Sample records for burst engine activity

  1. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  2. A Temporal Correlation in Quiescent Gamma-Ray Burst Prompt Emission: Evidence for Prognitor Memory

    NASA Astrophysics Data System (ADS)

    Patton, Thomas L.; Giblin, Timothy; Hakkila, Jon E.

    2018-06-01

    In spite of the insight gained into the nature of the Gamma-Ray Bursts (GRB) from early and late-time X-Ray observations in the Swift era, GRB prompt emission continues to provide clues and new insight into the activity of the central engine. A comprehensive understanding of all emission components observed in GRBs, from the traditional prompt GRB emission to the long lived X-Ray and optical decay super- imposed with late-time flaring activity, currently remains allusive. Using data from the Swift Burst Alert Telescope (BAT), we've identified and measured durations observed in GRBs that exhibit multi-episodic prompt emission behavior. Duration analysis of the burst attributes revealed no significant correlations between emissions and quiet time durations. This variability allows us to extrapolate that the central engine is constantly active.

  3. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  4. How long does a burst burst?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Connaughton, Valerie; Briggs, Michael S.

    2014-05-20

    Several gamma-ray bursts (GRBs) last much longer (∼hours) in γ-rays than typical long GRBs (∼minutes), and it has recently been proposed that these 'ultra-long GRBs' may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t {sub burst}more » based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t {sub burst} can be reliably measured in 343 GRBs. Within this 'good' sample, 21.9% GRBs have t {sub burst} ≳ 10{sup 3} s and 11.5% GRBs have t {sub burst} ≳ 10{sup 4} s. There is an apparent bimodal distribution of t {sub burst} in this sample. However, when we consider an 'undetermined' sample (304 GRBs) with t {sub burst} possibly falling in the gap between GRB duration T {sub 90} and the first X-ray observational time, as well as a selection effect against t {sub burst} falling into the first Swift orbital 'dead zone' due to observation constraints, the intrinsic underlying t {sub burst} distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T {sub 90} duration and it does not even correlate with T {sub 90}. It would be premature to make a direct connection between T {sub 90} and the size of the progenitor star.« less

  5. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing, E-mail: zhang.grb@gmail.com

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that themore » central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.« less

  6. UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazzati, Davide; Blackwell, Christopher H.; Morsony, Brian J.

    We present a set of numerical simulations of stellar explosions induced by relativistic jets emanating from a central engine sitting at the center of compact, dying stars. We explore a wide range of durations of the central engine activity, two candidate stellar progenitors, and two possible values of the total energy release. We find that even if the jets are narrowly collimated, their interaction with the star unbinds the stellar material, producing a stellar explosion. We also find that the outcome of the explosion can be very different depending on the duration of the engine activity. Only the longest-lasting enginesmore » result in successful gamma-ray bursts. Engines that power jets only for a short time result in relativistic supernova (SN) explosions, akin to observed engine-driven SNe such as SN2009bb. Engines with intermediate durations produce weak gamma-ray bursts, with properties similar to nearby bursts such as GRB 980425. Finally, we find that the engines with the shortest durations, if they exist in nature, produce stellar explosions that lack sizable amounts of relativistic ejecta and are therefore dynamically indistinguishable from ordinary core-collapse SNe.« less

  7. A possible relation between flare activity in super-luminous supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Yu, Yun-Wei; Li, Shao-Ze

    2017-09-01

    Significant undulations appear in the light curve of a recently discovered super-luminous supernova (SLSN) SN 2015bn after the first peak, while the underlying profile of the light curve can be explained well by a continuous energy supply from a central engine, possibly the spin-down of a millisecond magnetar. We propose that these undulations are caused by an intermittent pulsed energy supply, indicating the energetic flare activity of the central engine of the SLSN. Many post-burst flares were discovered during X-ray afterglow observations of gamma-ray bursts (GRBs). We find that the SLSN flares described here approximately obey the empirical correlation between the luminosity and time-scale of GRB flares, extrapolated to the relevant longer time-scales of SLSN flares. This somewhat confirms the possible connection between these two different phenomena, as recently suggested by Yu et al.

  8. FAST OPTICAL VARIABILITY OF A NAKED-EYE BURST-MANIFESTATION OF THE PERIODIC ACTIVITY OF AN INTERNAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskin, G.; Karpov, S.; Bondar, S.

    We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r {approx} 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison withmore » the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine-supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.« less

  9. Unusual Central Engine Activity in the Double Burst GRB 110709B

    NASA Technical Reports Server (NTRS)

    Zhang, Bin-Bin; Burrows, David N.; Zhang, Bing; Meszaros, Peter; Stratta, Giulia; D'Elia, Valerio; Frederiks, Dmitry; Golenetskii, S.; Cummings, Jay R.; Wang, Xiang-Yu; hide

    2011-01-01

    The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events are from the same physical origin, their different time-dependent spectral evolution suggest they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  10. Alternative temporal classification of long Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Alejandro Vasquez, Nicolas; Baquero, Andres; Andrade, David

    2015-08-01

    In order to increase the understanding on Gamma Ray Bursts, many attempts of classification have been proposed. Starting with the canonical classification into long and short GRBs, alternative classifications taking into account the cosmological origin of GRBs have been analyzed. In the present work we propose an alternative classification based on two temporal estimators, the Auto Correlation Function (ACF) of the light curves and the emission time which considered the time where the bursts engine is active. The time estimators chosen reflects the internal evolution of the GRB and the internal structure. Using a sample of 61 bright GRBs detected by SWIFT satellite with known redshift, we proposed a bimodal distribution of long bursts. The two types of bursts have different internal structure suggesting different progenitors.

  11. Adiabatic expansion, early X-ray data and the central engine in GRBs

    NASA Astrophysics Data System (ADS)

    Barniol Duran, R.; Kumar, P.

    2009-05-01

    The Swift satellite early X-ray data show a very steep decay in most of the gamma-ray bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some leftover radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an `ember' that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the microphysics of the adiabatic expansion. We use the adiabatic invariance of p2⊥/B (p⊥ is the component of the electrons' momentum normal to the magnetic field, B) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early X-ray data and find that only ~20 per cent of our sample of 107 bursts are potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the X-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.

  12. Central-engine-powered Bright X-Ray Flares in Short Gamma-Ray Bursts: A Hint of a Black Hole–Neutron Star Merger?

    NASA Astrophysics Data System (ADS)

    Mu, Hui-Jun; Gu, Wei-Min; Mao, Jirong; Hou, Shu-Jin; Lin, Da-Bin; Liu, Tong

    2018-05-01

    Short gamma-ray bursts may originate from the merger of a double neutron star (NS) or the merger of a black hole (BH) and an NS. We propose that the bright X-ray flare related to the central engine reactivity may indicate a BH–NS merger, since such a merger can provide more fallback materials and therefore a more massive accretion disk than the NS–NS merger. Based on the 49 observed short bursts with the Swift/X-ray Telescope follow-up observations, we find that three bursts have bright X-ray flares, among which three flares from two bursts are probably related to the central engine reactivity. We argue that these two bursts may originate from the BH–NS merger rather than the NS–NS merger. Our suggested link between the central-engine-powered bright X-ray flare and the BH–NS merger event can be checked by future gravitational wave detections from advanced LIGO and Virgo.

  13. Cultured Neuronal Networks Express Complex Patterns of Activity and Morphological Memory

    NASA Astrophysics Data System (ADS)

    Raichman, Nadav; Rubinsky, Liel; Shein, Mark; Baruchi, Itay; Volman, Vladislav; Ben-Jacob, Eshel

    The following sections are included: * Cultured Neuronal Networks * Recording the Network Activity * Network Engineering * The Formation of Synchronized Bursting Events * The Characterization of the SBEs * Highly-Active Neurons * Function-Form Relations in Cultured Networks * Analyzing the SBEs Motifs * Network Repertoire * Network under Hypothermia * Summary * Acknowledgments * References

  14. Rotor burst protection program: Statistics on aircraft gas turbine engine rotor failures that occurred in US commercial aviation during 1975

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Mangano, G. J.

    1977-01-01

    Statistics on gas turbine rotor failures that have occurred in U.S. commercial aviation during 1975 are presented. The compiled data were analyzed to establish: (1) The incidence of rotor failures and the number of contained and uncontained rotor bursts; (2) The distribution of rotor bursts with respect to engine rotor component; i.e., fan, compressor or turbine; (3) The type of rotor fragment (disk, rim or blade) typically generated at burst; (4) The cause of failure; (5) The type of engines involved; and (6) The flight condition at the time of failure.

  15. How gravitational-wave observations can shape the gamma-ray burst paradigm

    NASA Astrophysics Data System (ADS)

    Bartos, I.; Brady, P.; Márka, S.

    2013-06-01

    By reaching through shrouding blastwaves, efficiently discovering off-axis events and probing the central engine at work, gravitational wave (GW) observations will soon revolutionize the study of gamma-ray bursts. Already, analyses of GW data targeting gamma-ray bursts have helped constrain the central engines of selected events. Advanced GW detectors with significantly improved sensitivities are under construction. After outlining the GW emission mechanisms from gamma-ray burst progenitors (binary coalescences, stellar core collapses, magnetars and others) that may be detectable with advanced detectors, we review how GWs will improve our understanding of gamma-ray burst central engines, their astrophysical formation channels and the prospects and methods for different search strategies. We place special emphasis on multimessenger searches. To achieve the most scientific benefit, GW, electromagnetic and neutrino observations should be combined to provide greater discriminating power and science reach.

  16. Radio afterglow rebrightening: evidence for multiple active phases in gamma-ray burst central engines

    NASA Astrophysics Data System (ADS)

    Li, Long-Biao; Zhang, Zhi-Bin; Rice, Jared

    2015-09-01

    The rebrightening phenomenon is an interesting feature in some X-ray, optical, and radio afterglows of gamma-ray bursts (GRBs). Here, we propose a possible energy-supply assumption to explain the rebrightenings of radio afterglows, in which the central engine with multiple active phases can supply at least two GRB pulses in a typical GRB duration time. Considering the case of double pulses supplied by the central engine, the double pulses have separate physical parameters, except for the number density of the surrounding interstellar medium (ISM). Their independent radio afterglows are integrated by the ground detectors to form the rebrightening phenomenon. In this Letter, we firstly simulate diverse rebrightening light curves under consideration of different and independent physical parameters. Using this assumption, we also give our best fit to the radio afterglow of GRB 970508 at three frequencies of 1.43, 4.86, and 8.46 GHz. We suggest that the central engine may be active continuously at a timescale longer than that of a typical GRB duration time as many authors have suggested (e.g., Zhang et al., Astrophys. J. 787:66, 2014; Gao and Mészáros, Astrophys. J. 802:90, 2015), and that it may supply enough energy to cause the long-lasting rebrightenings observed in some GRB afterglows.

  17. An infrared flash contemporaneous with the gamma-rays of GRB 041219a.

    PubMed

    Blake, C H; Bloom, J S; Starr, D L; Falco, E E; Skrutskie, M; Fenimore, E E; Duchêne, G; Szentgyorgyi, A; Hornstein, S; Prochaska, J X; McCabe, C; Ghez, A; Konopacky, Q; Stapelfeldt, K; Hurley, K; Campbell, R; Kassis, M; Chaffee, F; Gehrels, N; Barthelmy, S; Cummings, J R; Hullinger, D; Krimm, H A; Markwardt, C B; Palmer, D; Parsons, A; McLean, K; Tueller, J

    2005-05-12

    The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

  18. Catalogue of isolated emission episodes in gamma-ray bursts from Fermi, Swift and BATSE

    NASA Astrophysics Data System (ADS)

    Charisi, M.; Márka, S.; Bartos, I.

    2015-04-01

    We report a comprehensive catalogue of emission episodes within long gamma-ray bursts (GRBs) that are separated by a quiescent period during which gamma-ray emission falls below the background level. We use a fully automated identification method for an unbiased, large-scale and expandable search. We examine a comprehensive sample of long GRBs from the BATSE (Burst and Transient Source Experiment), Swift and Fermi missions, assembling a total searched set of 2710 GRBs, the largest catalogue of isolated emission episodes so far. Our search extends out to [-1000 s, 750 s] around the burst trigger, expanding the covered time interval beyond previous studies and far beyond the nominal durations (T90) of most bursts. We compare our results to previous works by identifying pre-peak emission (or precursors), defined as isolated emission periods prior to the episode with the highest peak luminosity of the burst. We also systematically search for similarly defined periods after the burst's peak emission. We find that the pre-peak and post-peak emission periods are statistically similar, possibly indicating a common origin. For the analysed GRBs, we identify 24 per cent to have more than one isolated emission episode, with 11 per cent having at least one pre-peak event and 15 per cent having at least one post-peak event. We identify GRB activity significantly beyond their T90, which can be important for understanding the central engine activity as well as, e.g. gravitational-wave searches.

  19. Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields.

    PubMed

    Bortolon, A; Heidbrink, W W; Kramer, G J; Park, J-K; Fredrickson, E D; Lore, J D; Podestà, M

    2013-06-28

    The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/B∼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.

  20. Prompt optical emission from gamma-ray bursts with multiple timescale variability of central engine activities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Yao; Li, Zhuo

    2014-04-01

    Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.

  1. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  2. Collapsar γ-ray bursts: how the luminosity function dictates the duration distribution

    NASA Astrophysics Data System (ADS)

    Petropoulou, Maria; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2017-12-01

    Jets in long-duration γ-ray bursts (GRBs) have to drill through the collapsing star in order to break out of it and produce the γ-ray signal while the central engine is still active. If the breakout time is shorter for more powerful engines, then the jet-collapsar interaction acts as a filter of less luminous jets. We show that the observed broken power-law GRB luminosity function is a natural outcome of this process. For a theoretically motivated breakout time that scales with jet luminosity as L-χ with χ ∼ 1/3-1/2, we show that the shape of the γ-ray duration distribution can be uniquely determined by the GRB luminosity function and matches the observed one. This analysis has also interesting implications about the supernova-central engine connection. We show that not only successful jets can deposit sufficient energy in the stellar envelope to power the GRB-associated supernovae, but also failed jets may operate in all Type Ib/c supernovae.

  3. Detection of high-energy gamma-ray emission during the X-ray flaring activity in GRB 100728A

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2011-05-26

    Here, we present the simultaneous Swift and Fermi observations of the bright GRB 100728A and its afterglow. The early X-ray emission is dominated by a vigorous flaring activity continuing until 1 ks after the burst. In the same time interval, high-energy emission is significantly detected by the Fermi/Large Area Telescope. Marginal evidence of GeV emission is observed up to later times. As a result, we discuss the broadband properties of this burst within both the internal and external shock scenarios, with a particular emphasis on the relation between X-ray flares, the GeV emission, and a continued long-duration central engine activitymore » as their power source.« less

  4. GRB 120422A: a Low-Luminosity Gamma-Ray Burst Driven by a Central Engine

    NASA Technical Reports Server (NTRS)

    Zhang, Bin-Bin; Fan, Yi-Zhong; Shen, Rong-Feng; Xu, Dong; Zhang, Fu-Wen; Wei, Da-Ming; Burrows, David N.; Zhang, Bing; Gehrels, Neil

    2012-01-01

    GRB 120422A is a low-luminosity gamma-ray burst (GRB) associated with a bright supernova, which distinguishesitself by its relatively short T(sub 90) (approximately 5 s) and an energetic and steep-decaying X-ray tail. We analyze the Swift BurstAlert Telescope and X-ray Telescope data and discuss the physical implications. We show that the steep declineearly in the X-ray light curve can be interpreted as the curvature tail of a late emission episode around 58-86 s,with a curved instantaneous spectrum at the end of the emission episode. Together with the main activity in thefirst 20 s and the weak emission from 40 s to 60 s, the prompt emission is variable, which points to a centralengine origin in contrast to a shock-breakout origin, which is used to interpret some other nearby low-luminosity supernova GRBs. Both the curvature effect model and interpreting the early shallow decay as the coasting externalforward shock emission in a wind medium provide a constraint on the bulk Lorentz factor to be around several.Comparing the properties ofGRB 120422A and other supernova GRBs,we find that themain criterion to distinguish engine-driven GRBs from shock-breakout GRBs is the time-averaged -ray luminosity. Engine-driven GRBs likelyhave a luminosity above approximately 10(sup 48) erg s(sup -1).

  5. Ideal engine durations for gamma-ray-burst-jet launch

    NASA Astrophysics Data System (ADS)

    Hamidani, Hamid; Takahashi, Koh; Umeda, Hideyuki; Okita, Shinpei

    2017-08-01

    Aiming to study gamma-ray-burst (GRB) engine duration, we present numerical simulations to investigate collapsar jets. We consider typical explosion energy (1052 erg) but different engine durations, in the widest domain to date from 0.1 to 100 s. We employ an adaptive mesh refinement 2D hydrodynamical code. Our results show that engine duration strongly influences jet nature. We show that the efficiency of launching and collimating relativistic outflow increases with engine duration, until the intermediate engine range where it is the highest, past this point to long engine range, the trend is slightly reversed; we call this point where acceleration and collimation are the highest 'sweet spot' (˜10-30 s). Moreover, jet energy flux shows that variability is also high in this duration domain. We argue that not all engine durations can produce the collimated, relativistic and variable long GRB jets. Considering a typical progenitor and engine energy, we conclude that the ideal engine duration to reproduce a long GRB is ˜10-30 s, where the launch of relativistic, collimated and variable jets is favoured. We note that this duration domain makes a good link with a previous study suggesting that the bulk of Burst and Transient Source Experiment's long GRBs is powered by ˜10-20 s collapsar engines.

  6. The Early Life Of A Gamma-ray Burst

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.; Willingale, D.

    2006-09-01

    We present results for 100 gamma-ray bursts observed promptly by the Swift satellite. Combining the early gamma-ray and X-ray data from the BAT and XRT, we show that although individual GRBs can display complex light curves, including a variety of decay phases and flares, their early emission can be described by a relatively simple combination of central engine activity and the interaction of a relativistic jet with the surrounding environment. We also discuss the later fading, which in the optical/IR has traditionally been explained as a jet-break. The Swift data reveal many bursts have a relatively early break in their X-ray light curves contradicting the standard jet break model derived from optical data. We discuss the implications of this for GRB jet models and for using GRBs as standard candles.

  7. Search for a Signature of Interaction between Relativistic Jet and Progenitor in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Yoshida, Kazuki; Yoneoku, Daisuke; Sawano, Tatsuya; Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro

    2017-11-01

    The time variability of prompt emission in gamma-ray bursts (GRBs) is expected to originate from the temporal behavior of the central engine activity and the jet propagation in the massive stellar envelope. Using a pulse search algorithm for bright GRBs, we investigate the time variability of gamma-ray light curves to search a signature of the interaction between the jet and the inner structure of the progenitor. Since this signature might appear in the earlier phase of prompt emission, we divide the light curves into the initial phase and the late phase by referring to the trigger time and the burst duration of each GRB. We also adopt this algorithm for GRBs associated with supernovae/hypernovae that certainly are accompanied by massive stars. However, there is no difference between each pulse interval distribution described by a lognorma distribution in the two phases. We confirm that this result can be explained by the photospheric emission model if the energy injection of the central engine is not steady or completely periodic but episodic and described by the lognormal distribution with a mean of ˜1 s.

  8. Multi-Wavelength Optical Pyrometry Investigation for Turbine Engine Applications.

    NASA Astrophysics Data System (ADS)

    Estevadeordal, Jordi; Nirmalan, Nirm; Wang, Guanghua; Thermal Systems Team

    2011-11-01

    An investigation of optical Pyrometry using multiple wavelengths and its application to turbine engine is presented. Current turbine engine Pyrometers are typically broadband Si-detector line-of-sight (LOS) systems. They identify hot spots and spall areas in blades and bucket passages by detection of bursts of higher voltage signals. However, the single color signal can be misleading for estimating temperature and emissivity variations in these bursts. Results of the radiant temperature, multi-color temperature and apparent emissivity are presented for turbine engine applications. For example, the results indicate that spall regions can be characterized using multi-wavelength techniques by showing that the temperature typically drops and the emissivity increases and that differentiates from the emissivity of the normal regions. Burst signals are analyzed with multicolor algorithms and changes in the LOS hot-gas-path properties and in the suction side, trailing edge, pressure side, fillet and platform surfaces characterized.

  9. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  10. THE BLACK HOLE CENTRAL ENGINE FOR ULTRA-LONG GAMMA-RAY BURST 111209A AND ITS ASSOCIATED SUPERNOVA 2011KL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, He; You, Zhi-Qiang; Lei, Wei-Hua

    Recently, the first association between an ultra-long gamma-ray burst (GRB) and a supernova was reported, i.e., GRB 111209A/SN 2011kl, enabling us to investigate the physics of central engines or even progenitors for ultra-long GRBs. In this paper, we inspect the broadband data of GRB 111209A/SN 2011kl. The late-time X-ray light curve exhibits a GRB 121027A-like fallback bump, suggesting a black hole (BH) central engine. We thus propose a collapsar model with fallback accretion for GRB 111209A/SN 2011kl. The required model parameters, such as the total mass and radius of the progenitor star, suggest that the progenitor of GRB 111209A ismore » more likely a Wolf–Rayet star instead of a blue supergiant, and the central engine of this ultra-long burst is a BH. The implications of our results are discussed.« less

  11. Power Burst Facility (PBF), PER620, contextual and oblique view. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Power Burst Facility (PBF), PER-620, contextual and oblique view. Camera facing northwest. South and east facade. The 1980 west-wing expansion is left of center bay. Concrete structure at right is PER-730. Date: March 2004. INEEL negative no. HD-41-2-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. Ceramic Matrix Composite Vane Subelement Burst Testing

    NASA Technical Reports Server (NTRS)

    Brewer, David N.; Verrilli, Michael; Calomino, Anthony

    2006-01-01

    Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.

  13. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  14. THREE-DIMENSIONAL SIMULATIONS OF LONG DURATION GAMMA-RAY BURST JETS: TIMESCALES FROM VARIABLE ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Cámara, D.; Lazzati, Davide; Morsony, Brian J., E-mail: diego@astro.unam.mx

    2016-08-01

    Gamma-ray burst (GRB) light curves are characterized by marked variability, each showing unique properties. The origin of this variability, at least for a fraction of long GRBs, may be the result of an unsteady central engine. It is thus important to study the effects that an episodic central engine has on the jet propagation and, eventually, on the prompt emission within the collapsar scenario. Thus, in this study we follow the interaction of pulsed outflows with their progenitor stars with hydrodynamic numerical simulations in both two and three dimensions. We show that the propagation of unsteady jets is affected bymore » the interaction with the progenitor material well after the break-out time, especially for jets with long quiescent times comparable to or larger than a second. We also show that this interaction can lead to an asymmetric behavior in which pulse durations and quiescent periods are systematically different. After the pulsed jets drill through the progenitor and the interstellar medium, we find that, on average, the quiescent epochs last longer than the pulses (even in simulations with symmetrical active and quiescent engine times). This could explain the asymmetry detected in the light curves of long quiescent time GRBs.« less

  15. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; hide

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  16. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  17. Black Hole Hyperaccretion Inflow–Outflow Model. I. Long and Ultra-long Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Song, Cui-Ying; Zhang, Bing; Gu, Wei-Min; Heger, Alexander

    2018-01-01

    Long-duration gamma-ray bursts (LGRBs) and ultra-LGRBs (ULGRBs) originate from collapsars, in the center of which a newborn rotating stellar-mass black hole (BH) surrounded by a massive accretion disk may form. In the scenario of the BH hyperaccretion inflow–outflow model and Blandford–Znajek (BZ) mechanism to trigger gamma-ray bursts (GRBs), the real accretion rate to power a BZ jet is far lower than the mass supply rate from the progenitor star. The characteristics of the progenitor stars can be constrained by GRB luminosity observations, and the results exceed usual expectations. LGRBs lasting from several seconds to tens of seconds in the rest frame may originate from solar-metallicity (Z∼ 1 {Z}ȯ , where Z and {Z}ȯ are the metallicities of progenitor stars and the Sun), massive (M≳ 34 {M}ȯ , where M and {M}ȯ are the masses of progenitor stars and the Sun) stars or some zero-metallicity (Z∼ 0) stars. A fraction of low-metallicity (Z≲ {10}-2 {Z}ȯ ) stars, including Population III stars, can produce ULGRBs such as GRB 111209A. The fraction of LGRBs lasting less than tens of seconds in the rest frame is more than 40%, which cannot conform to the fraction of the demanded type of progenitor star. It possibly implies that the activity timescale of the central engine may be much longer than the observed timescale of prompt emission phase, as indicated by X-ray late-time activities. Alternatively, LGRBs and ULGRBs may be powered by a millisecond magnetar central engine.

  18. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Graham, Bart

    2016-01-01

    Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.

  19. Modularity Induced Gating and Delays in Neuronal Networks

    PubMed Central

    Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael

    2016-01-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  20. Radial Angular Momentum Transfer and Magnetic Barrier for Short-type Gamma-Ray-burst Central Engine Activity

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Liang, En-Wei; Gu, Wei-Min; Hou, Shu-Jin; Lei, Wei-Hua; Lin, Lin; Dai, Zi-Gao; Zhang, Shuang-Nan

    2012-11-01

    Soft extended emission (EE) following initial hard spikes up to 100 s was observed with Swift/BAT for about half of known short-type gamma-ray bursts (SGRBs). This challenges the conversional central engine models of SGRBs, i.e., compact star merger models. In the framework of black-hole-neutron-star merger models, we study the roles of radial angular momentum transfer in the disk and the magnetic barrier around the black hole in the activity of SGRB central engines. We show that radial angular momentum transfer may significantly prolong the lifetime of the accretion process, which may be divided into multiple episodes by the magnetic barrier. Our numerical calculations based on models of neutrino-dominated accretion flows suggest that disk mass is critical for producing the observed EE. In the case of the mass being ~0.8 M ⊙, our model can reproduce the observed timescale and luminosity of both the main and the EE episodes in a reasonable parameter set. The predicted luminosity of the EE component is lower than the observed EE within about one order of magnitude and the timescale is shorter than 20 s if the disk mass is ~0.2 M ⊙. Swift/BAT-like instruments may be not sensitive enough to detect the EE component in this case. We argue that the EE component could be a probe for the merger process and disk formation for compact star mergers.

  1. Prospects for detection of very high-energy emission from GRB in the context of the external shock model

    NASA Astrophysics Data System (ADS)

    Galli, A.; Piro, L.

    2008-10-01

    Context: The detection of the 100 GeV-TeV emission by a gamma-ray burst (GRB) will provide an unprecedented opportunity to study the nature of the central engine and the interaction between the relativistic flow and the environment of the burst's progenitor. Aims: In this paper we show that there are exciting prospects of detecting from the burst by MAGIC high-energy (HE) emission during the early X-ray flaring activity and, later, during the normal afterglow phase. We also identify the best observational strategy: trigger conditions and time period of observation. Methods: We determine the expected HE emission from the flaring and afterglow phases of GRBs in the context of the external shock scenario and compare them with the MAGIC threshold. Results: We find that an X-ray flare with the average properties of the class can be detected in the 100 GeV range by MAGIC, provided that z ≲ 0.7. The requested observational window with MAGIC should then start from 10-20 s after the burst and cover about 1000-2000 s. Furthermore, we demonstrate that there are solid prospects of detecting the late afterglow emission in the same energy range for most of the bursts with z ≲ 0.5 if the density of the external medium is n ≳ a few cm-3. In this case, the MAGIC observation shall extend to about 10-20 ks. We provide recipes for tailoring this prediction to the observational properties of each burst, in particular the fluence in the prompt emission and the redshift, thus allowing an almost real time decision procedure to decide whether to continue the follow-up observation of a burst at late times.

  2. Radio physics of the sun; Proceedings of the Symposium, University of Maryland, College Park, Md., August 7-10, 1979

    NASA Technical Reports Server (NTRS)

    Kundu, M. R. (Editor); Gergely, T. E.

    1980-01-01

    Papers are presented in the areas of the radio characteristics of the quiet sun and active regions, the centimeter, meter and decameter wavelength characteristics of solar bursts, space observations of low-frequency bursts, theoretical interpretations of solar active regions and bursts, joint radio, visual and X-ray observations of active regions and bursts, and the similarities of stellar radio characteristics to solar radio phenomena. Specific topics include the centimeter and millimeter wave characteristics of the quiet sun, radio fluctuations arising upon the transit of shock waves through the transition region, microwave, EUV and X-ray observations of active region loops and filaments, interferometric observations of 35-GHz radio bursts, emission mechanisms for radio bursts, the spatial structure of microwave bursts, observations of type III bursts, the statistics of type I bursts, and the numerical simulation of type III bursts. Attention is also given to the theory of type IV decimeter bursts, Voyager observations of type II and III bursts at kilometric wavelengths, radio and whitelight observations of coronal transients, and the possibility of obtaining radio observations of current sheets on the sun.

  3. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  4. Transitions to Synchrony in Coupled Bursting Neurons

    NASA Astrophysics Data System (ADS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  5. The high-redshift gamma-ray burst GRB 140515A

    DOE PAGES

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; ...

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is x HI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded inmore » a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less

  6. Interfacing 3D Engineered Neuronal Cultures to Micro-Electrode Arrays: An Innovative In Vitro Experimental Model.

    PubMed

    Tedesco, Mariateresa; Frega, Monica; Martinoia, Sergio; Pesce, Mattia; Massobrio, Paolo

    2015-10-18

    Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks.

  7. Interfacing 3D Engineered Neuronal Cultures to Micro-Electrode Arrays: An Innovative In Vitro Experimental Model

    PubMed Central

    Tedesco, Mariateresa; Frega, Monica; Martinoia, Sergio; Pesce, Mattia; Massobrio, Paolo

    2015-01-01

    Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks. PMID:26554533

  8. Detection of Spectral Evolution in the Bursts Emitted During the 2008-2009 Active Episode of SGR J1550 - 5418

    NASA Technical Reports Server (NTRS)

    von Kienlin, Andreas; Gruber, David; Kouveliotou, Chryssa; Granot, Jonathan; Baring, Matthew G.; Gogus, Ersin; Huppenkothen, Daniela; Kaneko, Yuki; Lin, Lin; Watts, Anna L.; hide

    2012-01-01

    In early October 2008, the Soft Gamma Repeater SGRJ1550 - 5418 (1E1547.0 - 5408, AXJ155052 - 5418, PSR J1550 - 5418) became active, emitting a series of bursts which triggered the Fermi Gamma-ray Burst Monitor (GBM) after which a second especially intense activity period commenced in 2009 January and a third, less active period was detected in 2009 March-April. Here we analyze the GBM data of all the bursts from the first and last active episodes. We performed temporal and spectral analysis for all events and found that their temporal characteristics are very similar to the ones of other SGR bursts, as well the ones reported for the bursts of the main episode (average burst durations 170ms). In addition, we used our sample of bursts to quantify the systematic uncertainties of the GBM location algorithm for soft gamma-ray transients to less than or equal to 8 degrees. Our spectral analysis indicates significant spectral evolution between the first and last set of events. Although the 2008 October events are best fit with a single blackbody function, for the 2009 bursts an Optically Thin Thermal Bremsstrahlung (OTTB) is clearly preferred. We attribute this evolution to changes in the magnetic field topology of the source, possibly due to effects following the very energetic main bursting episode.

  9. General layout of reactor and control areas upon advent of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General layout of reactor and control areas upon advent of power burst facility (PBF). Shows relationship of PBF to SPERT-I, -II, -III, and -IV. Ebasco Services 1205-PER/PBF-U-102. Date: July 1965. INEEL index no. 761-0100-00-205-123006 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.

  11. Search for a Signature of Interaction between Relativistic Jet and Progenitor in Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Kazuki; Yoneoku, Daisuke; Sawano, Tatsuya

    The time variability of prompt emission in gamma-ray bursts (GRBs) is expected to originate from the temporal behavior of the central engine activity and the jet propagation in the massive stellar envelope. Using a pulse search algorithm for bright GRBs, we investigate the time variability of gamma-ray light curves to search a signature of the interaction between the jet and the inner structure of the progenitor. Since this signature might appear in the earlier phase of prompt emission, we divide the light curves into the initial phase and the late phase by referring to the trigger time and the burstmore » duration of each GRB. We also adopt this algorithm for GRBs associated with supernovae/hypernovae that certainly are accompanied by massive stars. However, there is no difference between each pulse interval distribution described by a lognorma distribution in the two phases. We confirm that this result can be explained by the photospheric emission model if the energy injection of the central engine is not steady or completely periodic but episodic and described by the lognormal distribution with a mean of ∼1 s.« less

  12. Chondrocyte burst promotes space for mineral expansion.

    PubMed

    Hara, Emilio Satoshi; Okada, Masahiro; Nagaoka, Noriyuki; Hattori, Takako; Iida, Letycia Mary; Kuboki, Takuo; Nakano, Takayoshi; Matsumoto, Takuya

    2018-01-22

    Analysis of tissue development from multidisciplinary approaches can result in more integrative biological findings, and can eventually allow the development of more effective bioengineering methods. In this study, we analyzed the initial steps of mineral formation during secondary ossification of mouse femur based on biological and bioengineering approaches. We first found that some chondrocytes burst near the mineralized area. External factors that could trigger chondrocyte burst were then investigated. Chondrocyte burst was shown to be modulated by mechanical and osmotic pressure. A hypotonic solution, as well as mechanical stress, significantly induced chondrocyte burst. We further hypothesized that chondrocyte burst could be associated with space-making for mineral expansion. In fact, ex vivo culture of femur epiphysis in hypotonic conditions, or under mechanical pressure, enhanced mineral formation, compared to normal culture conditions. Additionally, the effect of mechanical pressure on bone formation in vivo was investigated by immobilization of mouse lower limbs to decrease the body pressure onto the joints. The results showed that limb immobilization suppressed bone formation. Together, these results suggest chondrocyte burst as a novel fate of chondrocytes, and that manipulation of chondrocyte burst with external mechano-chemical stimuli could be an additional approach for cartilage and bone tissue engineering.

  13. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  14. Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches.

    PubMed

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-09-02

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs(+). The decreased period could also occur if the pump was inhibited with strophanthidin or K(+)-free saline. Our monensin results were reproduced in model, which explains the pump's contributions to bursting activity based on Na(+) dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks.

  15. Observations of energitic radiation bursts from thunder activities

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.; Enoto, T.; Torii, T.; Yuasa, T.; Yamada, S.; Kitacuhi, T.; Nakazawa, K.; Kato, H.; Okano, M.; Makishima, K.

    2009-04-01

    Energetic radiation bursts have been observed during strong thunderstorms by ground-based detectors as well as high-mountain ones. Those radiation bursts are thought to result from runaway electrons originating from electrons accelerated by strong electric field in lightning discharges and thunderclouds, and hence provide a valuable key to understand particle acceleration in thunder activity. Interestingly, they can be categorized into two bursts by their duration. One consists of short bursts lasting for milli-seconds or less. The other comprises long bursts having duration of a few seconds. In order to better understand both short and long bursts, we have conducted experiments at coastal area of the Japan Sea and a 2770-m altitude observatory. In this talk, we will report on those experiments, showing the two experiments has successfully observed both short and long bursts. Especially, we will focus on high-energy radiations extending over MeV energies, and then discuss a plausible model to explain how those high-energy radiations are produced in thunder activity.

  16. The Development of Motor Coordination in Drosophila Embryos

    PubMed Central

    Crisp, Sarah; Evers, Jan Felix; Fiala, André; Bate, Michael

    2012-01-01

    We use non-invasive muscle imaging to study onset of motor activity and emergence of coordinated movement in Drosophila embryos. Earliest movements are myogenic and neurally controlled muscle contractions first appear with the onset of bursting activity 17 hours after egg laying. Initial episodes of activity are poorly organised and coordinated crawling sequences only begin to appear after a further hour of bursting. Thus network performance improves during this first period of activity. The embryo continues to exhibit bursts of crawling like sequences until shortly before hatching, while other reflexes also mature. Bursting does not begin as a reflex response to sensory input but appears to reflect the onset of spontaneous activity in the motor network. It does not require GABA-ergic transmission, and using a light activated channel to excite the network we demonstrate activity dependent depression that may cause burst termination. PMID:18927150

  17. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Results of the IRIS UV Burst Survey, Part I: Active Regions Tracked Limb to Limb

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2017-12-01

    We present results from the first phase of an effort to thoroughly characterize UV bursts within the Interface Region Imaging Spectrograph (IRIS) data catalogue. The observational signatures of these phenomena include dramatically intensified and broadened NUV/FUV emission line profiles with absorption features from cool metallic ions. These properties suggest that UV bursts originate from plasma at transition region temperatures (≥ 80,000 K) which is deeply embedded in the cool lower chromosphere ( 5,000 K). Rigorously characterizing the energetic and dynamical properties of UV bursts is crucial since they have considerable potential to heat active region chromospheres and could provide critical constraints for models of magnetic reconnection in these regions. The survey first focuses on IRIS observations of active regions tracked from limb to limb. All observations consist of large field-of-view raster scans of 320 or 400 steps each, which allow for widespread detection of many burst profiles at the expense of having limited short-term time evolution information. We detect bursts efficiently by applying a semi-automated single-Gaussian fitting technique to Si IV 1393.8 Å emission profiles that isolates the distinct burst population in a 4-D parameter space. The robust sample of NUV/FUV burst spectra allows for precise constraints of properties critical for modeling reconnection in the chromosphere, including outflow kinetic energy, density estimates from intensity ratios of Si IV 1402.8 Å and O IV 1401.2 Å emission lines, and coincident measures of emission in other wavelengths. We also track burst properties throughout the lifetimes of their host active regions, noting changes in detection rate and preferential location as the active regions evolve. Finally, the tracked active region observations provide a unique opportunity to investigate line-of-sight effects on observed UV burst spectral properties, particularly the strength of Ni II 1393.3 Å absorption, a feature that may be important in identifying the upward conduction of burst thermal energy through the chromosphere.

  19. Na+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches

    PubMed Central

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-01-01

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na+/K+ pump current to such bursting activity has not been well studied. We used monensin, a Na+/H+ antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs+. The decreased period could also occur if the pump was inhibited with strophanthidin or K+-free saline. Our monensin results were reproduced in model, which explains the pump’s contributions to bursting activity based on Na+ dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. DOI: http://dx.doi.org/10.7554/eLife.19322.001 PMID:27588351

  20. New aspects of firing pattern autocontrol in oxytocin and vasopressin neurones.

    PubMed

    Moos, F; Gouzènes, L; Brown, D; Dayanithi, G; Sabatier, N; Boissin, L; Rabié, A; Richard, P

    1998-01-01

    In the rat, oxytocin (OT) and vasopressin (AVP) neurones exhibit specific electrical activities which are controlled by OT and AVP released from soma and dendrites within the magnocellular hypothalamic nuclei. OT enhances amplitude and frequency of suckling-induced bursts, and changes basal firing characteristics: spike patterning becomes very irregular (spike clusters separated by long silences), firing rate is highly variable, oscillating before facilitated bursts. This unstable behaviour which markedly decreases during hyperosmotic stimulation (interrupting bursting) could be a prerequisite for bursting. The effects of AVP depend on the initial phasic pattern of AVP neurones: AVP excites weakly active neurones (increasing burst duration, decreasing silences) and inhibits highly active neurones; neurones with intermediate phasic activity are unaffected. Thus, AVP ensures all AVP neurones discharge with moderate phasic activity (bursts and silences lasting 20-40 s), known to optimise systemic AVP release. V1a-type receptors are involved in AVP actions. In conclusion, OT and AVP control their respective neurones in a complex manner to favour the patterns of activity which are the best suited for an efficient systemic hormone release.

  1. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells

    PubMed Central

    Choi, Paul J.; Mitchison, Timothy J.

    2013-01-01

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues. PMID:23576740

  2. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.

    PubMed

    Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J

    2018-01-01

    The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P < 0.0001) but were not different between passive and active cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P < 0.001). MSNA burst frequency and incidence decreased during passive and active cycling ( P < 0.0001), but no differences were detected between exercise modes ( P > 0.05). Reductions in total MSNA were attenuated during the first ( P < 0.0001) and second ( P = 0.0004) minute of active compared with passive cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.

  3. The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses

    PubMed Central

    Masurkar, Arjun V.; Chen, Wei R.

    2015-01-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089

  4. Co-incubation of PMN and CaCo-2 cells modulates inflammatory potential.

    PubMed

    Schaefer, M B; Schaefer, C A; Hecker, M; Morty, R E; Witzenrath, M; Seeger, W; Mayer, K

    2017-05-20

    Polymorphonuclear granulocytes (PMN) are activated in inflammatory reactions. Intestinal epithelial cells are relevant for maintaining the intestinal barrier. We examined interactions of PMN and intestinal epithelial cell-like CaCo-2 cells to elucidate their regulation of inflammatory signalling and the impact of cyclooxygenase (COX), nitric oxide (NO) and platelet-activating factor (PAF). Human PMN and CaCo-2 cells, separately and in co-incubation, were stimulated with the calcium ionophore A23187 or with N-Formyl-methionyl-leucyl-phenylalanin (fMLP) that activates PMN only. Human neutrophil elastase (HNE) and respiratory Burst were measured. To evaluate the modulation of inflammatory crosstalk we applied inhibitors of COX (acetyl salicylic acid; ASA), NO-synthase (N-monomethyl-L-arginin; L-NMMA), and the PAF-receptor (WEB2086). Unstimulated, co-incubation of CaCo-2 cells and PMN led to significantly reduced Burst and elevated HNE as compared to PMN. After stimulation with A23187, co-incubation resulted in an inhibition of Burst and HNE. Using fMLP co-incubation failed to modulate Burst but increased HNE. Without stimulation, all three inhibitors abolished the effect of co-incubation on Burst but did not change HNE.  ASA partly prevented modulation of Burst L-NMMA and WEB2086 did not change Burst but abolished mitigation of HNE. Without stimulation, co-incubation reduced Burst and elevated HNE. Activation of PMN and CaCo-2 cells by fMLP as compared to A23187 resulted in a completely different pattern of Burst and HNE, possibly due to single vs. dual cell activation. Anti-inflammatory effect of co-incubation might in part be due to due to COX-signalling governing Burst whereas NO- and PAF-dependent signalling seemed to control HNE release.

  5. On the Dynamics of the Spontaneous Activity in Neuronal Networks

    PubMed Central

    Bonifazi, Paolo; Ruaro, Maria Elisabetta; Torre, Vincent

    2007-01-01

    Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics. PMID:17502919

  6. Burst Firing is a Neural Code in an Insect Auditory System

    PubMed Central

    Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés

    2008-01-01

    Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity. PMID:18946533

  7. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    PubMed

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of < or = 8 ms, was analyzed in responses to drifting sinewave gratings elicited from striate cortical neurons in anesthetized cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve as a form of coding by supporting dynamic, stimulus-dependent reorganization of the effectiveness of individual network connections.

  8. Dependence of synchronized bursting activity on medium stirring and the perfusion rate in a cultured network of neurons

    NASA Astrophysics Data System (ADS)

    Heo, Ryoun; Kim, Hyun; Lee, Kyoung J.

