Sample records for butt welds

  1. 76 FR 21331 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ...-807, A-570-814] Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and... butt-weld pipe fittings from Brazil, Japan, Taiwan, Thailand, and the People's Republic of China (PRC... duty orders on carbon steel butt-weld pipe fittings from Brazil, Japan, Taiwan, Thailand, and the PRC...

  2. 77 FR 42697 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ...] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation of.... International Trade Commission that revocation of the antidumping duty orders on stainless steel butt-weld pipe... from Italy, Malaysia, and the Philippines.\\2\\ \\1\\ See Antidumping Duty Orders: Stainless Steel Butt...

  3. 77 FR 24459 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... CR, of wrought austenitic stainless steel fittings of seamless and welded construction covered by the... DEPARTMENT OF COMMERCE International Trade Administration [A-475-828] Stainless Steel Butt-Weld... administrative review of the antidumping duty order on stainless steel butt-weld pipe fittings (SSBW pipe...

  4. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  5. 77 FR 48965 - Certain Carbon Steel Butt-Weld Pipe Fittings From the People's Republic of China: Notice of Court...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-814] Certain Carbon Steel Butt... scope of the Order \\1\\ as excluding carbon steel butt-weld pipe fittings from the People's Republic of... Carbon Steel Butt-Weld Pipe Fittings From the People's Republic of China, 57 FR 29702 (July 6, 1992...

  6. Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile

    NASA Astrophysics Data System (ADS)

    Lou, Shumei; Wang, Yongxiao; Liu, Chuanxi; Lu, Shuai; Liu, Sujun; Su, Chunjian

    2017-08-01

    In continuous extrusions of aluminum profiles, the thickness of the billet butt and the length of the discarded extrudate containing the transverse weld play key roles in reducing material loss and improving product quality. The formation and final distribution of the billet butt and transverse weld depend entirely on the flow behavior of the billet skin material. This study examined the flow behavior of the billet skin material as well as the formation and evolution of the billet butt and the transverse weld in detail through numerical simulation and a series of experiments. In practical extrusions, even if the billet skin is removed by lathe turning shortly before extrusion, billet skin impurities are still distributed around the transverse weld and in the billet butt. The thickness of the scrap billet butt and the length of the discarded extrudate containing the transverse weld can be exactly predicted via simulation.

  7. Displaced electrode process for welding

    DOEpatents

    Heichel, L.J.

    1975-08-26

    A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)

  8. Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti-6Al-4V butt joints and T-joints

    NASA Astrophysics Data System (ADS)

    Kashaev, Nikolai; Ventzke, Volker; Fomichev, Vadim; Fomin, Fedor; Riekehr, Stefan

    2016-11-01

    A Nd:YAG single-sided laser beam welding process study for Ti-6Al-4V butt joints and T-joints was performed to investigate joining techniques with regard to the process-weld morphology relationship. An alloy compatible filler wire was used to avoid underfills and undercuts. The quality of the butt joints and T-joints was characterized in terms of weld morphology, microstructure and mechanical properties. Joints with regular shapes, without visible cracks, pores, and geometrical defects were achieved. Tensile tests revealed high joint integrity in terms of strength and ductility for both the butt joint and T-joint geometries. Both the butt joints and T-joints showed base material levels of strength. The mechanical performance of T-joints was also investigated using pull-out tests. The performance of the T-joints in such tests was sensitive to the shape and morphology of the welds. Fracture always occurred in the weld without any plastic deformation in the base material outside the weld.

  9. Arc Welding of Mg Alloys: Oxide Films, Irregular Weld Shape and Liquation Cracking

    NASA Astrophysics Data System (ADS)

    Chai, Xiao

    The use of Mg alloys for vehicle weight reduction has been increasing rapidly worldwide. Gas-metal arc welding (GMAW) has the potential for mass-production welding of Mg alloys. Recently, the University of Wisconsin demonstrated in bead-on-plate GMAW of Mg alloys that severe spatter can be eliminated by using controlled short circuiting (CSC), and severe hydrogen porosity can be eliminated by removing Mg(OH)2. The present study aimed at actual butt and lap welding of Mg alloys by CSC-GMAW and susceptibility of Mg alloys to weld-edge cracking using the circular-patch welding test. Sound welds were made without spatter and hydrogen porosity butt and lap welding of AZ 31 Mg using CSC-GMAW , with butt welds approaching 100% of the base-metal strength. However, three new significant issues were found to occur easily and degrade the weld quality significantly: 1. formation of oxide films inside butt welds, 2. formation of high crowns on butt welds, and 3. formation of fingers from lap welds. The mechanisms of their formation were established, and the methods for their elimination or reduction were demonstrated. Circular-patch welds were made on most widely used Mg casting alloy AZ91, the most widely used Mg wrought alloy AZ31 with three different Mg filler wires AZ31, AZ61 and AZ92. The susceptibility to cracking along the weld edge was predicted and compared against the experimental results. Such a prediction has not been made for welds of Mg alloys before.

  10. 77 FR 10773 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of Expedited Five-Year... orders on stainless steel butt-weld pipe fittings from Italy, Malaysia, and the Philippines would be... certificate of service. Determination.--The Commission has determined to exercise its authority to extend the...

  11. 77 FR 39735 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... revocation of the antidumping duty orders on stainless steel butt-weld pipe fittings From Italy, Malaysia... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-865-867 (Second Review)] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines Determination On the basis of the...

  12. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-376 and 563-564 (Third Review)] Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY: United States International... steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead to continuation or...

  13. 76 FR 67146 - Stainless Steel Butt-Weld Pipe Fittings From Italy; Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-475-828] Stainless Steel Butt-Weld... antidumping duty order on stainless steel butt-weld pipe fittings from Italy in the Federal Register. See... preliminary results of this review within the original time frame because it needs to obtain additional...

  14. 77 FR 14002 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... steel fittings of seamless and welded construction covered by the latest revision of ANSI B16.9, ANSI...] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Final Results of the... Commerce (the Department) initiated sunset reviews of the antidumping duty orders on stainless steel butt...

  15. 76 FR 7151 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ...-807, A-570-814] Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and..., Thailand, and the People's Republic of China (PRC), pursuant to section 751(c) of the Tariff Act of 1930... antidumping duty orders \\1\\ on carbon steel butt-weld pipe fittings from Brazil, Japan, Taiwan, Thailand, and...

  16. Initial Testing for the Recommendation of Improved Gas Metal Arc Welding Procedures for HY-80 Steel Plate Butt Joints at Norfolk Naval Shipyard

    DTIC Science & Technology

    2015-12-01

    is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Hull cut welding proficiency is an essential skill maintained by personnel...at naval shipyards. This thesis explores arc weld theory to develop ideal submarine hull butt joint designs and recommends preliminary testing to...shipboard hull welding applications, theoretically. Butt joint samples were created using HY-80 steel plate so that the following comparisons could

  17. Study on influence of three kinds of stress on crack propagation in butt welds of spiral coil waterwall for ultra supercritical boiler

    NASA Astrophysics Data System (ADS)

    Yan, Zhenrong; Si, Jun

    2017-09-01

    The spiral coil waterwall is the main pressure parts and the core functional components of Ultra Supercritical Boiler. In the process of operation, the spiral coil waterwall is under the combined action of welding residual stress, installation defects stress and working fluid stress, Cracks and crack propagation are easy to occur in butt welds with defects. In view of the early cracks in the butt welds of more T23 water cooled walls, in this paper, the influence of various stresses on the crack propagation in the butt welds of spiral coil waterwall was studied by numerical simulation. Firstly, the welding process of T23 water cooled wall tube was simulated, and the welding residual stress field was obtained. Then,on the basis, put the working medium load on the spiral coil waterwall, the supercoated stress distribution of the welding residual stress and the stress of the working medium is obtained. Considering the bending moment formed by stagger joint which is the most common installation defects, the stress field distribution of butt welds in T23 water-cooled wall tubes was obtained by applying bending moment on the basis of the stress field of the welding residual stress and the working medium stress. The results show that, the welding residual stress is small, the effect of T23 heat treatment after welding to improve the weld quality is not obvious; The working medium load plays a great role in the hoop stress of the water cooled wall tube, and promotes the cracks in the butt welds; The axial stress on the water cooled wall tube produced by the installation defect stress is obvious, the stagger joint, and other installation defects are the main reason of crack propagation of spiral coil waterwall. It is recommended that the control the bending moment resulting from the stagger joint not exceed 756.5 NM.

  18. Proceedings of the IREAPS Technical Symposium (9th) Held in San Diego, California on September 14-16, 1982. Volume 1 (The National Shipbuilding Research Program)

    DTIC Science & Technology

    1982-01-01

    templates. Bends plate to radius of forming cylinder. One sided butt welds up through 5/8" using magnet bed for alignment. Automatically fits and welds...up to nine stiffeners per panel. Exit Butt Weld One sided butt welds stiffened bottom panels to Tank Top Fitting Area each other using magnet bed for...be over-emphasized! Benefits derived from the model are somewhat like magnetism . Model usage is inversely proportional to the square of the distance

  19. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Li, Yuanxing; Zhang, Mingyue; Hui, Chen

    2015-03-01

    7003-T5 Aluminum (Al) alloy plates with a thickness of 5 mm are welded by gas metal arc welding (GMAW) method in this work. In order to investigate the influence of stress concentration introduced by weld reinforcement on fatigue strength, the stress concentration factor of the butt joint is calculated. Microscopic and X-ray techniques were utilized to make sure there are no weld defects with large size in butt weld, which can induce extra stress concentration. The cyclic stress - number of cycles to failure (S-N) curves of the joints with and without the welder were obtained by fatigue testing, and the results show that the fatigue strength of 7003-T5 Al alloy butt joints with the weld reinforcement is 50 MPa, which is only 45% of the joints without the weld reinforcement. Fracture surface observation indicated that the fatigue source and propagation are dissimilar for the specimens with and without the welder due to the stress concentration at the weld root. The stress concentration with a factor of 1.7 has great effect on the fatigue strength, but little influence on the tensile strength.

  20. Butt Welding Joint of Aluminum Alloy by Space GHTA Welding Process in Vacuum

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Shinike, Shuhei; Ekuni, Tomohide; Terajima, Noboru; Tsukuda, Yoshiyuki; Imagawa, Kichiro

    Aluminum alloys have been used widely in constructing various space structures including the International Space Station (ISS) and launch vehicles. For space applications, welding experiments on aluminum alloy were performed using the GHTA (Gas Hollow Tungsten Arc) welding process using a filler wire feeder in a vacuum. We investigated the melting phenomenon of the base metal and filler wire, bead formation, and the effects of wire feed speed on melting characteristics. The melting mechanism in the base metal during the bead on a plate with wire feed was similar to that for the melt run without wire feed. We clarified the effects of wire feed speed on bead sizes and configurations. Furthermore, the butt welded joint welded using the optimum wire feed speed, and the joint tensile strengths were evaluated. The tensile strength of the square butt joint welded by the pulsed DC GHTA welding with wire feed in a vacuum is nearly equal to that of the same joint welded by conventional GTA (Gas Tungsten Arc) welding in air.

  1. Effects of welding technology on welding stress based on the finite element method

    NASA Astrophysics Data System (ADS)

    Fu, Jianke; Jin, Jun

    2017-01-01

    Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.

  2. Elastic And Plastic Deformations In Butt Welds

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Report presents study of mathematical modeling of stresses and strains, reaching beyond limits of elasticity, in bars and plates. Study oriented toward development of capability to predict stresses and resulting elastic and plastic strains in butt welds.

  3. Selection of optimal welding condition for GTA pulse welding in root-pass of V-groove butt joint

    NASA Astrophysics Data System (ADS)

    Yun, Seok-Chul; Kim, Jae-Woong

    2010-12-01

    In the manufacture of high-quality welds or pipeline, a full-penetration weld has to be made along the weld joint. Therefore, root-pass welding is very important, and its conditions have to be selected carefully. In this study, an experimental method for the selection of optimal welding conditions is proposed for gas tungsten arc (GTA) pulse welding in the root pass which is done along the V-grooved butt-weld joint. This method uses response surface analysis in which the width and height of back bead are chosen as quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, is used as the objective function to obtain the optimal welding conditions. In our experiments, the target values of back bead width and height are 4 mm and zero, respectively, for a V-grooved butt-weld joint of a 7-mm-thick steel plate. The optimal welding conditions could determine the back bead profile (bead width and height) as 4.012 mm and 0.02 mm. From a series of welding tests, it was revealed that a uniform and full-penetration weld bead can be obtained by adopting the optimal welding conditions determined according to the proposed method.

  4. Implementation of ASME Code, Section XI, Code Case N-770, on Alternative Examination Requirements for Class 1 Butt Welds Fabricated with Alloy 82/182

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Edmund J.; Anderson, Michael T.

    In May 2010, the NRC issued a proposed notice of rulemaking that includes a provision to add a new section to its rules to require licensees to implement ASME Code Case N-770, ‘‘Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material With or Without the Application of Listed Mitigation Activities, Section XI, Division 1,’’ with 15 conditions. Code Case N-770 contains baseline and inservice inspection (ISI) requirements for unmitigated butt welds fabricated with Alloy 82/182 material and preservice and ISI requirements for mitigatedmore » butt welds. The NRC stated that application of ASME Code Case N-770 is necessary because the inspections currently required by the ASME Code, Section XI, were not written to address stress corrosion cracking Alloy 82/182 butt welds, and the safety consequences of inadequate inspections can be significant. The NRC expects to issue the final rule incorporating this code case into its regulations in the spring 2011 time frame. This paper discusses the new examination requirements, the conditions that NRC is imposing , and the major concerns with implementation of the new Code Case.« less

  5. A Study on the compensation margin on butt welding joint of Large Steel plates during Shipbuilding construction.

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jeong, H.; Ji, M.; Jeong, K.; Yun, C.; Lee, J.; Chung, H.

    2015-09-01

    This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.

  6. Optimization of laser butt welding parameters with multiple performance characteristics

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.

    2011-04-01

    This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.

  7. Effect of stress concentration on the fatigue strength of A7N01S-T5 welded joints

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyue; Gou, Guoqing; Hang, Zongqiu; Chen, Hui

    2017-07-01

    Stress concentration is a key factor that affects the fatigue strength of welded joints. In this study, the fatigue strengths of butt joints with and without the weld reinforcement were tested to quantify the effect of stress concentration. The fatigue strength of the welded joints was measured with a high-frequency fatigue machine. The P-S-N curves were drawn under different confidence levels and failure probabilities. The results show that butt joints with the weld reinforcement have much lower fatigue strength than joints without the weld reinforcement. Therefore, stress concentration introduced by the weld reinforcement should be controlled.

  8. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    NASA Astrophysics Data System (ADS)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  9. Inspection of thick welded joints using laser-ultrasonic SAFT.

    PubMed

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding

    PubMed Central

    Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo

    2017-01-01

    For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components. PMID:28492481

  11. A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo

    2017-05-11

    For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components.

  12. Weld geometry strength effect in 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.

    1981-01-01

    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

  13. 77 FR 18266 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-865-867 (Second Review)] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised Schedule for the Subject Reviews AGENCY: United States International Trade Commission. ACTION: Notice. DATES: Effective Date: March...

