, T. J.; Guertin, D. P.; Sheppard, B. S.; Barlow, J. E.; Korgaonkar, Y.; Burns, I. S.; Unkrich, C. C.

    2016-12-01

    Wildfires disasters are common throughout the western US. While many feel fire suppression is the largest cost of wildfires, case studies note rehabilitation costs often equal or greatly exceed suppression costs. Using geospatial data sets, and post-fire burn severity products, coupled with the Automated Geospatial Watershed Assessment tool (AGWA - www.tucson.ars.ag.gov/agwa), the Dept. of Interior, Burned Area Emergency Response (BAER) teams can rapidly analyze and identify at-risk areas to target rehabilitation efforts. AGWA employs nationally available geospatial elevation, soils, and land cover data to parameterize the KINEROS2 hydrology and erosion model. A pre-fire watershed simulation can be done prior to BAER deployment using design storms. As soon as the satellite-derived Burned Area Reflectance Classification (BARC) map is obtained, a post-fire watershed simulation using the same storm is conducted. The pre- and post-fire simulations can be spatially differenced in the GIS for rapid identification of high at-risk areas of erosion or flooding. This difference map is used by BAER teams to prioritize field observations and in-turn produce a final burn severity map that is used in AGWA/KINEROS2 simulations to provide report ready results. The 2013 Elk Wildfire Complex that burned over 52,600 ha east of Boise, Idaho provides a tangible example of how BAER experts combined AGWA and geospatial data that resulted in substantial rehabilitation cost savings. The BAER team initially, they identified approximately 6,500 burned ha for rehabilitation. The team then used the AGWA pre- and post-fire watershed simulation results, accessibility constraints, and land slope conditions in an interactive process to locate burned areas that posed the greatest threat to downstream values-at-risk. The group combined the treatable area, field observations, and the spatial results from AGWA to target seed and mulch treatments that most effectively reduced the threats. Using this process, the BAER Team reduced the treatable acres from the original 16,000 ha to between 800 and 1,600 ha depending on the selected alternative. The final awarded contract amounted to about 1,480/ha, therefore, a total savings of 7.2 - $8.4 million was realized for mulch treatment alone.

  8. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witherspoon, F. Douglas; Welch, Dale R.; Thompson, John R.

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technologymore » is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism Computational Sciences, Inc. and Advanced Energy Systems Inc. joined efforts to develop new physics and numerical models for LSP in several key areas to enhance the ability of LSP to model high energy density plasmas (HEDP). This final report details those efforts. Areas addressed in this research effort include: adding radiation transport to LSP, first in 2D and then fully 3D, extending the EMHD model to 3D, implementing more advanced radiation and electrode plasma boundary conditions, and installing more efficient implicit numerical algorithms to speed complex 2-D and 3-D computations. The new capabilities allow modeling of the dominant processes in high energy density plasmas, and further assist the development and optimization of plasma jet accelerators, with particular attention to MHD instabilities and plasma/wall interaction (based on physical models for ion drag friction and ablation/erosion of the electrodes). In the first funding cycle we implemented a solver for the radiation diffusion equation. To solve this equation in 2-D, we used finite-differencing and applied the parallelized sparse-matrix solvers in the PETSc library (Argonne National Laboratory) to the resulting system of equations. A database of the necessary coefficients for materials of interest was assembled using the PROPACEOS and ATBASE codes from Prism. The model was benchmarked against Prism's 1-D radiation hydrodynamics code HELIOS, and against experimental data obtained from HyperV's separately funded plasma jet accelerator development program. Work in the second funding cycle focused on extending the radiation diffusion model to full 3-D, continued development of the EMHD model, optimizing the direct-implicit model to speed up calculations, add in multiply ionized atoms, and improved the way boundary conditions are handled in LSP. These new LSP capabilities were then used, along with analytic calculations and Mach2 runs, to investigate plasma jet merging, plasma detachment and transport, restrike and advanced jet accelerator design. In addition, a strong linkage to diagnostic measurements was made by modeling plasma jet experiments on PLX to support benchmarking of the code. A large number of upgrades and improvements advancing hybrid PIC algorithms were implemented in LSP during the second funding cycle. These include development of fully 3D radiation transport algorithms, new boundary conditions for plasma-electrode interactions, and a charge conserving equation of state that permits multiply ionized high-Z ions. The final funding cycle focused on 1) mitigating the effects of a slow-growing grid instability which is most pronounced in plasma jet frame expansion problems using the two-fluid Eulerian remap algorithm, 2) extension of the Eulerian Smoothing Algorithm to allow EOS/Radiation modeling, 3) simulations of collisionless shocks formed by jet merging, 4) simulations of merging jets using high-Z gases, 5) generation of PROPACEOS EOS/Opacity databases, 6) simulations of plasma jet transport experiments, 7) simulations of plasma jet penetration through transverse magnetic fields, and 8) GPU PIC code development The tools developed during this project are applicable not only to the study of plasma jets, but also to a wide variety of HEDP plasmas of interest to DOE, including plasmas created in short-pulse laser experiments performed to study fast ignition concepts for inertial confinement fusion.« less

  9. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  10. Assesment of PM2.5 emission from corn stover burning determining in chamber combustion

    NASA Astrophysics Data System (ADS)

    Hafidawati; Lestari, P.; Sofyan, A.

    2018-04-01

    Chamber measurement were conducted to determine Particulate Matter (PM2.5) emission from open burning of corn straw at Garut District, West Java. The of this study is to estimate the concentration of PM2.5 for two types of corn (corncobs and cornstover) for five varieties (Bisma, P29, NK, Bisma, NW). Corn residues were collected and then burned in the chamber combustion. The chamber was designed to simulate the burning in the field, which was observed in the field experiment that meteorological condition was calm wind. The samples were collected using a minivol air sampler. The assessment results of PM2.5 concentrations (mg/m3) from open burning experiment in the chamber for five varieties of corn cobs (Bisma, P29, NK, Bisi, NW) was 9.187; 2.843; 7.409; 3.781; 1.895 respectively. Concentration for corn stover burn was 2.060; 5.283; 4.048; 5.306 and 5.697 respectively. Fluctuations in the value of concentration among these varieties reflect variations in combustion conditions (combustion efficiency) and other parameters including water content, biomass conditions and the meteorological conditions. The combustion efficiency (MCE) of the combustion chamber simulation of corncobs ia lower than the MCE of corn stover, that the concentration PM2.5 more emitted from the burning of corn stover. The results of this study presented provide useful information for the development of local emission factors for PM2.5 from open burning of corn stover in Indonesia.

  11. Crucial issues of multi-beam feed-back control with ECH/ECCD in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Cirant, S.; Berrino, J.; Gandini, F.; Granucci, G.; Iannone, F.; Lazzaro, E.; D'Antona, G.; Farina, D.; Koppenburg, K.; Nowak, S.; Ramponi, G.

    2005-01-01

    Proof of principle of feed-back controlled Electron Cyclotron Heating and Current Drive (ECH/ECCD), aiming at automatic limitation (or suppression) of Neoclassical Tearing Modes amplitude, has been achieved in a number of present machines. In addition to Neoclassical Tearing Mode stabilization, more applications of well-localized ECH/ECCD can be envisaged (saw-tooth crash control, current profile control, thermal barrier control, disruption mitigation). However, in order to be able to take a step forward towards the application of these techniques to burning plasmas, some crucial issues should be more deeply analyzed: multi-beam simultaneous action, control of deposition radii rdep, diagnostic of plasma reaction. So far the Electron Cyclotron Emission has been the most important tool to get localized information on plasma response, essential for both rdep and risland recognition, but its use in very hot burning plasmas within automatic control loops should be carefully verified. Assuming that plasma response is appropriately diagnosed, the next matter to be discussed concerns how to control rdep, since all techniques so far used, or proposed (plasma position, toroidal field, mechanical beam steering, gyrotron frequency tuning) have limitations or drawbacks. Finally, simultaneous multiple actions on many actuators (EC beams), concurring to automatic control of one single parameter (e.g. NTM amplitude) might be a challenging task for the controller, particularly in view of the fact that any effect of each beam becomes visible only when it is positioned very close to the right radius. All these interlinked aspects are discussed in the paper.

  12. Inappropriate Vasopressin Secretion (SIADH) in Burned Patients

    DTIC Science & Technology

    1983-03-01

    cular route, can promote the secretion of AVP in animals effective arterial volume relative to increased metabolic (24, 28, 29). Plasma renin activity...caloric intake (estimated resting metabolic (ileus or obtundation) were considered separately (Figs. rate, +25%) was begun in the first week. Morphine...further suggest adequate effective volume. for AVP secretion is set at a lower than normal plasma Whether the hypermetabolic state and increased O de

  13. [Endoscopic diagnosis of local chemical burn of mucous membranes of the stomach, induced with the purpose of simulation of gastric ulcer].

    PubMed

    Byzov, N V; Plekhanov, V N

    2013-01-01

    With the purpose of improvement of diagnosis of induced gastric ulcer were examined 11 patients who took aggressive agents for simulation of gastric ulcer and 33 patients who took pseudo-aggressive agents. Observables, conduced diagnosis of local chemical burn of mucous coat of stomach during initial 6 days after taking aggressive agents. Stages of ulcerous process, resulting from local chemical burn of mucous coat of stomach, coressponds to real gactric ulcer. Gelatin capsule using as a container for delivery of aggressive agents, melts in stomach in 5-6 minutes after taking. Independent from body position, mucous coat of greater curvature of the stomach is damaged. It is impossible to simulate duodenal bulb ulcer using the gelatine capsule or ball made of breadcrumb. The last method of delivery of aggressive agent can damage the small intestine because of uncontrollability of the place of breaking the ball.

  14. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    PubMed

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher concentrations in the residue solid ash of PVC as compared to those from the other types of plastic. The open-air burning of plastic material and their toxic emissions is of growing concern in areas of municipal solid waste where open-fires occur intentionally or accidentally. Another problem is building fires in which victims may suffer severe smoke inhalation from burning plastic materials in homes and in working places.

  15. Reliability assessment of MVP-BURN and JENDL-4.0 related to nuclear transmutation of light platinum group elements

    NASA Astrophysics Data System (ADS)

    Terashima, Atsunori; Nilsson, Mikael; Ozawa, Masaki; Chiba, Satoshi

    2017-09-01

    The Aprés ORIENT research program, as a concept of advanced nuclear fuel cycle, was initiated in FY2011 aiming at creating stable, highly-valuable elements by nuclear transmutation from ↓ssion products. In order to simulate creation of such elements by (n, γ) reaction succeeded by β- decay in reactors, a continuous-energy Monte Carlo burnup calculation code MVP-BURN was employed. Then, it is one of the most important tasks to con↓rm the reliability of MVP-BURN code and evaluated neutron cross section library. In this study, both an experiment of neutron activation analysis in TRIGA Mark I reactor at University of California, Irvine and the corresponding burnup calculation using MVP-BURN code were performed for validation of the simulation on transmutation of light platinum group elements. Especially, some neutron capture reactions such as 102Ru(n, γ)103Ru, 104Ru(n, γ)105Ru, and 108Pd(n, γ)109Pd were dealt with in this study. From a comparison between the calculation (C) and the experiment (E) about 102Ru(n, γ)103Ru, the deviation (C/E-1) was signi↓cantly large. Then, it is strongly suspected that not MVP-BURN code but the neutron capture cross section of 102Ru belonging to JENDL-4.0 used in this simulation have made the big di↑erence as (C/E-1) >20%.

  16. Signals from Fat After Injury: Plasma Adipokines and Ghrelin Concentrations in the Severely Burned

    DTIC Science & Technology

    2012-09-26

    of insulin resis- tance was calculated with a modified version of homeostasis mod- el assessment of insulin resistance ( HOMA - IR ) formula by using...average glucose and average circulating insulin levels of subjects. In this study, HOMA - IR was used to assess severity of insulin resis- tance rather than...were 217% higher than controls (Table 2). Thus, based on the HOMA - IR , burned subjects were more insulin resistant than controls (Table 2). As all of the

  17. NASA Lewis Research Center lean-, rich-burn materials test burner rig

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Robinson, R. C.

    1994-01-01

    The lean-, rich-burn materials test burner rig at NASA LeRC is used to evaluate the high temperature environmental durability of aerospace materials. The rig burns jet fuel and pressurized air, and sample materials can be subjected to both lean-burn and rich-burn environments. As part of NASA's Enabling Propulsion Materials (EPM) program, an existing rig was adapted to simulate the rich-burn quick-quench lean-burn (RQL) combustor concept which is being considered for the HSCT (high speed civil transport) aircraft. RQL materials requirements exceed that of current superalloys, thus ceramic matrix composites (CMC's) emerged as the leading candidate materials. The performance of these materials in the quasi reducing environment of the rich-burn section of the RQL is of fundamental importance to materials development. This rig was developed to conduct such studies, and its operation and capabilities are described.

  18. Recent results from experimental studies on laser-plasma coupling in a shock ignition relevant regime

    NASA Astrophysics Data System (ADS)

    Koester, P.; Antonelli, L.; Atzeni, S.; Badziak, J.; Baffigi, F.; Batani, D.; Cecchetti, C. A.; Chodukowski, T.; Consoli, F.; Cristoforetti, G.; De Angelis, R.; Folpini, G.; Gizzi, L. A.; Kalinowska, Z.; Krousky, E.; Kucharik, M.; Labate, L.; Levato, T.; Liska, R.; Malka, G.; Maheut, Y.; Marocchino, A.; Nicolai, P.; O'Dell, T.; Parys, P.; Pisarczyk, T.; Raczka, P.; Renner, O.; Rhee, Y. J.; Ribeyre, X.; Richetta, M.; Rosinski, M.; Ryc, L.; Skala, J.; Schiavi, A.; Schurtz, G.; Smid, M.; Spindloe, C.; Ullschmied, J.; Wolowski, J.; Zaras, A.

    2013-12-01

    Shock ignition (SI) is an appealing approach in the inertial confinement scenario for the ignition and burn of a pre-compressed fusion pellet. In this scheme, a strong converging shock is launched by laser irradiation at an intensity Iλ2 > 1015 W cm-2 µm2 at the end of the compression phase. In this intensity regime, laser-plasma interactions are characterized by the onset of a variety of instabilities, including stimulated Raman scattering, Brillouin scattering and the two plasmon decay, accompanied by the generation of a population of fast electrons. The effect of the fast electrons on the efficiency of the shock wave production is investigated in a series of dedicated experiments at the Prague Asterix Laser Facility (PALS). We study the laser-plasma coupling in a SI relevant regime in a planar geometry by creating an extended preformed plasma with a laser beam at ˜7 × 1013 W cm-2 (250 ps, 1315 nm). A strong shock is launched by irradiation with a second laser beam at intensities in the range 1015-1016 W cm-2 (250 ps, 438 nm) at various delays with respect to the first beam. The pre-plasma is characterized using x-ray spectroscopy, ion diagnostics and interferometry. Spectroscopy and calorimetry of the backscattered radiation is performed in the spectral range 250-850 nm, including (3/2)ω, ω and ω/2 emission. The fast electron production is characterized through spectroscopy and imaging of the Kα emission. Information on the shock pressure is obtained using shock breakout chronometry and measurements of the craters produced by the shock in a massive target. Preliminary results show that the backscattered energy is in the range 3-15%, mainly due to backscattered light at the laser wavelength (438 nm), which increases with increasing the delay between the two laser beams. The values of the peak shock pressures inferred from the shock breakout times are lower than expected from 2D numerical simulations. The same simulations reveal that the 2D effects play a major role in these experiments, with the laser spot size comparable with the distance between critical and ablation layers.

  19. A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1

    NASA Astrophysics Data System (ADS)

    Rabin, Sam S.; Ward, Daniel S.; Malyshev, Sergey L.; Magi, Brian I.; Shevliakova, Elena; Pacala, Stephen W.

    2018-03-01

    This study describes and evaluates the Fire Including Natural & Agricultural Lands model (FINAL) which, for the first time, explicitly simulates cropland and pasture management fires separately from non-agricultural fires. The non-agricultural fire module uses empirical relationships to simulate burned area in a quasi-mechanistic framework, similar to past fire modeling efforts, but with a novel optimization method that improves the fidelity of simulated fire patterns to new observational estimates of non-agricultural burning. The agricultural fire components are forced with estimates of cropland and pasture fire seasonality and frequency derived from observational land cover and satellite fire datasets. FINAL accurately simulates the amount, distribution, and seasonal timing of burned cropland and pasture over 2001-2009 (global totals: 0.434×106 and 2.02×106 km2 yr-1 modeled, 0.454×106 and 2.04×106 km2 yr-1 observed), but carbon emissions for cropland and pasture fire are overestimated (global totals: 0.295 and 0.706 PgC yr-1 modeled, 0.194 and 0.538 PgC yr-1 observed). The non-agricultural fire module underestimates global burned area (1.91×106 km2 yr-1 modeled, 2.44×106 km2 yr-1 observed) and carbon emissions (1.14 PgC yr-1 modeled, 1.84 PgC yr-1 observed). The spatial pattern of total burned area and carbon emissions is generally well reproduced across much of sub-Saharan Africa, Brazil, Central Asia, and Australia, whereas the boreal zone sees underestimates. FINAL represents an important step in the development of global fire models, and offers a strategy for fire models to consider human-driven fire regimes on cultivated lands. At the regional scale, simulations would benefit from refinements in the parameterizations and improved optimization datasets. We include an in-depth discussion of the lessons learned from using the Levenberg-Marquardt algorithm in an interactive optimization for a dynamic global vegetation model.

  20. Linus cycle calculations including plasma transport and resistive flux loss in an incompressible liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quimby, D.C.; Hoffman, A.L.; Vlases, G.C.

    1980-08-01

    In the LINUS fusion reactor concept, a rotating liquid metal liner is used for reversible mechanical compression of thermonuclear plasmas, where a vacuum field buffer zone is used between the plasma and wall to reduce transport losses. A one-dimensional plasma transport and burn code, including incompressible liner dynamics with heat transfer and temperature dependent flux diffusion in the liquid metal, is used to model LINUS cycles. The effects of compressibility are treated as a perturbation. Numerical coefficients are derived for simple LINUS scaling laws. The particular case of plasma contact with the liquid metal is studied to determine the effectmore » on LINUS performance.« less

  1. The effect of relativistic Compton scattering on thermonuclear burn of pure deuterium fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasemizad, A.; Nazirzadeh, M.; Khanbabaei, B.

    The relativistic effects of the Compton scattering on the thermonuclear burn-up of pure deuterium fuel in non-equilibrium plasma have been studied by four temperature (4T) theory. In the limit of low electron temperatures and photon energies, the nonrelativistic Compton scattering is valid and a convenient approximation, but in the high energy exchange rates between electrons and photons, is seen to break down. The deficiencies of the nonrelativistic approximation can be overcome by using the relativistic correction in the photons kinetic equation. In this research, we have utilized the four temperature (4T) theory to calculate the critical burn-up parameter for puremore » deuterium fuel, while the Compton scattering is considered as a relativistic phenomenon. It was shown that the measured critical burn-up parameter in ignition with relativistic Compton scattering is smaller than that of the parameter in the ignition with the nonrelativistic Compton scattering.« less

  2. Burn Control Mechanisms in Tokamaks

    NASA Astrophysics Data System (ADS)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  3. Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications

    NASA Astrophysics Data System (ADS)

    Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2017-06-01

    We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.

  4. Nonlinear Burn Control and Operating Point Optimization in ITER

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  5. Soil geochemistry controls fire severity: A soil approach to improved understanding of forest fire consequences in southwest Montana.

    NASA Astrophysics Data System (ADS)

    Callahan, R.; Hartshorn, T.