    2016-05-01

    A cultured network of neurons coupled with a multi-electrode-array (MEA) recording system has been a useful platform for investigating various issues in neuroscience and engineering. The neural activity supported by the system can be sensitive to environmental fluctuations, for example, in the medium's nutrient composition, ph, and temperature, and to mechanical disturbances, yet this issue has not been the subject. Especially, a normal practice in maintaining neuronal cell cultures involves an intermittent sequence of medium exchanges, typically at a time interval of a few days, and one such sudden medium exchange is unavoidably accompanied by many unintended disturbances. Here, based on a quantitative time-series analysis of synchronized bursting events, we explicitly demonstrate that such a medium exchange can, indeed, bring a huge change in the existing neural activity. Subsequently, we develop a medium perfusion-stirring system and an ideal protocol that can be used in conjunction with a MEA recording system, providing long-term stability. Specifically, we systematically evaluate the effects of medium stirring and perfusion rates. Unexpectedly, even some vigorous mechanical agitations do not have any impacts on neural activity. On the other hand, too much replenishment ( e.g., 1.8 ml/day for a 1.8-ml dish) of neurobasal medium results in an excitotoxicity.

  9. GRB 060313: A New Paradigm for Short-Hard Bursts?

    NASA Astrophysics Data System (ADS)

    Roming, Peter W. A.; Vanden Berk, Daniel; Pal'shin, Valentin; Pagani, Claudio; Norris, Jay; Kumar, Pawan; Krimm, Hans; Holland, Stephen T.; Gronwall, Caryl; Blustin, Alex J.; Zhang, Bing; Schady, Patricia; Sakamoto, Takanori; Osborne, Julian P.; Nousek, John A.; Marshall, Frank E.; Mészáros, Peter; Golenetskii, Sergey V.; Gehrels, Neil; Frederiks, Dmitry D.; Campana, Sergio; Burrows, David N.; Boyd, Patricia T.; Barthelmy, Scott; Aptekar, R. L.

    2006-11-01

    We report the simultaneous observations of the prompt emission in the gamma-ray and hard X-ray bands by the Swift BAT and the Konus-Wind instruments of the short-hard burst, GRB 060313. The observations reveal multiple peaks in both the gamma-ray and hard X-ray bands suggesting a highly variable outflow from the central explosion. We also describe the early-time observations of the X-ray and UV/optical afterglows by the Swift XRT and UVOT instruments. The combination of the X-ray and UV/optical observations provides the most comprehensive light curves to date of a short-hard burst at such an early epoch. The afterglows exhibit complex structure with different decay indices and flaring. This behavior can be explained by the combination of a structured jet, radiative loss of energy, and decreasing microphysics parameters occurring in a circumburst medium with densities varying by a factor of approximately two on a length scale of 1017 cm. These density variations are normally associated with the environment of a massive star and inhomogeneities in its windy medium. However, the mean density of the observed medium (n~10-4 cm3) is much less than that expected for a massive star. Although the collapse of a massive star as the origin of GRB 060313 is unlikely, the merger of a compact binary also poses problems for explaining the behavior of this burst. Two possible suggestions for explaining this scenario are that some short bursts may arise from a mechanism that does not invoke the conventional compact binary model, or that soft late-time central engine activity is producing UV/optical but no X-ray flaring.

  10. Novel, ultra-compact, high-performance, eye-safe laser rangefinder for demanding applications

    NASA Astrophysics Data System (ADS)

    Silver, M.; Lee, S. T.; Borthwick, A.; Morton, G.; McNeill, C.; McSporran, D.; McRae, I.; McKinlay, G.; Jackson, D.; Alexander, W.

    2016-05-01

    Compact eye-safe laser rangefinders (LRFs) are a key technology for future sensors. In addition to reduced size, weight and power (SWaP), compact LRFs are increasingly being required to deliver a higher repetition rate, burst mode capability. Burst mode allows acquisition of telemetry data from fast moving targets or while sensing-on-the-move. We will describe a new, ultra-compact, long-range, eye-safe laser rangefinder that incorporates a novel transmitter that can deliver a burst capability. The transmitter is a diode-pumped, erbium:glass, passively Q-switched, solid-state laser which uses design and packaging techniques adopted from the telecom components sector. The key advantage of this approach is that the transmitter can be engineered to match the physical dimensions of the active laser components and the submillimetre sized laser spot. This makes the transmitter significantly smaller than existing designs, leading to big improvements in thermal management, and allowing higher repetition rates. In addition, the design approach leads to devices that have higher reliability, lower cost, and smaller form-factor, than previously possible. We present results from the laser rangefinder that incorporates the new transmitter. The LRF has dimensions (L x W x H) of 100 x 55 x 34 mm and achieves ranges of up to 15km from a single shot, and over a temperature range of -32°C to +60°C. Due to the transmitter's superior thermal performance, the unit is capable of repetition rates of 1Hz continuous operation and short bursts of up to 4Hz. Short bursts of 10Hz have also been demonstrated from the transmitter in the laboratory.

  11. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and interhemispheric synchronization. This may compromise information coding capacity and thereby motor processing. Dopaminergic activity limits this uncontrolled beta synchronization by terminating long duration beta bursts, with positive consequences on network state and motor symptoms. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  12. 75 FR 21523 - Airworthiness Standards; Rotor Overspeed Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... would establish uniform rotor overspeed design and test requirements for aircraft engines and... establishing one harmonized standard requiring: (1) Rotors be designed with a burst/failure speed that exceeds... also establish uniform standards for the design and testing of engine rotor parts in the United States...

  13. Decrement of uterine myometrial burst duration as a correlate to active labor: a Hilbert phase approach.

    PubMed

    Govindan, Rathinaswamy B; Vairavan, Srinivasan; Furdea, Adrian; Murphy, Pam; Preissl, Hubert; Eswaran, Hari

    2010-01-01

    We propose a novel approach based on Hilbert phase to identify the burst in the uterine myometrial activity. We apply this approach to 24 serial magnetomyographic signals recorded from four pregnant women using a 151 SQUID array system. The bursts identified with this approach are evaluated for duration and are correlated with the gestational age. In all four subjects, we find a decrease in the duration of burst as the subject approaches active labor. As was shown in animal studies, this result indicates a faster conduction time between the muscle cells which activate a larger number of muscle units in a synchronous manner.

  14. Parasympathetic neural control of canine tracheal smooth muscle.

    PubMed

    Kobayashi, Ichiro; Kondo, Tetsuri; Hayama, Naoki; Tazaki, Gen

    2004-12-01

    The middle segment of the trachea is innervated by the recurrent laryngeal and pararecurrent nerves. This study determined the pathway that mediated descending commands to the tracheal smooth muscle. Animals used were seven paralyzed and tracheostomized dogs. Tracheal contraction induced either by apnea, mechanical stimulation of the tracheal bifurcation or hypercapnia was always composed of tonic and rhythmic components. The rhythmic contraction developed in synchrony with rhythmic bursts on phrenic nerve activity (PNA). The respiratory-related bursts were also observed on the recurrent laryngeal nerve activity (RNA) and pararecurrent nerve activity (ParaRNA). During apnea there was no tonic activity neither on RNA or PNA, whereas ParaRNA had both tonic and rhythmic activities. Bursts on RNA preceded to correspondent PNA-bursts by 90+/-13 ms. In contrast, ParaRNA-burst always developed later than PNA-burst and it started at almost the same time as that of tracheal rhythmic contraction. During mechanical stimulation of the trachea or CO2-loading, though RNA did not include tonic component, ParaRNA had tonic activity during tracheal tonic contraction. These findings suggested that rhythmic and tonic contractions of the trachea were mediated through the pararecurrent nerve but not through the recurrent laryngeal nerve.

  15. Rock burst governance of working face under igneous rock

    NASA Astrophysics Data System (ADS)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  16. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.

    PubMed

    Masurkar, Arjun V; Chen, Wei R

    2012-02-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Early postnatal changes in respiratory activity in rat in vitro and modulatory effects of substance P.

    PubMed

    Shvarev, Y N; Lagercrantz, H

    2006-10-01

    Developmental changes in the respiratory activity and its modulation by substance P (SP) were studied in the neonatal rat brainstem-spinal cord preparation from the day of birth to day 3 (P0-P3). The respiratory network activity in the ventrolateral medulla was represented by two types of bursts: basic regular bursts with typical decrementing shape and biphasic bursts appearing after augmented biphasic discharges in inspiratory neurons. With advancing postnatal age the respiratory output was considerably modified; the basic rhythm became faster by 20%, whereas the biphasic burst rate, which was originally 15 times slower, declined further by 180% and the C4 burst duration significantly decreased by 20% due to reduced decay time without preceding changes in the central inspiratory drive. SP had an age-dependent excitatory effect on respiratory activity. In the basic rhythm, SP could induce transient rhythm cessations on P0-P2 but not on P3. For the biphasic burst frequency, the sensitivity to SP significantly decreased from P0 to P3, whereas the range of SP-induced changes increased. In both types of bursts, SP prolonged C4 burst duration due to increasing decay time. This effect was three times greater on P3 and did not depend on the central inspiratory drive. Our results suggest that the potency of SP to regulate the respiratory activity elevates during the early postnatal period. The developmental changes in the respiratory activity appear to represent the transient stage in the maturation of rhythm and pattern generation mechanisms facilitating adaptive behavior of a quickly growing organism.

  18. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

    PubMed Central

    Rahmanian, Omid D.

    2014-01-01

    A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care. PMID:25972774

  19. MEMS Micropropulsion Activities at JPL

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Chakraborty, Indrani; Vargo, Stephen; Bame, David; Marrese, Colleen; Tang, William C.

    1999-01-01

    A status of MEMS-based micropropulsion activities conducted at JPL will be given. These activities include work conducted on the so called Vaporizing Liquid Micro-Thruster (VLM) which recently underwent proof-of-concept testing, demonstrating the ability to vaporize water propellant at 2 W and 2 V. Micro-ion engine technologies, such m field emitter arrays and micro-grids are being studied. Focus in the field emitter area is on arrays able to survive in thruster plumes and micro-ion engine plasmas to serve as neutralizers aW engine cathodes. Integrated, batch-fabricated Ion repeller grid structures are being studied as well as different emitter tip materials are being investigated to meet these goals. A micro-isolation valve is being studied to isolate microspacecraft feed system during long interplanetary cruises, avoiding leakage and prolonging lifetime and reliability of such systems. This concept relies on the melting of a thin silicon barrier. Burst pressure values as high as 2,900 psig were obtained for these valves and power requirements to melt barriers ranging between 10 - 50 microns in thickness, as determined through thermal finite element calculations, varied between 10 - 30 W to be applied over a duration of merely 0.5 ms.

  20. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro?

    PubMed

    Johnson, Stephen M; Wiegel, Liana M; Majewski, David J

    2007-08-01

    The role of pacemaker properties in vertebrate respiratory rhythm generation is not well understood. To address this question from a comparative perspective, brain stems from adult turtles were isolated in vitro, and respiratory motor bursts were recorded on hypoglossal (XII) nerve rootlets. The goal was to test whether burst frequency could be altered by conditions known to alter respiratory pacemaker neuron activity in mammals (e.g., increased bath KCl or blockade of specific inward currents). While bathed in artificial cerebrospinal fluid (aCSF), respiratory burst frequency was not correlated with changes in bath KCl (0.5-10.0 mM). Riluzole (50 microM; persistent Na(+) channel blocker) increased burst frequency by 31 +/- 5% (P < 0.05) and decreased burst amplitude by 42 +/- 4% (P < 0.05). In contrast, flufenamic acid (FFA, 20-500 microM; Ca(2+)-activated cation channel blocker) reduced and abolished burst frequency in a dose- and time-dependent manner (P < 0.05). During synaptic inhibition blockade with bicuculline (50 microM; GABA(A) channel blocker) and strychnine (50 muM; glycine receptor blocker), rhythmic motor activity persisted, and burst frequency was directly correlated with extracellular KCl (0.5-10.0 mM; P = 0.005). During synaptic inhibition blockade, riluzole (50 microM) did not alter burst frequency, whereas FFA (100 microM) abolished burst frequency (P < 0.05). These data are most consistent with the hypothesis that turtle respiratory rhythm generation requires Ca(2+)-activated cation channels but not pacemaker neurons, which thereby favors the group-pacemaker model. During synaptic inhibition blockade, however, the rhythm generator appears to be transformed into a pacemaker-driven network that requires Ca(2+)-activated cation channels.

  1. Case Studies of Rock Bursts Under Complicated Geological Conditions During Multi-seam Mining at a Depth of 800 m

    NASA Astrophysics Data System (ADS)

    Zhao, Tong-bin; Guo, Wei-yao; Tan, Yun-liang; Yin, Yan-chun; Cai, Lai-sheng; Pan, Jun-feng

    2018-05-01

    A serious rock burst ("4.19" event) occurred on 19 April 2016 in the No. 4 working face of the No. 10 coal seam in Da'anshan Coal Mine, Jingxi Coalfield. According to the China National Seismological Network, a 2.7 magnitude earthquake was simultaneously recorded in this area. The "4.19" event resulted in damage to the entire longwall face and two gateways that were 105 m in long. In addition, several precursor bursts and mine earthquakes had occurred between October 2014 and April 2016 in the two uphill roadways and the No. 4 working face. In this paper, the engineering geological characteristics and in situ stress field are provided, and then the rock burst distributions are introduced. Next, the temporal and spatial characteristics, geological and mining conditions, and other related essential information are reviewed in detail. The available evidence and possible explanations for the rock burst mechanisms are also presented and discussed. Based on the description and analysis of these bursts, a detailed classification system of rock burst mechanisms is established. According to the main causes and different disturbance stresses (i.e., high/low disturbance stresses and far-field/near-field high disturbance stresses), there are a total of nine types of rock bursts. Thus, some guidelines for controlling or mitigating different types of rock bursts are provided. These experiences and strategies not only provide an essential reference for understanding the different rock burst mechanisms, but also build a critical foundation for selecting mitigation measures and optimizing the related technical parameters during mining or tunnelling under similar conditions.

  2. Computer modeling and design analysis of a bit rate discrimination circuit based dual-rate burst mode receiver

    NASA Astrophysics Data System (ADS)

    Kota, Sriharsha; Patel, Jigesh; Ghillino, Enrico; Richards, Dwight

    2011-01-01

    In this paper, we demonstrate a computer model for simulating a dual-rate burst mode receiver that can readily distinguish bit rates of 1.25Gbit/s and 10.3Gbit/s and demodulate the data bursts with large power variations of above 5dB. To our knowledge, this is the first such model to demodulate data bursts of different bit rates without using any external control signal such as a reset signal or a bit rate select signal. The model is based on a burst-mode bit rate discrimination circuit (B-BDC) and makes use of a unique preamble sequence attached to each burst to separate out the data bursts with different bit rates. Here, the model is implemented using a combination of the optical system simulation suite OptSimTM, and the electrical simulation engine SPICE. The reaction time of the burst mode receiver model is about 7ns, which corresponds to less than 8 preamble bits for the bit rate of 1.25Gbps. We believe, having an accurate and robust simulation model for high speed burst mode transmission in GE-PON systems, is indispensable and tremendously speeds up the ongoing research in the area, saving a lot of time and effort involved in carrying out the laboratory experiments, while providing flexibility in the optimization of various system parameters for better performance of the receiver as a whole. Furthermore, we also study the effects of burst specifications like the length of preamble sequence, and other receiver design parameters on the reaction time of the receiver.

  3. Impact of Space Exploration on Biology and Medicine

    NASA Technical Reports Server (NTRS)

    Randt, Clark T.

    1960-01-01

    Basic human drives for pioneering and conquest can find acceptable expression in extraterrestrial exploration. It is unmistakably clear that our civilization cannot survive a thermonuclear conflict. The expression of aggressive drives in war has repeatedly supplied an impetus for unusual increments in the growth of the arts and sciences.. A historical review of intellectual progress and concomitant technological advance gives reason to expect that expanded knowledge of the universe will produce an unprecedented burst of creative activity in biology and medicine as well as in the physical sciences and engineering.

  4. BURST AND OUTBURST CHARACTERISTICS OF MAGNETAR 4U 0142+61

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Göğüş, Ersin; Chakraborty, Manoneeta; Kaneko, Yuki

    2017-01-20

    We have compiled the most comprehensive burst sample from magnetar 4U 0142+61, comprising 27 bursts from its three burst-active episodes in 2011, 2012 and the latest one in 2015 observed with Swift /Burst Alert Telescope and Fermi /Gamma-ray Burst Monitor. Bursts from 4U 0142+61 morphologically resemble typical short bursts from other magnetars. However, 4U 0142+61 bursts are less energetic compared to the bulk of magnetar bursts. We uncovered an extended tail emission following a burst on 2015 February 28, with a thermal nature, cooling over a timescale of several minutes. During this tail emission, we also uncovered pulse peak phasemore » aligned X-ray bursts, which could originate from the same underlying mechanism as that of the extended burst tail, or an associated and spatially coincident but different mechanism.« less

  5. Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.

    PubMed

    Olypher, Andrey; Cymbalyuk, Gennady; Calabrese, Ronald L

    2006-12-01

    The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by focusing on a low-voltage-activated (LVA) calcium current I(CaS). The transition from silence to bursting in this half-center oscillator occurs when the spike frequency of the bursting interneuron declines to a critical level, f(Final), at which the inhibited interneuron escapes owing to a build-up of the hyperpolarization-activated cation current, I(h). We varied I(CaS) inactivation time constant either in the living heart interneuron or in the model heart interneuron. In both cases, varying I(CaS) inactivation time constant did not affect f(Final) of either interneuron, but in the varied interneuron, the time constant of decline of spike frequency during bursts to f(Final) and thus the burst duration varied directly and nearly linearly with I(CaS) inactivation time constant. Bursts of the opposite, nonvaried interneuron did not change. We show also that control of burst duration by I(CaS) inactivation does not require synaptic interaction by reconstituting autonomous bursting in synaptically isolated living interneurons with injected I(CaS). Therefore inactivation of LVA calcium current is critically important for setting burst duration and thus period in a heart interneuron half-center oscillator and is potentially a general intrinsic mechanism for regulating burst duration in neurons.

  6. A Burst-Based “Hebbian” Learning Rule at Retinogeniculate Synapses Links Retinal Waves to Activity-Dependent Refinement

    PubMed Central

    Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J

    2007-01-01

    Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130

  7. Decrement of uterine myometrial burst duration as a correlate to active labor: A Hilbert phase approach

    PubMed Central

    Govindan, Rathinaswamy B.; Vairavan, Srinivasan; Furdea, Adrian; Murphy, Pam; Preissl, Hubert; Eswaran, Hari

    2011-01-01

    We propose a novel approach based on Hilbert phase to identify the burst in the uterine myometrial activity. We apply this approach to 24 serial magnetomyographic signals recorded from four pregnant women using a 151 SQUID array system. The bursts identified with this approach are evaluated for duration and are correlated with the gestational age. In all four subjects, we find a decrease in the duration of burst as the subject approaches active labor. As was shown in animal studies, this result indicates a faster conduction time between the muscle cells which activate a larger number of muscle units in a synchronous manner. PMID:21096231

  8. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-04-01

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

  9. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease

    PubMed Central

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling

    2017-01-01

    Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851

  10. Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail.

    PubMed

    Gritsun, Taras A; le Feber, Joost; Rutten, Wim L C

    2012-01-01

    A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.

  11. Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.; Robbie, Malcolm G.

    2003-01-01

    Improved blade tip sealing in the high pressure compressor and high pressure turbine can provide dramatic improvements in specific fuel consumption, time-on-wing, compressor stall margin and engine efficiency as well as increased payload and mission range capabilities of both military and commercial gas turbine engines. The preliminary design of a mechanically actuated active clearance control (ACC) system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated. The ACC system utilizes mechanically actuated seal carrier segments and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. The purpose of this active clearance control system is to improve upon current case cooling methods. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, re-burst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). The active turbine blade tip clearance control system design presented herein will be evaluated to ensure that proper response and positional accuracy is achievable under simulated high-pressure turbine conditions. The test rig will simulate proper seal carrier pressure and temperature loading as well as the magnitudes and rates of blade tip clearance changes of an actual gas turbine engine. The results of these evaluations will be presented in future works.

  12. Relationship between size and latency of action potentials in human muscle sympathetic nerve activity.

    PubMed

    Salmanpour, Aryan; Brown, Lyndon J; Steinback, Craig D; Usselman, Charlotte W; Goswami, Ruma; Shoemaker, J Kevin

    2011-06-01

    We employed a novel action potential detection and classification technique to study the relationship between the recruitment of sympathetic action potentials (i.e., neurons) and the size of integrated sympathetic bursts in human muscle sympathetic nerve activity (MSNA). Multifiber postganglionic sympathetic nerve activity from the common fibular nerve was collected using microneurography in 10 healthy subjects at rest and during activation of sympathetic outflow using lower body negative pressure (LBNP). Burst occurrence increased with LBNP. Integrated burst strength (size) varied from 0.22 ± 0.07 V at rest to 0.28 ± 0.09 V during LBNP. Sympathetic burst size (i.e., peak height) was directly related to the number of action potentials within a sympathetic burst both at baseline (r = 0.75 ± 0.13; P < 0.001) and LBNP (r = 0.75 ± 0.12; P < 0.001). Also, the amplitude of detected action potentials within sympathetic bursts was directly related to the increased burst size at both baseline (r = 0.59 ± 0.16; P < 0.001) and LBNP (r = 0.61 ± 0.12; P < 0.001). In addition, the number of detected action potentials and the number of distinct action potential clusters within a given sympathetic burst were correlated at baseline (r = 0.7 ± 0.1; P < 0.001) and during LBNP (r = 0.74 ± 0.03; P < 0.001). Furthermore, action potential latency (i.e., an inverse index of neural conduction velocity) was decreased as a function of action potential size at baseline and LBNP. LBNP did not change the number of action potentials and unique clusters per sympathetic burst. It was concluded that there exists a hierarchical pattern of recruitment of additional faster conducting neurons of larger amplitude as the sympathetic bursts become stronger (i.e., larger amplitude bursts). This fundamental pattern was evident at rest and was not altered by the level of baroreceptor unloading applied in this study.

  13. The rotational phase dependence of magnetar bursts

    NASA Astrophysics Data System (ADS)

    Elenbaas, C.; Watts, A. L.; Huppenkothen, D.

    2018-05-01

    The trigger for the short bursts observed in γ-rays from many magnetar sources remains unknown. One particular open question in this context is the localization of burst emission to a singular active region or a larger area across the neutron star. While several observational studies have attempted to investigate this question by looking at the phase dependence of burst properties, results have been mixed. At the same time, it is not obvious a priori that bursts from a localized active region would actually give rise to a detectable phase dependence, taking into account issues such as geometry, relativistic effects, and intrinsic burst properties such brightness and duration. In this paper, we build a simple theoretical model to investigate the circumstances under which the latter effects could affect detectability of dependence of burst emission on rotational phase. We find that even for strongly phase-dependent emission, inferred burst properties may not show a rotational phase dependence, depending on the geometry of the system and the observer. Furthermore, the observed properties of bursts with durations short as 10-20 per cent of the spin period can vary strongly depending on the rotational phase at which the burst was emitted. We also show that detectability of a rotational phase dependence depends strongly on the minimum number of bursts observed, and find that existing burst samples may simply be too small to rule out a phase dependence.

  14. Microseismic Precursory Characteristics of Rock Burst Hazard in Mining Areas Near a Large Residual Coal Pillar: A Case Study from Xuzhuang Coal Mine, Xuzhou, China

    NASA Astrophysics Data System (ADS)

    Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu

    2016-11-01

    Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.

  15. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons.

    PubMed

    Crisp, Kevin M; Gallagher, Brian R; Mesce, Karen A

    2012-09-01

    Dopamine (DA) activates fictive crawling behavior in the medicinal leech. To identify the cellular mechanisms underlying this activation at the level of crawl-specific motoneuronal bursting, we targeted potential cAMP-dependent events that are often activated through DA(1)-like receptor signaling pathways. We found that isolated ganglia produced crawl-like motoneuron bursting after bath application of phosphodiesterase inhibitors (PDIs) that upregulated cAMP. This bursting persisted in salines in which calcium ions were replaced with equimolar cobalt or nickel, but was blocked by riluzole, an inhibitor of a persistent sodium current. PDI-induced bursting contained a number of patterned elements that were statistically similar to those observed during DA-induced fictive crawling, except that one motoneuron (CV) exhibited bursting during the contraction rather than the elongation phase of crawling. Although DA and the PDIs produced similar bursting profiles, intracellular recordings from motoneurons revealed differences in altered membrane properties. For example, DA lowered motoneuron excitability whereas the PDIs increased resting discharge rates. We suggest that PDIs (and DA) activate a sodium-influx-dependent timing mechanism capable of setting the crawl rhythm and that multiple DA receptor subtypes are involved in shaping and modulating the phase relationships and membrane properties of cell-specific members of the crawl network to generate crawling.

  16. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  17. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.

    PubMed

    Yang, Yan; Cui, Yihui; Sang, Kangning; Dong, Yiyan; Ni, Zheyi; Ma, Shuangshuang; Hu, Hailan

    2018-02-14

    The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.

  18. Effect of Purine Co-Transmitters on Automatic Activity Caused by Norepinephrine in Myocardial Sleeves of Pulmonary Veins.

    PubMed

    Karimova, V M; Pustovit, K B; Abramochkin, D V; Kuz'min, V S

    2017-03-01

    We studied the effect of extracellular purine nucleotides (NAD + and ATP) on spontaneous arrhythmogenic activity caused by norepinephrine in myocardial sleeves of pulmonary veins. In pulmonary veins, NAD + and ATP reduced the frequency of action potentials and their duration at regular type of spontaneous activity caused by norepinephrine. NAD + and ATP lengthened the intervals between spike bursts at periodic (burst) type of spontaneous activity. In addition, ATP shortened the duration of spike bursts and the number of action potentials in the "bursts" caused by norepinephrine in the pulmonary veins. It was hypothesized that NAD + and ATP attenuate the effects of sympathetic stimulation and when released together with norepinephrine from sympathetic endings in vivo, probably, reduce arrhythmogenic activity in myocardial sleeves of pulmonary veins.

  19. Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Bing

    2014-02-01

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  20. Fast Radio Bursts from Extragalactic Light Sails

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-03-01

    We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.

  1. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Shuang-Xi; Yu, Hai; Wang, F. Y.

    2017-07-20

    We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We alsomore » study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wei; Lei, Wei-Hua; Wang, Ding-Xiong, E-mail: leiwh@hust.edu.cn

    Recently, two empirical correlations related to the minimum variability timescale (MTS) of the light curves are discovered in gamma-ray bursts (GRBs). One is the anti-correlation between MTS and Lorentz factor Γ, and the other is the anti-correlation between the MTS and gamma-ray luminosity L {sub γ}. Both of the two correlations might be used to explore the activity of the central engine of GRBs. In this paper, we try to understand these empirical correlations by combining two popular black hole central engine models (namely, the Blandford and Znajek mechanism (BZ) and the neutrino-dominated accretion flow (NDAF)). By taking the MTSmore » as the timescale of viscous instability of the NDAF, we find that these correlations favor the scenario in which the jet is driven by the BZ mechanism.« less

  3. Initial Results of a Large-scale Statistical Survey of Small-scale UV Bursts with IRIS and SDO

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2016-12-01

    UV bursts are small-scale ( 1 arcsec or less) brightenings observed in the NUV/FUV passbands of the Interface Region Imaging Spectrograph (IRIS). These peculiar phenomena are found exclusively in active regions and exhibit dramatic and defining spectroscopic characteristics. In particular, they present intense broadening and splitting, often in excess of 70 km s-1, in all bright emission lines observable by IRIS. Furthermore, these broadened lines also display strong absorption from cool metallic ions such as Fe II and Ni II which typically populate the chromosphere. These features suggest that bursts are bidirectional plasma flows at transition region temperatures embedded much farther down in the cool chromosphere. To better characterize these phenomena, we have launched a statistical survey encompassing the entire IRIS data catalogue to date and its accompanying data from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI). We sample a wide variety of IRIS observations of Si IV lines, ranging from large 400-step rasters for large detection rates to short-cadence sit-and-stare observations to provide in-depth time evolution data of individual bursts. Detection is streamlined by a semi-automated method that isolates characteristic burst spectra based on single-Gaussian fit parameters, greatly reducing search times in the vast IRIS catalogue. Our initial results demonstrate that UV bursts tend to appear when active regions are young and actively emerging, preferring to populate poorly developed inversion lines composed of numerous small mixed-polarity regions. Burst occurrence rates peak at 30-70 per hour in young active regions, decreasing as those regions age. We also find dramatic variations in spectral morphology in spatial scans of bursts with many split into distinct, opposing, resolved regions of blueshifts and redshifts. Finally, we find little evidence for coronal counterparts in AIA 171 Å, but we do find that a significant ratio of bursts coincide with localized bright features in AIA 1700 Å, lending support to the link between bursts and Ellerman bombs. With further involvement in the survey, we hope to constrain the burst/Ellerman bomb coincidence, the time evolution of burst spectral morphologies, and the distribution of their peak kinetic energies.

  4. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.

    PubMed

    Greene, Christy Jo

    2007-05-01

    Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed.

  5. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  6. Limits of the memory coefficient in measuring correlated bursts

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Hiraoka, Takayuki

    2018-03-01

    Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.

  7. The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages.

    PubMed

    Schaue, D; Marples, B; Trott, K R

    2002-07-01

    Local irradiation with a dose of around 0.5 Gy is an effective treatment of acute necrotizing inflammations. The hypothesis that low doses of X-rays modulate the oxidative burst in activated macrophages, which plays a major role in the acute inflammatory process, was tested. Murine RAW 264.7 macrophages were stimulated with LPS/gammaIFN, PMA or zymosan and oxidative burst was measured using either DCFH-DA or by reduction of cytochrome-C. Radiation doses of 0.3-10 Gy were given shortly before or after stimulation. Low X-ray doses of <1 Gy significantly reduced the oxidative burst in activated macrophages, whereas higher doses had little effect on oxidative burst. The modulation of oxidative burst by low radiation doses may contribute to the therapeutic effectiveness of low-dose radiotherapy of acute necrotizing inflammations.

  8. Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soya bean oxidative burst.

    PubMed Central

    Taylor, A T; Kim, J; Low, P S

    2001-01-01

    The oxidative burst constitutes one of the most rapid defence responses characterized in the Plant Kingdom. We have observed that four distinct elicitors of the soya bean oxidative burst activate kinases of masses approximately 44 kDa and approximately 47 kDa. Evidence that these kinases regulate production of reactive oxygen species include: (i) their rapid activation by oxidative burst elicitors, (ii) their tight temporal correlation between activation/deactivation of the kinases and activation/deactivation of the oxidative burst, (iii) the identical pharmacological profile of kinase activation and oxidant production for 13 commonly used inhibitors, and (iv) the autologous activation of both kinases and oxidant production by calyculin A and cantharidin, two phosphatase inhibitors. Immunological and biochemical studies reveal that the activated 44 kDa and 47 kDa kinases are mitogen-activated protein (MAP) kinase family members. The kinases prefer myelin basic protein as a substrate, and they phosphorylate primarily on threonine residues. The kinases are themselves phosphorylated on tyrosine residues, and this phosphorylation is required for activity. Finally, both kinases are recognized by an antibody against activated MAP kinase immediately after (but not before) cell stimulation by elicitors. Based on these and other observations, a preliminary sequence of signalling steps linking elicitor stimulation, kinase activation and Ca(2+) entry, to initiation of oxidant production, is proposed. PMID:11311144

  9. Accretion and Outflow from a Magnetized, Neutrino Cooled Torus around the Gamma Ray Burst Central Engine

    NASA Astrophysics Data System (ADS)

    Janiuk, Agnieszka; Moscibrodzka, Monika

    Gamma Ray Bursts (GRB) are the extremely energetic transient events, visible from the most distant parts of the Universe. They are most likely powered by accretion on the hyper-Eddington rates that proceeds onto a newly born stellar mass black hole. This central engine gives rise to the most powerful, high Lorentz factor jets that are responsible for energetic gamma ray emission. We investigate the accretion flow evolution in GRB central engine, using the 2D MHD simulations in General Relativity. We compute the structure and evolution of the extremely hot and dense torus accreting onto the fast spinning black hole, which launches the magnetized jets. We calculate the chemical structure of the disk and account for neutrino cooling. Our preliminary runs apply to the short GRB case (remnant torus accreted after NS-NS or NS-BH merger). We estimate the neutrino luminosity of such an event for chosen disk and central BH mass.

  10. Flexibility in the patterning and control of axial locomotor networks in lamprey.

    PubMed

    Buchanan, James T

    2011-12-01

    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.

  11. Rhythm and amplitude of rhythmic masticatory muscle activity during sleep in bruxers - comparison with gum chewing.

    PubMed

    Matsuda, Shinpei; Yamaguchi, Taihiko; Mikami, Saki; Okada, Kazuki; Gotouda, Akihito; Sano, Kazuo

    2016-07-01

    The aim of this study was to elucidate characteristics of rhythmic masticatory muscle activity (RMMA) during sleep by comparing masseteric EMG (electromyogram) activities of RMMA with gum chewing. The parts of five or more consecutive phasic bursts in RMMA of 23 bruxers were analyzed. Wilcoxon signed-rank test for matched pairs and Spearman's correlation coefficient by the rank test were used for statistical analysis. Root mean square value of RMMA phasic burst was smaller than that during gum chewing, but correlates to that of gum chewing. The cycle of RMMA was longer than that of gum chewing due to the longer burst duration of RMMA, and variation in the cycles of RMMA was wider. These findings suggest that the longer but smaller EMG burst in comparison with gum chewing is one of the characteristics of RMMA. The relation between size of RMMA phasic bursts and gum chewing is also suggested.

  12. Dopamine-dependent effects on basal and glutamate stimulated network dynamics in cultured hippocampal neurons.

    PubMed

    Li, Yan; Chen, Xin; Dzakpasu, Rhonda; Conant, Katherine

    2017-02-01

    Oscillatory activity occurs in cortical and hippocampal networks with specific frequency ranges thought to be critical to working memory, attention, differentiation of neuronal precursors, and memory trace replay. Synchronized activity within relatively large neuronal populations is influenced by firing and bursting frequency within individual cells, and the latter is modulated by changes in intrinsic membrane excitability and synaptic transmission. Published work suggests that dopamine, a potent modulator of learning and memory, acts on dopamine receptor 1-like dopamine receptors to influence the phosphorylation and trafficking of glutamate receptor subunits, along with long-term potentiation of excitatory synaptic transmission in striatum and prefrontal cortex. Prior studies also suggest that dopamine can influence voltage gated ion channel function and membrane excitability in these regions. Fewer studies have examined dopamine's effect on related endpoints in hippocampus, or potential consequences in terms of network burst dynamics. In this study, we record action potential activity using a microelectrode array system to examine the ability of dopamine to modulate baseline and glutamate-stimulated bursting activity in an in vitro network of cultured murine hippocampal neurons. We show that dopamine stimulates a dopamine type-1 receptor-dependent increase in number of overall bursts within minutes of its application. Notably, however, at the concentration used herein, dopamine did not increase the overall synchrony of bursts between electrodes. Although the number of bursts normalizes by 40 min, bursting in response to a subsequent glutamate challenge is enhanced by dopamine pretreatment. Dopamine-dependent potentiation of glutamate-stimulated bursting was not observed when the two modulators were administered concurrently. In parallel, pretreatment of murine hippocampal cultures with dopamine stimulated lasting increases in the phosphorylation of the glutamate receptor subunit GluA1 at serine 845. This effect is consistent with the possibility that enhanced membrane insertion of GluAs may contribute to a more slowly evolving dopamine-dependent potentiation of glutamate-stimulated bursting. Together, these results are consistent with the possibility that dopamine can influence hippocampal bursting by at least two temporally distinct mechanisms, contributing to an emerging appreciation of dopamine-dependent effects on network activity in the hippocampus. © 2016 International Society for Neurochemistry.

  13. The 2006-2007 Active Phase Of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts, and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavril, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2009-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 8-3x10(exp 3)s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx. 2 - 6 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus three emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4)x10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. We discuss these events in the context of the magnetar model.

  14. Development of fiber shields for engine containment. [mathematical models

    NASA Technical Reports Server (NTRS)

    Bristow, R. J.; Davidson, C. D.

    1977-01-01

    Tests were conducted in translational launchers and spin pits to generate empirical data used in the design of a Kevlar shield for containing engine burst debris. Methods are given for modeling the relationship of fragment characteristics to shielding requirements. The change in relative importance of shield mounting provisions as fragment energy is increased is discussed.

  15. Type III Radio Burst Duration and SEP Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.

    2010-01-01

    Long-duration (>15 min), low-frequency (<14 MHz) type III radio bursts have been reported to be indicative of solar energetic particle events. We measured the durations of type III bursts associated with large SEP events of solar cycle 23. The Type III durations are distributed symmetrically at 1 MHz yielding a mean value of approximately 33 min (median = 32 min) for the large SEP events. When the SEP events with ground level enhancement (GLE,) are considered, the distribution is essentially unchanged (mean = 32 min, median = 30 min). To test the importance of type III bursts in indicating SEP events, we considered a set of six type III bursts from the same active region (AR 10588) whose durations fit the "long duration" criterion. We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with the type III bursts. The CMEs were of similar speeds and the flares are also of similar size and duration. All but one of the type III bursts was not associated with a type II burst in the metric or longer wavelength domains. The burst without type II burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).

  16. Statistical Properties of SGR J1550-5418 Bursts

    NASA Technical Reports Server (NTRS)

    Gorgone, Nicholas M.

    2010-01-01

    Magnetars are slowly rotating neutron stars with extreme magnetic fields, over 10(exp 15) Gauss. Only few have been discovered in the last 30 years. These sources are dormant most of their lifetimes and become randomly active emitting multiple soft gamma-ray bursts. We present here our results on the temporal analysis of 300 bursts from Soft Gamma Repeater SGR J1550-5418 recorded with the Gamma-ray Burst Monitor (GBM) onboard the Fermi Observatory during its activation on January 22-29, 2009. We employed an un-triggered burst search in the energy range 8-100keV to collect all events from the source, besides the ones that triggered GBM. For the entire sample of bursts we determined their durations, rise and decay times. We study here the statistical properties of these characteristics and discuss how these may help us better understand the physical characteristics of the magnetar model.

  17. Local cortical dynamics of burst suppression in the anaesthetized brain.

    PubMed

    Lewis, Laura D; Ching, Shinung; Weiner, Veronica S; Peterfreund, Robert A; Eskandar, Emad N; Cash, Sydney S; Brown, Emery N; Purdon, Patrick L

    2013-09-01

    Burst suppression is an electroencephalogram pattern that consists of a quasi-periodic alternation between isoelectric 'suppressions' lasting seconds or minutes, and high-voltage 'bursts'. It is characteristic of a profoundly inactivated brain, occurring in conditions including hypothermia, deep general anaesthesia, infant encephalopathy and coma. It is also used in neurology as an electrophysiological endpoint in pharmacologically induced coma for brain protection after traumatic injury and during status epilepticus. Classically, burst suppression has been regarded as a 'global' state with synchronous activity throughout cortex. This assumption has influenced the clinical use of burst suppression as a way to broadly reduce neural activity. However, the extent of spatial homogeneity has not been fully explored due to the challenges in recording from multiple cortical sites simultaneously. The neurophysiological dynamics of large-scale cortical circuits during burst suppression are therefore not well understood. To address this question, we recorded intracranial electrocorticograms from patients who entered burst suppression while receiving propofol general anaesthesia. The electrodes were broadly distributed across cortex, enabling us to examine both the dynamics of burst suppression within local cortical regions and larger-scale network interactions. We found that in contrast to previous characterizations, bursts could be substantially asynchronous across the cortex. Furthermore, the state of burst suppression itself could occur in a limited cortical region while other areas exhibited ongoing continuous activity. In addition, we found a complex temporal structure within bursts, which recapitulated the spectral dynamics of the state preceding burst suppression, and evolved throughout the course of a single burst. Our observations imply that local cortical dynamics are not homogeneous, even during significant brain inactivation. Instead, cortical and, implicitly, subcortical circuits express seemingly different sensitivities to high doses of anaesthetics that suggest a hierarchy governing how the brain enters burst suppression, and emphasize the role of local dynamics in what has previously been regarded as a global state. These findings suggest a conceptual shift in how neurologists could assess the brain function of patients undergoing burst suppression. First, analysing spatial variation in burst suppression could provide insight into the circuit dysfunction underlying a given pathology, and could improve monitoring of medically-induced coma. Second, analysing the temporal dynamics within a burst could help assess the underlying brain state. This approach could be explored as a prognostic tool for recovery from coma, and for guiding treatment of status epilepticus. Overall, these results suggest new research directions and methods that could improve patient monitoring in clinical practice.

  18. An Artificial Intelligence Classification Tool and Its Application to Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Giblin, Timothy; Paciesas, William S.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2004-01-01

    Despite being the most energetic phenomenon in the known universe, the astrophysics of gamma-ray bursts (GRBs) has still proven difficult to understand. It has only been within the past five years that the GRB distance scale has been firmly established, on the basis of a few dozen bursts with x-ray, optical, and radio afterglows. The afterglows indicate source redshifts of z=1 to z=5, total energy outputs of roughly 10(exp 52) ergs, and energy confined to the far x-ray to near gamma-ray regime of the electromagnetic spectrum. The multi-wavelength afterglow observations have thus far provided more insight on the nature of the GRB mechanism than the GRB observations; far more papers have been written about the few observed gamma-ray burst afterglows in the past few years than about the thousands of detected gamma-ray bursts. One reason the GRB central engine is still so poorly understood is that GRBs have complex, overlapping characteristics that do not appear to be produced by one homogeneous process. At least two subclasses have been found on the basis of duration, spectral hardness, and fluence (time integrated flux); Class 1 bursts are softer, longer, and brighter than Class 2 bursts (with two second durations indicating a rough division). A third GRB subclass, overlapping the other two, has been identified using statistical clustering techniques; Class 3 bursts are intermediate between Class 1 and Class 2 bursts in brightness and duration, but are softer than Class 1 bursts. We are developing a tool to aid scientists in the study of GRB properties. In the process of developing this tool, we are building a large gamma-ray burst classification database. We are also scientifically analyzing some GRB data as we develop the tool. Tool development thus proceeds in tandem with the dataset for which it is being designed. The tool invokes a modified KDD (Knowledge Discovery in Databases) process, which is described as follows.

  19. Magnetar Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2014-01-01

    The Fermi/Gamma-ray Burst Monitor (GBM) was launched in June 2008. During the last five years the instrument has observed several hundreds of bursts from 8 confirmed magnetars and 19 events from unconfirmed sources. I will discuss the results of the GBM magnetar burst catalog, expand on the different properties of their diverse source population, and compare these results with the bursting activity of past sources. I will then conclude with thoughts of how these properties fit the magnetar theoretical models.

  20. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perley, D. A.; Metzger, B. D.; Butler, N. R.

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However,more » a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.« less

  1. The temporal relationship between non-respiratory burst activity of expiratory laryngeal motoneurons and phrenic apnoea during stimulation of the superior laryngeal nerve in rat

    PubMed Central

    Sun, Qi-Jian; Bautista, Tara G; Berkowitz, Robert G; Zhao, Wen-Jing; Pilowsky, Paul M

    2011-01-01

    Abstract A striking effect of stimulating the superior laryngeal nerve (SLN) is its ability to inhibit central inspiratory activity (cause ‘phrenic apnoea’), but the mechanism underlying this inhibition remains unclear. Here we demonstrate, by stimulating the SLN at varying frequencies, that the evoked non-respiratory burst activity recorded from expiratory laryngeal motoneurons (ELMs) has an intimate temporal relationship with phrenic apnoea. During 1–5 Hz SLN stimulation, occasional absences of phrenic nerve discharge (PND) occurred such that every absent PND was preceded by an ELM burst activity. During 10–20 Hz SLN stimulation, more bursts were evoked together with more absent PNDs, leading eventually to phrenic apnoea. Interestingly, subsequent microinjections of isoguvacine (10 mm, 20–40 nl) into ipsilateral Bötzinger complex (BötC) and contralateral nucleus tractus solitarii (NTS) significantly attenuated the apnoeic response but not the ELM burst activity. Our results suggest a bifurcating projection from NTS to both the caudal nucleus ambiguus and BötC, which mediates the closely related ELM burst and apnoeic response, respectively. We believe that such an intimate timing between laryngeal behaviour and breathing is crucial for the effective elaboration of the different airway protective behaviours elicited following SLN stimulation, including the laryngeal adductor reflex, swallowing and cough. PMID:21320890

  2. Spiking and bursting patterns of fractional-order Izhikevich model

    NASA Astrophysics Data System (ADS)

    Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha

    2018-03-01

    Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.