  14. 76 FR 4633 - Carbon Steel Butt-Weld Pipe Fittings From the People's Republic of China: Notice of Court...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-814] Carbon Steel Butt-Weld Pipe..., International Trade Administration, Department of Commerce. SUMMARY: On January 6, 2011, the United States Court of International Trade (``CIT'') sustained the Department of Commerce's (``the Department'') results...

  15. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    NASA Astrophysics Data System (ADS)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  16. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  17. 76 FR 19788 - Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ...)] Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand Determinations On... fittings from Brazil, China, Japan, Taiwan, and Thailand would be likely to lead to continuation or... Pipe Fittings from Brazil, China, Japan, Taiwan, and Thailand: Investigation Nos. 731-TA-308-310 and...

  18. 76 FR 5205 - Carbon Steel Butt-Weld Pipe Fittings from Brazil, China, Japan, Taiwan, and Thailand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ...)] Carbon Steel Butt-Weld Pipe Fittings from Brazil, China, Japan, Taiwan, and Thailand AGENCY: United... Thailand. SUMMARY: The Commission hereby gives notice of the scheduling of expedited reviews pursuant to..., Taiwan, and Thailand would be likely to lead to continuation or recurrence of material injury within a...

  19. Effects of Post-Weld Heat Treatment on the Microstructure and Toughness of Flash Butt Welded High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Shajan, Nikhil; Arora, Kanwer Singh; Asati, Brajesh; Sharma, Vikram; Shome, Mahadev

    2018-04-01

    Effect of post-weld heat treatment on the weld microstructure, texture, and its correlation to the toughness of flash butt welded joints were investigated. Upon flash butt welding, the α and γ-fiber in the parent material converted to Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] textures along the fracture plane. Formation of these detrimental texture components was a result of shear deformation and recrystallization of austenite at temperatures above T nr resulting in a drop of toughness at the weld zone. Inter-critical and sub-critical annealing cycles proved to be less effective in reducing the Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] texture components, and therefore, toughness values remained unaffected. Post-weld heat treatment in the austenite phase field at 1000 °C for 5 seconds resulted in the formation of new grains with different orientations leading to a reduction in the texture intensities of both Goss and rotated Goss components and therefore improved weld zone toughness. Prolonged annealing time was found to be ineffective in improving the toughness due to grain growth.

  20. The microstructure of aluminum A5083 butt joint by friction stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the platemore » form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.« less

  1. Numerical analysis of the heat transfer and fluid flow in the butt-fusion welding process

    NASA Astrophysics Data System (ADS)

    Yoo, Jae Hyun; Choi, Sunwoong; Nam, Jaewook; Ahn, Kyung Hyun; Oh, Ju Seok

    2017-02-01

    Butt-fusion welding is an effective process for welding polymeric pipes. The process can be simplified into two stages. In heat soak stage, the pipe is heated using a hot plate contacted with one end of the pipe. In jointing stage, a pair of heated pipes is compressed against one another so that the melt regions become welded. In previous works, the jointing stage that is highly related to the welding quality was neglected. However, in this study, a finite element simulation is conducted including the jointing stage. The heat and momentum transfer are considered altogether. A new numerical scheme to describe the melt flow and pipe deformation for the butt-fusion welding process is introduced. High density polyethylene (HDPE) is used for the material. Flow via thermal expansion of the heat soak stage, and squeezing and fountain flow of the jointing stage are well reproduced. It is also observed that curling beads are formed and encounter the pipe body. The unique contribution of this study is its capability of directly observing the flow behaviors that occur during the jointing stage and relating them to welding quality.

  2. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding

    NASA Astrophysics Data System (ADS)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  3. An inelastic analysis of a welded aluminum joint

    NASA Astrophysics Data System (ADS)

    Vaughan, Robert E.; Schonberg, William P.

    1995-02-01

    Butt weld joints are most commonly designed into pressure vessels by using weld material properties that are determined from a tensile test. These properties are provided to the stress analyst in the form of a stress vs strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of multiple pass aluminum 2219-T87 butt welds. The weld specimens are analyzed using classical plasticity theory to provide a basis for modeling the inelastic properties in a finite element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of currently available numerical prediction methods.

  4. Experimental characterization of fatigue strength in butt welded joint considering the geometry and the effect of cooling rate of the weld

    NASA Astrophysics Data System (ADS)

    Arzola, Nelson; Hernández, Edgar

    2017-05-01

    In this work the experimental characterization of fatigue strength in butt welded joints considering the geometry and the post-weld cooling cycle was performed. ASTM A-36 structural steel was used as the base metal for the shielded metal arc welding process, with welding electrode E6013. Two experimental factors were established: weld bead geometry and the post-weld cooling rate. Two levels for each factor, the welding reinforcement (1 and 3 mm), and the rate of cooling, slow (quiet air) and fast (immersion in water) are evaluated respectively. For the uniaxial fatigue tests, 8 samples were selected for each treatment for a total of 32 specimens. The mechanical and fractomechanical properties of fusion zone, heat affected zone and base metal in relation to the analysis of failure mechanisms were analysed. The fatigue crack growth rates were estimated based on the counting of microstrations. Furthermore, experimental tests, such as uniaxial tension, microindentation hardness, Charpy impact and metallographic analysis, were made to know the influence of the experimental factors in the fatigue strength. On this research, about the 78.13% of the samples obtained a resistance higher than the recommended one by class FAT 100. The results showed that the geometry of the joint is the factor of greatest influence on fatigue strength for butt welded joints; the greater the weld reinforcement the lower the fatigue strength of the joint. Although it is also important to consider other geometric factors of less impact as it is the weld toe radius and the welding chord width.

  5. Quasi-Rayleigh waves in butt-welded thick steel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less

  6. Fiber laser welding of nickel based superalloy Inconel 625

    NASA Astrophysics Data System (ADS)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  7. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    NASA Technical Reports Server (NTRS)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  8. Explosive Forming of Butt Welded Pipe Reducers.

    DTIC Science & Technology

    1979-04-01

    Ao—A 072 I3Q NAVAL ORDNANCE STATION LOUISVILLE KY F~ G 13/it EXPLOSIVE FORMING OF BIJTT WELDED PIPE REDUCERS. (U) APR 79 M W JO$*4SON UNCLASSIFIED...NOSL MT OS2 _ Eli _ _El [LII] DliB I I —~~~~~~~~~~ I 4 1 V S -. RB’ORT NO. M1052 AP~t 1919v-fl o~toswE FORMING (j~~c BUTI WELDED PIPE RE~~~ A PQWECT...MING BUTT WELDED PIPE REDUCERS A PROJECT OP THE MANUFACTURING TECHNOLOGY PROGR AM NAVAL SEA SYST~~(S COMMA ND fiNAL REPORT NAVAL ORDNANCE STATION L

  9. Features of residual stresses in duplex stainless steel butt welds

    NASA Astrophysics Data System (ADS)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  10. 76 FR 8345 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-351-602, A-588-602, A-583-605, A-549-807, A-570-814] Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People's Republic of China: Final Results of the Expedited Sunset Reviews of the Antidumping Duty Orders Correction In notice document 2011...

  11. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  12. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt welds...

  13. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  14. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt welds...

  15. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt welds...

  16. Studying heat-affected zone deformations of electric arc welding

    NASA Astrophysics Data System (ADS)

    Suleimanov, R. I.; Zainagalina, L. Z.; Khabibullin, M. Ya; Zaripova, L. M.; Kovalev, N. O.

    2018-03-01

    The paper studies the influence of the most common defects in permanent electric arc welds made during the welding butt joints in infield oil pipelines, onto the strength characteristics of the welded pipe material around the heat-affected zone. A specimen of a butt weld with an obvious defect was used as a subject of the study. The changes in the geometric parameters of the weld were measured with the standard means; Rockwell hardness in the heat-affected zone was determined in certain areas with justification for the weld process modes. The cause of softening was found to be an increased width of the hot spot on the one side of the weld, where an enlarged crystalline structure appears as a result of the pipe material recrystallization under the influence of heat. Changes in the geometry of the thermal action area are determined by accumulation of molten filler on the one side of the weld when the welding rate is decreased. Some recommendations are given to prevent destruction of the welded structures and appearance of emergencies in infield oil pipelines.

  17. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    NASA Astrophysics Data System (ADS)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  18. Acoustic-Emission Weld-Penetration Monitor

    NASA Technical Reports Server (NTRS)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  19. Technology of welding aluminum alloys-I

    NASA Technical Reports Server (NTRS)

    Harrison, J. R.; Korb, L. J.; Oleksiak, C. E.

    1978-01-01

    Systems approach to high-quality aluminum welding uses square-butt joints, kept away from sharp contour changes. Intersecting welds are configured for T-type intersections rather than crossovers. Differences in panel thickness are accommodated with transition step areas where thickness increases or decreases within weld, but never at intersection.

  20. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding

    NASA Astrophysics Data System (ADS)

    Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.

    2017-12-01

    Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.

  1. A Precise Visual Method for Narrow Butt Detection in Specular Reflection Workpiece Welding

    PubMed Central

    Zeng, Jinle; Chang, Baohua; Du, Dong; Hong, Yuxiang; Chang, Shuhe; Zou, Yirong

    2016-01-01

    During the complex path workpiece welding, it is important to keep the welding torch aligned with the groove center using a visual seam detection method, so that the deviation between the torch and the groove can be corrected automatically. However, when detecting the narrow butt of a specular reflection workpiece, the existing methods may fail because of the extremely small groove width and the poor imaging quality. This paper proposes a novel detection method to solve these issues. We design a uniform surface light source to get high signal-to-noise ratio images against the specular reflection effect, and a double-line laser light source is used to obtain the workpiece surface equation relative to the torch. Two light sources are switched on alternately and the camera is synchronized to capture images when each light is on; then the position and pose between the torch and the groove can be obtained nearly at the same time. Experimental results show that our method can detect the groove effectively and efficiently during the welding process. The image resolution is 12.5 μm and the processing time is less than 10 ms per frame. This indicates our method can be applied to real-time narrow butt detection during high-speed welding process. PMID:27649173

  2. A Precise Visual Method for Narrow Butt Detection in Specular Reflection Workpiece Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Hong, Yuxiang; Chang, Shuhe; Zou, Yirong

    2016-09-13

    During the complex path workpiece welding, it is important to keep the welding torch aligned with the groove center using a visual seam detection method, so that the deviation between the torch and the groove can be corrected automatically. However, when detecting the narrow butt of a specular reflection workpiece, the existing methods may fail because of the extremely small groove width and the poor imaging quality. This paper proposes a novel detection method to solve these issues. We design a uniform surface light source to get high signal-to-noise ratio images against the specular reflection effect, and a double-line laser light source is used to obtain the workpiece surface equation relative to the torch. Two light sources are switched on alternately and the camera is synchronized to capture images when each light is on; then the position and pose between the torch and the groove can be obtained nearly at the same time. Experimental results show that our method can detect the groove effectively and efficiently during the welding process. The image resolution is 12.5 μm and the processing time is less than 10 ms per frame. This indicates our method can be applied to real-time narrow butt detection during high-speed welding process.

  3. Prediction and Verification of Ductile Crack Growth from Simulated Defects in Strength Overmatched Butt Welds

    NASA Technical Reports Server (NTRS)

    Nishioka, Owen S.

    1997-01-01

    Defects that develop in welds during the fabrication process are frequently manifested as embedded flaws from lack of fusion or lack of penetration. Fracture analyses of welded structures must be able to assess the effect of such defects on the structural integrity of weldments; however, the transferability of R-curves measured in laboratory specimens to defective structural welds has not been fully examined. In the current study, the fracture behavior of an overmatched butt weld containing a simulated buried, lack-of-penetration defect is studied. A specimen designed to simulate pressure vessel butt welds is considered; namely, a center crack panel specimen, of 1.25 inch by 1.25 inch cross section, loaded in tension. The stress-relieved double-V weld has a yield strength 50% higher than that of the plate material, and displays upper shelf fracture behavior at room temperature. Specimens are precracked, loaded monotonically while load-CMOD measurements are made, then stopped and heat tinted to mark the extent of ductile crack growth. These measurements are compared to predictions made using finite element analysis of the specimens using the fracture mechanics code Warp3D, which models void growth using the Gurson-Tvergaard dilitant plasticity formulation within fixed sized computational cells ahead of the crack front. Calibrating data for the finite element analyses, namely cell size and initial material porosities are obtained by matching computational predictions to experimental results from tests of welded compact tension specimens. The R-curves measured in compact tension specimens are compared to those obtained from multi-specimen weld tests, and conclusions as to the transferability of R-curves is discussed.

  4. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  5. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...

  6. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...

  7. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...

  8. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Pattee, F. M.; Masubuchi, K.

    1974-01-01

    Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.

  9. 49 CFR 192.113 - Longitudinal joint factor (E) for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... class Longitudinal joint factor (E) ASTM A 53/A53M Seamless 1.00 Electric resistance welded 1.00 Furnace butt welded .60 ASTM A 106 Seamless 1.00 ASTM A 333/A 333M Seamless 1.00 Electric resistance welded 1.00 ASTM A 381 Double submerged arc welded 1.00 ASTM A 671 Electric-fusion-welded 1.00 ASTM A 672...

  10. 49 CFR 195.106 - Internal design pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temperature higher than 900 °F (482 °C) for any period of time or over 600 °F (316 °C) for more than 1 hour... 1.00 Electric resistance welded 1.00 Furnace lap welded 0.80 Furnace butt welded 0.60 ASTM A106... 1.00 API 5L Seamless 1.00 Electric resistance welded 1.00 Electric flash welded 1.00 Submerged arc...

  11. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    NASA Astrophysics Data System (ADS)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  12. The Effect of Tool Profiles on Mechanical Properties of Friction Stir Welded Al5052 T-Joints.

    PubMed

    Kim, Byeong-Jin; Bang, Hee-Seon; Bang, Han-Sur

    2018-03-01

    Al5052 T butt joints with two skins (5 mm) and one stringer (3 mm) has been successfully welded by friction stir welding (FSW). Notably, this paper has been investigated the effect of tool shape on welded formation mechanism and mechanical properties. The used shapes of tool pin are two types which are cylinder (type 1) and frustum (type 2). Dimension on two types of tool pin shape is respectively pin length of 4.7 mm and pin diameter of frustum type of top (5 mm) and bottom (3 mm). The results of experiment show that inner defects in FSWed T-joints increase significantly in accordance with traverse speed. The maximum tensile strength of welded joint fabricated using type 1 is equivalent to 85% that of the base metal, which is approximately 10% higher than that of type 2. Because welded joint of type 1 has more smoothly plastic flow in comparison with type 2. Consequently, the results show that type 1 is better appropriate for friction stir welded Al5052 T butt joints than type 2.

  13. Diffusion welding of MA 6000 and a conventional nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Glasgow, T. K.

    1985-01-01

    A feasibility study of diffusion welding the oxide dispersion strengthened (ODS) alloy MA 6000 to itself and to conventional Ni-base superalloy Udimet 700 was conducted. Butt joints between MA 6000 pieces and lap joints between Udimet 700 and the ODS alloy were produced by hot pressing for 1.25 hr at temperatures ranging from 1000 to 1200 C (1832-2192 F) in vacuum. Following pressing, all weldments were heat treated and machined into mechanical property test specimens. While three different combinations of recrystallized and unrecrystallized MA 6000 butt joints were produced, the unrecrystallized to unrecrystallized joint was most successful as determined by mechanical properties and microstructural examination. Failure to weld the recrystallized material probably related to a lack of adequate deformation at the weld interface. While recrystallized MA 6000 could be diffusion welded to Udimet 700 in places, complete welding over the entire lap joint was not achieved, again due to the lack of sufficient deformation at the faying surfaces. Several methods are proposed to promote the intimate contact necessary for diffusion welding MA 6000 to itself and to superalloys.

