Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
KSC employees, along with Center Director Roy Bridges (second from left), view the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.
Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
In front of the Headquarters Building at KSC, Center Director Roy Bridges (left) looks at the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by- product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.
1999-10-25
In front of the Headquarters Building at KSC, Center Director Roy Bridges (left) looks at the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27
1999-10-25
KSC employees, along with Center Director Roy Bridges (second from left), view the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27
Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus
NASA Astrophysics Data System (ADS)
Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo
The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.
40 CFR 86.093-2 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...-11 and 86.093-35. Centrally fueled bus means a bus that is refueled at least 75 percent of the time...
40 CFR 86.093-2 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...-11 and 86.093-35. Centrally fueled bus means a bus that is refueled at least 75 percent of the time...
Hydrogen-oxygen driven Zero Emissions bus drives around KSC Visitor Complex
NASA Technical Reports Server (NTRS)
1999-01-01
The Zero Emissions (ZE) transit bus passes a mock-up orbiter named Explorer on a trek through the KSC Visitor Complex. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept.
Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
KSC workers, with Center Director Roy Bridges (at right next to bus), head for the open door of the Zero Emissions (ZE) transit bus and a ride around the center. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available to employees for viewing and a ride, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.
1999-10-25
KSC workers, with Center Director Roy Bridges (at right next to bus), head for the open door of the Zero Emissions (ZE) transit bus and a ride around the center. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available to employees for viewing and a ride, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27
Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
On view in front of the Headquarters Building, the Zero Emissions (ZE) transit bus attracts an interested group of employees, including Center Director Roy Bridges (second from left in foreground). Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.
1999-10-25
The Zero Emissions (ZE) transit bus passes a mock-up orbiter named Explorer on a trek through the KSC Visitor Complex. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept
Hydrogen-oxygen driven Zero Emissions bus drives around KSC Visitor Complex
NASA Technical Reports Server (NTRS)
1999-01-01
The Zero Emissions (ZE) transit bus tours the KSC Visitor Complex for a test ride. In the background are a mock-up orbiter named Explorer (left) and a stack of solid rocket boosters and external tank (right), typically used on Shuttle launches. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept.
NASA Astrophysics Data System (ADS)
Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu
2016-08-01
This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.
1999-10-25
On view in front of the Headquarters Building, the Zero Emissions (ZE) transit bus attracts an interested group of employees, including Center Director Roy Bridges (second from left in foreground). Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27
Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnitt, R.; Gonder, J.
The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30%more » to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.« less
1999-10-25
The Zero Emissions (ZE) transit bus tours the KSC Visitor Complex for a test ride. In the background are a mock-up orbiter named Explorer (left) and a stack of solid rocket boosters and external tank (right), typically used on Shuttle launches. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept
Effects of biodiesel on emissions of a bus diesel engine.
Kegl, Breda
2008-03-01
This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; McCormick, R. L.; Sindler, P.
2012-10-01
Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level hadmore » the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.« less
NASA Astrophysics Data System (ADS)
Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao
2012-11-01
Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.
Analysis of a diesel-electric hybrid urban bus system
NASA Astrophysics Data System (ADS)
Marr, W. W.; Sekar, R. R.; Ahlheim, M. C.
A hybrid bus powered by a diesel engine and a battery pack was analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, were evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, W.A.
1998-08-01
The H2Fuel Bus is the world`s first hybrid hydrogen electric transit bus. It was developed through a public/private partnership involving several leading technology and industrial organizations in the Southeast, with primary funding and program management provided by the Department of Energy. The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen buses and to enhance the public awareness and acceptance of emerging hydrogen technologies. The bus has been operated by the transit agency in Augusta, Georgia since April, 1997. It employs a hybrid IC engine/battery/electric drive system, with onboard hydrogenmore » fuel storage based on the use of metal hydrides. Initial operating results have demonstrated an overall energy efficiency (miles per Btu) of twice that of a similar diesel-fueled bus and an operating range twice that of an all-battery powered electric bus. Tailpipe emissions are negligible, with NOx less than 0.2 ppm. Permitting, liability and insurance issues were addressed on the basis of extensive risk assessment and safety analyses, with the inherent safety characteristic of metal hydride storage playing a major role in minimizing these concerns. Future plans for the bus include continued transit operation and use as a national testbed, with potential modifications to demonstrate other hydrogen technologies, including fuel cells.« less
Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries
school bus Michigan Transports Students in Hybrid Electric School Buses Jan. 4, 2014 Photo of a natural of a school bus. California School District Creates First-of-Its-Kind Zero-Emissions Bus Dec. 20 , 2014 Photo of an electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug
Report on Hydrogen Bus Demonstrations Worldwide, 2002-2007.
DOT National Transportation Integrated Search
2009-03-01
Between 2002 and 2007 more than 20 cities in the United States, Europe, China, Japan and Australia have demonstrated buses powered by fuel cells or hydrogen-fueled internal combustion engines, as well as a variety of fueling and related technologies....
Choi, Hyung-Wook; Frey, H Christopher
2010-05-01
The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and comparisons to a conventional diesel school bus (CDSB). Data were collected using onboard instruments for a first-of-a-kind prototype PHSB and a CDSB of the same chassis and engine, operated on actual school bus routes. The engine load was estimated on the basis of vehicle specific power (VSP) and an empirically derived relationship between VSP and engine manifold absolute pressure (MAP). VSP depends on speed, acceleration, and road grade. For the PHSB, the observed electrical discharge or recharge to the traction motor battery was characterized on the basis of VSP. The energy use and emission rates of the PHSB from tailpipe and electricity use were estimated for five real-world driving cycles and compared to the engine fuel use and emissions of the CDSB. The PHSB had the greatest advantage on arterial routes and less advantage on highway or local routes. The coupled VSP-MAP modeling approach enables assessment of a wide variety of driving conditions and comparisons of vehicles with different propulsion technologies.
Energy management strategy based on fuzzy logic for a fuel cell hybrid bus
NASA Astrophysics Data System (ADS)
Gao, Dawei; Jin, Zhenhua; Lu, Qingchun
Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigro, D.N.; Stewart, R.G.; Apple, S.A.
1982-03-01
The operational experience obtained for the GT404-4 gas turbine engines in the Intercity and Intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. The Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine-powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively,more » than did the production diesel-powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future.« less
Support and power plant documentation for the gas turbine powered bus demonstration program
NASA Technical Reports Server (NTRS)
Nigro, D. N.; Stewart, R. G.; Apple, S. A.
1982-01-01
The operational experience obtained for the GT404-4 gas turbine engines in the intercity and intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. the Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively, than did the production diesel powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future.
NASA Astrophysics Data System (ADS)
Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.
2017-09-01
Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.
Measurement and comparison of Bangkok diesel bus emissions and performance using on-board equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnette, A.D.; Kishan, S.; Wangwongwatana, S.
1997-12-31
An on-board measurement system was assembled and used to compare the emissions and performance of buses in Bangkok, Thailand under actual driving conditions. Three similar buses were compared: one using an engine without special emissions control design, one with an engine meeting Euro 1 standards, and one with an engine meeting Euro 2 standards. As the buses drove their routes, second-by-second data were collected for engine rpm, throttle position, vehicle speed, exhaust concentrations of hydrocarbons, carbon monoxide, carbon dioxide, oxygen, nitric oxide, and exhaust opacity. Vehicle performance data were calculated using algorithms developed during previous driving studies in Bangkok. Grammore » per liter of fuel used emission factors were developed for gaseous pollutants using combustion calculations and these were translated into gram per kilometer traveled emission factors using the fuel efficiency data for the buses. Smoke data were left in terms of opacity. Test results are designed to be used to compare the cost benefit of upgrading buses with no emissions controls to Euro 1 or Euro 2 technologies. Ongoing tests will help bus companies determine the benefit of incremental improvements to bus engines and other emissions reduction strategies.« less
Demonstration of diesel fired coolant heaters in school bus applications : final report.
DOT National Transportation Integrated Search
2010-04-01
Engine block pre-heating can reduce fuel consumption, decrease pollution, extend engine life, and it is often necessary for reliably starting diesel engines in cold climates. This report describes the application and experience of applying 36 diesel ...
Alternative Fuels Data Center: School Bus Idle Reduction Strategies
, teachers, parents, and children to learn about air quality and diesel emissions. Recognizes the positive fuel, reduce engine wear and tear, protect the health of drivers and children, and improve air quality
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao
With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.
49 CFR 393.83 - Exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...
49 CFR 393.83 - Exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...
49 CFR 393.83 - Exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...
Auxiliary engine digital interface unit (DIU)
NASA Technical Reports Server (NTRS)
1972-01-01
This auxiliary propulsion engine digital unit controls both the valving of the fuel and oxidizer to the engine combustion chamber and the ignition spark required for timely and efficient engine burns. In addition to this basic function, the unit is designed to manage it's own redundancy such that it is still operational after two hard circuit failures. It communicates to the data bus system several selected information points relating to the operational status of the electronics as well as the engine fuel and burning processes.
40 CFR 85.1406 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...
40 CFR 85.1406 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...
40 CFR 85.1406 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...
40 CFR 85.1406 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...
Real life testing of a Hybrid PEM Fuel Cell Bus
NASA Astrophysics Data System (ADS)
Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars
Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are still many issues to consider prior to full-scale commercialisation of the technology. These are related to durability, lifetime, costs, vehicle and system optimisation and subsystem design. A very important factor is to implement an automotive design policy in the design and construction of all components, both in the propulsion system as well as in the subsystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... ENVIRONMENTAL PROTECTION AGENCY [FRL 9716-9] California State Nonroad Engine Pollution Control Standards; In- Use Heavy-Duty Vehicles (As Applicable to Yard Trucks and Two-Engine Sweepers); Opportunity... from In-Use Heavy-Duty Diesel-Fueled Vehicles'' (commonly referred to as the ``Truck and Bus Regulation...
Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend.
Turrio-Baldassarri, Luigi; Battistelli, Chiara L; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato
2004-07-05
The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 microm.
Aerodynamic study of state transport bus using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.
2017-11-01
The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.
Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; LaClair, Tim J; Daw, C Stuart
2014-01-01
We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends inmore » the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.« less
NASA Astrophysics Data System (ADS)
Armas, O.; Gómez, A.; Mata, C.
2011-10-01
The study of particulate matter (PM) and nitrogen oxides emissions of diesel engines is nowadays a necessary step towards pollutant emission reduction. For a complete evaluation of PM emissions and its size characterization, one of the most challenging goals is to adapt the available techniques and the data acquisition procedures to the measurement and to propose a methodology for the interpretation of instantaneous particle size distributions (PSD) of combustion-derived particles produced by a vehicle during real driving conditions. In this work, PSD from the exhaust gas of a city bus operated in real driving conditions with passengers have been measured. For the study, the bus was equipped with a rotating disk diluter coupled to an air supply thermal conditioner (with an evaporating tube), the latter being connected to a TSI Engine Exhaust Particle Sizer spectrometer. The main objective of this work has been to propose an alternative procedure for evaluating the influence of several transient sequences on PSD emitted by a city bus used in real driving conditions with passengers. The transitions studied were those derived from the combination of four possible sequences or categories during real driving conditions: idle, acceleration, deceleration with fuel consumption and deceleration without fuel consumption. The analysis methodology used in this work proved to be a useful tool for a better understanding of the phenomena related to the determination of PSD emitted by a city bus during real driving conditions with passengers.
American Fuel Cell Bus Project : First Analysis Report
DOT National Transportation Integrated Search
2013-06-01
This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALSTAR...
American fuel cell bus project : first analysis report.
DOT National Transportation Integrated Search
2013-06-01
This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration : funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALST...
NASA Astrophysics Data System (ADS)
Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.
The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.
National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.
DOT National Transportation Integrated Search
2011-10-01
This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, David
The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fuelingmore » infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives were achieved in the following ways: Through presentations and papers provided to a variety of audiences in multiple venues, the project team fulfilled its goal of providing education and outreach on hydrogen technology to statewide audiences. The project team generated interest that exists well beyond the completion of the project, and indeed, helped to generate financial support for a subsequent hydrogen vehicle project in Austin. The University of Texas, Center for ElectroMechanics operated the fuel cell-electric Ebus vehicle for over 13,000 miles in Austin, Texas in a variety of routes and loading configurations. The project took advantage of prior efforts that created a hydrogen fueling station and fuel cell electric-hybrid bus and continued to verify their technical foundation, while informing and educating potential future users of how these technologies work.« less
Pirjola, Liisa; Dittrich, Aleš; Niemi, Jarkko V; Saarikoski, Sanna; Timonen, Hilkka; Kuuluvainen, Heino; Järvinen, Anssi; Kousa, Anu; Rönkkö, Topi; Hillamo, Risto
2016-01-05
Exhaust emissions of 23 individual city buses at Euro III, Euro IV and EEV (Enhanced Environmentally Friendly Vehicle) emission levels were measured by the chasing method under real-world conditions at a depot area and on the normal route of bus line 24 in Helsinki. The buses represented different technologies from the viewpoint of engines, exhaust after-treatment systems (ATS) and fuels. Some of the EEV buses were fueled by diesel, diesel-electric, ethanol (RED95) and compressed natural gas (CNG). At the depot area the emission factors were in the range of 0.3-21 × 10(14) # (kg fuel)(-1), 6-40 g (kg fuel)(-1), 0.004-0.88 g (kg fuel)(-1), 0.004-0.56 g (kg fuel)(-1), 0.01-1.2 g (kg fuel)(-1), for particle number (EFN), nitrogen oxides (EFNOx), black carbon (EFBC), organics (EFOrg), and particle mass (EFPM1), respectively. The highest particulate emissions were observed from the Euro III and Euro IV buses and the lowest from the ethanol and CNG-fueled buses, which emitted BC only during acceleration. The organics emitted from the CNG-fueled buses were clearly less oxidized compared to the other bus types. The bus line experiments showed that lowest emissions were obtained from the ethanol-fueled buses whereas large variation existed between individual buses of the same type indicating that the operating conditions by drivers had large effect on the emissions.
Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo
2005-10-01
The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation catalyst) and from a vehicle fueled with low-sulfur diesel fuel (equipped with DPF) were lower than from the low-sulfur diesel fueled vehicle equipped with OC. All vehicle configurations had generally lower emissions of toxics than an uncontrolled diesel engine. Tunnel backgrounds (measurements without the vehicle running) were measured throughout this study and were helpful in determining the incremental increase in pollutant emissions. Also, the on-site determination of VOCs, especially 1,3-butadiene, helped minimize measurement losses due to sample degradation after collection.
Compressed natural gas bus safety: a quantitative risk assessment.
Chamberlain, Samuel; Modarres, Mohammad
2005-04-01
This study assesses the fire safety risks associated with compressed natural gas (CNG) vehicle systems, comprising primarily a typical school bus and supporting fuel infrastructure. The study determines the sensitivity of the results to variations in component failure rates and consequences of fire events. The components and subsystems that contribute most to fire safety risk are determined. Finally, the results are compared to fire risks of the present generation of diesel-fueled school buses. Direct computation of the safety risks associated with diesel-powered vehicles is possible because these are mature technologies for which historical performance data are available. Because of limited experience, fatal accident data for CNG bus fleets are minimal. Therefore, this study uses the probabilistic risk assessment (PRA) approach to model and predict fire safety risk of CNG buses. Generic failure data, engineering judgments, and assumptions are used in this study. This study predicts the mean fire fatality risk for typical CNG buses as approximately 0.23 fatalities per 100-million miles for all people involved, including bus passengers. The study estimates mean values of 0.16 fatalities per 100-million miles for bus passengers only. Based on historical data, diesel school bus mean fire fatality risk is 0.091 and 0.0007 per 100-million miles for all people and bus passengers, respectively. One can therefore conclude that CNG buses are more prone to fire fatality risk by 2.5 times that of diesel buses, with the bus passengers being more at risk by over two orders of magnitude. The study estimates a mean fire risk frequency of 2.2 x 10(-5) fatalities/bus per year. The 5% and 95% uncertainty bounds are 9.1 x 10(-6) and 4.0 x 10(-5), respectively. The risk result was found to be affected most by failure rates of pressure relief valves, CNG cylinders, and fuel piping.
Hydrogen Fuel Cell Engines and Related Technologies
NASA Astrophysics Data System (ADS)
2001-12-01
The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.
Baseline Testing of the Hybrid Electric Transit Bus
NASA Technical Reports Server (NTRS)
Brown, Jeffrey C.; Eichenberg, Dennis J.; Thompson, William K.
1999-01-01
A government, industry and academic cooperative has developed a Hybrid Electric Transit Bus (HETB). Goals of the program include doubling the fuel economy of city transit buses currently in service, and reducing emissions to one-tenth of EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors for the energy storage system and the planned use of a natural gas fueled turbogenerator, to be developed from a small jet engine. At over 17000 kg gross weight, this is the largest vehicle to use ultra-capacitor energy storage. A description of the HETB, the results of performance testing, and future vehicle development plans are the subject of this report.
[Particle emission characteristics of diesel bus fueled with bio-diesel].
Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei
2013-10-01
With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).
77 FR 27277 - FTA Supplemental Fiscal Year 2012 Apportionments, Allocations, and Program Information
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... allocates Section 5309 Bus and Bus Facilities funds to bus testing and the Fuel Cell program. Tables... Fuel Cell program. FTA will issue a supplemental notice at a later date if additional contract... allocated CA, GA, MA E2012-BUSP-018 Fuel Cell Bus Program..... $13,500,000 PA E2012-BUSP-019 Bus Testing 3...
Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston
DOT National Transportation Integrated Search
2017-05-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solu...
Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta
2012-09-29
One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions.
2012-01-01
Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. Conclusions The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions. PMID:23021308
Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.
2017-11-01
Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.
Fuel Cell Demonstration Project at a Sunline Transit Agency
NASA Astrophysics Data System (ADS)
Hsiung, S.
2001-09-01
This is the final report summarizing the Fuel Cell Demonstration Project activities of the XCELLSIS Zebus (zero emissions bus) performance at the SunLine Transit Agency in Thousand Palms, California. Under this demonstration project, SunLine participated with XCELLSIS in the fueling, training, operating, and testing of this prototype fuel cell bus. The report presents a summary of project activities, including the results of the 13-month test of the XCELLSIS Zebus performance at SunLine Transit. This final report includes data relating to Zebus performance, along with the successes achieved beyond the technical realm. The study concludes that the project was very useful in establishing operating parameters and environmental testing in extreme heat conditions and in transferring technology to a transit agency. At the end of the 13-month test period, the Zebus ran flawlessly in the Michelin Challenge Bibendum from Los Angeles to Las Vegas, a 275-mile trek. SunLine refueled the Zebus in transit to Baker, California, 150 miles from its home base. Everyone who encountered or rode the Zebus was impressed with its smoothness, low engine noise, and absence of emissions. The study states that the future for the Zebus looks very bright. Fuel cell projects are anticipated to continue in California and Europe with the introduction new buses equipped with Ballard P5 and other fuel cell engines as early as the first half of 2003.
In-use fuel economy of hybrid-electric school buses in Iowa.
Hallmark, Shauna; Sperry, Bob; Mudgal, Abhisek
2011-05-01
Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.
DOT National Transportation Integrated Search
2011-07-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...
Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas
NASA Astrophysics Data System (ADS)
Stempien, J. P.; Chan, S. H.
2017-02-01
Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.
NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than
Diesel | News | NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than Diesel NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than Diesel December 2, 2016 NREL has published a new report showing that the average fuel economy of fuel cell electric buses from
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, L.; Chandler, K.
2013-01-01
SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and helpmore » determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.« less
Okamoto, Robert A; Kado, Norman Y; Kuzmicky, Paul A; Ayala, Alberto; Kobayashi, Reiko
2006-01-01
The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.0 g/bhp-hr). In California, this engine is certified only with an OxiCat, so our study did not include emissions testing without it. We also tested a 2000 New Flyer 40-passenger low-floor bus powered by a Detroit Diesel series 50G engine (DDCs50G) that is currently certified in California without an OxiCat. The original equipment manufacturer (OEM) offers a "low-emission" package for this bus that includes an OxiCat for transit bus applications, thus, this configuration was also tested in this study. Previously, we reported that formaldehyde and other volatile organic emissions detected in the exhaust of the DDCs50G bus equipped with an OxiCat were significantly reduced relative to the same DDCs50G bus without OxiCat. In this paper, we examine othertoxic unregulated emissions of significance. The specific mutagenic activity of emission sample extracts was examined using the microsuspension assay. The total mutagenic activity of emissions (activity per mile) from the OxiCat-equipped DDC bus was generally lower than that from the DDC bus without the OxiCat. The CWest bus emission samples had mutagenic activity that was comparable to that of the OxiCat-equipped DDC bus. In general, polycyclic aromatic hydrocarbon (PAH) emissions were lower forthe OxiCat-equipped buses, with greater reductions observed for the volatile and semivolatile PAH emissions. Elemental carbon (EC) was detected in the exhaust from the all three bus configurations, and we found that the total carbon (TC) composition of particulate matter (PM) emissions was primarily organic carbon (OC). The amount of carbon emissions far exceeded the PM-associated inorganic element emissions, which were detected in all exhaust samples, at comparatively small emission rates. In summary, based on these results and those referenced from our group, the use of OxiCat for the new CWest engine and as a retrofit option for the DDCs50G engine generally results in the reduction of tailpipe toxic emissions. However, the conclusions of this study do not take into account OxiCat durability, deterioration, lubricant consumption, or vehicle maintenance, and these parameters merit further study.