  3. Automatic classification of background EEG activity in healthy and sick neonates

    NASA Astrophysics Data System (ADS)

    Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj

    2010-02-01

    The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

  4. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments.

  5. The effect of Strongylus vulgaris larvae on equine intestinal myoelectrical activity.

    PubMed

    Lester, G D; Bolton, J R; Cambridge, H; Thurgate, S

    1989-06-01

    The myoelectrical activity of the ileum, caecum and large colon was monitored from Ag-AgCl bipolar recording electrodes in four conscious 'parasite-naive' weanling foals. All foals were inoculated with 1000 infective 3rd-stage Strongylus vulgaris larvae and alterations to the myoelectrical activity observed. The frequencies of caecal and colonic spike bursts increased significantly in all post infection periods coinciding with assumed larval penetration into the intestinal mucosa and migration through the vasculature. Peaks in caecal and colonic activity occurred at Days 1 to 5 post infection. In the caecum, peaks occurred again at Days 15 and 31 post infection, preceding similar rises in colonic spike burst frequency at Days 19 and 35. Longer term changes indicated a return towards pre-infection levels of activity suggesting smooth muscle adaptation to decreased blood flow. The analysis of caecal and colonic spike burst propagation indicated that the increases in burst frequency were not attributable to an increase in the propagation of spike bursts in any particular direction, but rather to proportional increases in all directions of activity. There was a slight decrease in the simple ileal spike burst frequency immediately post-infection. None of the experimental animals exhibited signs of abdominal pain during the trial, and there was no evidence of bowel infarction at post mortem examination despite the presence of severe parasite-induced arterial lesions. The results suggest that increased caecal and colonic motility is an important host response in susceptible foals exposed to S. vulgaris larvae.

  6. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  7. Pressure vessel burst test program - Initial program paper

    NASA Technical Reports Server (NTRS)

    Cain, Maurice R.; Sharp, Douglas E.; Coleman, Michael D.; Webb, Bobby L.

    1990-01-01

    The current status of a pressure vessel burst test program, aimed at the study of the blast waves and fragmentation characteristics of ruptured gas-filled pressure vessels, is reported. The program includes a series of test plans, each involving multiple bursts with burst pressures ranging to 7500 psig. The discussion covers the identification of concerns and hazards, application of the data generated, and a brief review of the current methods for assessing vessel safety and burst parameters. Attention is also given to pretest activities, including completed vessel and facility/instrumentation preparation and results of completed preliminary burst tests.

  8. Solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Smith, D. F.

    1981-01-01

    Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.

  9. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked myogenic potentials, indicated by eye muscle responses. We further assessed subjects' postural control and its correlation with vestibular cortical activity. Our results provide the first evidence of using skull taps to elicit vestibular activity inside the MRI scanner. By conducting conjunction analyses we showed that skull taps elicit the same activation pattern as auditory tone bursts (superior temporal gyrus), and both modes of stimulation activate previously identified vestibular cortical regions. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects. This further supports that the skull tap could replace auditory tone burst stimulation in clinical interventions and basic science research. Moreover, we observed that greater vestibular activation is associated with better balance control. We showed that not only the quality of balance (indicated by the amount of body sway) but also the ability to maintain balance for a longer time (indicated by the balance time) was associated with individuals' vestibular cortical excitability. Our findings support an association between vestibular cortical activity and individual differences in balance. In sum, we found that the skull tap stimulation results in activation of canonical vestibular cortex, suggesting an equally valid, but more tolerable stimulation method compared to auditory tone bursts. This is of high importance in longitudinal vestibular assessments, in which minimizing aversive effects may contribute to higher protocol adherence.

  10. Effect of boat noise and angling on lake fish behaviour.

    PubMed

    Jacobsen, L; Baktoft, H; Jepsen, N; Aarestrup, K; Berg, S; Skov, C

    2014-06-01

    The effects of disturbances from recreational activities on the swimming speed and habitat use of roach Rutilus rutilus, perch Perca fluviatilis and pike Esox lucius were explored. Disturbances were applied for 4 h as (1) boating in short intervals with a small outboard internal combustion engine or (2) boating in short intervals combined with angling with artificial lures between engine runs. The response of the fish species was evaluated by high-resolution tracking using an automatic acoustic telemetry system and transmitters with sub-minute burst rates. Rutilus rutilus swimming speed was significantly higher during disturbances [both (1) and (2)] with an immediate reaction shortly after the engine started. Perca fluviatilis displayed increased swimming activity during the first hour of disturbance but not during the following hours. Swimming activity of E. lucius was not significantly different between disturbance periods and the same periods on days without disturbance (control). Rutilus rutilus increased their use of the central part of the lake during disturbances, whereas no habitat change was observed in P. fluviatilis and E. lucius. No difference in fish response was detected between the two types of disturbances (boating with and without angling), indicating that boating was the primary source of disturbance. This study highlights species-specific responses to recreational boating and may have implications for management of human recreational activities in lakes. © 2014 The Fisheries Society of the British Isles.

  11. An Assessment of Technology for Turbojet Engine Rotor Failures

    NASA Technical Reports Server (NTRS)

    Witmer, E. A. (Editor)

    1977-01-01

    Design considerations, objectives, and approaches used in containing rotor burst debris are discussed. Methods are given for determining the fracture resistance of various materials used in providing lightweight shielding from fragment impact.

  12. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy.

    PubMed

    Timofeeva, Olga; Nadler, J Victor

    2006-03-17

    Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves mainly to facilitate the recruitment of dentate granule cells into population bursts.

  13. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  14. A relativistic type Ibc supernova without a detected gamma-ray burst.

    PubMed

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  15. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing engine and control simulation results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.

  16. Synchronous behaviour in network model based on human cortico-cortical connections.

    PubMed

    Protachevicz, Paulo Ricardo; Borges, Rafael Ribaski; Reis, Adriane da Silva; Borges, Fernando da Silva; Iarosz, Kelly Cristina; Caldas, Ibere Luiz; Lameu, Ewandson Luiz; Macau, Elbert Einstein Nehrer; Viana, Ricardo Luiz; Sokolov, Igor M; Ferrari, Fabiano A S; Kurths, Jürgen; Batista, Antonio Marcos

    2018-06-22

    We consider a network topology according to the cortico-cortical connec- tion network of the human brain, where each cortical area is composed of a random network of adaptive exponential integrate-and-fire neurons. Depending on the parameters, this neuron model can exhibit spike or burst patterns. As a diagnostic tool to identify spike and burst patterns we utilise the coefficient of variation of the neuronal inter-spike interval. In our neuronal network, we verify the existence of spike and burst synchronisation in different cortical areas. Our simulations show that the network arrangement, i.e., its rich-club organisation, plays an important role in the transition of the areas from desynchronous to synchronous behaviours. © 2018 Institute of Physics and Engineering in Medicine.

  17. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia.

    PubMed

    Liu, Xuguang; Yianni, John; Wang, Shouyan; Bain, Peter G; Stein, John F; Aziz, Tipu Z

    2006-03-01

    Despite that deep brain stimulation (DBS) of the globus pallidus internus (GPi) is emerging as the favored intervention for patients with medically intractable dystonia, the pathophysiological mechanisms of dystonia are largely unclear. In eight patients with primary dystonia who were treated with bilateral chronic pallidal stimulation, we correlated symptom-related electromyogram (EMG) activity of the most affected muscles with the local field potentials (LFPs) recorded from the globus pallidus electrodes. In 5 dystonic patients with mobile involuntary movements, rhythmic EMG bursts in the contralateral muscles were coherent with the oscillations in the pallidal LFPs at the burst frequency. In contrast, no significant coherence was seen between EMG and LFPs either for the sustained activity separated out from the compound EMGs in those 5 cases, or in the EMGs in 3 other cases without mobile involuntary movements and rhythmic EMG bursts. In comparison with the resting condition, in both active and passive movements, significant modulation in the GPi LFPs was seen in the range of 8-16 Hz. The finding of significant coherence between GPi oscillations and rhythmic EMG bursts but not sustained tonic EMG activity suggests that the synchronized pallidal activity may be directly related to the rhythmic involuntary movements. In contrast, the sustained hypertonic muscle activity may be represented by less synchronized activity in the pallidum. Thus, the pallidum may play different roles in generating different components of the dystonic symptom complex.

  18. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    NASA Technical Reports Server (NTRS)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; hide

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  19. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    PubMed

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Biphasic effects of substance P on respiratory activity and respiration-related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro.

    PubMed

    Shvarev, Y N; Lagercrantz, H; Yamamoto, Y

    2002-01-01

    The effects of substance P (SP) on respiratory activity in the brainstem-spinal cord preparation from neonatal rats (0-4 days old) were investigated. The respiratory activity was recorded from C4 ventral roots and intracellularly from three types of respiration-related neurones, i.e. pre-inspiratory (or biphasic E), three subtypes of inspiratory; expiratory and tonic neurones in the ventrolateral medulla (VLM). After the onset of SP bath application (10 nM-1 microM) a dose-dependent decline of burst rate (by 48%) occurred, followed by a weaker dose-dependent increase (by 17.5%) in burst rate. The biphasic effect of SP on inspiratory burst rate was associated with sustained membrane depolarization (in a range of 0.5-13 mV) of respiration-related and tonic neurones. There were no significant changes in membrane resistance in any type of neurones when SP was applied alone or when synaptic transmission was blocked with tetrodotoxin (TTX). The initial depolarization was associated with an increase in inspiratory drive potential (by 25%) as well as in bursting time (by 65%) and membrane excitability in inspiratory and pre-inspiratory neurones, which corresponded to the decrease in burst rate (C4 activity). The spiking frequency of expiratory and tonic neurones was also increased (by 36 and 48%). This activation was followed by restoration of the synaptic drive potential and bursting time in inspiratory and to a less extent in pre-inspiratory neurones, which corresponded to the increase in burst rate. The discharge frequency of expiratory and tonic neurones also decreased to control values. This phase followed the peak membrane depolarization. At the peak depolarization, SP reduced the amplitude of the action potential by 4-8% in all types of neurones. Our results suggest that SP exerts a general excitatory effect on respiration-related neurones and synaptic coupling within the respiratory network in the VLM. The transient changes in neuronal activity in the VLM may underlie the biphasic effect of SP in the brainstem respiration activity recorded in C4 roots. However, the biphasic effect of SP on inspiratory burst rate seems to be also defined by the balance in activity of other SP-sensitive systems and neurones in the respiratory network in the brainstem and spinal cord, which can modify the activity of medullary respiratory rhythm generator.

  1. A Stochastic Burst Follows the Periodic Morning Peak in Individual Drosophila Locomotion

    PubMed Central

    Lazopulo, Stanislav; Lopez, Juan A.; Levy, Paul; Syed, Sheyum

    2015-01-01

    Coupling between cyclically varying external light and an endogenous biochemical oscillator known as the circadian clock, modulates a rhythmic pattern with two prominent peaks in the locomotion of Drosophila melanogaster. A morning peak appears around the time lights turn on and an evening peak appears just before lights turn off. The close association between the peaks and the external 12:12 hour light/dark photoperiod means that respective morning and evening peaks of individual flies are well-synchronized in time and, consequently, feature prominently in population-averaged data. Here, we report on a brief but strong stochastic burst in fly activity that, in contrast to morning and evening peaks, is detectable only in single fly recordings. This burst was observed across 3 wild-type strains of Drosophila melanogaster. In a single fly recording, the burst is likely to appear once randomly within 0.5–5 hours after lights turn on, last for only 2–3 minutes and yet show 5 times greater activity compared to the maximum of morning peak with data binned in 3 minutes. Owing to its variable timing and short duration, the burst is virtually undetectable in population-averaged data. We use a locally-built illumination system to study the burst and find that its incidence in a population correlates with light intensity, with ~85% of control flies showing the behavior at 8000 lux (1942 μW/cm2). Consistent with that finding, several mutant flies with impaired vision show substantially reduced frequency of the burst. Additionally, we find that genetic ablation of the clock has insignificant effect on burst frequency. Together, these data suggest that the pronounced burst is likely generated by a light-activated circuit that is independent of the circadian clock. PMID:26528813

  2. The 2006-2007 Active Phase of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts,and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2011-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in > 11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 0.4 - 1.8 x 10(exp 3) s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx 2 - 9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4) x 10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate. slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.

  3. Muscles innervated by a single motor neuron exhibit divergent synaptic properties on multiple time scales.

    PubMed

    Blitz, Dawn M; Pritchard, Amy E; Latimer, John K; Wakefield, Andrew T

    2017-04-01

    Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Presynaptic and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown whether plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealis In vitro and in vivo , sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However, distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range as a result of distinct synaptic properties sensitive to multiple time scales. © 2017. Published by The Company of Biologists Ltd.

  4. PBF (PER620) interior, basement level. Sampling equipment. Date: May 2004. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, basement level. Sampling equipment. Date: May 2004. INEEL negative no. HD-41-5-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. PBF (PER620) interior. Counting room, main floor. Date: May 2004. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. Counting room, main floor. Date: May 2004. INEEL negative no. HD-41-6-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. Reflection of the State of Hunger in Impulse Activity of Nose Wing Muscles and Upper Esophageal Sphincter during Search behavior in Rabbits.

    PubMed

    Kromin, A A; Dvoenko, E E; Zenina, O Yu

    2016-07-01

    Reflection of the state of hunger in impulse activity of nose wing muscles and upper esophageal sphincter muscles was studied in chronic experiments on rabbits subjected to 24-h food deprivation in the absence of locomotion and during search behavior. In the absence of apparent behavioral activity, including sniffing, alai nasi muscles of hungry rabbits constantly generated bursts of action potentials synchronous with breathing, while upper esophageal sphincter muscles exhibited regular aperiodic low-amplitude impulse activity of tonic type. Latent form of food motivation was reflected in the structure of temporal organization of impulse activity of alai nasi muscles in the form of bimodal distribution of interpulse intervals and in temporal structure of impulse activity of upper esophageal sphincter muscles in the form of monomodal distribution. The latent form of food motivation was manifested in the structure of temporal organization of periods of the action potentials burst-like rhythm, generated by alai nasi muscles, in the form of monomodal distribution, characterized by a high degree of dispersion of respiratory cycle periods. In the absence of physical activity hungry animals sporadically exhibited sniffing activity, manifested in the change from the burst-like impulse activity of alai nasi muscles to the single-burst activity type with bimodal distribution of interpulse intervals and monomodal distribution of the burst-like action potentials rhythm periods, the maximum of which was shifted towards lower values, which was the cause of increased respiratory rate. At the same time, the monomodal temporal structure of impulse activity of the upper esophageal sphincter muscles was not changed. With increasing food motivation in the process of search behavior temporal structure of periods of the burst-like action potentials rhythm, generated by alai nasi muscles, became similar to that observed during sniffing, not accompanied by animal's locomotion, which is typical for the increased respiratory rhythm frequency. Increased hunger motivation was reflected in the temporal structure of impulse activity of upper esophageal sphincter muscles in the form of a shift to lower values of the maximum of monomodal distribution of interpulse intervals on the histogram, resulting in higher impulse activity frequency. The simultaneous increase in the frequency of action potentials bursts generation by alai nasi muscles and regular impulse activity of upper esophageal sphincter muscles is a reliable criterion for enhanced food motivation during search behavior in rabbits.

  7. Enhanced Burst-Suppression and Disruption of Local Field Potential Synchrony in a Mouse Model of Focal Cortical Dysplasia Exhibiting Spike-Wave Seizures.

    PubMed

    Williams, Anthony J; Zhou, Chen; Sun, Qian-Quan

    2016-01-01

    Focal cortical dysplasias (FCDs) are a common cause of brain seizures and are often associated with intractable epilepsy. Here we evaluated aberrant brain neurophysiology in an in vivo mouse model of FCD induced by neonatal freeze lesions (FLs) to the right cortical hemisphere (near S1). Linear multi-electrode arrays were used to record extracellular potentials from cortical and subcortical brain regions near the FL in anesthetized mice (5-13 months old) followed by 24 h cortical electroencephalogram (EEG) recordings. Results indicated that FL animals exhibit a high prevalence of spontaneous spike-wave discharges (SWDs), predominately during sleep (EEG), and an increase in the incidence of hyper-excitable burst/suppression activity under general anesthesia (extracellular recordings, 0.5%-3.0% isoflurane). Brief periods of burst activity in the local field potential (LFP) typically presented as an arrhythmic pattern of increased theta-alpha spectral peaks (4-12 Hz) on a background of low-amplitude delta activity (1-4 Hz), were associated with an increase in spontaneous spiking of cortical neurons, and were highly synchronized in control animals across recording sites in both cortical and subcortical layers (average cross-correlation values ranging from +0.73 to +1.0) with minimal phase shift between electrodes. However, in FL animals, cortical vs. subcortical burst activity was strongly out of phase with significantly lower cross-correlation values compared to controls (average values of -0.1 to +0.5, P < 0.05 between groups). In particular, a marked reduction in the level of synchronous burst activity was observed, the closer the recording electrodes were to the malformation (Pearson's Correlation = 0.525, P < 0.05). In a subset of FL animals (3/9), burst activity also included a spike or spike-wave pattern similar to the SWDs observed in unanesthetized animals. In summary, neonatal FLs increased the hyperexcitable pattern of burst activity induced by anesthesia and disrupted field potential synchrony between cortical and subcortical brain regions near the site of the cortical malformation. Monitoring the altered electrophysiology of burst activity under general anesthesia with multi-dimensional micro-electrode arrays may serve to define distinct neurophysiological biomarkers of epileptogenesis in human brain and improve techniques for surgical resection of epileptogenic malformed brain tissue.

  8. Simple stochastic model for El Niño with westerly wind bursts

    PubMed Central

    Thual, Sulian; Majda, Andrew J.; Chen, Nan; Stechmann, Samuel N.

    2016-01-01

    Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Niño Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Niño and La Niña events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Niño or La Niña events, super El Niño events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework provides further theoretical and practical insight on the relationship between wind burst activity and the ENSO. PMID:27573821

  9. Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.

    PubMed

    Hahn, Philip J; McIntyre, Cameron C

    2010-06-01

    Deep brain stimulation (DBS) of the subthlamic nucleus (STN) represents an effective treatment for medically refractory Parkinson's disease; however, understanding of its effects on basal ganglia network activity remains limited. We constructed a computational model of the subthalamopallidal network, trained it to fit in vivo recordings from parkinsonian monkeys, and evaluated its response to STN DBS. The network model was created with synaptically connected single compartment biophysical models of STN and pallidal neurons, and stochastically defined inputs driven by cortical beta rhythms. A least mean square error training algorithm was developed to parameterize network connections and minimize error when compared to experimental spike and burst rates in the parkinsonian condition. The output of the trained network was then compared to experimental data not used in the training process. We found that reducing the influence of the cortical beta input on the model generated activity that agreed well with recordings from normal monkeys. Further, during STN DBS in the parkinsonian condition the simulations reproduced the reduction in GPi bursting found in existing experimental data. The model also provided the opportunity to greatly expand analysis of GPi bursting activity, generating three major predictions. First, its reduction was proportional to the volume of STN activated by DBS. Second, GPi bursting decreased in a stimulation frequency dependent manner, saturating at values consistent with clinically therapeutic DBS. And third, ablating STN neurons, reported to generate similar therapeutic outcomes as STN DBS, also reduced GPi bursting. Our theoretical analysis of stimulation induced network activity suggests that regularization of GPi firing is dependent on the volume of STN tissue activated and a threshold level of burst reduction may be necessary for therapeutic effect.

  10. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  11. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding of this study is that increases in MSNA and plasma catecholamine concentrations did not differ between young and aged healthy individuals during passive heating. Furthermore, the increase in these variables did not differ when a cold pressor test and lower body negative pressure were superimposed upon heating. These findings suggest that attenuated cardiovascular adjustments to heat stress in healthy aged individuals are unlikely to be related to attenuated increases in sympathetic activity. PMID:25752842

  12. PBF (PER620) interior, first basement level. Sampling equipment. Date: March ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, first basement level. Sampling equipment. Date: March 2004. INEEL negative no. HD-41-4-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. SPERTI, Instrument Cell Building (PER606). North facade. Date: August 2003. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I, Instrument Cell Building (PER-606). North facade. Date: August 2003. INEEL negative no. HD-35-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. PBF (PER620) interior, basement level. Detail of coolant piping. Date: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, basement level. Detail of coolant piping. Date: May 2004. INEEL negative no. HD-41-5-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. Short Gamma-ray Bursts: Observations and Physics

    NASA Astrophysics Data System (ADS)

    Janka, H.-Thomas

    2007-04-01

    The aim of the workshop, which will be held at the scenic Ringberg castle, is supposed to bring together astrophysicists, physicists, and astronomers from different fields in order to discuss recent observational and theoretical discoveries and developments on short gamma-ray bursts. In particular, we plan to address the following topics: * recent short GRB observations * environments and host galaxies of short GRBs * is there a 3rd class of GRBs? * modeling GRB engines and jet outflows * rate and redshift predictions for short GRBs * the fireball model and short GRBs * gravitational-wave signals from short GRBs * neutrino signals from short GRBs * microphysics needed for modeling short GRBs and their engines Scientific and Local organizing committee members: H.-Thomas Janka (Max Planck Institute for Astrophysics, Garching), Miguel Aloy (University of Valencia), Jochen Greiner (Max Planck Institute for Extraterrestrial Physics), Sandra Savaglio (Max Planck Institute for Extraterrestrial Physics), Shri Kulkarni (California Institute of Technology, Pasadena)

  16. Synaptic potentials in respiratory neurones during evoked phase switching after NMDA receptor blockade in the cat

    PubMed Central

    Pierrefiche, O; Haji, A; Foutz, A S; Takeda, R; Champagnat, J; Denavit-Saubié, M

    1998-01-01

    Blockade of NMDA receptors by dizocilpine impairs the inspiratory off-switch (IOS) of central origin but not the IOS evoked by stimulation of sensory afferents. To investigate whether this difference was due to the effects of different patterns of synaptic interactions on respiratory neurones, we stimulated electrically the superior laryngeal nerve (SLN) or vagus nerve in decerebrate cats before and after i.v. administration of dizocilpine, whilst recording intracellularly. Phrenic nerve responses to ipsilateral SLN or vagal stimulation were: at mid-inspiration, a transient inhibition often followed by a brief burst of activity; at late inspiration, an IOS; and at mid-expiration, a late burst of activity. In all neurones (n = 16), SLN stimulation at mid-inspiration evoked an early EPSP during phase 1 (latency to the arrest of phrenic nerve activity), followed by an IPSP in inspiratory (I) neurones (n = 8) and by a wave of EPSPs in post-inspiratory (PI) neurones (n = 8) during phase 2 (inhibition of phrenic activity). An EPSP in I neurones and an IPSP in PI neurones occurred during phase 3 (brief phrenic burst) following phase 2. Evoked IOS was associated with a fast (phase 1) activation of PI neurones, whereas during spontaneous IOS, a progressive (30-50 ms) depolarization of PI neurones preceded the arrest of phrenic activity. Phase 3 PSPs were similar to those occurring during the burst of activity seen at the start of spontaneous inspiration. Dizocilpine did not suppress the evoked phrenic inhibition and the late burst of activity. The shapes and timing of the evoked PSPs and the changes in membrane potential in I and PI neurones during the phase transition were not altered. We hypothesize that afferent sensory pathways not requiring NMDA receptors (1) terminate inspiration through a premature activation of PI neurones, and (2) evoke a late burst of phrenic activity which might be the first stage of the inspiratory on-switch. PMID:9508816

  17. Molecular cloning of rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha and its effect on the respiratory burst activity of phagocytes.

    PubMed

    Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong

    2009-11-01

    Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.

  18. Self-Organization on Social Media: Endo-Exo Bursts and Baseline Fluctuations

    PubMed Central

    Oka, Mizuki; Hashimoto, Yasuhiro; Ikegami, Takashi

    2014-01-01

    A salient dynamic property of social media is bursting behavior. In this paper, we study bursting behavior in terms of the temporal relation between a preceding baseline fluctuation and the successive burst response using a frequency time series of 3,000 keywords on Twitter. We found that there is a fluctuation threshold up to which the burst size increases as the fluctuation increases and that above the threshold, there appears a variety of burst sizes. We call this threshold the critical threshold. Investigating this threshold in relation to endogenous bursts and exogenous bursts based on peak ratio and burst size reveals that the bursts below this threshold are endogenously caused and above this threshold, exogenous bursts emerge. Analysis of the 3,000 keywords shows that all the nouns have both endogenous and exogenous origins of bursts and that each keyword has a critical threshold in the baseline fluctuation value to distinguish between the two. Having a threshold for an input value for activating the system implies that Twitter is an excitable medium. These findings are useful for characterizing how excitable a keyword is on Twitter and could be used, for example, to predict the response to particular information on social media. PMID:25329610

  19. Symmetric Fold/Super-Hopf Bursting, Chaos and Mixed-Mode Oscillations in Pernarowski Model of Pancreatic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Fallah, Haniyeh

    Pancreatic beta-cells produce insulin to regularize the blood glucose level. Bursting is important in beta cells due to its relation to the release of insulin. Pernarowski model is a simple polynomial model of beta-cell activities indicating bursting oscillations in these cells. This paper presents bursting behaviors of symmetric type in this model. In addition, it is shown that the current system exhibits the phenomenon of period doubling cascades of canards which is a route to chaos. Canards are also observed symmetrically near folds of slow manifold which results in a chaotic transition between n and n + 1 spikes symmetric bursting. Furthermore, mixed-mode oscillations (MMOs) and combination of symmetric bursting together with MMOs are illustrated during the transition between symmetric bursting and continuous spiking.

  20. Solar microwave bursts - A review

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Vlahos, L.

    1982-01-01

    Observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere are reviewed. Special attention is given to the advances made in burst physics over the last few years with the great improvement in spatial and time resolution, especially with instruments like the NRAO three-element interferometer, the Westerbork Synthesis Radio Telescope, and more recently the Very Large Array. Observations made on the preflare build-up of an active region at centimeter wavelengths are reviewed. Three distinct phases in the evolution of cm bursts, namely the impulsive phase, the post-burst phase, and the gradual rise and fall, are discussed. Attention is also given to the flux density spectra of centimeter bursts. Descriptions are given of observations of fine structures with temporal resolution of 10-100 ms in the intensity profiles of cm-wavelength bursts. High spatial resolution observations are analyzed, with special reference to the one- and two-dimensional maps of cm burst sources.

  1. Impulsive EUV bursts observed in C IV with OSO-8. [UV solar spectra

    NASA Technical Reports Server (NTRS)

    Athay, R. G.; White, O. R.; Lites, B. W.; Bruner, E. C., Jr.

    1980-01-01

    Time sequences of profiles of the 1548 A line of C IV containing 51 EUV bursts observed in or near active regions are analyzed to determine the brightness, Doppler shift and line broadening characteristics of the bursts. The bursts have mean lifetimes of approximately 150 s, and mean increases in brightness at burst maximum of four-fold as observed with a field of view of 2 x 20 arc sec. Mean burst diameters are estimated to be 3 arc sec, or smaller. All but three of the bursts show Doppler shifts with velocities sometimes exceeding 75 km/s; 31 are dominated by red shifts and 17 are dominated by blue shifts. Approximately half of the latter group have red-shifted precursors. The bursts are interpreted as prominence material, such as surges and coronal rain, moving through the field of view of the spectrometer.

  2. Expanding relativistic shells and gamma-ray burst temporal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, E.E.; Madras, C.D.; Nayakshin, S.

    1996-12-01

    Many models of gamma-ray bursts (GRBs) involve a shell expanding at extreme relativistic speeds. The shell of material expands in a photon-quiet phase for a period {ital t}{sub 0} and then becomes gamma-ray active, perhaps due to inhomogeneities in the interstellar medium or the generation of shocks. Based on kinematics, we relate the envelope of the emission of the event to the characteristics of the photon-quiet and photon-active phases. We initially assume local spherical symmetry wherein, on average, the same conditions prevail over the shell`s surface within angles the order of {Gamma}{sup {minus}1}, where {Gamma} is the Lorentz factor formore » the bulk motion. The contribution of the curvature to the temporal structure is comparable to the contribution from the overall expansion. As a result, GRB time histories from a shell should have an envelope similar to {open_quotes}FRED{close_quotes} (fast rise, exponential decay) events in which the rise time is related to the duration of the photon-active phase and the fall time is related to the duration of the photon-quiet phase. This result depends only on local spherical symmetry and, since most GRBs do not have such envelopes, we introduce the {open_quotes}shell symmetry{close_quotes} problem: the observed time history envelopes of most GRBs do not agree with that expected for a relativistic expanding shell. Although FREDs have the signature of a relativistic shell, they may not be due to a single shell, as required by some cosmological models. Some FREDs have precursors in which the peaks are separated by more than the expansion time required to explain FRED shape. Such a burst is most likely explained by a central engine; that is, the separation of the multiple peaks occurs because the central site produced multiple releases of energy on timescales comparable to the duration of the event. (Abstract Truncated)« less

  3. Search for optical bursts from the gamma ray burst source GBS 0526-66

    NASA Astrophysics Data System (ADS)

    Seetha, S.; Sreenivasaiah, K. V.; Marar, T. M. K.; Kasturirangan, K.; Rao, U. R.; Bhattacharyya, J. C.

    1985-08-01

    Attempts were made to detect optical bursts from the gamma-ray burst source GBS 0526-66 during Dec. 31, 1984 to Jan. 2, 1985 and Feb. 23 to Feb. 24, 1985, using the one meter reflector of the Kavalur Observatory. Jan. 1, 1985 coincided with the zero phase of the predicted 164 day period of burst activity from the source (Rothschild and Lingenfelter, 1984). A new optical burst photon counting system with adjustable trigger threshold was used in parallel with a high speed photometer for the observations. The best time resolution was 1 ms and maximum count rate capability was 255,000 counts s(-1). Details of the instrumentation and observational results are presented.

  4. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  5. Generation and preservation of the slow underlying membrane potential oscillation in model bursting neurons.

    PubMed

    Franklin, Clarence C; Ball, John M; Schulz, David J; Nair, Satish S

    2010-09-01

    The underlying membrane potential oscillation of both forced and endogenous slow-wave bursting cells affects the number of spikes per burst, which in turn affects outputs downstream. We use a biophysical model of a class of slow-wave bursting cells with six active currents to investigate and generalize correlations among maximal current conductances that might generate and preserve its underlying oscillation. We propose three phases for the underlying oscillation for this class of cells: generation, maintenance, and termination and suggest that different current modules coregulate to preserve the characteristics of each phase. Coregulation of I(Burst) and I(A) currents within distinct boundaries maintains the dynamics during the generation phase. Similarly, coregulation of I(CaT) and I(Kd) maintains the peak and duration of the underlying oscillation, whereas the calcium-activated I(KCa) ensures appropriate termination of the oscillation and adjusts the duration independent of peak.

  6. Endogenous GABA and Glutamate Finely Tune the Bursting of Olfactory Bulb External Tufted Cells

    PubMed Central

    Hayar, Abdallah; Ennis, Matthew

    2008-01-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic γ-aminobutyric acid (GABA) and glutamate receptors. Blocking GABAA receptors increased—whereas blocking ionotropic glutamate receptors decreased—the number of spikes/burst without changing the interburst frequency. The GABAA agonist (isoguvacine, 10 μM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb. PMID:17567771

  7. Endogenous GABA and glutamate finely tune the bursting of olfactory bulb external tufted cells.

    PubMed

    Hayar, Abdallah; Ennis, Matthew

    2007-08-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic gamma-aminobutyric acid (GABA) and glutamate receptors. Blocking GABA(A) receptors increased--whereas blocking ionotropic glutamate receptors decreased--the number of spikes/burst without changing the interburst frequency. The GABA(A) agonist (isoguvacine, 10 microM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb.

  8. Constraints on millisecond magnetars as the engines of prompt emission in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Giannios, Dimitrios; Metzger, Brian D.

    2017-12-01

    We examine millisecond magnetars as central engines of gamma-ray bursts' (GRBs) prompt emission. Using the protomagnetar wind model of Metzger et al., we estimate the temporal evolution of the magnetization and power injection at the base of the GRB jet and apply these to different prompt emission models to make predictions for the GRB energetics, spectra and light curves. We investigate both shock and magnetic reconnection models for the particle acceleration, as well as the effects of energy dissipation across optically thick and thin regions of the jet. The magnetization at the base of the jet, σ0, is the main parameter driving the GRB evolution in the magnetar model and the emission is typically released for 100 ≲σ0 ≲3000. Given the rapid increase in σ0 as the protomagnetar cools and its neutrino-driven mass loss subsides, the GRB duration is typically limited to ≲100 s. This low baryon loading at late times challenges magnetar models for ultralong GRBs, though black hole models likely run into similar difficulties without substantial entrainment from the jet walls. The maximum radiated gamma-ray energy is ≲5 × 1051 erg, significantly less than the magnetar's total initial rotational energy and in strong tension with the high end of the observed GRB energy distribution. However, the gradual magnetic dissipation model applied to a magnetar central engine, naturally explains several key observables of typical GRBs, including energetics, durations, stable peak energies, spectral slopes and a hard to soft evolution during the burst.

  9. Modulation of subthalamic T-type Ca2+ channels remedies locomotor deficits in a rat model of Parkinson disease

    PubMed Central

    Tai, Chun-Hwei; Yang, Ya-Chin; Pan, Ming-Kai; Huang, Chen-Syuan; Kuo, Chung-Chin

    2011-01-01

    An increase in neuronal burst activities in the subthalamic nucleus (STN) is a well-documented electrophysiological feature of Parkinson disease (PD). However, the causal relationship between subthalamic bursts and PD symptoms and the ionic mechanisms underlying the bursts remain to be established. Here, we have shown that T-type Ca2+ channels are necessary for subthalamic burst firing and that pharmacological blockade of T-type Ca2+ channels reduces motor deficits in a rat model of PD. Ni2+, mibefradil, NNC 55-0396, and efonidipine, which inhibited T-type Ca2+ currents in acutely dissociated STN neurons, but not Cd2+ and nifedipine, which preferentially inhibited L-type or the other non–T-type Ca2+ currents, effectively diminished burst activity in STN slices. Topical administration of inhibitors of T-type Ca2+ channels decreased in vivo STN burst activity and dramatically reduced the locomotor deficits in a rat model of PD. Cd2+ and nifedipine showed no such electrophysiological and behavioral effects. While low-frequency deep brain stimulation (DBS) has been considered ineffective in PD, we found that lengthening the duration of the low-frequency depolarizing pulse effectively improved behavioral measures of locomotion in the rat model of PD, presumably by decreasing the availability of T-type Ca2+ channels. We therefore conclude that modulation of subthalamic T-type Ca2+ currents and consequent burst discharges may provide new strategies for the treatment of PD. PMID:21737877

  10. Activation of postsynaptic GABAB receptors modulates the bursting pattern and synaptic activity of olfactory bulb juxtaglomerular neurons.

    PubMed

    Karpuk, Nikolay; Hayar, Abdallah

    2008-01-01

    Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B) receptors (GABA(B)-Rs). However, it is still unclear whether ET cells have GABA(B)-Rs. We have investigated whether ET cells have functional postsynaptic GABA(B)-Rs using extracellular and whole cell recordings in olfactory bulb slices. In the presence of fast synaptic blockers (CNQX, APV, and gabazine), the GABA(B)-R agonist baclofen either completely inhibited the bursting or reduced the bursting frequency and increased the burst duration and the number of spikes/burst in ET cells. In the presence of fast synaptic blockers and tetrodotoxin, baclofen induced an outward current in ET cells, suggesting a direct postsynaptic effect. Baclofen reduced the frequency and amplitude of spontaneous EPSCs in PG and SA cells. In the presence of sodium and potassium channel blockers, baclofen reduced the frequency of miniature EPSCs, which were inhibited by the calcium channel blocker cadmium. All baclofen effects were reversed by application of the GABA(B)-R antagonist CGP55845. We suggest that activation of GABA(B)-Rs directly inhibits ET cell bursting and decreases excitatory dendrodendritic transmission from ET to PG and SA cells. Thus the postsynaptic GABA(B)-Rs on ET cells may play an important role in shaping the activation pattern of the glomeruli during olfactory coding.

  11. NEOCORTICAL ACTIVATION OF THE HIPPOCAMPUS DURING SLEEP IN INFANT RATS

    PubMed Central

    Mohns, Ethan J.; Blumberg, Mark S.

    2010-01-01

    We recently reported that the majority of hippocampal neurons in newborn rats increase their activity in association with myoclonic twitches, which are indicative of active sleep. Because spindle bursts in the developing somatosensory neocortex occur in response to sensory feedback from myoclonic twitching, we hypothesized that the state-dependent activity of the newborn hippocampus arises from sensory feedback that sequentially activates the neocortex and then hippocampus, constituting an early form of neocortical-hippocampal communication. Here, in unanesthetized 5–6-day-old rats, we test this hypothesis by recording simultaneously from forelimb and barrel regions of somatosensory neocortex and dorsal hippocampus during periods of spontaneous sleep and wakefulness and in response to peripheral stimulation. Myoclonic twitches were consistently followed by neocortical spindle bursts, which were in turn consistently followed by bursts of hippocampal unit activity; moreover, spindle burst power was positively correlated with hippocampal unit activity. In addition, exogenous stimulation consistently evoked this neocortical-to-hippocampal sequence of activation. Finally, parahippocampal lesions that disrupted functional connections between the neocortex and hippocampus effectively disrupted the transmission of both spontaneous and evoked neocortical activity to the hippocampus. These findings suggest that sleep-related motor activity contributes to the development of neocortical and hippocampal circuits and provides a foundation upon which coordinated activity between these two forebrain structures develops. PMID:20203203

  12. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans.

    PubMed Central

    Stokes, C L; Rinzel, J

    1993-01-01

    Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet. Images FIGURE 1 PMID:8218890

  13. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons.

    PubMed

    Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar

    2013-07-01

    Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  15. PBF Reactor Building (PER620). Fuel rod test assembly is on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Fuel rod test assembly is on display at PBF. Date: 1982. INEEL negative no. 82-4893 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. PBF (PER620) interior. System control racks, secondary control and equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. System control racks, secondary control and equipment room. Date: May 2004. INEEL negative no. HD-41-6-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. SPERTI, Instrument Cell Building (PER606). West facade. Camera facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I, Instrument Cell Building (PER-606). West facade. Camera facing northeast. Date: August 2003. INEEL negative no. HD-35-3-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. SPERTI, Instrument Cell Building (PER606). East facade. Camera facing southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I, Instrument Cell Building (PER-606). East facade. Camera facing southwest. Date: August 2003. INEEL negative no. HD-35-3-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. Functional Brain Activation in Response to a Clinical Vestibular Test Correlates with Balance

    PubMed Central

    Noohi, Fatemeh; Kinnaird, Catherine; DeDios, Yiri; Kofman, Igor S.; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2017-01-01

    The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research. PMID:28344549

  20. Burst Mode Composite Photography for Dynamic Physics Demonstrations

    ERIC Educational Resources Information Center

    Lincoln, James

    2018-01-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital…

  1. Progress in Written Language Bursts, Pauses, Transcription, and Written Composition across Schooling

    ERIC Educational Resources Information Center

    Alves, Rui A.; Limpo, Teresa

    2015-01-01

    Research on adult writers has shown that writing proceeds through bursts of transcription activity interspersed by long pauses. Yet few studies have examined how these writing behaviors unfold during early and middle childhood. This study traces the progress of bursts, pauses, transcription, and written composition in Portuguese students from…

  2. First GRB detections with the AGILE Minicalorimeter

    NASA Astrophysics Data System (ADS)

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Galli, M.; Tavani, M.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Argan, A.

    2008-05-01

    The Minicalorimeter (MCAL) onboard the AGILE satellite is a 1400 cm2 scintillation detector sensitive in the energy range 0.3-200 MeV. MCAL works both as a slave of the AGILE Silicon Tracker and as an autonomous detector for transient events (BURST mode). A dedicated onboard Burst Search logic scans BURST mode data in search of count rate increase. Peculiar characteristics of the detector are the high energy spectral coverage and a timing resolution of about 2 microseconds. Even if a trigger is not issued, BURST mode data are used to build a broad band energy spectrum (scientific ratemeters) organized in 11 bands for each of the two MCAL detection planes, with a time resolution of 1 second. After the first engineering commissioning phase, following the AGILE launch on 23rd April 2007, between 22nd June and 5th November 2007 eighteen GRBs were detected offline in the scientific ratemeters data, with a detection rate of about one per week. In this paper the capabilities of the detector will be described and an overview of the first detected GRBs will be given.

  3. A Codimension-2 Bifurcation Controlling Endogenous Bursting Activity and Pulse-Triggered Responses of a Neuron Model

    PubMed Central

    Barnett, William H.; Cymbalyuk, Gennady S.

    2014-01-01

    The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals–the duration of the burst and the duration of latency to spiking–are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of oscillators. PMID:24497927

  4. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity.

    PubMed

    Knight, T A

    2012-12-06

    The frontal eye field (FEF) has a strong influence on saccadic eye movements with the head restrained. With the head unrestrained, eye saccades combine with head movements to produce large gaze shifts, and microstimulation of the FEF evokes both eye and head movements. To test whether the dorsomedial FEF provides commands for the entire gaze shift or its separate eye and head components, we recorded extracellular single-unit activity in monkeys trained to make large head-unrestrained gaze shifts. We recorded 80 units active during gaze shifts, and closely examined 26 of these that discharged a burst of action potentials that preceded horizontal gaze movements. These units were movement or visuomovement related and most exhibited open movement fields with respect to amplitude. To reveal the relations of burst parameters to gaze, eye, and/or head movement metrics, we used behavioral dissociations of gaze, eye, and head movements and linear regression analyses. The burst number of spikes (NOS) was strongly correlated with movement amplitude and burst temporal parameters were strongly correlated with movement temporal metrics for eight gaze-related burst neurons and five saccade-related burst neurons. For the remaining 13 neurons, the NOS was strongly correlated with the head movement amplitude, but burst temporal parameters were most strongly correlated with eye movement temporal metrics (head-eye-related burst neurons, HEBNs). These results suggest that FEF units do not encode a command for the unified gaze shift only; instead, different units may carry signals related to the overall gaze shift or its eye and/or head components. Moreover, the HEBNs exhibit bursts whose magnitude and timing may encode a head displacement signal and a signal that influences the timing of the eye saccade, thereby serving as a mechanism for coordinating the eye and head movements of a gaze shift. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Methylxanthines do not affect rhythmogenic preBötC inspiratory network activity but impair bursting of preBötC-driven motoneurons.