  14. An inelastic analysis of a welded aluminum joint

    NASA Astrophysics Data System (ADS)

    Vaughan, R. E.

    1994-09-01

    Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.

  15. An inelastic analysis of a welded aluminum joint

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    1994-01-01

    Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.

  16. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  17. Inspection tool for butt-welded tubing

    NASA Technical Reports Server (NTRS)

    Horman, D. P.

    1977-01-01

    Inspection tool for tubing consists of metal casing housing elastic collar. Collar is clamped around weld site under test. Leakage through weld is contained within chamber and is bled to detector via tubing attached to fitting. Tool, originally designed to detect fluid leakage in tubing, can be used to detect gas leaks.

  18. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    NASA Astrophysics Data System (ADS)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  19. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lévesque, D.; Rousseau, G.; Monchalin, J.-P.

    2014-02-18

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated thatmore » the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.« less

  20. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Rousseau, G.; Wanjara, P.; Cao, X.; Monchalin, J.-P.

    2014-02-01

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.

  1. A Study on the Saving Method of Plate Jigs in Hull Block Butt Welding

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Eun

    2017-11-01

    A large amount of plate jigs is used for alignment of welding line and control of welding deformations in hull block assembly stage. Besides material cost, the huge working man-hours required for working process of plate jigs is one of the obstacles in productivity growth of shipyard. In this study, analysis method was proposed to simulate the welding deformations of block butt joint with plate jigs setting. Using the proposed analysis method, an example simulation was performed for actual panel block joint to investigate the saving method of plate jigs. Results show that it is possible to achieve two objectives of quality accuracy of the hull block and saving the plate jig usage at the same time by deploying the plate jigs at the right places. And the proposed analysis method can be used in establishing guidelines for the proper use of plate jigs in block assembly stage.

  2. 1001619

    NASA Image and Video Library

    2010-09-15

    SAMUEL SMITH (WELD TECHNICIAN, JACOBS ESTS GROUP/ALL POINTS) AND ANDRÉ PASEUR (WELD TECHNICIAN, JACOBS ESTS GROUP/ERC) DISPLAY TWO PROCESS DEMONSTRATION ARTICLES – A 9-FOOT BUTT WELD (FOREGROUND) AND A HEXAGON FABRICATED FROM FRICTION STIR WELDED PLATES (BACKGROUND) – THAT WERE FABRICATED FROM 6AL-4V TITANIUM (ELI) USING THERMAL STIR WELDING. THIS WORK WAS PERFORMED FOR A NASA TECHNOLOGY TRANSFER INDUSTRIAL PARTNER (KEYSTONE SYNERGETIC ENTERPRISES, INC.) IN SUPPORT OF A PROJECT FOR THE U.S. NAVY

  3. Dredge Mooring Study Recommended Design, Phase 2 Report

    DTIC Science & Technology

    1992-05-01

    processes are acceptable under this Specification: a. Shielded Metal Arc Welding (SMAW). b. Gas Tungsten-Arc Welding ( GTAW or TIG). c. Gas Metal-Arc...the GTAW process. 11.3.9.3 For welding of stainless steel pipe, the GTAW process shall be used on the root pass of open butt joints welded from one...whichever is greater, from each edge of the weld (t = wall thickness of the thickest part being welded). 11.3.11.5 Postweld heat treatment for chromium

  4. An elastic-plastic fracture mechanics analysis of weld-toe surface cracks in fillet welded T-butt joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, B.

    1994-12-31

    This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less

  5. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus ofmore » heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.« less

  6. Finite element modeling of residual stresses in electroslag butt welds

    DOT National Transportation Integrated Search

    2000-03-01

    Shop fabricated electroslag (ES) welds used in bridge construction have had a history of low toughness in the fusion and heat affected zones. In addition, conventional inspection of ES weldments under shop fabrication conditions fail to consistently ...

  7. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process

    PubMed Central

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-01-01

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation. PMID:28793708

  8. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    PubMed

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  9. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.

    PubMed

    Araque, Oscar; Arzola, Nelson; Hernández, Edgar

    2018-04-12

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.

  10. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading

    PubMed Central

    Arzola, Nelson; Hernández, Edgar

    2018-01-01

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe. PMID:29649117

  11. Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase I)

    DOT National Transportation Integrated Search

    2014-10-01

    Phase I of this research effort involved a review of the current state of the art of weld inspection using PAUT, development of the preliminary technical approach to inspecting CJP butt welds with and without transitions, fabrication of suitable test...

  12. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    DTIC Science & Technology

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  13. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.

    2013-05-01

    A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.

  14. Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Baruah, M.; Bag, S.

    2016-11-01

    The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.

  15. Optimization of Grade 100 High-Performance Steel Butt Welds [Tech Brief

    DOT National Transportation Integrated Search

    2013-11-01

    In the development of the high performance steels (HPS) grades, three advisory groups were formed to oversee and guide the development of the steels in terms of their design, welding, and corrosion aspects. One of the aspects considered by the Weldin...

  16. Non Destructive Test Dye Penetrant and Ultrasonic on Welding SMAW Butt Joint with Acceptance Criteria ASME Standard

    NASA Astrophysics Data System (ADS)

    Endramawan, T.; Sifa, A.

    2018-02-01

    The purpose of this research is to know the type of discontinuity of SMAW welding result and to determine acceptance criteria based on American Society of Mechanical Engineer (ASME) standard. Material used is mild steel 98,71% Fe and 0,212% C with hardness 230 VHN with specimen diameter 20 cm and thickness 1.2 cm which is welded use SMAW butt joint with electrode for rooting LB 52U diameter 2.6 mm, current 70 Ampere and voltage 380 volt, filler used LB 5218 electrode diameter 3.2 mm with current 80 Ampere and 380 volt. The method used to analyze the welded with non destructive test dye penetrant (PT) method to see indication on the surface of the object and Ultrasonic (UT) to see indication on the sub and inner the surface of the object, the result is discontinuity recorded and analyzed and then the discontinuity is determine acceptance criteria based on the American Society of Mechanical Engineer (ASME) standards. The result show the discontinuity of porosity on the surface of the welded and inclusion on sub material used ultrasonic test, all indication on dye penetrant or ultrasonic test if there were rejected of result of welded that there must be gouging on part which rejected and then re-welding.

  17. Tensile strength of simulated and welded butt joints in W-Cu composite sheet

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Watson, Gordon K.

    1994-01-01

    The weldability of W-Cu composite sheet was investigated using simulated and welded joints. The welded joints were produced in a vacuum hot press. Tensile test results showed that simulated joints can provide strength and failure mode data which can be used in joint design for actual weldments. Although all of the welded joints had flaws, a number of these joints were as strong as the W-Cu composite base material.

  18. ManTech Implementing a Strategy to Deliver Weapon Systems Affordability

    DTIC Science & Technology

    2010-11-01

    Tile 2007 – Translational Friction Stir Welding 2006 – Uncooled Focal Plane Array Producibility 2006 – Engine Rotor Life Extension 2005...compelling ideas will continue to help drive our Department’s innovative engine and ensure our Nation maintains its competitive edge on the...Sheets Composite Vertical Stabilizer Apache AH-64 NAVY The Challenge: Butt welding exterior ship panels produces a weld protrusion that exceeds the

  19. Definition of the Mathematical Model Coefficients on the Weld Size of Butt Joint Without Edge Preparation

    NASA Astrophysics Data System (ADS)

    Sidorov, Vladimir P.; Melzitdinova, Anna V.

    2017-10-01

    This paper represents the definition methods for thermal constants according to the data of the weld width under the normal-circular heat source. The method is based on isoline contouring of “effective power - temperature conductivity coefficient”. The definition of coefficients provides setting requirements to the precision of welding parameters support with the enough accuracy for an engineering practice.

  20. Socket welds in nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, P.A.; Torres, L.L.

    1995-12-31

    Socket welds are easier and faster to make than are butt welds. However, they are often not used in nuclear facilities because the crevices between the pipes and the socket sleeves may be subject to crevice corrosion. If socket welds can be qualified for wider use in facilities that process nuclear materials, the radiation exposures to welders can be significantly reduced. The current tests at the Idaho Chemical Processing Plant (ICPP) are designed to determine if socket welds can be qualified for use in the waste processing system at a nuclear fuel processing plant.

  1. Feasibility evaluations for the integration of laser butt welding of tubes in industrial pipe coil production lines

    NASA Astrophysics Data System (ADS)

    Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro

    1994-09-01

    Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is given to this problem and this is one of the causes of uncertainty when investments in a laser are planned. In most cases a source is devoted to a single application, even if effective working time is really low due to laser fast processing. Therefore potential benefits are substantially reduced to a minimum amount of what can be expected by this flexible technology.

  2. 46 CFR 56.20-7 - Ends.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ends. 56.20-7 Section 56.20-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Valves § 56.20-7 Ends. (a) Valves may be used with flanged, threaded, butt welding, socket welding or other ends...

  3. 46 CFR 56.20-7 - Ends.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Ends. 56.20-7 Section 56.20-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Valves § 56.20-7 Ends. (a) Valves may be used with flanged, threaded, butt welding, socket welding or other ends...

  4. 46 CFR 56.20-7 - Ends.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Ends. 56.20-7 Section 56.20-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Valves § 56.20-7 Ends. (a) Valves may be used with flanged, threaded, butt welding, socket welding or other ends...

  5. 46 CFR 56.20-7 - Ends.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Ends. 56.20-7 Section 56.20-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Valves § 56.20-7 Ends. (a) Valves may be used with flanged, threaded, butt welding, socket welding or other ends...

  6. 46 CFR 56.20-7 - Ends.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Ends. 56.20-7 Section 56.20-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Valves § 56.20-7 Ends. (a) Valves may be used with flanged, threaded, butt welding, socket welding or other ends...

  7. Nickel aluminide-copper backing for butt joint welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, S.; Muszynski, M.; Chin, B.A.

    1996-12-31

    Single-side full penetration welding is the primary welding process in shipbuilding. This process requires the use of a backing to support the molten metal. Conventionally, copper has been used as the backing material in the shop and ceramic tiles for jobs on the field. However, copper has shown to contaminate the weld and produce adverse effects and ceramics have shown to produce porosities in the weld. A new backing with an intermetallic layer (NiAl) on the copper surface has been fabricated. The results indicate that this backing could alleviate the contamination problems and produce quality welds.

  8. Friction-Stir Welding and Mathematical Modeling

    NASA Technical Reports Server (NTRS)

    Rostant, Victor D.

    1999-01-01

    The friction-stir welding process is a remarkable way for making butt and lap joints in aluminum alloys. This process operates by passing a rotating tool between two closely butted plates. Through this process it generates a lot of heat and heated material is stirred from both sides of the plates in which the outcome will one high quality weld. My research has been done to study the FSW through mathematical modeling, and using modeling to better understand what take place during the friction-stir weld.

  9. Laser welding of polypropylene using two different sources

    NASA Astrophysics Data System (ADS)

    Mandolfino, Chiara; Brabazon, Dermot; McCarthy, Éanna; Lertora, Enrico; Gambaro, Carla; Ahad, Inam Ul

    2017-10-01

    In this paper, laser weldability of neutral polypropylene has been investigated using fibre and carbon dioxide lasers. A design of experiment (DoE) was conducted in order to establish the influence of the main working parameters on the welding strength of the two types of laser. The welded samples were characterized by carrying out visual and microscopic inspection for the welding morphology and cross-section, and by distinguishing the tensile strength. The resulting weld quality was investigated by means of optical microscopy at weld cross-sections. The tensile strength of butt-welded materials was measured and compared to that of a corresponding bulk material.

  10. 46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-10 (b), Method 8. Welding neck flanges may be used on any piping provided the flanges are butt-welded..., refer to 46 CFR 56.30-5(b) for requirements. (9) Figure 56.30-10 (b), Method 9. Welding neck flanges may.... ER16DE08.002 Note to Fig. 56.30-10(b): “T” is the nominal pipe wall thickness used. Consult the text of...

  11. Welding of Aluminum Alloys to Steels: An Overview

    DTIC Science & Technology

    2013-08-01

    and deformations are a few examples of the unwanted consequences which somehow would lead to brittle fracture, fatigue fracture, shape instability...was made under the copper tips of the spot welding machine. The fatigue results showed higher fatigue strength of the joints with transition layer...kHz ultrasonic butt welding system with a vibration source applying eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction

  12. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network.

    PubMed

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-11-10

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  13. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint

    NASA Astrophysics Data System (ADS)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue

    2017-04-01

    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  14. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  15. Hot press and roll welding of titanium-6-percent-aluminum-4-percent-vanadium bar and sheet with auto-vacuum cleaning

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1972-01-01

    Hot press butt welds were made in 0.5 in. diameter bar, and roll lap welds were made in 0.060 in. thick sheet of Ti-6A1-4V. For hot press welds made after auto-vacuum cleaning at 1800 F for 2 hours, weld strength and ductility equaled the parent metal properties. Only 5 minutes of pressing time were needed at 1800 F and 200 psi to make the hot press welds. Roll welds were made in sheet at 1750 F with only 10 percent deformation. The welds in the bar and sheet were metallurgically indistinguishable from the parent material.

  16. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA

    NASA Astrophysics Data System (ADS)

    Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu

    2015-04-01

    The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.

  17. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  18. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel: A Computational Investigation

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2014-09-01

    In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.

  19. High power laser welding of thick steel plates in a horizontal butt joint configuration

    NASA Astrophysics Data System (ADS)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  20. Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola

    2016-04-01

    In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.

  1. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  2. Weld repair method for aluminum lithium seam

    NASA Technical Reports Server (NTRS)

    McGee, William Floyd (Inventor); Rybicki, Daniel John (Inventor)

    1998-01-01

    Aluminum-lithium plates are butt-welded by juxtaposing the plates and making a preliminary weld from the rear or root side of the seam. An initial weld is then made from the face side of the seam, which may cause a defect in the root portion. A full-size X-ray is made and overlain over the seam to identify the defects. The defect is removed from the root side, and rewelded. Material is then removed from the face side, and the cavity is rewelded. The procedure repeats, alternating from the root side to the face side, until the weld is sound.

  3. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere

    NASA Astrophysics Data System (ADS)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.

    2017-01-01

    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  4. Study of the joining of polycarbonate panels in butt joint configuration through friction stir welding

    NASA Astrophysics Data System (ADS)

    Astarita, Antonello; Boccarusso, Luca; Carrino, Luigi; Durante, Massimo; Minutolo, Fabrizio Memola Capece; Squillace, Antonino

    2018-05-01

    Polycarbonate sheets, 3 mm thick, were successfully friction stir welded in butt joint configuration. Aiming to study the feasibility of the process and the influence of the process parameters joints under different processing conditions, obtained by varying the tool rotational speed and the tool travel speed, were realized. Tensile tests were carried out to characterize the joints. Moreover the forces arising during the process were recorded and carefully studied. The experimental outcomes proved the feasibility of the process when the process parameters are properly set, joints retaining more than 70% of the UTS of the base material were produced. The trend of the forces was described and explained, the influence of the process parameters was also introduced.