Detroit Commuter Hydrogen Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Jerry; Prebo, Brendan
2010-07-31
This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibilitymore » of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.« less
Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus Preliminary Evaluation Results
DOT National Transportation Integrated Search
2008-10-16
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The report discusses the planned fuel cell bus demonstration and equipment us...
Developing and Demonstrating the Next-Generation Fuel Cell Electric Bus Made in America
DOT National Transportation Integrated Search
2012-02-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. CALSTART is one of three non-profit consortia chosen to manage projects competitively selected u...
Connecticut nutmeg fuel cell bus project : first analysis report.
DOT National Transportation Integrated Search
2012-07-01
This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administra-tion (FTA) under the National Fuel Cell Bus Program (NFCBP). A team led by the Northeast Advanced Vehicle Consortium a...
Transit Bus Fuel Economy and Performance Simulation
DOT National Transportation Integrated Search
1984-01-01
This report presents the results of bus simulation studies to determine the effects of various design and operating parameters on bus fuel economy and performance. The bus components are first described in terms of how they are modeled. Then a variat...
American Fuel Cell Bus Project Evaluation : Third Report
DOT National Transportation Integrated Search
2017-05-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The AFCB, built on an ElDorado National-California 40-foot Axess bus p...
Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL
. Transit Fleets: Current Status 2017, L. Eudy and M. Post (November 2017) Zero Emission Bay Area (ZEBA ) Fuel Cell Bus Demonstration Results: Sixth Report, L. Eudy, M. Post, and M. Jeffers (September 2017 2017) American Fuel Cell Bus Project Evaluation: Third Report, L. Eudy, M. Post, and M. Jeffers (May
Webinar May 17: Fuel Cell Electric Bus Progress Toward Meeting Technical
Targets | News | NREL Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets May 14, 2018 The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office will present a live webinar titled
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2012-01-01
The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.
Fuel Cell Hybrid Bus Lands at Hickam AFB
DOT National Transportation Integrated Search
2004-09-22
A FUEL CELL HYBRID ELECTRIC BUS was unveiled at Honolulus Hickam Air Force Base (Hickam AFB) in February 2004, becoming the first fuel cell vehicle in Hawaii and the first in the U.S. Air Force. The 30-foot flight crew shuttle bus will undergo 1 y...
School Bus Clean School Bus is a public-private partnership that focuses on reducing children's exposure to harmful diesel exhaust by limiting school bus idling, implementing pollution reduction technologies, improving route logistics, and switching to clean fuels. Clean School Bus is part of the U.S
Short-range evaluation of air pollution near bus and railway stations.
Corfa, E; Maury, F; Segers, P; Fresneau, A; Albergel, A
2004-12-01
In the early morning, during workdays, intensive activity is observed at both bus and railway stations. This particular time is critical because of the combination of three factors: (1) simultaneous departure of many buses and trains, (2) cold engines, and, quite frequently, (3) stable meteorological conditions. In our approach, we use ARIA Local, a simulation package applying CFD tools to air pollution modeling, to study different scenarios. The CFD model used in this study is the MERCURE model, developed by Electricite de France. For a bus station, we simulate a typical morning peak hour situation and study in detail how the pollution is accumulated in the station courtyard and the impact on the close vicinity. Two scenarios are presented: one with classical diesel engine and one with buses using AQUAZOL or NGV fuel. The definition of the sources inside the Eulerian grid is described as static linear sources. The total emission is averaged over the mean path driven by the bus from the bus stop to the exit of the bus station. For a railway station, we simulate a situation in a real railway station within the city of Paris. The emission from a diesel "locomotive" and its impact on air quality is computed and compared to the impact of other nonmobile emissions. In this case, the definition of sources is described as mobile point sources following the trajectory of the train. These two scenarios are discussed in an urban context, taking into account the flow around buildings and different meteorological conditions.
Connected car: Engines diagnostic via Internet of Things (IoT)
NASA Astrophysics Data System (ADS)
Hamid, A. F. A.; Rahman, M. T. A.; Khan, S. F.; Adom, A. H.; Rahim, M. A.; Rahim, N. A.; Ismail, M. H. N.; Norizan, A.
2017-10-01
This paper is about an experiment for performing engines diagnostic using wireless sensing Internet of Thing (IoT). The study is to overcome problem of current standard On Board Diagnosis (OBD-II) data acquisition method that only can be perform in offline or wired method. From this paper it show a method to determined how the data from engines can be collected, make the data can be easily understand by human and sending data over the wireless internet connection via platform of IOT. This study is separate into three stages that is CAN-bus data collection, CAN data conversion and send data to cloud storage. Every stage is experimented with a two different method and consist five data parameter that is Revolution per Minute (RPM), Manifold Air Pressure (MAP), load-fuel, barometric pressure and engine temperature. The experiment use Arduino Uno as microcontroller, CAN-bus converter and ESP8266 wifi board as transfer medium for data to internet.
Measuring In-Cabin School Bus Tailpipe and Crankcase PM2.5: A New Dual Tracer Method.
Ireson, Robert G; Ondov, John M; Zielinska, Barbara; Weaver, Christopher S; Easter, Michael D; Lawson, Douglas R; Hesterberg, Thomas W; Davey, Mark E; Liu, L-J Sally
2011-05-01
Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM 2.5 ) concentrations attributable to the buses' diesel engine tailpipe (DPM tp ) and crankcase vent (PM ck ) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PM ck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PM ck concentrations averaging 6.8 μg/m 3 were higher than DPM tp (0.91 μg/m 3 average). In-cabin DPM tp and PM ck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m 3 , respectively) as compared with open (0.44 and 1.3 μg/m 3 , respectively). For comparison, average closed- and open-window in-cabin total PM 2.5 concentrations were 26 and 12 μg/m 3 , respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m 3 for DPM tp and 0.05 μg/m 3 for PM ck . [Box: see text].
Measuring in-cabin school bus tailpipe and crankcase PM2.5: a new dual tracer method.
Ireson, Robert G; Ondov, John M; Zielinska, Barbara; Weaver, Christopher S; Easter, Michael D; Lawson, Douglas R; Hesterberg, Thomas W; Davey, Mark E; Liu, L-J Sally
2011-05-01
Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 microg/m3 were higher than DPMtp (0.91 microg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 microg/m3, respectively) as compared with open (0.44 and 1.3 microg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 microg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 microg/m3 for DPMtp and 0.05 microg/m3 for PMck.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
2009-01-01
This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.
Electrical contact structures for solid oxide electrolyte fuel cell
Isenberg, Arnold O.
1984-01-01
An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.
Liquefied natural gas fuel use : basic training manual
DOT National Transportation Integrated Search
1994-05-01
The Urban Mass Transportation Administration's Alternative Fuel Initiative and the Environmental Protection Agency's 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus research and demonstrati...
Compressed natural gas fuel use training manual
DOT National Transportation Integrated Search
1992-09-01
The Urban Mass Transportation Administration (UMTA) Alternative Fuel Initiative and the Environmental Protection Agency (EPA) 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus demonstrations....
Turrio-Baldassarri, Luigi; Battistelli, Chiara Laura; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato
2006-02-15
Emissions from a spark-ignition (SI) heavy-duty (HD) urban bus engine with a three-way catalyst (TWC), fuelled with compressed natural gas (CNG), were chemically analyzed and tested for genotoxicity. The results were compared with those obtained in a previous study on an equivalent diesel engine, fuelled with diesel oil (D) and a blend of the same with 20% vegetable oil (B20). Experimental procedures were identical, so that emission levels of the CNG engine were exactly comparable to the ones of the diesel engine. The experimental design was focused on carcinogenic compounds and genotoxic activity of exhausts. The results obtained show that the SI CNG engine emissions, with respect to the diesel engine fuelled with D, were nearly 50 times lower for carcinogenic polycyclic aromatic hydrocarbons (PAHs), 20 times lower for formaldehyde, and more than 30 times lower for particulate matter (PM). A 20-30 fold reduction of genotoxic activity was estimated from tests performed. A very high reduction of nitrogen oxides (NO(X)) was also measured. The impact of diesel powered transport on urban air quality, and the potential benefits deriving from the use of CNG for public transport, are discussed.
Reducing exhaust gas emissions from Citydiesel busses
NASA Astrophysics Data System (ADS)
Mikkonen, Seppo
The effect of fuel composition and exhaust gas aftertreatment on the emissions was measured from truck and bus engines. Possibilities to measure unregulated emissions (aldehydes, polyaromatic hydrocarbons, mutagenicity) were built. A reformulated diesel fuel 'Citydiesel' was developed. Citydiesel was able to reduce emissions compared to standard diesel fuel as follows: particulates by 10 to 30%, nitrogen oxides by 2 to 10%, sulphur dioxide by 97%, polyaromatic hydrocarbons (PAH) over 50%, mutagenicity of the exhaust particulates clearly, odor of the exhaust, and smoke after a cold start. The use of Citydiesel fuel reduces emissions of the existing vehicles immediately which is a remarkable benefit. The very low sulphur content (below 50 ppm) makes it possible to use oxidation. catalytic converters to reduce emissions of diesel vehicles. The new Euro 2 exhaust regulations coming into force during 1996 can be met with a modern diesel engine, Citydiesel fuel, and exhaust gas aftertreatment. Properties of Citydiesel fuel were verified in a three year field test with 140 city buses. Experience was good; e.g., engine oil change interval could be lengthened. Total value of the exhaust was estimated with different fuels and aftertreatment device in order to find out cheap ways to reduce emissions.
Glass, Bob; Mathis, Mike; Cochran, Ron; Garback, John
2018-06-08
Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr
Holmén, Britt A; Ayala, Alberto
2002-12-01
This paper addresses how current technologies effective for reducing PM emissions of heavy-duty engines may affect the physical characteristics of the particles emitted. Three in-use transit bus configurations were compared in terms of submicron particle size distributions using simultaneous SMPS measurements under two dilution conditions, a minidiluter and the legislated constant volume sampler (CVS). The compressed natural gas (CNG)-fueled and diesel particulate filter (DPF)-equipped diesel configurations are two "green" alternatives to conventional diesel engines. The CNG bus in this study did not have an oxidation catalyst whereas the diesel configurations (with and without particulate filter) employed catalysts. The DPF was a continuously regenerating trap (CRT). Particle size distributions were collected between 6 and 237 nm using 2-minute SMPS scans during idle and 55 mph steady-state cruise operation. Average particle size distributions collected during idle operation of the diesel baseline bus operating on ultralow sulfur fuel showed evidence for nanoparticle growth under CVS dilution conditions relative to the minidiluter. The CRT effectively reduced both accumulation and nuclei mode concentrations by factors of 10-100 except under CVS dilution conditions where nuclei mode concentrations were measured during 55 mph steady-state cruise that exceeded baseline diesel concentrations. The CVS data suggest some variability in trap performance. The CNG bus had accumulation mode concentrations 10-100x lower than the diesel baseline but often displayed large nuclei modes, especially under CVS dilution conditions. Partly this may be explained by the lack of an oxidation catalyst on the CNG, but differences between the minidiluter and CVS size distributions suggest that dilution ratio, temperature-related wall interactions, and differences in tunnel background between the diluters contributed to creating nanoparticle concentrations that sometimes exceeded diesel baseline concentrations when driving under load. The results do not support use of CVS dilution methodology for ultrafine particle sampling, and, despite attention to collection of tunnel blanks in this study, results indicate that a protocol needs to be determined and prescribed for taking into account tunnel blank "emissions" to obtain meaningful comparisons between different technologies. Of critical importance is determining how temperature differences between tunnel blank and test cycle sampling compare in terms of background particle numbers. Total particle number concentrations for the minidiluter sampling point were not significantly different for the two alternative technologies when considering all the steady-cycle data collected. Concentrations ranged from 0.8 to 3 x 10(6) for the baseline bus operating on ultralow sulfur fuel, from 0.5 to 9 x 10(4) for the diesel bus equipped with the CRT filter, and from 1 to 8 x 10(4) particles/cc for the CNG bus.
American Fuel Cell Bus Project Evaluation. Second Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less
Hybrid Turbine Electric Vehicle
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.
COMPARISON OF PARALLEL AND SERIES HYBRID POWERTRAINS FOR TRANSIT BUS APPLICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Daw, C Stuart; Smith, David E
2016-01-01
The fuel economy and emissions of both conventional and hybrid buses equipped with emissions aftertreatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicate that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar CO and HC tailpipe emissions but were also predicted to have reduced NOx tailpipe emissions compared to the conventional bus in higher speed cycles. For the New York bus cycle (NYBC), which has the lowestmore » average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus, while the parallel hybrid bus had significantly lower tailpipe emissions. All three bus powertrains were found to require periodic active DPF regeneration to maintain PM control. Plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed due to the relatively large battery capacity that is typical of the series hybrid configuration.« less
Research on fuel cell and battery hybrid bus system parameters based on ADVISOR
NASA Astrophysics Data System (ADS)
Lai, Lianfeng; Lu, Youwen; Guo, Weiwei; Lin, Yuxiang; Xie, Yichun; Zheng, Liping; Chen, Wei; Liang, Boshan
2018-06-01
This paper aims at the fuel cell and battery hybrid automobile, based on one bus parameters, considers their own characteristics of fuel cell and battery and power demand when automobiles start, accelerate, climb, brake and other different working conditions, calculate the hybrid bus system parameters that match the fuel cell/battery., and ADVISOR is used is to verify simulation. The results show that the parameters of power drive system of this electric automobile are reasonable, and can meet the requirements of dynamic design indexes.
American Fuel Cell Bus Project Evaluation : Second Report
DOT National Transportation Integrated Search
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Admini...
Technology Validation: Fuel Cell Bus Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie
This presentation describing the FY 2016 accomplishments for the National Renewable Energy Laboratory's Fuel Cell Bus Evaluations project was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, June 7, 2016.
Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems
NASA Astrophysics Data System (ADS)
Ally, Jamie; Pryor, Trevor
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Third Report
DOT National Transportation Integrated Search
2014-05-01
This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The FCEBs have a fuel cell dominant hybrid electric propulsion system in a series configuration. The bus manufacturerVan Hool...
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration : Second Results Report
DOT National Transportation Integrated Search
2012-07-04
This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The FCEBs have a fuel cell dominant hybrid electric propulsion system in a series configuration. The bus manufacturerVan Ho...
Pink, Alex; Ragatz, Adam; Wang, Lijuan; ...
2017-03-28
Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pink, Alex; Ragatz, Adam; Wang, Lijuan
Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less
DOT National Transportation Integrated Search
1990-01-01
The Urban Mass Transportation Administration (UMTA) Alternative Fuels initiative (AFI) and the Environmental Protection Ageny (EPA) 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus demonstra...
Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications
Gao, Zhiming; Daw, C. Stuart; Smith, David E.; ...
2016-08-01
The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less
Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Daw, C. Stuart; Smith, David E.
The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less
FTA fuel cell bus program : research accomplishments through 2011.
DOT National Transportation Integrated Search
2012-03-01
Prepared by the Federal Transit Administration (FTA) Office of Research, Demonstration, and Innovation (TRI), this report summarizes the accomplishments of fuel-cell-transit-bus-related research and demonstrations projects supported by FTA through 20...
Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei
The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
This report provides preliminary results from a National Renewable Energy Laboratory evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment; early results and agency experience are also provided.
How to Cut Costs by Saving School Bus Fuel.
ERIC Educational Resources Information Center
Seiff, Hank
A program started in Washington County, Maryland in 1980 has been successful in saving school bus fuel and bringing down transportation costs incurred by its fleet of 200 buses. Driver training and motivation, as well as a partial transfer to diesel buses, are at the heart of the program. The drivers are taught five fuel saving techniques: cut…
Transit bus life cycle cost and year 2007 emissions estimation.
DOT National Transportation Integrated Search
2007-06-01
The report presents a study of transit bus life cycle cost (LCC) analysis, and projected transit bus emissions and fuel economy for 2007 : model year buses. It covers four bus types: diesel buses using ultra low sulfur diesel (ULSD), diesel buses usi...
BC Transit Fuel Cell Bus Project : Evaluation Results Report
DOT National Transportation Integrated Search
2014-02-02
British Columbia Transit (BC Transit) has been leading a demonstration of fuel cell electric buses (FCEB) in Whistler, Canada, since early 2010. This 20-bus demonstration was introduced during the 2010 Winter Olympic Games and is the worlds larges...
SunLine Test Drives Hydrogen Bus
DOT National Transportation Integrated Search
2003-08-01
SunLine collaborated with the U.S. Department of Energys (DOE) Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program on the evaluation of the 30-foot hybrid fuel cell bus that was developed by ThunderPower LLC, a joint venture by Tho...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ring, S
1994-12-01
The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, throughmore » a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.« less
An assessment and comparison of fuel cells for transportation applications
NASA Astrophysics Data System (ADS)
Krumpelt, M.; Christianson, C. C.
1989-09-01
Fuel cells offer the potential of a clean, efficient power source for buses, cars, and other transportation applications. When the fuel cell is run on methanol, refueling would be as rapid as with gasoline-powered internal combustion engines, providing a virtually unlimited range while still maintaining the smooth and quiet acceleration that is typical for electric vehicles. The advantages and disadvantages of five types of fuel cells are reviewed and analyzed for a transportation application: alkaline, phosphoric acid, proton exchange membrane, molten carbonate, and solid oxide. The status of each technology is discussed, system designs are reviewed, and preliminary comparisons of power densities, start-up times, and dynamic response capabilities are made. To test the concept, a fuel cell/battery powered urban bus appears to be a good first step that can be realized today with phosphoric acid cells. In the longer term, the proton exchange membrane and solid oxide fuel cells appear to be superior.
Fuel Cell Transit Buses : ThunderPower Bus Evaluation at SunLine Transit Agency
DOT National Transportation Integrated Search
2003-11-01
This report provides an overview of the ThunderPower fuel cell bus demonstration at SunLine Transit Agency in Thousand Palms, California. Under contract with the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) evaluat...
FUEL CELL BUS DEMONSTRATION IN MEXICO CITY
The report discusses the performance of a cull-size, zero-emission, Proton Exchange Membrane (PEM) fuel-cell-powered transit bus in the atmospheric environment of Mexico City. To address the air quality problems caused by vehicle emissions in Mexico City, a seminar on clean vehic...
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report
DOT National Transportation Integrated Search
2013-01-01
SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technol...
DOT National Transportation Integrated Search
2017-04-01
Pure electric buses (EBs) offer an alternative fuel for the nations transit bus systems. To : evaluate EBs in a transit setting, this project investigated the five electric bus fleet of the : StarMetro transit system of the city of Tallahassee, FL...
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation : Third Results Report
DOT National Transportation Integrated Search
2012-05-01
SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. This report describes operations at SunLine for a prototype f...
King County Metro Battery Electric Bus Demonstration—Preliminary Project Results
DOT National Transportation Integrated Search
2017-05-01
The U.S. Federal Transit Administration (FTA) funds a variety of research projects that support the commercialization of zero-emission bus technology. Recent programs include the National Fuel Cell Bus program, the Transit Investments for Greenhouse ...
Hammond, Davyda; Jones, Steven; Lalor, Melinda
2007-02-01
Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, L.; Chandler, K.
2010-06-01
This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.
Bus industry market study. Report -- Task 3.2: Fuel cell/battery powered bus system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zalbowitz, M.