    2014-12-01

    Fire severity can be defined using satellite imagery to ratio mid (~2.2 um) to near (~0.8 um) infrared reflectance values. We examined how lithology and topography affected burn severity, and how post-fire soils data could be used to ground-truth burn severity at two sites in southwestern Montana. A burned area reflectance classification (BARC), lithology, and terrain attributes were used to predict burn severity for the Millie Fire, which was triggered two years ago by lightning and burned ~4,000 ha. Burn severity showed a strong dependence on lithology: the ratio of areas with high burn severity vs. low or moderate burn severities was 2.9 for gneiss (vs. 0.3 for volcanics). The high-severity burn area for the gneiss was larger than the volcanics, despite the latter lithology covering ~270% greater area (~2,600 ha). Aspect and elevation also influenced burn severity with lower severity at higher elevations (2,600-3,000 m) and higher severity at lower elevations (1,800-2,400 m). Southern and western aspects burned more severely than northern and eastern aspects. To clarify whether post-fire soil geochemical changes might predict ground-based estimates of fire severity, a lab experiment was carried out . We expected residual enrichment of trace metal concentrations, as soil organic matter (SOM) was combusted, which we quantified as loss on ignition (LOI). To test this approach, burned and unburned soils were sampled from the ~6000 ha Beartrap 2 fire, which also burned two years. We simulated differing fire severities on unburned soil using a muffle furnace factorially (duration [5, 15, 30, 45, or 60 minutes] x temperature [50, 100, 200, 300, 400, or 500ºC]). Consistent with expectations, unburned samples had a lower mean (±1SD) concentrations for 23 of 30 elements than field-burned samples. For example, barium concentrations ([Ba]) in unburned samples were (708±37μg/g), 16% lower than field-burned [Ba] (841±7 μg/g). Simulated burning yielded smaller [Ba] (732±9 μg/g). Of the 30 trace metals examined, barium explained the greatest fraction of variance in post-burn LOI (R2 =0.79); gallium explained slightly less variance (R2=0.67). Our results document the promise of post-burn soil geochemistry to indicate soil burn severity, which could complement vegetation-based and remotely sensed indices.

  6. Emissions from Open burning of Used Agricultural Pesticide Containers

    EPA Science Inventory

    Emissions from simulated open burning of used agricultural pesticide containers were sampled for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), polycyclic aromatic hydrocarbon compounds (PAHs), and particle matter (PM10 and PM2.5). Clean high density polyethyl...

  7. Simulated biologic intelligence used to predict length of stay and survival of burns.

    PubMed

    Frye, K E; Izenberg, S D; Williams, M D; Luterman, A

    1996-01-01

    From July 13, 1988, to May 14, 1995, 1585 patients with burns and no other injuries besides inhalation were treated; 4.5% did not survive. Artificial neural networks were trained on patient presentation data with known outcomes on 90% of the randomized cases. The remaining cases were then used to predict survival and length of stay in cases not trained on. Survival was predicted with more than 98% accuracy and length of stay to within a week with 72% accuracy in these cases. For anatomic area involved by burn, burns involving the feet, scalp, or both had the largest negative effect on the survival prediction. In survivors burns involving the buttocks, transport to this burn center by the military or by helicopter, electrical burns, hot tar burns, and inhalation were associated with increasing the length of stay prediction. Neural networks can be used to accurately predict the clinical outcome of a burn. What factors affect that prediction can be investigated.

  8. Modeling study of biomass burning plumes and their impact on urban air quality; a case study of Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Cuchiara, Gustavo C.; Rappenglück, Bernhard; Angelica Rubio, Maria; Lissi, Eduardo; Gramsch, Ernesto; Garreaud, Rene D.

    2017-04-01

    Wildfires are a significant direct source of atmospheric pollutants; on a global scale biomass burning is believed to be the largest source of primary fine particles in the atmosphere and the second largest source of trace gases after anthropogenic emission sources. During the summer of 2014, an intense forest and dry pasture wildfire occurred nearby the city of Santiago de Chile. The biomass-burning plume was transported towards the metropolitan area of Santiago and exacerbated the air quality in this region. In this study, we investigated this wildfire event using a forward plume-rise and a chemistry (WRF/Chem) simulation. These data sets provided an opportunity to validate a regional air-quality simulation over Santiago, and a unique case to assess the performance of biomass burning plume modeling in complex topography and validated against an established air quality network. The results from both meteorological and air quality models provide insights about the transport of biomass-burning plumes from the wildfire region towards the metropolitan region of Santiago de Chile. We studied a seven-day period between January 01-07, 2014, and the impact of biomass burning plume emissions estimated by Fire Inventory from NCAR version 1 (FINNv1) on the air quality of Santiago de Chile.

  9. Burning plasmas with ultrashort soft-x-ray flashing

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.

    2012-07-01

    Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.

  10. FOREWORD: Workshop on Large Amplitude Waves and Fields in Plasmas, sponsored by the Commission of the European Communities

    NASA Astrophysics Data System (ADS)

    Bingham, R.; De Angelis, U.; Shukla, P. K.; Stenflo, L.

    1990-01-01

    During the last decade considerable progress has been made in the area of nonlinear plasma wave phenomena and their applications. In order to exhibit the present state-of-art in this field, a one-week (22-26 May) workshop on Large Amplitude Waves and Fields was organized at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, during the bi-yearly activity of the Spring College on Plasma Physics (15 May-9 June, 1989). Most of the invited lectures are published in this Topical Issue of Physica Scripta so that scientists working, or who want to enter the field of nonlinear plasma wave theory, can find out what has been achieved and what are the current research trends in this area. The material included here consists of general plasma wave theory, results of computer simulations, and experimental verifications. Without going into any detail, we shall just highlight the topics and the general features of the lectures contained in these proceedings. Various aspects of the excitation, propagation and interaction of nonlinear waves in plasmas are reviewed. Their relevance to plasma-based beat wave accelerators, short pulse laser and particle beam wake-field accelerators, plasma lenses, laser fusion and ionospheric modification experiments is discussed. Some introductory lectures present the general physics of nonlinear plasma waves including the saturation mechanisms and wave breaking conditions for both non-relativistic and relativistic nonlinearities. Three wave and four wave processes which include stimulated Raman, Brillouin and Compton scattering, modulational instabilities, self-focusing and collapse of the waves are discussed, emphasizing the important effects due to the relativistic electron mass variation and ponderomotive force. Detailed numerical studies of the interaction of high frequency plasma waves with low frequency density fluctuations described by the Zakharov equations show the localization of the high frequency field in density cavities and their burn-out resulting in very strong turbulence. Remarkable agreement between the simulations and ionospheric modification experiments have been demonstrated. The articles presented also attempted to correlate the theories of parametric instabilities with experimental observations. The properties of plasma lenses used for focusing of high energy particle beams is also presented as part of the uses of the nonlinear plasmas. Self-organisation of plasmas resulting in coherent nonlinear structures and particle diffusion processes are reported. On the experimental side the nonlinear optics of plasmas as a new area of research has been reviewed. This is becoming an important area for research since it treats the plasma from the outset as a nonlinear medium. Experimental observations of phase conjugation of electromagnetic signals demonstrate once again the importance of the nonlinearities inherent in the interaction of large amplitude waves with plasmas. Finally the importance of turbulence in space plasmas is emphasized in a discussion of the auroral phenomenon, presenting the plasma physicists point of view on this topic. The workshop, attended by scientists from all over the world, stimulated a great deal of lively discussions about the theoretical foundations, experimental observations and interpretations together with computer simulation results on the physics of nonlinear plasma wave phenomena. The workshop was made possible by the kind support of Professors A Salam, L Bertocchi and M Hassan. We are grateful to them for giving us the opportunity to organize the workshop within the activities of the Spring College on Plasma Physics. Thanks are also due to the ICTP and the European Economic Community (EEC) for providing partial financial support. Finally, our most cordial thanks are extended to the invited speakers for coming to Trieste delivering excellent talks and enhancing the activity of the Spring College.

  11. Kinetic simulation of hydrodynamic equivalent capsule implosions

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Le, Ari; Schmitt, Mark; Herrmann, Hans

    2016-10-01

    We have carried out simulations of direct-drive hydrodynamic equivalent capsule implosion experiments conducted on Omega laser facility at the Laboratory of Laser Energetics of the University of Rochester. The capsules had a glass shell (SiO2) 4.87 μm with an inner diameter of 1086 μm. One was filled with deuterium (D) and tritium (T) at 6.635 and 2.475 atmospheric pressure respectively. The other capsule with D, T, and He-3 at 2.475, 2.475, and 5.55 atmospheric pressure respectively. The capsules were imploded with 60 laser beams with a square pulse length of 0.6ns of total energy of 15.6 kJ. One-dimensional radiation hydrodynamic calculations with HYDRA and kinetic particle/hybrid simulations with LSP are carried out for the post-shot analysis. HYDRA outputs at 0.6ns are linked to LSP, in which the electrons are treated as a fluid while all the ion dynamics is simulated by the standard particle-in-cell technique. Additionally, simulations with the new photon package in LSP are initiated at the beginning of the implosion to include the implosion phase of the capsule. The simulation results of density, temperature, and velocity profiles of the electrons, D, T, He-3, and SiO2species are compared with HYDRA. Detail comparisons among the kinetic simulations, rad-hydro simulations, and experimental results of neutron yield, yield ratio, fusion burn histories, and shell convergence will be presented to assess plasma kinetic effects. Work performed under the auspices of the US DOE by the Los Alamos National Laboratory under Contract No. W7405-ENG-36.

  12. Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.

    2013-08-01

    A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 μm diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.

  13. Parecoxib Reduces Systemic Inflammation and Acute Lung Injury in Burned Animals with Delayed Fluid Resuscitation

    PubMed Central

    Chong, Si Jack; Wu, Jian; Lu, Jia; Moochhala, Shabbir M.

    2014-01-01

    Burn injuries result in the release of proinflammatory mediators causing both local and systemic inflammation. Multiple organ dysfunctions secondary to systemic inflammation after severe burn contribute to adverse outcome, with the lungs being the first organ to fail. In this study, we evaluate the anti-inflammatory effects of Parecoxib, a parenteral COX-2 inhibitor, in a delayed fluid resuscitation burned rat model. Anaesthetized Sprague Dawley rats were inflicted with 45% total body surface area full-thickness scald burns and subsequently subjected to delayed resuscitation with Hartmann's solution. Parecoxib (0.1, 1.0, and 10 mg/kg) was delivered intramuscularly 20 min after injury followed by 12 h interval and the rats were sacrificed at 6 h, 24 h, and 48 h. Burn rats developed elevated blood cytokines, transaminase, creatinine, and increased lung MPO levels. Animals treated with 1 mg/kg Parecoxib showed significantly reduced plasma level of CINC-1, IL-6, PGEM, and lung MPO. Treatment of 1 mg/kg Parecoxib is shown to mitigate systemic and lung inflammation without significantly affecting other organs. At present, no specific therapeutic agent is available to attenuate the systemic inflammatory response secondary to burn injury. The results suggest that Parecoxib may have the potential to be used both as an analgesic and ameliorate the effects of lung injury following burn. PMID:24579056

  14. Monitoring and treatment of coagulation abnormalities in burn patients. an international survey on current practices

    PubMed Central

    Lavrentieva, A.; Depetris, N.; Kaimakamis, E.; Berardino, M.; Stella, M.

    2016-01-01

    Summary The magnitude of coagulation abnormalities, and the definition and treatment of coagulopathy in burn patients are inadequately understood and continue to be discussed in the literature. We aimed to analyse physicians’ views on monitoring and treating coagulation abnormalities in burn patients. A total of 350 questionnaires were distributed electronically to burn ICU physicians. Participation was voluntary and anonymous. Responses were analysed electronically and comparisons were made according to the region of the ICU or the specialty of the physician. Of the 350 questionnaires distributed, 55 (15.7%) were returned. The majority of burn specialists consider sepsis-induced coagulopathy to be the most frequent coagulopathy in burn patients, and 74.5% declare that they do not use any specific definition/scoring system in their department to detect coagulopathy. The majority of specialists (70.8%) use standard coagulation tests. The most frequent indications for plasma transfusion are massive bleeding (32.8%) and Disseminated Intravascular Coagulation syndrome treatment (20%). The main specific factors reported in our study are cryoprecipitate (23.2%) and fibrinogen concentrate (18.9%). 21.1% of respondents state that they do not use any specific coagulation factor substitution in burn patients. Specific coagulation factor substitution is not a routine practice. The low response rate precludes the generalization of our results. PMID:28149244

  15. Phase space effects on fast ion transport modeling in tokamaks

    NASA Astrophysics Data System (ADS)

    Podesta, Mario

    2015-11-01

    Simulations of burning plasmas require a consistent treatment of energetic particles (EP), possibly including the effects of instabilities. Reduced EP transport models are emerging as an effective tool to account for those effects in long time-scale simulations. Available models essentially differ for the main transport drive, which is associated to gradients in real or phase space. It is crucial to assess to what extent those different assumptions affect computed quantities such as EP profile, Neutral Beam (NB) driven current and energy/momentum transfer to the thermal populations. These issues are investigated through a kick model, which includes modifications of the EP distribution by instabilities in real and velocity space. TRANSP simulations including the kick model are applied to NB-heated NSTX discharges featuring unstable toroidal Alfvén eigenmodes (TAEs). Results show that TAEs mainly affect fast ions with large parallel velocity, i.e. the most effective for NB current drive. Other portions of the EP distribution are nearly unperturbed. Core NB driven current decreases by 10-30%, with even larger relative changes toward the plasma edge. When TAEs evolve in so-called avalanches, the model reproduces measured drops of ~ 10% in the neutron rate. Consistently with previous results, the drop is caused by both EP energy loss and EP redistribution. These results are compared to those from a simple diffusive model and a ``critical gradient'' model, which postulates radial EP gradient as the only transport drive. The importance of EP velocity space modifications is discussed in terms of accuracy of the predictions, with emphasis on Neutral Beam driven current. Work supported by U.S. DOE Contract DE-AC02-09CH11466.

  16. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these results suggest that besides minimizing biomass burning activities, an effective air pollution mitigation policy for Southeast Asia needs to consider controlling emissions from non-fire anthropogenic sources.

  17. Improving the fuel economy of stoichiometrically fueled S.I. engines by means of EGR and enhanced ignition -- A comparison of gasoline, methanol and natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neame, G.R.; Gardiner, D.P.; Mallory, R.W.

    1995-12-31

    This paper describes an experimental study in which the potential for fuel economy improvements with EGR was investigated using an automotive V6 engine. Steady state engine dynamometer tests were run at 2,000 rpm and 200 kPa Brake Mean Effective Pressure (BMEP). The engine was fueled with gasoline, methanol or natural gas. Plasma jet ignition was evaluated as a means of improving EGR tolerance. EGR tolerance with methanol was found to be better than with gasoline, while natural gas showed the poorest EGR tolerance. Plasma jet ignition extended EGR limits for all three fuels. Fuel economy benefits were realized with naturalmore » gas and gasoline at low EGR rates and without EGR but plasma jet ignition provided no improvements with methanol until over 10% EGR was used. Plasma jet ignition made stable operation possible with methanol at 40% EGR, where fuel economy improvements were ultimately limited by the slow burning associated with the high EGR rate. Both slow burning and high cyclic variation affected gasoline at high EGR rates, while stability limits to spark advance with natural gas caused fuel economy to degrade at relatively low EGR rates.« less

  18. Ozone budget over the Amazon - Regional effects from biomass-burning emissions

    NASA Technical Reports Server (NTRS)

    Richardson, Jennifer L.; Fishman, Jack; Gregory, Gerald L.

    1991-01-01

    Data from the NASA dry-season Amazon boundary layer experiment (ABLE2A) is used with a 1D tropospheric photochemical model to analyze the atmospheric chemistry in the region and determine the impact of the long-range transport of biomass-burning emissions. Inputs of surface sources and the deposition of various species measured during ABLE2A are employed to simulate the background atmosphere, and haze characteristics are introduced for a 12-hr simulation. The in situ ozone production rate doubles during the period of haze when hydrocarbons are present. The model predicts that the production of ozone is enhanced during the dry season, and that increased ozone during the southern tropical burning season is related to the regional transport of haze.

  19. PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine

    NASA Astrophysics Data System (ADS)

    D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.

    2012-04-01

    PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three-dimensional graphical representation of the Italian territory within NAZCA. The other simulation parameters, namely wind speed and direction, number of simulations, computing grid size and temporal resolution, can be selected from within the program interface. The output of the simulation is showed in real-time during the simulation, and are also available off-line and on the DEWETRA system, a Web GIS-based system for environmental risk assessment, developed according to OGC-INSPIRE standards. The model execution is very fast, providing a full prevision for the scenario in few minutes, and can be useful for real-time active fire management and suppression.

  20. EMISSIONS FROM BURNING CABINET MAKING SCRAPS

    EPA Science Inventory

    The report gives results of an initial determination of differences in missions when burning ordinary cordwood compared to kitchen cabinet making scraps. he tests were performed in an instrumented woodstove testing laboratory on a stove that simulated units observed in use at a k...

  1. Neuromuscular pharmacodynamics of mivacurium in adults with major burns.

    PubMed

    Han, T-H; Martyn, J A J

    2011-05-01

    Mivacurium is metabolized by plasma pseudocholinesterase (PChE) enzyme, which is decreased in burns. We tested whether the decreased metabolism of mivacurium due to decreased PChE activity can overcome the pharmacodynamic resistance to non-depolarizing relaxants previously seen in major burns. Thirty adults with 35 (13)% [mean (sd)] burn were studied at 5-91 post-burn days and 31 non-burns matched controls. Mivacurium 0.2 mg kg(-1) was administered as a single bolus. Neuromuscular block was monitored with single-twitch response using TOF-Watch™. Onset time (drug administration to maximal twitch suppression) and spontaneous recovery were measured. Onset time was significantly prolonged in burns when compared with non-burns (115 vs 90 s; P<0.001). The PChE levels were lower in burns [1432 (916) vs 2866 (731) IU litre(-1); P<0.001] and the neuromuscular recovery to 50% of baseline twitch height was prolonged in burns (41 vs 26 min; P<0.001). There was a significant correlation between PChE and time to 50% recovery for the whole group together (r=-0.6; P<0.001). The dibucaine numbers were not different. The prolonged onset time suggests resistance to neuromuscular effects, whereas the prolonged recovery suggests increased sensitivity. This divergent response can be explained by qualitative and quantitative changes in acetylcholine receptor expression causing resistance and decreased PChE activity causing sensitivity. Despite using a relatively large dose of mivacurium (0.2 mg kg(-1)) in the presence of decreased PChE levels, this did not overcome the resistance resulting from up-regulated receptors.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  3. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    PubMed

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  4. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.

    2017-12-01

    Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.

  5. Alpha particle effects in burning tokamak plasmas: overview and specific examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigmar, D.J.

    1986-07-01

    Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between ..cap alpha..-power driven sawtoothing and idealmore » MHD stability, and direct ..cap alpha..-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional ..cap alpha..-transport including the ambipolar electric field are discussed.« less

  6. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  7. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.

    2013-05-01

    More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.

  8. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory

    USGS Publications Warehouse

    Wieting, Celeste; Ebel, Brian A.; Singha, Kamini

    2017-01-01

    Study regionThis study used intact soil cores collected at the Boulder Creek Critical Zone Observatory near Boulder, Colorado, USA to explore fire impacts on soil properties.Study focusThree soil scenarios were considered: unburned control soils, and low- and high-temperature burned soils. We explored simulated fire impacts on field-saturated hydraulic conductivity, dry bulk density, total organic carbon, and infiltration processes during rainfall simulations.New hydrological insights for the regionSoils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.