  5. 77. ARAII. Room at northeast corner of ARA606 used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. ARA-II. Room at northeast corner of ARA-606 used for welding training and welding procedure qualification and performance testing. This was only building in use at ARA-II by 1983. Date: 1983. Ineel photo no. 83-476-3-5. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  6. 138. ARAII Building ARA606 floor plan for remodel as Inel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    138. ARA-II Building ARA-606 floor plan for remodel as Inel Welding Laboratory. Shows room divisions and welding stations to be installed. Aerojet Nuclear Company 1375-ARA-II-606-E-2. Date: June 1976. Ineel index code no. 070-0606-10-400-156552. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  7. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    PubMed Central

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-01-01

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration. PMID:28774035

  8. Influence of groove size and reinforcements addition on mechanical properties and microstructure of friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Reddy Baridula, Ravinder; Ibrahim, Abdullah Bin; Yahya, Che Ku Mohammad Faizal Bin Che Ku; Kulkarni, Ratnakar; Varma Ramaraju, Ramgopal

    2018-03-01

    The butt joints fabricated by friction stir welding were found to have more strength than the joints obtained by conventional joining process. The important outcome of this process is the successful fabrication of surface composites with improved properties. Thus in order to further enhance the strength of the dissimilar alloy joints the reinforcements can be deposited in to the aluminium matrix during the process of friction stir welding. In the present study the multi-walled carbon nanotubes were embedded in to the groove by varying the width during joining of dissimilar alloys AA2024 and AA7075. Four widths were selected with constant depth and optimum process parameters were selected to fabricate the sound welded joints. The results show that the mechanical properties of the fabricated butt joints were influenced by the size of the groove, due to variation in the deposition of reinforcement in the stir zone. The microstructural study and identification of the elements of the welded joints show that the reinforcements deposition is influenced by the size of the groove. It has also been observed that the groove with minimum width is more effective than higher width. The mechanical properties are found to be improved due to the pinning of grain boundaries.

  9. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  10. A Bottom-Up Optimization Approach for Friction Stir Welding Parameters of Dissimilar AA2024-T351 and AA7075-T651 Alloys

    NASA Astrophysics Data System (ADS)

    Anil Kumar, K. S.; Murigendrappa, S. M.; Kumar, Hemantha

    2017-07-01

    In the present study, optimum friction stir weld parameters such as plunge depth, tool rotation speed and traverse speed for butt weld of dissimilar aluminum alloy plates, typically 2024-T351 and 7075-T651, are investigated using a bottom-up approach. In the approach, optimum FSW parameters are achieved by varying any one parameter for every trial while remaining parameters are kept constant. The specimens are extracted from the friction stir-welded plates for studying the tensile, hardness and microstructure properties. Optimum friction stir weld individual parameters are selected based on the highest ultimate tensile strength of the friction stir-welded butt joint specimens produced by varying in each case one parameter and keeping the other two constant. The microstructure samples were investigated for presence of defects, grain refinement at the weld nugget (WN), bonding between the two materials and interface of WN, TMAZ (thermomechanically affected zone) of both advancing and retreating sides of the dissimilar joints using optical microscopy and scanning electron microscopy analyses. In the experimental investigations, the optimum FSW parameters such as plunge depth, 6.2 mm, rotation speed, 650 rpm and traverse speed of 150 mm/min result in ultimate tensile strength, 435 MPa, yield strength, 290 MPa, weld joint efficiency, 92% and maximum elongation, 13%. The microstructure of optimized sample in the WN region revealed alternate lamellae material flow pattern with better metallurgical properties, defect free and very fine equiaxed grain size of about 3-5 µm.

  11. Diode laser welding of polypropylene: investigations of the microstructures in the welded seam

    NASA Astrophysics Data System (ADS)

    Abed, S.; Laurens, Patricia; Carretero, C.; Deschamps, J. R.; Duval, C.

    2003-03-01

    Laser welding of thermoplastic polymers is a non-contact process especially efficient for joining thermoplastic polymers. This innovative technology is already used for industrial series production in different sectors (automobile, packaging,...). The majority of the basic research concerns the weld strength depending on polymer nature, optical properties, butt design and process parameters. Nevertheless, a lack of knowledge concerning the influence of thermal history of the weld seam on morphology of semicrystalline polymer still exists, when this parameter strongly influences the strength of the weld. Actual results of diode laser transmission welding (LTW) experiments on polypropylene, a semicrystalline polymer widely used in industry, could contribute to a better understanding of the process itself and to success in practical applications.

  12. Effect of Trailing Intensive Cooling on Residual Stress and Welding Distortion of Friction Stir Welded 2060 Al-Li Alloy

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Yang, Zhanpeng; Wen, Quan; Yue, Yumei; Zhang, Liguo

    2018-04-01

    Trailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.

  13. Aluminum U-groove weld enhancement based on experimental stress analyses

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1995-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures because of their sealing and assembly integrity and general elastic performance; their inelastic mechanics are generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the tab thickness between the grooves produce severe peaking, which induces bending moment under uniaxial loading. The filler strain hardening decreased with increasing filler pass sequence. These combined effects reduce the weld strength, and a depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve the welding process results over the current normal weld schedule.

  14. The Theory of Distributed Practice as Related to Acquisition of Psychomotor Skills by Adolescents in a Selected Curricular Field.

    ERIC Educational Resources Information Center

    Drake, James Bob

    1981-01-01

    From results on the tensile strength and nick-break average jury evaluations test, it was concluded that with the same total practice time, different distributions of welding practice time intervals (15, 30, and 45 minutes) influence the quality of butt welds made by ninth-grade vocational agriculture students. (Author/SJL)

  15. Plate and butt-weld stresses beyond elastic limit, material and structural modeling

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1991-01-01

    Ultimate safety factors of high performance structures depend on stress behavior beyond the elastic limit, a region not too well understood. An analytical modeling approach was developed to gain fundamental insights into inelastic responses of simple structural elements. Nonlinear material properties were expressed in engineering stresses and strains variables and combined with strength of material stress and strain equations similar to numerical piece-wise linear method. Integrations are continuous which allows for more detailed solutions. Included with interesting results are the classical combined axial tension and bending load model and the strain gauge conversion to stress beyond the elastic limit. Material discontinuity stress factors in butt-welds were derived. This is a working-type document with analytical methods and results applicable to all industries of high reliability structures.

  16. Global and Local Mechanical Properties of Autogenously Laser Welded Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cao, Xinjin; Kabir, Abu Syed H.; Wanjara, Priti; Gholipour, Javad; Birur, Anand; Cuddy, Jonathan; Medraj, Mamoun

    2014-03-01

    Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.

  17. U-Groove aluminum weld strength improvement

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1996-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe peaking, which induces bending under uniaxial loading. The filler strain-hardening decreased with increasing filler pass sequence, producing the weakest welds on the last pass side. Current welding schedules unknowingly compound these effects which reduce the weld strength. A depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve depeaking in the welding process. The intent is to combine the strongest weld pass side with the peaking induced bending tension to provide a more uniform stress and stronger weld under axial tensile loading.

  18. Influence of PC-GTAW Parameters on the Microstructural and Mechanical Properties of Thin AISI 1008 Steel Joints

    NASA Astrophysics Data System (ADS)

    Kumar, Ravindra; Anant, Ramkishor; Ghosh, P. K.; Kumar, Ankit; Agrawal, B. P.

    2016-09-01

    Butt weld joints are prepared using pulse current gas tungsten arc welding out of thin sheets of AISI 1008 steel using various combinations of pulse parameters. During welding, the welding speed was kept high, but with the increase of welding speed the mean current was also increased to get the required weld joint at the constant heat input. The use of pulse current has led to improvement in mechanical and metallurgical properties of weld joints. It has resulted in less development of humping which is a common problem with high-speed welding. The undercut or dipped weld face is not observed severe. The tensile strength and hardness are enhanced by 12.5 and 12%. The increase of tensile strength and hardness is justified through TEM micrograph showing the presence of dislocation.

  19. Mechanical properties of friction stir welded butt joint of steel/aluminium alloys: effect of tool geometry

    NASA Astrophysics Data System (ADS)

    Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.

    2017-10-01

    This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.

  20. Exploratory study of friction welds in Udimet 700 and TD-Nickel bar

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1971-01-01

    Friction welded butt joints were made in both Udimet 700 and TD-Nickel bar. Also, dissimilar metal friction welds were made between these materials. Friction welding of Udimet 700 shows great promise because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. The weld line was not detectable metallographically in the heat treated condition. Friction welding for TD-Nickel, however, holds little if any promise. TD-Nickel friction weldments could support only 9 percent as much stress as the base metal for a 10-hour stress-rupture life at 1090 C. Dissimilar Udimet 700/TD-Nickel friction welds could sustain only 15 percent as much stress as the TD-Nickel parent metal for a 10-hour rupture life at 930 C.

  1. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    NASA Astrophysics Data System (ADS)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  2. Microstructure and Mechanical Properties of Laser Welded Titanium 6Al-4V

    NASA Astrophysics Data System (ADS)

    Mazumder, J.; Steen, W. M.

    1982-05-01

    Laser butt welds were fabricated in a titanium alloy (Ti-6A1-4V, AMS 4911-Tal0 BSS, annealed) using a Control Laser 2 kW CW CO2 laser. The relationships between the weld microstructure and mechanical properties are described and compared to the theoretical thermal history of the weld zone as calculated from a three-dimensional heat transfer model of the process. The structure of the weld zone was examined by radiography to detect any gross porosity as well as by both optical and electron microscopy in order to identify the microstructure. The oxygen pick-up during gas shielded laser welding was analyzed to correlate further with the observed mechanical properties. It was found that optimally fabricated laser welds have a very good combination of weld microstructure and mechanical properties, ranking this process as one which can produce high quality welds.

  3. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  4. Fiber laser welding of austenitic steel and commercially pure copper butt joint

    NASA Astrophysics Data System (ADS)

    Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.

    2017-03-01

    The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.

  5. Research on Wheel Steel Welding Cracks Caused by Quenching Stress

    NASA Astrophysics Data System (ADS)

    Guan-nan, Li

    Wheel steel products of Han Steel occurred welding cracking when using in a wheel factory, by analyzing the crack in the wheel steel weld cracking with microstructure analysis and spectrum analysis, test results showed the grain in heat affect zone serious grow, and the user at the end of the flash-butt quenched from a high temperature to room temperature at welding seam, larger cooling rate to generate sufficiently large quenching stress, increased the risk of cracking along the grain boundary. When the stress reaches a certain level, there will be a greater area of the grain cracks at the location of welding seam, eventually leading to weld cracking. We develop measures for improvement to solving this problem, we suggest that the cooling mode at welding seam should be slow cooling or air cooling after the rim welding process, welding current range is 7800 9500 amps, upsetting time is 0.2 seconds, these measures can improve the welding quality of wheel steel products and reduce the risk of welding cracks.

  6. Heavy-section welding with very high power laser beams: the challenge

    NASA Astrophysics Data System (ADS)

    Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.

    1997-08-01

    The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.

  7. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test formore » determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.« less

  8. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  9. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes

    NASA Astrophysics Data System (ADS)

    Daavari, Morteza; Vanini, Seyed Ali Sadough

    2015-09-01

    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  10. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  11. Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-welds

    DTIC Science & Technology

    2014-01-01

    expansion a 1/K 11e–6-12e–6 Specific heat C p J/kg K 440-520 Thermal conductivity k W/m K 35-50 Heat transfer coefficient h W/m2 K 45 Sink temperature...filler-metal consumable electrode to the weld; third, prediction of the temporal evolution and the spatial distribution of thermal and mechanical...the thermal The current issue and full text archive of this journal is available at www.emeraldinsight.com/1573-6105.htm Received 20 May 2013 Revised 13

  12. Shear strength of fillet welds in aluminum alloy 2219. [for use on the solid rocket motor and external tank

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1978-01-01

    Fillet size is discussed in terms of theoretical or design dimensions versus as-welded dimensions, drawing attention to the inherent conservatism in the design load sustaining capabilities of fillet welds. Emphasis is placed on components for the solid rocket motor, external tank, and other aerospace applications. Problems associated with inspection of fillet welds are addresses and a comparison is drawn between defect counts obtained by radiographic inspection and by visual examination of the fracture plane. Fillet weld quality is related linearly to ultimate shear strength. Correlation coefficients are obtained by simple straight line regression analysis between the variables of ultimate shear strength and accumulative discontinuity summation. Shear strength allowables are found to be equivalent to 57 percent of butt weld A allowables (F sub tu.)

  13. Evaluation of Training Samples Manually Welded With the Universal Handtool in a Space Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Malone, T. W.; Cato, S. N.

    2004-01-01

    The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated a 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples. This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.

  14. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  15. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  16. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study

    NASA Astrophysics Data System (ADS)

    Shanavas, S.; Raja Dhas, J. Edwin

    2017-10-01

    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  17. Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  18. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    NASA Astrophysics Data System (ADS)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-05-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  19. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    PubMed Central

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-01-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force. PMID:28788430

  20. Influence of the welding temperature and the welding speed on the mechanical properties of friction stir welds in EN AW-2219-T87

    NASA Astrophysics Data System (ADS)

    Bachmann, A.; Krutzlinger, M.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) is an innovative joining technique, which has proven to produce high quality joints in high strength aluminum alloys. Consequently, it is commonly used to manufacture lightweight aerospace structures with stringent requirements. For these structures, it is necessary to ensure a high ultimate tensile strength (UTS). Various studies have reported that the UTS is significantly influenced by the welding parameters. Samples welded with different parameter sets showed a considerably different UTS, despite being free from detectable welding defects (e.g. tunnel defect, voids, or lack of penetration). Based on the observations in the literature, a hypothesis was posed. The welding temperature along with the welding speed determine the UTS of the weld. This study aims to prove this hypothesis experimentally by using temperature-controlled FSW to join plates of EN AW-2219-T87 in butt joint configuration. The welded samples were examined using visual inspection, metallography, X-ray imaging, and uniaxial tensile tests. Finally, a statistical analysis was conducted. Hereby, the hypothesis was confirmed.

  1. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    NASA Astrophysics Data System (ADS)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-04-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  2. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    PubMed

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  3. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  4. Effect of Multiple Local Repairs on Microstructure and Mechanical Properties of T24 Steel Welded Joint

    NASA Astrophysics Data System (ADS)

    Chaus, Alexander S.; Kuhajdová, Andrea; Marônek, Milan; Dománková, Mária

    2018-05-01

    The effect of multiple local repairs on the microstructure and mechanical properties of the T24 steel welded joints was studied. T24 steel tubes were butt-welded by the GTAW method. Peripheral welded joints were made in four locations of the tube. In order to simulate the repair procedure, the welds were cut off from the root and the first local repair was performed. Other two local repairs were carried out in the same way. After each local repair, the microstructure and mechanical properties of the joints were evaluated. The results of the mechanical tests demonstrate that only two local repairs can be performed on the T24 steel peripheral welded joint. After the third local repair, impact energy of the welded joint was lower than required value, which is attributed to the coarser martensite and the coarser carbide precipitates formed in the heat-affected zone, compared with the weld metal.