    PubMed

    Panaitescu, B; Kuribayashi, J; Ruangkittisakul, A; Leung, V; Iizuka, M; Ballanyi, K

    2013-01-01

    Clinical stimulation of preterm infant breathing with methylxanthines like caffeine and theophylline can evoke seizures. It is unknown whether underlying neuronal hyperexcitability involves the rhythmogenic inspiratory active pre-Bötzinger complex (preBötC) in the brainstem or preBötC-driven motor networks. Inspiratory-related preBötC interneuronal plus spinal (cervical/phrenic) or cranial hypoglossal (XII) motoneuronal bursting was studied in newborn rat en bloc brainstem-spinal cords and brainstem slices, respectively. Non-respiratory bursting perturbed inspiratory cervical nerve activity in en bloc models at >0.25mM theophylline or caffeine. Rhythm in the exposed preBötC of transected en bloc preparations was less perturbed by 10mM theophylline than cervical root bursting which was more affected than phrenic nerve activity. In the preBötC of slices, even 10mM methylxanthine did not evoke seizure-like bursting whereas >1mM masked XII rhythm via large amplitude 1-10Hz oscillations. Blocking A-type γ-aminobutyric (GABAA) receptors evoked seizure-like cervical activity whereas in slices neither XII nor preBötC rhythm was disrupted. Methylxanthines (2.5-10mM), but not blockade of adenosine receptors, phosphodiesterase-4 or the sarcoplasmatic/endoplasmatic reticulum ATPase countered inspiratory depression by muscimol-evoked GABAA receptor activation that was associated with a hyperpolarization and input resistance decrease silencing preBötC neurons in slices. The latter blockers did neither affect preBötC or cranial/spinal motor network bursting nor evoke seizure-like activity or mask corresponding methylxanthine-evoked discharges. Our findings show that methylxanthine-evoked hyperexcitability originates from motor networks, leaving preBötC activity largely unaffected, and suggest that GABAA receptors contribute to methylxanthine-evoked seizure-like perturbation of spinal motoneurons whereas non-respiratory XII motoneuron oscillations are of different origin. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Millimeter wavelength observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1973-01-01

    Polarization properties of active regions at 9 mm are discussed, and the observed degree of polarization is used to obtain an estimate of chromospheric magnetic fields. Also discussed is the polarization structure at 9 mm of an active region that produced a minor flare around 1900 UT on September 28, 1971. Total power observations indicate that new regions develop, or weak regions intensify at millimeter wavelengths as a result of bursts at distant sites. The spectra of the peak flux density of moderately strong bursts observed at 9 mm show a sharp drop toward the shorter millimeter wavelengths. The weak bursts at 3.5 mm are manifest mainly as heating phenomena.

  7. Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus

    PubMed Central

    Brown, Colin H; Bourque, Charles W

    2004-01-01

    Phasic activity in magnocellular neurosecretory cells is characterized by alternating periods of activity (bursts) and silence. During phasic bursts, action potentials are superimposed on plateau potentials that are generated by summation of depolarizing after-potentials. Dynorphin is copackaged in vasopressin neurosecretory vesicles that are exocytosed from magnocellular neurosecretory cell dendrites and terminals, and both peptides have been implicated in the generation of phasic activity. Here we show that somato-dendritic dynorphin release terminates phasic bursts by autocrine inhibition of plateau potentials in magnocellular neurosecretory cells recorded intracellularly from hypothalamic explants using sharp electrodes. Conditioning spike trains caused an activity-dependent reduction of depolarizing after-potential amplitude that was partially reversed by α-latrotoxin (which depletes neurosecretory vesicles) and by nor-binaltorphimine (κ-opioid receptor antagonist), but not by an oxytocin/vasopressin receptor antagonist or a μ-opioid receptor antagonist, indicating that activity-dependent inhibition of depolarizing after-potentials requires exocytosis of an endogenous κ-opioid peptide. κ-Opioid inhibition of depolarizing after-potentials was not mediated by actions on evoked after-hyperpolarizations since these were not affected by κ-opioid receptor agonists or antagonists. Evoked bursts were prolonged by antagonism of κ-opioid receptors with nor-binaltorphimine and by depletion of neurosecretory vesicles by α-latrotoxin, becoming everlasting in ∼50% of cells. Finally, spontaneously active neurones exposed to nor-binaltorphimine switched from phasic to continuous firing as plateau potentials became non-inactivating. Thus, dynorphin coreleased with vasopressin generates phasic activity through activity-dependent feedback inhibition of plateau potentials in magnocellular neurosecretory cells. PMID:15107473

  8. Manifestations of Influence of Solar Activity and Cosmic Ray Intensity on the Wheat Price in the Medieval England (1259-1703 Years)

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Dorman, L. I.; Yom Din, G.

    2003-07-01

    The database of Professor Rogers, with wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray variations. The main object of the statistical analysis is investigation of bursts of prices. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations in cosmic rays, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. Statistical properties of these two samples are similar both in averaged/median values of intervals and in standard deviation of this values. We show that histogram of intervals distribution for price bursts and solar minimums are coincidence with high confidence level. We analyzed direct links between wheat prices and solar activity in the th 17 Century, for which wheat prices and solar activity data as well as cosmic ray intensity (from 10 Be isotop e) are available. We show that for all seven solar activity minimums the observed prices were higher than prices for the nine intervals of maximal solar activity proceed preceding to the minimums. This result, combined with the conclusion on similarity of statistical properties of the price bursts and solar activity extremes we consider as direct evidence of a causal connection between wheat prices bursts and solar activity.

  9. Serotonin modulates the population activity profile of olfactory bulb external tufted cells

    PubMed Central

    Liu, Shaolin; Aungst, Jason L.; Puche, Adam C.

    2012-01-01

    Serotonergic neurons in the raphe nuclei constitute one of the most prominent neuromodulatory systems in the brain. Projections from the dorsal and median raphe nuclei provide dense serotonergic innervation of the glomeruli of olfactory bulb. Odor information is initially processed by glomeruli, thus serotonergic modulation of glomerular circuits impacts all subsequent odor coding in the olfactory system. The present study discloses that serotonin (5-HT) produces excitatory modulation of external tufted (ET) cells, a pivotal neuron in the operation of glomerular circuits. The modulation is due to a transient receptor potential (TRP) channel-mediated inward current induced by activation of 5-HT2A receptors. This current produces membrane depolarization and increased bursting frequency in ET cells. Interestingly, the magnitude of the inward current and increased bursting inversely correlate with ET cell spontaneous (intrinsic) bursting frequency: slower bursting ET cells are more strongly modulated than faster bursting cells. Serotonin thus differentially impacts ET cells such that the mean bursting frequency of the population is increased. This centrifugal modulation could impact odor processing by: 1) increasing ET cell excitatory drive on inhibitory neurons to increase presynaptic inhibition of olfactory sensory inputs and postsynaptic inhibition of mitral/tufted cells; and/or 2) coordinating ET cell bursting with exploratory sniffing frequencies (5–8 Hz) to facilitate odor coding. PMID:22013233

  10. Burst Firing in Bee Gustatory Neurons Prevents Adaptation.

    PubMed

    Miriyala, Ashwin; Kessler, Sébastien; Rind, F Claire; Wright, Geraldine A

    2018-05-01

    Animals detect changes in the environment using modality-specific, peripheral sensory neurons. The insect gustatory system encodes tastant identity and concentration through the independent firing of gustatory receptor neurons (GRNs) that spike rapidly at stimulus onset and quickly adapt. Here, we show the first evidence that concentrated sugar evokes a temporally structured burst pattern of spiking involving two GRNs within the gustatory sensilla of bumblebees. Bursts of spikes resulted when a sucrose-activated GRN was inhibited by another GRN at a frequency of ∼22 Hz during the first 1 s of stimulation. Pharmacological blockade of gap junctions abolished bursting, indicating that bee GRNs have electrical synapses that produce a temporal pattern of spikes when one GRN is activated by a sugar ligand. Bursting permitted bee GRNs to maintain a high rate of spiking and to exhibit the slowest rate of adaptation of any insect species. Feeding bout duration correlated with coherent bursting; only sugar concentrations that produced bursting evoked the bumblebee's feeding reflex. Volume of solution imbibed was a direct function of time in contact with food. We propose that gap junctions among GRNs enable a sustained rate of GRN spiking that is necessary to drive continuous feeding by the bee proboscis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. High-frequency stimulation of the temporoammonic pathway induces input-specific long-term potentiation in subicular bursting cells.

    PubMed

    Fidzinski, Pawel; Wawra, Matthias; Bartsch, Julia; Heinemann, Uwe; Behr, Joachim

    2012-01-09

    The subiculum (Sub) as a part of the hippocampal formation is thought to play a functional role in learning and memory. In addition to its major input from CA1 pyramidal cells, the subiculum receives input from the entorhinal cortex (EC) via the temporoammonic pathway. Thus far, synaptic plasticity in the subiculum was mainly investigated at CA1-Sub synapses. According to their spiking pattern, pyramidal cells in the subiculum were classified as bursting cells and non-bursting cells. In the present study, we demonstrate that subicular bursting cells show input-specific forms of long-term potentiation (LTP). At CA1-Sub synapses, bursting cells have been shown to express a presynaptic NMDA receptor-dependent LTP that depends on the activation of a cAMP-PKA cascade (Wozny et al., Journal of Physiology 2008). In contrast, at EC-Sub synapses the induction of LTP in bursting cells shows a high induction-threshold and relies on the activation of postsynaptic NMDA receptors, postsynaptic depolarization and postsynaptic Ca(2+) influx. Each form of LTP is input-specific and fails to induce heterosynaptic plasticity. Taken together, our data suggest that distinct, input-specific mechanisms govern high frequency-induced LTP at subicular bursting cells' synapses. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  13. Vestibulosympathetic reflex during mental stress

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Ray, Chester A.; Cooke, William H.

    2002-01-01

    Increases in sympathetic neural activity occur independently with either vestibular or mental stimulation, but it is unknown whether sympathetic activation is additive or inhibitive when both stressors are combined. The purpose of the present study was to investigate the combined effects of vestibular and mental stimulation on sympathetic neural activation and arterial pressure in humans. Muscle sympathetic nerve activity (MSNA), arterial pressure, and heart rate were recorded in 10 healthy volunteers in the prone position during 1) head-down rotation (HDR), 2) mental stress (MS; using arithmetic), and 3) combined HDR and MS. HDR significantly (P < 0.05) increased MSNA (9 +/- 2 to 13 +/- 2 bursts/min). MS significantly increased MSNA (8 +/- 2 to 13 +/- 2 bursts/min) and mean arterial pressure (87 +/- 2 to 101 +/- 2 mmHg). Combined HDR and MS significantly increased MSNA (9 +/- 1 to 16 +/- 2 bursts/min) and mean arterial pressure (89 +/- 2 to 100 +/- 3 mmHg). Increases in MSNA (7 +/- 1 bursts/min) during the combination trial were not different from the algebraic sum of each trial performed alone (8 +/- 2 bursts/min). We conclude that the interaction for MSNA and arterial pressure is additive during combined vestibular and mental stimulation. Therefore, vestibular- and stress-mediated increases of MSNA appear to occur independently in humans.

  14. Neuron Bifurcations in an Analog Electronic Burster

    NASA Astrophysics Data System (ADS)

    Savino, Guillermo V.; Formigli, Carlos M.

    2007-05-01

    Although bursting electrical activity is typical in some brain neurons and biological excitable systems, its functions and mechanisms of generation are yet unknown. In modeling such complex oscillations, analog electronic models are faster than mathematical ones, whether phenomenologically or theoretically based. We show experimentally that bursting oscillator circuits can be greatly simplified by using the nonlinear characteristics of two bipolar transistors. Since our circuit qualitatively mimics Hodgkin and Huxley model neurons bursting activity, and bifurcations originating neuro-computational properties, it is not only a caricature but a realistic model.

  15. 76 FR 28460 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Rock Burst...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... develop a rock burst plan within 90 days after a rock burst has been experienced. Stress data are normally recorded on gauges and plotted on maps. This information is used for work assignments to ensure miner safety and to schedule correction work. This information collection is subject to the PRA. A Federal...

  16. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    ERIC Educational Resources Information Center

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  17. Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.

    PubMed

    Shibata, Masaru; Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Stephens, Branson C

    2006-01-27

    A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outcome is a BH surrounded by a massive, hot torus with a collimated magnetic field. The torus accretes onto the BH at a quasisteady accretion rate [FORMULA: SEE TEXT]; the lifetime of the torus is approximately 10 ms. The torus has a temperature [FORMULA: SEE TEXT], leading to copious ([FORMULA: SEE TEXT]) thermal radiation that could trigger a fireball. Therefore, the collapse of a HMNS is a promising scenario for generating short-duration gamma-ray bursts and an accompanying burst of gravitational waves and neutrinos.

  18. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  19. Two-state Markov-chain Poisson nature of individual cellphone call statistics

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Zhou, Wei-Xing; Sornette, Didier

    2016-07-01

    Unfolding the burst patterns in human activities and social interactions is a very important issue especially for understanding the spreading of disease and information and the formation of groups and organizations. Here, we conduct an in-depth study of the temporal patterns of cellphone conversation activities of 73 339 anonymous cellphone users, whose inter-call durations are Weibull distributed. We find that the individual call events exhibit a pattern of bursts, that high activity periods are alternated with low activity periods. In both periods, the number of calls are exponentially distributed for individuals, but power-law distributed for the population. Together with the exponential distributions of inter-call durations within bursts and of the intervals between consecutive bursts, we demonstrate that the individual call activities are driven by two independent Poisson processes, which can be combined within a minimal model in terms of a two-state first-order Markov chain, giving significant fits for nearly half of the individuals. By measuring directly the distributions of call rates across the population, which exhibit power-law tails, we purport the existence of power-law distributions, via the ‘superposition of distributions’ mechanism. Our findings shed light on the origins of bursty patterns in other human activities.

  20. LOFAR tied-array imaging and spectroscopy of solar S bursts

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Zucca, P.; O'Flannagain, A.; Fallows, R.; Reid, H.; Magdalenić, J.; Mann, G.; Bisi, M. M.; Kerdraon, A.; Konovalenko, A. A.; MacKinnon, A. L.; Rucker, H. O.; Thidé, B.; Vocks, C.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bernardi, G.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Eislöffel, J.; Falcke, H.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hessels, J. W. T.; Hoeft, M.; Karastergiou, A.; Kondratiev, V. I.; Kuper, G.; van Leeuwen, J.; McKay-Bukowski, D.; McKean, J. P.; Munk, H.; Orru, E.; Paas, H.; Pizzo, R.; Polatidis, A. G.; Scaife, A. M. M.; Sluman, J.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; Zarka, P.

    2015-08-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims: Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods: We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results: On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions: We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission. A movie associated to Fig. 3 is available in electronic form at http://www.aanda.org

  1. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H

    2014-10-01

    We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, "any") cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.

  2. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2007-03-13

    destroying the aircraft. This accident was caused by a fire resulting from hydraulic component failures and design problems in the engine nacelles.3 Flight...the Marine Corps reported that the crash was caused by a burst hydraulic line in one of the Osprey’s two engine casings, and a software malfunction...that caused the aircraft to accelerate and decelerate unpredictably and violently when the pilots tried to compensate for the hydraulic CRS-6 7 An un

  3. Rhythmic activities of hypothalamic magnocellular neurons: autocontrol mechanisms.

    PubMed

    Richard, P; Moos, F; Dayanithi, G; Gouzènes, L; Sabatier, N

    1997-12-01

    Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20-40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.

  4. Absence of regulation of human polymorphonuclear oxidative burst by interleukin-10, interleukin-4, interleukin-13 and transforming growth factor-beta in whole blood.

    PubMed

    Réglier-Poupet, H; Hakim, J; Gougerot-Pocidalo, M A; Elbim, C

    1998-12-01

    Cytokines such as IL-10, IL-4, IL-13 and TGF-beta play a major role in the regulation of immune responses and are considered as anti-inflammatory agents mainly due to their actions on monocytes. These cytokines are also known to participate in the regulation of PMN activities. However, few and contradictory results have been reported on their direct and priming effects on the PMN oxidative burst, which is essential for killing bacteria. We used a flow cytometry method to study the effects of these cytokines on the PMN oxidative burst; we also used whole blood to avoid PMN activation related to isolation procedures and in order to simulate the in vivo situation more closely. None of the cytokines tested had direct or priming effects on PMN H2O2 production. We also show for the first time that these cytokines do not modulate TNF priming of the PMN oxidative burst in response to N-formyl peptides (fMLP). These results show that the anti-bacterial activity of PMN, in terms of the PMN respiratory burst, is not down regulated by these anti-inflammatory cytokines in whole blood.

  5. Diagnostic Thresholds for Quantitative REM Sleep Phasic Burst Duration, Phasic and Tonic Muscle Activity, and REM Atonia Index in REM Sleep Behavior Disorder with and without Comorbid Obstructive Sleep Apnea

    PubMed Central

    McCarter, Stuart J.; St. Louis, Erik K.; Duwell, Ethan J.; Timm, Paul C.; Sandness, David J.; Boeve, Bradley F.; Silber, Michael H.

    2014-01-01

    Objectives: We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. Design: We visually analyzed RSWA phasic burst durations, phasic, “any,” and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. Setting: N/A. Participants: Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. Interventions: N/A. Measurements and Results: All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, “any”) cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. Conclusions: This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. Citation: McCarter SJ, St. Louis EK, Duwell EJ, Timm PC, Sandness DJ, Boeve BF, Silber MH. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea. SLEEP 2014;37(10):1649-1662. PMID:25197816

  6. Dictionary of Missile and Artillery Terms

    DTIC Science & Technology

    1982-05-20

    arrangement and layout of missile nodes. KOMPRESSORNYY VOZDUShNO-REAKTIVNYY DVICATEL’ LAir -Breathing Compressor Rocket Engine] - variety of air-breathing...law. It will depend on dispersion of trajectories and nonconformity of fuse action due to nonuniform combustion of the time composition. Burst probable

  7. PBF Reactor Building (PER620). PBF crane holds fuel test assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). PBF crane holds fuel test assembly aloft prior to lowering into reactor for test. Date: 1982. INEEL negative no. 82-4909 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. SPERTI Control Building (PER601) floor plan. Detail of cable inlet. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Control Building (PER-601) floor plan. Detail of cable inlet. Idaho Operations Office. Date: February 1955. INEEL index no. 760-0601-00-396-109139 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. PBF Cooling Tower (PER720). Camera faces south to show north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Camera faces south to show north facade. Note enclosed stairway. Date: August 2003. INEEL negative no. HD-35-10-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. PBF Reactor Building (PER620). Canal takes shape, with rebar and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Canal takes shape, with rebar and concrete placement underway. Photographer: John Capek. Date: August 16, 1967. INEEL negative no. 67-4370 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. PBF Cooling Tower (PER720). Closeup detail of louvered wall panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Close-up detail of louvered wall panels on south facade. Date: August 2003. INEEL negative no. HD-35-11-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. PBF Control Building auxiliary features, including fire hose house and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building auxiliary features, including fire hose house and sewage system. Ebasco Services 1205 PER/PER-A-4. INEEL undex no. 760-0619-00-205-123024 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. Dopamine activates the motor pattern for crawling in the medicinal leech.

    PubMed

    Puhl, Joshua G; Mesce, Karen A

    2008-04-16

    Locomotion in segmented animals is thought to be based on the coupling of "unit burst generators," but the biological nature of the unit burst generator has been revealed in only a few animal systems. We determined that dopamine (DA), a universal modulator of motor activity, is sufficient to activate fictive crawling in the medicinal leech, and can exert its actions within the smallest division of the animal's CNS, the segmental ganglion. In the entire isolated nerve cord or in the single ganglion, DA induced slow antiphasic bursting (approximately 15 s period) of motoneurons known to participate in the two-step elongation-contraction cycle underlying crawling behavior. During each cycle, the dorsal (DE-3) and ventral (VE-4) longitudinal excitor motoneurons fired approximately 180 degrees out of phase from the ventrolateral circular excitor motoneuron (CV), which marks the elongation phase. In many isolated whole nerve cords, DE-3 bursting progressed in an anterior to posterior direction with intersegmental phase delays appropriate for crawling. In the single ganglion, the dorsal (DI-1) and ventral (VI-2) inhibitory longitudinal motoneurons fired out of phase with each DE-3 burst, further confirming that the crawl unit burst generator exists in the single ganglion. All isolated ganglia of the CNS were competent to produce DA-induced robust fictive crawling, which typically lasted uninterrupted for 5-15 min. A quantitative analysis indicated that DA-induced crawling was not significantly different from electrically evoked or spontaneous crawling. We conclude that DA is sufficient to activate the full crawl motor program and that the kernel for crawling resides within each segmental ganglion.

  14. An Application of Conley Index Techniques to a Model of Bursting in Excitable Membranes

    NASA Astrophysics Data System (ADS)

    Kinney, William M.

    2000-04-01

    Assumptions about a model of bursting activity in pancreatic β-cells are stated and a neighborhood of the attractor in this model is constructed. Conley index results and techniques are used to give a sufficient condition for a singular isolating neighborhood to isolate a nonempty attractor. Finally, this theorem is applied to the bursting model.

  15. The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep.

    PubMed

    Kojouri, Gholam Ali; Sadeghian, Sirous; Mohebbi, Abdonnaser; Mokhber Dezfouli, Mohammad Reza

    2012-05-01

    The present study was designed to compare the effects of nano-selenium and of sodium selenite on the chemotactic and respiratory burst activities of neutrophils in sheep. Fifteen sheep were randomly divided into three groups. Groups 1 and 2 received selenium nanoparticles (1 mg/kg) or sodium selenite (1 mg/kg) orally, respectively, for ten consecutive days, and the third group was considered as the control. To determine the chemotactic and respiratory burst activities of the neutrophils, the leading front assay and the NBT test were used on heparinized blood samples that were collected at different intervals (days 0, 10th, 20th, and 30th). The results obtained showed that the chemotactic activities in groups 1 and 2 increased significantly on the 10th, 20th, and 30th day, compared to day 0, and on the 20th day in comparison with the 10th day, while in group 2, there was a significant decrease on the 30th day compared to the 20th day. The chemotactic activities in group 1 were significantly higher than in group 2 on the 10th day and in the control group on the 10th, 20th, and 30th day, but the chemotactic activities in group 2 were significantly higher than those in the control group only on the 20th day. On the 30th day into the experiment, the respiratory bursts in groups 1 and 2 were significantly stronger in comparison with those at day 0. Overall, nano-selenium increased the chemotactic and respiratory burst activities more significantly than sodium selenite, which is suggestive of a stronger stimulatory effect of the Se nanoparticles on intracellular activities.

  16. Naked-eye optical flash from gamma-ray burst 080319B: Tracing the decaying neutrons in the outflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan Yizhong; Zhang Bing; Wei Daming

    For an unsteady baryonic gamma-ray burst (GRB) outflow, the fast and slow proton shells collide with each other and produce energetic soft gamma-ray emission. If the outflow has a significant neutron component, the ultrarelativistic neutrons initially expand freely until decaying at a larger radius. The late-time proton shells ejected from the GRB central engine, after powering the regular internal shocks, will sweep these {beta}-decay products and give rise to very bright UV/optical emission. The naked-eye optical flash from GRB 080319B, an energetic explosion in the distant Universe, can be well explained in this way.

  17. Fast transient X-rays and gamma ray bursts - Are they stellar flares?

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.

  18. SPERTI Control Building (PER601). Elevations. Note cable inlet on west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Control Building (PER-601). Elevations. Note cable inlet on west elevation. Idaho Operations Office. Date: February 1955. INEEL index no. 760-0601-00-396-109143 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. PBF Reactor Building (PER620). Floor at left of view is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Floor at left of view is floor of first basement. Photographer: Farmer/Capek. Date: March 17, 1967. INEEL negative no. 67-1753 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  20. PBF Cooling Tower detail. Camera facing southwest. Wood fill rises ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower detail. Camera facing southwest. Wood fill rises from foundation piers of cold water basin. Photographer: Kirsh. Date: May 1, 1969. INEEL negative no. 69-2826 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. PBF (PER620) west facade. Camera facing east. Note 1980 addition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) west facade. Camera facing east. Note 1980 addition on south side of west wall. Date: March 2004. INEEL negative no. HD-41-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. SPERTI, Instrument Cell Building (PER606). Oblique view of north and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I, Instrument Cell Building (PER-606). Oblique view of north and east facades. Camera facing southwest. Date: August 2003. INEEL negative no. HD-35-4-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    The observations of comet P/Holmes 1892III, exhibiting two 8 to 10 magnitude bursts, were carefully analyzed. The phenomena are consistent with the grazing encounter of a small satellite with the nucleus. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3 hr and inclination nearly 180 deg. After the final encounter, the spin period was essentially unchanged, but two areas became active, separated some 164 deg in longitude on the nucleus. After the first burst the total magnitude fell less than two magnitudes, while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst (barely naked eye at maximum) while the nucleus frequently stellar after the first day. It seems reasonable to conclude that the grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  4. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Sakamoto, Takanori

    2017-09-01

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift/BAT and XRT data. The light curves are found to consist of two distinct components at >5σ with bimodal distributions of luminosity and duration, I.e., extended (with a timescale of ≲103 s) and plateau emission (with a timescale of ≳103 s), which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ˜0.01-1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET/HXM, INTEGRAL/SPI-ACS, Fermi/GBM, MAXI/GSC, Swift/BAT, XRT, the future ISS-Lobster/WFI, Einstein Probe/WXT, and eROSITA.

  5. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisaka, Shota; Sakamoto, Takanori; Ioka, Kunihito, E-mail: kisaka@phys.aoyama.ac.jp, E-mail: tsakamoto@phys.aoyama.ac.jp, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift /BAT and XRT data. The light curves are found to consist of two distinct components at >5 σ with bimodal distributions of luminosity and duration, i.e., extended (with a timescale of ≲10{sup 3} s) and plateau emission (with a timescale of ≳10{sup 3} s),more » which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ∼0.01–1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET /HXM, INTEGRAL /SPI-ACS, Fermi /GBM, MAXI /GSC, Swift /BAT, XRT, the future ISS-Lobster /WFI, Einstein Probe /WXT, and eROSITA .« less

  6. Circular polarization in the optical afterglow of GRB 121024A.

    PubMed

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-08

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  7. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2011-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.

  8. Identifying Crucial Parameter Correlations Maintaining Bursting Activity

    PubMed Central

    Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358

  9. Chasing Low Frequency Radio Bursts from Magnetically Active Stars

    NASA Astrophysics Data System (ADS)

    Lynch, Christene; Murphy, Tara; Kaplan, David

    2017-05-01

    Flaring activity is a common characteristic of magnetically active stars. These events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. A number of objects exhibit short-duration, narrow band, and highly circularly polarised (reaching 100%) radio bursts. The observed polarisation and frequency-time structure of these bursts points to a coherent emission mechanism such as the electron cyclotron maser. Due to the stochastic nature of these bursts and the sensitivity of current instruments, the number of stars where coherent emission has been detected is few, with numbers limited to a few tens of objects. Observations of a wider sample of active stars are necessary in order to establish the percentage that exhibit coherent radio bursts and to relate the observed emission characteristics to stellar magnetic properties. New wide-field, low frequency radio telescopes will probe a frequency regime that is mostly unexplored for many magnetically active stars and where coherent radio emissions are expected to be more numerous. M dwarf stars are of particular interest as they are currently favoured as most likely to host habitable planets. Yet the extreme magnetic activity observed for some M dwarf stars places some doubt on the ability of orbiting planets to host life. This presentation reports the first results from a targeted Murchison Widefield Array survey of M dwarf stars that were previously detected at 100 - 200 MHz using single dish telescopes. We will discuss robust flare-rate measurements over a high dynamic range of flare properties, as well as investigate the physical mechanism(s) behind the flares.

  10. Burst firing and modulation of functional connectivity in cat striate cortex.

    PubMed

    Snider, R K; Kabara, J F; Roig, B R; Bonds, A B

    1998-08-01

    We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of

  11. Deconstructing the “Resting” State: Exploring the Temporal Dynamics of Frontal Alpha Asymmetry as an Endophenotype for Depression

    PubMed Central

    Allen, John J. B.; Cohen, Michael X

    2010-01-01

    Asymmetry in frontal electrocortical alpha-band (8–13 Hz) activity recorded during resting situations (i.e., in absence of a specific task) has been investigated in relation to emotion and depression for over 30 years. This asymmetry reflects an aspect of endogenous cortical dynamics that is stable over repeated measurements and that may serve as an endophenotype for mood or other psychiatric disorders. In nearly all of this research, EEG activity is averaged across several minutes, obscuring transient dynamics that unfold on the scale of milliseconds to seconds. Such dynamic states may ultimately have greater value in linking brain activity to surface EEG asymmetry, thus improving its status as an endophenotype for depression. Here we introduce novel metrics for characterizing frontal alpha asymmetry that provide a more in-depth neurodynamical understanding of recurrent endogenous cortical processes during the resting-state. The metrics are based on transient “bursts” of asymmetry that occur frequently during the resting-state. In a sample of 306 young adults, 143 with a lifetime diagnosis of major depressive disorder (62 currently symptomatic), three questions were addressed: (1) How do novel peri-burst metrics of dynamic asymmetry compare to conventional fast-Fourier transform-based metrics? (2) Do peri-burst metrics adequately differentiate depressed from non-depressed participants? and, (3) what EEG dynamics surround the asymmetry bursts? Peri-burst metrics correlated with traditional measures of asymmetry, and were sensitive to both current and past episodes of major depression. Moreover, asymmetry bursts were characterized by a transient lateralized alpha suppression that is highly consistent in phase across bursts, and a concurrent contralateral transient alpha enhancement that is less tightly phase-locked across bursts. This approach opens new possibilities for investigating rapid cortical dynamics during resting-state EEG. PMID:21228910

  12. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal

    PubMed Central

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an Ih current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt/orx and other wake-promoting transmitters. PMID:27379007

  13. Solar Radio Bursts, Proton Events and Geomagnetic Activity

    DTIC Science & Technology

    1984-08-01

    high speed type II, the second maximum is broad and peaks on the seventh day, and the Ap value remains high even on the tenth day. VI . Type II Burst...PROTON EVENTS w 20 (SPE) 0 SPE WITH TYPE Il a20- 20 z10- 0 15SPE WITH MICROWAVE BURST 10- 00 197071 72 7374 7576 77 7879 0Fig. 14 YEAR 30 1 1 SOLAR

  14. Heart Rate Turbulence Parameters Correlate with Post-PVC Changes in Muscle Sympathetic Activity

    PubMed Central

    Segerson, Nathan M.; Wasmund, Stephen L.; Abedin, Moeen; Pai, Rakesh K.; Daccarett, Marcos; Akoum, Nazem; Wall, T. Scott; Klein, Richard C.; Freedman, Roger A.; Hamdan, Mohamed H.

    2007-01-01

    Background Heart rate turbulence (HRT) has been shown to be vagally-mediated with a strong correlation to baroreflex indices. However, the relationship between HRT and peripheral sympathetic nerve activity (SNA) following a premature ventricular contraction (PVC) remains unclear. Objective We sought to evaluate the relationship between HRT and the changes in peripheral SNA following PVCs. Methods We recorded post-ganglionic muscle SNA during ECG monitoring in 8 patients with spontaneous PVCs. Fifty-two PVCs were observed and analyzed for turbulence onset (TO) and slope (TS). SNA was quantified during 1) the dominant burst following the PVC (Dominant-Burst Area), and 2) the 10 seconds following the dominant burst (Post-Burst SNA). Results The mean TO was 0.1±4.6% and the mean TS was 6.1±6.6. The Dominant-Burst Area negatively correlated with TO (-0.50, p=0.0002). The Post-Burst SNA showed a significant positive correlation with TO (r=0.44, p=0.001) and a negative correlation with TS (r=-0.42, p=0.002). These correlations remained significant after controlling for either the PVC coupling interval or the left ventricular ejection fraction. Conclusions Our findings highlight the relationship between perturbations in HRT and pathology in the sympathetic limb of the autonomic nervous system. Future studies are needed to evaluate the prognostic role of baroreflex control of sympathetic activity in patients with structural heart disease. PMID:17341389

  15. Hyper-Eddington accretion in GRB

    NASA Astrophysics Data System (ADS)

    Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.

    2005-05-01

    Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black hole and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the disc is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation.

  16. Mixed-mode oscillations and population bursting in the pre-Bötzinger complex

    PubMed Central

    Bacak, Bartholomew J; Kim, Taegyo; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2016-01-01

    This study focuses on computational and theoretical investigations of neuronal activity arising in the pre-Bötzinger complex (pre-BötC), a medullary region generating the inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability in medullary slices containing the pre-BötC produces mixed-mode oscillations (MMOs) characterized by large amplitude population bursts alternating with a series of small amplitude bursts. Using two different computational models, we demonstrate that MMOs emerge within a heterogeneous excitatory neural network because of progressive neuronal recruitment and synchronization. The MMO pattern depends on the distributed neuronal excitability, the density and weights of network interconnections, and the cellular properties underlying endogenous bursting. Critically, the latter should provide a reduction of spiking frequency within neuronal bursts with increasing burst frequency and a dependence of the after-burst recovery period on burst amplitude. Our study highlights a novel mechanism by which heterogeneity naturally leads to complex dynamics in rhythmic neuronal populations. DOI: http://dx.doi.org/10.7554/eLife.13403.001 PMID:26974345

  17. Spatial variation in automated burst suppression detection in pharmacologically induced coma.

    PubMed

    An, Jingzhi; Jonnalagadda, Durga; Moura, Valdery; Purdon, Patrick L; Brown, Emery N; Westover, M Brandon

    2015-01-01

    Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.

  18. Carbachol induces burst firing of dopamine cells in the ventral tegmental area by promoting calcium entry through L-type channels in the rat

    PubMed Central

    Zhang, Lei; Liu, Yudan; Chen, Xihua

    2005-01-01

    Enhanced activity of the central dopamine system has been implicated in many psychiatric disorders including schizophrenia and addiction. Besides terminal mechanisms that boost dopamine levels at the synapse, the cell body of dopamine cells enhances terminal dopamine concentration through encoding action potentials in bursts. This paper presents evidence that burst firing of dopamine cells in the ventral tegmental area was under cholinergic control using nystatin-perforated patch clamp recording from slice preparations. The non-selective cholinergic agonist carbachol excited the majority of recorded neurones, an action that was not affected by blocking glutamate and GABA ionotropic receptors. Twenty per cent of dopamine cells responded to carbachol with robust bursting, an effect mediated by both muscarinic and nicotinic cholinoceptors postsynaptically. Burst firing induced as such was completely dependent on calcium entry as it could be blocked by cadmium and more specifically the L-type blocker nifedipine. In the presence of the sodium channel blocker tetrodotoxin, carbachol induced membrane potential oscillation that had similar kinetics and frequency as burst firing cycles and could also be blocked by cadmium and nifedipine. Direct activation of the L-type channel with Bay K8644 induced strong bursting which could be blocked by nifedipine but not by depleting internal calcium stores. These results indicate that carbachol increases calcium entry into the postsynaptic cell through L-type channels to generate calcium-dependent membrane potential oscillation and burst firing. This could establish the L-type channel as a target for modulating the function of the central dopamine system in disease conditions. PMID:16081481

  19. Spike threshold dynamics in spinal motoneurons during scratching and swimming.

    PubMed

    Grigonis, Ramunas; Alaburda, Aidas

    2017-09-01

    Action potential threshold can vary depending on firing history and synaptic inputs. We used an ex vivo carapace-spinal cord preparation from adult turtles to study spike threshold dynamics in motoneurons during two distinct types of functional motor behaviour - fictive scratching and fictive swimming. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Slow synaptic integration resulting in a wave of membrane potential depolarization is the factor influencing the threshold potential within firing bursts during motor behaviours. Depolarization of the threshold potential decreases the excitability of motoneurons and may provide a mechanism for stabilization of the response of a motoneuron to intense synaptic inputs to maintain the motor commands within an optimal range for muscle activation. During functional spinal neural network activity motoneurons receive intense synaptic input, and this could modulate the threshold for action potential generation, providing the ability to dynamically adjust the excitability and recruitment order for functional needs. In the present study we investigated the dynamics of action potential threshold during motor network activity. Intracellular recordings from spinal motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles were performed during two distinct types of motor behaviour - fictive scratching and fictive swimming. We found that the threshold of the first spike in episodes of scratching and swimming was the lowest. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Depolarization of the threshold potential results in decreased excitability of motoneurons. Synaptic inputs do not modulate the threshold of the first action potential during episodes of scratching or of swimming. There is no correlation between changes in spike threshold and interspike intervals within bursts. Slow synaptic integration that results in a wave of membrane potential depolarization rather than fast synaptic events preceding each spike is the factor influencing the threshold potential within firing bursts during motor behaviours. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. U-Shape Suppressive Effect of Phenol Red on the Epileptiform Burst Activity via Activation of Estrogen Receptors in Primary Hippocampal Culture

    PubMed Central

    Liu, Xu; Chen, Ben; Chen, Lulan; Ren, Wan-Ting; Liu, Juan; Wang, Guoxiang; Fan, Wei; Wang, Xin; Wang, Yun

    2013-01-01

    Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media. PMID:23560076

  1. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    PubMed Central

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  2. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  3. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  4. PBF (PER620) north facade. Camera facing south. Small metal shed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) north facade. Camera facing south. Small metal shed at right is Stack Gas Monitor Building, PER-629. Date: March 2004. INEEL negative no. HD-41-2-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. PBF Control Building (PER619). Interior in data acquisition room showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior in data acquisition room showing data racks. The system recorded multiple channels of data during tests. INEEL negative no. HD-41-8-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. PBF Control Building (PER619) south facade. Camera faces north. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619) south facade. Camera faces north. Note buried tanks with bollards protecting their access hatches. Date: July 2004. INEEL negative no. HD-41-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons.

    PubMed

    Iida, Shoko; Shimba, Kenta; Sakai, Koji; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2018-06-18

    The balance between glutamate-mediated excitation and GABA-mediated inhibition is critical to cortical functioning. However, the contribution of network structure consisting of the both neurons to cortical functioning has not been elucidated. We aimed to evaluate the relationship between the network structure and functional activity patterns in vitro. We used mouse induced pluripotent stem cells (iPSCs) to construct three types of neuronal populations; excitatory-rich (Exc), inhibitory-rich (Inh), and control (Cont). Then, we analyzed the activity patterns of these neuronal populations using microelectrode arrays (MEAs). Inhibitory synaptic densities differed between the three types of iPSC-derived neuronal populations, and the neurons showed spontaneously synchronized bursting activity with functional maturation for one month. Moreover, different firing patterns were observed between the three populations; Exc demonstrated the highest firing rates, including frequent, long, and dominant bursts. In contrast, Inh demonstrated the lowest firing rates and the least dominant bursts. Synchronized bursts were enhanced by disinhibition via GABA A receptor blockade. The present study, using iPSC-derived neurons and MEAs, for the first time show that synchronized bursting of cortical networks in vitro depends on the network structure consisting of excitatory and inhibitory neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. On the density of the corona in regions of type 3 activity

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1973-01-01

    The east-west positions of 190 type 3 bursts were measured between 30 and 65 MHz with the log-periodic array at Clark Lake. A method is described to find the intrinsic variation of position with frequency of type 3 bursts based on the comparison of the positions of the bursts measured at any two arbitrary frequencies. It is found that the variation of position frequency agrees with the behaviour expected from coronal density models. This suggests that the measured positions were not seriously affected by scattering in the corona. Knowing the functional form of the variation of position with frequency for type 3 bursts, it is shown that the observed burst positions can be corrected for the effects of ionospheric refraction.

  9. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  10. Anisotropic nature of radially strained metal tubes

    NASA Astrophysics Data System (ADS)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw yield strength to calculate these ratings. I set out to characterize the anisotropic nature of swaged metal. As expected, the tensile tests showed a difference between the axial and transverse tensile strength. The correlation was 12% difference in yield strength in the axial and transverse directions for strained material and 9% in strained and aged material. This means that the strength of the metal in the hoop (transverse) direction is approximately 10% stronger than in the axial direction, because the metal was work hardened during the swaging process. Therefore, the metal is more likely to fail in axial tension than in burst or collapse. I presented the findings from the microstructure examination, standard tensile tests, and SEM data. All of this data supported the findings of the mini-tensile tests. This information will help engineers set burst and collapse ratings and allow material scientists to predict the anisotropic characteristics of swaged steel tubes.

  11. Cell responses to single pheromone molecules may reflect the activation kinetics of olfactory receptor molecules.

    PubMed

    Minor, A V; Kaissling, K-E

    2003-03-01

    Olfactory receptor cells of the silkmoth Bombyx mori respond to single pheromone molecules with "elementary" electrical events that appear as discrete "bumps" a few milliseconds in duration, or bursts of bumps. As revealed by simulation, one bump may result from a series of random openings of one or several ion channels, producing an average inward membrane current of 1.5 pA. The distributions of durations of bumps and of gaps between bumps in a burst can be fitted by single exponentials with time constants of 10.2 ms and 40.5 ms, respectively. The distribution of burst durations is a sum of two exponentials; the number of bumps per burst obeyed a geometric distribution (mean 3.2 bumps per burst). Accordingly the elementary events could reflect transitions among three states of the pheromone receptor molecule: the vacant receptor (state 1), the pheromone-receptor complex (state 2), and the activated complex (state 3). The calculated rate constants of the transitions between states are k(21)=7.7 s(-1), k(23)=16.8 s(-1), and k(32)=98 s(-1).

  12. Non-Equilibrium Thermodynamics of Transcriptional Bursts

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique

    Gene transcription or Gene Expression (GE) is the process which transforms the information encoded in DNA into a functional RNA message. It is known that GE can occur in bursts or pulses. Transcription is irregular, with strong periods of activity, interspersed by long periods of inactivity. If we consider the average behavior over millions of cells, this process appears to be continuous. But at the individual cell level, there is considerable variability, and for most genes, very little activity at any one time. Some have claimed that GE bursting can account for the high variability in gene expression occurring between cells in isogenic populations. This variability has a big impact on cell behavior and thus on phenotypic conditions and disease. In view of these facts, the development of a thermodynamic framework to study gene expression and transcriptional regulation to integrate the vast amount of molecular biophysical GE data is appealing. Application of such thermodynamic formalism is useful to observe various dissipative phenomena in GE regulatory dynamics. In this chapter we will examine at some detail the complex phenomena of transcriptional bursts (specially of a certain class of anomalous bursts) in the context of a non-equilibrium thermodynamics formalism and will make some initial comments on the relevance of some irreversible processes that may be connected to anomalous transcriptional bursts.

  13. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    PubMed

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  14. Gamma-Ray Burst Precursor Activity as Observed with BATSE

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Kouveliotou, Chryssa; Paciesas, William S.; vanParadijs, Jan; Pendleton, Geoffrey N.; Briggs, Michael S.; Fishman, Gerald J.; Meegan, Charles A.

    1995-01-01

    Gamma-ray burst time histories often consist of multiple episodes of emission with the count rate dropping to the background level between adjacent episodes. We define precursor activity as any case in which the first episode (referred to as the precursor episode) has a lower peak intensity than that of the remaining emission (referred to as the main episode) and is separated from the remaining burst emission by a background interval that is at least as long as the remaining emission. We find that approx. 3% of the bursts observed with the Burst and Transient Source Experiment (BATSE) on Compton Gamma Ray Observatory (CGRO) satisfy this definition. We present the results of a study of the properties of these events. The spatial distribution of these sources is consistent with that of the larger set of all BATSE gamma-ray bursts: inhomogeneous and isotropic. A correlation between the duration of the precursor emission and the duration of the main episode emission is observed at about the 3 sigma confidence level. We find no meaningful significant correlations between or among any of the other characteristics of the precursor or main episode emission. It appears that the characteristics of the main episode emission are independent of the existence of the precursor emission.