  9. The effects of hillslope-scale variability in burn severity on post-fire sediment delivery

    NASA Astrophysics Data System (ADS)

    Quinn, Dylan; Brooks, Erin; Dobre, Mariana; Lew, Roger; Robichaud, Peter; Elliot, William

    2017-04-01

    With the increasing frequency of wildfire and the costs associated with managing the burned landscapes, there is an increasing need for decision support tools that can be used to assess the effectiveness of targeted post-fire management strategies. The susceptibility of landscapes to post-fire soil erosion and runoff have been closely linked with the severity of the wildfire. Wildfire severity maps are often spatial complex and largely dependent upon total vegetative biomass, fuel moisture patterns, direction of burn, wind patterns, and other factors. The decision to apply targeted treatment to a specific landscape and the amount of resources dedicated to treating a landscape should ideally be based on the potential for excessive sediment delivery from a particular hillslope. Recent work has suggested that the delivery of sediment to a downstream water body from a hillslope will be highly influenced by the distribution of wildfire severity across a hillslope and that models that do not capture this hillslope scale variability would not provide reliable sediment and runoff predictions. In this project we compare detailed (10 m) grid-based model predictions to lumped and semi-lumped hillslope approaches where hydrologic parameters are fixed based on hillslope scale averaging techniques. We use the watershed scale version of the process-based Watershed Erosion Prediction Projection (WEPP) model and its GIS interface, GeoWEPP, to simulate the fire impacts on runoff and sediment delivery using burn severity maps at a watershed scale. The flowpath option in WEPP allows for the most detail representation of wildfire severity patterns (10 m) but depending upon the size of the watershed, simulations are time consuming and computational demanding. The hillslope version is a simpler approach which assigns wildfire severity based on the severity level that is assigned to the majority of the hillslope area. In the third approach we divided hillslopes in overland flow elements (OFEs) and assigned representative input values on a finer scale within single hillslopes. Each of these approaches were compared for several large wildfires in the mountainous ranges of central Idaho, USA. Simulations indicated that predictions based on lumped hillslope modeling over-predict sediment transport by as much as 4.8x in areas of high to moderate burn severity. Annual sediment yield within the simulated watersheds ranged from 1.7 tonnes/ha to 6.8 tonnes/ha. The disparity between simulated sediment yield with these approaches was attributed to hydrologic connectivity of the burn patterns within the hillslope. High infiltration rates between high severity sites can greatly reduce the delivery of sediment. This research underlines the importance of accurately representing soil burn severity along individual hillslopes in hydrologic models and the need for modeling approaches to capture this variability to reliability simulate soil erosion.

  10. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    DOE PAGES

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  11. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  12. PCDD/F EMISSIONS FROM BURNING WHEAT AND RICE FIELD RESIDUE

    EPA Science Inventory

    The paper presents the first known values for emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) from combustion of agricultural field biomass. Wheat and rice straw stubble collected from two western U.S. states were tested in a field burn simulation to dete...

  13. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  14. Ignition and pusher adiabat

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.

    2018-07-01

    In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.

  15. EU Development of High Heat Flux Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Lorenzetto, P.; Majerus, P.

    2005-04-15

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm{sup -2}, off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scalemore » of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads.« less

  16. Properties of convective oxygen and silicon burning shells in supernova progenitors

    NASA Astrophysics Data System (ADS)

    Collins, Christine; Müller, Bernhard; Heger, Alexander

    2018-01-01

    Recent 3D simulations have suggested that convective seed perturbations from shell burning can play an important role in triggering neutrino-driven supernova explosions. Since isolated simulations cannot determine whether this perturbation-aided mechanism is of general relevance across the progenitor mass range, we here investigate the pertinent properties of convective oxygen and silicon burning shells in a broad range of pre-supernova stellar evolution models. We find that conditions for perturbation-aided explosions are most favourable in the extended oxygen shells of progenitors between about 16 and 26 solar masses, which exhibit large-scale convective overturn with high convective Mach numbers. Although the highest convective Mach numbers of up to 0.3 are reached in the oxygen shells of low-mass progenitors, convection is typically dominated by small-scale modes in these shells, which implies a more modest role of initial perturbations in the explosion mechanism. Convective silicon burning rarely provides the high Mach numbers and large-scale perturbations required for perturbation-aided explosions. We also find that about 40 per cent of progenitors between 16 and 26 solar masses exhibit simultaneous oxygen and neon burning in the same convection zone as a result of a shell merger shortly before collapse.

  17. Comparison of GFED3, QFED2 and FEER1 Biomass Burning Emissions Datasets in a Global Model

    NASA Technical Reports Server (NTRS)

    Pan, Xiaohua; Ichoku, Charles; Bian, Huisheng; Chin, Mian; Ellison, Luke; da Silva, Arlindo; Darmenov, Anton

    2015-01-01

    Biomass burning contributes about 40% of the global loading of carbonaceous aerosols, significantly affecting air quality and the climate system by modulating solar radiation and cloud properties. However, fire emissions are poorly constrained in models on global and regional levels. In this study, we investigate 3 global biomass burning emission datasets in NASA GEOS5, namely: (1) GFEDv3.1 (Global Fire Emissions Database version 3.1); (2) QFEDv2.4 (Quick Fire Emissions Dataset version 2.4); (3) FEERv1 (Fire Energetics and Emissions Research version 1.0). The simulated aerosol optical depth (AOD), absorption AOD (AAOD), angstrom exponent and surface concentrations of aerosol plumes dominated by fire emissions are evaluated and compared to MODIS, OMI, AERONET, and IMPROVE data over different regions. In general, the spatial patterns of biomass burning emissions from these inventories are similar, although the strength of the emissions can be noticeably different. The emissions estimates from QFED are generally larger than those of FEER, which are in turn larger than those of GFED. AOD simulated with all these 3 databases are lower than the corresponding observations in Southern Africa and South America, two of the major biomass burning regions in the world.

  18. Accuracy of real time radiography burning rate measurement

    NASA Astrophysics Data System (ADS)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  19. The investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.; Faeth, G. M.

    1973-01-01

    The combustion and evaporation of liquid fuels at high pressures were investigated. Particular emphasis was placed on conditions where the liquid surface approaches the thermodynamic critical point during combustion. The influence of transient effects on a burning liquid fuel was also investigated through both analysis and measurements of the response of liquid monopropellant combustion to imposed pressure oscillations. Work was divided into four phases (1) Droplet combustion at high pressures, which consider both measurement and analysis of the porous sphere burning rate of liquids in a natural convection environment at elevated pressure. (2) High pressure droplet burning in combustion gases, which involved steady burning and evaporation of liquids from porous spheres in a high pressure environment that simulates actual combustion chamber conditions. (3) Liquid strand combustion, which considered the burning rate, the state of the liquid surface and the liquid phase temperature distribution of a burning liquid monopropellant column over a range of pressures. (4) Oscillatory combustion, which was a theoretical and experimental investigation of the response of a burning liquid monopropellant to pressure oscillations.

  20. Measurement of Solid Rocket Propellant Burning Rate Using X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Denny, Matthew D.

    The burning rate of solid propellants can be difficult to measure for unusual burning surface geometries, but X-ray imaging can be used to measure burning rate. The objectives of this work were to measure the baseline burning rate of an electrically-controlled solid propellant (ESP) formulation with real-time X-ray radiography and to determine the uncertainty of the measurements. Two edge detection algorithms were written to track the burning surface in X-ray videos. The edge detection algorithms were informed by intensity profiles of simulated 2-D X-ray images. With a 95% confidence level, the burning rates measured by the Projected-Slope Intersection algorithm in the two combustion experiments conducted were 0.0839 in/s +/-2.86% at an average pressure of 407 psi +/-3.6% and 0.0882 in/s +/-3.04% at 410 psi +/-3.9%. The uncertainty percentages were based on the statistics of a Monte Carlo analysis on burning rate.

  1. Solid rocket motor fire tests: Phases 1 and 2

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.

    2002-01-01

    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General Purpose Heat Sources (GPHS) and Radioisotope Heater Units (RHU). Follow-on Phase 3 tests burning propellant blocks up to 90 kg will be briefly described. .

  2. MHD modeling of DIII-D QH-mode discharges and comparison to observations

    NASA Astrophysics Data System (ADS)

    King, Jacob

    2016-10-01

    MHD modeling of DIII-D QH-mode discharges and comparison to observations Nonlinear NIMROD simulations, initialized from a reconstruction of a DIII-D QH-mode discharge with broadband MHD, saturate into a turbulent state, but do not saturate when flow is not included. This is consistent with the experimental results of the quiescent regime observed on DIII-D with broadband MHD activity [Garofalo et al., PoP (2015) and refs. within]. These ELM-free discharges have the normalized pedestal-plasma confinement necessary for burning-plasma operation on ITER. Relative to QH-mode operation with more coherent MHD activity, operation with broadband MHD tends to occur at higher densities and lower rotation and thus may be more relevant to ITER. The nonlinear NIMROD simulations require highly accurate equilibrium reconstructions. Our equilibrium reconstructions include the scrape-off-layer profiles and the measured toroidal and poloidal rotation profiles. The simulation develops into a saturated turbulent state and the n=1 and 2 modes become dominant through an inverse cascade. Each toroidal mode in the range of n=1-5 is dominant at a different time. The perturbations are advected and sheared apart in the counter-clockwise direction consistent with the direction of the poloidal flow inside the LCFS. Work towards validation through comparison to magnetic coil and Doppler reflectometry measurements is presented. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the phase of the density and temperature perturbations differ resulting in greater convective particle transport relative to the convective thermal transport. This work supported by the U.S. Department of Energy Office of Science and the SciDAC Center for Extended MHD Modeling under Contract Numbers DE-FC02-06ER54875, DE-FC02-08ER54972 and DE-FC02-04ER54698.

  3. Transport of Cs-137 from Boreal Biomass Burning in Summer of 2010

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Ott, Lesley; Nielsen, Eric; Pawson, Steven

    2010-01-01

    The summer of 2010 was a severe fire season in western Russia. Wildfires were detected in the Bryansk region, raising concerns that radionuclide contamination from the Chernobyl accident could be resuspended in the atmosphere. We simulate the transport of passive and particulate tracers of biomass burning from this region using the GEOS5 GOCART model driven by assimilated meteorology. Biomass burning emissions are based on MODIS fire detections. We validate the model against aerosol optical depth from MODIS. Using a range of estimates for Cs-137 emissions during wildfires, we estimate the downwind concentration and deposition of Cs-137 based on the emission ratios of Cs-137 to the simulated tracers. We discuss the sensitivity of our results to the location of the fires and the fraction of Cs-137 resuspended.

  4. Hydrogen and helium shell burning during white dwarf accretion

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  5. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  6. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE PAGES

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.; ...

    2016-06-01

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  7. Space plasma simulations; Proceedings of the Second International School for Space Simulations, Kapaa, HI, February 4-15, 1985. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M. (Editor); Dutton, D. A. (Editor)

    1985-01-01

    Space plasma simulations, observations, and theories are discussed. Papers are presented on the capabilities of various types of simulation codes and simulation models. Consideration is given to plasma waves in the earth's magnetotail, outer planet magnetosphere, geospace, and the auroral and polar cap regions. Topics discussed include space plasma turbulent dissipation, the kinetics of plasma waves, wave-particle interactions, whistler mode propagation, global energy regulation, and auroral arc formation.

  8. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.

    1972-01-01

    Fuel droplets were simulated by porous spheres having diameters in the range 0.63 to 1.9 cm and combustion tests were conducted at pressures up to 78 atm in a quiescent cold air environment. Measurements were made of the burning rate and liquid surface temperature during steady combustion. A high pressure flat flame burner apparatus is under development in order to allow testing of high pressure droplet burning in a combustion gas environment. Work was continued on the high pressure strand combustion characteristics of liquid fuels, with the major emphasis on hydrazine. Data was obtained on the burning rate and liquid surface temperatures at pressures in the range 7 to 500 psia. The response of a burning liquid monopropellant to imposed pressure oscillations is being investigated.

  9. Measuring Fluxes Of Heat To A Plasma-Arc Anode

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Menart, James A.; Pfender, Emil; Heberlein, Joachim

    1995-01-01

    Three probes constructed to provide measurements indicative of conductive, convective, and radiative transfer of heat from free-burning plasma arc to water-cooled copper anode used in generating arc. Each probe consists mainly of copper body with two thermocouples embedded at locations 4 mm apart along length. Thermocouples provide measure of rate of conduction of heat along probe and transfers of heat from plasma to sensing surface at tip of probe. Probes identical except sensing surface of one uncoated and other two coated with different materials to make them sensitive to different components of overall flux of heat.

  10. Sawtooth pacing by real-time auxiliary power control in a tokamak plasma.

    PubMed

    Goodman, T P; Felici, F; Sauter, O; Graves, J P

    2011-06-17

    In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

  11. Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China

    NASA Astrophysics Data System (ADS)

    Yao, Huan; Song, Yu; Liu, Mingxu; Archer-Nicholls, Scott; Lowe, Douglas; McFiggans, Gordon; Xu, Tingting; Du, Pin; Li, Jianfeng; Wu, Yusheng; Hu, Min; Zhao, Chun; Zhu, Tong

    2017-04-01

    East China experiences extensive crop residue burnings in fields during harvest season. The direct radiative effect (DRE) of carbonaceous aerosols from crop residue burning in June 2013 in East China was investigated using the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). Absorption of organic aerosol (OA) in the presence of brown carbon was considered using the parameterization of Saleh et al. (2014), in which the imaginary part of the OA refractive index is a function of wavelength and the ratio of black carbon (BC) and OA. The carbonaceous emissions from crop fires were estimated using the Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) product with a localized crop-burning-sourced BC-to-organic carbon (OC) ratio emission ratio of 0.27. Evaluation of the model results with in situ measurements of particulate matter with aerodynamic diameter less than 2.5 µm (PM2. 5) chemical composition, MODIS aerosol optical depth (AOD) detections and meteorological observations showed that this model was able to reproduce the magnitude, spatial variation and optical characteristics of carbonaceous aerosol pollution. The observed BC and OC peak concentrations at the site in Suixi, Anhui province, during the 2013 wheat burning season reached 55.3 µg m-3 and 157.9 µg m-3. WRF-Chem simulations reproduced these trends with a correlation coefficient of 0.74, estimating that crop residue burning contributed 86 and 90 % of peak BC and OC, respectively. The simulated hourly DRE from crop residue burning at the top of atmosphere (TOA) reached a maximum of +22.66 W m-2 at the Suixi site. On average, the simulations showed that the crop residue burning introduced a net positive DRE of +0.14 W m-2 at TOA throughout East China, with BC from this source as the main heating contributor (+0.79 W m-2). The OA DRE from crop burning (-0.22 W m-2) was a combined effect of the positive DRE of absorption (+0.21 W m-2) and a stronger negative DRE of scattering (-0.43 W m-2). Sensitivity tests showed that the DRE of OA absorption strongly depended on the imaginary part of the OA refractive index, the BC-to-OA emission ratio from crop residue burning and the assumed mixing state of the aerosol, whereby the volume mixing treatment resulted in a higher positive DRE compared to the core-shell treatment. The BC mixing state and associated absorption enhancement during BC aging processes will be investigated in detail in future research.

  12. Use of albumin as a risk factor for hospital mortality among burn patients in Brazil: non-concurrent cohort study.

    PubMed

    Caleman, Gilson; Morais, José Fausto de; Puga, Maria Eduarda Dos Santos; Riera, Rachel; Atallah, Alvaro Nagib

    2010-01-01

    among burn patients, it is common to use colloidal substances under the justification that it is necessary to correct the oncotic pressure of the plasma, thereby reducing the edema in the burnt area and the hypotension. The aim here was to assess the risk of hospital mortality, comparing the use of albumin and crystalloid solutions for these patients. non-concurrent historical cohort study at Faculdade de Medicina de Marília; within the Postgraduate program on Internal and Therapeutic Medicine, Universidade Federal de São Paulo; and at the Brazilian Cochrane Center. burn patients hospitalized between 2000 and 2001, with registration in the Hospital Information System, who received albumin, were compared with those who received other types of volume replacement. The primary outcome was the hospital mortality rate. The data were collected from files within the Datasus software. 39,684 patients were included: 24,116 patients with moderate burns and 15,566 patients with major burns. Among the men treated with albumin, the odds ratio for the risk of death was 20.58 (95% confidence interval, CI: 11.28-37.54) for moderate burns and 6.24 (CI 5.22-7.45) for major burns. Among the women, this risk was 40.97 for moderate burns (CI 21.71-77.30) and 7.35 for major burns (CI 5.99-9.01). The strength of the association between the use of albumin and the risk of death was maintained for the other characteristics studied, with statistical significance. the use of albumin among patients with moderate and major burns was associated with considerably increased mortality.

  13. Simulations of dusty plasmas using a special-purpose computer system designed for gravitational N-body problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, K.; Mizuno, Y.; Hibino, S.

    2006-01-15

    Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{supmore » 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.« less

  14. Pesticides released from burning treated wood

    Treesearch

    Charles K. McMahon; H.B. Clements; P.B. Bush; D.G. Neary; J.W. Taylor

    1985-01-01

    Abstract. Demands for firewood are high and rising, and pesticide-treated trees are often an obvious source. Wood treated with five herbicides (2,4-D, picloram, hexazinone, dicamba, and dichloroprop) and two insecticides (lindane and chlorpyrifos) were burned under controlled combustion conditions in a horizontal tube furnace to simulate the wide...

  15. Impact of Wildland Fire Emission on PM2.5 & Ozone in a Five-year CMAQ Simulation

    EPA Science Inventory

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. Two components of the biomass burning inventory, wildfires and prescribed fires are routinely estimated in the national emissio...

  16. Modeling crop residue burning experiments and assessing the fire impacts on air quality

    EPA Science Inventory

    Prescribed burning is a common land management practice that results in ambient emissions of a variety of primary and secondary pollutants with negative health impacts. The community Multiscale Air Quality (CMAQ) model is used to conduct 2 km grid resolution simulations of prescr...

  17. EVALUATION OF EMISSIONS FROM THE OPEN BURNING OF HOUSEHOLD WASTE IN BARRELS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a detailed emissions characterization study undertaken to examine, characterize, and quantify emissions from the simulated burning of household waste in barrels. The study evaluated two waste streams: that of an avid recycler, who removed most of the r...

  18. EVALUATION OF EMISSIONS FROM THE OPEN BURNING OF HOUSEHOLD WASTES IN BARRELS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a detailed emissions characterization study undertaken to examine, characterize, and quantify emissions from the simulated burning of household waste in barrels. The study evaluated two waste streams: that of an avid recycler, who removed most of the r...

  19. Regional variation of carbonaceous aerosols from space and simulations

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal effect on carbonaceous aerosols. And then the selected data observed by ADEOS-2/GLI and POLDER in 2003 are treated by using Vector form Method of Successive Order of Scattering (VMSOS) for radiative transfer simulations in the semi-infinite atmosphere [2]. Finally the obtained optical properties of the carbonaceous aerosols are investigated in comparison with the numerical model simulations of SPRINTARS. In spite of the limited case studies, it has been pointed out that NUV-channel data are effective for retrieval of the carbonaceous aerosol properties. Therefore we have to treat with this issue for not only detection of biomass burning plume but also retrieval itself. If that happens, synthetic analysis based on multi-channel and/or polarization measurements become practical, and the proposed procedure and results are available for a feasibility study of coming space missions. [1] Sano, I., Y. Okada, M. Mukai and S. Mukai, "Retrieval algorithm based on combined use of POLDER and GLI data for biomass aerosols," J. RSSJ, vol. 29, no. 1, pp. 54-59, doi:10.11440/rssj.29.54, 2009. [2] Mukai, S., M. Nakata, M. Yasumoto, I. Sano and A. Kokhanovsky, "A study of aerosol pollution episode due to agriculture biomass burning in the east-central China using satellite data," Front. Environ. Sci., vol. 3:57, doi: 10.3389/fenvs.2015.00057, 2015.