  5. Multiple pass and multiple layer friction stir welding and material enhancement processes

    DOEpatents

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  6. U-Groove Aluminum Weld Strength Improvement

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1997-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. One is the source of peaking in which the extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe angular distortion that induces bending under uniaxial loading. The other is the filler strain hardening decreasing with increasing filler pass sequences, producing the weakest welds on the last weld pass side. Both phenomena are governed by weld pass sequences. Many industrial welding schedules unknowingly compound these effects, which reduce the weld strength. A depeaking index model was developed to select filler pass thickness, pass numbers, and sequences to improve depeaking in the welding process. The result was to select the number and sequence of weld passes to reverse the peaking angle such as to combine the strongest weld pass side with the peaking induced bending tension component side to provide a more uniform stress and stronger weld under axial tensile loading.

  7. Fatigue behavior of 5Ni-Cr-Mo-V steel weldments containing fabrication discontinuities

    NASA Technical Reports Server (NTRS)

    Gill, Steven J.; Hauser, Joseph A., II; Crooker, Thomas W.; Kruse, Brian J.; Menon, Ravi

    1988-01-01

    The applicability of linear elastic fracture mechanics to characterize the fatigue behavior of high-strength steel weldments containing lack-of-penetration (LOP) and slag/lack-of-fusion (S/LOF) discontinuities is explored. Full penetration, double-V butt welds with reinforcements removed were tested under zero-to-tension axial loading. Various filler metals and welding techniques were used. Both sound welds and welds containing discontinuities were cycled to failure. Where possible, cycles to crack initiation were estimated by strain gage measurements. The fracture mechanics approach was successful in correlating the fatigue lifetimes of specimens containing single LOP discontinuities of varying size. However, the fatigue behavior of specimens containing multiple S/LOF discontinuities proved to be much more complex and difficult to analyze.

  8. Effect of shielding gas composition on the properties of hyperbaric GMA welds in duplex steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ware, N.; Dos Santos, J.F.; Richardson, I.

    1994-12-31

    By using Ar/He based shielding gas mixtures with a variety of oxygen and nitrogen additions the absorption of active gas components into duplex stainless steels welded under hyperbaric conditions was examined. The pressure levels used corresponded to seawater depths of 100m, 200m and 300m. The GMAW process in the short circuit transfer mode was used for all tests. Both bead-on-plate and ``V`` butt joints were carried out. The effect of variations in the weld metal active gas components on the weld metal chemical composition and phase balance was investigated. In a second set of tests the effect of varying heatmore » inputs on the phase balance and microstructure was assessed.« less

  9. Considerations on repeated repairing of weldments in Inconel 718 alloy

    NASA Technical Reports Server (NTRS)

    Bayless, E. O.; Lovoy, C. V.; Mcilwain, M. C.; Munafo, P.

    1981-01-01

    The effects of repeated weld repairs on the metallurgical characteristics, high cycle fatigue (HCF), and tensile properties of Inconel 718 butt weld joints were determined. A 1/4 in thick plate and a 1/2 in thick plate were used as well as tungsten inert gas welding, and Inconel 718 filler wire. Weld panels were subjected to 2, 6, and 12 repeated repairs and were made in a highly restrained condition. Post weld heat treatments were also conducted with the welded panel in the highly restrained condition. Results indicate that no significant metallurgical anomaly is evident as a result of up to twelve repeated weld repairs. No degradation in fatigue life is noted for up to twelve repeated repairs. Tensile results from specimens which contained up to twelve repeated weld repairs revealed no significant degradation in UTS and YS. However, a significant decrease in elongation is evident with specimens (solution treated and age hardened after welding) which contained twelve repeated repairs. The elongation loss is attributed to the presence of a severe notch on each side (fusion line) of the repair weld bead reinforcement.

  10. Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase II)

    DOT National Transportation Integrated Search

    2014-10-01

    The preliminary technical approach and scan plans developed during phase I of this research was implemented on testing four butt-weld specimens. The ray path analysis carried out to develop the scan plans and the preliminary data analysis indicated t...

  11. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Construction § 193.2321 Nondestructive tests. (a) The butt welds in metal shells...

  12. The role of the AWS CWI in a major power plant outage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, T.W.

    In March of 1988, an eight-week outage began at the Keystone Electric Generating Station, 35 miles northwest of Johnstown, Pa. This outage encompassed the complete replacement of the reheat section of a 1,7000,000 kW boiler unit, as well as major repairs to the boiler itself. The author discusses how AWS (Certified Welding Inspectors) (CWl's) played a major part in the successful completion of over 7600 ASME butt joint welds during the outage. The welding on these outages is performed in strict accordance with the Pennsylvania Electric Company Quanity Assurance Specification and the applicable codes (ASME, NBIC, ANSI and AWS).

  13. Optimization of the A-TIG welding for stainless steels

    NASA Astrophysics Data System (ADS)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  14. Friction welding.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.

  15. Influence of Filler Wire Feed Rate in Laser-Arc Hybrid Welding of T-butt Joint in Shipbuilding Steel with Different Optical Setups

    NASA Astrophysics Data System (ADS)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.

  16. 40 CFR 420.71 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tube mill means those steel hot forming operations that produce butt welded or seamless tubular steel... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated...

  17. Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe

    NASA Astrophysics Data System (ADS)

    Obeid, Obeid; Alfano, Giulio; Bahai, Hamid

    2017-08-01

    The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.

  18. Numerical investigation of tube hyroforming of TWT using Corner Fill Test

    NASA Astrophysics Data System (ADS)

    Zribi, Temim; Khalfallah, Ali

    2018-05-01

    Tube hydroforming presents a very good alternative to conventional forming processes for obtaining good quality mechanical parts used in several industrial fields, such as the automotive and aerospace sectors. Research in the field of tube hydroforming is aimed at improving the formability, stiffness and weight reduction of manufactured parts using this process. In recent years, a new method of hydroforming appears; it consists of deforming parts made from welded tubes and having different thicknesses. This technique which contributes to the weight reduction of the hydroformed tubes is a good alternative to the conventional tube hydroforming. This technique makes it possible to build rigid and light structures with a reduced cost. However, it is possible to improve the weight reduction by using dissimilar tailor welded tubes (TWT). This paper is a first attempt to analyze by numerical simulation the behavior of TWT hydroformed in square cross section dies, commonly called (Corner Fill Test). Considered tubes are composed of two materials assembled by butt welding. The present analysis will focus on the effect of loading paths on the formability of the structure by determining the change in thickness in several sections of the part. A comparison between the results obtained by hydroforming the butt joint of tubes made of dissimilar materials and those obtained using single-material tube is achieved. Numerical calculations show that the bi-material welded tube has better thinning resistance and a more even thickness distribution in the circumferential directions when compared to the single-material tube.

  19. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  20. 40 CFR 420.71 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...

  1. 40 CFR 420.71 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...

  2. 40 CFR 420.71 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...

  3. 40 CFR 420.71 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...

  4. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    DTIC Science & Technology

    2013-05-01

    of ferrite possessing an acicular/ lenticular -plate morphology which grows into the untrans- formed austenite from the austenite/austenite grain...ferrite and lenticular -shaped Wid- manstatten plates advancing from the allotriomorphic ferrite/ austenite interfaces toward the grain centers is depicted

  5. 75 FR 38081 - Notice of Scope Rulings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Trade Administration, U.S. Department of Commerce, 14th Street and Constitution Avenue, N.W., Washington...: People's Republic of China A-570-814: Certain Carbon Steel Butt-Weld Pipe Fittings from the People's...-868: Folding Metal Tables and Chairs from the People's Republic of China Requestor: Lifetime Products...

  6. Automatic weld torch guidance control system

    NASA Technical Reports Server (NTRS)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  7. Fiber laser welding of dual-phase galvanized sheet steel (DP590): traditional analysis and new quality assessment techniques

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Pfeif, Erik; Kazakov, Andrei; Baumann, Esther; Dowell, Marla

    2016-03-01

    Laser welding has many advantages over traditional joining methods, yet remains underutilized. NIST has undertaken an ambitious initiative to improve predictions of weldability, reliability, and performance of laser welds. This study investigates butt welding of galvanized and ungalvanized dual-phase automotive sheet steels (DP 590) using a 10 kW commercial fiber laser system. Parameter development work, hardness profiles, microstructural characterization, and optical profilometry results are presented. Sound welding was accomplished in a laser power range of 2.0 kW to 4.5 kW and travel speed of 2000 mm/min to 5000 mm/min. Vickers hardness ranged from approximately 2 GPa to 4 GPa across the welds, with limited evidence of heat affected zone softening. Decreased hardness across the heat affected zone directly correlated to the appearance of ferrite. A technique was developed to non-destructively evaluate weld quality based on geometrical criteria. Weld face profilometry data were compared between light optical, metallographic sample, and frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) methods.

  8. Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Cao, X.; Jahazi, M.

    2009-11-01

    Annealed Ti-6Al-4V alloy sheets with 1 and 2 mm thickness are welded using a 4 kW Nd:YAG laser system. The effects of welding speed on surface morphology and shape, welding defects, microstructure, hardness and tensile properties are investigated. Weld joints without or with minor cracks, porosity and shape defects were obtained indicating that high-power Nd:YAG laser welding is a suitable method for Ti-6Al-4V alloy. The fusion zone consists mainly of acicular α' martensite leading to an increase of approximately 20% in hardness compared with that in the base metal. The heat-affected zone consists of a mixture of α' martensite and primary α phases. Significant gradients of microstructures and hardness are obtained over the narrow heat-affected zone. The laser welded joints have similar or slightly higher joint strength but there is a significant decrease in ductility. The loss of ductility is related to the presence of micropores and aluminum oxide inclusions.

  9. Thermographic Analysis of Stress Distribution in Welded Joints

    NASA Astrophysics Data System (ADS)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  10. The algorithm of verification of welding process for plastic pipes

    NASA Astrophysics Data System (ADS)

    Rzasinski, R.

    2017-08-01

    The study analyzes the process of butt welding of PE pipes in terms of proper selection of connector parameters. The process was oriented to the elements performed as a series of types of pipes. Polymeric materials commonly referred to as polymers or plastics, synthetic materials are produced from oil products in the polyreaction compounds of low molecular weight, called monomers. During the polyreactions monomers combine to build a macromolecule material monomer named with the prefix poly polypropylene, polyethylene or polyurethane, creating particles in solid state on the order of 0,2 to 0,4 mm. Finished products from polymers of virtually any shape and size are obtained by compression molding, injection molding, extrusion, laminating, centrifugal casting, etc. Weld can only be a thermoplastic that softens at an elevated temperature, and thus can be connected via a clamp. Depending on the source and method of supplying heat include the following welding processes: welding contact, radiant welding, friction welding, dielectric welding, ultrasonic welding. The analysis will be welding contact. In connection with the development of new generation of polyethylene, and the production of pipes with increasing dimensions (diameter, wall thickness) is important to select the correct process.

  11. An evaluation of welding processes to reduce hexavalent chromium exposures and reduce costs by using better welding techniques.

    PubMed

    Keane, Michael J

    2014-01-01

    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr(6+)) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr(6+) were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr(6+) emissions, and greatly reduce costs relative to SMAW.

  12. An Evaluation of Welding Processes to Reduce Hexavalent Chromium Exposures and Reduce Costs by Using Better Welding Techniques

    PubMed Central

    Keane, Michael J

    2014-01-01

    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr6+) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr6+ were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr6+ emissions, and greatly reduce costs relative to SMAW. PMID:25574138

  13. Critical Initial Flaw Size Analysis

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Raju, Ivatury S.; Cheston, Derrick J.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The USS consists of several "tuna can" segments that are approximately 216 inches in diameter, 115 inches tall, and 0.5 inches thick. A 6 inch wide by 1 inch thick flange is welded to the skin and is used to fasten adjacent tuna cans. A schematic of a "tuna can" and the location of the flange-to-skin weld are shown in Figure 1. Gussets (shown in yellow in Figure 1) are welded to the skin and flange every 10 degrees around the circumference of the "tuna can". The flange-to-skin weld is a flux core butt weld with a fillet weld on the inside surface, as illustrated in Figure 2. The welding process may create loss of fusion defects in the weld that could develop into fatigue cracks and jeopardize the structural integrity of the Ares I-X vehicle. The CIFS analysis was conducted to determine the largest crack in the weld region that will not grow to failure within 4 lifetimes, as specified by NASA standard 5001 & 5019 [1].

  14. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen

    2015-11-01

    The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.

  15. 77 FR 35429 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ...: Room 100, 500 E Street SW., Washington, DC 20436, Telephone: (202) 205-2000. Status: Open to the public... in Inv. Nos. 731-TA-865-867 (Second Review)(Stainless Steel Butt-Weld Fittings from Italy, Malaysia... Commissioners' opinions to the Secretary of Commerce on or before June 29, 2012. 5. Outstanding action jackets...

  16. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy

    NASA Astrophysics Data System (ADS)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.

    2017-12-01

    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterized microstructurally, by means of light optical microscopy, scanning electron microscopy, and microhardness testing. In addition, test pieces extracted from the weldments were tested under uniaxial tensile loading aiming to the estimation of the strength and the ductility of the joint. The analysis of the experimental results and the recorded data led to the basic concluding remarks which demonstrate increased hardness distribution inside the fusion area and severe loss of ductility, but adequate yield and tensile strength of the welds.

  17. Exploratory Development of Weld Quality Definition and Correlation with Fatigue Properties

    DTIC Science & Technology

    1975-04-01

    006-Inch-Thick Lack-of-Penetration Defect in Specimen 6-4 ..... 135 51188 0. 030 to 0. 045-Inch- Deep Lack-of-Penetration Defect in Specimen P5-3 .. 135...PAW-UCX-3 (Figure 25) contained 0.011 inch undercut. Further increases in orifice gas flow resulted in the generation of C. 022-inch- deep undercut...oonsisted of a sh**M butt ont produced by a full-length par- tial-penetralloa (0. 060-Inch deep ) looking pass (Weld 4ED2-C-10) or a full-length

  18. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    NASA Technical Reports Server (NTRS)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  19. The influence of defects of the fatigue resistance of butt and girth welds in A106B steel

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Goetz, D. P.; Scott, P. M.

    1986-01-01

    This three-phase study was directed at developing a fitness for service defect acceptance criteria for welds with defect indications. The study focussed on A106 Gr. B steel pipe. The first phase involved a literature search and critical review to develop the preliminary acceptance criteria to the extent permitted by the data. The second phase developed data for flat plate, wall segment, and vessel specimens containing artificial or natural planar or volumetric defects. The final phase developed acceptance criteria from the test data.

  20. Fatigue testing of weldable high strength steels under simulated service conditions

    NASA Astrophysics Data System (ADS)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue testing. This has resulted in recommendations on the methods for generating standard load histories.

  1. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Yalavarthy, H. V.; He, T.; Yen, C.-F.; Cheeseman, B. A.

    2010-07-01

    A concise yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo-mechanical finite-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work-piece material behavior during the FSW process. Specifically, competition and interactions between plastic-deformation and dynamic-recrystallization processes are considered to properly account for the material-microstructure evolution in the weld nugget zone. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.

  2. Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds

    NASA Astrophysics Data System (ADS)

    Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar

    2018-03-01

    The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.

  3. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  4. Effect of Weld Tool Geometry on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Querin, Joseph A.; Schneider, Judy A.