1992-06-02
In support of the commercialization of fuel cells for transportation, Georgetown University, as a part of the DOE/DOT Fuel Cell Transit Bus Program, conducted a market study to determine the inventory of passenger buses in service as of December, 1991, the number of buses delivered in 1991 and an estimate of the number of buses to be delivered in 1992. Short term and long term market projections of deliveries were also made. Data was collected according to type of bus and the field was divided into the following categories which are defined in the report: transit buses, school buses, commercialmore » non-transit buses, and intercity buses. The findings of this study presented with various tables of data collected from identified sources as well as narrative analysis based upon interviews conducted during the survey.« less
Multiple output power supply circuit for an ion engine with shared upper inverter
NASA Technical Reports Server (NTRS)
Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)
2001-01-01
A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.
NASA Astrophysics Data System (ADS)
Ring, Shan
1994-12-01
The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase 1 of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase 3. After completing Phase 2, DOE plans a comprehensive performance testing program (Phase H1) to verify that the buses meet stringent transit industry requirements. The Phase 3 study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.
NASA Astrophysics Data System (ADS)
Verma, H. K.; Mafidar, P.
2013-09-01
In view of growing concern towards environment, power system engineers are forced to generate quality green energy. Hence the economic dispatch (ED) aims at the power generation to meet the load demand at minimum fuel cost with environmental and voltage constraints along with essential constraints on real and reactive power. The emission control which reduces the negative impact on environment is achieved by including the additional constraints in ED problem. Presently, the power system mostly operates near its stability limits, therefore with increased demand the system faces voltage problem. The bus voltages are brought within limit in the present work by placement of static var compensator (SVC) at weak bus which is identified from bus participation factor. The optimal size of SVC is determined by univariate search method. This paper presents the use of Teaching Learning based Optimization (TLBO) algorithm for voltage stable environment friendly ED problem with real and reactive power constraints. The computational effectiveness of TLBO is established through test results over particle swarm optimization (PSO) and Big Bang-Big Crunch (BB-BC) algorithms for the ED problem.
Areno, Matthew
2015-12-08
Techniques and mechanisms for providing a value from physically unclonable function (PUF) circuitry for a cryptographic operation of a security module. In an embodiment, a cryptographic engine receives a value from PUF circuitry and based on the value, outputs a result of a cryptographic operation to a bus of the security module. The bus couples the cryptographic engine to control logic or interface logic of the security module. In another embodiment, the value is provided to the cryptographic engine from the PUF circuitry via a signal line which is distinct from the bus, where any exchange of the value by either of the cryptographic engine and the PUF circuitry is for communication of the first value independent of the bus.
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Gikakis, Christina
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less
Onboard Plasmatron Hydrogen Production for Improved Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi
2005-12-31
A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperaturemore » electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.« less
Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles
NASA Astrophysics Data System (ADS)
Hajbabaei, Maryam
There is a global effort to expand the use of alternative fuels due to their several benefits such as improving air quality with reducing some criteria emissions, reducing dependency on fossil fuels, and reducing greenhouse gases such as carbon dioxide. This dissertation is focused on investigating the impact of two popular alternative fuels, biodiesel and natural gas (NG), on emissions from heavy-duty engines. Biodiesel is one of the most popular renewable fuels with diesel applications. Although biodiesel blends are reported to reduce particulate matter, carbon monoxide, and total hydrocarbon emissions; there is uncertainty on their impact on nitrogen oxides (NOx) emissions. This dissertation evaluated the effect of biodiesel feedstock, biodiesel blend level, engine technology, and driving conditions on NOx emissions. The results showed that NOx emissions increase with 20% and higher biodiesel blends. Also, in this study some strategies were proposed and some fuel formulations were found for mitigating NOx emissions increases with biodiesel. The impact of 5% biodiesel on criteria emissions specifically NOx was also fully studied in this thesis. As a part of the results of this study, 5% animal-based biodiesel was certified for use in California based on California Air Resources Board emissions equivalent procedure. NG is one of the most prominent alternative fuels with larger reserves compared to crude oil. However, the quality of NG depends on both its source and the degree to which it is processed. The current study explored the impact of various NG fuels, ranging from low methane/high energy gases to high methane/low energy gases, on criteria and toxic emissions from NG engines with different combustion and aftertreatment technologies. The results showed stronger fuel effects for the lean-burn technology bus. Finally, this thesis investigated the impact of changing diesel fuel composition on the criteria emissions from a variety of heavy-duty engine technologies. Emissions from an average diesel fuel used throughout the U.S. were compared with a 10% aromatic, ultra-low sulfur diesel fuel used in California with more stringent air quality regulations. The results showed that the emerging aftertreatment technologies eventually eliminate the benefits of the lower aromatic content/higher cetane number diesel fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; Walkowicz, K.; Duran, A.
2012-10-01
In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CANmore » bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.« less
Diesel Bus Performance Simulation Program
DOT National Transportation Integrated Search
1979-04-01
A diesel bus performance computer simulation program was developed. This program provides information on acceleration, velocity, horsepower, distance traveled, and fuel consumption as a function of time from the originating station. The program was w...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew B
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage researchmore » and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.« less
Transit bus applications of lithium ion batteries : progress and prospects
DOT National Transportation Integrated Search
2012-12-31
This report provides an overview of diverse transit bus applications of advanced Lithium Ion Batteries (LIBs). The report highlights and illustrates several FTA programs that fostered the successful development, demonstration, and deployment of fuel-...
Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city
NASA Astrophysics Data System (ADS)
Xie, Yongdong; Xu, Guangju
2017-09-01
In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
.... Grantees are reminded that the 90% provision for biodiesel buses is not available this year, as the... was highlighted in FTA's January 2012 Apportionment Notice, Section III (C). Biodiesel buses remain...
Sonntag, Darrell B; Gao, H Oliver; Holmén, Britt A
2008-08-01
A linear mixed model was developed to quantify the variability of particle number emissions from transit buses tested in real-world driving conditions. Two conventional diesel buses and two hybrid diesel-electric buses were tested throughout 2004 under different aftertreatments, fuels, drivers, and bus routes. The mixed model controlled the confounding influence of factors inherent to on-board testing. Statistical tests showed that particle number emissions varied significantly according to the after treatment, bus route, driver, bus type, and daily temperature, with only minor variability attributable to differences between fuel types. The daily setup and operation of the sampling equipment (electrical low pressure impactor) and mini-dilution system contributed to 30-84% of the total random variability of particle measurements among tests with diesel oxidation catalysts. By controlling for the sampling day variability, the model better defined the differences in particle emissions among bus routes. In contrast, the low particle number emissions measured with diesel particle filters (decreased by over 99%) did not vary according to operating conditions or bus type but did vary substantially with ambient temperature.
1981-01-01
SELCAL FLT ALT ATNI AUO ALT BRK CANSELCAL OVSO CALL CONTRL ALRT _ I7CT be SPLR b 0 11CALL Figure 5.4.4-1 Pilot’s Response Panel Figure 5.4.4-2 Flight...Galley bus off 27 GLY BUS OFF A RP ELEC CYCLE SWITCH Utility bus off 28 UTIL BUS OFF A RP ELEC CYCLE SWITCH Right engine 29 R ENG HYD PUMP A RP HYD...CYCLE SWITCH hydraulic pump Left engine 30 L ENG FIRE DET A RP FIRE RP FIRE fire detector Left brake overheat 31 L BRAKE OVHT A RP BRK RP BRK Right
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-11-01
This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Workmore » was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.« less
Missouri Soybean Association Biodiesel Demonstration Project: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, Dale; Hamilton, Jill
The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry educationmore » program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to support ongoing industry efforts to collect existing data and to increase awareness and knowledge among school district fleet managers. However, three years into the project, the original intent of the engine verification was no longer deemed by equipment manufacturers to be of sufficient economic interest to enter into a partnership. In response, MSA requested a project extension and re-scope to eliminate the aftermarket equipment verification and replace it with a petroleum education program. The revised project maintained four task areas with the following modifications. The first component was directed at increasing national compliance with newly initiated state level fuel blend mandates through a distributor education program. Component two was modified to eliminate the verification element and, instead, document operational data from biodiesel use in a district school bus fleet. Components three and four were unchanged and maintained their purpose of expanding upon the existing knowledge base of biodiesel use in school bus fleets.« less
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, G.W.
1988-04-21
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.
Alternative Fuel Vehicle (AFV) Revolving Loan Program The Mississippi Alternative Fuel School Bus and Municipal Motor Vehicle Revolving Loan Program provides zero-interest loans for public school districts and municipalities to cover the incremental cost to purchase alternative fuel school buses and
V.C.3 Technology Validation : Fuel Cell Bus Evaluations
DOT National Transportation Integrated Search
2005-01-06
Based on the results of this analysis and the response from the project partners, the SunLine demonstration was deemed to be a success. Although it was a prototype (or pre-commercial) vehicle, the ThunderPower bus operated in revenue service at a rel...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014
DOT National Transportation Integrated Search
2014-12-03
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...
2013-05-01
logic to perform control function computations and are connected to the full authority digital engine control ( FADEC ) via a high-speed data...Digital Engine Control ( FADEC ) via a high speed data communication bus. The short term distributed engine control configu- rations will be core...concen- trator; and high temperature electronics, high speed communication bus between the data concentrator and the control law processor master FADEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Gonder, Jeff; Burton, Evan
This study evaluates the costs and benefits associated with the use of a stationary-wireless- power-transfer-enabled plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep was performed over many different battery sizes, charging power levels, and number/location of bus stop charging stations. The net present cost was calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybridmore » electric comparison scenario. The study also performed parameter sensitivity analysis under favorable and high unfavorable market penetration assumptions. The analysis identifies fuel saving opportunities with plug-in hybrid electric bus scenarios at cumulative net present costs not too dissimilar from those for conventional buses.« less
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
46 CFR 112.05-3 - Main-emergency bus-tie.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS General § 112.05-3 Main-emergency bus-tie. Each bus-tie between a main switchboard... other source of electric power, except for interlock systems for momentary transfer of loads; and (c) If...
46 CFR 112.05-3 - Main-emergency bus-tie.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS General § 112.05-3 Main-emergency bus-tie. Each bus-tie between a main switchboard... other source of electric power, except for interlock systems for momentary transfer of loads; and (c) If...
46 CFR 112.05-3 - Main-emergency bus-tie.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS General § 112.05-3 Main-emergency bus-tie. Each bus-tie between a main switchboard... other source of electric power, except for interlock systems for momentary transfer of loads; and (c) If...
46 CFR 112.05-3 - Main-emergency bus-tie.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS General § 112.05-3 Main-emergency bus-tie. Each bus-tie between a main switchboard... other source of electric power, except for interlock systems for momentary transfer of loads; and (c) If...
ERIC Educational Resources Information Center
Brantner, Max
1984-01-01
Reports on a northern Illinois school bus fleet converted to propane fuel in 1981 and 1982. Includes tables showing, first, total annual fuel costs before and after conversion and, second, fuel efficiency for 16 buses using propane and three using gasoline. Notes precautions for propane use. (MCG)
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
DOT National Transportation Integrated Search
2017-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOT National Transportation Integrated Search
2016-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015
DOT National Transportation Integrated Search
2015-12-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Impact of compressed natural gas fueled buses on street pavements
DOT National Transportation Integrated Search
1995-07-01
Federal Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of : 1992 (EPACT), together with other state regulations have encouraged or mandated : transit systems to use alternative fuels to power bus fleets. Among such fuels, : compres...
DOT National Transportation Integrated Search
2013-10-21
As part of its commitment to clean vehicle technologies, the City of Burbank tests a fuel cell bus in its mass transit system. BurbankBus, which provides transit services in and around the City of Burbank, California, has four fixedroute transit line...
DOT National Transportation Integrated Search
2008-05-01
This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportations Federal Transit Administration (...
Fleischman, Rafael; Amiel, Ran; Czerwinski, Jan; Mayer, Andreas; Tartakovsky, Leonid
2018-05-01
Retrofitting older vehicles with diesel particulate filter (DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%-1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23-560nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency. Copyright © 2017. Published by Elsevier B.V.
Polymer electrolyte fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, T.E.; Wilson, M.S.; Garzon, F.H.
1993-01-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less
Polymer electrolyte fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, T.E.; Wilson, M.S.; Garzon, F.H.
1993-03-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less
Clean air program : design guidelines for bus transit systems using hydrogen as an alternative fuel
DOT National Transportation Integrated Search
1999-04-01
Alternative fuels such as Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and alcohol fuels (methanol, and ethanol) are already being used in commercial vehicles and transit buses in revenue service. Hydrogen...
40 CFR 85.1407 - Notification of intent to certify.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1407... certifier that use of its certified equipment will not cause a substantial increase to urban bus engine... § 85.1403(b) for all affected urban bus operators as specified in § 85.1401, the notification shall...
40 CFR 85.1407 - Notification of intent to certify.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1407... certifier that use of its certified equipment will not cause a substantial increase to urban bus engine... § 85.1403(b) for all affected urban bus operators as specified in § 85.1401, the notification shall...
40 CFR 85.1407 - Notification of intent to certify.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1407... certifier that use of its certified equipment will not cause a substantial increase to urban bus engine... § 85.1403(b) for all affected urban bus operators as specified in § 85.1401, the notification shall...
40 CFR 85.1407 - Notification of intent to certify.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1407... certifier that use of its certified equipment will not cause a substantial increase to urban bus engine... § 85.1403(b) for all affected urban bus operators as specified in § 85.1401, the notification shall...
Ohio's First Electrolysis-Based Hydrogen Fueling Station
NASA Technical Reports Server (NTRS)
Demattia, Brianne
2014-01-01
Presentation to the earth day coalition describing efforts with NASA GRC and Cleveland RTA on Ohio's hydrogen fueling station and bus demonstration. Project background and goals, challenges and successes, and current status.
Annoyance evaluation and the effect of noise on the health of bus drivers.
Bruno, Portela S; Marcos, Queiroga R; Amanda, Constantini; Paulo, Zannin H T
2013-01-01
In the present study, we evaluated annoyance and the effects of noise on the health of bus drivers. For that, 200 bus drivers from a public transport company participated in a cross-sectional study. Annoyance and effects on health was measured with analog scale: Sleep quality, occurrence of tinnitus, headache, irritation, and annoyance from bus engine, traffic, and passengers. Data of age and working time of bus drivers also were obtained. For noise exposure, LA eq was evaluated in 80 buses. Statistical analysis consisted of mean, standard deviation, minimum, and maximum, Kruskal-Wallis test with post-hoc Dunn, one-way ANOVA with post-hoc Tukey and Spearman's correlation coefficient. Results indicate three groups of bus drivers (not annoyed: (N.A.), a little annoyed (L.A.) and highly annoyed (H.A.)). The group H.A. was younger and with less working time in relation to others, with a significant difference only for age. Regarding sleep quality, there was no significant difference. For results on the occurrence of tinnitus, headache and irritation after work, group H.A. had significantly higher means. Result of annoyance to the bus engine was significantly higher in H.A. than in L.A. and N.A. Annoyance to traffic and passengers, no significant differences were found, but the highest results were found for L.A., followed by H.A. and N.A. Equivalent sound pressure level in buses was above of the limit for occupational comfort. It was concluded that bus drivers has considerable level of noise annoyance and some health effects are perceived. The noise is a factor discomfort ergonomic that may cause effects on health of bus drivers. This study aims to evaluate annoyance and the effects of noise on the health of bus drivers. Cross-sectional study with buses and bus drivers. For that, 200 bus drivers from a public transport company participated in a cross-sectional study. Annoyance and effects on health was measured with analog scale: Sleep quality, occurrence of tinnitus, headache, irritation and annoyance from bus engine, traffic, and passengers. Data of age and working time of bus drivers also were obtained. For noise exposure, LA eq was evaluated in 80 buses. Statistical analysis consisted of mean, standard deviation, minimum and maximum, Kruskal-Wallis test with post-hoc Dunn, one-way ANOVA with post-hoc Tukey and Spearman's correlation coefficient. Results indicate three groups of bus drivers (N.A., a L.A. and H.A.). The group H.A. was younger and with less working time in relation to others, with a significant difference only for age. Regarding sleep quality, there was no significant difference. For results on the occurrence of tinnitus, headache and irritation after work, group H.A. had significantly higher means. Result of annoyance to the bus engine was significantly higher in H.A. than in L.A. and N.A. Annoyance to traffic and passengers, no significant differences were found, but the highest results were found for L.A., followed by H.A. and N.A. Equivalent sound pressure level in buses was above of the limit for occupational comfort. It was concluded that bus drivers has considerable level of noise annoyance and some health effects are perceived.
DOT National Transportation Integrated Search
1996-08-01
Although there are over one thousand transit buses in revenue service in the U.S. that are powered by alternative fuels, there are no comprehensive guidelines for the safe design and operation of alternative fuel facilities and vehicles for transit s...
Investigation, quantification, and recommendations : performance of alternatively fueled buses.
DOT National Transportation Integrated Search
2014-08-01
The goal of this project was to continue consistent collection and reporting of data on the performance and costs of alternatively fueled public transit vehicles in the U.S. transit fleet in order to keep the Bus Fuels Fleet Evaluation Tool (BuFFeT; ...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011
DOT National Transportation Integrated Search
2011-11-11
his report is the fifth in a series of annual status reports that summarize the progress resulting from fuel cell transit bus demonstrations in the United States and provide a discussion of the achievements and challenges of fuel cell propulsion in t...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012
DOT National Transportation Integrated Search
2012-11-12
This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013
DOT National Transportation Integrated Search
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...
ERIC Educational Resources Information Center
University of South Florida, Tampa. Coll. of Education.
This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…
1981-12-01
CGS Funtional Requirements and System Configuration Introduction The first phase of any system development is to define requirements. The development of...between any two devices and the bus is in a master/slave relationship . During any bus operation, the bus master controls the bus when communicating with...illustrate the CASE statement of the PASCAL language. These extensions are mentioned to illustrate the relationships that the Warnier-Orr diagrams exhibit
49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Because the operator will not become familiar with the detailed design of all new bus models that are tested, tests to determine the time and skill required to remove and reinstall an engine, a transmission... feasible to conduct statistical reliability tests. The detected bus failures, repair time, and the actions...
49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Because the operator will not become familiar with the detailed design of all new bus models that are tested, tests to determine the time and skill required to remove and reinstall an engine, a transmission... feasible to conduct statistical reliability tests. The detected bus failures, repair time, and the actions...
49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Because the operator will not become familiar with the detailed design of all new bus models that are tested, tests to determine the time and skill required to remove and reinstall an engine, a transmission... feasible to conduct statistical reliability tests. The detected bus failures, repair time, and the actions...
Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in
Fleet Uses a Wide Variety of Alternative Fuels Dec. 5, 2015 Photo of a Coca-Cola alternative-fuel truck Alternative Fuel Vehicles July 15, 2015 Photo of a bus. Maryland County Fleet Uses Wide Variety of Alternative vehicle Mammoth Cave National Park Uses Only Alternative Fuel Vehicles Dec. 1, 2012 Frito-Lay Delivers
Light-Duty Alternative Fuel Vehicle Rebates Clean Vehicle and Infrastructure Grants Clean Fleet Grants Clean School Bus Program Clean Vehicle Replacement Vouchers Diesel Fuel Blend Tax Exemption Idle Reduction Weight Exemption Natural Gas Vehicle (NGV) Weight Exemption Utility/Private Incentives Plug-In
DOT National Transportation Integrated Search
1997-03-01
The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Natural Gas (LNG), Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), and Methanol/Ethanol, are already being used. At present, t...
DOT National Transportation Integrated Search
1996-09-01
The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...
DOT National Transportation Integrated Search
2003-03-01
The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including : Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and : Methanol/Ethanol, are already being used. At presen...
Tracking costs of alternatively fueled buses in Florida - phase II.
DOT National Transportation Integrated Search
2013-04-01
The goal of this project is to continue collecting and reporting the data on the performance and costs of alternatively fueled public transit vehicles in the state in a consistent manner in order to keep the Bus Fuels Fleet Evaluation Tool (BuFFeT) c...
Radiation-Tolerant Dual Data Bus
NASA Technical Reports Server (NTRS)
Kinstler, Gary A.
2007-01-01
An architecture, and a method of utilizing the architecture, have been proposed to enable error-free operation of a data bus that includes, and is connected to, commercial off-the-shelf (COTS) circuits and components that are inherently susceptible to singleevent upsets [SEUs (bit flips caused by impinging high-energy particles and photons)]. The architecture and method are applicable, more specifically, to data-bus circuitry based on the Institute for Electrical and Electronics Engineers (IEEE) 1394b standard for a high-speed serial bus.
NASA Astrophysics Data System (ADS)
Aslan, E.; Ozturk, Y.; Dileroglu, S.
2017-07-01
The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.
Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel.