  20. The Ignition Requirements of the Degeneracy Microspheres of Deuterium Helium-3 Mixture with Low-Radioactive

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2012-08-01

    This paper examines the burn characteristics for inertial confinement D/3 He fuel pellets with different concentrations of Helium-3. It is shown that the Helium-3 relative density of the fuel mixture plays a significant role in determining the burn characteristics and fuel gain. In spite of the safety of the plasma degeneracy of D/3 He fuel with fraction of y = 0.2 (y: Helium-3 content parameter), ignition of fuel is impossible. In design fuel extra to safety should be considered fractional burn-up and fuel gain. The main contribution of this research is to show that the plasma degeneracy of equimolar mixture of D/3 He fuel lowers the ignition temperature and increases fuel gain. The results indicate that a ≤ 0.3 is difficult to ignite reasonable driver energy. A fuel gain of 378 can be obtained with a D/3 He fuel with fraction of y = 0.33, and areal density (ρ R) of 12 g/cm2. It is found that the fuel gain of an equimolar D/3 He fuel at temperature of 70 keV and ρ R value of 8.5 g/cm2 is 480. This value gain is higher by about 22% than the case of the pellets (y = 0.33).

  1. Engineering of the `PCAST machine`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, J.; Brooks, A.; Brown, T.

    The President`s Committee of Advisors on Science and Technology (PCAST) has suggested that a device with a mission of ignition and moderate burn time could address the physics of burning plasmas at a lesser cost than ITER with its more comprehensive physics and technology mission. The Department of Energy commissioned a study to explore this PCAST suggestion. This paper describes the results of the engineering portion of the study of this `PCAST Machine;` physics is covered in a companion paper authored by G.H. Neilson, et al; and the costs are covered in a companion paper by R.T. Simmons, et al.more » Both are published in the proceedings of this conference. The study was undertaken by a team under the direction of Bruce Montgomery that included representatives from MIT, PPPL, ORNL, LLNL, GA, Northrup-Grumman, and Stone and Webster. The performance requirements for the PCAST machine are to form and sustain a burning plasma for three helium accumulation times. The philosophy adopted for this design was to achieve the required performance at lower cost by decreasing the major radius to five meters, increasing the toroidal field to 7 tesla, and using stronger shaping. The major device parameters are given. 4 refs., 4 figs., 1 tab.« less

  2. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  3. Insights into the physico-chemical evolution of pyrogenic organic carbon emissions from biomass burning using coupled Lagrangian-Eulerian simulations

    NASA Astrophysics Data System (ADS)

    Suciu, L. G.; Griffin, R. J.; Masiello, C. A.

    2017-12-01

    Wildfires and prescribed burning are important sources of particulate and gaseous pyrogenic organic carbon (PyOC) emissions to the atmosphere. These emissions impact atmospheric chemistry, air quality and climate, but the spatial and temporal variabilities of these impacts are poorly understood, primarily because small and fresh fire plumes are not well predicted by three-dimensional Eulerian chemical transport models due to their coarser grid size. Generally, this results in underestimation of downwind deposition of PyOC, hydroxyl radical reactivity, secondary organic aerosol formation and ozone (O3) production. However, such models are very good for simulation of multiple atmospheric processes that could affect the lifetimes of PyOC emissions over large spatiotemporal scales. Finer resolution models, such as Lagrangian reactive plumes models (or plume-in-grid), could be used to trace fresh emissions at the sub-grid level of the Eulerian model. Moreover, Lagrangian plume models need background chemistry predicted by the Eulerian models to accurately simulate the interactions of the plume material with the background air during plume aging. Therefore, by coupling the two models, the physico-chemical evolution of the biomass burning plumes can be tracked from local to regional scales. In this study, we focus on the physico-chemical changes of PyOC emissions from sub-grid to grid levels using an existing chemical mechanism. We hypothesize that finer scale Lagrangian-Eulerian simulations of several prescribed burns in the U.S. will allow more accurate downwind predictions (validated by airborne observations from smoke plumes) of PyOC emissions (i.e., submicron particulate matter, organic aerosols, refractory black carbon) as well as O3 and other trace gases. Simulation results could be used to optimize the implementation of additional PyOC speciation in the existing chemical mechanism.

  4. Impact of biomass burning plume on radiation budget and atmospheric dynamics over the arctic

    NASA Astrophysics Data System (ADS)

    Lisok, Justyna; Pedersen, Jesper; Ritter, Christoph; Markowicz, Krzysztof M.; Malinowski, Szymon; Mazzola, Mauro; Udisti, Roberto; Stachlewska, Iwona S.

    2018-04-01

    The aim of the research was to determine the impact of July 2015 biomass burning event on radiative budget, atmospheric stratification and turbulence over the Arctic using information about the vertical structure of the aerosol load from the ground-based data. MODTRAN simulations indicated very high surface radiative cooling (forcing of -150 Wm-2) and a heating rate of up to 1.8 Kday-1 at 3 km. Regarding LES results, a turbulent layer at around 3 km was clearly seen after 48 h of simulation.

  5. Ozone production potential following convective redistribution of biomass burning emissions

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne

    1992-01-01

    The effects of deep convection on the potential for forming ozone in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud photochemical and dynamic simulations based on observations in the 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. It is seen that there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed hydrocarbons, NO(x), and CO compared to the example of no convection.

  6. Understanding and predicting the dynamics of tokamak discharges during startup and rampdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, G. L.; Politzer, P. A.; Humphreys, D. A.

    Understanding the dynamics of plasma startup and termination is important for present tokamaks and for predictive modeling of future burning plasma devices such as ITER. We report on experiments in the DIII-D tokamak that explore the plasma startup and rampdown phases and on the benchmarking of transport models. Key issues have been examined such as plasma initiation and burnthrough with limited inductive voltage and achieving flattop and maximum burn within the technical limits of coil systems and their actuators while maintaining the desired q profile. Successful rampdown requires scenarios consistent with technical limits, including controlled H-L transitions, while avoiding verticalmore » instabilities, additional Ohmic transformer flux consumption, and density limit disruptions. Discharges were typically initiated with an inductive electric field typical of ITER, 0.3 V/m, most with second harmonic electron cyclotron assist. A fast framing camera was used during breakdown and burnthrough of low Z impurity charge states to study the formation physics. An improved 'large aperture' ITER startup scenario was developed, and aperture reduction in rampdown was found to be essential to avoid instabilities. Current evolution using neoclassical conductivity in the CORSICA code agrees with rampup experiments, but the prediction of the temperature and internal inductance evolution using the Coppi-Tang model for electron energy transport is not yet accurate enough to allow extrapolation to future devices.« less

  7. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    NASA Technical Reports Server (NTRS)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-01-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength of burning aerosol sources. Our previous work (Petrenko et al., 2012) shows that satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the assumed source strength. We now refine the satellite-snapshot method and investigate applying simple multiplicative emission correction factors for the widely used Global Fire Emission Database version 3 (GFEDv3) emission inventory can achieve regional-scale consistency between MODIS AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The model and satellite AOD are compared over a set of more than 900 BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. The AOD comparison presented here shows that regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. Additional analysis of including small fire emission correction shows the complimentary nature of correcting for source strength and adding missing sources, and also indicates that in some regions other factors may be significant in explaining model-satellite discrepancies. This work sets the stage for a larger intercomparison within the Aerosol Inter-comparisons between Observations and Models (AeroCom) multi-model biomass burning experiment. We discuss here some of the other possible factors affecting the remaining discrepancies between model simulations and observations, but await comparisons with other AeroCom models to draw further conclusions.

  8. PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)

    NASA Astrophysics Data System (ADS)

    Garbet, Xavier; Sauter, Olivier

    2012-12-01

    The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012

  9. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  10. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  11. Experimental Constraints on Iron Mobilization into Biomass Burning Aerosols

    NASA Astrophysics Data System (ADS)

    Sherry, A. M.; Romaniello, S. J.; Herckes, P.; Anbar, A. D.

    2017-12-01

    Atmospheric deposition of iron (Fe) can limit marine primary productivity and, therefore, carbon dioxide uptake. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. To address this hypothesis, we collected foliage samples from species representative of several biomes impacted by severe fire events. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from burning biomass, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass vs. entrained soil as a source of trace metals in burn aerosols, we conducted burn experiments using soil-free foliage representative of a variety of fire-impacted ecosystems. The resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on cellulose filters using a high-volume air sampler equipped an all-Teflon impactor. Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using inductively coupled plasma mass spectrometry (ICP-MS). Our results show that 0.06-0.86 % of Fe in plant biomass is likely mobilized as atmospheric aerosols during biomass burning events, depending on the type of foliage. We used these results and estimates of annual global wildfire area to estimate the impact of biomass burning aerosols on total atmospheric Fe flux to the ocean. We estimate that biomass-derived Fe likely contributes 3% of the total soluble Fe flux from aerosols. Prior studies, which implicitly included both biomass and soil-derived Fe, concluded that biomass burning contributed as much as 7% of the total marine soluble Fe flux from aerosols. Together, these studies suggest that biomass and fire-entrained soil probably contribute equally to the total fire-derived Fe aerosol flux. Further study of solubility differences between plant- and soil-derived Fe is needed to improve estimates of the soluble Fe contribution from biomass burning to the marine soluble Fe flux.

  12. Numerical Simulation of Turbulent Combustion Using Vortex Methods

    DTIC Science & Technology

    1988-09-27

    laminar burning velocity times the flame length measured along the line of maximum reaction rate. Following the burning of the eddy core, the strain...is approximately the same as the flame length at t - 0. In the second stage, and as the eddy starts to roll up, the flame front forms a fold within the...Rp, which is the slope of the curve in Fig. 9, can be approximated by the product of the flame length times the average burning velocity along the

  13. Combustion in an acceleration field: A survey of Soviet literature

    NASA Technical Reports Server (NTRS)

    Radloff, S. J.; Osborn, J. R.

    1980-01-01

    The effect of an acceleration field on the burning rate of a solid propellant was measured from -900g's to +1000g's using both double base and ammonium perchlorate based propellants. The acceleration fields were simulated using a centrifuge device and the burning rate was recorded. Both metalized and non-metalized variations of each propellant were tested and it was found that acceleration fields affect the burning rate. For the most part the theoretical predictions and the experimental results agreed.

  14. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    USGS Publications Warehouse

    Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S.

    2011-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.

  15. Merging-compression formation of high temperature tokamak plasma

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.; Sykes, A.

    2017-07-01

    Merging-compression is a solenoid-free plasma formation method used in spherical tokamaks (STs). Two plasma rings are formed and merged via magnetic reconnection into one plasma ring that then is radially compressed to form the ST configuration. Plasma currents of several hundred kA and plasma temperatures in the keV-range have been produced using this method, however until recently there was no full understanding of the merging-compression formation physics. In this paper we explain in detail, for the first time, all stages of the merging-compression plasma formation. This method will be used to create ST plasmas in the compact (R ~ 0.4-0.6 m) high field, high current (3 T/2 MA) ST40 tokamak. Moderate extrapolation from the available experimental data suggests the possibility of achieving plasma current ~2 MA, and 10 keV range temperatures at densities ~1-5  ×  1020 m-3, bringing ST40 plasmas into a burning plasma (alpha particle heating) relevant conditions directly from the plasma formation. Issues connected with this approach for ST40 and future ST reactors are discussed

  16. Implementation of a plasma-neutral model in NIMROD

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2016-10-01

    Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.

  17. Modeling prescribed burning experiments and assessing the fire impacts on local to regional air quality

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Elleman, R. A.; Urbanski, S. P.

    2016-12-01

    Biomass burning, including wildfires and prescribed burns, strongly impact the global carbon cycle and are of increasing concern due to the potential impacts on ambient air quality. This modelling study focuses on the evolution of carbonaceous compounds during a prescribed burning experiment and assesses the impacts of burning on local to regional air quality. The Community Multiscale Air Quality (CMAQ) model is used to conduct 4 and 2 km grid resolution simulations of prescribed burning experiments in southeast Washington state and western Idaho state in summer 2013. The ground and airborne measurements from the field experiment are used to evaluate the model performance in capturing surface and aloft impacts from the burning events. Phase partitioning of organic compounds in the plume are studied as it is a crucial step towards understanding the fate of carbonaceous compounds. The sensitivities of ambient concentrations and deposition to emissions are conducted for organic carbon, elemental carbon and ozone to estimate the impacts of fire on air quality.

  18. Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado

    USGS Publications Warehouse

    Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.

    2005-01-01

    Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A

  19. Turbulent Nuclear Burning of Carbon Fuel in Double-Degenerate White Dwarfs

    NASA Astrophysics Data System (ADS)

    Mozumdar, Pritom; Fisher, Robert

    2018-01-01

    Type Ia supernovae (SNe Ia) are of interest as standardizable cosmological candles, though their stellar progenitors are still poorly understood. The double-degenerate (DD) channel is promising, but the mechanism for the explosion remains a matter of active investigation. A long-standing problem in modeling SNe Ia is the fact that 3D simulations leave the length scales crucial for a possible detonation unresolved. In this work, we have performed local 3D hydrodynamical adaptive mesh refinement simulations of driven turbulence for various initial conditions characteristic of the DD scenario, which are capable of capturing length scales relevant to the Zel’dovich gradient mechanism. Because the carbon burning rate is highly sensitive to temperature in this regime, we demonstrate that turbulence can dramatically enhance the nuclear burning rate, and we investigate the connection to a possible detonation.

  20. Emissions of polycyclic aromatic hydrocarbons (PAH) from open burning of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, B.M.

    Emissions of polycyclic aromatic hydrocarbons (PAH) were measured during wind tunnel simulations of open burning for various types of biomass. The wind tunnel (Jenkins, et al., 1993) was used to simulate open fires spreading in opposition to the wind for cereal crop residues, and pile fires in agricultural and sylvicultural wood residues. Emission factors expressing the mass of pollutant species emitted per unit mass of dry fuel consumed were derived from mass balances conducted on each fire. Emission factors for primary pollutants and volatile organic species were similarly derived. Partitioning of PAH in the combustion products was investigated by determiningmore » mass fractions on particulate matter and in a downstream resin trap and other sampling train components. Yields of PAH are given for the major types of fuels and burning conditions.« less

  1. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

    Treesearch

    G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman

    2011-01-01

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...

  2. Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Amnuaylojaroen, T.; Barth, M. C.; Emmons, L. K.; Carmichael, G. R.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S.

    2014-04-01

    In order to improve our understanding of air quality in Southeast Asia, the anthropogenic emissions inventory must be well represented. In this work, we apply different anthropogenic emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-Chem) version 3.3 using MOZART gas-phase chemistry and GOCART aerosols to examine the differences in predicted carbon monoxide (CO) and ozone (O3) surface mixing ratios for Southeast Asia in March and December 2008. The anthropogenic emission inventories include the Reanalysis of the TROpospheric chemical composition (RETRO), the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), the MACCity emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment projects), the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emissions, and a combination of MACCity and SEAC4RS emissions. Biomass burning emissions are from the Fire Inventory from NCAR (FINNv1) model. WRF-chem reasonably predicts the 2 m temperature, 10 m wind, and precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same magnitude as observations, but tends to underpredict NO2 column over the equatorial ocean and near Indonesia. Simulations using different anthropogenic emissions produce only a slight variability of O3 and CO mixing ratios, while biomass burning emissions add more variability. The different anthropogenic emissions differ by up to 20% in CO emissions, but O3 and CO mixing ratios differ by ~4.5% and ~8%, respectively, among the simulations. Biomass burning emissions create a substantial increase for both O3 and CO by ~29% and ~16%, respectively, when comparing the March biomass burning period to December with low biomass burning emissions. The simulations show that none of the anthropogenic emission inventories are better than the others and any of the examined inventories can be used for air quality simulations in Southeast Asia.

  3. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE PAGES

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi; ...

    2016-03-11

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less

  4. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less

  5. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    NASA Astrophysics Data System (ADS)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  6. Characterization of Emissions from Liquid Fuel and Propane Open Burns.

    PubMed

    Aurell, Johanna; Hubble, David; Gullett, Brian K; Holder, Amara; Washburn, Ephraim; Tabor, Dennis

    2017-11-07

    The effect of accidental fires are simulated to understand the response of items such as vehicles, fuel tanks, and military ordnance and to remediate the effects through re-design of the items or changes in operational procedures. The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes to measure CO, CO 2 , fine particulate matter (PM 2.5 ), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and elemental/organic/total carbon (EC/OC/TC). The results showed that all emissions except CO 2 were significantly higher from JP-5 burns than from propane. The major portion of the PM mass from fires of both fuels was less than 1 μm in diameter and differed in carbon content. The PM 2.5 emission factor from JP-5 burns (129 ± 23 g/kg Fuel c ) was approximately 150 times higher than the PM 2.5 emission factor from propane burns (0.89 ± 0.21 g/kg Fuel c ). The PAH emissions as well as some VOCs were more than one hundred times higher for the JP-5 burns than the propane burns. Using the propane test method to study flammability responses, the environmental impact of PM 2.5 , PAHs, and VOCs would be reduced by 2300, 700, and 100 times per test, respectively.

  7. Porcine Burn Shock - Development of a Reliable Model and Response to Sodium, Water, and Plasma Loads Administered for Resuscitation

    DTIC Science & Technology

    1973-06-01

    nm.ddt. inital, Diet n*Mf) Thomas L. Wachtel, M.D. G. R. McCahan, Jr., D.V.M. 0 REPORT CATS 70. TOTAL No. Or PAGE Nb O. or mrs June 1973 - w 78 0. CON...observations of caloric uptake of pigskin, rise in temperature at the dermis-fat interface as a function of both time and skin surface temperature and an...of Iso-, Hypo - and Hypertonic Sodium Solutions in the Treatment of Burn Shock in Mice," Surgery, 57: 698-704, May 1965. 24. Rosenthal, S. M

  8. User's guide for FRMOD, a zero dimensional FRM burn code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driemeryer, D.; Miley, G.H.

    1979-10-15

    The zero-dimensional FRM plasma burn code, FRMOD is written in the FORTRAN language and is currently available on the Control Data Corporation (CDC) 7600 computer at the Magnetic Fusion Energy Computer Center (MFECC), sponsored by the US Department of Energy, in Livermore, CA. This guide assumes that the user is familiar with the system architecture and some of the utility programs available on the MFE-7600 machine, since online documentation is available for system routines through the use of the DOCUMENT utility. Users may therefore refer to it for answers to system related questions.

  9. Predictive Value of IL-8 for Sepsis and Severe Infections after Burn Injury - A Clinical Study

    PubMed Central

    Kraft, Robert; Herndon, David N; Finnerty, Celeste C; Cox, Robert A; Song, Juquan; Jeschke, Marc G

    2014-01-01

    The inflammatory response induced by burn injury contributes to increased incidence of infections, sepsis, organ failure, and mortality. Thus, monitoring post-burn inflammation is of paramount importance but so far there are no reliable biomarkers available to monitor and/or predict infectious complications after burn. As IL-8 is a major mediator for inflammatory responses, the aim of our study was to determine whether IL-8 expression can be used to predict post-burn sepsis, infections, and mortality other outcomes post-burn. Plasma cytokines, acute phase proteins, constitutive proteins, and hormones were analyzed during the first 60 days post injury from 468 pediatric burn patients. Demographics and clinical outcome variables (length of stay, infection, sepsis, multiorgan failure (MOF), and mortality were recorded. A cut-off level for IL-8 was determined using receiver operating characteristic (ROC) analysis. Statistical significance is set at (p<0.05). ROC analysis identified a cut-off level of 234 pg/ml for IL-8 for survival. Patients were grouped according to their average IL-8 levels relative to this cut off and stratified into high (H) (n=133) and low (L) (n=335) groups. In the L group, regression analysis revealed a significant predictive value of IL-8 to percent of total body surface area (TBSA) burned and incidence of MOF (p<0.001). In the H group IL-8 levels were able to predict sepsis (p<0.002). In the H group, elevated IL-8 was associated with increased inflammatory and acute phase responses compared to the L group (p<0.05). High levels of IL-8 correlated with increased MOF, sepsis, and mortality. These data suggest that serum levels of IL-8 may be a valid biomarker for monitoring sepsis, infections, and mortality in burn patients. PMID:25514427

  10. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  11. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  12. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  13. α Heating in a Stagnated Z-pinch

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2009-01-01

    A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear α particles which are confined by the strong magnetic field of the Z-pinch.