  15. Characteristics of shock-associated fast-drift kilometric radio bursts

    NASA Technical Reports Server (NTRS)

    Macdowall, R. J.; Kundu, M. R.; Stone, R. G.

    1987-01-01

    The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper unambiguous SA event criteria are established for the purpose of statistically comparing SA events with conventional kilometric type III bursts. Applying these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval, it is found that more than 70 percent of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity.

  16. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.

    PubMed

    Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley

    2012-10-01

    The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.

  17. Overview of safety research

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    Aircraft safety is reviewed by first establishing a perspective of air transportation accidents as a function of calendar year, geographic area, and phase of flight, and then by describing the threats to safety and NASA research underway in the three representative areas of engine operational problems, meteorological phenomena, and fire. Engine rotor burst protection, aircraft nacelle fire extinguishment, the aircraft-weather interface, severe weather wind shears and turbulence, clear air turbulence, and lightning are among the topics covered. Fire impact management through fire resistant materials technology development is emphasized.

  18. Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury

    PubMed Central

    Lee, Kun-Ze; Sandhu, Milapjit S.; Dougherty, Brendan J.; Reier, Paul J.; Fuller, David D.

    2014-01-01

    Repeated exposure to hypoxia can induce spinal neuroplasticity as well as respiratory and somatic motor recovery after spinal cord injury (SCI). The purpose of the present study was to define the capacity for a single bout of hypoxia to trigger short-term plasticity in phrenic output after cervical SCI, and to determine the phrenic motoneuron (PhrMN) bursting and recruitment patterns underlying the response. Hypoxia-induced short term potentiation (STP) of phrenic motor output was quantified in anesthetized rats 11 wks following lateral spinal hemisection at C2 (C2Hx). A 3-min hypoxic episode (12–14% O2) always triggered STP of inspiratory burst amplitude, the magnitude of which was greater in phrenic bursting ipsilateral vs. contralateral to C2Hx. We next determined if STP could be evoked in recruited (silent) PhrMNs ipsilateral to C2Hx. Individual PhrMN action potentials were recorded during and following hypoxia using a “single fiber” approach. STP of bursting activity did not occur in cells initiating bursting at inspiratory onset, but was robust in recruited PhrMNs as well as previously active cells initiating bursting later in the inspiratory effort. We conclude that following chronic C2Hx, a single bout of hypoxia triggers recruitment of PhrMNs in the ipsilateral spinal cord with bursting that persists beyond the hypoxic exposure. The results provide further support for the use of short bouts of hypoxia as a neurorehabilitative training modality following SCI. PMID:25448009

  19. Effects of Hermetic Storage on Adult Sitophilus oryzae L. (Coleoptera: Curculionidae) Acoustic Activity Patterns and Mortality

    PubMed Central

    Njoroge, A W; Smith, B W; Baributsa, D

    2017-01-01

    Abstract Hermetic storage is of interest to farmers and warehouse managers as a method to control insect pests in small storage facilities. To develop improved understanding of effects of hermetic storage on insect pest activity and mortality over time, oxygen levels, acoustic signals, and observations of visual movement were recorded from replicates of 25, 50, and 100 adult Sitophilus oryzae (L.) (Coleoptera: Curculionidae) hermetically sealed in 500- and 1,000-ml glass jars. Recordings were done for 28 d; twice daily for the first 6 d and twice weekly thereafter. Insect sounds were analyzed as short bursts (trains) of impulses with spectra that matched average spectra (profiles) of previously verified insect sound impulses. Oxygen consumption was highest in treatments of 100 insects/500-ml jar and lowest in 25/1000-ml jars. The rates of bursts per insect, number of impulses per burst, and rates of burst impulses per insect decreased as the residual oxygen levels decreased in each treatment. Activity rates <0.02 bursts s−1, the acoustic detection threshold, typically occurred as oxygen fell below 5%. Mortality was observed at 2% levels. The time to obtain these levels of insect activity and oxygen depletion ranged from 3–14 d depending on initial infestation levels. Acoustic detection made it possible to estimate the duration required for reduction of insect activity to levels resulting in negligible damage to the stored product under hermetic conditions. Such information is of value to farmers and warehouse managers attempting to reduce pest damage in stored crops. PMID:29045682

  20. Dichotomous Dynamics in E-I Networks with Strongly and Weakly Intra-connected Inhibitory Neurons

    PubMed Central

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2017-01-01

    The interconnectivity between excitatory and inhibitory neural networks informs mechanisms by which rhythmic bursts of excitatory activity can be produced in the brain. One such mechanism, Pyramidal Interneuron Network Gamma (PING), relies primarily upon reciprocal connectivity between the excitatory and inhibitory networks, while also including intra-connectivity of inhibitory cells. The causal relationship between excitatory activity and the subsequent burst of inhibitory activity is of paramount importance to the mechanism and has been well studied. However, the role of the intra-connectivity of the inhibitory network, while important for PING, has not been studied in detail, as most analyses of PING simply assume that inhibitory intra-connectivity is strong enough to suppress subsequent firing following the initial inhibitory burst. In this paper we investigate the role that the strength of inhibitory intra-connectivity plays in determining the dynamics of PING-style networks. We show that networks with weak inhibitory intra-connectivity exhibit variations in burst dynamics of both the excitatory and inhibitory cells that are not obtained with strong inhibitory intra-connectivity. Networks with weak inhibitory intra-connectivity exhibit excitatory rhythmic bursts with weak excitatory-to-inhibitory synapses for which classical PING networks would show no rhythmic activity. Additionally, variations in dynamics of these networks as the excitatory-to-inhibitory synaptic weight increases illustrates the important role that consistent pattern formation in the inhibitory cells serves in maintaining organized and periodic excitatory bursts. Finally, motivated by these results and the known diversity of interneurons, we show that a PING-style network with two inhibitory subnetworks, one strongly intra-connected and one weakly intra-connected, exhibits organized and periodic excitatory activity over a larger parameter regime than networks with a homogeneous inhibitory population. Taken together, these results serve to better articulate the role of inhibitory intra-connectivity in generating PING-like rhythms, while also revealing how heterogeneity amongst inhibitory synapses might make such rhythms more robust to a variety of network parameters. PMID:29326558

  1. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  2. Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay

    NASA Astrophysics Data System (ADS)

    Zhusubaliyev, Z. T.; Mosekilde, E.; Churilov, A. N.; Medvedev, A.

    2015-07-01

    The release of luteinizing hormone (LH) is driven by intermittent bursts of activity in the hypothalamic nerve centers of the brain. Luteinizing hormone again stimulates release of the male sex hormone testosterone (Te) and, via the circulating concentration of Te, the hypothalamic nerve centers are subject to a negative feedback regulation that is capable of modifying the intermittent bursts into more regular pulse trains. Bifurcation analysis of a hybrid model that attempts to integrate the intermittent bursting activity with a continuous hormone secretion has recently demonstrated a number of interesting nonlinear dynamic phenomena, including bistability and deterministic chaos. The present paper focuses on the additional complexity that arises when the time delay in the continuous part of the model exceeds the typical bursting interval of the feedback. Under these conditions, the hybrid model is capable of displaying quasiperiodicity and border collisions as well as multistability and hidden attractors.

  3. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  4. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    PubMed

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. PBF Reactor Building (PER620). Camera in first basement, facing south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera in first basement, facing south and upward toward main floor. Cable trays being erected. Photographer: Kirsh. Date: May 20, 1969. INEEL negative no. 69-3110 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. PBF (PER620) interior, second basement level. Coolant and tank piping. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, second basement level. Coolant and tank piping. Mark on vertical pipe says, "H.P. Demin. Water." (High pressure demineralized water.) Date: March 2004. INEEL negative no. HD-41-4-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. PBF (PER620) interior, basement level. Concrete wall shows outline of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, basement level. Concrete wall shows outline of reactor basin. Sign says, "Flashing Light - Reactor On - Evacuate Area." Date: May 2004. INEEL negative no. HD-41-5-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. PBF (PER620) south facade. Camera facing north. Note pedestrian bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) south facade. Camera facing north. Note pedestrian bridge crossing over conduit. Central high bay contains reactor room and canal. Date: March 2004. INEEL negative no. HD-41-2-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. SPERTI Terminal Building (PER604) with view into interior. Storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Terminal Building (PER-604) with view into interior. Storage tanks and equipment in view. Camera facing west. Photographer: R.G. Larsen. Date: May 20, 1955. INEEL negative no. 55-1291 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. PBF Control Building (PER619). Interior of control room shows control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior of control room shows control console from direction facing visitors room and its observation window. Camera facing northeast. Date: May 2004. INEEL negative no. HD-41-7-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. PBF Cooling Tower Auxiliary Building (PER624) interior. Camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower Auxiliary Building (PER-624) interior. Camera facing north. Deluge valves and automatic fire protection piping for Cooling Tower. Photographer: Holmes. Date: May 20, 1970. INEEL negative no. 70-2323 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. INEL BNCT Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, A.L.

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  13. PBF Reactor Building (PER620) Cubicle 13. Plan, section, details. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) Cubicle 13. Plan, section, details. Note "quality assurance" code at bottom of drawing. Aerojet Nuclear Company. Date: May 1976. INEEL index no. 761-0620-00-400-195279 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. PBF Cubicle 13. Shield wall details illustrate shielding technique of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cubicle 13. Shield wall details illustrate shielding technique of stepped penetrations and brick layout scheme for valve stem extension sleeve. Aerojet Nuclear Company. Date: May 1976. INEEL index no. 761-0620-00-400-195280 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. PBF (PER620) interior, first basement. Detail of valves and other ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, first basement. Detail of valves and other penetrations along wall. Bricks are made of high density shielding materials. Date: March 2004. INEEL negative no. HD-41-4-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. SPERTI Electric Control Building (PER608). Plan, elevations, and details. Gibbs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Electric Control Building (PER-608). Plan, elevations, and details. Gibbs and Hill, Inc. 1087-PER-608-S5. Date: August 1956. INEEL index no. 760-0608-00-312-108328 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. SIRPα controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox).

    PubMed

    van Beek, Ellen M; Zarate, Julian Alvarez; van Bruggen, Robin; Schornagel, Karin; Tool, Anton T J; Matozaki, Takashi; Kraal, Georg; Roos, Dirk; van den Berg, Timo K

    2012-10-25

    The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRPα acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRPα mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRPα in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRPα and its natural ligand, CD47, as well as signaling through the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRPα was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRPα can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocytes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  18. An oxidative burst and its attenuation by bacterial peroxidase activity is required for optimal establishment of the Arachis hypogaea-Bradyrhizobium sp. symbiosis.

    PubMed

    Muñoz, V; Ibáñez, F; Figueredo, M S; Fabra, A

    2016-07-01

    The main purpose of this study was to determine whether the Arachis hypogaea L. root oxidative burst, produced at early stages of its symbiotic interaction with Bradyrhizobium sp. SEMIA 6144, and the bacterial antioxidant system are required for the successful development of this interaction. Pharmacological approaches were used to reduce both plant oxidative burst and bacterial peroxidase enzyme activity. In plants whose H2 O2 levels were decreased, a low nodule number, a reduction in the proportion of red nodules (%) and an increase in the bacteroid density were found. The symbiotic phenotype of plants inoculated with a Bradyrhizobium sp. SEMIA 6144 culture showing decreased peroxidase activity was also affected, since the biomass production, nodule number and percentage of red nodules in these plants were lower than in plants inoculated with Bradyrhizobium sp. control cultures. We demonstrated for the first time that the oxidative burst triggered at the early events of the symbiotic interaction in peanut, is a prerequisite for the efficient development of root nodules, and that the antioxidant system of bradyrhizobial peanut symbionts, particularly the activity of peroxidases, is counteracting this oxidative burst for the successful establishment of the symbiosis. Our results provide new insights into the mechanisms involved in the development of the symbiotic interaction established in A. hypogaea L. a legume infected in an intercellular way. © 2016 The Society for Applied Microbiology.

  19. Detailed correlation of type III radio bursts with H alpha activity. I - Active region of 22 May 1970.

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Pasachoff, J. M.

    1973-01-01

    Comparison of observations of type III impulsive radio bursts made at the Clark Lake Radio Observatory with high-spatial-resolution cinematographic observations taken at the Big Bear Solar Observatory. Use of the log-periodic radio interferometer makes it possible to localize the radio emission uniquely. This study concentrates on the particularly active region close to the limb on May 22, 1970. Sixteen of the 17 groups were associated with some H alpha activity, 11 of them with the start of such activity.

  20. Activation of β-noradrenergic receptors enhances rhythmic bursting in mouse olfactory bulb external tufted cells.

    PubMed

    Zhou, Fu-Wen; Dong, Hong-Wei; Ennis, Matthew

    2016-12-01

    The main olfactory bulb (MOB) receives a rich noradrenergic innervation from the nucleus locus coeruleus. Despite the well-documented role of norepinephrine and β-adrenergic receptors in neonatal odor preference learning, identified cellular physiological actions of β-receptors in the MOB have remained elusive. β-Receptors are expressed at relatively high levels in the MOB glomeruli, the location of external tufted (ET) cells that exert an excitatory drive on mitral and other cell types. The present study investigated the effects of β-receptor activation on the excitability of ET cells with patch-clamp electrophysiology in mature mouse MOB slices. Isoproterenol and selective β 2 -, but not β 1 -, receptor agonists were found to enhance two key intrinsic currents involved in ET burst initiation: persistent sodium (I NaP ) and hyperpolarization-activated inward (I h ) currents. Together, the positive modulation of these currents increased the frequency and strength of ET cell rhythmic bursting. Rodent sniff frequency and locus coeruleus neuronal firing increase in response to novel stimuli or environments. The increase in ET excitability by β-receptor activation may better enable ET cell rhythmic bursting, and hence glomerular network activity, to pace faster sniff rates during heightened norepinephrine release associated with arousal. Copyright © 2016 the American Physiological Society.

  1. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.

    PubMed

    Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M

    2008-06-01

    Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.

  2. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats.

    PubMed

    Formenti, Alessandro; Zocchi, Luciano

    2014-10-01

    Respiratory neuromuscular activity needs to adapt to physiologic and pathologic conditions. We studied the conditioning effects of sensory fiber (putative Ia and II type from neuromuscular spindles) stimulation on the fictive respiratory output to the diaphragm, recorded from C4 phrenic ventral root, of in-vitro brainstem-spinal cord preparations from rats. The respiratory burst frequency in these preparations decreased gradually (from 0.26±0.02 to 0.09±0.003 bursts(-1)±SEM) as the age of the donor rats increased from zero to 4 days. The frequency greatly increased when the pH of the bath was lowered, and was significantly reduced by amiloride. C4 low threshold, sensory fiber stimulation, mimicking a stretched muscle, induced a short-term facilitation of the phrenic output increasing burst amplitude and frequency. When the same stimulus was applied contingently on the motor bursts, in an operant conditioning paradigm (a 500ms pulse train with a delay of 700ms from the beginning of the burst) a strong and persistent (>1h) increase in burst frequency was observed (from 0.10±0.007 to 0.20±0.018 bursts(-1)). Conversely, with random stimulation burst frequency increased only slightly and declined again within minutes to control levels after stopping stimulation. A forward model is assumed to interpret the data, and the notion of error signal, i.e. the sensory fiber activation indicating an unexpected stretched muscle, is re-considered in terms of the reward/punishment value. The signal, gaining hedonic value, is reviewed as a powerful unconditioned stimulus suitable in establishing a long-term operant conditioning-like process. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents

    PubMed Central

    Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng

    2010-01-01

    Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287

  4. A Comprehensive Study of Short Bursts from SGR1806-20 and SGR1900+14 Detected by HETE-2

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yujin E.; Yoshida, Atsumasa; Hurley, Kevin; Atteia, Jean-Luc; Maetou, Miki; Tamagawa, Toru; Suzuki, Motoko; Yamazaki, Tohru; Tanaka, Kaoru; Kawai, Nobuyuki; Shirasaki, Yuji; Pelangeon, Alexandre; Matsuoka, Masaru; Vanderspek, Roland; Crew, Geoff B.; Villasenor, Joel S.; Sato, Rie; Sugita, Satoshi; Kotoku, Jun'ichi; Arimoto, Makoto; Pizzichini, Graziella; Doty, John P.; Ricker, George R.

    2007-06-01

    Temporal and spectral studies of short bursts (≲ a few hundred milliseconds) are presented for the soft gamma repeaters (SGRs) 1806-20 and 1900+14 using the HETE-2 samples. In five years from 2001 to 2005, HETE-2 localized 50 bursts from SGR1806-20 and 5 bursts from SGR1900+14. The cumulative number-intensity distribution of SGR1806-20 in the active year 2004 is well described by a power-law model with an index of -1.1±0.6. It is consistent with previous studies, but burst data taken in other years clearly give a steeper distribution. This may suggest that more energetic bursts could occur more frequently in periods of greater activity. From the data, the spectral evolution during bursts with a time scale of ≳ 20ms does not seem to be common in the HETE-2 sample. The spectra of all short bursts are well reproduced by a two blackbody function with temperatures of ˜ 4 and ˜ 11keV. From a timing analysis to the SGR1806-20 data, a time lag of 2.2±0.4ms is found between the 30-100keV and 2-10keV radiation bands. This may imply (1) a very rapid spectral softening and energy reinjection, (2) diffused (elongated) emission plasma along the magnetic field lines in pseudo-equilibrium with multi-temperatures, or (3) a separate (located at ≲ 700km) emission region of a softer component (say, ˜ 4keV), which could be reprocessed X-rays by higher energy (≳ 11keV) photons from an emission region near the stellar surface.

  5. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of leakage into the reference cavity. Since the burst discs are DFMR, a single burst disc would suffice, without adding the two leak-into-reference cavity failure modes. A single DFMR burst disc is preferable. An Alpha Magnetic Spectrometer - 02 burst disc assembly, with three-in-series burst discs test failure, necessitated the deletion of one of the burst discs, will be presented. Payload relief valves require periodic retests were extended significantly beyond the normal one year retest period because of the reduced ISS down mass capability which followed the Columbia accident. The acceptability of the extended retest period was determined by analysis, materials stability, benign environment, relatively inert fluid exposure, etc.(The policy letter, NC4-02-205 Guidelines for Certification and Verification of Pressure System Control Hardware, that permitted this action will be provided even though this application is not recommended for extending relief valve annual retest requirements.) The first crack pressure of a relief valve after an extended inactive period can be higher than the set crack pressure. Extrapolation of the extended inactive period and increased crack pressure could result in ineffective over pressure protection. Thus, relief valves with a ring or lever for activation are recommended so the relief valve can periodically be verified to open, functionality verified and the extended relief valve retest period should be discouraged. Stainless Steel cylindrical poppet-in-cylindrical housing check valves should never be used in a fluid with ions for an extended period of time, because the poppet is vulnerable to seizing or not functioning as a relief valve, even though the specifications, crack pressure, reseat pressure, maximum flow, and reseat leak look very much like the specifications for a relief valve. The technical reasons for this avoidance of using check valves as a relief valve will be discussed. The presentation will be summarized and recommendations made.

  6. Bursts of activity in collective cell migration

    PubMed Central

    Chepizhko, Oleksandr; Giampietro, Costanza; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stéphane; Alava, Mikko J.; Zapperi, Stefano; La Porta, Caterina A. M.

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems. PMID:27681632

  7. An integrate-and-fire model for synchronized bursting in a network of cultured cortical neurons.

    PubMed

    French, D A; Gruenstein, E I

    2006-12-01

    It has been suggested that spontaneous synchronous neuronal activity is an essential step in the formation of functional networks in the central nervous system. The key features of this type of activity consist of bursts of action potentials with associated spikes of elevated cytoplasmic calcium. These features are also observed in networks of rat cortical neurons that have been formed in culture. Experimental studies of these cultured networks have led to several hypotheses for the mechanisms underlying the observed synchronized oscillations. In this paper, bursting integrate-and-fire type mathematical models for regular spiking (RS) and intrinsic bursting (IB) neurons are introduced and incorporated through a small-world connection scheme into a two-dimensional excitatory network similar to those in the cultured network. This computer model exhibits spontaneous synchronous activity through mechanisms similar to those hypothesized for the cultured experimental networks. Traces of the membrane potential and cytoplasmic calcium from the model closely match those obtained from experiments. We also consider the impact on network behavior of the IB neurons, the geometry and the small world connection scheme.

  8. Observational Implications of a Fall-back Crust around a Quark-nova Compact Remnant: Application to AXPs and SGRs

    NASA Astrophysics Data System (ADS)

    Leahy, Denis A.; Ouyed, R.; Niebergal, B.

    2006-12-01

    Mass is ejected from a quark stars formed by the Quark-Nova process (Ouyed, Dey and Dey, 2002 A&A, 390, L39; Keranen, Ouyed and Jaikumar 2005 ApJ, 681, 485). Some fraction of this ejecta is below escape velocity and falls back toward the compact object. If the magnetic field of the compact object is high enough, the fall-back material forms a shell of iron-rich material which then evolves quasi-statically. We explore the formation and evolution of such a fall-back crust (so-called because the material originates in the crust of the neutron star progenitor to the quark-nova). We find the resulting properites have application to the observed properties of Soft Gamma-ray Repeaters (SGRs) and Anomolous X-ray Pulsars (AXPs). These observed features of SGRs and AXPs are: (i) the two types of bursts (giant and regular); (ii) the spin-up and spin-down episodes during and following the bursts with associated persistant increases in period derivative ; (iii) the energetics of the boxing day burst, SGR1806+20; (iv) the presence of an Iron line as observed in SGR1900+14; (v) the correlation between the far-Infrared and the X-ray fluxes during the bursting episode and the quiescent phase; (vi) the hard X-ray component observed in SGRs during the giant bursts, and (vii) the discrepancy between the ages of SGRs/AXPs and their supernova remnants. We also find a natural evolutionary relationship between SGRs and AXPs in our model which predicts that only the youngest SGRs/AXPs are most likely to exhibit strong bursting. We acknowledge funding for this research from the Natural Science and Engineering Research Council of Canada.

  9. Scales of convective activity in the MJO (Invited)

    NASA Astrophysics Data System (ADS)

    Houze, R.

    2013-12-01

    One of the results of the Dynamics of the Madden-Julian Oscillation (MJO) field experiment (DYNAMO) is the realization that an active period of the MJO is not a continuous stretch of time in which convection and rainfall are occurring. Rather, an active MJO period, as determined by standard statistical treatments of the wind and satellite data such as that of Wheeler and Hendon (2004), has periods of highly suppressed conditions interspersed with bursts or episodes of deep convection and rainfall. At a given location, an MJO cycle is of the order of 30-60 days. The active half of a cycle is then about 2-4 weeks. DYNAMO data show that within this multi-week period rain falls in intermittent bursts of deep convection at intervals of 2-6 days, with each burst lasting 1-2 days. The time between bursts is highly suppressed, such that the convective cloud population consists of shallow non-precipitating cumulus. This intermediate burst timescale is neither the MJO timescale nor the timescale of an individual convective cloud. The modulation on the 2-6 day timescale was related to various types of higher frequency equatorial waves (especially, inertio-gravity waves and easterly waves). The largest individual convective cloud element in the MJO environment is the mesoscale convective system (MCS), which lasts about a half day, much shorter than the time period of the wave-modulated bursts. The intermediate scale bursts reflect an evolution of the cloud population. Numerous individual cloud systems undergo their lifecycles within the envelope of the wave-controlled time period of a few days. At a given site, such as the principal island site of Addu Atoll in DYNAMO, radar observations show that in an intermediate timescale episode the convective ensemble goes through a systematic series of stages characterized by differing proportions of elements of different sizes and intensities. The first stage is a population of shallow non-precipitating cumulus, followed by an ensemble of clouds containing some deeper convective elements. At the time of maximum rain during the episode, the population contains growing mesoscale systems. As the rain episode declines the population contains a substantial number of MCSs with broad stratiform regions. Thus, at least three scales are critical in the active periods of an MJO: the MJO scale, the equatorial wave scale of 2-6 days, and the scale of individual clouds, the largest of which are MCSs. This presentation will document the large-scale environment conditions on each of these scales, the population characteristics of the convection during the wave-modulated bursts, and of the individual cloud systems themselves.

  10. Elucidating the role of AII amacrine cells in glutamatergic retinal waves.

    PubMed

    Firl, Alana; Ke, Jiang-Bin; Zhang, Lei; Fuerst, Peter G; Singer, Joshua H; Feller, Marla B

    2015-01-28

    Spontaneous retinal activity mediated by glutamatergic neurotransmission-so-called "Stage 3" retinal waves-drives anti-correlated spiking in ON and OFF RGCs during the second week of postnatal development of the mouse. In the mature retina, the activity of a retinal interneuron called the AII amacrine cell is responsible for anti-correlated spiking in ON and OFF α-RGCs. In mature AIIs, membrane hyperpolarization elicits bursting behavior. Here, we postulated that bursting in AIIs underlies the initiation of glutamatergic retinal waves. We tested this hypothesis by using two-photon calcium imaging of spontaneous activity in populations of retinal neurons and by making whole-cell recordings from individual AIIs and α-RGCs in in vitro preparations of mouse retina. We found that AIIs participated in retinal waves, and that their activity was correlated with that of ON α-RGCs and anti-correlated with that of OFF α-RGCs. Though immature AIIs lacked the complement of membrane conductances necessary to generate bursting, pharmacological activation of the M-current, a conductance that modulates bursting in mature AIIs, blocked retinal wave generation. Interestingly, blockade of the pacemaker conductance Ih, a conductance absent in AIIs but present in both ON and OFF cone bipolar cells, caused a dramatic loss of spatial coherence of spontaneous activity. We conclude that during glutamatergic waves, AIIs act to coordinate and propagate activity generated by BCs rather than to initiate spontaneous activity. Copyright © 2015 the authors 0270-6474/15/351675-12$15.00/0.

  11. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  12. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    NASA Astrophysics Data System (ADS)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  13. Relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions.

    PubMed

    Miyawaki, Shouichi; Tanimoto, Yuko; Araki, Yoshiko; Katayama, Akira; Imai, Mikako; Takano-Yamamoto, Teruko

    2004-11-01

    The purpose of this study was to examine the relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions. Twelve adult volunteers, including 4 bruxism patients, participated in this study. Portable pH monitoring, electromyography of the temporal muscle, and audio-video recordings were conducted during the night in the subjects' homes. Rhythmic masticatory muscle activity (RMMA) episodes were observed most frequently, with single short-burst episodes the second most frequent. The frequencies of RMMA, single short-burst, and clenching episodes were significantly higher during decreased esophageal pH episodes than those during other times. Both the electromyography and the decreased esophageal pH episodes were most frequently observed in the supine position. These results suggest that most jaw muscle activities, ie, RMMA, single short-burst, and clenching episodes, occur in relation to gastroesophageal reflux mainly in the supine position.

  14. Discharge patterning in rat olfactory bulb mitral cells in vivo

    PubMed Central

    Leng, Gareth; Hashimoto, Hirofumi; Tsuji, Chiharu; Sabatier, Nancy; Ludwig, Mike

    2014-01-01

    Abstract Here we present a detailed statistical analysis of the discharge characteristics of mitral cells of the main olfactory bulb of urethane‐anesthetized rats. Neurons were recorded from the mitral cell layer, and antidromically identified by stimuli applied to the lateral olfactory tract. All mitral cells displayed repeated, prolonged bursts of action potentials typically lasting >100 sec and separated by similarly long intervals; about half were completely silent between bursts. No such bursting was observed in nonmitral cells recorded in close proximity to mitral cells. Bursts were asynchronous among even adjacent mitral cells. The intraburst activity of most mitral cells showed strong entrainment to the spontaneous respiratory rhythm; similar entrainment was seen in some, but not all nonmitral cells. All mitral cells displayed a peak of excitability at ~25 msec after spikes, as reflected by a peak in the interspike interval distribution and in the corresponding hazard function. About half also showed a peak at about 6 msec, reflecting the common occurrence of doublet spikes. Nonmitral cells showed no such doublet spikes. Bursts typically increased in intensity over the first 20–30 sec of a burst, during which time doublets were rare or absent. After 20–30 sec (in cells that exhibited doublets), doublets occurred frequently for as long as the burst persisted, in trains of up to 10 doublets. The last doublet was followed by an extended relative refractory period the duration of which was independent of train length. In cells that were excited by application of a particular odor, responsiveness was apparently greater during silent periods between bursts than during bursts. Conversely in cells that were inhibited by a particular odor, responsiveness was only apparent when cells were active. Extensive raw (event timing) data from the cells, together with details of those analyses, are provided as supplementary material, freely available for secondary use by others. PMID:25281614

  15. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons.

    PubMed

    Albéri, Lavinia; Lintas, Alessandra; Kretz, Robert; Schwaller, Beat; Villa, Alessandro E P

    2013-06-01

    The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.

  16. Correlated bursts and the role of memory range

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János

    2015-08-01

    Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called correlated bursts, have been studied only recently. As the underlying mechanism behind such correlated bursts is far from being fully understood, we devise a simple model for correlated bursts using a self-exciting point process with a variable range of memory. Whether a new event occurs is stochastically determined by a memory function that is the sum of decaying memories of past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms: a fixed number or a variable number of memories. By analysis and numerical simulations, we find that too much memory effect may lead to a Poissonian process, implying that there exists an intermediate range of memory effect to generate correlated bursts comparable to empirical findings. Our conclusions provide a deeper understanding of how long-range memory affects correlated bursts.

  17. An interacting loop model of solar flare bursts

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1981-01-01

    As a result of the strong heating produced at chromospheric levels during a solar flare burst, the local gas pressure can transiently attain very large values in certain regions. The effectiveness of the surrounding magnetic field at confining this high pressure plasma is therefore reduced and the flaring loop becomes free to expand laterally. In so doing it may drive magnetic field lines into neighboring, nonflaring, loops in the same active region, causing magnetic reconnection to take place and triggering another flare burst. The features of this interacting loop model are found to be in good agreement with the energetics and time structure of flare associated solar hard X-ray bursts.

  18. Investigations of Air-cooled Turbine Rotors for Turbojet Engines II : Mechanical Design, Stress Analysis, and Burst Test of Modified J33 Split-disk Rotor / Richard H. Kemp and Merland L. Moseson

    NASA Technical Reports Server (NTRS)

    Kemp, Richard H; Moseson, Merland L

    1952-01-01

    A full-scale J33 air-cooled split turbine rotor was designed and spin-pit tested to destruction. Stress analysis and spin-pit results indicated that the rotor in a J33 turbojet engine, however, showed that the rear disk of the rotor operated at temperatures substantially higher than the forward disk. An extension of the stress analysis to include the temperature difference between the two disks indicated that engine modifications are required to permit operation of the two disks at more nearly the same temperature level.

  19. Preliminary Performance Data on General Electric Integrated Electronic Control Operating on J47 RX1-3 Turbojet Engine in NACA Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blivas, Darnold; Taylor, Burt L., III

    1950-01-01

    Performance data obtained with recording oscillographs are presented to show the transient response of the General Electric Integrated Electronic Control operating on the J47 RXl-3 turbo-Jet engine over a range of altitudes from 10,000 to 45,000 feet and at ram pressure ratios of 1.03 and 1.4. These data represent the performance of the final control configuration developed after an investigation of the engine transient behavior in the NACA altitude wind tunnel. Oscillograph traces of controlled accelerations (throttle bursts),oontrolled decelerations (throttle chops), and controlled altitude starts are presented.

  20. 30 CFR 75.223 - Evaluation and revision of roof control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or coal or rock bursts; or (2) When accident and injury experience at the mine indicates the plan is...) Each unplanned roof fall and rib fall and coal or rock burst that occurs in the active workings shall...

  1. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morioka, A.; Misawa, H.; Obara, T.

    Solar micro-type III radio bursts are elements of the so-called type III storms and are characterized by short-lived, continuous, and weak emissions. Their frequency of occurrence with respect to radiation power is quite different from that of ordinary type III bursts, suggesting that the generation process is not flare-related, but due to some recurrent acceleration processes around the active region. We examine the relationship of micro-type III radio bursts with coronal streamers. We also explore the propagation channel of bursts in the outer corona, the acceleration process, and the escape route of electron beams. It is observationally confirmed that micro-typemore » III bursts occur near the edge of coronal streamers. The magnetic field line of the escaping electron beams is tracked on the basis of the frequency drift rate of micro-type III bursts and the electron density distribution model. The results demonstrate that electron beams are trapped along closed dipolar field lines in the outer coronal region, which arise from the interface region between the active region and the coronal hole. A 22 year statistical study reveals that the apex altitude of the magnetic loop ranges from 15 to 50 R{sub S}. The distribution of the apex altitude has a sharp upper limit around 50 R{sub S} suggesting that an unknown but universal condition regulates the upper boundary of the streamer dipolar field.« less

  3. Outflows from black hole hyperaccretion systems: short and long-short gamma-ray bursts and `quasi-supernovae'

    NASA Astrophysics Data System (ADS)

    Song, Cui-Ying; Liu, Tong; Li, Ang

    2018-06-01

    The detections of some long gamma-ray bursts (LGRBs) relevant to mergers of neutron star (NS)-NS or black hole (BH)-NS, as well as some short gamma-ray bursts (SGRBs) probably produced by collapsars, muddle the boundary of two categories of gamma-ray bursts (GRBs). In both cases, a plausible candidate of central engine is a BH surrounded by a hyperaccretion disc with strong outflows, launching relativistic jets driven by Blandford-Znajek mechanism. In the framework of compact binary mergers, we test the applicability of the BH hyperaccretion inflow-outflow model on powering observed GRBs. We find that, for a low outflow ratio, ˜ 50 per cent, post-merger hyperaccretion processes could power not only all SGRBs but also most of LGRBs. Some LGRBs might originate from merger events in the BH hyperaccretion scenario, at least on the energy requirement. Moreover, kilonovae might be produced by neutron-rich outflows, and their luminosities and time-scales significantly depend on the outflow strengths. GRBs and their associated kilonovae are competitive with each other on the disc mass and total energy budgets. The stronger the outflow, the more similar the characteristics of kilonovae to supernovae (SNe). This kind of `nova' might be called `quasi-SN'.

  4. Constraining Stellar Coronal Mass Ejections through Multi-wavelength Analysis of the Active M Dwarf EQ Peg

    NASA Astrophysics Data System (ADS)

    Crosley, M. K.; Osten, R. A.

    2018-03-01

    Stellar coronal mass ejections remain experimentally unconstrained, unlike their stellar flare counterparts, which are observed ubiquitously across the electromagnetic spectrum. Low-frequency radio bursts in the form of a type II burst offer the best means of identifying and constraining the rate and properties of stellar CMEs. CME properties can be further improved through the use of proposed solar-stellar scaling relations and multi-wavelength observations of CMEs through the use of type II bursts and the associated flares expected to occur alongside them. We report on 20 hr of observation of the nearby, magnetically active, and well-characterized M dwarf star EQ Peg. The observations are simultaneously observed with the Jansky Very Large Array at their P-band (230–470 MHz) and at the Apache Point observatory in the SDSS u‧ filter (λ = 3557 Å). Dynamic spectra of the P-band data, constructed to search for signals in the frequency-time domains, did not reveal evidence of drifting radio bursts that could be ascribed to type II bursts. Given the sensitivity of our observations, we are able to place limits on the brightness temperature and source size of any bursts that may have occurred. Using solar scaling rations on four observed stellar flares, we predict CME parameters. Given the constraints on coronal density and photospheric field strength, our models suggest that the observed flares would have been insufficient to produce detectable type II bursts at our observed frequencies. We consider the implications of these results, and other recent findings, on stellar mass loss.

  5. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    PubMed Central

    Zhang, Xiaobing

    2015-01-01

    We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons. PMID:26558770

  6. Post-transcriptional bursting in genes regulated by small RNA molecules

    NASA Astrophysics Data System (ADS)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  7. Role of glutamate and substance P in the amphibian respiratory network during development

    PubMed Central

    Chen, Anna K.; Hedrick, Michael S.

    2008-01-01

    This study tested the hypothesis that glutamatergic ionotropic (AMPA/kainate) receptors and neurokinin receptors (NKR) are important in the regulation of respiratory motor output during development in the bullfrog. The roles of these receptors were studied with in vitro brainstem preparations from pre-metamorphic tadpoles and post-metamorphic frogs. Brainstems were superfused with an artificial cerebrospinal fluid at 20–22°C containing CNQX, a selective non-NMDA antagonist, or with substance P (SP), an agonist of NKR. Blockade of glutamate receptors with CNQX in both groups caused a reduction of lung burst frequency that was reversibly abolished at 5 μM (P<0.01). CNQX, but not SP, application produced a significant increase (P<0.05) in gill and buccal frequency in tadpoles and frogs, respectively. SP caused a significant increase (P<0.05) in lung burst frequency at 5 μM in both groups. These results suggest that glutamatergic activation of AMPA/kainate receptors is necessary for generation of lung burst activity and that SP is an excitatory neurotransmitter for lung burst frequency generation. Both glutamate and SP provide excitatory input for lung burst generation throughout the aquatic to terrestrial developmental transition in bullfrogs. PMID:18450524

  8. Role of glutamate and substance P in the amphibian respiratory network during development.

    PubMed

    Chen, Anna K; Hedrick, Michael S

    2008-06-30

    This study tested the hypothesis that glutamatergic ionotropic (AMPA/kainate) receptors and neurokinin receptors (NKR) are important in the regulation of respiratory motor output during development in the bullfrog. The roles of these receptors were studied with in vitro brainstem preparations from pre-metamorphic tadpoles and post-metamorphic frogs. Brainstems were superfused with an artificial cerebrospinal fluid at 20-22 degrees C containing CNQX, a selective non-NMDA antagonist, or with substance P (SP), an agonist of NKR. Blockade of glutamate receptors with CNQX in both groups caused a reduction of lung burst frequency that was reversibly abolished at 5 microM (P<0.01). CNQX, but not SP, application produced a significant increase (P<0.05) in gill and buccal frequency in tadpoles and frogs, respectively. SP caused a significant increase (P<0.05) in lung burst frequency at 5 microM in both groups. These results suggest that glutamatergic activation of AMPA/kainate receptors is necessary for generation of lung burst activity and that SP is an excitatory neurotransmitter for lung burst frequency generation. Both glutamate and SP provide excitatory input for lung burst generation throughout the aquatic to terrestrial developmental transition in bullfrogs.

  9. SPERTI Terminal Building (PER604). Oblique view of front entry and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Terminal Building (PER-604). Oblique view of front entry and one side. Electrical transformers at right of building. Note "Butler" logo. Photographer: R.G. Larsen. Date: June 22, 1955. INEEL negative no. 55-1700 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. PBF Cooling Tower. View of stairway to fan deck. Vents ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View of stairway to fan deck. Vents are made of redwood. Camera facing southwest toward north side of Cooling Tower. Siding is corrugated asbestos concrete. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3463 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. SPERTI Terminal Building (PER604). Concrete foundation is at grade. Steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Terminal Building (PER-604). Concrete foundation is at grade. Steel frame has been erected, and some siding has been affixed. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1003 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. PBF. Oblique and contextual view of PBF Cooling Tower, PER720. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF. Oblique and contextual view of PBF Cooling Tower, PER-720. Camera facing northeast. Auxiliary Building (PER-624) abuts Cooling Tower. Demolition equipment has arrived. Date: August 2003. INEEL negative no. HD-35-11-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. PBF Reactor Building (PER620). Camera in second basement near subpile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera in second basement near sub-pile room (directly below reactor vessel). Door and penetrations lead to sub-pile room. Date: August 15, 1969. Photographer: Larry Page. INEEL negative no. 69-4310 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. PBF Cooling Tower contextual view. Camera facing southwest. West wing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower contextual view. Camera facing southwest. West wing and north facade (rear) of Reactor Building (PER-620) is at left; Cooling Tower to right. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4913 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. PBF (PER620) interior. Detail view of door in north wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. Detail view of door in north wall of reactor bay. Camera facing north. Note tonnage weighting of hatch covers in floor. Date: May 2004. INEEL negative no. HD-41-8-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. PBF (PER620) interior. Detail view of actuator platform and control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. Detail view of actuator platform and control rod mechanism. Camera facing easterly from floor level. Reactor pool at lower left of view. Date: March 2004. INEEL negative no. HD-41-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. PBF Reactor Building (PER620). Camera faces southeast. Concrete placement will ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera faces southeast. Concrete placement will leave opening for neutron camera to be installed later. Note vertical piping within rebar. Photographer: John Capek. Date: July 6, 1967. INEEL negative no. 67-3514 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. PBF Reactor Building (PER620). Aerial view of early construction. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Aerial view of early construction. Camera facing northwest. Excavation and concrete placement in two basements are underway. Note exposed lava rock. Photographer: Farmer. Date: March 22, 1965. INEEL negative no. 65-2219 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. PBF Reactor Building (PER620). Reactor vessel arrives from gate city ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Reactor vessel arrives from gate city steel at door of PBF. On flatbed, it is too high to fit under door. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-737 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  20. PBF Reactor Building (PER620). Camera faces north into highbay/reactor pit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera faces north into high-bay/reactor pit area. Inside from for reactor enclosure is in place. Photographer: John Capek. Date: March 15, 1967. INEEL negative no. 67-1769 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. PBF Reactor Building (PER620). Camera facing south end of high ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera facing south end of high bay. Vertical-lift door is being installed. Later, pneumatic seals will be installed around door. Photographer: Kirsh. Date: September 31, 1968. INEEL negative no. 68-3176 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. SPERTI plot plan for control area. Includes Control Building (PER601), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I plot plan for control area. Includes Control Building (PER-601), Gate House (PER-603), well sand settling tank, substation, and septic system. Date: February 1955. INEEL index no. 760-0101-00-396-109104 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. PBF Reactor Building (PER620) as seen from control room window ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) as seen from control room window in PER-619. Photographer stood just outside window. Note exposed communication cables on desert surface. Date: July 2004. INEEL negative no. HD-41-9-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. PBF Cooling Tower. Camera facing southwest. Round piers will support ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Camera facing southwest. Round piers will support Tower's wood "fill" or "packing." Black-topped stack in far distance is at Idaho Chemical Processing Plant. Photographer: John Capek. Date: October 16, 1968. INEEL negative no. 68-4097 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. PBF Reactor Building (PER620). Cubicle 10 detail. Camera facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10 detail. Camera facing west toward brick shield wall. Valve stems against wall penetrate through east wall of cubicle. Photographer: John Capek. Date: August 19, 1970. INEEL negative no. 70-3469 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. INEL BNCT Program: Volume 5, No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, A.L.

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  7. SPERTI Reactor Pit Building (PER605) from contrasting direction as photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Reactor Pit Building (PER-605) from contrasting direction as photo above (ID-33-F-32). Note Guard House door, security fencing around facility. Photographer: R.G. Larsen. Date: July 22, 1955. INEEL negative no. 55-1702. - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; ...

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  10. Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model

    NASA Astrophysics Data System (ADS)

    Bustamante, Mauricio; Heinze, Jonas; Murase, Kohta; Winter, Walter

    2017-03-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  11. The central pattern generator underlying swimming in Dendronotus iris: a simple half-center network oscillator with a twist.

    PubMed

    Sakurai, Akira; Katz, Paul S

    2016-10-01

    The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion. Copyright © 2016 the American Physiological Society.