Martins, Leila Droprinchinski; da Silva Júnior, Carlos Roberto; Solci, Maria Cristina; Pinto, Jurandir Pereira; Souza, Davi Zacarias; Vasconcellos, Pérola; Guarieiro, Aline Lefol Nani; Guarieiro, Lílian Lefol Nani; Sousa, Eliane Teixeira; de Andrade, Jailson B
2012-05-01
In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.
Efficiency in bus stop location and design.
DOT National Transportation Integrated Search
1980-01-01
The research reported here identified those elements associated with the location and design of bus stops that affect the efficiency of transit and traffic operations, and developed guidelines to assist transportation engineers and planners in techni...
Natural gas applications for hybrid vehicles. Final report, October 1992-July 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, J.M.
1993-08-01
Hybrid vehicle technology holds the potential for improved efficiency and emissions compared with internal combustion (IC) engines and improved range and refueling convenience over electric vehicles. This study evaluated the potential for using natural gas as a hybrid vehicle fuel. Potential regulatory and market drivers were evaluated for hybrids generally and natural gas hybrids in specific. Heat engine options and other configuration issues were investigated to determine efficiency, emissions or other benefits of light- and heavy-duty hybrids. Several hybrid vehicle configurations were evaluated to determine the specific packaging attributes of natural gas in a hybrid configuration. Generally, conventional IC enginesmore » appear adequate for most emissions-sensitive hybrid applications with no great advantage being gained from using turbines or other more advanced heat engines. The largest technology barrier to a near-term hybrid is the weight of available or near-term batteries. Smaller, light-duty hybrid vehicles will be more sensitive to this weight handicap than larger vehicles such as the urban transit bus.« less
Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant
NASA Technical Reports Server (NTRS)
George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.
2014-01-01
A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB, which was developed as part of the Federal Transit Administration's (FTA) National Fuel Cell Bus Program, was delivered to SunLine in November 2011 and was put in revenue service in mid-December 2011. Two new AFCBs with an upgraded design were delivered in June/July of 2014 and a third new AFCB was delivered in February 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE)more » and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report covers the performance of the AFCBs from July 2015 through December 2016.« less
Comparison of on-road emissions for hybrid and regular transit buses.
Hallmark, Shauna L; Wang, Bo; Sperry, Robert
2013-10-01
Hybrid technology offers an attractive option for transit buses, since it has the potential to significantly reduce operating costs for transit agencies. The main impetus behind use of hybrid transit vehicles is fuel savings and reduced emissions. Laboratory tests have indicated that hybrid transit buses can have significantly lower emissions compared with conventional transit buses. However the number of studies is limited and laboratory tests may not represent actual driving conditions, since in-use vehicle operation differs from laboratory test cycles. This paper describes an on-road evaluation of in-use emission differences between hybrid-electric and conventional transit buses for the Ames, Iowa transit authority, CyRide. Emissions were collected on-road using a portable emissions monitoring system (PEMS) for three hybrid and two control buses. Emissions were collected for at least one operating bus day. Each bus was evaluated over the same route pattern, which utilizes the same driver. The number of passengers embarking or disembarking at each stop was collected by an on-board data collector so that passenger load could be included. Vehicle emissions are correlated to engine load demand, which is a function of factors such as vehicle load, speed, and acceleration. PEMS data are provided second by second and vehicle-specific power (VSP) was calculated for each row of data. Instantaneous data were stratified into the defined VSP bins and then average modal emission rates and standard errors were calculated for each bus for each pollutant. Pollutants were then compared by bus type. Carbon dioxide, carbon monoxide, and hydrocarbon emissions were higher for the regular buses across most VSP bins than for the hybrid buses. Nitrogen oxide emissions were unexpectedly higher for the hybrid buses than for the control buses.
DOT National Transportation Integrated Search
2003-10-29
The objective of the DOE/NREL evaluation program is to provide comprehensive, unbiased evaluation results of advanced technology vehicle development and operations, evaluation of hydrogen infrastructure development and operation, and descriptions of ...
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.
26 CFR 48.6421-3 - Time for filing claim for credit or payment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... respect to gasoline used in a qualified business use or as a fuel in an aircraft (other than aircraft in noncommercial aviation) or in § 48.6421-2 with respect to gasoline used either in an intercity or local bus... public or in school bus transportation operations, shall cover only gasoline used during the taxable year...
26 CFR 48.6421-3 - Time for filing claim for credit or payment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... respect to gasoline used in a qualified business use or as a fuel in an aircraft (other than aircraft in noncommercial aviation) or in § 48.6421-2 with respect to gasoline used either in an intercity or local bus... public or in school bus transportation operations, shall cover only gasoline used during the taxable year...
Morphology of single inhalable particle inside public transit biodiesel fueled bus.
Shandilya, Kaushik K; Kumar, Ashok
2010-01-01
In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.
Vehicle safety telemetry for automated highways
NASA Technical Reports Server (NTRS)
Hansen, G. R.
1977-01-01
The emphasis in current, automatic vehicle testing and diagnosis is primarily centered on the proper operation of the engine. Lateral and longitudinal guidance technologies, including speed control and headway sensing for collision avoidance, are reviewed. The principal guidance technique remains the buried wire. Speed control and headway sensing, even though they show the same basic elements in braking and fuel systems, are proceeding independently. The applications of on-board electronic and microprocessor techniques were investigated; each application (emission control, spark advance, or anti-slip braking) is being treated as an independent problem is proposed. A unified bus system of distributed processors for accomplishing the various functions and testing required for vehicles equipped to use automated highways.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report
DOT National Transportation Integrated Search
2017-09-01
This report presents results of a demonstration of fuel cell electric buses (FCEBs) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration that includes 13 advanced-d...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008
DOT National Transportation Integrated Search
2008-12-01
In September 2007, the U.S. Department of Energys (DOE) National Renewable Energy Laboratory (NREL) published a report that reviewed past and present fuel cell bus technology development and implementation in the United States. That report reviewe...
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Fourth Report
DOT National Transportation Integrated Search
2015-07-04
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-...
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Fifth Report
DOT National Transportation Integrated Search
2016-06-01
This report presents results of a demonstration of fuel cell electric buses (FCEBs) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced...
2006-09-09
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Daniel Burbank dons his launch and re-entry suit before heading to the launch pad for another attempt at liftoff. The launch attempt on Sept. 8 was scrubbed due to an issue with a fuel cut-off sensor system inside the external fuel tank. This is one of several systems that protect the shuttle's main engines by triggering their shutdown if fuel runs unexpectedly low. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-09
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper is donning her launch and re-entry suit before heading to the launch pad for another attempt at liftoff. The launch attempt on Sept. 8 was scrubbed due to an issue with a fuel cut-off sensor system inside the external fuel tank. This is one of several systems that protect the shuttle's main engines by triggering their shutdown if fuel runs unexpectedly low. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
Emission inventory estimation of an intercity bus terminal.
Qiu, Zhaowen; Li, Xiaoxia; Hao, Yanzhao; Deng, Shunxi; Gao, H Oliver
2016-06-01
Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.
Operational Resiliency Management: An Introduction to the Resiliency Engineering Framework
2006-09-20
Maturity Model Integration (CMMI) . 5 © 2006 Carnegie Mellon University y FRB Bus Con Conference 2006 Managing Today’s Operational Risk Challenges ...Bus Con Conference 2006 A model is needed to. . . Identify and prioritize risk exposures Define a process improvement roadmap Measure and facilitate...University y FRB Bus Con Conference 2006 Why use a “model” approach? Provides an operational risk roadmap Vendor-neutral, standardized, unbiased
BC Transit Fuel Cell Bus Project Evaluation Results : Second Report
DOT National Transportation Integrated Search
2014-09-01
Beginning in 2009, British Columbia Transit (BC Transit) led a project to conduct a 5-year demonstration of 20 fuel cell electric buses (FCEB) in Whistler, Canada. The FCEB fleet was introduced during the 2010 Winter Olympic Games and operated throug...
National Fuel Cell Bus Program : Accelerated Testing Report, AC Transit
DOT National Transportation Integrated Search
2009-01-01
This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 throu...
Fuel Cell Buses in U.S. Transit Fleets : Summary of Experiences and Current Status
DOT National Transportation Integrated Search
2007-09-01
This report reviews past and present fuel cell bus technology development and implementation, specifically focusing on experiences and progress in the United States. This review encompasses results from the U.S. Department of Energy (DOE)/National Re...
Alternative Fuels Data Center: Natural Gas Fuels School Buses and Refuse
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: South Florida Fleet Fuels with Propane
Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In
gas vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus Diego Feb. 2, 2013 Photo of neighborhood electric vehicle Mammoth Cave National Park Uses Only
Alternative Fuels Data Center: EV Battery Recycling
Battery Recycling Find out how one entrepreneur is working on new uses for old plug-in electric vehicle vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5, 2015 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus
NASA Astrophysics Data System (ADS)
Carroll, Kieran A.
2000-01-01
This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .
Stand-alone containment analysis of Phébus FPT tests with ASTEC and MELCOR codes: the FPT-2 test.
Gonfiotti, Bruno; Paci, Sandro
2018-03-01
During the last 40 years, many studies have been carried out to investigate the different phenomena occurring during a Severe Accident (SA) in a Nuclear Power Plant (NPP). Such efforts have been supported by the execution of different experimental campaigns, and the integral Phébus FP tests were probably some of the most important experiments in this field. In these tests, the degradation of a Pressurized Water Reactor (PWR) fuel bundle was investigated employing different control rod materials and burn-up levels in strongly or weakly oxidizing conditions. From the findings on these and previous tests, numerical codes such as ASTEC and MELCOR have been developed to analyze the evolution of a SA in real NPPs. After the termination of the Phébus FP campaign, these two codes have been furthermore improved to implement the more recent findings coming from different experimental campaigns. Therefore, continuous verification and validation is still necessary to check that the new improvements introduced in such codes allow also a better prediction of these Phébus tests. The aim of the present work is to re-analyze the Phébus FPT-2 test employing the updated ASTEC and MELCOR code versions. The analysis focuses on the stand-alone containment aspects of this test, and three different spatial nodalizations of the containment vessel (CV) have been developed. The paper summarizes the main thermal-hydraulic results and presents different sensitivity analyses carried out on the aerosols and fission products (FP) behavior. When possible, a comparison among the results obtained during this work and by different authors in previous work is also performed. This paper is part of a series of publications covering the four Phébus FP tests using a PWR fuel bundle: FPT-0, FPT-1, FPT-2, and FPT-3, excluding the FPT-4 one, related to the study of the release of low-volatility FP and transuranic elements from a debris bed and a pool of melted fuel.
Activities of four bus terminals of Semarang City gateway and the related GHG emission
NASA Astrophysics Data System (ADS)
Huboyo, H. S.; Wardhana, I. W.; Sutrisno, E.; Wangi, L. S.; Lina, R. A.
2018-01-01
The activities of the bus terminal, including loading-unloading passengers, bus idling, and bus movements at the terminal, will emit GHG’s emission. This research analyzes GHG emission from four terminals, i.e., Mangkang, Terboyo, Penggaron, and Sukun in Semarang City. The emission was estimated by observing detail activities of public transport means, especially for moving and idling time. The emission was calculated by Tier 2 method based on the vehicle type as well as fuel consumption. The highest CO2e during vehicle movements at Sukun area was contributed by large bus about 2.08 tons/year, while at Terboyo terminal was contributed by medium bus about 347.97 tons/year. At Mangkang terminals, the highest emission for vehicle movements was attributed by medium bus as well of about 53.18 tons/year. At last, Penggaron terminal’s highest GHG emission was attributed by BRT about 26.47 tons/year. During idling time, the highest contributor to CO2e was the large bus at the three terminals, i.e., Sukun of 43.53 tons/year, Terboyo of 196.56 tons/year, and Mangkang of 84.26 tons/year, while at Penggaron, BRT dominated with CO2e of 26.47 tons/year. The management of public transport in terminals is crucial to mitigate the emission related to bus terminals activities.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.
Concept Study on a Flexible Standard Bus for Small Scientific Satellites
NASA Astrophysics Data System (ADS)
Fukuda, Seisuke; Sawai, Shujiro; Sakai, Shin-Ichiro; Saito, Hirobumi; Tohma, Takayuki; Takahashi, Junko; Toriumi, Tsuyoshi; Kitade, Kenji
In this paper, a new standard bus system for a series of small scientific satellites in the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA) is described. Since each mission proposed for the series has a wide variety of requirements, a lot of efforts are needed to enhance flexibility of the standard bus. Some concepts from different viewpoints are proposed. First, standardization layers concerning satellite configuration, instruments, interfaces, and design methods are defined respectively. Methods of product platform engineering, which classify specifications of the bus system into a core platform, alternative variants, and selectable variants, are also investigated in order to realize a semi-custom-made bus. Furthermore, a tradeoff between integration and modularization architecture is fully considered.
Alternative Fuels Data Center: Baton Rouge School District Adds Propane
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb. 25, 2010 MedCorp Fuels
Alternative Fuels Data Center: Boston Public Schools Moves to Propane
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus to Alternative Fuel Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb
Alternative Fuels Data Center: San Diego Leads in Promoting EVs
of a school bus Michigan Transports Students in Hybrid Electric School Buses Jan. 4, 2014 Photo of San Diego Leads in Promoting EVs to someone by E-mail Share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Facebook Tweet about Alternative Fuels Data Center: San Diego Leads in
Digital Autonomous Terminal Access Communication (DATAC) system
NASA Technical Reports Server (NTRS)
Novacki, Stanley M., III
1987-01-01
In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.
ERIC Educational Resources Information Center
LaFee, Scott
2012-01-01
In recent years, school districts have converted portions of their bus fleets to cleaner-burning, sometimes cheaper, alternative fossil fuels, such as compressed natural gas or propane. Others have adopted biodiesel, which combines regular diesel with fuel derived from organic sources, usually vegetable oils or animal fats. The number of biodiesel…
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration : First Results Report
DOT National Transportation Integrated Search
2011-08-01
In response to the California Air Resources Board (CARB) rule for transit agencies in the state, five San Francisco Bay Area transit agencies have joined together to demonstrate the largest fleet of fuel cell buses in the United States. The Zero Emis...
Methodology for the analysis of pollutant emissions from a city bus
NASA Astrophysics Data System (ADS)
Armas, Octavio; Lapuerta, Magín; Mata, Carmen
2012-04-01
In this work a methodology is proposed for measurement and analysis of gaseous emissions and particle size distributions emitted by a diesel city bus during its typical operation under urban driving conditions. As test circuit, a passenger transportation line at a Spanish city was used. Different ways for data processing and representation were studied and, derived from this work, a new approach is proposed. The methodology was useful to detect the most important uncertainties arising during registration and processing of data derived from a measurement campaign devoted to determine the main pollutant emissions. A HORIBA OBS-1300 gas analyzer and a TSI engine exhaust particle spectrometer were used with 1 Hz frequency data recording. The methodology proposed allows for the comparison of results (in mean values) derived from the analysis of either complete cycles or specific categories (or sequences). The analysis by categories is demonstrated to be a robust and helpful tool to isolate the effect of the main vehicle parameters (relative fuel-air ratio and velocity) on pollutant emissions. It was shown that acceleration sequences have the highest contribution to the total emissions, whereas deceleration sequences have the least.
DOT National Transportation Integrated Search
1997-11-01
The Advanced Technology Transit Bus (ATTB), developed under primary funding from : the U.S. DOT/Federal Transit Administration (FTA), currently uses a power plant : based on a natural gas burning IC engine-generator set. FTA is interested in : demons...
Relative importance of school bus-related microenvironments to children's pollutant exposure.
Behrentz, Eduardo; Sabin, Lisa D; Winer, Arthur M; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A
2005-10-01
Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.
School Districts Move to the Head of the Class with Propane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Propane has been a proven fuel for buses for decades. For the first time in 2007, Blue Bird rolled out a propane school bus using direct liquid injection, which was later followed by Thomas Built Buses and Navistar. Because this new technology is much more reliable than previous designs, it is essentially reintroducing propane buses to many school districts. During this same time period, vehicle emissions standards have tightened. To meet them, diesel engine manufacturers have added diesel particulate filters (DPF) and, more recently, selective catalytic reduction (SCR) systems. As an alternative to diesel buses with these systems, many schoolmore » districts have looked to other affordable, clean alternatives, and they've found that propane fits the bill.« less
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, Gareth W.
1989-01-01
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.
DOT National Transportation Integrated Search
1975-11-01
The effect of speed limit and passenger load on fuel consumption was determined using actual intercity buses with simulated passenger loads over different types of terrain. In addition to road tests, laboratory type measurements were made on four int...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... self-addressed, stamped envelope or postcard or print the acknowledgement page that appears after... vehicle fuel systems using compressed natural gas, and applies to passenger cars, multipurpose passenger... vehicle fuel containers, and applies to each passenger car, multipurpose passenger vehicle, truck, and bus...
Alternative Fuels Data Center: Latest Additions
. May 2018 Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jan. 2017 Utility Vehicles Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Report 2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers Ethanol Strong
DOT National Transportation Integrated Search
2010-12-01
The current climate crisis and recent world events, including a global economic crisis and growing concerns over the availability and cost of petroleum fuels, has sparked a global interest in developing alternative, sustainable, clean fuel technologi...
FAST BUS Test Box (LAIKA) (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
The assembly drawing AD 135-518-00-RO, and the drawings referenced thereon, provide the data and specifications for constructing the LAIKA Test Box. Some drawings are not available, although they are listed on the material lists included. The assembly is a manual tester for FAST BUS modules, both masters and slaves. FAST BUS signals are generated by means of switches or push buttons and provide the state of the bus lines by lighting LED's. The box acts as either a master or slave - depending upon the module under test. It also acts as an ATC to test the arbitration logic ofmore » a master or ATC device.« less
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Gikakis, Christina
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.
COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowell, D.; Parsley, W.; Bush,C
2003-08-24
Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particlemore » number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.« less
Cooking with Fire: The Mutagenicity- and PAH-Emission ...
Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid-fuel cookstoves for 8 pollutant- and 4 mutagenicity-emission factors, correlated the mutagenicity-emission factors, and compared them to those of other combustion emissions. We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS); we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Other than NOx the emission factors per MJd correlated highly among each other (r2 ≥ 0.92); NOx correlated 0.58-0.76 with the other emission factors. Excluding NOx, the NDS and FDS reduced the emission factors on average 68 and 92%, respectively, relative to the TSF. Nonetheless, the mutagenicity-emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was intermediate to that of a large diesel bus engine and a small diesel generator. Both mutagenicity- and pollutant-emission factors may be informative for characterizing cookstove
2006-09-09
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Joseph Tanner dons his launch and re-entry suit before heading to the launch pad for another attempt at liftoff. The launch attempt on Sept. 8 was scrubbed due to an issue with a fuel cut-off sensor system inside the external fuel tank. This is one of several systems that protect the shuttle's main engines by triggering their shutdown if fuel runs unexpectedly low. Liftoff today is scheduled for 11:15 a.m. EDT. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
FPGA for Power Control of MSL Avionics
NASA Technical Reports Server (NTRS)
Wang, Duo; Burke, Gary R.
2011-01-01
A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.
Measuring self-pollution in school buses using a tracer gas technique
NASA Astrophysics Data System (ADS)
Behrentz, Eduardo; Fitz, Dennis R.; Pankratz, David V.; Sabin, Lisa D.; Colome, Steven D.; Fruin, Scott A.; Winer, Arthur M.
A potentially important, but inadequately studied, source of children's exposure to pollutants during school bus commutes is the introduction of a bus's own exhaust into the passenger compartment. We developed and applied a method to determine the amount of a bus's own exhaust penetrating into the cabin in a study of six in-use school buses over a range of routes, roadway types, fuels, and emission control technologies. A tracer gas, SF 6, was metered into the bus's exhaust system using a mass flow controller whose flow rate was logged by a data acquisition system and processed with the concurrent real-time pollutant measurement data. At the same time, the SF 6 concentration inside the bus was measured using an AeroVironment CTA-1000 continuous analyzer connected to a series of solenoids that switched the sample inlet between the front and rear of the bus cabin. To account for a baseline drift of the CTA-1000, SF 6-free air was also drawn through a line located outside at the front of the bus. Although this third sample line generally provided a reference zero value, it also showed that under certain wind conditions (i.e., wind from the rear) when the bus was stopped and was idling, significant amounts of the bus's own exhaust reached this location at the front of the bus. Self-pollution, the percentage of a bus's own exhaust that can be found inside its cabin, was a function of bus type and age, and a strong function of window position (i.e., open or closed). We estimated up to 0.3% of the air inside the cabin was from the bus's own exhaust in older buses, approximately 10 times the percentage observed for newer buses, and 25% of the black carbon concentration variance was explained by the buses' self-pollution. Analysis of the tracer gas concentrations provided a powerful tool for identifying potentially high-exposure conditions.