  14. Coupling Detonation Shock Dynamics in a Consistent Manner to Equations of State

    NASA Astrophysics Data System (ADS)

    Belfield, William

    2017-06-01

    In hydrocode simulations, detonating high explosives (HE) are often modelled using programmed burn. Each HE cell is assigned a ``burn time'' at which it should begin to behave as HE products in the subsequent simulation. Traditionally, these burn times were calculated using a Huygens construction to propagate the detonation wave at a constant speed corresponding to the planar Chapman-Jouguet (CJ) velocity. The Detonation Shock Dynamics (DSD) model improves upon this approach by treating the local detonation velocity as a function of wave curvature, reflecting that the detonation speed is not constant in reality. However, without alterations being made, this variable detonation velocity is inconsistent with the CJ velocity associated with the HE products equation of state (EOS). Previous work has shown that the inconsistency can be resolved by modifying the HE product EOS, but this treatment is empirical in nature and has only been applied to the JWL EOS. This work investigates different methods to resolve the inconsistency that are applicable both to JWL and to tabular HE product EOS, and their impact on hydrocode simulations.

  15. [Advances in the research of effects of glutamine on immune function of burn patients].

    PubMed

    Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J

    2018-04-20

    Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.

  16. Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons.

    PubMed

    Cazzaniga, C; Nocente, M; Tardocchi, M; Croci, G; Giacomelli, L; Angelone, M; Pillon, M; Villari, S; Weller, A; Petrizzi, L; Gorini, G

    2013-12-01

    Measurements of the response of LaBr3(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on (79)Br, (81)Br, and (139)La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.

  17. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  18. Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Boehly, T. R.; Celliers, P. M.; Eggert, J. H.; Hicks, D.; Smith, R. F.; Collins, R.; Bowers, M. W.; Krauter, K. G.; Datte, P. S.; Munro, D. H.; Milovich, J. L.; Jones, O. S.; Michel, P. A.; Thomas, C. A.; Olson, R. E.; Pollaine, S.; Town, R. P. J.; Haan, S.; Callahan, D.; Clark, D.; Edwards, J.; Kline, J. L.; Dixit, S.; Schneider, M. B.; Dewald, E. L.; Widmann, K.; Moody, J. D.; Döppner, T.; Radousky, H. B.; Throop, A.; Kalantar, D.; DiNicola, P.; Nikroo, A.; Kroll, J. J.; Hamza, A. V.; Horner, J. B.; Bhandarkar, S. D.; Dzenitis, E.; Alger, E.; Giraldez, E.; Castro, C.; Moreno, K.; Haynam, C.; LaFortune, K. N.; Widmayer, C.; Shaw, M.; Jancaitis, K.; Parham, T.; Holunga, D. M.; Walters, C. F.; Haid, B.; Mapoles, E. R.; Sater, J.; Gibson, C. R.; Malsbury, T.; Fair, J.; Trummer, D.; Coffee, K. R.; Burr, B.; Berzins, L. V.; Choate, C.; Brereton, S. J.; Azevedo, S.; Chandrasekaran, H.; Eder, D. C.; Masters, N. D.; Fisher, A. C.; Sterne, P. A.; Young, B. K.; Landen, O. L.; Van Wonterghem, B. M.; MacGowan, B. J.; Atherton, J.; Lindl, J. D.; Meyerhofer, D. D.; Moses, E.

    2012-04-01

    Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results are contrasted between early experiments that exhibited very poor shock timing and subsequent experiments where a modified target geometry demonstrated significant improvement.

  19. Study on mitigation of pulsed heat load for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.

    2015-03-01

    One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.

  20. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50atm of deuterium (DD) are predicted to give in excess of 1010 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50atm of DHe3 are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production.

  1. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Huifeng; Yuan Hong; Tang Zhiping

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times whichmore » show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.« less

  2. Chapter 8: Plasma operation and control

    NASA Astrophysics Data System (ADS)

    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors

    1999-12-01

    Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as well as in plasma periphery and divertor. The planned diagnostics (Chapter 7) serve as sensors for kinetic control, while gas and pellet fuelling, auxiliary power and angular momentum input, impurity injection, and non-inductive current drive constitute the control actuators. For example, in an ignited plasma, core density controls fusion power output. Kinetic control algorithms vary according to the plasma state, e.g. H- or L-mode. Generally, present facilities have demonstrated the kinetic control methods required for a reactor scale device. Plasma initiation - breakdown, burnthrough and initial current ramp - in reactor scale tokamaks will not involve physics differing from that found in present day devices. For ITER, the induced electric field in the chamber will be ~0.3V· m-1 - comparable to that required by breakdown theory but somewhat smaller than in present devices. Thus, a start-up 3MW electron cyclotron heating system will be employed to assure burnthrough. Simulations show that plasma current ramp up and termination in a reactor scale device can follow procedures developed to avoid disruption in present devices. In particular, simulations remain in the stable area of the li-q plane. For design purposes, the resistive V·s consumed during initiation is found, by experiments, to follow the Ejima expression, 0.45μ0 RIp. Advanced tokamak control has two distinct goals. First, control of density, auxiliary power, and inductive current ramping to attain reverse shear q profiles and internal transport barriers, which persist until dissipated by magnetic flux diffusion. Such internal transport barriers can lead to transient ignition. Second, combined use poloidal field shape control with non-inductive current drive and NBI angular momentum injection to create and control steady state, high bootstrap fraction, reverse shear discharges. Active n = 1 magnetic feedback and/or driven rotation will be required to suppress resistive wall modes for steady state plasmas that must operate in the wall stabilized regime for reactor levels of β >= 0.03.

  3. Improving Long-term Post-wildfire hydrologic simulations using ParFlow

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Kinoshita, A. M.

    2015-12-01

    Wildfires alter the natural hydrologic processes within a watershed. After vegetation is burned, the combustion of organic material and debris settles into the soil creating a hydrophobic layer beneath the soil surface with varying degree of thickness and depth. Vegetation regrowth rates vary as a function of radiative exposure, burn severity, and precipitation patterns. Hydrologic models used by the Burned Area Emergency Response (BAER) teams use input data and model calibration constraints that are generally either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models estimate runoff measurements at the watershed outlet; however, do not provide a distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to (1) correlate burn severity with hydrophobicity, (2) evaluate vegetation recovery rate on water components, and (3) improve flood prediction for managers to help with resource allocation and management operations in burned watersheds. ParFlow is applied to Devil Canyon (43 km2) in San Bernardino, California, which was 97% burned in the 2003 Old Fire. The model set-up uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness. Variable subsurface thickness allows users to explicitly consider the degree of recovery throughout the stages of regrowth. Burn severity maps from remotely sensed imagery are used to assign initial hydrophobic layer parameters and thickness. Vegetation regrowth is represented with satellite an Enhanced Vegetation Index. Pre and post-fire hydrologic response is evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements.

  4. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  5. Simulating the impacts of fire: A computer program

    NASA Astrophysics Data System (ADS)

    Ffolliott, Peter F.; Guertin, D. Phillip; Rasmussen, William D.

    1988-11-01

    Recurrent fire has played a dominant role in the ecology of southwestern ponderosa pine forests. To assess the benefits or losses of fire in these forests, a computer simulation model, called BURN, considers vegetation (mortality, regeneration, and production of herbaceous vegetation), wildlife (populations and habitats), and hydrology (streamflow and water quality). In the formulation of the model, graphical representations (time-trend response curves) of increases or losses (compared to an unburned control) after the occurrence of fire are converted to fixedterm annual ratios, and then annuities for the simulation components. Annuity values higher than 1.0 indicate benefits, while annuity values lower than 1.0 indicate losses. Studies in southwestern ponderosa pine forests utilized in the development of BURN are described briefly.

  6. Convection links biomass burning to increased tropical ozone - However, models will tend to overpredict O3

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-01-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. The basic processes are illustrated with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale.

  7. Regional patterns of cropland and pasture burning: Statistical separation of signals from remote sensing products

    NASA Astrophysics Data System (ADS)

    Rabin, S. S.; Pacala, S. W.; Magi, B. I.; Shevliakova, E.

    2013-12-01

    The use of fire in agriculture--to manage crop residues and pastoral grasses, and for clearing land--has consequences worldwide for air quality, human health, and climate. Airborne particulate matter from such burning aggravates respiratory ailments and can influence regional precipitation, while associated greenhouse gases and aerosols affect global climate. Little research, however, has focused on understanding patterns of cropland and pasture fire use with an eye towards simulation at global scales. Previous work by these authors showed that the separate seasonal trends of agricultural and non-agricultural fire could be extracted from large-scale fire observation and land use datasets. This study builds on that research, describing the derivation and application of a statistical method to estimate both the seasonality and amount of cropland, pasture, and other fire based on observations from satellite-based remote sensing products. We demonstrate that our approach is flexible enough to allow the incorporation of alternative high-quality observations of fire and/or land use that might be available only for certain regions. Results for a number of large regions around the world show that these two kinds of agricultural fire often differ in their extent and seasonality from each other and from burning on other land in ways that reflect known management practices. For example, we find that pasture in north-central sub-Saharan Africa tends to burn earlier than non-agricultural land; this can be attributed to pastoralists preventively burning their land early in the dry season so as to avoid severe, uncontrolled burns under more dangerous fire conditions later. Both the timing and extent of agricultural fires prove to be regionally specific; our method allows these geographically distinct patterns to be fully appreciated. The local and global differences in seasonality and amount of fire between different land-use types suggest that dynamic global vegetation models (DGVMs) should simulate fires on cropland and pasture fire independently from burning on other lands and take a regional approach in doing so. For example, pastoral burning dominates across large parts of the African region described above, where a fire model focused only on non-agricultural burning would therefore be inaccurate. On the other hand, in southern Africa those two types of fire more closely parallel each other. While a pure application of our analytical method is based exclusively on the relative distributions of fire activity and land use types, we demonstrate its incorporation into a more process-based fire model to capture the influence of seasonal and interannual variations in climate and ecosystem characteristics on burning. Such a model, the ultimate goal of our research, will help improve DGVM simulations--and therefore scientific understanding--of past, present, and future distributions of fire.

  8. Advancing the understanding of plasma transport in mid-size stellarators

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams

    2017-01-01

    The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.

  9. Evidence for Particle Inward Transport, Theoretical prediction and Importance for Reacting Plasmas

    NASA Astrophysics Data System (ADS)

    Sharky, N.; Coppi, B.; Mazzotta, C.

    2017-10-01

    The fact that particle transport cannot be described by a diffusion equation but by one that would include an inflow term, involving transport in the direction of the density gradient, was evidenced by experiments on magnetically confined plasmas in which the central plasma density was observed to increase as a result of gas injection at the edge of the plasma column. The validity of the proposed equation has been repeatedly confirmed over the years and limitations for the occurrence of particle inflow in a variety of experimental conditions have been uncovered. The direct experimental observation of the inward propagating particle cloud leading to a profile peaking is described and the effects of different degrees of density peaking in fusion burning plasmas are analyzed. Sponsored in part by the U.S. DoE.

  10. Analyzing wildfire exposure on Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Salis, Michele; Ager, Alan A.; Arca, Bachisio; Finney, Mark A.; Alcasena, Fermin; Bacciu, Valentina; Duce, Pierpaolo; Munoz Lozano, Olga; Spano, Donatella

    2014-05-01

    We used simulation modeling based on the minimum travel time algorithm (MTT) to analyze wildfire exposure of key ecological, social and economic features on Sardinia, Italy. Sardinia is the second largest island of the Mediterranean Basin, and in the last fifty years experienced large and dramatic wildfires, which caused losses and threatened urban interfaces, forests and natural areas, and agricultural productions. Historical fires and environmental data for the period 1995-2009 were used as input to estimate fine scale burn probability, conditional flame length, and potential fire size in the study area. With this purpose, we simulated 100,000 wildfire events within the study area, randomly drawing from the observed frequency distribution of burn periods and wind directions for each fire. Estimates of burn probability, excluding non-burnable fuels, ranged from 0 to 1.92x10-3, with a mean value of 6.48x10-5. Overall, the outputs provided a quantitative assessment of wildfire exposure at the landscape scale and captured landscape properties of wildfire exposure. We then examined how the exposure profiles varied among and within selected features and assets located on the island. Spatial variation in modeled outputs resulted in a strong effect of fuel models, coupled with slope and weather. In particular, the combined effect of Mediterranean maquis, woodland areas and complex topography on flame length was relevant, mainly in north-east Sardinia, whereas areas with herbaceous fuels and flat areas were in general characterized by lower fire intensity but higher burn probability. The simulation modeling proposed in this work provides a quantitative approach to inform wildfire risk management activities, and represents one of the first applications of burn probability modeling to capture fire risk and exposure profiles in the Mediterranean basin.

  11. Modeling the spreading of large-scale wildland fires

    Treesearch

    Mohamed Drissi

    2015-01-01

    The objective of the present study is twofold. First, the last developments and validation results of a hybrid model designed to simulate fire patterns in heterogeneous landscapes are presented. The model combines the features of a stochastic small-world network model with those of a deterministic semi-physical model of the interaction between burning and non-burning...

  12. Atmospheric response and feedback to radiative forcing from biomass burning in tropical South America

    Treesearch

    Yongqiang Liu

    2005-01-01

    Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a...

  13. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest

    USDA-ARS?s Scientific Manuscript database

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  14. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed conifer forest

    USDA-ARS?s Scientific Manuscript database

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  15. Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape

    Treesearch

    Sean A. Parks; Marc-Andre Parisien; Carol Miller

    2011-01-01

    We examined the scale-dependent relationship between spatial fire likelihood or burn probability (BP) and some key environmental controls in the southern Sierra Nevada, California, USA. Continuous BP estimates were generated using a fire simulation model. The correspondence between BP (dependent variable) and elevation, ignition density, fuels and aspect was evaluated...

  16. Geostatistics: a new tool for describing spatially-varied surface conditions from timber harvested and burned hillslopes

    Treesearch

    Peter R. Robichaud

    1997-01-01

    Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...

  17. Infiltration and interrill erosion rates after a wildfire in western Montana, USA

    USDA-ARS?s Scientific Manuscript database

    The 2000 Valley Complex wildfire burned in steep montane forests with ash cap soils in western Montana, USA. The effects of high burn severity on forest soil hydrologic function was examined using rainfall simulations (100 mm h-1 for 1 h) on 0.5-m2 plots. Infiltration rates and sediment yields and c...

  18. Runoff and Erosion Effects after Prescribed Fire and Wildfire on Volcanic Ash-Cap Soils

    Treesearch

    P. R. Robichaud; F. B. Pierson; R. E. Brown

    2007-01-01

    After prescribed burns at three locations and one wildfire, rainfall simulations studies were completed to compare postfire runoff rates and sediment yields on ash-cap soil in conifer forest regions of northern Idaho and western Montana. The measured fire effects were differentiated by burn severity (unburned, low, moderate, and high). Results...

  19. On the influence of biomass burning on the seasonal CO2 signal as observed at monitoring stations

    USGS Publications Warehouse

    Wittenberg, U.; Heimann, Martin; Esse, G.; McGuire, A.D.; Sauf, W.

    1998-01-01

    We investigated the role of biomass burning in simulating the seasonal signal in both prognostic and diagnostic analyses. The prognostic anaysis involved the High-Resolution Biosphere Model, a prognostic terrestrial biosphere model, and the coupled vegetation fire module, which together produce a prognostic data set of biomass burning. The diagnostic analysis invovled the Simple Diagnostic Biosphere Model (SDBM) and the Hao and Liu [1994] diagnostic data set of bimass burning, which have been scaled to global 2 and 4 Pg C yr-1, respectively. The monthly carbon exchange fields between the atmosphere and the biosphere with a spatial resolution of 0.5?? ?? 0.5??, the seasonal atmosphere-ocean exchange fields, and the emissions from fossil fuels have been coupled to the three-dimensional atmospheric transport model TM2. We have chosen eight monitoring stations of the National Oceanic and Atmospheric Administration network to compare the predicted seasonal atmospheric CO2 signals with those deduced from atmosphere-biosphere carbon exchange fluxes without any contribution from biomass burning. The prognostic analysis and the diagnostic analysis with global burning emissions of 4 Pg C yr-1 agree with respect to the change in the amplitude of the seasonal CO2 concentration introduced through biomass burning. We find that the seasonal CO2 signal at stations in higher northern latitudes (north of 30??N) is marginally influenced by biomass burning. For stations in tropical regions an increase in the CO2 amplitude of more an 1 oppmv (up to 50% with respect to the observed trough to peak amplitude) has been calculated. Biomass burning at stations farther south accounts for an increase in the CO2 amplitude of up to 59% (0.6 ppmv). A change in the phase of the seasonal CO2 signal at tropical and southern stations has been shown to be strongly influenced by the onset of biomass burning in southern tropical Africa and America. Comparing simulated and observed seasonal CO2 signals, we find higher discrepancies at southern troical stations if biomass burning emissions are included. This is caused by the additional increase in the amplitude in the prognostic analysis and a phase shift in a diagnostic analysis. In contrast, at the northern tropical stations biomass burning tends to improve the estimates of the seasonal CO2 signal in the prognostic analysis because of strengthening of the amplitude. Since the SDCM predicts the seasonal CO2 signal resonably well for the northern hemisphere tropical stations, no general improvement of the fit occurs if biomass burning emissions are considered.

  20. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP2) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB6 (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB6 (HLA-LaB6) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB6 cathode is composed of the one inner cathode with 4in. diameter and the six outer cathodes with 2in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6×1012 cm-3, while the electron temperature remains around 3-3.5eV at the low discharge current of less than 45A, and the magnetic field intensity of 870G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB6 cathode with 4in. diameter in DiPS.

  1. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.

    PubMed

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS.

  2. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H(-) source taking into account the effect of the plasma.

    PubMed

    Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R

    2014-02-01

    Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  3. Pyrolysis and combustion of tobacco in a cigarette smoking simulator under air and nitrogen atmosphere.

    PubMed

    Busch, Christian; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin G; Zimmermann, Ralf

    2012-04-01

    A coupling between a cigarette smoking simulator and a time-of-flight mass spectrometer was constructed to allow investigation of tobacco smoke formation under simulated burning conditions. The cigarette smoking simulator is designed to burn a sample in close approximation to the conditions experienced by a lit cigarette. The apparatus also permits conditions outside those of normal cigarette burning to be investigated for mechanistic understanding purposes. It allows control of parameters such as smouldering and puff temperatures, as well as combustion rate and puffing volume. In this study, the system enabled examination of the effects of "smoking" a cigarette under a nitrogen atmosphere. Time-of-flight mass spectrometry combined with a soft ionisation technique is expedient to analyse complex mixtures such as tobacco smoke with a high time resolution. The objective of the study was to separate pyrolysis from combustion processes to reveal the formation mechanism of several selected toxicants. A purposely designed adapter, with no measurable dead volume or memory effects, enables the analysis of pyrolysis and combustion gases from tobacco and tobacco products (e.g. 3R4F reference cigarette) with minimum aging. The combined system demonstrates clear distinctions between smoke composition found under air and nitrogen smoking atmospheres based on the corresponding mass spectra and visualisations using principal component analysis.

  4. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.

    2012-12-01

    The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.

  5. Simulation of EAST vertical displacement events by tokamak simulation code

    NASA Astrophysics Data System (ADS)

    Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.

    2016-10-01

    Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.

  6. Effect of energetic electrons on combustion of premixed burner flame

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  7. MESOSCALE MODELING OF DEFLAGRATION-INDUCED DECONSOLIDATION IN POLYMER-BONDED EXPLOSIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Glascoe, E A; Reaugh, J E

    Initially undamaged polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and the evolution of deflagration-induced damage during the transition to convective burning is not well understood. The objective of this study is to investigate the role of microstructure and initial pressurization on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX-Viton A served as our model explosive.more » A Prout-Tompkins chemical kinetic model, Vielle's Law pressure-dependent burning, Gruneisen equation-of-state, and simplified strength model were used for the HMX. The propensity for deconsolidation increased with increasing defect size and decreasing initial pressurization, as measured by the increase in burning surface area. These studies are important because they enable the development of continuum-scale damage models and the design of inherently safer explosives.« less

  8. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  9. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  10. Recent Advances in Studies of Ionospheric Modification Using Rocket Exhaust (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.