    2008-01-01

    In this study, flat 0.250" thick Ti-6Al-4V panels were friction stir welded (FSWed) using weld tools with tapered pins. The five different pin geometries of the weld tools included: 0 degree (straight cylinder), 15 degree, 30 degree, 45 degree, and 60 degree angles on the frustum. All weld tools had a smooth 7 degree concave shoulder and were made from microwave sintered tungsten carbide. For each weld tool geometry, the FSW process parameters were optimized to eliminate internal defects. All the welds were produced in position control with a 2.5 degree lead angle using a butt joint configuration for the panels. The process parameters of spindle rpm and travel speed were varied, altering the hot working conditions imparted to the workpiece. Load cells on the FSWing machine allowed for the torque, the plunge force, and the plow force to be recorded during welding. Resulting mechanical properties were evaluated from tensile tests results of the FSWjoints. Variations in the material flow were investigated by use of microstructural analysis including optical microscopy (OM), scanning electron microscopy (SEM), and orientation image mapping (aIM).

  5. Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Kesterson, R. L.

    1973-01-01

    Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.

  6. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  7. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, X.H.

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallizationmore » happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.« less

  8. The Effect of Weld Metal Strength Mismatch on the Deformation and Fracture Behavior of Steel Butt Weldments

    DTIC Science & Technology

    1991-01-01

    Society 6 of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code [ 1980]. Their results are similar to those of Satoh and Toyoda, and are...E813-89. American Society of Mechanical Engineers, Boiler and Pressure Vessel Code , Section III, Nuclear Power Plant Components, 1980. American

  9. 46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 104.5.1(a)). (a) Flanged or butt-welded joints are required for Classes I and I-L piping for nominal... Marine Safety Center. Pressure temperature ratings of the appropriate ANSI/ASME standard must not be... service pressure-temperature ratings for flanges of class 300 and lower, within the temperature...

  10. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... changes, if any, in the supply and demand conditions or business cycle for the Domestic Like Product that... Official, at 202-205-3088. Limited disclosure of business proprietary information (BPI) under an.../worker group, or trade/business association; import/export Subject Merchandise from more than one Subject...

  11. Influence of tool geometry and processing parameters on welding defects and mechanical properties for friction stir welding of 6061 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Daneji, A.; Ali, M.; Pervaiz, S.

    2018-04-01

    Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.

  12. Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar

    2018-03-01

    CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.

  13. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO2-Shielded Arc

    NASA Astrophysics Data System (ADS)

    Wahba, M.; Mizutani, M.; Katayama, S.

    2016-07-01

    With the objective of reducing the operating costs, argon-rich shielding gas was replaced by 100% CO2 gas in hybrid laser-arc welding of shipbuilding steel. The welding parameters were optimized to obtain buried-arc transfer in order to mitigate spatter formation. Sound butt joints could be successfully produced for plates of 14 and 17 mm thickness in one welding pass. Subsequently, the welded joints were subjected to different tests to evaluate the influence of CO2 shielding gas on the mechanical properties of the welded joints. All tensile-tested specimens failed in the base material, indicating the higher strength of the welded joints. The impact toughness of the welded joints, measured at -20 °C, reached approximately 76% of that of the base material, which was well above the limit set by the relevant standard. The microstructure of the fusion zone consisted of grain boundary ferrite and acicular ferrite uniformly over the plate thickness except for the joint root where the microstructure was chiefly ferrite with an aligned second phase. This resulted in higher hardness in the root region compared with the top and middle parts of the fusion zone.

  14. A three-dimensional thermal finite element analysis of AISI 304 stainless steel and copper dissimilar weldment

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil

    2018-04-01

    The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.

  15. Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui

    2017-02-01

    An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.

  16. Investigation and development of friction stir welding process for unreinforced polyphenylene sulfide and reinforced polyetheretherketone

    NASA Astrophysics Data System (ADS)

    Ahmed, Hossain

    The joining of thermoplastics through welding, a specific form of fusion bonding, offers numerous advantages over mechanical joining. It eliminates the use of costly fasteners and has only a limited effect on the strength of the parts being joined since it does not require the introduction of holes and loading pins, and it does not create significant stress concentrations. A specific form of welding, Friction Stir Welding, was investigated for the creation of butt joints of unreinforced polyphenylene sulfide (PPS) and short carbon fiber reinforced polyetheretherketone (PEEK) plates. Friction stir welding requires a rotating pin, a shoulder arrangement, relative movement between the tool and the weld piece and a clamping mechanism to hold the weld piece in place. Analytical models and experimental results show that the heat generated by the FSW tool is insufficient to produce the heat required to weld thermoplastic materials which makes FSW of polymers different from FSW of metals. A second heat source is required for preheating the thermoplastic parts prior to welding. A resistance type surface heater was placed at the bottom of two identical weld pieces for the experiments. Two types of shoulder design i.e. a rotating shoulder and a stationary shoulder were developed. Taguchi's Design of Experiment method was utilized to investigate the welding process, where duration of heating, process temperature, tool rotational speed and tool traverse speed were used as the welding parameters. The quality of the welding process was assumed to be indicated by the weld strength. DoE revealed that one of the process parameters, tool traverse speed, had significant influence on the tensile strength of PPS samples. While PPS sample showed relatively lower tensile strength with higher traverse speed, short carbon fiber reinforced PEEK samples had higher tensile strength with higher traverse speeds. In addition to tensile tests on dog bone shaped specimen, fracture toughness tests were performed for both PPS and PEEK samples to identify the fracture toughness of these materials. Presence of un-welded section in the welded specimen due to the setup of the experiments yielded notched tensile strengths during the tensile test process. With the help of fracture toughness values of these materials, notched tensile strengths of the welded samples were compared with the notched tensile strengths or residual tensile strengths of the base materials. In this study, residual joint efficiency of PEEK samples was found higher than that of PPS samples. Additionally, notched tensile strengths of the welded samples were compared with un-notched tensile strengths of the materials. The notched tensile strengths of PPS and PEEK were found about 80% and 75% of the respective base materials. Micrographs of PEEK samples showed the presence of more voids and cracks in the weld line compared to the un-welded samples. In this study, continuous friction stir welding process has been developed for butt joining of unreinforced PPS and short carbon fiber reinforced PEEK. The process parameters and the experimental setup can be utilized to investigate the weldability of different types of thermoplastic composites and various types of joint configurations.

  17. Effect of Pipe Body Alloy on Weldability of X80 Steel

    NASA Astrophysics Data System (ADS)

    Kong, Xianglei; Huang, Guojian; Fu, Kuijun; Liu, Fangfang; Huang, Minghao; Zhang, Yinghui

    Effect of Mo, Ni, and Cr on impact property of pipe seam and heat-affected zone (HAZ) of X80 steel was investigated by thermal simulation test and butt welding test. The results showed that, there was an obvious relationship between strip's composition and the toughness of weld and HAZ, the more content of Mo, Ni and less of Cr in the strip matrix, the better of impact toughness of weld and HAZ. Metallographic microscope was used to compare microstructures of welding specimens, every welded seam microstructure was mainly acicular ferrite (AF) and a little volume of proeutectoid ferrite (PF), and with some granular precipitations on original austenite grain boundary, the difference was that there were more PF and less precipitations of the specimen with more content of Mo, Ni and less of Cr in the strip matrix. Because of the high price of Mo and Ni, alloy design must be considered comprehensively with the cost and property requirements in the production.

  18. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  19. Residual Stress Analysis in Welded Component.

    NASA Astrophysics Data System (ADS)

    Rouhi, Shahab; Yoshida, Sanichiro; Miura, Fumiya; Sasaki, Tomohiro

    Due to local heating, thermal stresses occur during welding; and residual stress and distortion result remain welding. Welding distortion has negative effects on the accuracy of assembly, exterior appearance, and various strengths of the welded structures. Up to date, a lot of experiments and numerical analysis have been developed to assess residual stress. However, quantitative estimation of residual stress based on experiment may involve massive uncertainties and complexity of the measurement process. To comprehensively understand this phenomena, it is necessary to do further researches by means of both experiment and numerical simulation. In this research, we conduct Finite Element Analysis (FEA) for a simple butt-welded metal plate specimen. Thermal input and resultant expansion are modeled with a thermal expansion FEA module and the resultant constitutive response of the material is modeled with a continuous mechanic FEA module. The residual stress is modeled based on permanent deformation occurring during the heating phase of the material. Experiments have also been carried out to compare with the FEA results. Numerical and experimental results show qualitative agreement. The present work was supported by the Louisiana Board of Regents (LEQSF(2016-17)-RD-C-13).

  20. Thermal regulation in multiple-source arc welding involving material transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doumanidis, C.C.

    1995-06-01

    This article addresses regulation of the thermal field generated during arc welding, as the cause of solidification, heat-affected zone and cooling rate related metallurgical transformations affecting the final microstructure and mechanical properties of various welded materials. This temperature field is described by a dynamic real-time process model, consisting of an analytical composite conduction expression for the solid region, and a lumped-state, double-stream circulation model in the weld pool, integrated with a Gaussian heat input and calibrated experimentally through butt joint GMAW tests on plain steel plates. This model serves as the basis of an in-process thermal control system employing feedbackmore » of part surface temperatures measured by infrared pyrometry; and real-time identification of the model parameters with a multivariable adaptive control strategy. Multiple heat inputs and continuous power distributions are implemented by a single time-multiplexed torch, scanning the weld surface to ensure independent, decoupled control of several thermal characteristics. Their regulation is experimentally obtained in longitudinal GTAW of stainless steel pipes, despite the presence of several geometrical, thermal and process condition disturbances of arc welding.« less

  1. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi

    NASA Astrophysics Data System (ADS)

    Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.

  2. 78 FR 72636 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... months on or after December 2013, the Department does not intend to extend the 90- day deadline unless... Review: Not later than the last day of December 2013,\\1\\ interested parties may request administrative... Brazil: Carbon Steel Butt-Weld Pipe Fittings......... 12/1/12-11/30/13 A-351-602 Chile: Certain Preserved...

  3. 76 FR 67473 - Stainless Steel Butt-Weld Pipe Fittings from Italy, Malaysia, and The Philippines; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... conditions or business cycle for the Domestic Like Product that have occurred in the United States or in the..., Deputy Agency Ethics Official, at (202) 205-3088. Limited disclosure of business proprietary information.../ worker group, or trade/business association; import/export Subject Merchandise from more than one Subject...

  4. 75 FR 60814 - Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... conditions or business cycle for the Domestic Like Product that have occurred in the United States or in the... disclosure of business proprietary information (BPI) under an administrative protective order (APO) and APO... to this Notice of Institution: If you are a domestic producer, union/worker group, or trade/business...

  5. 75 FR 68324 - Certain Stainless Steel Butt-Weld Pipe Fittings From Japan, South Korea and Taiwan; Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    .... SUPPLEMENTARY INFORMATION: Scope of the Orders Japan The products covered by this order include certain... designing the piping system: (1) Corrosion of the piping system will occur if material other than stainless... designing the piping system: (1) Corrosion of the piping system will occur if material other than stainless...

  6. Automated GMA welding of austenitic stainless steel pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahash, G.J.

    1996-12-31

    The study focused on reducing weld cycle times of rotatable subassemblies (spools) using automated welding equipment. A unique automatic Gas Metal Arc Welding (GMAW) system was used to produce a series of pipe to pipe welds on 141 mm (5 in.) schedule 80 seamless stainless steel pipe. After manual tack welding, the adaptive control system welded the root pass of the argon gas backed open vee groove circumferential butt joints in the IG rotated position with short circuiting transfer GMAW. The fill and cover passes were welded automatically with spray transfer GMAW. Automatic welding cycle times were found to bemore » 50--80 percent shorter than the current techniques of roll welding with Shielded Metal Arc Welding and manual Gas Tungsten Arc Welding. Weld costs ({Brit_pounds}/m), including amortization, for the various systems were compared. The cost of automated GMA welds was virtually equivalent to the most competitive methods while depositing 75% more filler metal per year. Also investigated were metallurgical effects generated by weld thermal cycling, and the associated effects on mechanical properties of the weld joint. Mechanical properties of the welds met or exceeded those of the base metal. Sensitization of the pipe did not occur in the heat affected zone (HAZ), based on the absence of evidence of intergranular attack in modified Strauss corrosion tests and despite the fact of interpass temperatures well above recommended maximums. Cooling rates of 3--5 C/s in the heat affected zone of the four pass welds were measured by thermocouple technique and found to be within the non-sensitizing range for this alloy.« less

  7. Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Hamilton, C.; Kopyściański, M.; Dymek, S.; Węglowska, A.; Pietras, A.

    2018-03-01

    Wrought aluminum alloys 5083 and 2017A were each joined with cast aluminum alloy AlSi9Mg through friction stir welding in butt weld configurations. For each material system, the wrought and cast alloy positions, i.e., the advancing side or the retreating side, were exchanged between welding trials. The produced weldments were free from cracks and discontinuities. For each alloy configuration, a well-defined nugget comprised of alternating bands of the welded alloys characterized the microstructure. The degree of mixing, however, strongly depended on which wrought alloy was present and on its position during processing. In all cases, the cast AlSi9Mg alloy dominated the weld center regardless of its position during welding. Electron backscattered diffraction analysis showed that the grain size in both alloys (bands) constituting the nugget was similar and that the majority of grain boundaries exhibited a high angle character (20°-60°). Regardless of the alloy, however, all grains were elongated along the direction of the material plastic flow during welding. A numerical simulation of the joining process visualized the material flow patterns and temperature distribution and helped to rationalize the microstructural observations. The hardness profiles across the weld reflected the microstructure formed during welding and correlated well with the temperature changes predicted by the numerical model. Tensile specimens consistently fractured in the cast alloy near the weld nugget.

  8. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates

    NASA Astrophysics Data System (ADS)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.

    2017-09-01

    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  9. Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2018-05-01

    Weld quality is a critical issue in fabrication industries where products are custom-designed. Multi-objective optimization results number of solutions in the pareto-optimal front. Mathematical regression model based optimization methods are often found to be inadequate for highly non-linear arc welding processes. Thus, various global evolutionary approaches like artificial neural network, genetic algorithm (GA) have been developed. The present work attempts with elitist non-dominated sorting GA (NSGA-II) for optimization of pulsed gas metal arc welding process using back propagation neural network (BPNN) based weld quality feature models. The primary objective to maintain butt joint weld quality is the maximization of tensile strength with minimum plate distortion. BPNN has been used to compute the fitness of each solution after adequate training, whereas NSGA-II algorithm generates the optimum solutions for two conflicting objectives. Welding experiments have been conducted on low carbon steel using response surface methodology. The pareto-optimal front with three ranked solutions after 20th generations was considered as the best without further improvement. The joint strength as well as transverse shrinkage was found to be drastically improved over the design of experimental results as per validated pareto-optimal solutions obtained.

  10. Influence of weld-induced residual stresses on the hysteretic behavior of a girth-welded circular stainless steel tube

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan

    2018-04-01

    The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.

  11. Investigation on size tolerance of pore defect of girth weld pipe.

    PubMed

    Li, Yan; Shuai, Jian; Xu, Kui

    2018-01-01

    Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects.

  12. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-12-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  13. Investigation on size tolerance of pore defect of girth weld pipe

    PubMed Central

    Shuai, Jian; Xu, Kui

    2018-01-01

    Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects. PMID:29364986

  14. Process stability during fiber laser-arc hybrid welding of thick steel plates

    NASA Astrophysics Data System (ADS)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  15. The integrity of welded interfaces in ultra-high molecular weight polyethylene: Part 2--interface toughness.