Alternative Fuels Data Center: Smart Car Shopping
vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
, certain buses, or commercial vehicles that are powered by an alternative fuel, if the vehicles obtain an (GVW) Type of Vehicle Decal Fee 18,000 pounds (lbs.) or less Passenger, School Bus, or Commercial $75 vehicles, buses, or commercial motor vehicles that are powered by compressed natural gas (CNG), liquefied
Future development of the PLATO Observatory for Antarctic science
NASA Astrophysics Data System (ADS)
Ashley, Michael C. B.; Bonner, Colin S.; Everett, Jon R.; Lawrence, Jon S.; Luong-Van, Daniel; McDaid, Scott; McLaren, Campbell; Storey, John W. V.
2010-07-01
PLATO is a self-contained robotic observatory built into two 10-foot shipping containers. It has been successfully deployed at Dome A on the Antarctic plateau since January 2008, and has accumulated over 730 days of uptime at the time of writing. PLATO provides 0.5{1kW of continuous electrical power for a year from diesel engines running on Jet-A1, supplemented during the summertime with solar panels. One of the 10-foot shipping containers houses the power system and fuel, the other provides a warm environment for instruments. Two Iridium satellite modems allow 45 MB/day of data to be transferred across the internet. Future enhancements to PLATO, currently in development, include a more modular design, using lithium iron-phosphate batteries, higher power output, and a light-weight low-power version for eld deployment from a Twin Otter aircraft. Technologies used in PLATO include a CAN (Controller Area Network) bus, high-reliability PC/104 com- puters, ultracapacitors for starting the engines, and fault-tolerant redundant design.
Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne T.; Lively, Michael L.
2012-01-01
This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.
Trim Transportation Fuel Costs.
ERIC Educational Resources Information Center
Black, J. Dickson
1982-01-01
The change from gasoline power to compressed natural gas for 34 school buses in Bentonville (Arkansas) has saved the school district money, reduced its maintenance needs, and increased bus safety. (MLF)
NASA's Involvement in Technology Development and Transfer: The Ohio Hybrid Bus Project
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government and industry cooperative is using advanced power technology in a city transit bus that will offer double the fuel economy, and reduce emissions to one tenth of government standards. The heart of the vehicle's power system is a natural gas fueled generator unit. Power from both the generator and an advanced energy storage system is provided to a variable speed electric motor attached to the rear drive axle. A unique aspect of the vehicle's design is its use of "super" capacitors for recovery of energy during braking. This is the largest vehicle ever built using this advanced energy recovery technology. This paper describes the project goals and approach, results of its system performance modeling, and the status of the development team's effort.
Code of Federal Regulations, 2013 CFR
2013-07-01
... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...
NASA Technical Reports Server (NTRS)
Arozullah, Mohammed
1991-01-01
The Platform Data Management System (DMS) collects Housekeeping (H/K), Payload (P/L) Engineering, and Payload Science data from various subsystems and payloads on the platform for transmission to the ground through the downlink via TDRSS. The DMS also distributes command data received from the ground to various subsystems and payloads. In addition, DMS distributes timing and safemode data. The function of collection and distribution of various types of data is performed by the Command and Data Handling (C&DH) subsystem of DMS. The C&DH subsystem uses for this purpose a number of data buses namely, Housekeeping, Payload Engineering, Payload Science, and Time and Safemode buses. Out of these buses, the H/K, P/L Engineering, and P/L Science buses are planned to be implemented by using MIL-STD 1553 bus. Most of the period covered was spent in developing a queue theoretic model of the 1553 Bus as used in the DMS. The aim is to use this model to test the performance and suitability of the 1553 Bus to the DMS under a number of alternative design scenarios.
Alternative Fuels Data Center: Indiana Sanitation Department Plans to
Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students in Hybrid Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas
reduce petroleum use and save money. For information about this project, contact Eastern Pennsylvania Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels
Multimode marine engine room simulation system based on field bus technology
NASA Astrophysics Data System (ADS)
Zheng, Huayao; Deng, Linlin; Guo, Yi
2003-09-01
Developing multi mode MER (Marine Engine Room) Labs is the main work in Marine Simulation Center, which is the key lab of Communication Ministry of China. It includes FPP (Fixed Pitch Propeller) and CPP (Controllable Pitch Propeller) mode MER simulation systems, integrated electrical propulsion mode MER simulation system, physical mode MER lab, etc. FPP mode simulation system, which was oriented to large container ship, had been completed since 1999, and got second level of Shanghai Municipal Science and Technical Progress award. This paper mainly introduces the recent development and achievements of Marine Simulation Center. Based on the Lon Works field bus, the structure characteristics and control strategies of completely distributed intelligent control network are discussed. The experiment mode of multi-nodes field bus detection and control system is described. Besides, intelligent fault diagnosis technology about some mechatronics integration control systems explored is also involved.
Power supply circuit for an ion engine sequentially operated power inverters
NASA Technical Reports Server (NTRS)
Cardwell, Jr., Gilbert I. (Inventor)
2000-01-01
A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.
ERIC Educational Resources Information Center
Herman, Dan
1998-01-01
Describes some basic maintenance and proper preparations for changing weather that can help keep school bus operations moving. Provides advice on diesel engine usage that can lengthen engine life and maintain all weather performance is provided. (GR)
Bus Propulsion Alternatives Overview
DOT National Transportation Integrated Search
1982-04-01
The Urban Mass Transportation Administration (UMTA) is currently investigating propulsion alternatives which would conserve petroleum-based fuels and would be practical for use by U.S. transit operators. A discussion of these alternatives (electric p...
49 CFR 665.11 - Testing requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... braking performance, Structural Integrity, Fuel Economy, Noise, and Emissions; (c) If the new bus model... testing facility shall develop a test plan for the testing of vehicles at the facility. The test plan...
Reducing transit bus emissions: Alternative fuels or traffic operations?
NASA Astrophysics Data System (ADS)
Alam, Ahsan; Hatzopoulou, Marianne
2014-06-01
In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.
Fuels for urban transit buses: a cost-effectiveness analysis.
Cohen, Joshua T; Hammitt, James K; Levy, Jonathan I
2003-04-15
Public transit agencies have begun to adopt alternative propulsion technologies to reduce urban transit bus emissions associated with conventional diesel (CD) engines. Among the most popular alternatives are emission controlled diesel buses (ECD), defined here to be buses with continuously regenerating diesel particle filters burning low-sulfur diesel fuel, and buses burning compressed natural gas (CNG). This study uses a series of simplifying assumptions to arrive at first-order estimates for the incremental cost-effectiveness (CE) of ECD and CNG relative to CD. The CE ratio numerator reflects acquisition and operating costs. The denominator reflects health losses (mortality and morbidity) due to primary particulate matter (PM), secondary PM, and ozone exposure, measured as quality adjusted life years (QALYs). We find that CNG provides larger health benefits than does ECD (nine vs six QALYs annually per 1000 buses) but that ECD is more cost-effective than CNG (dollar 270 000 per QALY for ECD vs dollar 1.7 million to dollar 2.4 million for CNG). These estimates are subject to much uncertainty. We identify assumptions that contribute most to this uncertainty and propose potential research directions to refine our estimates.
Miraglia, Simone Georges El Khouri
2007-01-01
In Greater Metropolitan São Paulo, Brazil, fossil fuel combustion in the transportation system is a major cause of outdoor air pollution. Air quality improvement requires additional policies and technological upgrades in fuels and vehicle engines. The current study thus simulated the environmental and social impacts resulting from the use of a stabilized diesel/ethanol mixture in the bus and truck fleet in Greater Metropolitan São Paulo. The evaluation showed reductions in air pollutants, mainly PM10, which would help avert a number of disease events and deaths, as estimated through dose-response functions of epidemiological studies on respiratory and cardiovascular diseases. Valuation of the impacts using an environmental cost-benefit analysis considered operational installation, job generation, potential carbon credits, and health costs, with an overall positive balance of US$ 2.851 million. Adding the estimated qualitative benefits to the quantitative ones, the project's benefits far outweigh the measured costs. Greater Metropolitan São Paulo would benefit from any form of biodiesel use, producing environmental, health and socioeconomic gains, the three pillars of sustainability.
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-01-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-04-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
Cluster Inter-Spacecraft Communications
NASA Technical Reports Server (NTRS)
Cox, Brian
2008-01-01
A document describes a radio communication system being developed for exchanging data and sharing data-processing capabilities among spacecraft flying in formation. The system would establish a high-speed, low-latency, deterministic loop communication path connecting all the spacecraft in a cluster. The system would be a wireless version of a ring bus that complies with the Institute of Electrical and Electronics Engineers (IEEE) standard 1393 (which pertains to a spaceborne fiber-optic data bus enhancement to the IEEE standard developed at NASA's Jet Propulsion Laboratory). Every spacecraft in the cluster would be equipped with a ring-bus radio transceiver. The identity of a spacecraft would be established upon connection into the ring bus, and the spacecraft could be at any location in the ring communication sequence. In the event of failure of a spacecraft, the ring bus would reconfigure itself, bypassing a failed spacecraft. Similarly, the ring bus would reconfigure itself to accommodate a spacecraft newly added to the cluster or newly enabled or re-enabled. Thus, the ring bus would be scalable and robust. Reliability could be increased by launching, into the cluster, spare spacecraft to be activated in the event of failure of other spacecraft.
Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling
Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus
On-road pollutant emission and fuel consumption characteristics of buses in Beijing.
Wang, Aijuan; Ge, Yunshan; Tan, Jianwei; Fu, Mingliang; Shah, Asad Naeem; Ding, Yan; Zhao, Hong; Liang, Bin
2011-01-01
On-road emission and fuel consumption (FC) levels for Euro III and IV buses fueled on diesel and compressed natural gas (CNG) were compared, and emission and FC characteristics of buses were analyzed based on approximately 28,700 groups of instantaneous data obtained in Beijing using a portable emissions measurement system (PEMS). The experimental results revealed that NOx and PM emissions from CNG buses were decreased by 72.0% and 82.3% respectively, compared with Euro IV diesel buses. Similarly, these emissions were reduced by 75.2% and 96.3% respectively, compared with Euro III diesel buses. In addition, CO2, CO, HC, NOx, PM emissions and FC of Euro IV diesel buses were reduced by 26.4%, 75.2%, 73.6%, 11.4%, 79.1%, and 26.0%, respectively, relative to Euro III diesel buses. The CO2, CO, HC, NOx, PM emissions and FC factors all decreased with bus speed increased, while increased as bus acceleration increased. At the same time, the emission/FC rates as well as the emission/FC factors exhibited a strong positive correlation with the vehicle specific power (VSP). They all were the lowest when VSP < 0, and then rapidly increased as VSP increased. Furthermore, both the emission/FC rates and emission/FC factors were the highest at accelerations, higher at cruise speeds, and the lowest at decelerations for non-idling buses. These results can provide a base reference to further estimate bus emission and FC inventories in Beijing.
Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China
NASA Astrophysics Data System (ADS)
Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo
2014-04-01
Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for the accordance of carbon isotopic data.
Jo, W K; Park, K H
1998-01-01
This study was designed to allow systematic comparison of exposure on public (40-seater buses) and private (four passengers cars) transport modes for carbon monoxide (CO), methyl-tertiary butyl ether (MTBE), and benzene by carrying out simultaneous measurements along the same routes. There were statistically significant differences (p < 0.05) in the concentrations of all target compounds among the three microenvironments; inside autos; inside buses; and in ambient air. The target compounds were significantly correlated for all the three environments, with at least p < 0.05. The in-vehicle concentrations of MTBE and benzene were significantly higher (p < 0.0001), on the average 3.5 times higher, in the car with a carbureted engine than in the other three electronic fuel-injected cars. On the other hand, the CO concentrations were not significantly different among the four cars. The in-auto MTBE levels (48.5 micrograms/m3 as a median) measured during commutes in this study was 2-3 times higher than the New Jersey and Connecticut's results. The in-auto concentration of CO (4.8 ppm as a median) in this study was comparable with those in later studies in some American cities, but much lower than those in earlier studies in other American cities. The in-bus CO concentration was 3.6 ppm as a median. As a median, the in-auto concentration of benzene was 44.9 micrograms/m3, while the in-bus concentration 17.0 micrograms/m3. The in-auto/in-bus exposure ratios for all the target compounds was 31-40% higher than the corresponding concentration ratios, due to the higher travel speed on buses in the specified commute route as compared to the autos.
Public transit research: Rail, bus, and new technology, 1991. Transportation Research Record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassabian, N.C.; Tobias, A.G.; Crayton, L.
1991-01-01
The report contains: Image of Rail Transit; Train Operations Computer Simulation Case Study: Single-Tracking Operations for Philadelphia's Market-Frankford Subway Elevated Rail Rapid Transit Line; Transit Railcar Quantities: Scale Economies; Evaluation of Training Programs in Rail Transit: Its Role and Status; Methodology for Evaluating Out-of-Direction Bus Route Segments; Integration of Fixed- and Flexible-Route Bus Systems; Downtown Space for Buses--The Manhattan Experience; Implications of Transit Drug Testing and Maintenance Service Procurement for Small Urban and Rural Systems; Challenges for Integration of Alternative Fuels in the Transit Industry; Short History of the Transbay Transit Terminal and the Relocation of the San Francisco Greyhoundmore » Depot Thereto; Airport Development with Automated People Mover Systems; Review of Four Alternative Airport Terminal Passenger Mobility Systems.« less
NASA Astrophysics Data System (ADS)
Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego
2017-08-01
Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.
Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Aarnio, Päivi; Koistinen, Kimmo J; Jantunen, Matti J; Pekkanen, Juha
2005-02-01
Fine particle (PM(2.5)) emissions from traffic have been associated with premature mortality. The current work compares PM(2.5)-induced mortality in alternative public bus transportation strategies as being considered by the Helsinki Metropolitan Area Council, Finland. The current bus fleet and transportation volume is compared to four alternative hypothetical bus fleet strategies for the year 2020: (1) the current bus fleet for 2020 traffic volume, (2) modern diesel buses without particle traps, (3) diesel buses with particle traps, and (4) buses using natural gas engines. The average population PM(2.5) exposure level attributable to the bus emissions was determined for the 1996-1997 situation using PM(2.5) exposure measurements including elemental composition from the EXPOLIS-Helsinki study and similar element-based source apportionment of ambient PM(2.5) concentrations observed in the ULTRA study. Average population exposure to particles originating from the bus traffic in the year 2020 is assumed to be proportional to the bus emissions in each strategy. Associated mortality was calculated using dose-response relationships from two large cohort studies on PM(2.5) mortality from the United States. Estimated number of deaths per year (90% confidence intervals in parenthesis) associated with primary PM(2.5) emissions from buses in Helsinki Metropolitan Area in 2020 were 18 (0-55), 9 (0-27), 4 (0-14), and 3 (0-8) for the strategies 1-4, respectively. The relative differences in the associated mortalities for the alternative strategies are substantial, but the number of deaths in the lowest alternative, the gas buses, is only marginally lower than what would be achieved by diesel engines equipped with particle trap technology. The dose-response relationship and the emission factors were identified as the main sources of uncertainty in the model.
ERIC Educational Resources Information Center
Herman, Dan
1999-01-01
Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)
SunLine Expands Horizons with Fuel Cell Bus Demo
DOT National Transportation Integrated Search
2006-05-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
Alternative Fuels Data Center: Arizona Transportation Data for Alternative
Additions and Updates Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Tucson Electric Power (TEP School Bus/Vehicle Incentive, and Green Jobs Outreach Program Heavy-Duty Natural Gas Drayage Truck
Development of a School Bus Fuel System Integrity Compliance Procedure. Final Report.
ERIC Educational Resources Information Center
Morrow, G. W.; Johnson, N. B.
This report presents a program that derived a compliance test procedure for school buses with a gross vehicle weight of 10,000 pounds or greater. The objective of this program was to evaluate Fuel System Integrity (FMVSS 301) in relation to school buses, conduct a limited state-of-the-art survey and run full-scale dynamic tests to produce an…
Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With
Photo of a truck Natural Gas Fuels School Buses and Refuse Trucks in Tulsa, Oklahoma Feb. 18, 2017 Photo of buses Baton Rouge School District Adds Propane Buses to Its Fleet Dec. 23, 2016 photo of a truck Buses to Its Fleet Nov. 11, 2016 photo of a propane school bus Propane Powers School Buses in Tuscaloosa
Modelling and simulation of fuel cell dynamics for electrical energy usage of Hercules airplanes.
Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G B; Fathi, S H
2014-01-01
Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane.
Modelling and Simulation of Fuel Cell Dynamics for Electrical Energy Usage of Hercules Airplanes
Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G. B.; Fathi, S. H.
2014-01-01
Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane. PMID:24782664
NASA Astrophysics Data System (ADS)
Vijayan, Abhilash; Kumar, Ashok
2010-11-01
This paper presents results from an in-vehicle air quality study of public transit buses in Toledo, Ohio, involving continuous monitoring, and experimental and statistical analyses to understand in-vehicle particulate matter (PM) behavior inside buses operating on B20-grade biodiesel fuel. The study also focused on evaluating the effects of vehicle's fuel type, operating periods, operation status, passenger counts, traffic conditions, and the seasonal and meteorological variation on particulates with aerodynamic diameter less than 1 micron (PM 1.0). The study found that the average PM 1.0 mass concentrations in B20-grade biodiesel-fueled bus compartments were approximately 15 μg m -3, while PM 2.5 and PM 10 concentration averages were approximately 19 μg m -3 and 37 μg m -3, respectively. It was also observed that average hourly concentration trends of PM 1.0 and PM 2.5 followed a "μ-shaped" pattern during transit hours. Experimental analyses revealed that the in-vehicle PM 1.0 mass concentrations were higher inside diesel-fueled buses (10.0-71.0 μg m -3 with a mean of 31.8 μg m -3) as compared to biodiesel buses (3.3-33.5 μg m -3 with a mean of 15.3 μg m -3) when the windows were kept open. Vehicle idling conditions and open door status were found to facilitate smaller particle concentrations inside the cabin, while closed door facilitated larger particle concentrations suggesting that smaller particles were originating outside the vehicle and larger particles were formed within the cabin, potentially from passenger activity. The study also found that PM 1.0 mass concentrations at the back of bus compartment (5.7-39.1 μg m -3 with a mean of 28.3 μg m -3) were higher than the concentrations in the front (5.7-25.9 μg m -3 with a mean of 21.9 μg m -3), and the mass concentrations inside the bus compartment were generally 30-70% lower than the just-outside concentrations. Further, bus route, window position, and time of day were found to affect the in-vehicle PM concentrations significantly. Overall, the in-vehicle PM 1.0 concentrations inside the buses operating on B20-grade biodiesel ranged from 0.7 μg m -3 to 243 μg m -3, with a median of 11.6 μg m -3. Statistical models developed to study the effects of vehicle operation and ambient conditions on in-vehicle PM concentrations suggested that while open door status was the most important influencing variable for finer particles and higher passenger activity resulted in higher coarse particles concentrations inside the vehicle compartments, ambient PM concentrations contributed to all PM fractions inside the bus irrespective of particle size.
Zielinska, Barbara; Campbell, David; Lawson, Douglas R; Ireson, Robert G; Weaver, Christopher S; Hesterberg, Thomas W; Larson, Timothy; Davey, Mark; Liu, L J Sally
2008-08-01
A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.
Zielinska, Barbara; Campbell, David; Lawson, Douglas R.; Ireson, Robert G.; Weaver, Christopher S.; Hesterberg, Thomas W.; Larson, Timothy; Davey, Mark; Liu, L.-J. Sally
2008-01-01
A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as intentional quantitative tracers for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes, and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 μg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions. PMID:18754490
Alternative Fuel Transit Bus Evaluation Program Results
DOT National Transportation Integrated Search
1996-05-06
The objective of this program, which is supported by the U.S. Department of : Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to : provide an unbiased and comprehensive comparison of transit buses operating on : alternative f...
Advanced Ceramic-Metallic Composites for Lightweight Vehicle Braking Systems
DOT National Transportation Integrated Search
2012-09-11
According to the Federal Transit Administration Strategic Research Plan [1]: Researching technologies to reduce vehicle weight can also lead to important reductions in fuel consumption and emissions. The power required to accelerate a bus and over...
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Fifth Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published four previous reports describing operation of these buses. This report presents new and updated results covering data from January 2015 through December 2015.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew B.; Jeffers, Matthew A.
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published five previous reports describing operation of these buses. This report presents new and updated results covering data from January 2016 through December 2016.