    2009-12-01

    Rocket exhaust interacts with the ionosphere to produce a wide range of disturbances. A ten second burn of the Orbital Maneuver Subsystem (OMS) engines on the Space Shuttle deposits over 1 Giga Joule of energy into the upper atmosphere. The exhaust vapors travel at speeds between 4.7 and 10.7 km/s coupling momentum into the ions by both collisions and charge exchange. Long-lived plasma irregularities are formed by the artificial hypersonic “neutral wind” passing through the ionosphere. Charge exchange between the fast neutrals and the ambient ions yields high-speed ion beams that excite electro-static plasma waves. Ground based radar has been used to detect both field aligned irregularities and electrostatic turbulence driven by the Space Shuttle OMS exhaust. Molecular ions produced by the charge exchange with molecules in the rocket exhaust recombine with a time scale of 10 minutes leaving a residual plasma depression. This ionospheric “hole” fills in by ambipolar diffusion leaving a depleted magnetic flux tube. This large scale reduction in Pedersen conductivity can provide a seed for plasma interchange instabilities. For instance, a rocket firing on the bottom side of the ionosphere near the equator can trigger a Rayleigh-Taylor instability that is naturally seen as equatorial Spread-F. The Naval Research Laboratory has been exploring these phenomena with dedicated burns of the Space Shuttle OMS engines and exhaust releases from rockets. The Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) series of experiments uses ground radars to probe the ionosphere affected by dedicated burns of the Space Shuttle OMS engines. Radars located at Millstone Hill, Massachusetts; Arecibo, Puerto Rico; Jicamarca, Peru; Kwajalein, Marshall Island; and Alice Springs, Australia have participated in the SIMPLEX program. A companion program called Shuttle Exhaust Ionospheric Turbulence Experiment has or will use satellites to fly through the turbulence ionosphere produced by Space Shuttle Exhaust. This program is employing the Air Force Research Laboratory C/NOFS and the Canadian CASSIOPE/EPoP satellites to make in situ measurements of Space Shuttle exhaust effects. Finally, NRL is conducting the Charged Aerosol Release Experiment which employs a solid rocket motor to modify the ionosphere using supersonic particulate injection and dusty plasma formation. Both the theoretic basis for these experiments and as summary of the experimental results will be presented.

  11. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  12. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.

    2016-11-01

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.

  13. Structure of conducting channel of lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alanakyan, Yu. R.

    2013-08-15

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case,more » the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior.« less

  14. Stopping power in D6Li plasmas for target ignition studies

    NASA Astrophysics Data System (ADS)

    Cortez, Ross J.; Cassibry, Jason T.

    2018-02-01

    The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.

  15. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    NASA Astrophysics Data System (ADS)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  16. Effect of a synthetic indolicidin analogue on lipid peroxidation in thermal burns.

    PubMed

    Lazarenko, V A; Lyashev, Yu D; Shevchenko, N I

    2014-08-01

    Experimental simulation of burn was followed by accumulation of LPO products and suppression of antioxidant enzyme activity in the burn wound. Application of a synthetic analogue of indolicidin led to an increase in MDA and acylhydroperoxide concentrations in the burn wound on experimental day 1. Further application of the peptide in a dose of 100 mg/kg had no significant effect on the studied parameters, while the peptide in a dose of 500 mg/kg was followed by a decrease in the level of LPO products on days 10 and 14. Changes in antioxidant enzyme activities in rats treated with 500 mg/kg indolicidin analogue had a two-phase pattern: an increase on day 4 was followed by a decrease.

  17. A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle

    Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less

  18. Infiltration and interrill erosion rates after a wildfire in western Montana, USA

    Treesearch

    Pete Robichaud; Joseph W. Wagenbrenner; Fredrick B. Pierson; Kenneth E. Spaeth; Louise E. Ashmun; Corey A. Moffet

    2016-01-01

    The 2000 Valley Complex wildfire burned in steep montane forests with ash cap soils in western Montana, USA. The effects of high soil burn severity on forest soil hydrologic function were examined using rainfall simulations (100mmh-1 for 1 h) on 0.5-m2 plots. Infiltration rates, sediment yields and sediment concentrations were compared among three treatments:...

  19. The colors of biomass burning aerosols in the atmosphere.

    PubMed

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-16

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  20. Optimal attitude maneuver execution for the Advanced Composition Explorer (ACE) mission

    NASA Technical Reports Server (NTRS)

    Woodard, Mark A.; Baker, David

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft will require frequent attitude reorientations in order to maintain the spacecraft high gain antenna (HGA) within 3 deg of earth-pointing. These attitude maneuvers will be accomplished by employing a series of ground-commanded thruster pulses, computed by ground operations personnel, to achieve the desired change in the spacecraft angular momentum vector. With each maneuver, attitude nutation will be excited. Large nutation angles are undesirable from a science standpoint. It is important that the thruster firings be phased properly in order to minimize the nutation angle at the end of the maneuver so that science collection time is maximized. The analysis presented derives a simple approximation for the nutation contribution resulting from a series of short thruster burns. Analytic equations are derived which give the induced nutation angle as a function of the number of small thruster burns used to execute the attitude maneuver and the phasing of the burns. The results show that by properly subdividing the attitude burns, the induced nutation can be kept low. The analytic equations are also verified through attitude dynamics simulation and simulation results are presented. Finally, techniques for quantifying the post-maneuver nutation are discussed.

  1. Plasma Proteins and Wound Healing

    DTIC Science & Technology

    1981-11-01

    re a p- pea rs to be a transfer of proteases from a lpha ,- antitryp in to a lpha~-macroglobulin (66) and a hi hi preferentia l a nd ra pid uptake...Peripheral blood T and B lymphocytes in pa- tients with burns—II, sequential rosette analyses con- sidering burn severity and pseudomonas sepsis

  2. Source Mechanisms and Radio Effects of Ionospheric Plasma

    DTIC Science & Technology

    1992-11-01

    naturally-occurring ELF hiss simi- lar to that observed on other low-altitude satellites (Gurnett and Burns, 1968; Mosier, 1971; Muzzio and Angerami ...satellite, J. Geophys. Res., 76, 1713, 1971. Muzzio, J.L.R., and J.J. Angerami , OGO 4 observations of ex- tremely low-frequency hiss, J. Geophys. Res

  3. The influences of wildfires and stratospheric-tropospheric exchange on ozone during seacions mission over St. Louis

    NASA Astrophysics Data System (ADS)

    Wilkins, Joseph L.

    The influence of wildfire biomass burning and stratospheric air mass transport on tropospheric ozone (O3) concentrations in St. Louis during the SEAC4RS and SEACIONS-2013 measurement campaigns has been investigated. The Lagrangian particle dispersion model FLEXPART-WRF analysis reveals that 55% of ozonesonde profiles during SEACIONS were effected by biomass burning. Comparing ozonesonde profiles with numerical simulations show that as biomass burning plumes age there is O3 production aloft. A new plume injection height technique was developed based on the Naval Research Laboratory's (NRL) detection algorithm for pyro-convection. The NRL method identified 29 pyro-cumulonimbus events that occurred during the summer of 2013, of which 13 (44%) impacted the SEACIONS study area, and 4 (14%) impacted the St. Louis area. In this study, we investigate wildfire plume injection heights using model simulations and the FLAMBE emissions inventory using 2 different algorithms. In the first case, wildfire emissions are injected at the surface and allowed to mix within the boundary layer simulated by the meteorological model. In the second case, the injection height of wildfire emissions is determined by a guided deep-convective pyroCb run using the NRL detection algorithm. Results show that simulations using surface emissions were able to represent the transport of carbon monoxide plumes from wildfires when the plumes remained below 5 km or occurred during large convective systems, but that the surface effects were over predicted. The pyroCb cases simulated the long-range transport of elevated plumes above 5 km 68% of the time. In addition analysis of potential vorticity suggests that stratospheric intrusions or tropopause folds affected 13 days (48%) when there were sonde launches and 27 days (44%) during the entire study period. The largest impact occurred on September 12, 2013 when ozone-rich air impacted the nocturnal boundary layer. By analyzing ozonesonde profiles with meteorological transport models, we were able to identify biomass burning and stratospheric intrusions in St. Louis.

  4. Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin

    USGS Publications Warehouse

    Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.

    2009-01-01

    The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.

  5. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2014-05-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The absolute values of SOA (up to 20 μg m-3) were much lower than those from POA, indicating a minor role of SOA in biomass burning plumes. Our results show that about 21% of the total mass loading of ambient PM10 during the July-October study period in Singapore was due to biomass and peat burning in Sumatra, but this contribution increased during high burning periods. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m-3 day-1 indicating poor air quality. During 17 days this was due to fires, based on the difference between the simulations with and without fires. Local pollution in combination with recirculation of air masses was probably the main cause of poor air quality during the other 18 days, although fires from Sumatra and probably also from Borneo added to the enhanced PM10 concentrations. The model vs. measurement comparisons highlighted that for our study period and region the GFED3 biomass burning aerosol emissions were more in line with observations than found in other studies. This indicates that care should be taken when using AOD to constrain emissions or estimate ground-level air quality. This study also shows the need for relatively high resolution modeling to accurately reproduce the advection of air masses necessary to quantify the impacts and feedbacks on air quality.

  6. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration slightly increased. However, the absolute concentrations of SOA (up to 20 μg m-3) were much lower than those from POA, indicating a minor role of SOA in these biomass burning plumes. Our results show that about 21% of the total mass loading of ambient PM10 during the July-October study period in Singapore was due to biomass and peat burning in Sumatra, but this contribution increased during high burning periods. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m-3 day-1 indicating poor air quality. During 17 days this was due to fires, based on the difference between the simulations with and without fires. Local pollution in combination with recirculation of air masses was probably the main cause of poor air quality during the other 18 days, although fires from Sumatra and probably also from Kalimantan (Indonesian part of the island of Borneo) added to the enhanced PM10 concentrations. The model versus measurement comparisons highlighted that for our study period and region the GFED3 biomass burning aerosol emissions were more in line with observations than found in other studies. This indicates that care should be taken when using AOD to constrain emissions or estimate ground-level air quality. This study also shows the need for relatively high resolution modeling to accurately reproduce the advection of air masses necessary to quantify the impacts and feedbacks on regional air quality.

  7. Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity.

    PubMed

    Sakstein, Jeremy

    2015-11-13

    The most general scalar-tensor theories of gravity predict a weakening of the gravitational force inside astrophysical bodies. There is a minimum mass for hydrogen burning in stars that is set by the interplay of plasma physics and the theory of gravity. We calculate this for alternative theories of gravity and find that it is always significantly larger than the general relativity prediction. The observation of several low mass red dwarf stars therefore rules out a large class of scalar-tensor gravity theories and places strong constraints on the cosmological parameters appearing in the effective field theory of dark energy.

  8. Design of a Neutron Temporal Diagnostic for measuring DD or DT burn histories at the NIF

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Frenje, J. A.; Sio, H.; Petrasso, R. D.; Bradley, D. K.; Le Pape, S.; MacKinnon, A. J.; Isumi, N.; Macphee, A.; Zayas, C.; Spears, B. K.; Hermann, H.; Hilsabeck, T. J.; Kilkenny, J. D.

    2015-11-01

    The DD or DT burn history in Inertial Confinement Fusion (ICF) implosions provides essential information about implosion performance and helps to constrain numerical modeling. The capability of measuring this burn history is thus important for the NIF in its pursuit of ignition. Currently, the Gamma Reaction History (GRH) diagnostic is the only system capable of measuring the burn history for DT implosions with yields greater than ~ 1e14. To complement GRH, a new NIF Neutron Temporal Diagnostic (NTD) is being designed for measuring the DD or DT burn history with yields greater than ~ 1e10. A traditional scintillator-based design and a pulse-dilation-based design are being considered. Using MCNPX simulations, both designs have been optimized, validated and contrasted for various types of implosions at the NIF. This work was supported in part by the U.S. DOE, LLNL and LLE.

  9. Meteorological Controls on Biomass Burning During Santa Ana Events in Southern California

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Capps, Scott; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Hall, Alex

    2013-01-01

    Fires occurring during Santa Ana (SA) events in southern California are driven by extreme fire weather characterized by high temperatures, low humidities, and high wind speeds. We studied the controls on burned area and carbon emissions during two intensive SA burning periods in 2003 and 2007. We therefore used remote sensing data in parallel with fire weather simulations of the Weather and Regional Forecast model. Total carbon emissions were approximately 1800 gigagrams in 2003 and 900 gigagrams in 2007, based on a daily burned area and a fire emission model that accounted for spatial variability in fuel loads and combustion completeness. On a regional scale, relatively strong positive correlations were found between the daily Fosberg fire weather index and burned area/emissions (probability is less than 0.01). Our analysis provides a quantitative assessment of relationships between fire activity and weather during severe SA fires in southern California.

  10. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

    DOE PAGES

    Gates, David A.; Anderson, David; Anderson, S.; ...

    2018-02-19

    This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less

  11. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, David A.; Anderson, David; Anderson, S.

    This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less

  12. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

    NASA Astrophysics Data System (ADS)

    Gates, D. A.; Anderson, D.; Anderson, S.; Zarnstorff, M.; Spong, D. A.; Weitzner, H.; Neilson, G. H.; Ruzic, D.; Andruczyk, D.; Harris, J. H.; Mynick, H.; Hegna, C. C.; Schmitz, O.; Talmadge, J. N.; Curreli, D.; Maurer, D.; Boozer, A. H.; Knowlton, S.; Allain, J. P.; Ennis, D.; Wurden, G.; Reiman, A.; Lore, J. D.; Landreman, M.; Freidberg, J. P.; Hudson, S. R.; Porkolab, M.; Demers, D.; Terry, J.; Edlund, E.; Lazerson, S. A.; Pablant, N.; Fonck, R.; Volpe, F.; Canik, J.; Granetz, R.; Ware, A.; Hanson, J. D.; Kumar, S.; Deng, C.; Likin, K.; Cerfon, A.; Ram, A.; Hassam, A.; Prager, S.; Paz-Soldan, C.; Pueschel, M. J.; Joseph, I.; Glasser, A. H.

    2018-02-01

    This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in "Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)" [1]. The natural disruption immunity of the stellarator directly addresses "Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices" an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research "Strengthening our partnerships with international research facilities," is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; "Burning Plasma Science: Foundations - Next-generation research capabilities", and "Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria" are proposed.

  13. Stellarator Research Opportunities: A report of the National Stellarator Coordinating Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, David A.; Anderson, David

    This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less

  14. Solid rocket booster performance evaluation model. Volume 3: Sample case. [propellant combustion simulation/internal ballistics

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solid rocket booster performance evaluation model (SRB-11) is used to predict internal ballistics in a sample motor. This motor contains a five segmented grain. The first segment has a 14 pointed star configuration with a web which wraps partially around the forward dome. The other segments are circular in cross-section and are tapered along the interior burning surface. Two of the segments are inhibited on the forward face. The nozzle is not assumed to be submerged. The performance prediction is broken into two simulation parts: the delivered end item specific impulse and the propellant properties which are required as inputs for the internal ballistics module are determined; and the internal ballistics for the entire burn duration of the motor are simulated.

  15. Measurement and reactive burn modeling of the shock to detonation transition for the HMX based explosive LX-14

    NASA Astrophysics Data System (ADS)

    Jones, J. D.; Ma, Xia; Clements, B. E.; Gibson, L. L.; Gustavsen, R. L.

    2017-06-01

    Gas-gun driven plate-impact techniques were used to study the shock to detonation transition in LX-14 (95.5 weight % HMX, 4.5 weight % estane binder). The transition was recorded using embedded electromagnetic particle velocity gauges. Initial shock pressures, P, ranged from 2.5 to 8 GPa and the resulting distances to detonation, xD, were in the range 1.9 to 14 mm. Numerical simulations using the SURF reactive burn scheme coupled with a linear US -up / Mie-Grueneisen equation of state for the reactant and a JWL equation of state for the products, match the experimental data well. Comparison of simulation with experiment as well as the ``best fit'' parameter set for the simulations is presented.

  16. DIII-D research to address key challenges for ITER and fusion energy

    NASA Astrophysics Data System (ADS)

    Buttery, R. J.; the DIII-D Team

    2015-10-01

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modelling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelength turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully noninductively with βN = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a βN = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behaviour. Scenarios are shown to be compatible with radiative and snowflake divertor techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. Future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.

  17. DIII-D research to address key challenges for ITER and fusion energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttery, Richard J.

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.« less

  18. DIII-D research to address key challenges for ITER and fusion energy

    DOE PAGES

    Buttery, Richard J.

    2015-07-29

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.« less

  19. Particle in cell simulation of instabilities in space and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Tonge, John William

    Several plasma instabilities relevant to space physics are investigated using the parallel PIC plasma simulation code P3arsec. This thesis addresses electrostatic micro-instabilities relevant to ion ring distributions, proceeds to electromagnetic micro-instabilities pertinent to streaming plasmas, and then to the stability of a plasma held in the field of a current rod. The physical relevance of each of these instabilities is discussed, a phenomenological description is given, and analytic and simulation results are presented and compared. Instability of a magnetized plasma with a portion of the ions in a velocity ring distribution around the magnetic field is investigated using simulation and analytic theory. The physics of this distribution is relevant to solar flares, x-ray emission by comets, and pulsars. Physical parameters, including the mass ratio, are near those of a solar flare in the simulation. The simulation and analytic results show agreement in the linear regime. In the nonlinear stage the simulation shows highly accelerated electrons in agreement with the observed spectrum of x-rays emitted by solar flares. A mildly relativistic streaming electron positron plasma with no ambient magnetic field is known to be unstable to electrostatic (two-stream/beam instability) and purely electromagnetic (Weibel) modes. This instability is relevant to highly energetic interstellar phenomena, including pulsars, supernova remnants, and the early universe. It is also important for experiments in which relativistic beams penetrate a background plasma, as in fast ignitor scenarios. Cold analytic theory is presented and compared to simulations. There is good agreement in the regime where cold theory applies. The simulation and theory shows that to properly characterize the instability, directions parallel and perpendicular to propagation of the beams must be considered. A residual magnetic field is observed which may be of astro-physical significance. The stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while the current rod is much easier to analyze theoretically and realize in simulations. The stability properties of a plasma confined in a dipole field are important for understanding a variety of space phenomena and the Levitated Dipole eXperiment (LDX). Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles ∝ r-10/3. The simulations also show that the density profile will be stationary as long as density ∝ r -2 even though the temperature profile may not be stable.

  20. Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod

    NASA Astrophysics Data System (ADS)

    Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.

    2003-09-01

    The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.

  1. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  2. Polycapillary lenses for soft x-ray transmission in ITER: Model, comparison with experiments, and potential application

    NASA Astrophysics Data System (ADS)

    Mazon, D.; Liegeard, C.; Jardin, A.; Barnsley, R.; Walsh, M.; O'Mullane, M.; Sirinelli, A.; Dorchies, F.

    2016-11-01

    Measuring Soft X-Ray (SXR) radiation [0.1 keV; 15 keV] in tokamaks is a standard way of extracting valuable information on the particle transport and magnetohydrodynamic activity. Generally, the analysis is performed with detectors positioned close to the plasma for a direct line of sight. A burning plasma, like the ITER deuterium-tritium phase, is too harsh an environment to permit the use of such detectors in close vicinity of the machine. We have thus investigated in this article the possibility of using polycapillary lenses in ITER to transport the SXR information several meters away from the plasma in the complex port-plug geometry.

  3. Polycapillary lenses for soft x-ray transmission in ITER: Model, comparison with experiments, and potential application.