    PubMed

    Haughie, David W; Buckley, C Paul; Wu, Junjie

    2006-07-01

    In Part 2 of a study of welding of ultra-high molecular weight polyethylene (UHMWPE), experiments were conducted to measure the interfacial fracture energy of butt welds, for various welding times and temperatures above the melting point. Their toughness was investigated at 37 degrees C in terms of their fracture energy, obtained by adapting the essential work of fracture (EWF) method. However, a proportion of the welded samples (generally decreasing with increasing welding time or temperature) failed in dual ductile/brittle mode, hence invalidating the EWF test. Even those failing in purely ductile mode showed a measurable interface work of fracture only for the highest weld temperature and time: 188 degrees C and 90 min. Results from the model presented in Part 1 show that this corresponds to the maximum reptated molecular weight reaching close to the peak in the molar mass distribution. Hence this work provides the first experimental evidence that the slow rate of self-diffusion in UHMWPE leads to welded interfaces acting as low-toughness crack paths. Since such interfaces exist around every powder particle in processed UHMWPE this problem cannot be avoided, and it must be accommodated in design of hip and knee bearing surfaces made from this polymer.

  16. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng

    2017-07-01

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  17. Fatigue Properties of Butt Welded Aluminum Alloy and Carbon Steel Joints by Friction Stirring

    NASA Astrophysics Data System (ADS)

    Okane, M.; Shitaka, T.; Ishida, M.; Chaki, T.; Yasui, T.; Fukumoto, M.

    2017-05-01

    The butt dissimilar joints of Al-Mg-Si alloy JIS A6063 and carbon steel JIS S45C by means of friction stir welding were prepared for investigating fatigue properties of the joints. The joining tool used has cemented carbide thread probe and a shoulder made of alloy tool steel. All the fatigue tests were carried out under a load-controlled condition with a load ratio R=0.1 in air at room temperature. From the experimental results, it was found that hardness near the interface in A6063 was lower than that of base material. Three types of fatigue fracture occurred even in case of same welding condition. The first one was fracture at boundary between the lower hardness region and base material in A6063, the second type was initiated in the stir zone by FSW process and the last one was fracture at interface. Fatigue strength in case of the second one was lower than others. Furthermore, to investigate the effect of heat treatment on fatigue properties of the dissimilar joints, fatigue tests were also carried out with using the specimens which were heat treated under the same condition to aging process in T6 treatment. Fatigue fracture was initiated at interface between A6063 and S45C in case of the heat treated specimen, but fatigue strength was improved approximately 25% as compared with that of the non-heat treated specimen.

  18. 76 FR 79651 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... is provided for convenience and customs purposes, the written description of the scope of the order...-value level of trade is based on the starting prices of sales in the home market or, when normal value... on the starting price, which is usually the price from the exporter to the importer. See 19 CFR 351...

  19. Initiation and Growth of Microcracks in High Strength Steel Butt Welds

    DTIC Science & Technology

    1993-05-07

    process such as GTAW promotes cellular grain growth while a lower thermal gradient method such as SAW and GMAW promote dendritic growth. The dendritic...0.40 PHOSPHORUS - 0.020 2/ SULFUR 0.010 2/ SILICON: Up to 0.60% incl 0.20 - Over 0.60% to 1.00% incl 0.30 NICKEL 0.50 - CHROMIUM : Up to 1.25% incl

  20. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  1. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problemsmore » related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions, defect characteristics and weld residual strains were examined by optical metallography, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Industry-supplied mock-up welds were characterized including alloy 52 and 152 weldments, alloy 52M overlay and inlay welds, and an alloy 52 overlay. II. WELDMENTS II.A. Alloy 52 and 152 Weld Mockups The alloy 52 and 152 weld mockups were fabricated by MHI for the Kewaunee reactor and were obtained from the EPRI NDE Center. The mockups were U-groove welds joining two plates of 304SS as shown in Figure 1. Alloy 152 butter (heat 307380) was placed on the U-groove surface for both mockups by shielded metal arc welding (SMAW). For the alloy 152 weld mockup, the alloy 152 fill (heat 307380) was also applied using SMAW while for the alloy 52 weld mockup, the alloy 52 fill (heat NX2686JK) was applied using gas tungsten arc welding (GTAW). Welding parameters for the fill materials were substantially different with the alloy 152 SMAW having a deposition speed of 4-25 cm/min with a current of 95-145 A and the alloy 52 GTAW having a deposition speed of 4-10 cm/min with a current of 150-300 A. One prominent feature in these mockup welds is the presence of a crack starting at the 304SS butt joint at the bottom of the U-groove and extending up into the weld. It appears that the 304SS plate on either side of the butt joint acted as an anchor for the weld resulting in a stress rise across the slit that drove crack formation and extension up into the fill weld. As will be shown in the next section, the extent of the cracking around this stress riser was much greater in the MHI 52 weld mockup.« less

  2. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, A.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.

    2013-06-01

    A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.

  3. Experimental and numerical evaluation of the fatigue behaviour in a welded joint

    NASA Astrophysics Data System (ADS)

    Almaguer, P.; Estrada, R.

    2014-07-01

    Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.

  4. Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.

    2013-10-01

    A multiphysics computational model has been developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding of MIL A46100, a prototypical high-hardness armor martensitic steel. The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior; (b) heat transfer from the electric arc and mass transfer from the electrode to the weld; (c) development of thermal and mechanical fields during the GMAW process; (d) the associated evolution and spatial distribution of the material microstructure throughout the weld region; and (e) the final spatial distribution of the as-welded material properties. To make the newly developed GMAW process model applicable to MIL A46100, the basic physical-metallurgy concepts and principles for this material have to be investigated and properly accounted for/modeled. The newly developed GMAW process model enables establishment of the relationship between the GMAW process parameters (e.g., open circuit voltage, welding current, electrode diameter, electrode-tip/weld distance, filler-metal feed speed, and gun travel speed), workpiece material chemistry, and the spatial distribution of as-welded material microstructure and properties. The predictions of the present GMAW model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 weld region are found to be consistent with general expectations and prior observations.

  5. Effects of Mars Atmosphere on Arc Welds: Phase 2

    NASA Technical Reports Server (NTRS)

    Courtright, Z. S.

    2018-01-01

    Gas tungsten arc welding (GTAW) is a vital fusion welding process widely used throughout the aerospace industry. Its use may be critical for the repair or manufacture of systems, rockets, or facilities on the Martian surface. Aluminum alloy AA2219-T87 and titanium alloy Ti-6Al-4V butt welds have been investigated for weldability and weld properties in a simulated Martian gas environment. The resulting simulated Martian welds were compared to welds made in a terrestrial atmosphere, all of which used argon shielding gas. It was found that GTAW is a process that may be used in a Martian gas environment, not accounting for pressure and gravitational effects, as long as adequate argon shielding gas is used to protect the weld metal. Simulated Martian welds exhibited higher hardness in all cases and higher tensile strength in the case of AA2219-T87. This has been attributed to the absorption of carbon into the fusion zone, causing carbide precipitates to form. These precipitates may act to pin dislocations upon tensile testing of AA2219-T87. Dissolved carbon may have also led to carburization, which may have caused the increase in hardness within the fusion zone of the welds. Based on the results of this experiment and other similar experiments, GTAW appears to be a promising process for welding in a Martian gas environment. Additional funding and experimentation is necessary to determine the effects of the low pressure and low gravity environment found on Mars on GTAW.

  6. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy permeability, a decrease from the ~9400 millidarcy permeability typical of the non-deformed, poorly-welded tuff. As such, these bands would have acted to slow to the circulation of local fluids through the tuff cone, possibly reducing the slopes' stability further. Future work will employ slope stability models to investigate the tendency for slumping of these tuffs shortly after their emplacement, accounting for water-saturated conditions and the effects of eruption-related seismicity. These results will improve current understanding of the mechanics of fault growth within basaltic tuff and enable more rigorous assessments of the hazards posed by slope instability on active phreatomagmatic tuff cones.

  7. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  8. Static behavior of the weld in the joint of the steel support element using experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Krejsa, M.; Brozovsky, J.; Mikolasek, D.; Parenica, P.; Koubova, L.

    2018-04-01

    The paper is focused on the numerical modeling of welded steel bearing elements using commercial software system ANSYS, which is based on the finite element method - FEM. It is important to check and compare the results of FEM analysis with the results of physical verification test, in which the real behavior of the bearing element can be observed. The results of the comparison can be used for calibration of the computational model. The article deals with the physical test of steel supporting elements, whose main purpose is obtaining of material, geometry and strength characteristics of the fillet and butt welds including heat affected zone in the basic material of welded steel bearing element. The pressure test was performed during the experiment, wherein the total load value and the corresponding deformation of the specimens under the load was monitored. Obtained data were used for the calibration of numerical models of test samples and they are necessary for further stress and strain analysis of steel supporting elements.

  9. Automatic welding systems gain world-wide acceptance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, G. Jr.

    1979-04-01

    Five automatic welding systems are currently available for commercial use, marketed by three US companies - CRC Automatic Welding Co., H.C. Price Co., and Diametrics Inc. - as well as by Belgium's S.A. Arcos Co. (the Orbimatic welding device) and France's Societe Serimer. The pioneer and leader of the field, CRC has served on 52 projects since 1969, including the 56-in. Orenburg line in the USSR. In comparison, the other systems have seen only limited activity. The Orbimatic welder has been used in the Netherlands and other Western European countries on projects with up to 42-in.-diameter pipe. The H.C. Pricemore » welder proved successful in North Sea construction and last year in Mexico's Troncal Sistema Nacional de Gas. The Diametrics welder relies on the electric flash-butt system used on large-diameter projects in the USSR. The most recent entry into the commerical market, France's Serimer completed field testing last year. Four other welders have recently been announced but are not yet commercially available.« less

  10. Metallurgy and deformation of electron beam welded similar titanium alloys

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  11. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  12. 77 FR 4990 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... with respect to when the Department will exercise its discretion to extend this 90-day deadline... the Department intends to exercise its discretion in the future. Opportunity To Request a Review: Not... Butt-Weld Pipe Fittings A-588- 2/1/11-1/31/12 602 Stainless Steel Bar A-588-833 2/1/11-1/31/12 Malaysia...

  13. LPT. EBOR (TAN646) interior, installing reactor in STF pool ("vault"). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. EBOR (TAN-646) interior, installing reactor in STF pool ("vault"). Pressure vessel shows core barrel and outlet nozzle (next to man below) to inner duct weld, which is prepared and in position for stress relieving. Camera facing southeast. Photographer: Comiskey. Date: January 20, 1965. INEEL negative no. 65-239 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  14. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding at different process parameters

    NASA Astrophysics Data System (ADS)

    Konovalenko S., Iv.; Psakhie, S. G.

    2017-12-01

    Using the molecular dynamics method, we simulated the atomic scale butt friction stir welding on two crystallites and varied the onset FSW tool plunge depth. The effects of the plunge depth value on the thermomechanical evolution of nanosized crystallites and mass transfer in the course of FSW have been studied. The increase of plunge depth values resulted in more intense heating and reducing the plasticized metal resistance to the tool movement. The mass transfer intensity was hardly dependent on the plunge depth value. The plunge depth was recommended to be used as a FSW process control parameter in addition to the commonly used ones.

  15. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  16. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    NASA Technical Reports Server (NTRS)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  17. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  18. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    PubMed Central

    Gao, Ming; Chen, Cong; Gu, Yunze; Zeng, Xiaoyan

    2014-01-01

    Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties. PMID:28788533

  19. Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel

    DOE PAGES

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; ...

    2014-01-01

    A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductilemore » fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.« less

  20. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lu, Yaqing; Hui, Hu; Gong, Jianguo

    2018-05-01

    Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.

  1. Influence of shoulder diameter on Temperature and Z-parameter during friction stir welding of Al 6082 alloy

    NASA Astrophysics Data System (ADS)

    Kishore Mugada, Krishna; Adepu, Kumar

    2018-03-01

    In this research article, the effect of increasing shoulder diameter on temperature and Zener Holloman (Z)-parameter for friction stir butt welded AA6082-T6 was studied. The temperature at the Advancing side (AS) of weld was measured using the K-Type thermocouple at four different equidistant locations. The developed analytical model is utilized to predict the maximum temperature (Tpeak) during the welding. The strain, strain rate, Z- Parameter for all the shoulders at four distinct locations were evaluated. The temperature increases with increase in shoulder diameter and the maximum temperature was recorded for 24mm shoulder diameter. The computed log Z values are compared with the available process map and results shows that the values are in stable flow region and near to stir zone the values are in Dynamic recrystallization region (DRX). The axial load (Fz) and total tool torque (N-m) are found to be higher for shoulder diameter of 21 mm i.e., 6.3 kN and 56.5 N-m respectively.

  2. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    NASA Astrophysics Data System (ADS)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  3. A&M. TAN607. Sections for second phase expansion: engine maintenance, machine, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607. Sections for second phase expansion: engine maintenance, machine, and welding shops; high bay assembly shop, chemical cleaning room (decontamination). Details of sliding door hoods. Approved by INEEL Classification Office for public release. Ralph M. Parsons 1299-5-ANP/GE-3-607-A 109. Date: August 1956. INEEL index code no. 034-0607-00-693-107169 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Prototype Space Fabrication Platform

    DTIC Science & Technology

    1993-12-01

    Wheel Mechanism . . 5-12 5.3.4 Butt Welding of T-Beams ..... .......... 5-14 5.3.5 Application of Cross Members ............ 5-17 5.3.6 Application of...fabrication process and deployed into spece by a drive mechanism on each cap member. The drive mechanism also provided the force necessary to extract...members were stacked closely together and stored in a clip mechanism . The clip had a belt ’ ed mechanism designed to advance the stack, one member at

  5. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  6. A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeslack, W.A. III; Hurley, J.; Paskell, T.

    1994-12-31

    Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less

  7. Effects of joint configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon.

    PubMed

    Taylor, J C; Hondrum, S O; Prasad, A; Brodersen, C A

    1998-03-01

    Titanium and its alloys are more commonly used in prosthodontics and welding has become the most common modality for their joining. Studies on the welding of titanium and its alloys have not quantified this value, though its importance has been suggested. This study compared the strength and properties of the joint achieved at various butt joint gaps by the arc-welding of cast Ti-6Al-4V alloy tensile bars in an argon atmosphere. Forty of 50 specimens were sectioned and welded at four gaps. All specimens underwent tensile testing to determine ultimate tensile strength and percentage elongation, then oxygen analysis and scanning electron microscopy. As no more than 3 samples in any group of 10 actually fractured in the weld itself, a secondary analysis that involved fracture location was initiated. There were no differences in ultimate tensile strength or percentage elongation between specimens with weld gaps of 0.25, 0.50, 0.75, and 1.00 mm and the as-cast specimens. There were no differences in ultimate tensile strength between specimens fracturing in the weld and those fracturing in the gauge in welded specimens; however, as-cast specimens demonstrated a higher ultimate tensile strength than welded specimens that fractured in the weld. Specimens that fractured in the weld site demonstrated less ductility than those that fractured in the gauge in both welded and as-cast specimens, as confirmed by scanning electron microscopy examination. The weld wire showed an oxygen scavenging effect from the as-cast parent alloy. The effects of the joint gap were not significant, whereas the characteristics of the joint itself were, which displayed slightly lower strength and significantly lower ductility (and thus decreased toughness). The arc-welding of cast titanium alloy in argon atmosphere appears to be a reliable and efficient prosthodontic laboratory modality producing predictable results, although titanium casting and joining procedures must be closely controlled to minimize heat effects and oxygen contamination.