Fuel cell drives for road vehicles
NASA Astrophysics Data System (ADS)
Charnah, R. M.
For fuel-cell driven vehicles, including buses, the fuel cell may be the main, determining factor in the system but must be integrated into the complete design process. A Low-Floor Bus design is used to illustrate this point. The influence of advances in drive-train electronics is illustrated as are novel designs for motors and mechanical transmission of power to the wheels allowing the use of novel hub assemblies. A hybrid electric power system is being deployed in which Fuel Cells produce the energy needs but are coupled with batteries especially for acceleration phases and for recuperative braking.
Fresh and Oxidized Emissions from In-Use Transit Buses Running on Diesel, Biodiesel, and CNG.
Watne, Ågot K; Psichoudaki, Magda; Ljungström, Evert; Le Breton, Michael; Hallquist, Mattias; Jerksjö, Martin; Fallgren, Henrik; Jutterström, Sara; Hallquist, Åsa M
2018-06-26
The potential effect of changing to a nonfossil fuel vehicle fleet was investigated by measuring primary emissions (by extractive sampling of bus plumes) and secondary mass formation, using a Gothenburg Potential Aerosol Mass (Go:PAM) reactor, from 29 in-use transit buses. Regarding fresh emissions, diesel (DSL) buses without a diesel particulate filter (DPF) emitted the highest median mass of particles, whereas compressed natural gas (CNG) buses emitted the lowest ( Md EF PM 514 and 11 mg kg fuel -1 , respectively). Rapeseed methyl ester (RME) buses showed smaller Md EF PM and particle sizes than DSL buses. DSL (no DPF) and hybrid-electric RME (RME HEV ) buses exhibited the highest particle numbers ( Md EF PN 12 × 10 14 # kg fuel -1 ). RME HEV buses displayed a significant nucleation mode ( D p < 20 nm). EF PN of CNG buses spanned the highest to lowest values measured. Low Md EF PN and Md EF PM were observed for a DPF-equipped DSL bus. Secondary particle formation resulting from exhaust aging was generally important for all the buses (79% showed an average EF PM:AGED /EF PM:FRESH ratio >10) and fuel types tested, suggesting an important nonfuel dependent source. The results suggest that the potential for forming secondary mass should be considered in future fuel shifts, since the environmental impact is different when only considering the primary emissions.
Energy management of fuel cell/solar cell/supercapacitor hybrid power source
NASA Astrophysics Data System (ADS)
Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard
This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.
Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.
Kotz, Andrew J; Kittelson, David B; Northrop, William F
2016-06-07
In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location.
Targino, Admir Créso; Rodrigues, Marcos Vinicius C; Krecl, Patricia; Cipoli, Yago Alonso; Ribeiro, João Paulo M
2018-01-01
Commuting in urban environments accounts for a large fraction of the daily dose of inhaled air pollutants, especially in countries where vehicles have old technologies or run on dirty fuels. We measured black carbon (BC) concentrations during bus, walk and bicycle commutes in a Brazilian city and found a large spatial variability across the surveyed area, with median values between 2.5 and 12.0 μg m -3 . Traffic volume on roadways (especially the number of heavy-duty diesel vehicles), self-pollution from the bus tailpipe, number of stops along the route and displacement speed were the main drivers of air pollution on the buses. BC concentrations increased abruptly at or close to traffic signals and bus stops, causing in-cabin peaks as large as 60.0 μg m -3 . BC hotspots for the walk mode coincided with the locations of bus stops and traffic signals, whilst measurements along a cycle lane located 12 m from the kerb were less affected. The median BC concentrations of the two active modes were significantly lower than the concentrations inside the bus, with a bus/walk and bus/bicycle ratios of up to 6. However, the greater inhalation rates of cyclist and pedestrians yielded larger doses (2.6 and 3.5 μg on a 1.5-km commute), suggesting that the greater physical effort during the active commute may outweigh the reduction in exposure due to the shift from passive to active transport modes.
Delay and environmental costs of truck crashes
DOT National Transportation Integrated Search
2013-03-01
This report presents estimates of certain categories of costs of truck- and bus-involved crashes. Crash related costs estimated as part of this study include vehicle delay costs, emission costs, and fuel consumption costs. In addition, this report al...
DOT National Transportation Integrated Search
2010-02-01
The Missouri University of Science and Technology (Missouri S&T) and Ford Motor Company demonstrated a shuttle bus service and hydrogen fueling facilities in rural Missouri near Ft. Leonard Wood. Initiated by a request from the U.S. Army Maneuver Sup...
INL receives GreenGov Presidential Award for fleet fuel efficiency improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wold, Scott
Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benaouadj, M.; Aboubou, A.; Bahri, M.
2016-07-25
In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to developmore » an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.« less
Value Engineering for Bus Maintenance Facilities : Program Digest.
DOT National Transportation Integrated Search
1987-04-01
Value Engineering (VE) is a procedure used to reduce the total cost of performing a required function, without sacrificing quality or safety. The concept of VE, which is over 40 years old, was primarily used in manufacturing industries and began to b...
The use of biodiesel in a school transportation system: the case of Medford Township, New Jersey.
Biluck, Joe
2007-09-01
A combination of high fuel prices, bus maintenance costs, and the health and safety of school children, along with a consideration of federal and state regulations, prompted Medford Township school district in southern New Jersey to explore the use of alternative fuels, specifically biodiesel. The school district owns and operates 62 school buses that transport 3500 children daily. The evolution of this switch from petroleum-based fuel to biodiesel is described. The district is the nation's longest continuous user of biodiesel in a school transportation system.
ERIC Educational Resources Information Center
Lewis, Barbara
1982-01-01
Beginning on the front cover, this article tells how school districts are reducing their transportation costs. Particularly effective measures include the use of computers for bus maintenance and scheduling, school board ownership of buses, and the conversion of gasoline-powered buses to alternative fuels. (Author/MLF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons
1999-05-03
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found thatmore » oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.« less
Clean Air Program : cylinder issues associated with alternative fuels
DOT National Transportation Integrated Search
1999-01-01
A number of incidents of compressed natural gas (CNG) cylinder leaks have occurred while transit buses were either in service or at a bus maintenance facility. This study was initiated to determine the degree to which cylinder problems still exist in...
CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus
DOT National Transportation Integrated Search
2018-02-01
The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...
Exposure to particles and nitrogen dioxide among taxi, bus and lorry drivers.
Lewné, Marie; Nise, Gun; Lind, Marie-Louise; Gustavsson, Per
2006-03-01
The aims of this study have been to investigate the occurrence of systematic differences in the personal exposure to motor exhaust between different groups of taxi, bus and lorry drivers, and to study if these are influenced by the choice of exposure indicator. We used one indicator of the gaseous phase, nitrogen dioxide (NO(2)), and one of the particle phase (measured by DataRAM), of the exhausts. A total of 121 drivers were included in the study: 39 taxi drivers, 42 bus drivers and 40 lorry drivers. Personal measurements were performed during one working day. Nitrogen dioxide was measured with passive diffusive samplers and particles with Data-RAM, a logging instrument using nephelometric monitoring. The instrument measures particles between 0.1 and 10 microm in size. The average exposure to NO(2) for lorry drivers was 68 microg/m(3); for bus drivers 60 microg/m(3) and for taxi drivers 48 microg/m(3). For particles the exposure was 57 microg/m(3) for lorry drivers, 44 microg/m(3) for bus drivers and 26 microg/m(3) for taxi drivers. The result remained unchanged when exposures were adjusted for variation in urban background levels of NO(2) and particulate matter with an aerodynamic diameter <10 microm (PM(10)). Lorry drivers experienced the highest exposure and taxi drivers the lowest with bus drivers in an intermediate position, regardless of whether NO(2) or particles were used as exposure indicator. The levels of both NO(2) and particles were higher for bus drivers in the city than for them driving in the suburbs. Using diesel or petrol as a fuel for taxis had no influence on the exposure for the drivers, indicating that the taxi drivers' exposure mainly depends on exhaust from surrounding traffic.
Instrumentation & Data Acquisition System (D AS) Engineer
NASA Technical Reports Server (NTRS)
Jackson, Markus Deon
2015-01-01
The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.
Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus
NASA Technical Reports Server (NTRS)
Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud
1996-01-01
The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.
[Investigation on events of bus on fire in 6 years in the mainland of China].
Wang, X G; Liu, Y; Cen, Y; Wu, P; Zhou, H L; Han, C M
2016-12-20
Objective: To retrospectively analyze the characteristics of events of bus on fire in 6 years in the mainland of China. Methods: Events of bus on fire happened between January 2009 and December 2014 were retrieved through Baidu search engine, Chinese Journals Full - text Database, and PubMed database in the search strategy with " bus" and " fire" or " arson" as keywords combined with the name of provinces, autonomous regions, and municipalities of the mainland of China. The occurrence time, region, cause of fire, casualties of each event were recorded, and the correlative analysis was conducted. Data were processed with Microsoft Excel software. Results: Totally 287 events of bus on fire were retrieved, among which 49 events happened in 2009, 36 events happened in 2010, 35 events happened in 2011, 37 events happened in 2012, and respectively 65 events happened in 2013 and 2014. The events of bus on fire most frequently happened in June and July, respectively 49 and 39 events. Among the distribution of occurrence regions of events of bus on fire, there were 78 events (27.18%) in east China, 52 events (18.12%) in northeast China, 41 events (14.29%) both in north China and south China. Among the causes of events of bus on fire, spontaneous combustion of bus ranked in the first (267 events, accounting for 93.03%), followed by arson (13 events, accounting for 4.53%). Among the 13 events of bus on fire caused by arson, 7 events happened between 16: 00 and 20: 00, and 3 events happened between 8: 00 and 10: 00. Totally 27 events of bus on fire (9.41%) were with casualties, among which 13 events (48.15%) were caused by spontaneous combustion of bus, 10 events (37.04%) were caused by arson, and 4 events (14.81%) were caused by traffic accidents. Arson caused the most severe casualties (at least 88 deaths and 287 injuries), followed by spontaneous combustion of bus (at least 35 deaths and 140 injuries) and traffic accidents (at least 9 deaths and 20 injuries). Conclusions: Events of bus on fire happened more frequently in recent years in the mainland of China, and the frequencies were much higher especially in June and July. Most events were caused by spontaneous combustion of bus, followed by arson. Most of the events of bus on fire caused by arson happened in the morning and evening rush hours of urban traffic, and althouth the occurrence rate was not high, the casualties were most severe.
School Bus Replacement Grant Program The Ohio Environmental Protection Agency (EPA) supports the purchase of replacement school buses in eligible Ohio counties through the Diesel Emission Reduction Grant program. Purchases are also supported with state allocated grant funding from the U.S. Environmental
Novel optimization technique of isolated microgrid with hydrogen energy storage.
Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.
Novel optimization technique of isolated microgrid with hydrogen energy storage
Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433
Tadano, Yara S; Borillo, Guilherme C; Godoi, Ana Flávia L; Cichon, Amanda; Silva, Thiago O B; Valebona, Fábio B; Errera, Marcelo R; Penteado Neto, Renato A; Rempel, Dennis; Martin, Lucas; Yamamoto, Carlos I; Godoi, Ricardo H M
2014-12-01
The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ouyang, Minggao; Xu, Liangfei; Li, Jianqiu; Lu, Languang; Gao, Dawei; Xie, Qicheng
In order to assess the influences of different powertrain structures and energy management strategies on the performance of hybrid fuel cell buses (FCB), two buses (FCB A and FCB B) were constructed with a "energy hybrid structure" and "power hybrid structure", respectively. Different energy management strategies were investigated based on analysis of the two systems. And the two buses were compared with each other in a bus cycle and constant speed testing. The Polymer Electrolyte Membrane Fuel Cell (PEMFC) in FCB A showed an advantage in fuel economy for it worked usually in the high efficient range of the PEMFC engine. The hydrogen consumption rate in the cycle testing was 7.9 kg/100 km and 9.8 kg/100 km for FCB A and FCB B, and in the 40 kmph constant speed testing it was 3.3 kg/100 km and 4.0 kg/100 km, respectively. The fuel economy could be improved when the hydrogen and air supply subsystems are optimized and controlled with an advanced algorithm. It could also benefit from a braking energy regeneration system. Compared with FCB A, the PEMFC in FCB B worked under unfavorable operation conditions because its working range was comparatively wide, and the power changing rate was relatively large from a statistical point of view, which resulted in performance recession of the PEMFC in FCB B. After a mileage of 7000 km, the output power of the PEMFC in FCB B was reduced by 10%, compared with 2.4% in FCB A. An advanced energy management strategy is necessary to split the power between the PEMFC and a battery suitable for long durability of a PEMFC.
Transonic Fan/Compressor Rotor Design Study. Volume 4
1982-02-01
amd Identify by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20...COMPRESSOR ROTOR DESIGN STUDY Volume IV D.E. Parker and M.R. Simonson General Electric Company Aircraft Engine Business Group Advanced Technology...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUS Director, Turbine Engine Division If your address has changed, if you
Renewable Electrolysis | Hydrogen and Fuel Cells | NREL
variable-input power conditions Designing and developing shared power-electronics packages and controllers Development NREL develops power electronics interfaces for renewable electrolysis systems to characterize and constant voltage DC bus and power electronics to regulate power output and to convert wild alternating
DOT National Transportation Integrated Search
1996-06-01
This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.
Engines. FOS: Fundamentals of Service.
ERIC Educational Resources Information Center
John Deere Co., Moline, IL.
This manual on engines is one of a series of power mechanics texts and visual aids for training in servicing of farm and industrial machinery. (Automotive, truck, and bus applications are often covered as well.) Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen.…
Chemical Sciences and Engineering - US China Electric Vehicle and Battery
Technology Workshop Argonne National Laboratory Chemical Sciences & Engineering DOE Logo Photo Gallery Hotels Maps Bus Schedule Contact Us TCS Building and Conference Center, Argonne National Lab TCS Building and Conference Center United States Flag China flag 2011 U.S.-China Electric Vehicle
Fuel quantity modulation in pilot ignited engines
May, Andrew
2006-05-16
An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.
From Seat Belts to Safe Brakes, Here's the Latest School Bus News.
ERIC Educational Resources Information Center
Zakariya, Sally Banks
1985-01-01
Provides an update on emerging safety issues, new technological developments, and upcoming regulations that could affect school transportation programs. Two new sets of federal regulations to watch for will govern underground fuel storage tanks and hazardous materials, and restrict asbestos in vehicle brake linings. (MD)
ERIC Educational Resources Information Center
Bete, Tim, Ed.
1998-01-01
Presents the opinions of four transportation experts on issues related to school buses. The experts respond to the following questions: will advertisements placed on buses be used to generate district revenue; will compressed natural gas or liquefied natural gas become standard fuel for school buses; and will school bus seat belts be mandatory and…
Alternative Fuels Data Center: Multi-Modal Transportation
examples of resources to help travelers use multi-modal transportation. OpenTripPlanner Map - an online transportation modes including transit (bus or train), walking, and bicycling 511 - a one-stop source from the of alternative transportation modes. A 2010 evaluation by the Oregon Transportation Research and
Clean School Bus Program Any school district or charter school may receive a grant through the Texas Commission on Environmental Quality (TCEQ) to pay for the incremental costs to replace school equipment, and other emissions reduction technologies in qualified school buses. Furthermore, funds may also
Transonic Fan/Compressor Rotor Design Study. Volume 5
1982-02-01
Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20. ABStTRACT (Continue n reverse...Technology Branch FOR THE COMNANDER H. IV N BUS Director, Turbine Engine Division A If your address has changed, if you wish to be removed from our...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK General Electric Ctmpany AREA & WORK UNIT NUMBERS Aircraft Engine Business Group Project 2307
Mars Reconnaissance Orbiter Taking Shape
2004-08-09
Lockheed Martin Space Systems engineer Terry Kampmann left and lead technician Jack Farmerie work on assembly and test of NASA Mars Reconnaissance Orbiter spacecraft bus in a cleanroom at the company Denver facility.
40 CFR 85.1401 - General applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1401 General... population of 750,000 or more that have their engines rebuilt or replaced after January 1, 1995. ...
40 CFR 85.1401 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1401 General... population of 750,000 or more that have their engines rebuilt or replaced after January 1, 1995. ...
40 CFR 85.1401 - General applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1401 General... population of 750,000 or more that have their engines rebuilt or replaced after January 1, 1995. ...
40 CFR 85.1401 - General applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Urban Bus Rebuild Requirements § 85.1401 General... population of 750,000 or more that have their engines rebuilt or replaced after January 1, 1995. ...
Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, George
2015-11-01
The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less
Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.
2015-11-03
The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less
Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L
2005-09-01
Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.
Multi Bus DC-DC Converter in Electric Hybrid Vehicles
NASA Astrophysics Data System (ADS)
Krithika, V.; Subramaniam, C.; Sridharan, R.; Geetha, A.
2018-04-01
This paper is cotncerned with the design, simulation and fabrication of the prototype of a Multi bus DC- DC converter operating from 42V DC and delivering 14V DC and 260V DC. As a result, three DC buses are interconnected through a single power electronic circuitry. Such a requirement is energized in the development of a hybrid electric automobile which uses the technology of fuel cell. This is implemented by using a Bidirectional DC-DC converter configuration which is ideally suitable for multiple outputs with mutual electrical isolation. For the sake of reduced size and cost of step-up transformer, selection of a high frequency switching cycle at 10 KHz was done.
Emission Standards, Public Transit, and Infant Health.
Ngo, Nicole S
Transit buses are an integral part of urban life. They reduce externalities generated from private vehicles and increase geographic mobility. However, unlike most private vehicles in the United States, they use diesel fuel and emit higher amounts of toxic pollutants. The U.S. Environmental Protection Agency set emission standards for transit buses starting in 1988 that have been continually updated, but their public health and economic impacts are unclear due to scarce emissions data. I construct a novel panel dataset for the New York City (NYC) Transit bus fleet between 1990 and 2009 and examine the impact of bus pollution on infant health by using bus vintage as a proxy for emissions. I exploit the variation in vintage as older buses are retired and replaced with newer, lower-emitting buses forced to adhere to stricter emission standards. I then assign maternal exposure to bus vintage at the census block level. Findings suggest that maternal exposure to the oldest, unregulated buses is associated with modest reductions in birth weight and gestational age relative to newer buses that abide by emissions policies. I then conduct a back-of-the-envelope cost-benefit calculation and find net economic benefits of $53.3 million resulting from improved emission standards for the 2009 birth cohort in NYC. Since the treatment in this study clearly maps to federal emissions policies, these results are the first to provide credible evidence that transit bus emission standards had a positive effect on infant health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigro, D.N.
1980-02-01
Progress is reported on the procurement and delivery of 11 Allison GT 404-4 Industrial Gas Turbine Engines and 5 HT740CT and 6 V730CT Allison Automatic Transmissions for the Greyhound and Transit Coaches, respectively. Ceramic regenerators have been incorporated in the build configuration for last 4 Transit Coach engines. The 5 Greyhound Coach engines and the first 2 Transit Coach engines were built in the all-metal configuration. The Master Schedules for the program are presented.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S., Jr.
2013-01-01
Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).
Bias of averages in life-cycle footprinting of infrastructure: truck and bus case studies.
Taptich, Michael N; Horvath, Arpad
2014-11-18
The life-cycle output (e.g., level of service) of infrastructure systems heavily influences their normalized environmental footprint. Many studies and tools calculate emission factors based on average productivity; however, the performance of these systems varies over time and space. We evaluate the appropriate use of emission factors based on average levels of service by comparing them to those reflecting a distribution of system outputs. For the provision of truck and bus services where fuel economy is assumed constant over levels of service, emission factor estimation biases, described by Jensen's inequality, always result in larger-than-expected environmental impacts (3%-400%) and depend strongly on the variability and skew of truck payloads and bus ridership. Well-to-wheel greenhouse gas emission factors for diesel trucks in California range from 87 to 1,500 g of CO2 equivalents per ton-km, depending on the size and type of trucks and the services performed. Along a bus route in San Francisco, well-to-wheel emission factors ranged between 53 and 940 g of CO2 equivalents per passenger-km. The use of biased emission factors can have profound effects on various policy decisions. If average emission rates must be used, reflecting a distribution of productivity can reduce emission factor biases.
29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.
Code of Federal Regulations, 2014 CFR
2014-07-01
... bus fuel and the repair and servicing of trucks and buses used in over-the-road commercial transportation (including parts and accessories for such vehicles). (b) Sales or repairs of tanks. Sales or repairs of tanks for the storage of liquefied-petroleum-gas are recognized as retail in the industry...