    PubMed

    Mazon, D; Liegeard, C; Jardin, A; Barnsley, R; Walsh, M; O'Mullane, M; Sirinelli, A; Dorchies, F

    2016-11-01

    Measuring Soft X-Ray (SXR) radiation [0.1 keV; 15 keV] in tokamaks is a standard way of extracting valuable information on the particle transport and magnetohydrodynamic activity. Generally, the analysis is performed with detectors positioned close to the plasma for a direct line of sight. A burning plasma, like the ITER deuterium-tritium phase, is too harsh an environment to permit the use of such detectors in close vicinity of the machine. We have thus investigated in this article the possibility of using polycapillary lenses in ITER to transport the SXR information several meters away from the plasma in the complex port-plug geometry.

  4. Relevance of advanced nuclear fusion research: Breakthroughs and obstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppi, Bruno, E-mail: coppi@mit.edu

    2016-03-25

    An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burningmore » plasma regimes near ignition for the first time.« less

  5. Summary of ECE presentations at EC-18

    DOE PAGES

    Taylor, G.

    2015-03-12

    There were nine ECE and one EBE presentation at EC-18. Four of the presentations were on various aspects of ECE on ITER. The ITER ECE diagnostic has entered an important detailed preliminary design phase and faces several design challenges in the next 2-3 years. Most of the other ECE presentations at the workshop were focused on applications of ECE diagnostics to plasma measurements, rather than improvements in technology, although it was apparent that heterodyne receiver technology continues to improve. CECE, ECE imaging and EBE imaging are increasingly providing valuable insights into plasma behavior that is important to understand if futuremore » burning plasma devices, such as ITER, FNSF and DEMO, are to be successful.« less

  6. Therapeutic effects of transdermal systems containing zinc-related materials on thermal burn rats.

    PubMed

    Otsuka, Makoto; Hatakeyama, Haruna; Shikamura, Masayuki; Otsuka, Kuniko; Ito, Atsuo

    2015-01-01

    The aim of the present study is to evaluate the efficacy of slow zinc (Zn) release from β-tricalcium phosphate powder (ZnTCP) containing 10 mol% Zn on rats with thermal burns. The first-aid tapes were contained zinc sulfate (ZnSO4) solution, ZnTCP suspensions or zinc oxide ointment. After thermal burn treatments were performed on Zn-deficient rats, the groups D1, D2 and D3 were treated with tapes containing ZnTCP, ZnSO4 and zinc oxide ointment. The effects of the tapes on wound area, plasma Zn levels and alkaline phosphatase activity (Alp) were investigated. The wound area profiles of all rat groups could be separated into before and after the scab formation at around day 6. The area under the curve (Aw-AUC) for wound area profiles, therefore, was evaluated as an index of therapeutic scores for the thermal wound. The order of Aw-AUC was D3>C>D2>D1. The degree of expansion at the initial stage by thermal burns of group D1 was the lowest and that of group D2 was the highest, and the order was D1

  7. Plasma Heating Simulation in the VASIMR System

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.

    2005-01-01

    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.

  8. The validation study on a three-dimensional burn estimation smart-phone application: accurate, free and fast?

    PubMed

    Cheah, A K W; Kangkorn, T; Tan, E H; Loo, M L; Chong, S J

    2018-01-01

    Accurate total body surface area burned (TBSAB) estimation is a crucial aspect of early burn management. It helps guide resuscitation and is essential in the calculation of fluid requirements. Conventional methods of estimation can often lead to large discrepancies in burn percentage estimation. We aim to compare a new method of TBSAB estimation using a three-dimensional smart-phone application named 3D Burn Resuscitation (3D Burn) against conventional methods of estimation-Rule of Palm, Rule of Nines and the Lund and Browder chart. Three volunteer subjects were moulaged with simulated burn injuries of 25%, 30% and 35% total body surface area (TBSA), respectively. Various healthcare workers were invited to use both the 3D Burn application as well as the conventional methods stated above to estimate the volunteer subjects' burn percentages. Collective relative estimations across the groups showed that when used, the Rule of Palm, Rule of Nines and the Lund and Browder chart all over-estimated burns area by an average of 10.6%, 19.7%, and 8.3% TBSA, respectively, while the 3D Burn application under-estimated burns by an average of 1.9%. There was a statistically significant difference between the 3D Burn application estimations versus all three other modalities ( p  < 0.05). Time of using the application was found to be significantly longer than traditional methods of estimation. The 3D Burn application, although slower, allowed more accurate TBSAB measurements when compared to conventional methods. The validation study has shown that the 3D Burn application is useful in improving the accuracy of TBSAB measurement. Further studies are warranted, and there are plans to repeat the above study in a different centre overseas as part of a multi-centre study, with a view of progressing to a prospective study that compares the accuracy of the 3D Burn application against conventional methods on actual burn patients.

  9. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  10. Electron-ion relaxation in a dense plasma. [supernovae core physics

    NASA Technical Reports Server (NTRS)

    Littleton, J. E.; Buchler, J.-R.

    1974-01-01

    The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.

  11. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    DOE PAGES

    Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...

    2016-10-24

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  12. Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling

    NASA Astrophysics Data System (ADS)

    De Sales, Fernando; Xue, Yongkang; Okin, Gregory S.

    2016-12-01

    This study investigates the impact of burned areas on the surface energy balance and monthly precipitation in northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS date of burning product was implemented in a set of 1-year long WRF-NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was imposed through lower ground albedo for a period after burning. In general, wildfire-induced vegetation and ground condition deterioration increased mean surface albedo by exposing the brighter bare ground, which in turn caused a decrease in monthly surface net radiation. On average, the wildfire-season albedo increase was approximately 6.3 % over the Sahel. The associated decrease in surface available energy caused a drop in surface sensible heat flux to the atmosphere during the dry months of winter and early spring, which gradually transitioned to a more substantial decrease in surface evapotranspiration in April and May that lessened throughout the rainy season. Overall, post-fire land condition deterioration resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned area simulations, which played a dominant role in reducing precipitation in the area, especially in the months preceding the monsoon onset. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8 and 3.3 %, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early spring. This study suggests the cooling and drying of atmosphere induced by burned areas caused the strengthening of subsidence during pre-onset and weakening of upward atmospheric motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Monthly mid-tropospheric vertical wind showed a strengthening of downward motion in winter and spring seasons, and weakening of upward movement during the rainy months. Furthermore, precipitation energy analysis revealed that most of precipitation decrease originated from convective events, which supports the hypothesis of reduced convective instability due to wildfires.

  13. Wildfire risk assessment in a typical Mediterranean wildland-urban interface of Greece.

    PubMed

    Mitsopoulos, Ioannis; Mallinis, Giorgos; Arianoutsou, Margarita

    2015-04-01

    The purpose of this study was to assess spatial wildfire risk in a typical Mediterranean wildland-urban interface (WUI) in Greece and the potential effect of three different burning condition scenarios on the following four major wildfire risk components: burn probability, conditional flame length, fire size, and source-sink ratio. We applied the Minimum Travel Time fire simulation algorithm using the FlamMap and ArcFuels tools to characterize the potential response of the wildfire risk to a range of different burning scenarios. We created site-specific fuel models of the study area by measuring the field fuel parameters in representative natural fuel complexes, and we determined the spatial extent of the different fuel types and residential structures in the study area using photointerpretation procedures of large scale natural color orthophotographs. The results included simulated spatially explicit fire risk components along with wildfire risk exposure analysis and the expected net value change. Statistical significance differences in simulation outputs between the scenarios were obtained using Tukey's significance test. The results of this study provide valuable information for decision support systems for short-term predictions of wildfire risk potential and inform wildland fire management of typical WUI areas in Greece.

  14. Wildfire Risk Assessment in a Typical Mediterranean Wildland-Urban Interface of Greece

    NASA Astrophysics Data System (ADS)

    Mitsopoulos, Ioannis; Mallinis, Giorgos; Arianoutsou, Margarita

    2015-04-01

    The purpose of this study was to assess spatial wildfire risk in a typical Mediterranean wildland-urban interface (WUI) in Greece and the potential effect of three different burning condition scenarios on the following four major wildfire risk components: burn probability, conditional flame length, fire size, and source-sink ratio. We applied the Minimum Travel Time fire simulation algorithm using the FlamMap and ArcFuels tools to characterize the potential response of the wildfire risk to a range of different burning scenarios. We created site-specific fuel models of the study area by measuring the field fuel parameters in representative natural fuel complexes, and we determined the spatial extent of the different fuel types and residential structures in the study area using photointerpretation procedures of large scale natural color orthophotographs. The results included simulated spatially explicit fire risk components along with wildfire risk exposure analysis and the expected net value change. Statistical significance differences in simulation outputs between the scenarios were obtained using Tukey's significance test. The results of this study provide valuable information for decision support systems for short-term predictions of wildfire risk potential and inform wildland fire management of typical WUI areas in Greece.

  15. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  16. 3D Global Fluid Simulations of Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett; Ricci, Paolo; Li, Bo

    2009-05-01

    We present 3D global fluid simulations of the UCLA upgraded Large Plasma Device (LAPD). This device confines an 18-m-long, cylindrically symmetric plasma with a uniform magnetic field. The plasma in the simulations is generated by density and temperature sources inside the computational domain, and sheath boundary conditions are applied at the ends of the plasma column. In 3D simulations of the entire plasma, we observe strong, rotating intermittent density and temperature fluctuations driven by resistive driftwave turbulence with finite parallel wavenumbers. Analogous simulations carried out in the 2D limit (that is, assuming that the motions are purely interchange-like) display much weaker mode activity driven a Kelvin-Helmholtz instability. The properties and scaling of the turbulence and transport will be discussed.

  17. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  18. Relativistic Laser Absorption and Magnetic Field Channel Formation in 3D PIC Simulation

    NASA Astrophysics Data System (ADS)

    Sentoku, Yasuhiko; Mima, Kunioki; Sheng, Zheng-Ming; Kaw, Predhiman; Nishihara, Katsunobu; Nishikawa, Kyoji

    2000-10-01

    We carried out 3D PIC simulations on overdense plasmas. On the surface of the plasmas, relativistic electrons are generated and transported into overdense plasmas. In the transport, it is found that energy is transferred to dense plasmas by convective cells. Namely, hot electron and cold electron return flows form convective cells through the magnetic instabilities (e.g. Weibel Instability). The heat flux associating with the convective cells and the anomalous stoppings in 3D simulations are compared with these in 2D simulations by Meyer-ter-Vehn etal. and Taguchi etal. [1] M. Honda, J. Meyer-ter-Vehn, and A. Pukhov, Phys. Plasmas 7, 1302, (2000). [2] ``Relativistic Electron Transport Simulation by 2D hybrid Simulation with Darwin Approximation." by T. Taguchi etal. (to be present in the poster of this conference)

  19. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  20. Computational study of nonlinear plasma waves. [plasma simulation model applied to electrostatic waves in collisionless plasma

    NASA Technical Reports Server (NTRS)

    Matsuda, Y.

    1974-01-01

    A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.

  1. Simulation of beam-induced plasma in gas-filled rf cavities

    DOE PAGES

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...

    2017-03-07

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less

  2. A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

    DTIC Science & Technology

    2017-06-23

    the effects of inelastic collisions on the Multi-Fluid description of plasmas. 15. SUBJECT TERMS Electric propulsion; plasma; collisional...modeling as well as the effects of inelastic collisions on the Multi-Fluid description of plasmas. This work has been recognized in two workshop...encountered during simulation was to define when breakdown occurred during the simulation and correlating the results to the experimentally determined

  3. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less

  4. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, K. H.; Chen, X.; Garofalo, A. M.

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamakmore » energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less

  5. Simulation of High-Beta Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Font, Gabriel; Welch, Dale; Mitchell, Robert; McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor concept utilizes magnetic cusps to confine the plasma. In order to minimize losses through the axial and ring cusps, the plasma is pushed to a high-beta state. Simulations were made of the plasma and magnetic field system in an effort to quantify particle confinement times and plasma behavior characteristics. Computations are carried out with LSP using implicit PIC methods. Simulations of different sub-scale geometries at high-Beta fusion conditions are used to determine particle loss scaling with reactor size, plasma conditions, and gyro radii. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  6. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  7. Effects of salvage logging and pile-and-burn on fuel loading, potential fire behaviour, fuel consumption and emissions

    Treesearch

    Morris C. Johnson; Jessica E. Halofsky; David L. Peterson

    2013-01-01

    We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...

  8. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a California chaparral fire

    Treesearch

    M. J. Alvarado; C. R. Lonsdale; R. J. Yokelson; S. K. Akagi; I. R. Burling; H. Coe; J. S. Craven; E. Fischer; G. R. McMeeking; J. H. Seinfeld; T. Soni; J. W. Taylor; D. R. Weise; C. E. Wold

    2014-01-01

    Within minutes after emission, rapid, complex photochemistry within a biomass burning smoke plume can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under 5 a wide variety of conditions is a critical part of forecasting the impact of these fires...

  9. Simulation of the consequences of different fire regimes to support wildland fire use decisions

    Treesearch

    Carol Miller

    2007-01-01

    The strategy known as wildland fire use, in which lightning-ignited fires are allowed to burn, is rapidly gaining momentum in the fire management community. Managers need to know the consequences of an increase in area burned that might result from an increase in wildland fire use. One concern of land managers as they consider implementing wildland fire use is whether...

  10. Effects of Different Large-Scale Prescribed Burning Regimes of Advance Reproduction in the Missouri Ozarks

    Treesearch

    Daniel C. Dey; George Hartman

    2004-01-01

    In 1997, The Nature Conservancy initiated a large-scale prescribed fire management study on approximately 2,500 acres of their Chilton Creek property located in Shannon and Carter counties, Missouri. Since the spring of 1998, five management units, of roughly 500 acres each, have been burned in the dormant season to simulate a range of fire regimes that vary from...

  11. First-principles-based kinetic Monte Carlo simulation of nitric oxide decomposition over Pt and Rh surfaces under lean-burn conditions

    NASA Astrophysics Data System (ADS)

    Mei, Donghai; Ge, Qingfeng; Neurock, Matthew; Kieken, Laurent; Lerou, Jan

    First-principles-based kinetic Monte Carlo simulation was used to track the elementary surface transformations involved in the catalytic decomposition of NO over Pt(100) and Rh(100) surfaces under lean-burn operating conditions. Density functional theory (DFT) calculations were carried out to establish the structure and energetics for all reactants, intermediates and products over Pt(100) and Rh(100). Lateral interactions which arise from neighbouring adsorbates were calculated by examining changes in the binding energies as a function of coverage and different coadsorbed configurations. These data were fitted to a bond order conservation (BOC) model which is subsequently used to establish the effects of coverage within the simulation. The intrinsic activation barriers for all the elementary reaction steps in the proposed mechanism of NO reduction over Pt(100) were calculated by using DFT. These values are corrected for coverage effects by using the parametrized BOC model internally within the simulation. This enables a site-explicit kinetic Monte Carlo simulation that can follow the kinetics of NO decomposition over Pt(100) and Rh(100) in the presence of excess oxygen. The simulations are used here to model various experimental protocols including temperature programmed desorption as well as batch catalytic kinetics. The simulation results for the temperature programmed desorption and decomposition of NO over Pt(100) and Rh(100) under vacuum condition were found to be in very good agreement with experimental results. NO decomposition is strongly tied to the temporal number of sites that remain vacant. Experimental results show that Pt is active in the catalytic reaction of NO into N2 and NO2 under lean-burn conditions. The simulated reaction orders for NO and O2 were found to be +0.9 and -0.4 at 723 K, respectively. The simulation also indicates that there is no activity over Rh(100) since the surface becomes poisoned by oxygen.

  12. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were fundamental to its completion. I am pleased to witness the extensive collaborations, the excellent working relationships and the free exchange of views that have been developed among scientists working on magnetic fusion, and I would particularly like to acknowledge the importance which they assign to ITER in their research. This close collaboration and the spirit of free discussion will be essential to the success of ITER. Finally, the PIPB identifies issues which remain in the projection of burning plasma performance to the ITER scale and in the control of burning plasmas. Continued R&D is therefore called for to reduce the uncertainties associated with these issues and to ensure the efficient operation and exploitation of ITER. It is important that the international fusion community maintains a high level of collaboration in the future to address these issues and to prepare the physics basis for ITER operation. ITPA Coordination Committee R. Stambaugh (Chair of ITPA CC, General Atomics, USA) D.J. Campbell (Previous Chair of ITPA CC, European Fusion Development Agreement—Close Support Unit, ITER Organization) M. Shimada (Co-Chair of ITPA CC, ITER Organization) R. Aymar (ITER International Team, CERN) V. Chuyanov (ITER Organization) J.H. Han (Korea Basic Science Institute, Korea) Y. Huo (Zengzhou University, China) Y.S. Hwang (Seoul National University, Korea) N. Ivanov (Kurchatov Institute, Russia) Y. Kamada (Japan Atomic Energy Agency, Naka, Japan) P.K. Kaw (Institute for Plasma Research, India) S. Konovalov (Kurchatov Institute, Russia) M. Kwon (National Fusion Research Center, Korea) J. Li (Academy of Science, Institute of Plasma Physics, China) S. Mirnov (TRINITI, Russia) Y. Nakamura (National Institute for Fusion Studies, Japan) H. Ninomiya (Japan Atomic Energy Agency, Naka, Japan) E. Oktay (Department of Energy, USA) J. Pamela (European Fusion Development Agreement—Close Support Unit) C. Pan (Southwestern Institute of Physics, China) F. Romanelli (Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Italy and European Fusion Development Agreement—Close Support Unit) N. Sauthoff (Princeton Plasma Physics Laboratory, USA and Oak Ridge National Laboratories, USA) Y. Saxena (Institute for Plasma Research, India) Y. Shimomura (ITER Organization) R. Singh (Institute for Plasma Research, India) S. Takamura (Nagoya University, Japan) K. Toi (National Institute for Fusion Studies, Japan) M. Wakatani (Kyoto University, Japan (deceased)) H. Zohm (Max-Planck-Institut für Plasmaphysik, Garching, Germany)

  13. [Factor XIII-guided treatment algorithm reduces blood transfusion in burn surgery].

    PubMed

    Carneiro, João Miguel Gonçalves Valadares de Morais; Alves, Joana; Conde, Patrícia; Xambre, Fátima; Almeida, Emanuel; Marques, Céline; Luís, Mariana; Godinho, Ana Maria Mano Garção; Fernandez-Llimos, Fernando

    Major burn surgery causes large hemorrhage and coagulation dysfunction. Treatment algorithms guided by ROTEM ® and factor VIIa reduce the need for blood products, but there is no evidence regarding factor XIII. Factor XIII deficiency changes clot stability and decreases wound healing. This study evaluates the efficacy and safety of factor XIII correction and its repercussion on transfusion requirements in burn surgery. Randomized retrospective study with 40 patients undergoing surgery at the Burn Unit, allocated into Group A those with factor XIII assessment (n = 20), and Group B, those without assessment (n = 20). Erythrocyte transfusion was guided by a hemoglobin trigger of 10g.dL -1 and the other blood products by routine coagulation and ROTEM ® tests. Analysis of blood product consumption included units of erythrocytes, fresh frozen plasma, platelets, and fibrinogen. The coagulation biomarker analysis compared the pre- and post-operative values. Group A (with factor XIII study) and Group B had identical total body surface area burned. All patients in Group A had a preoperative factor XIII deficiency, whose correction significantly reduced units of erythrocyte concentrate transfusion (1.95 vs. 4.05, p = 0.001). Pre- and post-operative coagulation biomarkers were similar between groups, revealing that routine coagulation tests did not identify factor XIII deficiency. There were no recorded thromboembolic events. Correction of factor XIII deficiency in burn surgery proved to be safe and effective for reducing perioperative transfusion of erythrocyte units. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Analyses of biomass burning contribution to aerosol in Zhengzhou during wheat harvest season in 2015

    NASA Astrophysics Data System (ADS)

    Chen, Hongyang; Yin, Shasha; Li, Xiao; Wang, Jia; Zhang, Ruiqin

    2018-07-01

    Ambient PM2.5 samples were collected in suburban area of Zhengzhou, China to investigate the impact of straw open burning on local aerosol during wheat harvest season in 2015. Secondary formation and accumulation processes were found under unfavorable meteorological conditions through the chemical composition analysis in PM2.5. And spatial and temporal variation of the agricultural activities were observed through MODIS fire spots data combined with back trajectory analysis. Results showed elevated levoglucosan was affected directly during biomass burning episodes and transportation periods. In order to estimate the contribution, levoglucosan/K+ combined with levoglucosan/mannosan were analyzed to identify biomass burning sources. And the results showed that levoglucosan were emitted from straw burning mixing with softwood combustion during the study period, emphasizing that wood combustion for households was non-negligible which consists part of the levoglucosan background in Zhengzhou aerosol. Based on emission factors (levoglucosan/OC or levoglucosan/PM2.5) summarized by laboratory simulation experiments, the study period was divided into 7 depending on the former characteristics to estimate the contribution of biomass burning to aerosol, and the average contributions of biomass burning emission to OC and PM2.5 were 46% and 13% relatively, indicating biomass burning have a significant impact on ambient aerosol levels during harvest season.