  12. Fusing Multiple Sensor Modalities for Complex Physiological State Monitoring

    DTIC Science & Technology

    2012-12-01

    sleep-alpha variants (drowsiness alpha activity and REM -alpha bursts) over frontal, central, parietal and occipital regions. Note the higher spectral...contribution of the slowest components (7.8–8.6 Hz) during REM alpha bursts as compared with drowsiness-alpha activity (13...occipital regions of the brain during the drowsiness state as compared to REM sleep and other states, as seen in figure 1 (13). Furthermore, using EEG

  13. Granule Exocytosis Contributes to Priming and Activation of the Human Neutrophil Respiratory Burst

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Luerman, Gregory C.; Barati, Michelle T.; Ward, Richard A.; Nauseef, William M.; McLeish, Kenneth R.

    2013-01-01

    The role of exocytosis in the human neutrophil respiratory burst was determined using a fusion protein (TAT–SNAP-23) containing the HIV transactivator of transcription (TAT) cell-penetrating sequence and the N-terminal SNARE domain of synaptosome-associated protein-23 (SNAP-23). This agent inhibited stimulated exocytosis of secretory vesicles and gelatinase and specific granules but not azurophil granules. GST pulldown showed that TAT–SNAP-23 bound to the combination of vesicle-associated membrane protein-2 and syntaxin-4 but not to either individually. TAT–SNAP-23 reduced phagocytosis-stimulated hydrogen peroxide production by 60% without affecting phagocytosis or generation of HOCl within phagosomes. TAT–SNAP-23 had no effect on fMLF-stimulated superoxide release but significantly inhibited priming of this response by TNF-α and platelet-activating factor. Pretreatment with TAT–SNAP-23 inhibited the increase in plasma membrane expression of gp91phox in TNF-α–primed neutrophils, whereas TNF-α activation of ERK1/2 and p38 MAPK was not affected. The data demonstrate that neutrophil granule exocytosis contributes to phagocytosis-induced respiratory burst activity and plays a critical role in priming of the respiratory burst by increasing expression of membrane components of the NADPH oxidase. PMID:21642540

  14. All Sky Observations with BATSE and GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2008-01-01

    The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) monitored the entire sky from 1991-2000. I will review highlights of BATSE observations including gamma ray bursts, black hole candidates, accreting pulsars, and active galaxies. On 2008 June 11, the Fermi Gamma Ray Space Telescope was launched. The Gamma ray Burst Monitor (GBM) on board Fermi continues the all-sky monitoring legacy started with BATSE. I will review early results and planned observations with GBM.

  15. Theories of central engine for long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Nagataki, Shigehiro

    2018-02-01

    Long GRBs are the most powerful explosions in the universe since the Big Bang. At least, some fraction of long GRBs are born from the death of massive stars. Likewise, only some fraction of massive stars that satisfy additional special conditions explode as long GRBs associated with supernovae/hypernovae. In this paper, we discuss the explosion mechanism of long GRBs associated with hypernovae: ‘the central engine of long GRBs’. The central engine of long GRBs is very different from that of core-collapse supernovae, although the mechanism of the engine is still not firmly established. In this paper, we review theoretical studies of the central engine of long GRBs. First, we discuss possible progenitor stars. Then several promising mechanisms of the central engine—such as black hole and magnetar formation—will be reviewed. We will also mention some more exotic models. Finally, we describe prospects for future studies of the central engine of long GRBs.

  16. Surgical option for the correction of Peyronie's disease: an autologous tissue-engineered endothelialized graft.

    PubMed

    Imbeault, Annie; Bernard, Geneviève; Ouellet, Gabrielle; Bouhout, Sara; Carrier, Serge; Bolduc, Stéphane

    2011-11-01

    Surgical treatment is indicated in severe cases of Peyronie's disease. Incision of the plaque with subsequent graft material implantation is the option of choice. Ideal graft tissue is not yet available. To evaluate the use of an autologous tissue-engineered endothelialized graft by the self-assembly method, for tunica albuginea (TA) reconstruction in Peyronie's disease. Two TA models were created. Human fibroblasts were isolated from a skin biopsy and cultured in vitro until formation of fibroblast sheets. After 4 weeks of maturation, human umbilical vein endothelial cells (HUVEC) were seeded on fibroblasts sheets and wrapped around a tubular support to form a cylinder of about 10 layers. After 21 days of tube maturation, HUVEC were seeded into the lumen of the fibroblast tubes for the endothelialized tunica albuginea (ETA). No HUVEC were seeded into the lumen for the TA model. Both constructs were placed under perfusion in a bioreactor for 1 week. Histology, immunohistochemistry, and burst pressure were performed to characterize mature tubular graft. Animal manipulations were also performed to demonstrate the impact of endothelial cells in vivo. Histology showed uniform multilayered fibroblasts. Extracellular matrix, produced entirely by fibroblasts, presented a good staining for collagen 1. Some elastin fibers were also present. For the TA model, anti-human von Willebrand antibody revealed the endothelial cells forming capillary-like structures. TA model reached a burst pressure of 584 mm Hg and ETA model obtained a burst pressure of 719 mm Hg. This tissue-engineered endothelialized tubular graft is structurally similar to normal TA and presents an adequate mechanical resistance. The self-assembly method used and the autologous property of this model could represent an advantage comparatively to other available grafts. Further evaluation including functional testing will be necessary to characterize in vivo implantation and behavior of the graft. © 2011 International Society for Sexual Medicine.

  17. The progenitors of extended emission gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Gompertz, B. P.

    2015-06-01

    Gamma-ray bursts (GRBs) are the most luminous transient events in the Universe, and as such are associated with some of the most extreme processes in nature. They come in two types: long and short, nominally separated either side of a two second divide in gamma-ray emission duration. The short class (those with durations of less than two seconds) are believed to be due to the merger of two compact objects, most likely neutron stars. Within this population, a small subsection exhibit an apparent extra high-energy emission feature, which rises to prominence several seconds after the initial emission event. These are the extended emission (EE) bursts. This thesis investigates the progenitors of the EE sample, including what drives them, and where they fit in the broader context of short GRBs. The science chapters outline a rigorous test of the magnetar model, in which the compact object merger results in a massive, rapidly-rotating neutron star with an extremely strong magnetic field. The motivation for this central engine is the late-time plateaux seen in some short and EE GRBs, which can be interpreted as energy injection from a long-lived central engine, in this case from the magnetar as it loses angular momentum along open field lines. Chapter 2 addresses the energy budget of such a system, including whether the EE component is consistent with the rotational energy reservoir of a millisecond neutron star, and the implications the model has for the physical properties of the underlying magnetar. Chapter 3 proposes a potential mechanism by which EE may arise, and how both classes may be born within the framework of a single central engine. Chapter 4 addresses the broadband signature of both short and EE GRBs, and provides some observational tests that can be used to either support or contradict the model.

  18. Bursting Transition Dynamics Within the Pre-Bötzinger Complex

    NASA Astrophysics Data System (ADS)

    Duan, Lixia; Chen, Xi; Tang, Xuhui; Su, Jianzhong

    The pre-Bötzinger complex of the mammalian brain stem plays a crucial role in the respiratory rhythms generation. Neurons within the pre-Bötzinger complex have been found experimentally to yield different firing activities. In this paper, we study the spiking and bursting activities related to the respiratory rhythms in the pre-Bötzinger complex based on a mathematical model proposed by Butera. Using the one-dimensional first recurrence map induced by dynamics, we investigate the different bursting patterns and their transition of the pre-Bötzinger complex neurons based on the Butera model, after we derived a one-dimensional map from the dynamical characters of the differential equations, and we obtained conditions for the transition of different bursting patterns. These analytical results were verified through numerical simulations. We conclude that the one-dimensional map contains similar rhythmic patterns as the Butera model and can be used as a simpler modeling tool to study fast-slow models like pre-Bötzinger complex neural circuit.

  19. Thalamic neuron models encode stimulus information by burst-size modulation

    PubMed Central

    Elijah, Daniel H.; Samengo, Inés; Montemurro, Marcelo A.

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons. PMID:26441623

  20. Thalamic neuron models encode stimulus information by burst-size modulation.

    PubMed

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  1. Collapse of magnetized hypermassive neutron stars in general relativity.

    PubMed

    Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C

    2006-01-27

    Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.

  2. Exocytosis of Neutrophil Granule Subsets and Activation of Prolyl Isomerase 1 are required for Respiratory Burst Priming

    PubMed Central

    McLeish, Kenneth R.; Uriarte, Silvia M.; Tandon, Shweta; Creed, Timothy M.; Le, Junyi; Ward, Richard A.

    2013-01-01

    This study tested the hypothesis that priming the neutrophil respiratory burst requires both granule exocytosis and activation of the prolyl isomerase, Pin1. Fusion proteins containing the TAT cell permeability sequence and either the SNARE domain of syntaxin-4 or the N-terminal SNARE domain of SNAP-23 were used to examine the role of granule subsets in TNF-mediated respiratory burst priming using human neutrophils. Concentration-inhibition curves for exocytosis of individual granule subsets and for priming of fMLF-stimulated superoxide release and phagocytosis-stimulated H2O2 production were generated. Maximal inhibition of priming ranged from 72% to 88%. Linear regression lines for inhibition of priming versus inhibition of exocytosis did not differ from the line of identity for secretory vesicles and gelatinase granules, while the slopes or the y-intercepts were different from the line of identity for specific and azurophilic granules. Inhibition of Pin1 reduced priming by 56%, while exocytosis of secretory vesicles and specific granules was not affected. These findings indicate that exocytosis of secretory vesicles and gelatinase granules and activation of Pin1 are independent events required for TNF-mediated priming of neutrophil respiratory burst. PMID:23363774

  3. Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.

    PubMed

    Çakir, Yüksel

    2016-01-01

    Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.

  4. Bifurcation and Spike Adding Transition in Chay-Keizer Model

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Liu, Shenquan; Liu, Xuanliang; Jiang, Xiaofang; Wang, Xiaohui

    Electrical bursting is an activity which is universal in excitable cells such as neurons and various endocrine cells, and it encodes rich physiological information. As burst delay identifies that the signal integration has reached the threshold at which it can generate an action potential, the number of spikes in a burst may have essential physiological implications, and the transition of bursting in excitable cells is associated with the bifurcation phenomenon closely. In this paper, we focus on the transition of the spike count per burst of the pancreatic β-cells within a mathematical model and bifurcation phenomenon in the Chay-Keizer model, which is utilized to simulate the pancreatic β-cells. By the fast-slow dynamical bifurcation analysis and the bi-parameter bifurcation analysis, the local dynamics of the Chay-Keizer system around the Bogdanov-Takens bifurcation is illustrated. Then the variety of the number of spikes per burst is discussed by changing the settings of a single parameter and bi-parameter. Moreover, results on the number of spikes within a burst are summarized in ISIs (interspike intervals) sequence diagrams, maximum and minimum, and the number of spikes under bi-parameter value changes.

  5. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate.

    PubMed Central

    Colquhoun, D; Sakmann, B

    1985-01-01

    The fine structure of ion-channel activations by junctional nicotinic receptors in adult frog muscle fibres has been investigated. The agonists used were acetylcholine (ACh), carbachol (CCh), suberyldicholine (SubCh) and decan-1,10-dicarboxylic acid dicholine ester (DecCh). Individual activations (bursts) were interrupted by short closed periods; the distribution of their durations showed a major fast component ('short gaps') and a minor slower component ('intermediate gaps'). The mean duration of both short and intermediate gaps was dependent on the nature of the agonist. For short gaps the mean durations (microseconds) were: ACh, 20; SubCh, 43; DecCh, 71; CCh, 13. The mean number of short gaps per burst were: ACh, 1.9; SubCh, 4.1; DecCh, 2.0. The mean number of short gaps per burst, and the mean number per unit open time, were dependent on the nature of the agonist, but showed little dependence on agonist concentration or membrane potential for ACh, SubCh and DecCh. The short gaps in CCh increased in frequency with agonist concentration and were mainly produced by channel blockages by CCh itself. Partially open channels (subconductance states) were clearly resolved rarely (0.4% of gaps within bursts) but regularly. Conductances of 18% (most commonly) and 71% of the main value were found. However, most short gaps were probably full closures. The distribution of burst lengths had two components. The faster component represented mainly isolated short openings that were much more common at low agonist concentrations. The slower component represented bursts of longer openings. Except at very low concentrations more than 85% of activations were of this type, which corresponds to the 'channel lifetime' found by noise analysis. The frequency of channel openings increased slightly with hyperpolarization. The short gaps during activations were little affected when (a) the [H+]o or [Ca2+]o were reduced to 1/10th of normal, (b) when extracellular Ca2+ was replaced by Mg2+, (c) when the [Cl-]i was raised or (d) when, in one experiment on an isolated inside-out patch, the normal intracellular constituents were replaced by KCl. Reduction of [Ca2+]O to 1/10 of normal increased the single-channel conductance by 50%, and considerably increased the number of intermediate gaps. No temporal asymmetry was detectable in the bursts of openings. Positive correlations were found between the lengths of successive apparent open times at low SubCh concentrations, but no correlations between burst lengths were detectable. The component of brief openings behaves, at low concentrations, as though it originates from openings of singly occupied channels.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 11 Fig. 14 Plate 1 PMID:2419552

  6. Manifestation of peripherial coding in the effect of increasing loudness and enhanced discrimination of the intensity of tone bursts before and after tone burst noise

    NASA Astrophysics Data System (ADS)

    Rimskaya-Korsavkova, L. K.

    2017-07-01

    To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst-useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two maxima and the ratio between them. The size of the first maximum in the of interspike interval distribution could be the basis for the formation of the loudness of the masked tone burst (implicit loudness), and the size of the second maximum, for the formation of intensity in the periodicity pitch of the complex. The auditory effect of the midlevel enhancement of tone burst loudness could be the result of variations in the implicit tone burst loudness caused by variations in tone-burst or noise intensity. The reason for the enhancement of the Weber fraction could be competitive interaction between such subjective qualities as explicit and implicit tone-burst loudness and the intensity of the periodicity pitch of the complex.

  7. External Shock in a Multi-bursting Gamma-Ray Burst: Energy Injection Phase Induced by the Later Launched Ejecta

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei

    2018-01-01

    Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.

  8. Simultaneous Recording and Analysis of Uterine and Abdominal Muscle Electromyographic Activity in Nulliparous Women During Labor.

    PubMed

    Qian, Xueya; Li, Pin; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2017-03-01

    To record and characterize electromyography (EMG) from the uterus and abdominal muscles during the nonlabor to first and second stages of labor and to define relationships to contractions. Nulliparous patients without any treatments were used (n = 12 nonlabor stage, 48 during first stage and 33 during second stage). Electromyography of both uterine and abdominal muscles was simultaneously recorded from electrodes placed on patients' abdominal surface using filters to separate uterine and abdominal EMG. Contractions of muscles were also recorded using tocodynamometry. Electromyography was characterized by analysis of various parameters. During the first stage of labor, when abdominal EMG is absent, uterine EMG bursts temporally correspond to contractions. In the second stage, uterine EMG bursts usually occur at same frequency as groups of abdominal bursts and precede abdominal bursts, whereas abdominal EMG bursts correspond to contractions and are accompanied by feelings of "urge to push." Uterine EMG increases progressively from nonlabor to second stage of labor. (1) Uterine EMG activity can be separated from abdominal EMG events by filtering. (2) Uterine EMG gradually evolves from the antepartum stage to the first and second stages of labor. (3) Uterine and abdominal EMG reflect electrical activity of the muscles during labor and are valuable to assess uterine and abdominal muscle events that control labor. (4) During the first stage of labor uterine, EMG is responsible for contractions, and during the second stage, both uterine and abdominal muscle participate in labor.

  9. The repetition timing of high frequency afferent stimulation drives the bidirectional plasticity at central synapses in the rat medial vestibular nuclei.

    PubMed

    Scarduzio, M; Panichi, R; Pettorossi, V E; Grassi, S

    2012-10-25

    In this study we show that high frequency stimulation (HFS, 100Hz) of afferent fibers to the medial vestibular nucleus (MVN) can induce opposite long-term modifications of synaptic responses in the type B neurons depending upon the stimulation pattern. Long burst stimulation (LBS: 2s) and short burst stimulation (SBS: 0.55s) were applied with different burst number (BN) and inter-burst intervals (IBI). It results that both LBS and SBS can induce either N-methyl-d aspartate receptors (NMDARs)-mediated long-term potentiation (LTP) or long-term depression (LTD), depending on temporal organization of repetitive bursts. In particular, the IBI plays a relevant role in guiding the shift from LTP to LTD since by using both LBS and SBS LTP is induced by shorter IBI than LTD. By contrast, the sign of long-term effect does not depend on the mean impulse frequency evaluated within the entire stimulation period. Therefore, the patterns of repetitive vestibular activation with different ratios between periods of increased activity and periods of basal activity may lead to LTP or LTD probably causing different levels of postsynaptic Ca(2+). On the whole, this study demonstrates that glutamatergic vestibular synapse in the MVN can undergo NMDAR-dependent bidirectional plasticity and puts forward a new aspect for understanding the adaptive and compensatory plasticity of the oculomotor responses. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    PubMed

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P < 0.05), and greater variabilities were observed (P < 0.05). Rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep [median (interquartile range): 5.2 (2.6-8.9) times per h] was preceded by a transient decrease in RR intervals, and was accompanied by a transient decrease in delta elelctroencephalogram power. In humans, masseter bursts of rhythmic masticatory muscle activity were characterized by a lower activity, longer duration and longer cycle length than those of chewing (P < 0.05). Rhythmic masticatory muscle activity during non-rapid eye movement sleep [1.4 (1.18-2.11) times per h] was preceded by a transient decrease in RR intervals and an increase in cortical activity. Rhythmic masticatory muscle activity in animals had common physiological components representing transient arousal-related rhythmic jaw motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  11. Critical Bursts in Filtration

    NASA Astrophysics Data System (ADS)

    Bianchi, Filippo; Thielmann, Marcel; de Arcangelis, Lucilla; Herrmann, Hans Jürgen

    2018-01-01

    Particle detachment bursts during the flow of suspensions through porous media are a phenomenon that can severely affect the efficiency of deep bed filters. Despite the relevance in several industrial fields, little is known about the statistical properties and the temporal organization of these events. We present experiments of suspensions of deionized water carrying quartz particles pushed with a peristaltic pump through a filter of glass beads measuring simultaneously the pressure drop, flux, and suspension solid fraction. We find that the burst size distribution scales consistently with a power law, suggesting that we are in the presence of a novel experimental realization of a self-organized critical system. Temporal correlations are present in the time series, like in other phenomena such as earthquakes or neuronal activity bursts, and also an analog to Omori's law can be shown. The understanding of burst statistics could provide novel insights in different fields, e.g., in the filter and petroleum industries.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  13. Fast drift kilometric radio bursts and solar proton events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Kahler, S. W.; Cane, H. V.; Mcguire, R. E.; Vonrosenvinge, T. T.; Stone, R. G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times 20 min (median duration approximately 35 min).

  14. Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

    PubMed Central

    Singh, Raksha; Dangol, Sarmina; Chen, Yafei; Choi, Jihyun; Cho, Yoon-Seong; Lee, Jea-Eun; Choi, Mi-Ok; Jwa, Nam-Soo

    2016-01-01

    Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen. PMID:27126515

  15. Preserved dichotomy but highly irregular and burst discharge in the basal ganglia in alert dystonic rats at rest.

    PubMed

    Kumbhare, Deepak; Chaniary, Kunal D; Baron, Mark S

    2015-10-22

    Despite its prevalence, the underlying pathophysiology of dystonia remains poorly understood. Using our novel tri-component classification algorithm, extracellular neuronal activity in the globus pallidus (GP), STN, and the entopeduncular nucleus (EP) was characterized in 34 normal and 25 jaundiced dystonic Gunn rats with their heads restrained while at rest. In normal rats, neurons in each nucleus were similarly characterized by two physiologically distinct types: regular tonic with moderate discharge frequencies (mean rates in GP, STN and EP ranging from 35-41 spikes/s) or irregular at slower frequencies (17-20 spikes/s), with a paucity of burst activity. In dystonic rats, these nuclei were also characterized by two distinct principal neuronal patterns. However, in marked difference, in the dystonic rats, neurons were primarily slow and highly irregular (12-15 spikes/s) or burst predominant (14-17 spikes/s), with maintained modest differences between nuclei. In GP and EP, with increasing severity of dystonia, burstiness was moderately further increased, irregularity mildly further increased, and discharge rates mildly further reduced. In contrast, these features did not appreciably change in STN with worsening dystonia. Findings of a lack of bursting in GP, STN and EP in normal rats in an alert resting state and prominent bursting in dystonic Gunn rats suggest that cortical or other external drive is normally required for bursting in these nuclei and that spontaneous bursting, as seen in dystonia and Parkinson's disease, is reflective of an underlying pathophysiological state. Moreover, the extent of burstiness appears to most closely correlate with the severity of the dystonia. Published by Elsevier B.V.

  16. A modeling approach on why simple central pattern generators are built of irregular neurons.

    PubMed

    Reyes, Marcelo Bussotti; Carelli, Pedro Valadão; Sartorelli, José Carlos; Pinto, Reynaldo Daniel

    2015-01-01

    The crustacean pyloric Central Pattern Generator (CPG) is a nervous circuit that endogenously provides periodic motor patterns. Even after about 40 years of intensive studies, the rhythm genesis is still not rigorously understood in this CPG, mainly because it is made of neurons with irregular intrinsic activity. Using mathematical models we addressed the question of using a network of irregularly behaving elements to generate periodic oscillations, and we show some advantages of using non-periodic neurons with intrinsic behavior in the transition from bursting to tonic spiking (as found in biological pyloric CPGs) as building components. We studied two- and three-neuron model CPGs built either with Hindmarsh-Rose or with conductance-based Hodgkin-Huxley-like model neurons. By changing a model's parameter we could span the neuron's intrinsic dynamical behavior from slow periodic bursting to fast tonic spiking, passing through a transition where irregular bursting was observed. Two-neuron CPG, half center oscillator (HCO), was obtained for each intrinsic behavior of the neurons by coupling them with mutual symmetric synaptic inhibition. Most of these HCOs presented regular antiphasic bursting activity and the changes of the bursting frequencies was studied as a function of the inhibitory synaptic strength. Among all HCOs, those made of intrinsic irregular neurons presented a wider burst frequency range while keeping a reliable regular oscillatory (bursting) behavior. HCOs of periodic neurons tended to be either hard to change their behavior with synaptic strength variations (slow periodic burster neurons) or unable to perform a physiologically meaningful rhythm (fast tonic spiking neurons). Moreover, 3-neuron CPGs with connectivity and output similar to those of the pyloric CPG presented the same results.

  17. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors.

    PubMed

    Aroniadou-Anderjaska, Vassiliki; Pidoplichko, Volodymyr I; Figueiredo, Taiza H; Braga, Maria F M

    2018-03-01

    Synchronous, rhythmic firing of GABAergic interneurons is a fundamental mechanism underlying the generation of brain oscillations, and evidence suggests that NMDA receptors (NMDARs) play a key role in oscillatory activity by regulating the activity of interneurons. Consistent with this, derangement of brain rhythms in certain neuropsychiatric disorders, notably schizophrenia and autism, is associated with NMDAR hypofunction and loss of inhibitory interneurons. In the basolateral amygdala (BLA)-dysfunction of which is involved in a host of neuropsychiatric diseases-, principal neurons display spontaneous, rhythmic "bursts" of inhibitory activity, which could potentially be involved in the orchestration of oscillations in the BLA network; here, we investigated the role of NMDARs in these inhibitory oscillations. Rhythmic bursts of spontaneous IPSCs (0.5 Hz average burst frequency) recorded from rat BLA principal cells were blocked or significantly suppressed by D-AP5, and could be driven by NMDAR activation alone. BLA interneurons generated spontaneous bursts of suprathreshold EPSCs at a similar frequency, which were also blocked or reduced by D-AP5. PEAQX (GluN2A-NMDAR antagonist; 0.4 μM) or Ro-25-6981 (GluN2B-NMDAR antagonist; 5 μM) suppressed the IPSC and EPSC bursts; suppression by PEAQX was significantly greater than that by Ro-25-6981. Immunohistochemical labeling revealed the presence of both GluN2A- and GluN2B-NMDARs on GABAergic BLA interneurons, while, functionally, GluN2A-NMDARs have the dominant role, as suggested by a greater reduction of NMDA-evoked currents by PEAQX versus Ro-25-6981. Entrainment of BLA principal neurons in an oscillatory generation of inhibitory activity depends primarily on activation of GluN2A-NMDARs, and interneuronal GluN2A-NMDARs may play a significant role. Published by Elsevier Ltd.

  18. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.

    PubMed

    Arichi, Tomoki; Whitehead, Kimberley; Barone, Giovanni; Pressler, Ronit; Padormo, Francesco; Edwards, A David; Fabrizi, Lorenzo

    2017-09-12

    Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32-36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

  19. The 2001 April Burst Activation of SGR 1900-14: Pulse Properties and Torque

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Goegues, E.; Finger, M. H.; Feroci, M.; Mereghetti, S.; Swank, J. H.; Hurley, K.; Heise, J.; Smith D.

    2003-01-01

    We report on observations of SGR 1900+14 made with the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAXduring the 2001 April burst activation of the source. Using these data, we measure the spin-down torque on the star and confirm earlier findings that the torque and burst activity are not directly correlated. We compare the X-ray pulse profile to the gamma-ray profile during the April 18 intermediate flare and show that (1) their shapes are similar and (1) the gamma-ray profile aligns closely in phase with the X-ray pulsations. The good phase alignment of the gamma-ray and X-ray profiles suggests that there was no rapid spin-down following this flare of the magnitude inferred for the August 27 giant flare. We discuss how these observations further constrain magnetic field reconfiguration models for the large flares of SGRs.

  20. Within-session decrement of the emission of licking bursts following reward devaluation in rats licking for sucrose

    PubMed Central

    Galistu, Adriana

    2017-01-01

    We previously observed that dopamine D2-like receptor blockade in rats licking for sucrose produced a within-session decrement of the emission of licking bursts similar to the effect of either reward devaluation, or neuroleptics, on operant responding for different rewards, which, accordingly, we interpreted as an extinction-like effect. This implies that exposing animals to reward devaluation would result in a drop of burst number taking place only after the contact with the devalued reward. To test this prediction, we compared the difference in the within-session time course of burst number in response to high (10%) versus low (2%) concentration sucrose solutions, either in a condition of reward devaluation (exposure to 2% after daily 10%), or in a condition which does not involve changes in the reward value (two groups of subjects each repeatedly exposed to only one of the two concentrations). Reward devaluation resulted in a within-session decrement of the burst number, with the response rate dropping only after the contact with the devalued reward, as predicted. This response pattern was reliably observed only in subjects at their first devaluation experience. In contrast, exposure of separate groups of animals to the two different concentrations yielded lower levels of burst number in the low concentration group apparent since the beginning of the session, as previously observed with dopamine D1-like receptor blockade. These results show that the analysis of burst number, but not of burst size, reveals a specific activation pattern in response to reward devaluation, which differs from the pattern observed comparing the response to two different sucrose concentrations in separate groups of subjects, i.e. in a condition not involving reward devaluation. Finally, the characterisation of the experimental measures of the analysis of licking microstructure in behaviourally (and psychologically) meaningful functional terms, might be relevant for the investigation of the mechanisms underlying behavioural activation and the related evaluation processes. PMID:28493981

  1. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  2. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  3. Tonic nanomolar dopamine enables an activity-dependent phase recovery mechanism that persistently alters the maximal conductance of the hyperpolarization-activated current in a rhythmically active neuron.

    PubMed

    Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J

    2011-11-09

    The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.

  4. A closed-loop anesthetic delivery system for real-time control of burst suppression

    NASA Astrophysics Data System (ADS)

    Liberman, Max Y.; Ching, ShiNung; Chemali, Jessica; Brown, Emery N.

    2013-08-01

    Objective. There is growing interest in using closed-loop anesthetic delivery (CLAD) systems to automate control of brain states (sedation, unconsciousness and antinociception) in patients receiving anesthesia care. The accuracy and reliability of these systems can be improved by using as control signals electroencephalogram (EEG) markers for which the neurophysiological links to the anesthetic-induced brain states are well established. Burst suppression, in which bursts of electrical activity alternate with periods of quiescence or suppression, is a well-known, readily discernible EEG marker of profound brain inactivation and unconsciousness. This pattern is commonly maintained when anesthetics are administered to produce a medically-induced coma for cerebral protection in patients suffering from brain injuries or to arrest brain activity in patients having uncontrollable seizures. Although the coma may be required for several hours or days, drug infusion rates are managed inefficiently by manual adjustment. Our objective is to design a CLAD system for burst suppression control to automate management of medically-induced coma. Approach. We establish a CLAD system to control burst suppression consisting of: a two-dimensional linear system model relating the anesthetic brain level to the EEG dynamics; a new control signal, the burst suppression probability (BSP) defining the instantaneous probability of suppression; the BSP filter, a state-space algorithm to estimate the BSP from EEG recordings; a proportional-integral controller; and a system identification procedure to estimate the model and controller parameters. Main results. We demonstrate reliable performance of our system in simulation studies of burst suppression control using both propofol and etomidate in rodent experiments based on Vijn and Sneyd, and in human experiments based on the Schnider pharmacokinetic model for propofol. Using propofol, we further demonstrate that our control system reliably tracks changing target levels of burst suppression in simulated human subjects across different epidemiological profiles. Significance. Our results give new insights into CLAD system design and suggest a control-theory framework to automate second-to-second control of burst suppression for management of medically-induced coma.

  5. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    NASA Astrophysics Data System (ADS)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to see whether they predict in situ detection of MF burst.

  6. PBF Reactor Building (PER620). Cubicle 10 area in basement. Highdensity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10 area in basement. High-density shielding bricks will protect personnel from radiation coming from in-pile-tube coolant and blowdown tank. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-348 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. PBF Control Building (PER619). Interior detail of control room's severe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior detail of control room's severe fuel damage instrument panel. Indicators provided real-time information about test underway in PBF reactor. Note audio speaker. Date: May 2004. INEEL negative no, HD-41-7-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. PBF Reactor Building (PER620). Detail of fuel test assembly in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of fuel test assembly in preparation for test. When complete, it will fit into in-pile tube. The maximum outside diameter of which must be about 8.25 inches. Date: 1982. INEEL negative no. 82-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. PBF (PER620) interior. Detail view across top of reactor tank. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. Detail view across top of reactor tank. Camera facing northeast. Ait tubing is cleanup equipment. Note projections from reactor structure above water level in tank. Date: May 2004. INEEL negative no. HD-41-5-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. PBF Cooling Tower (PER720) and its Auxiliary Building (PER625). Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720) and its Auxiliary Building (PER-625). Camera facing west shows east facades. Center pipe carried secondary coolant water from reactor. Building to distributor basin. Date: August 2003. INEEL negative no. HD-35-10-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. PBF Cooling Tower (PER720), and Auxiliary Building (PER624). Camera faces ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720), and Auxiliary Building (PER-624). Camera faces north to show south facades. Oblong vertical structure at left of center is weather shield for stairway. Date: August 2003. INEEL negative no. HD-35-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. SPERTI Control Building (PER601) interior. Control panel with data readout ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Control Building (PER-601) interior. Control panel with data readout equipment in control room. Panels and equipment were fabricated elsewhere at NRTS during SPERT-I construction. Photographer: R.G. Larsen. Date: November 21, 1955. INEEL negative no. 55-3208 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, A.L.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  14. PBF Control Building (PER619) floor plan and elevations. Room numbers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619) floor plan and elevations. Room numbers and functions. Roof plans for "high" roof and rest of roof. Ebasco Services 1205-PER/PER 619-A-1. Date: July 1965. INEEL index no. 760-0619-00-205-123022 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. A poly (lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate promoting osteoblast attachment, proliferation and differentiation in bone tissue engineering.

    PubMed

    Qu, Xiangyang; Cao, Yujiang; Chen, Cong; Die, Xiaohong; Kang, Quan

    2014-12-10

    We explored a novel biodegradable poly (lactide-co-glycolide) (PLGA) film loaded with over 80 wt% bone morphogenetic protein (BMP-2), which was regarded as a substrate promoting osteoblast attachment, proliferation and differentiation for application of bone tissue engineering. Using phospholipid as a surfactant, BMP-2 was modified as a complex (PBC) for dispersing in PLGA/dichloromethane solution. The PLGA film loaded with BMP-2 and phospholipid complex (PBC-PF) showed rough and draped morphology with high entrapment efficiency exceeding 80% and good hydrophilicity respectively. The in-vitro release study of BMP-2 showed that about 50% BMP-2 was slowly and continuously released from PBC-PF within 5 weeks and had a short initial burst release only in the last 1.5 days, which was better than serious burst release of PLGA film loaded with pure BMP-2 without phospholipid (BMP-PF) controlling. By comparison with other PLGA films and tissue culture plates, it was confirmed that PBC-PF significantly promoted the attachment, proliferation and differentiation of osteoblasts with higher entrapment efficiency and better sustained release. These advantages illustrated that PBC-PF could be a potential substrate providing long-term requisite growth factors for osteoblasts, which might be applied in bone tissue engineering. This article is protected by copyright. All rights reserved. Copyright © 2014 Wiley Periodicals, Inc., A Wiley Company.

  16. A poly(lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate-promoting osteoblast attachment, proliferation, and differentiation in bone tissue engineering.

    PubMed

    Qu, Xiangyang; Cao, Yujiang; Chen, Cong; Die, Xiaohong; Kang, Quan

    2015-08-01

    We explored a novel biodegradable poly(lactide-co-glycolide) (PLGA) film loaded with over 80 wt % bone morphogenetic protein (BMP)-2, which was regarded as a substrate-promoting osteoblast attachment, proliferation, and differentiation for application of bone tissue engineering. Using phospholipid as a surfactant, BMP-2 was modified as a complex (PBC) for dispersing in PLGA/dichloromethane solution. The PLGA film loaded with BMP-2 and phospholipid complex (PBC-PF) showed rough and draped morphology with high entrapment efficiency exceeding 80% and good hydrophilicity, respectively. The in vitro release study of BMP-2 showed that about 50% BMP-2 was slowly and continuously released from PBC-PF within 5 weeks and had a short initial burst release only in the last 1.5 days, which was better than serious burst release of PLGA film loaded with pure BMP-2 without phospholipid (BMP-PF) as control. By comparison with other PLGA films and tissue culture plates, it was confirmed that PBC-PF significantly promoted the attachment, proliferation, and differentiation of osteoblasts with higher entrapment efficiency and better sustained release. These advantages illustrated that PBC-PF could be a potential substrate providing long-term requisite growth factors for osteoblasts, which might be applied in bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  17. Microphysics in the Gamma-Ray Burst Central Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janiuk, Agnieszka, E-mail: agnes@cft.edu.pl

    We calculate the structure and evolution of a gamma-ray burst central engine where an accreting torus has formed around the newly born black hole. We study the general relativistic, MHD models and we self-consistently incorporate the nuclear equation of state. The latter accounts for the degeneracy of relativistic electrons, protons, and neutrons, and is used in the dynamical simulation, instead of a standard polytropic γ -law. The EOS provides the conditions for the nuclear pressure in the function of density and temperature, which evolve with time according to the conservative MHD scheme. We analyze the structure of the torus andmore » outflowing winds, and compute the neutrino flux emitted through the nuclear reaction balance in the dense and hot matter. We also estimate the rate of transfer of the black-hole rotational energy to the bipolar jets. Finally, we elaborate on the nucleosynthesis of heavy elements in the accretion flow and the wind, through computations of the thermonuclear reaction network. We discuss the possible signatures of the radioactive element decay in the accretion flow. We suggest that further detailed modeling of the accretion flow in the GRB engine, together with its microphysics, may be a valuable tool to constrain the black-hole mass and spin. It can be complementary to the gravitational wave analysis if the waves are detected with an electromagnetic counterpart.« less

  18. The high-redshift gamma-ray burst GRB 140515A. A comprehensive X-ray and optical study

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P.; Sánchez-Ramírez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thöne, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-01

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile (proposal code: 093.A-0069), on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme 49-008), and on observations made with the Italian 3.6-m Telescopio Nazionale Galileo (TNG), operated by the Fundación Galileo Galilei of the INAF (Instituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme A26TAC_63).Appendix A is available in electronic form at http://www.aanda.org

  19. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.

    PubMed

    Swan, Brandon D; Brocker, David T; Hilliard, Justin D; Tatter, Stephen B; Gross, Robert E; Turner, Dennis A; Grill, Warren M

    2016-02-01

    We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Effects of anticonvulsants on soman-induced epileptiform activity in the guinea-pig in vitro hippocampus.

    PubMed

    Harrison, Patrick K; Sheridan, Robert D; Green, A Chris; Tattersall, John E H

    2005-08-22

    Seizures arising from acetylcholinesterase inhibition are a feature of organophosphate anticholinesterase intoxication. Although benzodiazepines are effective against these seizures, alternative anticonvulsant drugs may possess greater efficacy and fewer side-effects. We have investigated in the guinea-pig hippocampal slice preparation the ability of a series of anticonvulsants to suppress epileptiform bursting induced by the irreversible organophosphate anticholinesterase, soman (100 nM). Carbamazepine (300 microM), phenytoin (100 microM), topiramate (100-300 microM) and retigabine (1-30 microM) reduced the frequency of bursting but only carbamazepine and phenytoin induced a concurrent reduction in burst duration. Felbamate (100-500 microM) and clomethiazole (100-300 microM) had no effect on burst frequency but decreased burst duration. Clozapine (3-30 microM) reduced the frequency but did not influence burst duration. Levetiracetam (100-300 microM) and gabapentin (100-300 microM) were without effect. These data suggest that several compounds, in particular clomethiazole, clozapine, felbamate, topiramate and retigabine, merit further evaluation as possible treatments for organophosphate poisoning.

  1. Effects of procaine on a central neuron of the snail, Achatina fulica Ferussac.

    PubMed

    Lin, Chia-Hsien; Tsai, Ming-Cheng

    2005-02-18

    Effects of procaine on a central neuron (RP1) of the giant African snail (Achatina fulica Ferussac) were studied pharmacologically. The RP1 neuron showed spontaneous firing of action potential. Extra-cellular application of procaine (10 mM) reversibly elicited bursts of potential. The bursts of potential elicited by procaine were not blocked after administration of (1) prazosin, propranolol, atropine, d-tubocurarine, (2) calcium-free solution, (3) ryanodine (4) pretreatment with KT-5720 or chelerythrine. The bursts of potential elicited by procaine were blocked by adding U73122 (10 microM) and the bursts of potential were decreased if physiological sodium ion was replaced with lithium ion or incubated with either neomycin (3.5 mM) or high magnesium solution (30 mM). Preatment with U73122 (10 microM) blocked the initiation of bursts of potential. Ruthenium red (100 microM) or caffeine (10 mM) facilitated the procaine-elicited bursts of potential. It is concluded that procaine reversibly elicits bursts of potential in the central snail neuron. This effect was not directly related to (1) the extra-cellular calcium ion fluxes, (2) the ryanodine sensitive calcium channels in the neuron, or (3) the PKC or PKA related messenger systems. The procaine-elicited bursts of potential were associated with the phospholipase activity and the calcium mobilization in the neuron.

  2. Activation of multiple pH-regulatory pathways in granulocytes by a phosphotyrosine phosphatase antagonist.

    PubMed Central

    Bianchini, L; Nanda, A; Wasan, S; Grinstein, S

    1994-01-01

    Activated phagocytes undergo a massive burst of metabolic acid generation, yet must be able to maintain their cytosolic pH (pHi) within physiological limits. Peroxides of vanadate (V(4+)-OOH), potent inhibitors of phosphotyrosine phosphatases, have recently been shown to produce activation of the respiratory burst in HL60 granulocytes. We therefore investigated the effects of V(4+)-OOH on pHi homoeostasis in HL60 granulocytes, using a pH-sensitive fluorescent dye. V(4+)-OOH stimulation induced a biphasic pH change: a transient cytosolic acidification followed by a significant alkalinization. The initial acidification was prevented by inhibition of the NADPH oxidase and was absent in undifferentiated cells lacking oxidase activity. Analysis of the alkalinization phase demonstrated the involvement of the Na+/H+ antiporter, and also provided evidence for activation of two alternative H(+)-extrusion pathways: a bafilomycin-sensitive component, likely reflecting vacuolar-type H(+)-ATPase activity, and a Zn(2+)-sensitive H(+)-conductive pathway. Our results indicate that V(4+)-OOH stimulation not only activated the NADPH oxidase but concomitantly stimulated H(+)-extrusion pathways, enabling the cells to compensate for the massive production of intracellular H+ associated with the respiratory burst. PMID:8043000

  3. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    NASA Astrophysics Data System (ADS)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  4. Beneficial Effects of Trillium govanianum Rhizomes in Pain and Inflammation.

    PubMed

    Ur Rahman, Shafiq; Adhikari, Achyut; Ismail, Muhammad; Raza Shah, Muhammad; Khurram, Muhammad; Shahid, Muhammad; Ali, Farman; Haseeb, Abdul; Akbar, Fazal; Iriti, Marcello

    2016-08-20

    Trillium govanianum rhizome is used as an analgesic and anti-inflammatory remedy in traditional medicine in northern Pakistan. In an attempt to establish its medicinal value, the present research evaluated the analgesic and anti-inflammatory potential of T. govanianum. The in vivo anti-inflammatory activity of extract and fractions was investigated in the carrageenan induced paw edema assay. The in vitro suppression of oxidative burst of extract, fractions and isolated compounds was assessed through luminol-enhanced chemiluminescence assay. The in vivo analgesic activity was assayed in chemical and thermal induced nociceptive pain models. The crude methanol extract and its solvent fractions showed anti-inflammatory and analgesic responses, exhibited by significant amelioration of paw edema and relieve of the tonic visceral chemical and acute phasic thermal nociception. In the oxidative burst assay, based on IC50, the crude methanol extract and n-butanol soluble fraction produced a significant inhibition, followed by chloroform and hexane soluble fractions as compared to ibuprofen. Similarly, the isolated compounds pennogenin and borassoside E exhibited significant level of oxidative burst suppressive activity. The in vivo anti-inflammatory and analgesic activities as well as the in vitro inhibition of oxidative burst validated the traditional use of T. govanianum rhizomes as a phytotherapeutic remedy for both inflammatory conditions and pain. The observed activities might be attributed to the presence of steroids and steroid-based compounds. Therefore, the rhizomes of this plant species could serve as potential novel source of compounds effective for alleviating pain and inflammation.

  5. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    PubMed

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  6. Effects of inhibitory neurons on the quorum percolation model and dynamical extension with the Brette-Gerstner model

    NASA Astrophysics Data System (ADS)

    Fardet, Tanguy; Bottani, Samuel; Métens, Stéphane; Monceau, Pascal

    2018-06-01

    The Quorum Percolation model (QP) has been designed in the context of neurobiology to describe the initiation of activity bursts occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. This paper aims at investigating an extension of the original QP model by taking into account the presence of inhibitory neurons in the cultures (IQP model). The first part of this paper is focused on an equivalence between the presence of inhibitory neurons and a reduction of the network connectivity. By relying on a simple topological argument, we show that the mean activation behavior of networks containing a fraction η of inhibitory neurons can be mapped onto purely excitatory networks with an appropriately modified wiring, provided that η remains in the range usually observed in neuronal cultures, namely η ⪅ 20%. As a striking result, we show that such a mapping enables to predict the evolution of the critical point of the IQP model with the fraction of inhibitory neurons. In a second part, we bridge the gap between the description of bursts in the framework of percolation and the temporal description of neural networks activity by showing how dynamical simulations of bursts with an adaptive exponential integrate-and-fire model lead to a mean description of bursts activation which is captured by Quorum Percolation.