Alternative Fuels Data Center: Pennsylvania Transportation Data for
/TTIwZrpNGf4 Video thumbnail for Pennsylvania School Buses Run on Natural Gas Pennsylvania School Buses Run on Network, Clean School Bus/Vehicle Incentive, and Green Jobs Outreach Program Independence National Partnership for Promoting Natural Gas Vehicles Ready to Roll! - Southeastern Pennsylvania's Regional Electric
The Fuel Efficient Missile Combat Crew Routing Network.
1980-06-01
after a 24 -hour alert tour, driving safety might be impacted. Al- though the 1.98 gallons per passenger is a 43% improvement over the present MCC...Van/DS II, Van/DS I, and 29 Pax Bus/ DS I combinations, the authors believe that the potential lengthy travel times, driving safety factor, vehicle
Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Matthew; Boriboonsomsin, Kanok
2014-12-31
The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for drivingmore » performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.« less
Modeling transit bus fuel consumption on the basis of cycle properties.
Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J
2011-04-01
A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.
Performance of school bus retrofit systems: ultrafine particles and other vehicular pollutants.
Zhang, Qunfang; Zhu, Yifang
2011-08-01
This study evaluated the performance of retrofit systems for diesel-powered school buses, a diesel oxidation catalyst (DOC) muffler and a spiracle crankcase filtration system (CFS), regarding ultrafine particles (UFPs) and other air pollutants from tailpipe emissions and inside bus cabins. Tailpipe emissions and in-cabin air pollutant levels were measured before and after retrofitting when the buses were idling and during actual pick-up/drop off routes. Retrofit systems significantly reduced tailpipe emissions with a reduction of 20-94% of total particles with both DOC and CFS installed. However, no unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The AC/fan unit and the surrounding air pollutant concentrations played more important roles for determining the in-cabin air quality of school buses than did retrofit technologies. Although current retrofit systems reduce children's exposure while waiting to board at a bus station, retrofitting by itself does not protect children satisfactorily from in-cabin particle exposures. Turning on the bus engine increased in-cabin UFP levels significantly only when the wind blew from the bus' tailpipe toward its hood with its windows open. This indicated that wind direction and window position are significant factors determining how much self-released tailpipe emissions may penetrate into the bus cabin. The use of an air purifier was found to remove in-cabin particles by up to 50% which might be an alternative short-to-medium term strategy to protect children's health.
Development and Commissioning Results of the Hybrid Sensor Bus Engineering Qualification Model
NASA Astrophysics Data System (ADS)
Hurni, Andreas; Putzer, Phillipp; Roner, Markus; Gurster, Markus; Hulsemeyer, Christian; Lemke, Norbert M. K.
2016-08-01
In order to reduce mass, AIT effort and overall costs of classical point-to-point wired temperature sensor harness on-board spacecraft OHB System AGhas introduced the Hybrid Sensor Bus (HSB) system which interrogates sensors connected in a bus architecture. To use the advantages of electrical as wellas of fiber-optical sensing technologies, HSB is designed as a modular measurement system interrogating digital sensors connected on electricalsensor buses based on I2C and fiber-optical sensor buses based on fiber Bragg grating (FBG) sensors inscribed in optical fibers. Fiber-optical sensor bus networks on-board satellites are well suited for temperature measurement due to low mass, electro-magnetic insensitivity and the capability to embed them inside structure parts. The lightweight FBG sensors inscribed in radiation tolerant fibers can reach every part of the satellite. HSB has been developed in the frame of the ESA ARTES program with European and German co- funding and will be verified as flight demonstrator on- board the German Heinrich Hertz satellite (H2Sat).In this paper the Engineering Qualification Model (EQM) development of HSB and first commissioning results are presented. For the HSB development requirements applicable for telecommunication satellite platforms have been considered. This includes an operation of at least 15 years in a geostationary orbit.In Q3/2016 the qualification test campaign is planned to be carried out. The HSB EQM undergoes a full qualification according to ECSS. The paper concludes with an outlook regarding this HSB flight demonstrator development and its in-orbit verification (IOV) on board H2Sat.
NASA Technical Reports Server (NTRS)
Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry
2010-01-01
The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There is no centralized arbitration or bus granting. The JPL design provides for autonomous synchronization of the nodes on the ring bus. An address-synchronous latency adjust buffer (LAB) has been designed that cannot get out of synchronization and needs no external input. Also, a priority-driven cable selection behavior has been programmed into each unit on the ring bus. This makes the bus able to connect itself up, according to a maximum redundancy priority system, without the need for computer intervention at startup. Switching around a failed or switched-off unit is also autonomous. The JPL bus provides a map of all the active units for the host computer to read and use for fault management. With regard to timing, this enhanced bus recognizes coordinated timing on a spacecraft as critical and addresses this with a single source of absolute and relative time, which is broadcast to all units on the bus with synchronization maintained to the tens of nanoseconds. Each BIU consists of up to five programmable triggers, which may be programmed for synchronization of events within the spacecraft of instrument. All JPL-formatted data transmitted on the ring bus are automatically time-stamped.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntarymore » program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.« less
Power conversion apparatus and method
Su, Gui-Jia [Knoxville, TN
2012-02-07
A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.
Integrated Control System Engineering Support.
1984-12-01
interference susceptibility. " Study multiplex bus loading requirements. Flight Control Software 0 " Demonstrate efficiencies of modular software and...Major technical thrusts include the development of: (a) task-tailored mutimode con- trol laws incorporating direct force and weapon line pointing
Fuel burner and combustor assembly for a gas turbine engine
Leto, Anthony
1983-01-01
A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.
Mathematical modeling of control system for the experimental steam generator
NASA Astrophysics Data System (ADS)
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles
Public Utilities operates the largest municipal fleet of natural gas vehicles in Connecticut. For Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct. 28, 2017 with Natural Gas Trucks June 23, 2017 Photo of a bus New Hampshire Cleans up with Biodiesel Buses May
Alternative Fuels Data Center: Indiana Beverage Company Invests in
fleet of compressed natural gas (CNG) tractors. For information about this project, contact Greater Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct. 28, 2017 Image Natural Gas Trucks June 23, 2017 Photo of a transit bus America's Largest Home Runs on Biodiesel in North
Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas
charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus
The Bus Stops Here: The Case for Biodiesel in School Buses.
ERIC Educational Resources Information Center
Rao, Steven T.
2002-01-01
Suggests that diesel exhaust from most of the nation's school buses may be hazardous to children's health. Documents studies on the nature and potential magnitude of the risk to children and proposes replacing petroleum diesel with biodiesel as the fuel for school buses. Presents the merits and practicality of switching to biodiesel as a healthier…
Districts Cut Back Busing, Seek Ways to Save Energy
ERIC Educational Resources Information Center
Aarons, Dakarai I.
2008-01-01
A struggling economy and skyrocketing fuel costs are making their grim presence felt as school districts across the country open their doors. With fewer dollars to spend, everything from teaching positions to bus transportation is on the chopping block. As students go back to school, many will find themselves in more crowded classrooms with texts…
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
A tank-to-wheel analysis tool for energy and emissions studies in road vehicles.
Silva, C M; Gonçalves, G A; Farias, T L; Mendes-Lopes, J M C
2006-08-15
Currently, oil based fuels are the primary energy source of road transport. The growing need for oil independence and CO(2) mitigation has lead to the increasing importance of alternative fuel usage. CO(2) is produced not only as the fuel is used in the vehicle (tank-to-wheel contribution), but also upstream, from the fuel extraction to the refueling station (well-to-tank contribution), and the life cycle of the fuel production (well-to-wheel contribution) must be considered in order to analyse the global impact of the fuel utilization. A road vehicle tank-to-wheel analysis tool that may be integrated with well-to-tank models was developed in the present study. The integration in a demonstration case study allowed to perform a life cycle assessment concerning the utilization of diesel and natural gas fuels in a specific network line of a bus transit company operating in the city of Porto, Portugal.
Performance of a small compression ignition engine fuelled by liquified petroleum gas
NASA Astrophysics Data System (ADS)
Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar
2017-09-01
In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.
Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert
2010-06-01
Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter
76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... engine models requiring inspections. We are proposing this AD to prevent failure of the fuel injector... repetitive inspection compliance time. We issued that AD to prevent failure of the fuel injector fuel lines... engine models requiring inspection. We are issuing this AD to prevent failure of the fuel injector fuel...
Hydrogen-methane fuel control systems for turbojet engines
NASA Technical Reports Server (NTRS)
Goldsmith, J. S.; Bennett, G. W.
1973-01-01
Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.
NASA Astrophysics Data System (ADS)
Wiegand, Andrew L.
The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaser, Richard
1980-11-01
This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcoholmore » fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)« less
Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling
NASA Astrophysics Data System (ADS)
Omidvarborna, Hamid
Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO 2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of methyl esters (SME) produced more CO and less CO2 emissions than those with low degrees of unsaturation and short chain lengths (WCO and TO, respectively). In addition, biodiesel fuels with long and unsaturated chains released more CH4 than the ones with shorter and less unsaturated chains. Experimental results on soot particles showed a significant reduction in soot emissions when using biodiesel compared to ULSD. For neat biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles was greater than the average soot particle from biodiesel blends. Eight elements were detected as the marker metals in biodiesel soot particles. The conclusion suggests that selected characterization methods are valuable for studying the structure and distribution of particulates. Experiments on both PM and NOx emissions were conducted on real engines in parallel with laboratory study. Field experiments using TARTA buses were performed on buses equipped with/without post-treatment technologies. The performance of the bus that ran on blended biodiesel was found to be very similar to ULSD. As a part of this study, the toxic nature of engine exhausts under different idling conditions was studied. The results of the PM emission analysis showed that the PM mean value of emission is dependent on the engine operation conditions and fuel type. Besides, different idling modes were investigated with respect to organic carbon (OC), elemental carbon (EC), and elemental analysis of the PMs collected from public transit buses in Toledo, Ohio. In the modeling portion of this work, a simplified model was developed by using artificial neural network (ANN) to predict NOx emissions from TARTA buses via engine parameters. ANN results showed that the developed ANN model was capable of predicting the NOx emissions of the tested engines with excellent correlation coefficients, while root mean square errors (RMSEs) were in acceptable ranges. The ANN study confirmed that ANN can provide an accurate and simple approach in the analysis of complex and multivariate problems, especially for idle engine NOx emissions. Finally, in the last part of the modeling study, a biodiesel surrogate has been proposed and main pathways have been derived to present a simple model for NOx formation in biodiesel combustion via stochastic simulation algorithm (SSA). The main reaction pathways are obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND is added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The predicted results are in good agreement with a limited number of experimental data at LTC conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The SSA model shows the potential to predict NOx emission concentrations, when the peak combustion temperature increases through the addition of ULSD to biodiesel. The SSA method demonstrates the possibility of reducing the computational complexity in biodiesel emissions modeling. Based on these findings, it can be concluded that both alternative renewable fuels (biodiesel blends) as well as the LTC condition are suitable choices for existing diesel engines to improve the sustainability of fuel and to reduce environmental emissions.
Staged combustion with piston engine and turbine engine supercharger
Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA
2006-05-09
A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.
Staged combustion with piston engine and turbine engine supercharger
Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA
2011-11-01
A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.
Holmén, Britt A; Qu, Yingge
2004-04-15
The relationships between transient vehicle operation and ultrafine particle emissions are not well-known, especially for low-emission alternative bus technologies such as compressed natural gas (CNG) and diesel buses equipped with particulate filters/traps (TRAP). In this study, real-time particle number concentrations measured on a nominal 5 s average basis using an electrical low pressure impactor (ELPI) for these two bus technologies are compared to that of a baseline catalyst-equipped diesel bus operated on ultralow sulfur fuel (BASE) using dynamometer testing. Particle emissions were consistently 2 orders of magnitude lower for the CNG and TRAP compared to BASE on all driving cycles. Time-resolved total particle numbers were examined in terms of sampling factors identified as affecting the ability of ELPI to quantify the particulate matter number emissions for low-emitting vehicles such as CNG and TRAP as a function of vehicle driving mode. Key factors were instrument sensitivity and dilution ratio, alignment of particle and vehicle operating data, sampling train background particles, and cycle-to-cycle variability due to vehicle, engine, after-treatment, or driver behavior. In-cycle variability on the central business district (CBD) cycle was highest for the TRAP configuration, but this could not be attributed to the ELPI sensitivity issues observed for TRAP-IDLE measurements. Elevated TRAP emissions coincided with low exhaust temperature, suggesting on-road real-world particulate filter performance can be evaluated by monitoring exhaust temperature. Nonunique particle emission maps indicate that measures other than vehicle speed and acceleration are necessary to model disaggregated real-time particle emissions. Further testing on a wide variety of test cycles is needed to evaluate the relative importance of the time history of vehicle operation and the hysteresis of the sampling train/dilution tunnel on ultrafine particle emissions. Future studies should monitor particle emissions with high-resolution real-time instruments and account for the operating regime of the vehicle using time-series analysis to develop predictive number emissions models.
Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.
Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier
2009-12-01
This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.
49 CFR 571.131 - Standard No. 131; School bus pedestrian safety devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... purpose of this standard is to reduce deaths and injuries by minimizing the likelihood of vehicles passing... opened while the engine is running and the manual override is engaged. S6 Test Procedures. S6.1...
Mutlu, Esra; Warren, Sarah H.; Ebersviller, Seth M.; Kooter, Ingeborg M.; Schmid, Judith E.; Dye, Janice A.; Linak, William P.; Gilmour, M. Ian; Jetter, James J.; Higuchi, Mark; DeMarini, David M.
2016-01-01
Background: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. Objective: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions. Methods: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Results: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58–0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator. Conclusions: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality. Citation: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter JJ, Higuchi M, DeMarini DM. 2016. Mutagenicity and pollutant emission factors of solid-fuel cookstoves: comparison with other combustion sources. Environ Health Perspect 124:974–982; http://dx.doi.org/10.1289/ehp.1509852 PMID:26895221
Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N
2006-07-01
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.
Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG
See how truckers in West Sacramento, California, are taking advantage of a new liquefied natural gas California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles truck Idaho Transports Mail and Reduces Emissions with Natural Gas Trucks June 23, 2017 Photo of a bus
Alternative Fuels Data Center: Rio Rico Fire District Turns Grease Into
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Natural Gas Street Sweepers Improve Air Quality in New York March 11, 2010 Propane Buses Save Money for
Alternative Fuels Data Center: Propane Powers School Buses in Tuscaloosa,
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus and Plug-In Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Electric Trolley Boosts Business in
Alternative Fuels Data Center: New Hampshire Cleans up with Biodiesel Buses
Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17, 2011 Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus
Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane
Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Companies Power Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
Alternative Fuels Data Center: Kansas City Kansas Public Schools Invests in
station for up to 70 CNG school buses, one mobile CNG refueling unit, and CNG safety modifications to the buses and fast-fill dispensers for public access. After receiving only one response, KCKPS simplified , or at one of the City of Kansas City, Missouri's private fast-fill stations. The first CNG bus was
NASA Astrophysics Data System (ADS)
Servati, Hamid Beyragh
A liquid fuel film formation on the walls of an intake manifold adversely affects the engine performance and alters the overall air/fuel ratio from that scheduled by a fuel injector or carburetor and leads to adverse effects in vehicle driveability, exhaust emissions, and fuel economy. In this dissertation, the intake manifold is simulated by a horizontal circular duct. A model is provided to predict the rate of deposition and evaporation of the droplets in the intake manifold. The liquid fuel flow rate into the cylinders, mean film velocity and film thickness are determined as functions of engine parameters for both steady and transient operating conditions of the engine. A mathematical engine model is presented to simulate the dynamic interactions of the various engine components such as the air/fuel inlet element, intake manifold, combustion, dynamics and exhaust emissions. Inputs of the engine model are the intake manifold pressure and temperature, throttle angle, and air/fuel ratio. The observed parameters are the histories of fuel film thickness and velocity, fuel consumption, engine speed, engine speed hesitation time, and histories of CO, CO(,2), NO(,x), CH(,n), and O(,2). The effects of different air/fuel ratio control strategies on engine performance and observed parameters are also shown.
PROCESS WATER BUILDING, TRA605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS ...
PROCESS WATER BUILDING, TRA-605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS WATER BUILDING AND ETR STACK ARE IN LEFT HALF OF VIEW. TRA-666 IS NEAR CENTER, ABUTTED BY SECURITY BUILDING; TRA-626, AT RIGHT EDGE OF VIEW BEHIND BUS. INL NEGATIVE NO. HD46-34-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Reliability Engineering for Service Oriented Architectures
2013-02-01
Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit
This document summarizes the process followed to utilize the fuel consumption map of a Ricardo modeled engine and vehicle fuel consumption data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.
Method and system for managing an electrical output of a turbogenerator
Stahlhut, Ronnie Dean; Vuk, Carl Thomas
2009-06-02
The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.
Interface Provides Standard-Bus Communication
NASA Technical Reports Server (NTRS)
Culliton, William G.
1995-01-01
Microprocessor-controlled interface (IEEE-488/LVABI) incorporates service-request and direct-memory-access features. Is circuit card enabling digital communication between system called "laser auto-covariance buffer interface" (LVABI) and compatible personal computer via general-purpose interface bus (GPIB) conforming to Institute for Electrical and Electronics Engineers (IEEE) Standard 488. Interface serves as second interface enabling first interface to exploit advantages of GPIB, via utility software written specifically for GPIB. Advantages include compatibility with multitasking and support of communication among multiple computers. Basic concept also applied in designing interfaces for circuits other than LVABI for unidirectional or bidirectional handling of parallel data up to 16 bits wide.
Method and system for managing an electrical output of a turbogenerator
Stahlhut, Ronnie Dean; Vuk, Carl Thomas
2010-08-24
The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.
Simulating the Use of Alternative Fuels in a Turbofan Engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan
2013-01-01
The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...
NASA Technical Reports Server (NTRS)
Busch, Arthur M.; Campbell, John A.
1959-01-01
A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... models requiring inspections. We are issuing this AD to prevent failure of the fuel injector fuel lines... to prevent failure of the fuel injector fuel lines that would allow fuel to spray into the engine... injector nozzles, and replace as necessary any fuel injector fuel line and clamp that does not meet all...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
Fuels and Lubrication Researcher at the Aircraft Engine Research Laboratory
1943-08-21
A researcher at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory studies the fuel ignition process. Improved fuels and lubrication was an area of particular emphasis at the laboratory during World War II. The military sought to use existing types of piston engines in order to get large numbers of aircraft into the air as quickly as possible. To accomplish its goals, however, the military needed to increase the performance of these engines without having to wait for new models or extensive redesigns. The Aircraft Engine Research Laboratory was called on to lead this effort. The use of superchargers successfully enhanced engine performance, but the resulting heat increased engine knock [fuel detonation] and structural wear. These effects could be offset with improved cooling, lubrication, and fuel mixtures. The NACA researchers in the Fuels and Lubrication Division concentrated on new synthetic fuels, higher octane fuels, and fuel-injection systems. The laboratory studied 16 different types of fuel blends during the war, including extensive investigations of triptane and xylidine.
The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong
NASA Astrophysics Data System (ADS)
Chan, L. Y.; Chan, C. Y.; Qin, Y.
Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NO x, THC and O 3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO 2 were recorded. The strong prevailing wind plus the channeling effect created by the harbor, the fuel used, the relative abundance of new cars and the successful implementation of the vehicle emission control program are factors that compensate the effect of the emission source strength and thus lead to low exposure levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, Alexander; Splitter, Derek A
It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. Themore » results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.« less
Co-Optimization of Fuels and Engines | Transportation Research | NREL
Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Engines Photo of silver sedan in ), eight other national laboratories, and industry on the Co-Optimization of Fuels & Engines (Co-Optima research activities and accomplishments of the Co-Optima initiative in the Co-Optimization of Fuels &
A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels
NASA Astrophysics Data System (ADS)
He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua
The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.
Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.; Ratcliff, M. A.; Zigler, B. T.
2012-04-19
A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less
Potential of spark ignition engine for increased fuel efficiency. Final report, January-October 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T. Jr.; Cole, D.; Bolt, J.A.