  15. Laboratory measurements of emission factors of nonmethane volatile organic compounds from burning of Chinese crop residues

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Tanimoto, Hiroshi; Pan, Xiaole; Taketani, Fumikazu; Komazaki, Yuichi; Miyakawa, Takuma; Kanaya, Yugo; Wang, Zifa

    2015-05-01

    The emission factors (EFs) of nonmethane volatile organic compounds (NMVOCs) emitted during the burning of Chinese crop residue were investigated as a function of modified combustion efficiency in laboratory experiments. NMVOCs, including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons, were monitored by proton-transfer-reaction mass spectrometry. Rape plant was burned in dry conditions and wheat straw was burned in both wet and dry conditions to simulate the possible burning of damp crop residue in regions of high temperature and humidity. We compared the present data to field data reported by Kudo et al. (2014). Good agreement between field and laboratory data was obtained for aromatics under relatively more smoldering combustion of dry samples, but laboratory data were slightly overestimated compared to field data for oxygenated VOC (OVOC). When EFs from the burning of wet samples were investigated, the consistency between the field and laboratory data for OVOCs was stronger than for dry samples. This may be caused by residual moisture in crop residue that has been stockpiled in humid regions. Comparison of the wet laboratory data with field data suggests that Kudo et al. (2014) observed the biomass burning plumes under relatively more smoldering conditions in which approximately a few tens of percentages of burned fuel materials were wet.

  16. Plasma Sheet Circulation Pathways

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.

    2008-01-01

    Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.

  17. Speciation of arsenic, selenium, and chromium in wildfire impacted soils and ashes

    USGS Publications Warehouse

    Wolf, Ruth E.; Hoefen, Todd M.; Hageman, Philip L.; Morman, Suzette A.; Plumlee, Geoffrey S.

    2010-01-01

    In 2007-09, California experienced several large wildfires that damaged large areas of forest and destroyed many homes and buildings. The U.S. Geological Survey collected samples from the Harris, Witch, Grass Valley, Ammo, Santiago, Canyon, Jesusita, and Station fires for testing to identify any possible characteristics of the ashes and soils from burned areas that may be of concern for their impact on water quality, human health, and endangered species. The samples were subjected to analysis for bulk chemical composition for 44 elements by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion and de-ionized water leach tests for pH, alkalinity, conductivity, and anions. Water leach tests generated solutions ranging from pH 10-12, suggesting that ashes can generate caustic alkalinity in contact with rainwater or body fluids (for example, sweat and fluids in the respiratory tract). Samples from burned residential areas in the 2007 fires had elevated levels for several metals, including: As, Pb, Sb, Cu, Zn, and Cr. In some cases, the levels found were above the U.S. Environmental Protection Agency (USEPA) preliminary remediation goals (PRG) for soils. Speciation analyses were conducted on de-ionized water and simulated lung fluid leachates for As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI). All species were determined in the same analytical run using an ion-pairing HPLC-ICP-MS method. For leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent, Cr(VI), form. Higher total and hexavalent chromium levels were observed for samples collected from burned residential areas. Arsenic was also generally present in the more oxidized, As(V), form. Selenium (IV) and (VI) were present, but typically at levels below 2 ppb for most samples. Stability studies of leachate solutions under different storage conditions were performed and the suitability of different sample preservation methods for speciation analysis will be discussed.

  18. Simulation of mixing in the quick quench region of a rich burn-quick quench mix-lean burn combustor

    NASA Technical Reports Server (NTRS)

    Shih, Tom I.-P.; Nguyen, H. Lee; Howe, Gregory W.; Li, Z.

    1991-01-01

    A computer program was developed to study the mixing process in the quick quench region of a rich burn-quick quench mix-lean burn combustor. The computer program developed was based on the density-weighted, ensemble-averaged conservation equations of mass, momentum (full compressible Navier-Stokes), total energy, and species, closed by a k-epsilon turbulence model with wall functions. The combustion process was modeled by a two-step global reaction mechanism, and NO(x) formation was modeled by the Zeldovich mechanism. The formulation employed in the computer program and the essence of the numerical method of solution are described. Some results obtained for nonreacting and reacting flows with different main-flow to dilution-jet momentum flux ratios are also presented.

  19. Plasma-Sheath-Surface Dynamics

    DTIC Science & Technology

    1990-09-01

    Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. IJ. Morey and C.K. Birdsall, "Traveling Wave-Tube Simulation...Theilhaber, "Analytic Solutions and Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. S.E. Parker, and C.K

  20. A collision scheme for hybrid fluid-particle simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Nguyen, Christine; Lim, Chul-Hyun; Verboncoeur, John

    2006-10-01

    Desorption phenomena at the wall of a tokamak can lead to the introduction of impurities at the edge of a thermonuclear plasma. In particular, the use of carbon as a constituent of the tokamak wall, as planned for ITER, requires the study of carbon and hydrocarbon transport in the plasma, including understanding of collisional interaction with the plasma. These collisions can result in new hydrocarbons, hydrogen, secondary electrons and so on. Computational modeling is a primary tool for studying these phenomena. XOOPIC [1] and OOPD1 are widely used computer modeling tools for the simulation of plasmas. Both are particle type codes. Particle simulation gives more kinetic information than fluid simulation, but more computation time is required. In order to reduce this disadvantage, hybrid simulation has been developed, and applied to the modeling of collisions. Present particle simulation tools such as XOOPIC and OODP1 employ a Monte Carlo model for the collisions between particle species and a neutral background gas defined by its temperature and pressure. In fluid-particle hybrid plasma models, collisions include combinations of particle and fluid interactions categorized by projectile-target pairing: particle-particle, particle-fluid, and fluid-fluid. For verification of this hybrid collision scheme, we compare simulation results to analytic solutions for classical plasma models. [1] Verboncoeur et al. Comput. Phys. Comm. 87, 199 (1995).

  1. MHD simulation of plasma compression experiments

    NASA Astrophysics Data System (ADS)

    Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter

    2017-10-01

    General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.

  2. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets relevant for fire and smoke management.

  3. Additional historical solid rocket motor burns

    NASA Astrophysics Data System (ADS)

    Wiedemann, Carsten; Homeister, Maren; Oswald, Michael; Stabroth, Sebastian; Klinkrad, Heiner; Vörsmann, Peter

    2009-06-01

    The use of orbital solid rocket motors (SRM) is responsible for the release of a high number of slag and Al 2O 3 dust particles which contribute to the space debris environment. This contribution has been modeled for the ESA space debris model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference). The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which mainly contributed to the long-term debris environment. SRM firings on very low earth orbits which produce only short living particles are not considered. A comparison of the modeled flux with impact data from returned surfaces shows that the shape and quantity of the modeled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analyzed Long Duration Exposure Facility (LDEF) surfaces. This indicates that some past SRM firings are not included in the current event database. Thus it is necessary to investigate, if additional historical SRM burns, like the retro-burn of low orbiting re-entry capsules, may be responsible for these dust impacts. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. This paper focuses on the SRM retro-burns of Russian photoreconnaissance satellites, which were used in high numbers during the time of the LDEF mission. It is discussed which types of satellites and motors may have been responsible for this historical contribution. Altogether, 870 additional SRM retro-burns have been identified. An important task is the identification of such missions to complete the current event data base. Different types of motors have been used to de-orbit both large satellites and small film return capsules. The results of simulation runs are presented.

  4. In vitro bactericidal efficacy of atmospheric-pressure plasma jet on titanium-based implant infected with Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Park, Young-Ouk; Lee, Chang-Min; Kim, Myung-Sun; Jung, Sang-Chul; Yang, Seong-Won; Kook, Min-Suk; Kim, Byung-Hoon

    2017-01-01

    Staphylococcus aureus is a representative of gram-positive bacteria that causes skin infection, respiratory diseases, and burned tissue infections. The aim of this study was to evaluate the sterilizing efficiency of an atmospheric-pressure plasma jet (APPJ) on S. aureus adhered on a titanium surface. During the APPJ sterilization, the plasma gases used were Ar, Ar+N2, and Ar+O2. With increasing APPJ treatment time, the viability of S. aureus decreased. The addition of O2 gas to Ar gas resulted in a higher sterilizing efficiency than the addition of other groups. Plasma exposure induced bacterial oxidative stress, and it was confirmed that the cell membrane was seriously damaged by the production of reactive oxygen species. Our finding suggests that the APPJ is an effective tool for clinical antimicrobial therapy.

  5. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited).

    PubMed

    Delgado-Aparicio, L F; Maddox, J; Pablant, N; Hill, K; Bitter, M; Rice, J E; Granetz, R; Hubbard, A; Irby, J; Greenwald, M; Marmar, E; Tritz, K; Stutman, D; Stratton, B; Efthimion, P

    2016-11-01

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e , n Z , ΔZ eff , and n e,fast ). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.

  6. Spectral broadening of characteristic γ-ray emission peaks from 12C(3He,pγ)14N reactions in fusion plasmas.

    PubMed

    Tardocchi, M; Nocente, M; Proverbio, I; Kiptily, V G; Blanchard, P; Conroy, S; Fontanesi, M; Grosso, G; Kneupner, K; Lerche, E; Murari, A; Cippo, E Perelli; Pietropaolo, A; Syme, B; Van Eester, D; Gorini, G

    2011-11-11

    The spectral broadening of characteristic γ-ray emission peaks from the reaction (12)C((3)He,pγ)(14)N was measured in D((3)He) plasmas of the JET tokamak with ion cyclotron resonance heating tuned to the fundamental harmonic of (3)He. Intensities and detailed spectral shapes of γ-ray emission peaks were successfully reproduced using a physics model combining the kinetics of the reacting ions with a detailed description of the nuclear reaction differential cross sections for populating the L1-L8 (14)N excitation levels yielding the observed γ-ray emission. The results provide a paradigm, which leverages knowledge from areas of physics outside traditional plasma physics, for the development of nuclear radiation based methods for understanding and controlling fusion burning plasmas.

  7. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  8. A treecode to simulate dust-plasma interactions

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Holgate, J. T.

    2017-02-01

    The interaction of a small object with surrounding plasma is an area of plasma-physics research with a multitude of applications. This paper introduces the plasma octree code pot, a microscopic simulator of a spheroidal dust grain in a plasma. pot uses the Barnes-Hut treecode algorithm to perform N-body simulations of electrons and ions in the vicinity of a chargeable spheroid, employing also the Boris particle-motion integrator and Hutchinson’s reinjection algorithm from SCEPTIC; a description of the implementation of all three algorithms is provided. We present results from pot simulations of the charging of spheres in magnetised plasmas, and of spheroids in unmagnetized plasmas. The results call into question the validity of using the Boltzmann relation in hybrid PIC codes. Substantial portions of this paper are adapted from chapters 4 and 5 of the first author’s recent PhD dissertation.

  9. Space tug geosynchronous mission simulation

    NASA Technical Reports Server (NTRS)

    Lang, T. J.

    1973-01-01

    Near-optimal three dimensional trajectories from a low earth park orbit inclined at 28.5 deg to a synchronous-equatorial mission orbit were developed for both the storable (thrust = 28,912 N (6,500 lbs), I sub sp = 339 sec) and cryogenic (thrust = 44,480 N (10,000 lbs), I sub sp = 470 sec) space tug using the iterative cost function minimization technique contained within the modularized vehicle simulation (MVS) program. The finite burn times, due to low thrust-to-weight ratios, and the associated gravity losses are accounted for in the trajectory simulation and optimization. The use of an ascent phasing orbit to achieve burnout in synchronous orbit at any longitude is investigated. The ascent phasing orbit is found to offer the additional advantage of significantly reducing the overall delta velocity by splitting the low altitude burn into two parts and thereby reducing gravity losses.

  10. The neutron imaging diagnostic at NIF (invited).

    PubMed

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  11. Determining the Uncertainties in Prescribed Burn Emissions Through Comparison of Satellite Estimates to Ground-based Estimates and Air Quality Model Evaluations in Southeastern US

    NASA Astrophysics Data System (ADS)

    Odman, M. T.; Hu, Y.; Russell, A. G.

    2016-12-01

    Prescribed burning is practiced throughout the US, and most widely in the Southeast, for the purpose of maintaining and improving the ecosystem, and reducing the wildfire risk. However, prescribed burn emissions contribute significantly to the of trace gas and particulate matter loads in the atmosphere. In places where air quality is already stressed by other anthropogenic emissions, prescribed burns can lead to major health and environmental problems. Air quality modeling efforts are under way to assess the impacts of prescribed burn emissions. Operational forecasts of the impacts are also emerging for use in dynamic management of air quality as well as the burns. Unfortunately, large uncertainties exist in the process of estimating prescribed burn emissions and these uncertainties limit the accuracy of the burn impact predictions. Prescribed burn emissions are estimated by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels, their consumption amounts, and the progression of the fire, ground-based estimates are more accurate. In the absence of such information satellites remain as the only reliable source for emission estimation. To determine the level of uncertainty in prescribed burn emissions, we compared estimates derived from a burn permit database and other ground-based information to the estimates by the Biomass Burning Emissions Product derived from a constellation of NOAA and NASA satellites. Using these emissions estimates we conducted simulations with the Community Multiscale Air Quality (CMAQ) model and predicted trace gas and particulate matter concentrations throughout the Southeast for two consecutive burn seasons (2015 and 2016). In this presentation, we will compare model predicted concentrations to measurements at monitoring stations and evaluate if the differences are commensurate with our emission uncertainty estimates. We will also investigate if spatial and temporal patterns in the differences reveal the sources of the uncertainty in the prescribed burn emission estimates.

  12. Active antioxidants in ex-vivo examination of burn wound healing by means of IR and Raman spectroscopies-Preliminary comparative research

    NASA Astrophysics Data System (ADS)

    Pielesz, Anna; Biniaś, Dorota; Sarna, Ewa; Bobiński, Rafał; Kawecki, Marek; Glik, Justyna; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Paluch, Jadwiga; Kraut, Małgorzata

    2017-02-01

    Being a complex traumatic event, burn injury also affects other organ systems apart from the skin. Wounds undergo various pathological changes which are accompanied by alterations in the molecular environment. Information about molecules may be obtained with the use of Raman spectroscopy and Fourier-transform infrared spectroscopy, and when combined, both methods are a powerful tool for providing material characterization. Alterations in the molecular environment may lead to identifying objective markers of acute wound healing. In general, incubation of samples in solutions of L-ascorbic acid and 5% and 7% orthosilicic acid organizes the collagen structure, whereas the increased intensity of the Raman bands in the region of 1500-800 cm- 1 reveals regeneration of the burn tissue. Since oxidative damage is one of the mechanisms responsible for local and distant pathophysiological events after burn, antioxidant therapy can prove to be beneficial in minimizing burn wounds, which was examined on the basis of human skin samples and chicken skin samples, the latter being subject to modification when heated to a temperature sufficient for the simulation of a burn incident.

  13. Investigating the laser heating of underdense plasmas at conditions relevant to MagLIF

    NASA Astrophysics Data System (ADS)

    Harvey-Thompson, Adam

    2015-11-01

    The magnetized Liner Inertial Fusion (MagLIF) scheme has achieved thermonuclear fusion yields on Sandia's Z Facility by imploding a cylindrical liner filled with D2 fuel that is preheated with a multi-kJ laser and pre-magnetized with an axial field Bz = 10 T. The challenge of fuel preheating in MagLIF is to deposit several kJ's of energy into an underdense (ne/ncrit<0.1) fusion fuel over ~ 10 mm target length efficiently and without introducing contaminants that could contribute to unacceptable radiative losses during the implosion. Very little experimental work has previously been done to investigate laser heating of gas at densities, scale lengths, modest intensities (Iλ2 ~ 1014 watts- μm2 /cm2) and magnetization parameters (ωceτe ~ 10) necessary for MagLIF. In particular, magnetization of the preheated plasma suppresses electron thermal conduction, which can modify laser energy coupling. Providing an experimental dataset in this regime is essential to not only understand the dynamics of a MagLIF implosion and stagnation, but also to validate magnetized transport models and better understand the physics of laser propagation in magnetized plasmas. In this talk, we present data and analysis of several experiments conducted at OMEGA-EP and at Z to investigate laser propagation and plasma heating in underdense D2 plasmas under a range of conditions, including densities (ne = 0.05-0.1 nc) and magnetization parmaters (ωceτe ~ 0-10). The results show differences in the electron temperature of the heated plasma and the velocity of the laser burn wave with and without an applied magnetic field. We will show comparisons of these experimental results to 2D and 3D HYDRA simulations, which show that the effect of the magnetic field on the electron thermal conduction needs to be taken into account when modeling laser preheat. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  14. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition.

    PubMed

    Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.

  15. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Wu, S. Z.; Zhou, C. T.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with establishedmore » linear theory.« less

  16. Advances in continuum kinetic and gyrokinetic simulations of turbulence on open-field line geometries

    NASA Astrophysics Data System (ADS)

    Hakim, Ammar; Shi, Eric; Juno, James; Bernard, Tess; Hammett, Greg

    2017-10-01

    For weakly collisional (or collisionless) plasmas, kinetic effects are required to capture the physics of micro-turbulence. We have implemented solvers for kinetic and gyrokinetic equations in the computational plasma physics framework, Gkeyll. We use a version of discontinuous Galerkin scheme that conserves energy exactly. Plasma sheaths are modeled with novel boundary conditions. Positivity of distribution functions is maintained via a reconstruction method, allowing robust simulations that continue to conserve energy even with positivity limiters. We have performed a large number of benchmarks, verifying the accuracy and robustness of our code. We demonstrate the application of our algorithm to two classes of problems (a) Vlasov-Maxwell simulations of turbulence in a magnetized plasma, applicable to space plasmas; (b) Gyrokinetic simulations of turbulence in open-field-line geometries, applicable to laboratory plasmas. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  17. Plasma density injection and flow during coaxial helicity injection in a tokamak

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.

    2018-02-01

    Whole device, resistive MHD simulations of spheromaks and tokamaks have used a large diffusion coefficient that maintains a nearly constant density throughout the device. In the present work, helicity and plasma are coinjected into a low-density plasma in a tokamak with a small diffusion coefficient. As in previous simulations [Hooper et al., Phys. Plasmas 20, 092510 (2013)], a flux bubble is formed, which expands to fill the tokamak volume. The injected plasma is non-uniform inside the bubble. The flow pattern is analyzed; when the simulation is not axisymmetric, an n = 1 mode on the surface of the bubble generates leakage of plasma into the low-density volume. Closed flux is generated following injection, as in experiments and previous simulations. The result provides a more detailed physics analysis of the injection, including density non-uniformities in the plasma that may affect its use as a startup plasma [Raman et al., Phys. Rev. Lett. 97, 175002 (2006)].

  18. Hydrodynamic optical-field-ionized plasma channels

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  19. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  20. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    NASA Technical Reports Server (NTRS)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

Top