  7. Characterization of Early Cortical Neural Network ...

    EPA Pesticide Factsheets

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to

  8. Design of lightning protection for a full-authority digital engine control

    NASA Technical Reports Server (NTRS)

    Dargi, M.; Rupke, E.; Wiles, K.

    1991-01-01

    The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.

  9. Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure

    PubMed Central

    Saito, Atsushi; Takahashi, Masayuki; Makino, Kei; Suzuki, Yukihisa; Jimbo, Yasuhiko; Nakasono, Satoshi

    2018-01-01

    High-intensity and low frequency (1–100 kHz) time-varying electromagnetic fields stimulate the human body through excitation of the nervous system. In power frequency range (50/60 Hz), a frequency-dependent threshold of the external electric field-induced neuronal modulation in cultured neuronal networks was used as one of the biological indicator in international guidelines; however, the threshold of the magnetic field-induced neuronal modulation has not been elucidated. In this study, we exposed rat brain-derived neuronal networks to a high-intensity power frequency magnetic field (hPF-MF), and evaluated the modulation of synchronized bursting activity using a multi-electrode array (MEA)-based extracellular recording technique. As a result of short-term hPF-MF exposure (50–400 mT root-mean-square (rms), 50 Hz, sinusoidal wave, 6 s), the synchronized bursting activity was increased in the 400 mT-exposed group. On the other hand, no change was observed in the 50–200 mT-exposed groups. In order to clarify the mechanisms of the 400 mT hPF-MF exposure-induced neuronal response, we evaluated it after blocking inhibitory synapses using bicuculline methiodide (BMI); subsequently, increase in bursting activity was observed with BMI application, and the response of 400 mT hPF-MF exposure disappeared. Therefore, it was suggested that the response of hPF-MF exposure was involved in the inhibitory input. Next, we screened the inhibitory pacemaker-like neuronal activity which showed autonomous 4–10 Hz firing with CNQX and D-AP5 application, and it was confirmed that the activity was reduced after 400 mT hPF-MF exposure. Comparison of these experimental results with estimated values of the induced electric field (E-field) in the culture medium revealed that the change in synchronized bursting activity occurred over 0.3 V/m, which was equivalent to the findings of a previous study that used the external electric fields. In addition, the results suggested that the potentiation of neuronal activity after 400 mT hPF-MF exposure was related to the depression of autonomous activity of pacemaker-like neurons. Our results indicated that the synchronized bursting activity was increased by hPF-MF exposure (E-field: >0.3 V/m), and the response was due to reduced inhibitory pacemaker-like neuronal activity. PMID:29662453

  10. Number of transients/Q-bursts in ELF-band as possible criterion for global thunderstorm activity estimation.

    NASA Astrophysics Data System (ADS)

    Ondraskova, Adriena; Sevcik, Sebastian

    2015-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance (SOD). Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - December 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Limits (min-max) for the width of primary spike, time difference between primary and secondary spike and the amplitude of the spike were chosen as criteria for the identification of the burst. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients can be a suitable criterion for the quantification of global lightning activity.

  11. Gamma-ray burst jet dynamics and their interaction with the progenitor star.

    PubMed

    Lazzati, Davide; Morsony, Brian J; Begelman, Mitchell C

    2007-05-15

    The association of at least some long gamma-ray bursts with type Ic supernova explosions has been established beyond reasonable doubt. Theoretically, the challenge is to explain the presence of a light hyper-relativistic flow propagating through a massive stellar core without losing those properties. We discuss the role of the jet-star interaction in shaping the properties of the outflow emerging on the surface of the star. We show that the nature of the inner engine is hidden from the observer for most of the evolution, well beyond the time of the jet breakout on the stellar surface. The discussion is based on analytical considerations as well as high resolution numerical simulations. Finally, the observational consequences of the scenario are addressed in light of the present capabilities.

  12. Galactic and extragalactic hydrogen in the X-ray spectra of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Rácz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horváth, I.; Pintér, S.

    2017-07-01

    Two types of emission can be observed from gamma-ray bursts (GRBs): the prompt emission from the central engine which can be observed in gamma or X-ray (as a low energy tail) and the afterglow from the environment in X-ray and at shorter frequencies. We examined the Swift XRT spectra with the XSPEC software. The correct estimation of the galactic interstellar medium is very important because we observe the host emission together with the galactic hydrogen absorption. We found that the estimated intrinsic hydrogen column density and the X-ray flux depend heavily on the redshift and the galactic foreground hydrogen. We also found that the initial parameters of the iteration and the cosmological parameters did not have much effect on the fitting result.

  13. Large Solar Energetic Particle Events Associated With Filament Eruptions Outside Active Regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.

    2015-01-01

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds approx. 1000 km/s) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2-3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of approx.2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10-100 MeV range, but there were other low-intensity SEP events with spectral indices ?4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  14. Activity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts.

    PubMed

    Walton, Mark M G; Freedman, Edward G

    2014-01-01

    Primates explore a visual scene through a succession of saccades. Much of what is known about the neural circuitry that generates these movements has come from neurophysiological studies using subjects with their heads restrained. Horizontal saccades and the horizontal components of oblique saccades are associated with high-frequency bursts of spikes in medium-lead burst neurons (MLBs) and long-lead burst neurons (LLBNs) in the paramedian pontine reticular formation. For LLBNs, the high-frequency burst is preceded by a low-frequency prelude that begins 12-150 ms before saccade onset. In terms of the lead time between the onset of prelude activity and saccade onset, the anatomical projections, and the movement field characteristics, LLBNs are a heterogeneous group of neurons. Whether this heterogeneity is endemic of multiple functional subclasses is an open question. One possibility is that some may carry signals related to head movement. We recorded from LLBNs while monkeys performed head-unrestrained gaze shifts, during which the kinematics of the eye and head components were dissociable. Many cells had peak firing rates that never exceeded 200 spikes/s for gaze shifts of any vector. The activity of these low-frequency cells often persisted beyond the end of the gaze shift and was usually related to head-movement kinematics. A subset was tested during head-unrestrained pursuit and showed clear modulation in the absence of saccades. These "low-frequency" cells were intermingled with MLBs and traditional LLBNs and may represent a separate functional class carrying signals related to head movement.

  15. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.

    PubMed

    Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J

    2006-10-11

    Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.

  16. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia

    PubMed Central

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-01-01

    Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765

  17. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms

    PubMed Central

    Phillips, Wiktor S.; Herly, Mikkel; Del Negro, Christopher A.

    2015-01-01

    Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7–43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels. PMID:26655824

  18. Activity of the Lyrid meteor stream

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.; Porubcan, V.

    1992-01-01

    The activity of the Lyrid meteor stream is in most years fairly low with a visual rate at maximum (21-22 April) of 5-10 meteors per hour. Short bursts of very high Lyrid activity, with visual hourly rates of 100 or more, have sometimes been reported. These observations generally refer to faint visual meteors. The reported bursts of high activity have occurred in a very narrow interval of solar longitudes (deg 31.24 to 31.38 equinox 1950.0), while the recurrent or 'normal' maximum for bright meteors occurs at solar longitude deg 31.6, or slightly later. A mass separation of the meteors in the shower is thus indicated.

  19. Sympathetic baroreflex gain in normotensive pregnant women

    PubMed Central

    Usselman, Charlotte W.; Skow, Rachel J.; Matenchuk, Brittany A.; Chari, Radha S.; Julian, Colleen G.; Stickland, Michael K.; Davenport, Margie H.

    2015-01-01

    Muscle sympathetic nerve activity is increased during normotensive pregnancy while mean arterial pressure is maintained or reduced, suggesting baroreflex resetting. We hypothesized spontaneous sympathetic baroreflex gain would be reduced in normotensive pregnant women relative to nonpregnant matched controls. Integrated muscle sympathetic burst incidence and total sympathetic activity (microneurography), blood pressure (Finometer), and R-R interval (ECG) were assessed at rest in 11 pregnant women (33 ± 1 wk gestation, 31 ± 1 yr, prepregnancy BMI: 23.5 ± 0.9 kg/m2) and 11 nonpregnant controls (29 ± 1 yr; BMI: 25.2 ± 1.7 kg/m2). Pregnant women had elevated baseline sympathetic burst incidence (43 ± 2 vs. 33 ± 2 bursts/100 heart beats, P = 0.01) and total sympathetic activity (1,811 ± 148 vs. 1,140 ± 55 au, P < 0.01) relative to controls. Both mean (88 ± 3 vs. 91 ± 2 mmHg, P = 0.4) and diastolic (DBP) (72 ± 3 vs. 73 ± 2 mmHg, P = 0.7) pressures were similar between pregnant and nonpregnant women, respectively, indicating an upward resetting of the baroreflex set point with pregnancy. Baroreflex gain, calculated as the linear relationship between sympathetic burst incidence and DBP, was reduced in pregnant women relative to controls (−3.7 ± 0.5 vs. −5.4 ± 0.5 bursts·100 heart beats−1·mmHg−1, P = 0.03), as was baroreflex gain calculated with total sympathetic activity (−294 ± 24 vs. −210 ± 24 au·100 heart beats−1·mmHg−1; P = 0.03). Cardiovagal baroreflex gain (sequence method) was not different between nonpregnant controls and pregnant women (49 ± 8 vs. 36 ± 8 ms/mmHg; P = 0.2). However, sympathetic (burst incidence) and cardiovagal gains were negatively correlated in pregnant women (R = −0.7; P = 0.02). Together, these data indicate that the influence of the sympathetic nervous system over arterial blood pressure is reduced in normotensive pregnancy, in terms of both long-term and beat-to-beat regulation of arterial pressure, likely through a baroreceptor-dependent mechanism. PMID:26139215

  20. PBF Cooling Tower (PER720). Camera faces east to show west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Camera faces east to show west facade. Sloped (louvered) panels in this and opposite facade allow air to enter tower and cool water falling on splash bars within. Date: August 2003. INEEL negative no. HD-35-10-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. PBF detail of metal pedestrian bridge over exposed control cables, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF detail of metal pedestrian bridge over exposed control cables, which run between Control (PER-619) and Reactor Buildings (PER-620). Camera facing northwest. Southwest corner of PER-620 at upper right of view. Date: May 2004. INEEL negative no. HD-41-6-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. PBF Reactor Building (PER620). Camera facing north toward south facade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera facing north toward south facade. Note west-wing siding on concrete block; high-bay siding of metal. Excavation and forms for signal and cable trenches proceed from building. Photographer: Kirsh. Date August 20, 1968. INEEL negative no. 68-3332 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. Testing of Selective Laser Melting Turbomachinery Applicable to Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Calvert, Marty; Turpin, Jason; Nettles, Mindy

    2015-01-01

    This task is to design, fabricate, and spin test to failure a Ti6-4 hydrogen turbopump impeller that was built using the selective laser melting (SLM) fabrication process (fig. 1). The impeller is sized around upper stage engine requirements. In addition to the spin burst test, material testing will be performed on coupons that are built with the impeller.

  4. PBF Control Building (PER619). Interior of control room. Control console ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior of control room. Control console in center of room. Indicator panels along walls. Window shown in ID-33-F-120 is between control panels at left. Camera facing northwest. Date: May 2004. INEEL negative no. HD-41-7-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. PBF Reactor Building (PER620). Camera is facing east and down ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera is facing east and down into canal and storage pit for fuel rod assemblies. Stainless steel liner is being applied, temporarily covered with plywood for protection. Photographer: John Capek. Date: August 29, 1969. INEEL negative no. 69-4641 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1990-01-01

    Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.

  8. Search for soft gamma repeaters in the SMM/HXRBS data

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Wood, K. S.; Cline, T. L.; Dennis, B. R.; Desal, U. D.; Orwig, L. E.

    1992-01-01

    The triggered fast memory of the hard X-ray burst spectrometer (HXRBS) on board the SMM is used to describe the results of a search for short transients resembling soft gamma repeater (SGR) bursts. Memory data for a total of about 4000 burst triggers, out of which only a very few could be considered as valid SGR candidate events, are analyzed. The search methodology is outlined, the HXRBS exposure and sensitivity to SGR bursts are calculated, and the criteria which constrain the number of candidate events are described. An upper limit is given for the SGR source number density. This limit, combined with results from other relevant observations and the assumption of a neutron star origin, are applied to obtain a constraint on SGR-active lifetimes.

  9. Tracking of an electron beam through the solar corona with LOFAR

    NASA Astrophysics Data System (ADS)

    Mann, G.; Breitling, F.; Vocks, C.; Aurass, H.; Steinmetz, M.; Strassmeier, K. G.; Bisi, M. M.; Fallows, R. A.; Gallagher, P.; Kerdraon, A.; Mackinnon, A.; Magdalenic, J.; Rucker, H.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bîrzan, L.; Bonafede, A.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Corstanje, A.; Gasperin, F. de; Geus, E. de; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; van Haarlem, M.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Horneffer, A.; Juette, E.; Karastergiou, A.; Klijn, W. F. A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Rafferty, D.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D. J.; Serylak, M.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, J. A.

    2018-03-01

    The Sun's activity leads to bursts of radio emission, among other phenomena. An example is type-III radio bursts. They occur frequently and appear as short-lived structures rapidly drifting from high to low frequencies in dynamic radio spectra. They are usually interpreted as signatures of beams of energetic electrons propagating along coronal magnetic field lines. Here we present novel interferometric LOFAR (LOw Frequency ARray) observations of three solar type-III radio bursts and their reverse bursts with high spectral, spatial, and temporal resolution. They are consistent with a propagation of the radio sources along the coronal magnetic field lines with nonuniform speed. Hence, the type-III radio bursts cannot be generated by a monoenergetic electron beam, but by an ensemble of energetic electrons with a spread distribution in velocity and energy. Additionally, the density profile along the propagation path is derived in the corona. It agrees well with three-fold coronal density model by (1961, ApJ, 133, 983).

  10. Search for gamma-ray transients using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  11. Changes in the X-Ray Emission from the Magnetar Candidate 1E 2259+586 During its 2002 Outburst

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kaspi, V. M.; Thompson, C.; Gavrill, F. P.; Marshall, H. L.; Chakrabarty, D.; Flanagan, K.; Heyl, J.; Hernquist, L.

    2004-01-01

    An outburst of more than 80 individual bursts, similar to those seen from Soft Gamma Repeaters (SGRs), was detected from the anomalous X-ray pulsar (AXP) 1E 2259+586 in 2002 June. Coincident with this burst activity were gross changes in the pulsed flux, persistent flux, energy spectrum, pulse profile, and spin-down of the underlying X-ray source. We present Rossi X-Ray Timing Explorer and X-Ray Multi-Mirror Mission observations of 1E 2259+586 that show the evolution of the aforementioned source parameters during and following this episode and identify recovery timescales for each. Specifically, we observe an X-ray flux increase (pulsed and phase-averaged) by more than an order of magnitude having two distinct components. The first component is linked to the burst activity and decays within approx. 2 days, during which the energy spectrum is considerably harder than during the quiescent state of the source. The second component decays over the year following the glitch according to a power law in time with an exponent -0.22 +/- 0.01. The pulsed fraction decreased initially to approx. 15% rms but recovered rapidly to the preoutburst level of approx. 23% within the first 3 days. The pulse profile changed significantly during the outburst and recovered almost fully within 2 months of the outburst. A glitch of size Delta(sib (nu)max) = (4.24 +/- 0.11) x 10(exp -6) was observed in 1E 2259+586, which preceded the observed burst activity. The glitch could not be well fitted with a simple partial exponential recovery. An exponential rise of approx. 20% of the frequency jump with a timescale of approx. 14 days results in a significantly better fit to the data; however, contamination from a systematic drift in the phase of the pulse profile cannot be excluded. A fraction of the glitch (approx. 19%) was recovered in a quasi-exponential manner having a recovery timescale of approx. 16 days. The long-term postglitch spin-down rate decreased in magnitude relative to the preglitch value. The changes in the source properties of 1E 2259+586 during its 2002 outburst are shown to be qualitatively similar to changes seen during or following burst activity in two SGRs, thus further solidifying the common nature of SGRs and AXP's as magnetars. The changes in persistent emission properties of 1E 2259+586 suggest that the star underwent a plastic deformation of the crust that simultaneously impacted the superfluid interior (crustal and possibly core superfluid) and the magnetosphere. Finally, the changes in persistent emission properties coincident with burst activity in 1E 2259+586 enabled us to infer previous burst-active episodes from this and other AXP's. The nondetection of these outbursts by all-sky gamma-ray instruments suggests that the number of active magnetar candidates in our Galaxy is larger than previously thought.

  12. Investigation of acceleration characteristics of a single-spool turbojet engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Pack, George J

    1953-01-01

    Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.

  13. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    PubMed

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  14. Investigation of the Optimum Farming Temperature for Grifola frondosa and Growth Promotion using the Bio-Electric Potential as an Index

    NASA Astrophysics Data System (ADS)

    Yanagibashi, Hideyuki; Hirama, Junji; Matsuda, Masato; Miyamoto, Toshio

    The purpose of this study was to investigate the optimum farming conditions for mushrooms from the view point of engineering field. As the bio-electric potential of mushrooms is considered to be closely related to the activation of mushroom cells, this relationship has been used to analyze the dependence of the morphogenetic characteristics of Grifola frondosa on farming temperatures (from 16 to 22 degree C). The experimental results indicated that a maximum response was exhibited, with correspondingly favorable morphogenesis obtained at 18 degree C. Based on the experimental results, including those in a previous study, it was assumed that the larger the bio-electric potential becomes, the higher the growth yield reaches. In order to support this assumption, growth promotion was conducted by intentionally activating the bio-electric potential within the mushrooms by stimulating them with short bursts of illumination. The resulting observation of growth promotion permitted the conclusion that the bio-electric potential can, indeed, be regarded as an index of growth.

  15. The association of a J-burst with a solar jet

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Fallows, R. A.; Reid, H.; Mann, G.; Bisi, M. M.; Magdalenić, J.; Rucker, H. O.; Thidé, B.; Vocks, C.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; Hoeft, M.; Iacobelli, M.; Juette, E.; Kuper, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Schwarz, D. J.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Tagger, M.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.

    2017-10-01

    Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims: Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods: We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nançay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at 11:06 UT. Results: The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions: Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts observed at low frequencies, in a similar way to the J-burst analysed here. The movie attached to Fig. 4 is available at http://www.aanda.org

  16. Dip-dependent variations in LFE duration during ETS events

    NASA Astrophysics Data System (ADS)

    Chestler, S.; Creager, K.; Ghosh, A.

    2015-12-01

    Using data from the Array of Arrays experiment, we create a new, more spatially complete catalog of LFEs beneath the Olympic Peninsula, WA. Using stacked waveforms produced by stacking 1-minute windows of data from each array over the slowness with the greatest power [Ghosh et al., 2012], we pick out peaks in tremor activity that are consistent over multiple arrays. These peaks are potential LFE detections. Fifteen-second windows of raw data centered on each peak are scanned through time. If the waveform repeats, the detection is used as a new LFE family. Template waveforms for each family are created by stacking all windows that correlate with the initial detection. During an ETS event, activity at a given point on the plate interface (i.e. the activity of an LFE family) typically lasts for 3.5 (downdip) to 5 days (updip). Activity generally begins with a flurry of LFEs lasting 8 hours (downdip) to 20 hours (updip) followed by many short bursts of activity separated by 5 hours or more. Updip families have more bursts (5-10) than downdip families (2-5 bursts). The later bursts often occur during times of encouraging tidal shear stress, while the initial flurries have no significant correlation with tides. While updip LFE families are more active during ETS events than downdip families, they seldom light up between ETS events, which only occur every 12-14 months. On the other hand, downdip LFE families are active much more frequently during the year; the most down-dip families exhibit activity every week or so. Because updip families are rarely active between ETS events, it is possible that little stress is released updip during inter-ETS time periods. Hence during ETS events more stress needs to be released updip than downdip, consistent with the longer-duration activity of updip LFE families.

  17. Force Control Is Related to Low-Frequency Oscillations in Force and Surface EMG

    PubMed Central

    Moon, Hwasil; Kim, Changki; Kwon, Minhyuk; Chen, Yen Ting; Onushko, Tanya; Lodha, Neha; Christou, Evangelos A.

    2014-01-01

    Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07±2.76 years, 7 women) performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) power spectrum of force below 2 Hz; 3) EMG bursts; 4) power spectrum of EMG bursts below 2 Hz; and 5) power spectrum of the interference EMG from 10–300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R 2 = 0.82). For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0–0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68). The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R 2 = 0.51). Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35–60 Hz (R 2 = 0.95). In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz. PMID:25372038

  18. Excretory products of the cestode, Schistocephalus solidus, modulate in vitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Scharsack, Jörn Peter; Gossens, Anabel; Franke, Frederik; Kurtz, Joachim

    2013-12-01

    Helminth parasites have evolved remarkable strategies to manipulate the immune system of their hosts. During infections of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus prominent immunological changes occur, presumably due to manipulative activity of the parasite. We hypothesise that excretory/secretory products of the parasite are involved in the manipulation of the stickleback's immune system and that this may depend on the individual parasite and its origin. We therefore produced S. solidus conditioned cell culture media (SSCM) with parasites from different origins (Norway, Spain and Germany) and exposed head kidney leukocytes (HKL) from un-infected sticklebacks in cell cultures to SSCM. After in vitro culture, HKL were subjected to differential cell counts (granulocytes/lymphocytes) by means of flow cytometry. Leukocyte sub-populations were analysed for cell viability and changes in cell morphology. The respiratory burst activity was measured with a luminescence assay. Exposure of HKL to SSCM induced an up-regulation of respiratory burst activity after already 1 h, which was still elevated at 24 h, but which was in some cases significantly down-regulated after 96 h. Respiratory burst was positively correlated with the number of live granulocytes in the culture, suggesting that the respiratory burst activity was changed by SSCM effects on granulocyte viability. After 1 h and 24 h of HKL culture, no lymphocyte responses to SSCM were detectable, but after 96 h lymphocyte viability was significantly decreased with SSCM from Spanish S. solidus. In these cultures, residual lymphocytes increased in size, suggesting that cell death and activation might have occurred in parallel. The highest respiratory burst activity was induced by SSCM from Spanish parasites, in particular when they were grown in sympatric sticklebacks. The in vitro HKL responses to SSCM depended on the individual parasite and its population of origin, suggesting that in vivo, S. solidus excretory products are regulated individually, possibly to balance the interplay of each individual host-parasite pair. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy.

    PubMed

    Cain, Stuart M; Tyson, John R; Jones, Karen L; Snutch, Terrance P

    2015-06-01

    Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.

  20. Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury

    PubMed Central

    Lee, Kun-Ze; Dougherty, Brendan J.; Sandhu, Milapjit S.; Lane, Michael A.; Reier, Paul J.; Fuller, David D.

    2013-01-01

    Cervical spinal cord injury (SCI) dramatically disrupts synaptic inputs and triggers biochemical, as well as morphological, plasticity in relation to the phrenic motor neuron (PhMN) pool. Accordingly, our primary purpose was to determine if chronic SCI induces fundamental changes in the recruitment profile and discharge patterns of PhMNs. Individual PhMN action potentials were recorded from the phrenic nerve ipsilateral to lateral cervical (C2) hemisection injury (C2Hx) in anesthetized adult male rats at 2, 4 or 8 wks post-injury and in uninjured controls. PhMNs were phenotypically classified as early (Early-I) or late inspiratory (Late-I), or silent according to discharge patterns. Following C2Hx, the distribution of PhMNs was dominated by Late-I and silent cells. Late-I burst parameters (e.g., spikes per breath, burst frequency and duration) were initially reduced but returned towards control values by 8 wks post-injury. In addition, a unique PhMN burst pattern emerged after C2Hx in which Early-I cells burst tonically during hypocapnic inspiratory apnea. We also quantified the impact of gradual reductions in end-tidal CO2 partial pressure (PETCO2) on bilateral phrenic nerve activity. Compared to control rats, as PETCO2 declined, the C2Hx animals had greater inspiratory frequencies (breaths*min−1) and more substantial decreases in ipsilateral phrenic burst amplitude. We conclude that the primary physiological impact of C2Hx on ipsilateral PhMN burst patterns is a persistent delay in burst onset, transient reductions in burst frequency, and the emergence of tonic burst patterns. The inspiratory frequency data suggest that plasticity in brainstem networks is likely to play an important role in phrenic motor output after cervical SCI. PMID:23954215

  1. Decameter Type IV Burst Associated with a Behind-the-limb CME Observed on 7 November 2013

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Brazhenko, A. I.; Konovalenko, A. A.; Dorovskyy, V. V.; Rucker, H. O.; Panchenko, M.; Frantsuzenko, A. V.; Shevchuk, M. V.

    2018-03-01

    We report on the results of observations of a type IV burst made by the Ukrainian Radio interferometer of the Academy of Sciences (URAN-2) in the frequency range 22 - 33 MHz. The burst is associated with a coronal mass ejection (CME) initiated by a behind-the-limb active region (N05E151) and was also observed by the Nançay Decameter Array (NDA) radio telescope in the frequency band 30 - 60 MHz. The purpose of the article is the determination of the source of this type IV burst. After analysis of the observational data obtained with the URAN-2, the NDA, the Solar-Terrestrial Relations Observatory (STEREO) A and B spacecraft, and the Solar and Heliospheric Observatory (SOHO) spacecraft, we come to the conclusion that the source of the burst is the core of a behind-the-limb CME. We conclude that the radio emission can escape the center of the CME core at a frequency of 60 MHz and originates from the periphery of the core at a frequency of 30 MHz that is due to occultation by the solar corona at the corresponding frequencies. We find plasma densities in these regions assuming the plasma mechanism of radio emission. We show that the frequency drift of the start of the type IV burst is governed by an expansion of the CME core. The type III bursts that were observed against this type IV burst are shown to be generated by fast electrons propagating through the CME core plasma. A type II burst was registered at frequencies of 44 - 64 MHz and 3 - 16 MHz and was radiated by a shock with velocities of about 1000 km s^{-1} and 800 km s^{-1}, respectively.

  2. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.

    PubMed

    Ohtsuka, K; Noda, H

    1995-11-01

    1. We previously described discharge properties of cerebellar output cells in the fastigial nucleus during ipsilateral and contralateral saccades. Fastigial cells exhibited unique responses depending on the direction of saccades and were involved in execution of accurate targeting saccades. Purkinje cells in the oculomotor vermis (lobules VIc and VII) are thought to modulate these discharges of fastigial cells. In this study we reexamine discharge properties of Purkinje cells on the basis of this hypothesis. 2. Initially we physiologically identified the right and left sides of the oculomotor vermis. Saccade-related discharges of 79 Purkinje cells were recorded from both sides of the vermis during visually guided saccades toward the sides ipsilateral and contralateral to the recording side in two trained macaque monkeys. To clarify the correlation of Purkinje cell discharge with burst activities in the fastigial nucleus during saccadic eye movements, we analyzed our data by employing methods used in the study of fastigial neurons. 3. Among the 79 cells, 56 (71%) showed burst discharges during saccades (saccadic burst cells). Of the 56 cells, 29 exhibited a peak of burst discharges in both the contralateral and ipsilateral directions (bidirectional cells). The remaining 27 saccadic burst cells showed a peak of burst discharges during either contralateral or ipsilateral saccades (unidirectional cells). Among the 79 cells, 14 (18%) exhibited a pause of discharges during contralateral saccades (pause cells). Among the 79 cells, 9 (11%) showed burst discharge during contralateral saccades followed by tonic discharge that was correlated with eye position (burst tonic cells). 4. The timing of bursts in bidirectional cells with respect to saccade onset was dependent on the direction of saccade. During ipsilateral saccades, Purkinje cells exhibited a long lead burst that built up gradually, peaked near the onset of the saccade, and terminated sharply near midsaccade. The mean lead time relative to saccade onset was 29.3 +/- 24.5 (SD) ms. During contralateral saccades, Purkinje cells exhibited a short lead/late burst that built up sharply, peaked near midsaccade, and terminated gradually after the end of the saccade. The mean lead time relative to saccade onset was 10.7 +/- 20.8 ms. The burst onset time during contralateral saccades and the burst offset time during ipsilateral saccades preceded the saccade offset time by about the same interval regardless of the saccade amplitude. 5. In pause cells the pause preceded saccade onset by 17.5 +/- 10.6 ms. The duration of the pause was not correlated with the duration of saccades. There was little trial-to-trial variability in the onset time of the pause with respect to the onset of saccades, whereas there was large trial-to-trial variability in the offset time of the pause with respect to the offset of saccades. In addition, the mean onset time of the pause for each cell had a relatively narrow distribution. 6. The burst lead time of burst tonic cells relative to saccade onset was 9.5 +/- 3.9 ms. The tonic discharge rate of burst tonic cells was a nonlinear function of eye position. The regression of each cell was fit to two lines. The regression coefficient ranged from 0.95 to 0.99 (mean = 0.97). 7. Axons of Purkinje cells in the oculomotor vermis are thought to project exclusively to saccadic burst cells in the fastigial oculomotor region (FOR), which is located in the caudal portion of the fastigial nucleus. Our previous studies indicated that FOR cells provide temporal signals for controlling targeting saccades. The present results suggest that Purkinje cells in the oculomotor vermis modify the temporal signals of FOR cells for saccades in different directions and amplitudes. The modification of FOR cell activity by Purkinje cells is thought to be essential for the function of the cerebellum in the control of saccadic eye movements.

  3. NADPH oxidase 2 (NOX2) enzyme activation in patients with chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Marrali, G; Salamone, P; Casale, F; Fuda, G; Cugnasco, P; Caorsi, C; Amoroso, A; Calvo, A; Lopiano, L; Cocito, D; Chiò, A

    2016-05-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immunomediated condition affecting the peripheral nervous system where probably macrophages are the primary effector cells for demyelination. Reactive oxygen species (ROS), catalyzed by the NOX family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzymes, can induce peroxidation and are potentially injurious to myelin. Our aim was to assess the activity of NOX2, an isoform of NOX, in a series of CIDP patients and to analyze the effect of intravenous immunoglobulin (IVIg) on NOX2. Thirty CIDP patients treated with IVIg and 30 control subjects were enrolled. To evaluate NOX2 activity, neutrophil and monocyte oxidative burst was measured directly in fresh whole blood using the Phagoburst™ assay, a fluorescence-activated cell sorting method. The mean fluorescence intensity, emitted in response to different stimuli, leads to the production of ROS and corresponds to the percentage of oxidizing cells and their enzymatic activity. Mean fluorescence intensity values for granulocyte and monocyte burst in patients (mean 633.3, SD 191; mean 111.8, SD 28.5) were different from those measured in healthy controls (granulocytes, mean 436.6, SD 137.0, P = 0.0003; monocytes, mean 78.2, SD 17.3, P = 0.000001). Moreover, IVIg administration increased both granulocyte (P = 0.005) and monocyte (P = 0.0009) burst. Our findings demonstrate that oxidative burst is significantly increased in CIDP patients and that treatment with IVIg enhances oxidative values, thus representing a possible IVIg therapeutic effect linked to a regulatory effect of ROS. Based on this, the development of treatments targeting the specific activation of NOX may be beneficial in autoimmune disorders. © 2016 EAN.

  4. SHIP-1 Increases Early Oxidative Burst and Regulates Phagosome Maturation in Macrophages1

    PubMed Central

    Kamen, Lynn A.; Levinsohn, Jonathan; Cadwallader, Amy; Tridandapani, Susheela; Swanson, Joel A.

    2010-01-01

    Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2) has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5) P3 to PI(3,4)P2 on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1-deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3′ phosphoinositide composition. PMID:18490750

  5. The UV behaviour of GRB 161219B/SN2016jca

    NASA Astrophysics Data System (ADS)

    Levan, Andrew

    2016-10-01

    The connection between long duration gamma-ray bursts and the stripped-envelope supernova is now secure, however, central questions remain about the nature of the supernovae and the power sources that drive them. Progress in these areas can be made through in-depth observations of nearby GRBs, in which the supernova light is sufficiently bright for detailed studies. However, such events are extremely rare, with only a handful of classical long-duration GRBs being found at z<0.2. Here we request observations of the recent GRB 161219B, and its supernova SN 2016jca. Utilising the unique ultraviolet capabilities of HST we will map the UV spectrum and its evolution with time. At a minimum, this will provide a route to tracking the afterglow and decomposing afterglow and supernova and host contributions - diagnostics that ground-based observations alone struggle to achieve. However, our sensitive UV observations will also probe the UV properties of a GRB-SN for the first time, providing insight into the metal content of the progenitor, and crucially into the nature of the central engine, which may power the prompt emission of the burst, and continue to provide energy to event at much later times. Recent observations suggest that in extremum these engines may drive supernovae to exceptional luminosities (the so-called superluminous supernovae) and provide a link between the most powerful explosions in the Universe. Our observations may offer the route to identifying such an engine at work in a lower luminosity supernova, solidifying this link.

  6. DESAlert: Enabling Real-Time Transient Follow-Up with Dark Energy Survey Data

    DOE PAGES

    Poci, A.; Kuehn, K.; Abbott, T.; ...

    2016-09-30

    Here, the Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automatedmore » notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.« less

  7. DESAlert: Enabling Real-Time Transient Follow-Up with Dark Energy Survey Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poci, A.; Kuehn, K.; Abbott, T.

    Here, the Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automatedmore » notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.« less

  8. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    PubMed

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  9. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than themore » SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.« less

  10. Late-time X-ray signatures of compact binary mergers: potential counterparts of gravitational wave events

    NASA Astrophysics Data System (ADS)

    Tanvir, Nial

    2017-09-01

    Merging compact binaries (NS-NS or NS-BH) offer the best prospects for detection of EM signals accompanying gravitational wave (GW) events. They may be seen as bright short-GRBs (SGRBs), but this is likely to be rare due to beaming. Alternatively, more isotropic near-IR emission is predicted to result from the 'kilonova' produced by radioactive decay of neutron star ejecta. However, recent XMM observations have shown unexplained excess X-ray emission several days post-burst in two low-z SGRBs. This may indicate ongoing engine activity which both enhances the nIR emission, and crucially provides a potential new isotropic X-ray signature of compact binary mergers. We propose a detailed study of a further z<0.35 SGRB, to explore this phenomenon and inform future searches for GW counterparts.

  11. Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kononovicius, A.

    2017-10-01

    We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.

  12. In vitro effects of nonesterified fatty acids on bovine neutrophils oxidative burst and viability.

    PubMed

    Scalia, D; Lacetera, N; Bernabucci, U; Demeyere, K; Duchateau, L; Burvenich, C

    2006-01-01

    An in vitro study was conducted to examine the influence of nonesterified fatty acids (NEFA) on bovine polymorphonuclear leukocytes (PMN). Eight healthy, midlactating Holstein cows were used as blood donors. Blood PMN were isolated and incubated with a mixture of NEFA, reflecting composition of bovine plasma NEFA at concentrations that were intended to mimic those found in blood of cows undergoing high, moderate, or low lipomobilization intensity (2, 1, 0.5, 0.25, 0.125, and 0.0625 mM). Control samples were incubated in absence of NEFA. Phagocytosis and oxidative burst activities were assessed by a 2-color flow cytometric method, which was based on oxidation of intracellular dihydrorhodamine 123 to green fluorescent rhodamine 123. Oxidative burst products were generated by incubating PMN with Staphylococcus aureus labeled with propidium iodide. A flow cytometric technique was used to detect PMN viability, necrosis, and apoptosis using fluorescein isothiocyanate-labeled annexin-V and propidium iodide. Phagocytic activity was not affected by NEFA. The highest concentration of NEFA (2 mM) was associated with a dramatic increase of phagocytosis-associated oxidative burst activities with a reduction in cell viability (48.0 vs. 97.5% in control samples) and with a marked increase of necrosis (49.4 vs. 0.5% in control samples). Conversely, the mixture of NEFA did not affect the occurrence of apoptosis. Enhancement of the oxidative burst associated with the highest concentration of NEFA might explain the reduced viability and higher percentage of necrosis observed under the same conditions. This study demonstrated a substantial resistance of bovine PMN to an overload of fatty acids. However, observation that the highest concentration of NEFA regulated some PMN functions encourages the possibility of in vivo studies to assess the relationships between intensity of lipomobilization, plasma NEFA, and bovine PMN functions.

  13. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalswamy, N.; Mäkelä, P.; Akiyama, S.

    2015-06-10

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric typemore » II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.« less

  14. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man

    PubMed Central

    Fairfax, Seth T; Holwerda, Seth W; Credeur, Daniel P; Zuidema, Mozow Y; Medley, John H; Dyke II, Peter C; Wray, D Walter; Davis, Michael J; Fadel, Paul J

    2013-01-01

    Sympathetic vascular transduction is commonly understood to act as a basic relay mechanism, but under basal conditions, competing dilatory signals may interact with and alter the ability of sympathetic activity to decrease vascular conductance. Thus, we determined the extent to which spontaneous bursts of muscle sympathetic nerve activity (MSNA) mediate decreases in forearm vascular conductance (FVC) and the contribution of local α-adrenergic receptor-mediated pathways to the observed FVC responses. In 19 young men, MSNA (microneurography), arterial blood pressure and brachial artery blood flow (duplex Doppler ultrasound) were continuously measured during supine rest. These measures were also recorded in seven men during intra-arterial infusions of normal saline, phentolamine (PHEN) and PHEN with angiotensin II (PHEN+ANG). The latter was used to control for increases in resting blood flow with α-adrenergic blockade. Spike-triggered averaging was used to characterize beat-by-beat changes in FVC for 15 cardiac cycles following each MSNA burst and a peak response was calculated. Following MSNA bursts, FVC initially increased by +3.3 ± 0.3% (P= 0.016) and then robustly decreased to a nadir of −5.8 ± 1.6% (P < 0.001). The magnitude of vasoconstriction appeared graded with the number of consecutive MSNA bursts; while individual burst size only had a mild influence. Neither PHEN nor PHEN+ANG infusions affected the initial rise in FVC, but both infusions significantly attenuated the subsequent decrease in FVC (–2.1 ± 0.7% and –0.7 ± 0.8%, respectively; P < 0.001 vs. normal saline). These findings indicate that spontaneous MSNA bursts evoke robust beat-by-beat decreases in FVC that are exclusively mediated via α-adrenergic receptors. PMID:23652594

  15. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization

    PubMed Central

    Wiggin, Timothy D.; Anderson, Tatiana M.; Eian, John; Peck, Jack H.

    2012-01-01

    Despite the diverse methods vertebrates use for locomotion, there is evidence that components of the locomotor central pattern generator (CPG) are conserved across species. When zebrafish begin swimming early in development, they perform short episodes of activity separated by periods of inactivity. Within these episodes, the trunk flexes with side-to-side alternation and the traveling body wave progresses rostrocaudally. To characterize the distribution of the swimming CPG along the rostrocaudal axis, we performed transections of the larval zebrafish spinal cord and induced fictive swimming using N-methyl-d-aspartate (NMDA). In both intact and spinalized larvae, bursting is found throughout the rostrocaudal extent of the spinal cord, and the properties of fictive swimming observed were dependent on the concentration of NMDA. We isolated series of contiguous spinal segments by performing multiple spinal transections on the same larvae. Although series from all regions of the spinal cord have the capacity to produce bursts, the capacity to produce organized episodes of fictive swimming has a rostral bias: in the rostral spinal cord, only 12 contiguous body segments are necessary, whereas 23 contiguous body segments are necessary in the caudal spinal cord. Shorter series of segments were often active but produced either continuous rhythmic bursting or sporadic, nonrhythmic bursting. Both episodic and continuous bursting alternated between the left and right sides of the body and showed rostrocaudal progression, demonstrating the functional dissociation of the circuits responsible for episodic structure and fine burst timing. These findings parallel results in mammalian locomotion, and we propose a hierarchical model of the larval zebrafish swimming CPG. PMID:22572943

  16. Deep searches for broadband extended gravitational-wave emission bursts by heterogeneous computing

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2017-09-01

    We present a heterogeneous search algorithm for broadband extended gravitational-wave emission, expected from gamma-ray bursts and energetic core-collapse supernovae. It searches the (f,\\dot{f})-plane for long-duration bursts by inner engines slowly exhausting their energy reservoir by matched filtering on a graphics processor unit (GPU) over a template bank of millions of 1 s duration chirps. Parseval's theorem is used to predict the standard deviation σ of the filter output, taking advantage of the near-Gaussian noise in the LIGO S6 data over 350-2000 Hz. Tails exceeding a multiple of σ are communicated back to a central processing unit. This algorithm attains about 65% efficiency overall, normalized to the fast Fourier transform. At about one million correlations per second over data segments of 16 s duration (N=2^{16} samples), better than real-time analysis is achieved on a cluster of about a dozen GPUs. We demonstrate its application to the capture of high-frequency hardware LIGO injections. This algorithm serves as a starting point for deep all-sky searches in both archive data and real-time analysis in current observational runs.

  17. High-speed noncontact acoustic inspection method for civil engineering structure using multitone burst wave

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Sugimoto, Kazuko; Kosuge, Nobuaki; Utagawa, Noriyuki; Katakura, Kageyoshi

    2017-07-01

    The noncontact acoustic inspection method focuses on the resonance phenomenon, and the target surface is measured by being vibrated with an airborne sound. It is possible to detect internal defects near the surface layer of a concrete structure from a long distance. However, it requires a fairly long measurement time to achieve the signal-to-noise (S/N) ratio just to find some resonance frequencies. In our method using the conventional waveform “single-tone burst wave”, only one frequency was used for one-sound-wave emission to achieve a high S/N ratio using a laser Doppler vibrometer (LDV) at a safe low power (e.g., He-Ne 1 mW). On the other hand, in terms of the difference in propagation velocity between laser light and sound waves, the waveform that can be used for high-speed measurement was devised using plural frequencies for one-sound-wave emission (“multitone burst wave”). The measurement time at 35 measurement points has been dramatically decreased from 210 to 28 s when using this waveform. Accordingly, 7.5-fold high-speed measurement became possible. By some demonstration experiments, we confirmed the effectiveness of our measurement technique.

  18. Ferroelectric Emission Cathodes for Low-Power Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Kovaleski, Scott D.; Burke, Tom (Technical Monitor)

    2002-01-01

    Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.

  19. Variable jet properties in GRB 110721A: time resolved observations of the jet photosphere

    NASA Astrophysics Data System (ADS)

    Iyyani, S.; Ryde, F.; Axelsson, M.; Burgess, J. M.; Guiriec, S.; Larsson, J.; Lundman, C.; Moretti, E.; McGlynn, S.; Nymark, T.; Rosquist, K.

    2013-08-01

    Fermi Gamma-ray Space Telescope observations of GRB 110721A have revealed two emission components from the relativistic jet: emission from the photosphere, peaking at ˜100 keV, and a non-thermal component, which peaks at ˜1000 keV. We use the photospheric component to calculate the properties of the relativistic outflow. We find a strong evolution in the flow properties: the Lorentz factor decreases with time during the bursts from Γ ˜ 1000 to ˜150 (assuming a redshift z = 2; the values are only weakly dependent on unknown efficiency parameters). Such a decrease is contrary to the expectations from the internal shocks and the isolated magnetar birth models. Moreover, the position of the flow nozzle measured from the central engine, r0, increases by more than two orders of magnitude. Assuming a moderately magnetized outflow we estimate that r0 varies from 106 to ˜109 cm during the burst. We suggest that the maximal value reflects the size of the progenitor core. Finally, we show that these jet properties naturally explain the observed broken power-law decay of the temperature which has been reported as a characteristic for gamma-ray burst pulses.