The objective of this study was to assess the potential of the spark ignition engine to deliver maximum fuel efficiency at 1981 Statutory Emission Standards in the 1983-1984 timeframe and beyond that to 1990. Based on the results of an extensive literature search, manufacturer's known product plans, and fuel economies of 1978 engines as a baseline, proposed methods of attaining fuel economy while complying with the future standards were ascertained. Methods of engine control optimization, engine design optimization as well as methods of varying engine parameters were considered. The potential improvements in fuel economy associated with these methods, singly andmore » in combination, were determined and are expressed as percentage changes of the fuel economy of the baseline engines. A summary of the principal conclusions are presented, followed by a description of the engine baseline reference, analysis and projection of fuel economy improvements, and a preliminary assessment of the impact of fuel economy benefits on manufacturing cost.« less
Alternative Fuels DISI Engine Research ? Autoignition Metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoberg, Carl Magnus Goran; Vuilleumier, David
Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. Amore » fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.« less
2004-10-24
Renita Fincke, left, watches her husband, NASA astronaut Michael Fincke and Expedition 9 Flight Engineer depart from the crew bus while holding her 4 month-old baby Tarali Fincke, Sunday, October 24, 2004 in Star City, Russia. Astronaut Terry Virts helps by holding Chandra Fincke. Photo Credit: (NASA/Bill Ingalls)
Best practices : bus signage for persons with visual impairments : light-emitting diode (LED) signs
DOT National Transportation Integrated Search
2004-01-01
This best-practices report provides key information regarding the use of Light-Emitting Diode (LED) sign technologies to present destination and route information on transit vehicles. It will assist managers and engineers in the acquisition and use o...
Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines
Flowers, Daniel L.
2005-08-02
A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.
Ultrafine particle emissions by in-use diesel buses of various generations at low-load regimes
NASA Astrophysics Data System (ADS)
Tartakovsky, L.; Baibikov, V.; Comte, P.; Czerwinski, J.; Mayer, A.; Veinblat, M.; Zimmerli, Y.
2015-04-01
Ultrafine particles (UFP) are major contributors to air pollution due to their easy gas-like penetration into the human organism, causing adverse health effects. This study analyzes UFP emissions by buses of different technologies (from Euro II till Euro V EEV - Enhanced Environmentally-friendly Vehicle) at low-load regimes. Additionally, the emission-reduction potential of retrofitting with a diesel particle filter (DPF) is demonstrated. A comparison of the measured, engine-out, particle number concentrations (PNC) for buses of different technological generations shows that no substantial reduction of engine-out emissions at low-load operating modes is observed for newer bus generations. Retrofitting the in-use urban and interurban buses of Euro II till Euro IV technologies by the VERT-certified DPF confirmed its high efficiency in reduction of UFP emissions. Particle-count filtration efficiency values of the retrofit DPF were found to be extremely high - greater than 99.8%, similar to that of the OEM filter in the Euro V bus.
Real-Time-Simulation of IEEE-5-Bus Network on OPAL-RT-OP4510 Simulator
NASA Astrophysics Data System (ADS)
Atul Bhandakkar, Anjali; Mathew, Lini, Dr.
2018-03-01
The Real-Time Simulator tools have high computing technologies, improved performance. They are widely used for design and improvement of electrical systems. The advancement of the software tools like MATLAB/SIMULINK with its Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT), real-time simulators are used extensively in many engineering fields, such as industry, education, and research institutions. OPAL-RT-OP4510 is a Real-Time Simulator which is used in both industry and academia. In this paper, the real-time simulation of IEEE-5-Bus network is carried out by means of OPAL-RT-OP4510 with CRO and other hardware. The performance of the network is observed with the introduction of fault at various locations. The waveforms of voltage, current, active and reactive power are observed in the MATLAB simulation environment and on the CRO. Also, Load Flow Analysis (LFA) of IEEE-5-Bus network is computed using MATLAB/Simulink power-gui load flow tool.
Distributed ignition method and apparatus for a combustion engine
Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong
2006-03-07
A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.
Alternative Fuels Data Center: California Transportation Data for
March 21, 2015 https://www.youtube.com/embed/_dpL1S0QtA8 Video thumbnail for California School District Creates First-of-Its-Kind Zero-Emissions Bus California School District Creates First-of-Its-Kind Zero Video thumbnail for San Diego Leads in Promoting EVs San Diego Leads in Promoting EVs Sept. 3, 2011
Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City
Biodiesel Aug. 26, 2017 Photo of a car Idaho Surges Ahead with Electric Vehicle Charging Aug. 4, 2017 Photo of a truck Cooking Oil Powers Biodiesel Vehicles in Rhode Island July 14, 2017 Photo of a truck Idaho Largest Home Runs on Biodiesel in North Carolina June 9, 2017 Photo of a bus New Hampshire Cleans up with
Modelling of diesel engine fuelled with biodiesel using engine simulation software
NASA Astrophysics Data System (ADS)
Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul
2012-06-01
This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.
30 CFR 56.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
30 CFR 56.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
30 CFR 56.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
30 CFR 56.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
30 CFR 57.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
30 CFR 57.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
30 CFR 57.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
30 CFR 57.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...
40 CFR 80.501 - What fuel is subject to the provisions of this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...
40 CFR 80.501 - What fuel is subject to the provisions of this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...
40 CFR 80.501 - What fuel is subject to the provisions of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...
40 CFR 80.501 - What fuel is subject to the provisions of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...
40 CFR 80.501 - What fuel is subject to the provisions of this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...
The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.
Kliucininkas, L; Matulevicius, J; Martuzevicius, D
2012-05-30
This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oil cooling system for a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.; Kast, H. B. (Inventor)
1977-01-01
A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.
Fuel system for diesel engine with multi-stage heated
NASA Astrophysics Data System (ADS)
Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.
2017-09-01
The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.
A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine
NASA Technical Reports Server (NTRS)
Campbell, John A.; Busch, Arthur M.
1959-01-01
A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... showed that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had... a dormant failure that could result in an unsafe condition. The PW615F-A engine Fuel Filter Bypass... that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had worn...
NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NREL bridges fuels and engines R&D to maximize vehicle efficiency and performance. The lab’s fuels and engines research covers the full spectrum of innovation—from fuel chemistry, conversion, and combustion to the evaluation of how fuels interact with engine and vehicle design. This innovative approach has the potential to positively impact our economy, national energy security, and air quality.
An investigation of thermal comfort inside a bus during heating period within a climatic chamber.
Pala, Uzeyir; Oz, H Ridvan
2015-05-01
By this study, it was aimed to define a testing and calculation model for thermal comfort assessment of a bus HVAC design and to compare effects of changing parameters on passenger's thermal comfort. For this purpose, a combined theoretical and experimental work during heating period inside a coach was carried out. The bus was left under 20 °C for more than 7 h within a climatic chamber and all heat sources were started at the beginning of a standard test. To investigate effects of fast transient conditions on passengers' physiology and thermal comfort, temperatures, air humidity and air velocities were measured. Human body was considered as one complete piece composed of core and skin compartments and the Transient Energy Balance Model developed by Gagge et al. in 1971 was used to calculate changes in thermal parameters between passenger bodies and bus interior environment. Depending on the given initial and environmental conditions, the graphs of passengers Thermal Sensation and Thermal Discomfort Level were found. At the end, a general mathematical model supported with a related experimental procedure was developed for the use of automotive HVAC engineers and scientists working on thermal comfort as a human dimension. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
40 CFR 86.347-79 - Alternative calculations for diesel engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...
40 CFR 86.347-79 - Alternative calculations for diesel engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...
Fuel economy screening study of advanced automotive gas turbine engines
NASA Technical Reports Server (NTRS)
Klann, J. L.
1980-01-01
Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.
NASA Technical Reports Server (NTRS)
Stewart, Mark E.; Schnitzler, Bruce G.
2015-01-01
This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.
Engine performance with a hydrogenated safety fuel
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1933-01-01
This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, A.
The Roaring Fork Transportation Authority (RFTA) represents a series of unique successes in alternative fuel deployment by pushing the envelope with innovative solutions. In the last year, RFTA demonstrated the ability to utilize compressed natural gas buses at a range of altitudes, across long distances, in extreme weather conditions and in a modern indoor fueling and maintenance facility - allwhile saving money and providing high-quality customer service. This case study will highlight how the leadership of organizations and communities that are implementing advances in natural gas vehicle technology is paving the way for broader participation.
NASA Astrophysics Data System (ADS)
Ravi, M. U.; Reddy, C. P.; Ravindranath, K.
2013-04-01
In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance parameters including power output, fuel consumption, brake thermal efficiency, brake specific fuel consumption etc. Exhaust emissions were also measured. The results obtained confirmed that the blends of SBD with petro-diesel can be successfully employed as an alternate fuel in diesel engines. Also engine with coated piston crown gave better break thermal efficiency for blends of Simarouba and diesel compared with diesel fuel. Significant improvements in engine performance characteristics were observed for a blend containing 20 % SBD. The emissions for 20 % biodiesel blend for the standard engine were less when compared with diesel fuel emissions. Contrary to expectations the injection pressure of 180 bar proved to be better than 190 and 200 bar.
Photoacoustic spectroscopy-based analysis of gas samples in a bus station
NASA Astrophysics Data System (ADS)
Sthel, M. S.; Schramm, D. U.; Faria, R. T., Jr.; Castro, M. P. P.; Carneiro, L. O.; Ribeiro, W. S.; Vargas, H.
2005-06-01
In Campos dos Goytacazes is a city located in the Northern region of Rio de Janeiro State, Brazil, the main source of air pollution are exhaust from vehicle engines powered by diesel oil, such as buses and trucks. It is known that the combustion of diesel oil is source of many contaminant gases such as: nitrogen oxides, SO2, CO and hydrocarbons. At this work, we use a SO2laser photoacoustic spectrometer to analyze gas samples collected in a bus characterized by an intense traffic. After this study, some gas species of environmental interest, such as SO2 and NO2, were detected and identified in the collected samples, at level of ppm.
Microring Resonators Vertically Coupled to Buried Heterostructure Bus Waveguides
2005-06-01
Seung June Choi, Kostadin Djordjev, Sang Jun Choi, P. Daniel Dapkus, Fellow, IEEE, Wilson Lin, Giora Griffel , Ray Menna, and John Connolly Abstract—The...Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, CA 90089 USA. W. Lin, G. Griffel , R. Menna, and J
2011-06-07
Expedition 28 JAXA (Japan Aerospace Exploration Agency) Flight Engineer Satoshi Furukawa places a mission sticker on the inside wall of the prime crew bus on the eve of his launch to the International Space Station, Tuesday, June 7, 2011 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Roscosmos/Andrey Shelepin)
Wareham, Mass. Selected for $200,000 EPA Rebate to Reduce School Bus Emissions
The Wareham, Mass. school district was chosen to receive $200,000 from the US EPA to retrofit the engines on seven older school buses so they would emit fewer pollutants that are linked to health problems such as asthma and lung damage.
Saco, Maine Gets $180,000 EPA Rebate to Reduce School Bus Emissions
The Saco, Maine school district was chosen to receive $180,000 from the US EPA to retrofit the engines on seven older school buses so they would emit fewer pollutants that are linked to health problems such as asthma and lung damage.
46 CFR 111.05-15 - Neutral grounding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...
46 CFR 111.05-15 - Neutral grounding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...
46 CFR 111.05-15 - Neutral grounding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...
46 CFR 111.05-15 - Neutral grounding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...
46 CFR 111.05-15 - Neutral grounding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and...
Zarcone, M C; Duistermaat, E; Alblas, M J; van Schadewijk, A; Ninaber, D K; Clarijs, V; Moerman, M M; Vaessen, D; Hiemstra, P S; Kooter, I M
2018-04-01
Harmful effects of diesel emissions can be investigated via exposures of human epithelial cells, but most of previous studies have largely focused on the use of diesel particles or emission sources that are poorly representative of engines used in current traffic. We studied the cellular response of primary bronchial epithelial cells (PBECs) at the air-liquid interface (ALI) to the exposure to whole diesel exhaust (DE) generated by a Euro V bus engine, followed by treatment with UV-inactivated non-typeable Haemophilus influenzae (NTHi) bacteria to mimic microbial exposure. The effect of prolonged exposures was investigated, as well as the difference in the responses of cells from COPD and control donors and the effect of emissions generated during a cold start. HMOX1 and NQO1 expression was transiently induced after DE exposure. DE inhibited the NTHi-induced expression of human beta-defensin-2 (DEFB4A) and of the chaperone HSPA5/BiP. In contrast, expression of the stress-induced PPP1R15A/GADD34 and the chemokine CXCL8 was increased in cells exposed to DE and NTHi. HMOX1 induction was significant in both COPD and controls, while inhibition of DEFB4A expression by DE was significant only in COPD cells. No significant differences were observed when comparing cellular responses to cold engine start and prewarmed engine emissions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Solid fuel combustion system for gas turbine engine
Wilkes, Colin; Mongia, Hukam C.
1993-01-01
A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.
Injector with integrated resonator
Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier
2014-07-29
The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.
Dual-fuel natural gas/diesel engines: Technology, performance, and emissions
NASA Astrophysics Data System (ADS)
Turner, S. H.; Weaver, C. S.
1994-11-01
An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.
Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment.
Santoni, Gregory W; Lee, Ben H; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Wofsy, Steven C; McManus, J Barry; Nelson, David D; Zahniser, Mark S
2011-08-15
Given the predicted growth of aviation and the recent developments of alternative aviation fuels, quantifying methane (CH(4)) and nitrous oxide (N(2)O) emission ratios for various aircraft engines and fuels can help constrain projected impacts of aviation on the Earth's radiative balance. Fuel-based emission indices for CH(4) and N(2)O were quantified from CFM56-2C1 engines aboard the NASA DC-8 aircraft during the first Alternative Aviation Fuel Experiment (AAFEX-I) in 2009. The measurements of JP-8 fuel combustion products indicate that at low thrust engine states (idle and taxi, or 4% and 7% maximum rated thrusts, respectively) the engines emit both CH(4) and N(2)O at a mean ± 1σ rate of 170 ± 160 mg CH(4) (kg Fuel)(-1) and 110 ± 50 mg N(2)O (kg Fuel)(-1), respectively. At higher thrust levels corresponding to greater fuel flow and higher engine temperatures, CH(4) concentrations in engine exhaust were lower than ambient concentrations. Average emission indices for JP-8 fuel combusted at engine thrusts between 30% and 100% of maximum rating were -54 ± 33 mg CH(4) (kg Fuel)(-1) and 32 ± 18 mg N(2)O (kg Fuel)(-1), where the negative sign indicates consumption of atmospheric CH(4) in the engine. Emission factors for the synthetic Fischer-Tropsch fuels were statistically indistinguishable from those for JP-8.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitz, William J.; McNenly, Matt J.; Whitesides, Russell
Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... flow, must be fitted in the fuel supply lines, one at the tank connection and one at the engine end of... flexible hose must be installed in the fuel supply line at or near the engines. The flexible hose must meet... of the engine manufacturer, must be fitted in the fuel supply line in the engine compartment...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system. 33.67 Section 33.67... protection of the engine fuel system against foreign particles in the fuel. The applicant must show: (i) That...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system. 33.67 Section 33.67... protection of the engine fuel system against foreign particles in the fuel. The applicant must show: (i) That...
40 CFR 88.102-94 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.102-94 Definitions. Any terms... and the GVWR. Dual Fuel Vehicle (or Engine) means any motor vehicle (or motor vehicle engine) engineered and designed to be operated on two different fuels, but not on a mixture of the fuels. Flexible...
Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1995-01-01
As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.
Influence of maladjustment on emissions from two heavy-duty diesel bus engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullman, T.L.; Hare, C.T.; Baines, T.M.
1984-01-01
Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NO/sup x/ emission levels, butmore » higher CO emissions, smoke, and particulate.« less
Conventional engine technology. Volume 3: Comparisons and future potential
NASA Technical Reports Server (NTRS)
Dowdy, M. W.
1981-01-01
The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.
Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Foster, Hampton H
1939-01-01
Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
The bibliography contains citations of selected patents concerning fuel control devices and methods for use in internal combustion engines. Patents describe air-fuel ratio control, fuel injection systems, evaporative fuel control, and surge-corrected fuel control. Citations also discuss electronic and feedback control, methods for engine protection, and fuel conservation. (Contains a minimum of 232 citations and includes a subject term index and title list.)
14 CFR 34.81 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.81 Fuel specifications. Fuel having specifications as provided...
14 CFR 34.81 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.81 Fuel specifications. Fuel having specifications as provided...
The effect of fuel processes on heavy duty automotive diesel engine emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, E.G.
1995-12-31
The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxidemore » levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.« less
Nabi, Md Nurun; Hustad, Johan Einar
2012-01-01
This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.
Dec, John E [Livermore, CA; Sjoberg, Carl-Magnus G [Livermore, CA
2006-10-31
A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.
NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text
Version) | News | NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL's combustion to the evolution of how fuels interact with engine and vehicle design. This is a text version of
40 CFR 1039.627 - What are the incentives for equipment manufacturers to use cleaner engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines. (e) In-use fuel. If the engine manufacturer certifies using ultra low-sulfur diesel fuel, you... commits to a central-fueling facility with ultra low-sulfur diesel fuel throughout its lifetime would meet... 1039: If the engine's maximum power is . . . And you install . . . Certified early to the . . . You may...
40 CFR 1039.627 - What are the incentives for equipment manufacturers to use cleaner engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines. (e) In-use fuel. If the engine manufacturer certifies using ultra low-sulfur diesel fuel, you... commits to a central-fueling facility with ultra low-sulfur diesel fuel throughout its lifetime would meet... 1039: If the engine's maximum power is . . . And you install . . . Certified early to the . . . You may...
40 CFR 1039.627 - What are the incentives for equipment manufacturers to use cleaner engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engines. (e) In-use fuel. If the engine manufacturer certifies using ultra low-sulfur diesel fuel, you... commits to a central-fueling facility with ultra low-sulfur diesel fuel throughout its lifetime would meet... 1039: If the engine's maximum power is . . . And you install . . . Certified early to the . . . You may...
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... lettered in the English language in block letters and numerals, which shall be of a color that contrasts... following information lettered in the English language in block letters and numerals which shall be of a... chapter. (O) For diesel engines which have been certified to comply with the urban bus particulate...
NREL Bridges Fuels and Engines R&D to Maximize Vehicle Efficiency and
innovation-from fuel chemistry, conversion, and combustion to the evaluation of advanced fuels in actual -cylinder engine for advanced compression ignition fuels research will be installed and commissioned in the vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research
Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert
2010-01-01
Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385
An explosion of a CNG fuel vessel in an urban bus.
Park, Chan-Seong; Jeon, Seung-Won; Moon, Jung-Eun; Lee, Kyu-Jung
2010-03-01
An investigation is presented of the explosion of a CNG (compressed natural gas) fuel vessel, called a liner, in an urban bus. The explosion happened at a gas station 10 min after filling was completed. There were no traces of soot and flames at the failed liner, which would be indicative of explosion by ignition of the gas. The filling process of the station was automatically monitored and recorded in a computer. There was no unusual record of the filling system that indicated excess pressure at the time of the accident. There were cracks on the liner that were initiated at the outer surface of the cylindrical shell located at a point 4 cm above the lower dome where cracks did not originate easily as a result of overload. Chemical analysis was performed on a specimen that was cut from the liner, and there was no peculiarity in the mix. Mechanical analysis was performed on the specimens and showed that the hardness was not in the specified range because of inadequate heat treatment of the metal. The hardness of the liner was strictly controlled in the manufacturing process. All the liners that were manufactured at the same period with the failed liner were recalled for examination.
Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels
NASA Astrophysics Data System (ADS)
Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.
2018-01-01
The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.
76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This... engine utilizing turbine (jet) fuel. The applicable airworthiness regulations do not contain adequate or...: Installation of the Austro Engine GmbH Model E4 ADE diesel engine utilizing turbine (jet) fuel. Discussion...
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
Photographic characterization of spark-ignition engine fuel injectors
NASA Technical Reports Server (NTRS)
Evanich, P. L.
1978-01-01
Manifold port fuel injectors suitable for use in general aviation spark-ignition engines were evaluated qualitatively on the basis of fuel spray characteristics. Photographs were taken at various fuel flow rates or pressure levels. Mechanically and electronically operated pintle injectors generally produced the most atomization. The plain-orifice injectors used on most fuel-injected general aviation engines did not atomize the fuel when sprayed into quiescent air.
2015-04-01
system. The new calibrated fuel injection pump and injectors were installed, and the fuel injection timing of the new fuel injection system was set to...Product 6.5L Turbocharged diesel engine at two inlet temperature conditions. The GEP 6.5LT engine represents legacy diesel engine design with...derived cetane number DF-2 Diesel Fuel number 2 ft Foot HEFA Hydro-treated Esters and Fatty Acid(s) HP or hp Horsepower hr Hour in Inch in³ cubic
14 CFR 34.81 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.81 Fuel specifications. Fuel having specifications as provided...
NASA Astrophysics Data System (ADS)
Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.
2015-12-01
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
[FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].
Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming
2012-02-01
Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.