  20. Compact solar UV burst triggered in a magnetic field with a fan-spine topology

    NASA Astrophysics Data System (ADS)

    Chitta, L. P.; Peter, H.; Young, P. R.; Huang, Y.-M.

    2017-09-01

    Context. Solar ultraviolet (UV) bursts are small-scale features that exhibit intermittent brightenings that are thought to be due to magnetic reconnection. They are observed abundantly in the chromosphere and transition region, in particular in active regions. Aims: We investigate in detail a UV burst related to a magnetic feature that is advected by the moat flow from a sunspot towards a pore. The moving feature is parasitic in that its magnetic polarity is opposite to that of the spot and the pore. This comparably simple photospheric magnetic field distribution allows for an unambiguous interpretation of the magnetic geometry leading to the onset of the observed UV burst. Methods: We used UV spectroscopic and slit-jaw observations from the Interface Region Imaging Spectrograph (IRIS) to identify and study chromospheric and transition region spectral signatures of said UV burst. To investigate the magnetic topology surrounding the UV burst, we used a two-hour-long time sequence of simultaneous line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) and performed data-driven 3D magnetic field extrapolations by means of a magnetofrictional relaxation technique. We can connect UV burst signatures to the overlying extreme UV (EUV) coronal loops observed by the Atmospheric Imaging Assembly (AIA). Results: The UV burst shows a variety of extremely broad line profiles indicating plasma flows in excess of ±200 km s-1 at times. The whole structure is divided into two spatially distinct zones of predominantly up- and downflows. The magnetic field extrapolations show a persistent fan-spine magnetic topology at the UV burst. The associated 3D magnetic null point exists at a height of about 500 km above the photosphere and evolves co-spatially with the observed UV burst. The EUV emission at the footpoints of coronal loops is correlated with the evolution of the underlying UV burst. Conclusions: The magnetic field around the null point is sheared by photospheric motions, triggering magnetic reconnection that ultimately powers the observed UV burst and energises the overlying coronal loops. The location of the null point suggests that the burst is triggered low in the solar chromosphere. Movies associated to Figs. 2 and 4 are available at http://www.aanda.org

  1. The Federal Aviation Administration Plan for Research, Engineering and Development. Volume 1. Program Plan

    DTIC Science & Technology

    1989-01-01

    Mid * Advanced Propulsion System Far * Rotor Burst Protection Reports Mid 11.4 Flight Safety / * Aircraft Icing Handbook Near Atmospheric Hazards...with operating the national aviation system include air traffic controllers, flight service specialists, maintenance technicians, safety inspectors...address the design and certification of flight deck systems and revised crew training requirements. In FY 1988, studies of safety data were initiated to

  2. SPERTI Gate House at control area (PER603). Floor plan, elevations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Gate House at control area (PER-603). Floor plan, elevations, sections. This Gate House replaced the original gate house, for which drawings are no longer extant. F.C. Torkelson 842-SPERT-603-A-1. Date: February 1962. INEEL index no. 760-0603-00-851-151336 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. PBF Reactor Building (PER620). Construction view shows native lava rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Construction view shows native lava rock surrounding basement excavation and general complexity of planning required to build the PBF. A three-inch low-pressure air line protrudes from wall just below left center. Date: February 21, 1967. Photographer: Larry Page. INEEL negative no. 67-1125 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. PBF Reactor Building (PER620). Camera faces south toward verticallift door, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera faces south toward vertical-lift door, which is closed. Note crane and its trolley positioned near door; its rails along side walls. Reactor vessel and lifting beams are positioned above reactor pit. Photographer: John Capek. Date: January 9, 1970. INEEL negative no. 70-132 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. SPERTI. Detail view of Reactor Pit Building (PER605) and Instrument ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I. Detail view of Reactor Pit Building (PER-605) and Instrument Cell (PER-606). Earth shielding covers side of Cell Building next to reactor. Instrumentation required protection from radiation emitted during reactor operation. Photographer: R.G. Larsen. Date: May 20, 1955. INEEL negative no. 55-1290 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Anymore » system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.« less

  9. GRB 130427A: A Nearby Ordinary Monster

    NASA Technical Reports Server (NTRS)

    Maselli, A.; Melandri, A.; Nava, L.; Mundell, C. G.; Kawai, N.; Campana, S.; Covino, S.; Cummings, J. R.; Cusumano, G.; Evans, P. A.; hide

    2014-01-01

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L approx. 3 x 10(exp 53) ergs/s and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the gamma-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  10. GRB 130427A: a nearby ordinary monster.

    PubMed

    Maselli, A; Melandri, A; Nava, L; Mundell, C G; Kawai, N; Campana, S; Covino, S; Cummings, J R; Cusumano, G; Evans, P A; Ghirlanda, G; Ghisellini, G; Guidorzi, C; Kobayashi, S; Kuin, P; La Parola, V; Mangano, V; Oates, S; Sakamoto, T; Serino, M; Virgili, F; Zhang, B-B; Barthelmy, S; Beardmore, A; Bernardini, M G; Bersier, D; Burrows, D; Calderone, G; Capalbi, M; Chiang, J; D'Avanzo, P; D'Elia, V; De Pasquale, M; Fugazza, D; Gehrels, N; Gomboc, A; Harrison, R; Hanayama, H; Japelj, J; Kennea, J; Kopac, D; Kouveliotou, C; Kuroda, D; Levan, A; Malesani, D; Marshall, F; Nousek, J; O'Brien, P; Osborne, J P; Pagani, C; Page, K L; Page, M; Perri, M; Pritchard, T; Romano, P; Saito, Y; Sbarufatti, B; Salvaterra, R; Steele, I; Tanvir, N; Vianello, G; Wiegand, B; Weigand, B; Wiersema, K; Yatsu, Y; Yoshii, T; Tagliaferri, G

    2014-01-03

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ~ 3 × 10(53) ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  11. Gamma ray bursts as a signature for entangled gravitational systems

    NASA Astrophysics Data System (ADS)

    Basini, Giuseppe; Capozziello, Salvatore; Longo, Giuseppe

    2004-01-01

    Gamma ray bursts (GRBs), due to their features, can be considered not only extremely energetic, but also as the most relativistic astrophysical objects discovered. Their phenomenology is still matter of debate and, till now, no fully satisfactory model has been formulated to explain the nature of their origin. In the framework of a recently developed new theory, where general conservation laws are always and absolutely conserved in nature, we propose an alternative model where an ``entangled'' gravitational system, dynamically constituted by a black holes connected to a white hole through a worm hole, seems capable of explaining most of the properties inferred for the GRB engine. In particular, it leads to a natural explanation of energetics, beaming, polarization, and, very likely, distribution. On the other hand, GRBs can be considered a signature of such entangled gravitational systems.

  12. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties.

    PubMed

    Jaidev, L R; Kumar, Sachin; Chatterjee, Kaushik

    2017-11-01

    Despite several recent advances, poor vascularization in implanted scaffolds impedes complete regeneration for clinical success of bone tissue engineering. The present study aims to develop a multi-biofunctional nanocomposite for bone tissue regeneration using copper nanoparticle decorated reduced graphene oxide (RGO_Cu) hybrid particles in polycaprolactone (PCL) matrix (PCL/RGO_Cu). X-ray photoelectron spectroscopy and X-ray diffraction confirmed the presence of copper oxides (CuO and Cu 2 O) on RGO. Thermogravimetric analysis showed that 11.8% of copper was decorated on RGO. PCL/RGO_Cu exhibited steady release of copper ions in contrast to burst release from the composite containing copper alone (PCL/Cu). PCL/RGO_Cu exhibited highest modulus due to enhanced filler exfoliation. Endothelial cells rapidly proliferated on PCL/RGO_Cu confirming cytocompatibility. The sustained release of ions from PCL/RGO_Cu composites augmented tube formation by endothelial cells evidenced enhanced angiogenic activity. Gene expression of angiogenic markers VEGF and ANG-2 was higher on PCL/RGO_Cu compared to PCL. The osteogenic activity of PCL/RGO_Cu was confirmed by the 87% increase in mineral deposition by pre-osteoblasts compared to PCL. The bactericidal activity of PCL/RGO_Cu showed 78% reduction in viability of Escherichia coli. Thus, the multi-biofunctional PCL/RGO_Cu composite exhibits angiogenic, osteogenic and bactericidal properties, a step towards addressing some of the critical challenges in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Goegues, Ersin; Baring, Matthew G.; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; hide

    2012-01-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  14. Project BudBurst: Continental-scale citizen science for all seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago Botanic Garden.

  15. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    NASA Astrophysics Data System (ADS)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  16. Heart rate turbulence parameters correlate with post-premature ventricular contraction changes in muscle sympathetic activity.

    PubMed

    Segerson, Nathan M; Wasmund, Stephen L; Abedin, Moeen; Pai, Rakesh K; Daccarett, Marcos; Akoum, Nazem; Wall, T Scott; Klein, Richard C; Freedman, Roger A; Hamdan, Mohamed H

    2007-03-01

    Heart rate turbulence (HRT) has been shown to be vagally mediated with a strong correlation to baroreflex indices. However, the relationship between HRT and peripheral sympathetic nerve activity (SNA) after a premature ventricular contraction (PVC) remains unclear. We sought to evaluate the relationship between HRT and the changes in peripheral SNA after PVCs. We recorded postganglionic muscle SNA during electrocardiogram monitoring in eight patients with spontaneous PVCs. Fifty-two PVCs were observed and analyzed for turbulence onset (TO) and slope (TS). SNA was quantified during (1) the dominant burst after the PVC (dominant burst area) and (2) the 10 seconds after the dominant burst (postburst SNA). The mean TO was 0.1% +/- 4.6%, and the mean TS was 6.1 +/- 6.6. The dominant burst area negatively correlated with TO (r = -0.50, P = .0002). The postburst SNA showed a significant positive correlation with TO (r = 0.44, P = .001) and a negative correlation with TS (r = -0.42, P = .002). These correlations remained significant after controlling for either the PVC coupling interval or the left ventricular ejection fraction. Our findings highlight the relationship between perturbations in HRT and pathology in the sympathetic limb of the autonomic nervous system. Future studies are needed to evaluate the prognostic role of baroreflex control of sympathetic activity in patients with structural heart disease.

  17. Phagocytosis and Respiratory Burst Activity in Lumpsucker (Cyclopterus lumpus L.) Leucocytes Analysed by Flow Cytometry

    PubMed Central

    Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.

    2012-01-01

    In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870

  18. Burst-induced anti-Hebbian depression acts through short-term synaptic dynamics to cancel redundant sensory signals.

    PubMed

    Harvey-Girard, Erik; Lewis, John; Maler, Leonard

    2010-04-28

    Weakly electric fish can enhance the detection and localization of important signals such as those of prey in part by cancellation of redundant spatially diffuse electric signals due to, e.g., their tail bending. The cancellation mechanism is based on descending input, conveyed by parallel fibers emanating from cerebellar granule cells, that produces a negative image of the global low-frequency signals in pyramidal cells within the first-order electrosensory region, the electrosensory lateral line lobe (ELL). Here we demonstrate that the parallel fiber synaptic input to ELL pyramidal cell undergoes long-term depression (LTD) whenever both parallel fiber afferents and their target cells are stimulated to produce paired burst discharges. Paired large bursts (4-4) induce robust LTD over pre-post delays of up to +/-50 ms, whereas smaller bursts (2-2) induce weaker LTD. Single spikes (either presynaptic or postsynaptic) paired with bursts did not induce LTD. Tetanic presynaptic stimulation was also ineffective in inducing LTD. Thus, we have demonstrated a form of anti-Hebbian LTD that depends on the temporal correlation of burst discharge. We then demonstrated that the burst-induced LTD is postsynaptic and requires the NR2B subunit of the NMDA receptor, elevation of postsynaptic Ca(2+), and activation of CaMKIIbeta. A model incorporating local inhibitory circuitry and previously identified short-term presynaptic potentiation of the parallel fiber synapses further suggests that the combination of burst-induced LTD, presynaptic potentiation, and local inhibition may be sufficient to explain the generation of the negative image and cancellation of redundant sensory input by ELL pyramidal cells.

  19. Burst of ethylene upon horizontal placement of tomato seedlings

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    Seedlings of Lycopersicon esculentum Mill. cv Rutgers emit a pulse of ethylene during the first 2 to 4 minutes following horizontal placement. Because this burst appears too rapid and brief to be mediated by increase in net activity of 1-aminocyclopropane-1-carboxylic acid synthase, it might result form accelerated transformation of vacuolar 1-aminocyclopropane-1-carboxylic acid to ethylene.

  20. Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. 1. Emission-Line Diagnostics

    DTIC Science & Technology

    2010-06-20

    reserved. Printed in the U.S.A. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE . I. EMISSION... the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar- Green quasars, star...supermassive black holes (e.g., Rees 1984; Peterson et al. 2004). One way to approach the study of AGNs is to concentrate on those in the local universe

  1. The role of propriospinal neuronal network in transmitting the alternating muscular activities of flexor and extensor in parkinsonian tremor.

    PubMed

    Hao, M; He, X; Lan, N

    2012-01-01

    It has been shown that normal cyclic movement of human arm and resting limb tremor in Parkinson's disease (PD) are associated with the oscillatory neuronal activities in different cerebral networks, which are transmitted to the antagonistic muscles via the same spinal pathway. There are mono-synaptic and multi-synaptic corticospinal pathways for conveying motor commands. This study investigates the plausible role of propriospinal neuronal (PN) network in the C3-C4 levels in multi-synaptic transmission of cortical commands for oscillatory movements. A PN network model is constructed based on known neurophysiological connections, and is hypothesized to achieve the conversion of cortical oscillations into alternating antagonistic muscle bursts. Simulations performed with a virtual arm (VA) model indicate that without the PN network, the alternating bursts of antagonistic muscle EMG could not be reliably generated, whereas with the PN network, the alternating pattern of bursts were naturally displayed in the three pairs of antagonist muscles. Thus, it is suggested that oscillations in the primary motor cortex (M1) of single and double tremor frequencies are processed at the PN network to compute the alternating burst pattern in the flexor and extensor muscles.

  2. Locomotion of neutrally buoyant fish with flexible caudal fin.

    PubMed

    Iosilevskii, Gil

    2016-06-21

    Historically, burst-and-coast locomotion strategies have been given two very different explanations. The first one was based on the assumption that the drag of an actively swimming fish is greater than the drag of the same fish in motionless glide. Fish reduce the cost of locomotion by swimming actively during a part of the swimming interval, and gliding through the remaining part. The second one was based on the assumption that muscles perform efficiently only if their contraction rate exceeds a certain threshold. Fish reduce the cost of locomotion by using an efficient contraction rate during a part of the swimming interval, and gliding through the remaining part. In this paper, we suggest yet a third explanation. It is based on the assumption that propulsion efficiency of a swimmer can increase with thrust. Fish reduce the cost of locomotion by alternating high thrust, and hence more efficient, bursts with passive glides. The paper presents a formal analysis of the respective burst-and-coast strategy, shows that the locomotion efficiency can be practically as high as the propulsion efficiency during burst, and shows that the other two explanations can be considered particular cases of the present one. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    PubMed

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  4. Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents.

    PubMed

    Hayem, G; Petit, P X; Levacher, M; Gaudin, C; Kahn, M F; Pocidalo, J J

    1994-02-01

    To better understand quinolone-related arthropathy, we conceived an experimental ex vivo model using cell cultures of articular chondrocytes issued from pretreated New Zealand White rabbits (NZW). Juvenile (4- to 5-week-old) NZW were orally dosed with ofloxacin or pefloxacin (300 mg/kg of body weight for 1 day) or with pefloxacin (300 mg/kg for 7 days). Adult (5-month-old) NZW were treated with pefloxacin (300 mg/kg for 1 day). Chondrocytes were enzymatically recovered from cartilage and were analyzed by cytofluorometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and dihydrorhodamine 123 (DHR), reflecting cellular respiratory-burst activity, and rhodamine 123 (Rh123) and 10-N-nonyl-acridine orange (NAO), specific for the mitochondrial activity and mass, respectively. A significant increase in the respiratory burst was detected by DCFH-DA and DHR in all treated groups of young animals, compared with untreated control groups. No significant increase of respiratory burst was noted in older treated rabbits. The 7-day treatment resulted in a decrease in mitochondrial uptake of Rh123 and an increase in NAO uptake. Fluoroquinolone arthrotoxicity seems to involve in its early phase the respiratory burst of immature articular chondrocytes.

  5. Studying Filamentary Currents with Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.; Kubala, S. Z.

    2016-10-01

    The MST reversed-field pinch plasma generates bursts of toroidally localized magnetic activity associated with m = 0 modes resonant at the reversal surface near the plasma edge. Previously, using data from an array of edge magnetic probes, these bursts were connected to poloidal current filaments. Now the MST Thomson scattering diagnostic is being used to measure the net drift in the electron distribution due to these currents. An additional long-wavelength spectral bin has been added to several Thomson scattering polychromators, in addition to 5-7 pre-existing short wavelength spectral bins, to improve discrimination between shifted vs. broadened spectra. The bursts are examined in plasma conditions that display spontaneous periods of low tearing-mode activity, with higher confinement and higher temperatures that improve Thomson scattering measurement performance. This work is supported by the U.S. Department of Energy and the National Science Foundation.

  6. Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts

    PubMed Central

    Armbruster, Moritz; Messa, Mirko; Ferguson, Shawn M; De Camilli, Pietro; Ryan, Timothy A

    2013-01-01

    Modulation of synaptic vesicle retrieval is considered to be potentially important in steady-state synaptic performance. Here we show that at physiological temperature endocytosis kinetics at hippocampal and cortical nerve terminals show a bi-phasic dependence on electrical activity. Endocytosis accelerates for the first 15–25 APs during bursts of action potential firing, after which it slows with increasing burst length creating an optimum stimulus for this kinetic parameter. We show that activity-dependent acceleration is only prominent at physiological temperature and that the mechanism of this modulation is based on the dephosphorylation of dynamin 1. Nerve terminals in which dynamin 1 and 3 have been replaced with dynamin 1 harboring dephospho- or phospho-mimetic mutations in the proline-rich domain eliminate the acceleration phase by either setting endocytosis at an accelerated state or a decelerated state, respectively. DOI: http://dx.doi.org/10.7554/eLife.00845.001 PMID:23908769

  7. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays.

    PubMed

    Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J

    2013-03-26

    Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.

  8. Space weather influence on the agriculture technology and wheat prices in the medieval England (1259-1703) through cosmic ray/solar activity cycle variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.; Yom Din, G.

    2003-04-01

    The database of Professor Rogers (1887), which includes wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray intensity variations. The main object of our statistical analysis is investigation of bursts of prices. Our study shows that bursts and troughs of wheat prices take place at extreme states (maximums or minimums) of solar activity cycles. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by cosmic ray intensity solar cycle variations, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. The medians of both samples have the values of 11.00 and 10.7 years; standard deviations are 1.44 and 1.53 years for prices and for solar activity, respectively. The hypothesis that the frequency distributions are the same for both of the samples have significance level >95%. In the next step we analyzed direct links between wheat prices and cosmic ray cycle variations in the 17th Century, for which both wheat prices and cosmic ray intensity (derived from Be-10 isotope data) are available. We show that for all seven solar activity minimums (cosmic ray intensity maximums) the observed prices were higher than prices for the seven intervals of maximal solar activity (100% sign correlation). This result, combined with the conclusion of similarity of statistical properties of the price and solar activity extremes can be considered as direct evidence of a causal connection between wheat prices bursts and solar activity/cosmic ray intensity extremes.

  9. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy.

    PubMed

    Knopp, Andreas; Kivi, Anatol; Wozny, Christian; Heinemann, Uwe; Behr, Joachim

    2005-03-21

    The subiculum was recently shown to be crucially involved in the generation of interictal activity in human temporal lobe epilepsy. Using the pilocarpine model of epilepsy, this study examines the anatomical substrates for network hyperexcitability recorded in the subiculum. Regular- and burst-spiking subicular pyramidal cells were stained with fluorescence dyes and reconstructed to analyze seizure-induced alterations of the dendritic and axonal system. In control animals burst-spiking cells outnumbered regular-spiking cells by about two to one. Regular- and burst-spiking cells were characterized by extensive axonal branching and autapse-like contacts, suggesting a high intrinsic connectivity. In addition, subicular axons projecting to CA1 indicate a CA1-subiculum-CA1 circuit. In the subiculum of pilocarpine-treated rats we found an enhanced network excitability characterized by spontaneous rhythmic activity, polysynaptic responses, and all-or-none evoked bursts of action potentials. In pilocarpine-treated rats the subiculum showed cell loss of about 30%. The ratio of regular- and burst-spiking cells was practically inverse as compared to control preparations. A reduced arborization and spine density in the proximal part of the apical dendrites suggests a partial deafferentiation from CA1. In pilocarpine-treated rats no increased axonal outgrowth of pyramidal cells was observed. Hence, axonal sprouting of subicular pyramidal cells is not mandatory for the development of the pathological events. We suggest that pilocarpine-induced seizures cause an unmasking or strengthening of synaptic contacts within the recurrent subicular network. Copyright 2005 Wiley-Liss, Inc.

  10. The transient gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Owens, A.; Baker, R.; Cline, T. L.; Gehrels, N.; Jermakian, J.; Nolan, T.; Ramaty, R.; Smith, G.; Stilwell, D. E.; Teegarden, B. J.

    1991-01-01

    The authors describe the Transient Gamma-Ray Spectrometer (TGRS) to be flown onboard the WIND spacecraft. This instrument is designed to detect cosmic gamma-ray bursts over the energy range of 20 keV to 10 MeV with an expected spectroscopic resolution of 2 keV at 1 MeV (E/Delta-E = 500). The active detection element is a 215-cu cm high-purity n-type Ge crystal cooled to cryogenic temperatures by a passive radiative cooler. The geometric field of view (FOV) defined by the cooler is 170 deg FWFM. Burst data are stored directly in an onboard 2.75-Mb burst memory with an absolute timing accuracy of +/-1.5 ms. This capacity is sufficient to store the entire spectral data set of all but the largest bursts. In addition to burst measurements, the instrument will also study solar flares, search for possible diffuse background lines, and monitor the 511-keV positron annihilation radiation from the galactic center. The experiment is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on December 31, 1992.

  11. Metabolic activation and nucleic acid binding of acetaminophen and related arylamine substrates by the respiratory burst of human granulocytes.

    PubMed

    Corbett, M D; Corbett, B R; Hannothiaux, M H; Quintana, S J

    1989-01-01

    Following stimulation with phorbol myristate acetate, human granulocytes were found to incorporate acetaminophen, p-phenetidine, p-aminophenol, and p-chloroaniline into cellular DNA and RNA. Phenacetin was not incorporated into nucleic acid or metabolized by such activated granulocytes. None of the substrates gave nucleic acid binding if the granulocyte cultures were not induced to undergo the respiratory burst. Additional studies on the binding of acetaminophen to DNA and RNA were made by use of both ring-14C-labeled and carbonyl-14C-labeled forms of this substrate. The finding that equivalent amounts of these two labeled acetaminophen substrates were bound to cellular DNA demonstrated that the intact acetaminophen molecule was incorporated into DNA. On the other hand, the finding that excess ring-14C-labeled acetaminophen was incorporated into cellular RNA implies partial hydrolysis of the acetaminophen substrate prior to RNA binding. Evidence was presented which strongly indicates that the nucleic acid binding of the substrates was covalent in nature. The inability of the respiratory burst to result in the binding of phenacetin to nucleic acid suggests that arylamides are not normally activated or metabolized by activated granulocytes. Acetaminophen is an exception to the recalcitrance of arylamides to such bioactivation processes because it also possesses the phenolic functional group, which, like the arylamine group, is oxidized by certain reactive oxygen species. Myeloperoxidase appears to be much more important in the binding of acetaminophen to DNA than it is in the DNA binding of arylamines in general. The role of the respiratory burst in causing the bioactivation of certain arylamines, which are not normally genotoxic via the more usual microsomal activation pathways, was extended to include certain amide substrates such as acetaminophen.

  12. Behavior of accessory abducens and abducens motoneurons during eye retraction and rotation in the alert cat.

    PubMed

    Delgado-Garcia, J M; Evinger, C; Escudero, M; Baker, R

    1990-08-01

    1. The activity of both accessory abducens (Acc Abd) and abducens (Abd) motoneurons (Mns) was recorded in the alert cat during eye retraction and rotational eye movements. Cats were fitted with two scleral coils, one measured rotational eye movements directly and the other retraction by distinguishing the translational component. 2. Acc Abd and Abd Mns were identified following antidromic activation from electrical stimulation of the ipsilateral VIth nerve. 3. In response to corneal air puffs, bursts of spikes were produced in all (n = 30) Acc Abd Mns. The burst began 7.2 +/- 1.2 (SD) ms after onset of the air puff and 8.9 +/- 1.9 ms before eye retraction. 4. Acc Abd Mns were silent throughout all types of rotational eye movements, and tonic activity was not observed during intervals without air-puff stimulation. 5. In contrast, all (n = 50) identified Abd Mns exhibited a burst and/or pause in activity preceding and during horizontal saccades as well as a tonic activity proportional to eye position. 6. Only 10% of Abd Mns fired a weak burst of spikes in response to air-puff stimulation. 7. We conclude that Acc Abd Mns are exclusively involved in eye retraction in the cat and that only a few Abd Mns have an eye-retraction signal added to their eye position and velocity signals. Thus any rotational eye-movement response described in retractor bulbi muscle must result from innervation by Mns located in the Abd and/or the oculomotor nuclei. 8. The organization of the prenuclear circuitry and species variation are discussed in view of the nictiating membrane extension response measured in associative learning.

  13. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    NASA Technical Reports Server (NTRS)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  14. Burst mode composite photography for dynamic physics demonstrations

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2018-05-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital cameras—including the iPhone. Sometimes the images are composited to imply motion from a series of still pictures. By analyzing the time between the photos, students can measure rates of velocity and acceleration of moving objects. Some of these composite photographs have already shown up in the AAPT High School Physics Photo Contest. In this article I discuss some ideas for using burst mode photography in the iPhone and provide a discussion of how to edit these photographs to create a composite image. I also compare the capabilities of the iPhone and GoPro cameras in creating these photographic composites.

  15. FRB 121102: A Starquake-induced Repeater?

    NASA Astrophysics Data System (ADS)

    Wang, Weiyang; Luo, Rui; Yue, Han; Chen, Xuelei; Lee, Kejia; Xu, Renxin

    2018-01-01

    Since its initial discovery, the fast radio burst (FRB) FRB 121102 has been found to be repeating with millisecond-duration pulses. Very recently, 14 new bursts were detected by the Green Bank Telescope during its continuous monitoring observations. In this paper, we show that the burst energy distribution has a power-law form which is very similar to the Gutenberg–Richter law of earthquakes. In addition, the distribution of burst waiting time can be described as a Poissonian or Gaussian distribution, which is consistent with earthquakes, while the aftershock sequence exhibits some local correlations. These findings suggest that the repeating FRB pulses may originate from the starquakes of a pulsar. Noting that the soft gamma-ray repeaters (SGRs) also exhibit such distributions, the FRB could be powered by some starquake mechanisms associated with the SGRs, including the crustal activity of a magnetar or solidification-induced stress of a newborn strangeon star. These conjectures could be tested with more repeating samples.

  16. Investigating Functional Regeneration in Organotypic Spinal Cord Co-cultures Grown on Multi-electrode Arrays.

    PubMed

    Heidemann, Martina; Streit, Jürg; Tscherter, Anne

    2015-09-23

    Adult higher vertebrates have a limited potential to recover from spinal cord injury. Recently, evidence emerged that propriospinal connections are a promising target for intervention to improve functional regeneration. So far, no in vitro model exists that grants the possibility to examine functional recovery of propriospinal fibers. Therefore, a representative model that is based on two organotypic spinal cord sections of embryonic rat, cultured next to each other on multi-electrode arrays (MEAs) was developed. These slices grow and, within a few days in vitro, fuse along the sides facing each other. The design of the used MEAs permits the performance of lesions with a scalpel blade through this fusion site without inflicting damage on the MEAs. The slices show spontaneous activity, usually organized in network activity bursts, and spatial and temporal activity parameters such as the location of burst origins, speed and direction of their propagation and latencies between bursts can be characterized. Using these features, it is also possible to assess functional connection of the slices by calculating the amount of synchronized bursts between the two sides. Furthermore, the slices can be morphologically analyzed by performing immunohistochemical stainings after the recordings. Several advantages of the used techniques are combined in this model: the slices largely preserve the original tissue architecture with intact local synaptic circuitry, the tissue is easily and repeatedly accessible and neuronal activity can be detected simultaneously and non-invasively in a large number of spots at high temporal resolution. These features allow the investigation of functional regeneration of intraspinal connections in isolation in vitro in a sophisticated and efficient way.

  17. A strategy to unveil transient sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Takami, Hajime

    2013-06-01

    Transient generation of ultra-high-energy cosmic rays (UHECRs) has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ˜ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.

  18. Notes on the diversity of the properties of radio bursts observed on the nightside of Venus

    NASA Technical Reports Server (NTRS)

    Sonwalkar, Vikas S.; Carpenter, D. L.

    1995-01-01

    We report on further studies of radio wave bursts detected by the Orbiting Electric Field Detector (OEFD) on the Pioneer Venus Orbiter (PVO) in the nightside ionosphere of Venus. We have tested a total of 25 cases of wave burst activity for evidence of whistler-mode propagation to the spacecraft from impulsive subionospheric sources. As in a previous study of 11 of these cases (Sonwalkar et al., 1991) we find at least two distinct classes of events, one, mostly involving bursts at 100 Hz only, that passes certain tests for whistler-mode propagation, and another, mostly involving bursts in two or more of the four PVO narrowband channels (at 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz), that fails to pass the tests. The subionospheric lightning hypothesis continues to be tenable as a candidate explanation for many of the 100 Hz-only events, but its number of 100 Hz-only cases that do no pass all the applicable whistler-mode tests, as well as the existence at a wide range of altitudes of multichannel cases that are clearly not propagating whistler-mode waves. The wideband bursts are often observed at altitudes above 1000 km and frequently occur in regions of locally reduced electron density. Those observed at high altitude (and possibly low altitude as well) are believed to be generated near the spacecraft, possibly by an as yet unknown mechanism responsible for similar burst observations made near Earth and other planets.

  19. Virtual active touch using randomly patterned intracortical microstimulation.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Li, Zheng; Nicolelis, Miguel A L

    2012-01-01

    Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices.

  20. Exercise performance of reptiles.

    PubMed

    Bennett, A F

    1994-01-01

    From the vantage point of thirty years of study, we can sketch the general features of activity capacity and performance ability in reptiles. Extant reptilian groups all share low levels of maintenance metabolism and ectothermy, with their consequent advantages (Pough, 1980) and disadvantages. Among the latter is a limited capacity to expand aerobic metabolism, limited in comparison to the relatively great costs of terrestrial locomotion. Particularly at low body temperatures, reptiles outstrip their aerobic capacities with any exercise more intense than a slow walk. Anaerobic metabolism, particularly anaerobic glycolysis, can be used to fuel bursts of intense activity. As a consequence, however, physiological disruption and exhaustion are entailed. Under field conditions, many reptiles alternate long periods of quiescence or slow movement with very brief bursts of exertion. Other ectotherms with a similar pattern of metabolism have been shown thereby to extend performance beyond that supportable by either aerobic or anaerobic metabolism alone (Weinstein and Full, 1992). Even with careful alternation between these metabolic modes, reptiles remain particularly prone to exhaustion during vigorous activity, as least as judged by our mammalian frame of reference. Their capacities for burst activity and exertion have been shown, at least in some species, to be important determinants of their natural survival.

  1. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the mylohyoid muscle in rabbits under conditions of hunger and satiety.

    PubMed

    Ignatova, Ju P; Kromin, A A

    2011-03-01

    Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of mylohyoid muscle were studied in chronic experiments under conditions of hunger and satiety. Threshold stimulation of the lateral hypothalamus in starving and satiated rabbits in the absence of food induced searching behavior associated with burst-like impulse activity with a bimodal distribution of interpulse intervals. Regular spike burst in the mylohyoid muscle during stimulation of the lateral hypothalamus in the absence of food serves as an example of the anticipatory type reaction. Increased food motivation during threshold stimulation of the lateral hypothalamus in starving and satiated rabbits with food offered led to successful food-procuring behavior, during which the frequency of spike bursts in the mylohyoid muscle became comparable with that under conditions of natural foraging behavior stimulated by the need in nutrients. Our results suggest that temporal structure of mylohyoid muscle impulse activity reflects convergent interactions of food-motivation excitation with reinforcement excitation on neurons of the masticatory and deglutitive centers.

  2. In vitro inhibitory effects of Moringa oleifera leaf extract and its major components on chemiluminescence and chemotactic activity of phagocytes.

    PubMed

    Vongsak, Boonyadist; Gritsanapan, Wandee; Wongkrajang, Yuvadee; Jantan, Ibrahim

    2013-11-01

    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.

  3. High Energy Astrophysics with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    This slide presentation reviews some of the findings of the Large Area Telescope (LAT) aboard the Fermi Observatory. It includes information about the LAT, and the Gamma-Ray Burst Monitor (GBM), detection of the quiet sun and the moon in gamma rays, Pulsars observed by the observatory, Globular Star Clusters, Active Galactic Nucleus, and Gamma-Ray Bursts, with specific information about GRB 080916C.

  4. Time development of a small solar X-ray burst

    NASA Technical Reports Server (NTRS)

    Cohen, G. G.; Kestenbaum, H. L.; Long, K. S.; Novick, R.; Weisskopf, M. C.; Wolff, R. S.

    1976-01-01

    The 5.1-7.2 A X-ray emission from the sun was studied via OSO-8 with a high-resolution PET crystal spectrometer during the week of 17 November 1975, when the sun was active. The combination of good temporal and spectral resolution permitted the analysis of the data with multithermal coronal models over the course of a small X-ray burst.

  5. Unique Configurations of Compression and Truncation of Neuronal Activity Underlie l-DOPA-Induced Selection of Motor Patterns in Aplysia.

    PubMed

    Neveu, Curtis L; Costa, Renan M; Homma, Ryota; Nagayama, Shin; Baxter, Douglas A; Byrne, John H

    2017-01-01

    A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA.

  6. Unique Configurations of Compression and Truncation of Neuronal Activity Underlie l-DOPA–Induced Selection of Motor Patterns in Aplysia

    PubMed Central

    Homma, Ryota; Nagayama, Shin; Baxter, Douglas A.

    2017-01-01

    A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA. PMID:29071298

  7. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    PubMed

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  8. Blast-induced tinnitus and hyperactivity in the auditory cortex of rats.

    PubMed

    Luo, Hao; Pace, Edward; Zhang, Jinsheng

    2017-01-06

    Blast exposure can cause tinnitus and hearing impairment by damaging the auditory periphery and direct impact to the brain, which trigger neural plasticity in both auditory and non-auditory centers. However, the underlying neurophysiological mechanisms of blast-induced tinnitus are still unknown. In this study, we induced tinnitus in rats using blast exposure and investigated changes in spontaneous firing and bursting activity in the auditory cortex (AC) at one day, one month, and three months after blast exposure. Our results showed that spontaneous activity in the tinnitus-positive group began changing at one month after blast exposure, and manifested as robust hyperactivity at all frequency regions at three months after exposure. We also observed an increased bursting rate in the low-frequency region at one month after blast exposure and in all frequency regions at three months after exposure. Taken together, spontaneous firing and bursting activity in the AC played an important role in blast-induced chronic tinnitus as opposed to acute tinnitus, thus favoring a bottom-up mechanism. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Post-natal hypoxic activity of the central respiratory command is improved in transgenic mice overexpressing Epo in the brain.

    PubMed

    Caravagna, Céline; Kinkead, Richard; Soliz, Jorge

    2014-08-15

    Previous studies indicated that erythropoietin modulates central respiratory command in mice. Specifically, a one-hour incubation of the brainstems with erythropoietin attenuates hypoxia-induced central respiratory depression. Here, using transgenic mice constitutively overexpressing erythropoietin specifically in the brain (Tg21), we investigated the effect of chronic erythropoietin stimulation on central respiratory command activity during post-natal development. In vitro brainstem-spinal cord preparations from mice at 0 (P0) or 3 days of age (P3) were used to record the fictive inspiratory activity from the C4 ventral root. Our results show that erythropoietin already stimulates the hypoxic burst frequency at P0, and at P3, erythropoietin effectively stimulates the hypoxic burst frequency and amplitude. Because the maturation of the central respiratory command in mice is characterized by a decrease in the burst frequency with age, our results also suggest that erythropoietin accelerates the maturation of the newborn respiratory network and its response to hypoxia. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The 2001 April Burst Activation of SGR 1900+14: Pulse Properties and Torque

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Goegues, E.; Finger, M. H.; Feroci, M.; Mereghetti, S.; Swank, J. H.; Hurley, K.; Heise, J.; Smith, D.; hide

    2002-01-01

    We report on observations of SGR 1900+14 made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX during the April 2001 burst activation of the source. Using these data, we measure the spindown torque on the star and confirm earlier findings that the torque and burst activity are not directly correlated. We compare the X-ray pulse profile to the gamma-ray profile during the April 18 intermediate flare and show that (i) their shapes are similar and (ii) the gamma-ray profile aligns closely in phase with the X-ray pulsations. The good phase alignment of the gamma-ray and X-ray profiles suggests that there was no rapid spindown following this flare, in contrast to the August 27 giant flare. The absence of rapid spindown in the hours following the April 18 flare suggests that there was no significant outflow of material as was believed to be present following the August 27 flare. Finally, we discuss how these observations further constrain magnetic field reconfiguration models for the large flares of SGRs.

  11. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 2: Stress analysis

    NASA Technical Reports Server (NTRS)

    Miller, W. S.

    1974-01-01

    A structural analysis performed on the 1/4-watt cryogenic refrigerator. The analysis covered the complete assembly except for the cooling jacket and mounting brackets. Maximum stresses, margin of safety, and natural frequencies were calculated for structurally loaded refrigerator components shown in assembly drawings. The stress analysis indicates that the design is satisfactory for the specified vibration environment, and the proof, burst, and normal operating loads.

  12. SPERTI contextual view of instrument cell building, PER606. South facade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I contextual view of instrument cell building, PER-606. South facade. Camera facing northwest. PBF Cooling Tower in view at right. High bay of PBF Reactor Building, PER-602, is further to right. PBF-625 at left edge of view. Date: August 2003. INEEL negative no. HD-35-3-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. PBF Reactor Building (PER620). Camera is in cab of electricpowered ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera is in cab of electric-powered rail crane and facing east. Reactor pit and storage canal have been shaped. Floors for wings on east and west side are above and below reactor in view. Photographer: Larry Page. Date: August 23, 1967. INEEL negative no. 67-4403 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. SPERTI Terminal Building (PER604) is under construction in foreground, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Terminal Building (PER-604) is under construction in foreground, with vertical metal siding partially affixed to gable end of building. Utility lines are laid in shallow trench to Reactor Pit and Instrument Cell Buildings also under construction in distance. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1001 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2006-08-23

    gun ! Hoist ! Improved fastrope location MV-22 Block C ! Flight incident recorder ! Radar altimeter sling load modification ! Fuel dump modification...seven people and destroying the aircraft. This accident was caused by a fire resulting from hydraulic component failures and design problems in the...investigation. On April 5, 2001, the Marine Corps reported that the crash was caused by a burst hydraulic line in one of the Osprey’s two engine casings, and a

  16. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2009-01-02

    Station, VA, killing seven people and destroying the aircraft. This accident was caused by a fire resulting from hydraulic component failures and...April 5, 2001, the Marine Corps reported that the crash was caused by a burst hydraulic line in one of the Osprey’s two engine casings, and a software...malfunction that caused the aircraft to accelerate and decelerate unpredictably and violently when the pilots tried to compensate for the hydraulic

  17. Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels.

    PubMed

    Jung, Youngmee; Ji, HaYeun; Chen, Zaozao; Fai Chan, Hon; Atchison, Leigh; Klitzman, Bruce; Truskey, George; Leong, Kam W

    2015-10-12

    Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.

  18. Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors

    PubMed Central

    Okada, Yoshiyuki; Jarvis, Sara S; Best, Stuart A; Bivens, Tiffany B; Adams-Huet, Beverley; Levine, Benjamin D; Fu, Qi

    2013-01-01

    Cardiovascular risk remains high in patients with hypertension even with adequate blood pressure (BP) control. One possible mechanism may be sympathetic activation via the baroreflex. We tested the hypothesis that chronic inhibition of renin reduces BP without sympathetic activation, but diuresis augments sympathetic activity in elderly hypertensives. Fourteen patients with stage-I hypertension (66 ± 5 (SD) years) were treated with a direct renin inhibitor, aliskiren (n= 7), or a diuretic, hydrochlorothiazide (n= 7), for 6 months. Muscle sympathetic nerve activity (MSNA), BP, direct renin and aldosterone were measured during supine and a graded head-up tilt (HUT; 5 min 30° and 20 min 60°), before and after treatment. Sympathetic baroreflex sensitivity (BRS) was assessed. Both groups had similar BP reductions after treatment (all P < 0.01), while MSNA responses were different between hydrochlorothiazide and aliskiren (P= 0.006 pre/post × drug). Both supine and upright MSNA became greater after hydrochlorothiazide treatment (supine, 72 ± 18 post vs. 64 ± 15 bursts (100 beats)−1 pre; 60° HUT, 83 ± 10 vs. 78 ± 13 bursts (100 beats)−1; P= 0.002). After aliskiren treatment, supine MSNA remained unchanged (69 ± 13 vs. 64 ± 8 bursts (100 beats)−1), but upright MSNA was lower (74 ± 15 vs. 85 ± 10 bursts (100 beats)−1; P= 0.012 for pre/post × posture). Direct renin was greater after both treatments (both P < 0.05), while upright aldosterone was greater after hydrochlorothiazide only (P= 0.002). The change in upright MSNA by the treatment was correlated with the change of aldosterone (r= 0.74, P= 0.002). Upright sympathetic BRS remained unchanged after either treatment. Thus, chronic renin inhibition may reduce upright MSNA through suppressed renin activity, while diuresis may evoke sympathetic activation via the upregulated renin–angiotensin–aldosterone system, without changing intrinsic sympathetic baroreflex function in elderly hypertensive patients. PMID:24060993

  19. Inward rectifier potassium current IKir promotes intrinsic pacemaker activity of thalamocortical neurons.

    PubMed

    Amarillo, Yimy; Tissone, Angela I; Mato, Germán; Nadal, Marcela S

    2018-06-01

    Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (<4 Hz), which are the physiological oscillations during non-rapid eye movement sleep or pathological oscillations during idiopathic epilepsy. The pacemaker activity of TC neurons depends on the expression of several subthreshold conductances, which are modulated in a behaviorally dependent manner. Here we show that upregulation of the small and neglected inward rectifier potassium current I Kir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of I Kir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of I Kir and hyperpolarization-activated cationic current I h that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that I Kir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with I h and increases the robustness of low threshold-activated calcium current I T -mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current I Kir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that I Kir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current I h ; and increases the robustness of oscillations mediated by the low threshold-activated calcium current I T . Upregulation of I Kir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).

  20. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.).

    PubMed

    Vera-Jimenez, N I; Pietretti, D; Wiegertjes, G F; Nielsen, M E

    2013-05-01

    The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans. Copyright © 2013 Elsevier Ltd. All rights reserved.

Top