  8. The use of supercomputer modelling of high-temperature failure in pipe weldments to optimize weld and heat affected zone materials property selection

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Hayhurst, D. R.

    1994-07-01

    The creep deformation and damage evolution in a pipe weldment has been modeled by using the finite-element continuum damage mechanics (CDM) method. The finite-element CDM computer program DAMAGE XX has been adapted to run with increased speed on a Cray XMP/416 supercomputer. Run times are sufficiently short (20 min) to permit many parametric studies to be carried out on vessel lifetimes for different weld and heat affected zone (HAZ) materials. Finite-element mesh sensitivity was studied first in order to select a mesh capable of correctly predicting experimentally observed results using at least possible computer time. A study was then made of the effect on the lifetime of a butt welded vessel of each of the commomly measured material parameters for the weld and HAZ materials. Forty different ferritic steel welded vessels were analyzed for a constant internal pressure of 45.5 MPa at a temperature of 565 C; each vessel having the same parent pipe material but different weld and HAZ materials. A lifetime improvement has been demonstrated of 30% over that obtained for the initial materials property data. A methodology for weldment design has been established which uses supercomputer-based CDM analysis techniques; it is quick to use, provides accurate results, and is a viable design tool.

  9. Seam tracking with adaptive image capture for fine-tuning of a high power laser welding process

    NASA Astrophysics Data System (ADS)

    Lahdenoja, Olli; Säntti, Tero; Laiho, Mika; Paasio, Ari; Poikonen, Jonne K.

    2015-02-01

    This paper presents the development of methods for real-time fine-tuning of a high power laser welding process of thick steel by using a compact smart camera system. When performing welding in butt-joint configuration, the laser beam's location needs to be adjusted exactly according to the seam line in order to allow the injected energy to be absorbed uniformly into both steel sheets. In this paper, on-line extraction of seam parameters is targeted by taking advantage of a combination of dynamic image intensity compression, image segmentation with a focal-plane processor ASIC, and Hough transform on an associated FPGA. Additional filtering of Hough line candidates based on temporal windowing is further applied to reduce unrealistic frame-to-frame tracking variations. The proposed methods are implemented in Matlab by using image data captured with adaptive integration time. The simulations are performed in a hardware oriented way to allow real-time implementation of the algorithms on the smart camera system.

  10. Cracking in dissimilar laser welding of tantalum to molybdenum

    NASA Astrophysics Data System (ADS)

    Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua

    2018-06-01

    Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.

  11. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  12. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  13. The structure of Ti-Ta welded joint and microhardness distribution over the cross section

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Koshuro, Vladimir A.; Egorov, Ivan S.; Shelkunov, Andrey Yu.; Zakharevich, Andrey M.; Steinhauer, Natalia N.; Rodionov, Igor V.

    2018-04-01

    In order to create highly efficient medical systems and measuring biosensors, an approach is frequently used, in which the constructive basis of the product is made of a high-strength biocompatible material (titanium, stainless steel), and the functional layer is made of a more expensive metal (Ta, Zr, Au, Pt, etc.) or ceramics (Ta2O5, ZrO2, CaTiO3, etc.). For a strong connection, e.g. titanium with tantalum, it is proposed to use diffusion butt welding. The heat generated by passing electric current (I is not less than 1.95-2.05 kA, P - not less than 9 kW, t = 250-1000 ms) and applied pressure (30-50 MPa) ensure an integral connection. To improve the quality of the joint, i.e. to exclude cracks and tightness, it is necessary to choose the right combination of the thickness of the welded parts. It was established that when titanium (2 mm thick) and tantalum (0.1-0.5 mm) are combined, a better Ti-Ta welded joint is formed when tantalum foil is used (0.5 mm). Here the distribution of hardness over the cross section of the sample, including the welding areas, is uniform and has no extremely high residual stresses of the tensile type.

  14. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  15. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests of welded joints were performed, and it was confirmed that they have sufficient mechanical properties. As a result of this study, it is confirmed that, if the appropriate welding conditions are selected, sound welded joints of AZ31B magnesium alloy are obtainable by the YAG laser/TIG arc hybrid welding process.

  16. Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy

    NASA Astrophysics Data System (ADS)

    Regev, Michael; Rashkovsky, Tal; Cabibbo, Marcello; Spigarelli, Stefano

    2018-01-01

    The poor weldability of the AA2024 aluminum alloy limits its use in industrial applications. Because friction stir welding (FSW) is a non-fusion welding process, it seems to be a promising solution for welding this alloy. In the current study, FSW was applied to butt weld AA2024-T3 aluminum alloy plates. Creep tests were conducted at 250 and at 315 °C on both the parent material and the friction stir welded specimens. The microstructures of the welded and non-welded AA2024-T3 specimens before and after the creep tests were studied and compared. A comprehensive transmission electron microscopy study together with a high-resolution scanning electron microscopy study and energy-dispersive x-ray spectroscopy analysis was conducted to investigate the microstructure stability. The parent material seems to contain two kinds of Cu-rich precipitates—coarse precipitates of a few microns each and uniformly dispersed fine nanosized precipitates. Unlike the parent material, the crept specimens were found to contain the two kinds of precipitates mentioned above together with platelet-like precipitates. In addition, extensive decoration of the grain boundaries with precipitates was clearly observed in the crept specimens. Controlled aging experiments for up to 280 h at the relevant temperatures were conducted on both the parent material and the welded specimens in order to isolate the contribution of exposure to high temperatures to the microstructure changes. TEM study showed the development of dislocation networks into a cellular dislocation structure in the case of the parent metal. Changes in the dislocation structure as a function of the creep strain and the FSW process were recorded. A detailed creep data analysis was conducted, taking into account the instability of the microstructure.

  17. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  18. JPRS Report, Science & Technology, USSR: Materials Science.

    DTIC Science & Technology

    1988-04-04

    METALLURGIYA, Nov 87) 2 Structure and Properties of 40Ni2Mo Powder Steel After Isothermal Hardening (Yu. G. Gurevich, A. G. Ivashko, et al...Tool Powder Steels M06VI-MP and R-0Mo2V3-MP CA, N. Popandupulo, M. V. Isakova; POROSHKOVAYA METALLURGIYA, No 11, Nov 87) 4 - a COMINGS Effect of...No 12, Dec 87) 5 Optimum Conditions for Butt Welding Ti- Steel Bimetal Plates (A. A. Uglov, S, V. Selishchev, et al,; AVTOMATICHESKAYA SVARKA

  19. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    DTIC Science & Technology

    2010-07-01

    a rigid material. Its density and thermal properties are set to that of AISI- H13 , the hot-worked tool steel which is often used as a FSW- tool ...joining process (Ref 1-3). Within FSW, a (typically) cylindrical tool - pin (threaded at the bottom and terminated with a circular-plate shape shoulder...applied to the shoulder and owing to frictional sliding and plastic deforma- tion, substantial amount of heat is generated at the tool /work- piece

  20. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    NASA Astrophysics Data System (ADS)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  1. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu

    2018-05-01

    Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.

  2. Investigation of effects of process parameters on properties of friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Chauhan, Atul; Soota, Tarun; Rajput, S. K.

    2018-03-01

    This work deals with application of friction stir welding (FSW) using application of Taguchi orthogonal array. FSW procedure is used for joining the aluminium alloy AA6063-T0 plates in butt configuration with orthogonal combination of factors and their levels. The combination of factors involving tool rotation speed, tool travel speed and tool pin profile are used in three levels. Grey relational analysis (GRA) has been applied to select optimum level of factors for optimising UTS, ductility and hardness of joint. Experiments have been conducted with two different tool materials (HSS and HCHCr steel) with various factors level combinations for joining AA6063-T0. On the basis of grey relational grades at different levels of factors and analysis of variance (ANOVA) ideal combination of factors are determined. The influence of tool material is also studied.

  3. Dissimilar welding of nickel-based Alloy 690 to SUS 304L with Ti addition

    NASA Astrophysics Data System (ADS)

    Lee, H. T.; Jeng, S. L.; Yen, C. H.; Kuo, T. Y.

    2004-10-01

    This study investigates the effects of Ti addition on the weldability, microstructure and mechanical properties of a dissimilar weldment of Alloy 690 and SUS 304L. Shielding metal arc welding (SMAW) is employed to butt-weld two plates with three welding layers, where each layer is deposited in a single pass. To investigate the effects of Ti addition, the flux coatings of the electrodes used in the welding process are modified by varying additions of either a Ti-Fe compound or a Ti powder. The results indicate that the microstructure of the fusion zone (FZ) is primarily dendritic. With increasing Ti content, it is noted that the microstructure changes from a columnar dendritic to an equiaxed dendritic, in which the primary dendrite arm spacing (PDAS) becomes shorter. Furthermore, it is observed that the amount of Al-Ti oxide phase increases in the inter-dendritic region, while the amount of Nb-rich phase decreases. Moreover, the average hardness of the FZ increases slightly. The results indicate that Ti addition prompts a significant increase in the elongation of the weldment (i.e. 36.5%, Ti: 0.41 wt%), although the tensile strength remains relatively unchanged. However, at an increased Ti content of 0.91 wt%, an obvious reduction in the tensile strength is noted, which can be attributed to a general reduction in the weldability of the joint.

  4. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  5. The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.

    1993-12-31

    The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixedmore » positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.« less

  6. The inhomogeneous microstructure and deformation of similar and dissimilar Al-Zn containing Mg friction stir welds

    NASA Astrophysics Data System (ADS)

    Hiscocks, Jessica

    The magnesium-based aluminum-zinc alloys have excellent stiffness to weight ratios, and may be combined by friction stir welding to expand the possible applications. The high aluminum alloy AZ80 in particular has the advantage of being relatively stiff but still extrudable. However limited friction stir welding research is available for this alloy and extrapolation from the extensive work in aluminum alloys is impractical due differences in precipitation behaviour, and magnesium's high plastic anisotropy and tendency to form strong textures during friction stir welding. This work investigates the correlations between local friction stir welded microstructures, textures, residual strains, and the local deformation behaviour based on strain mapping during tensile tests. Covering bead-on-plate and butt configurations, joining of similar and dissimilar materials, and a range of processing conditions, many findings of interest for deformation modelling and industrial applications are presented. Synchrotron x-ray diffraction study of an entire friction stir weld was used to determine texture, residual strain and dislocation density data from a single experiment. A number of unique findings were made, mainly related to the asymmetric distribution of properties both between sides of the weld and through the depth. Particularly in the case of strain measurements, features not detectable at coarser measurement spacing or by line scan are presented and compared for multiple processing conditions. Investigation of the longitudinal material flow during welding showed that even when periodicity in grain size, precipitate distribution, or texture was not observed, periodic changes in texture intensity resulting from compaction of material behind the tool were present, providing evidence that movement of nugget material remained periodic. Strain localisation and fracture behaviour were found to be completely different between good quality similar and dissimilar friction stir welds. For similar magnesium friction stir welds, higher heat input was shown to improve mechanical performance by reducing the residual strain, while for dissimilar friction stir welds, deformation behaviour was found to be more sensitive to the final material distribution in the friction stir weld nugget. For dissimilar welds, even minor changes to the material flow were shown to have a major impact on the tensile performance.

  7. Effects of beam offset on mechanical properties and corrosion resistance of Alloy 690-SUS 304L EBW joints for nuclear power plant

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Ding; Lee, Hwa-Teng; Kuo, Tsung-Yuan; Jeng, Sheng-Long; Wu, Jia-Lin

    2010-06-01

    The current study investigates the effect of the beam offset (BOF) on the microstructure, mechanical properties, and the corrosion resistance of the fusion zone (FZ) of Alloy 690-SUS 304L stainless steel (SS) dissimilar metal butt joints formed by electron beam welding (EBW). The experimental results showed that as the value of the BOF increased from 0 to 0.30 mm, i.e. the electron beam shifted progressively toward the Alloy 690 base metal (BM), the tensile strength of the FZ fell from 582.1 to 541.2 MPa. However, the modified Huey test results indicated that the interdendritic corrosion resistance of the FZ was significantly enhanced. Pit nucleation potential value ( Enp) was raised from 385 to 1050 mV. An offset of 0.30 mm appears to be the optimal BOF setting when fabricating Alloy 690-SUS 304L SS dissimilar metal butt joints using the EBW technique.

  8. Determination of design allowable strength properties of elevated-temperature alloys. Part 1: Coated columbium alloys

    NASA Technical Reports Server (NTRS)

    Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.

    1972-01-01

    A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.

  9. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    NASA Astrophysics Data System (ADS)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best mechanical performances also possess better electrochemical properties. What's more, in these cases, the weld bead shows a cathodic behavior with respect to the parent material.

  10. Development of strain gages for use to 1311 K (1900 F)

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1974-01-01

    A high temperature electric resistance strain gage system was developed and evaluated to 1366 K (2000 F) for periods of at least one hour. Wire fabricated from a special high temperature strain gage alloy (BCL-3), was used to fabricate the gages. Various joining techniques (NASA butt welding, pulse arc, plasma needle arc, and dc parallel gap welding) were investigated for joining gage filaments to each other, gage filaments to lead-tab ribbons, and lead-tab ribbons to lead wires. The effectiveness of a clad-wire concept as a means of minimizing apparent strain of BCL-3 strain gages was investigated by sputtering platinum coatings of varying thicknesses on wire samples and establishing the optimum coating thickness--in terms of minimum resistivity changes with temperature. Finally, the moisture-proofing effectiveness of barrier coatings subjected to elevated temperatures was studied, and one commercial barrier coating (BLH Barrier H Waterproofing) was evaluated.

  11. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-02-01

    Laser welding is a potentially useful technique for joining two pieces of similar or dissimilar materials with high precision. In the present work, comparative studies on laser welding of similar metal of AISI 304SS and AISI 316SS have been conducted forming butt joints. A robotic control 600 W pulsed Nd:YAG laser source has been used for welding purpose. The effects of laser power, scanning speed and pulse width on the ultimate tensile strength and weld width have been investigated using the empirical models developed by RSM. The results of ANOVA indicate that the developed models predict the responses adequately within the limits of input parameters. 3-D response surface and contour plots have been developed to find out the combined effects of input parameters on responses. Furthermore, microstructural analysis as well as hardness and tensile behavior of the selected weld of 304SS and 316SS have been carried out to understand the metallurgical and mechanical behavior of the weld. The selection criteria are based on the maximum and minimum strength achieved by the respective weld. It has been observed that the current pulsation, base metal composition and variation in heat input have significant influence on controlling the microstructural constituents (i.e. phase fraction, grain size etc.). The result suggests that the low energy input pulsation generally produce fine grain structure and improved mechanical properties than the high energy input pulsation irrespective of base material composition. However, among the base materials, 304SS depict better microstructural and mechanical properties than the 316SS for a given parametric condition. Finally, desirability function analysis has been applied for multi-objective optimization for maximization of ultimate tensile strength and minimization of weld width simultaneously. Confirmatory tests have been conducted at optimum parametric conditions to validate the optimization techniques.

  12. Microstructure and Mechanical Properties of Three-Layer TIG-Welded 2219 Aluminum Alloys with Dissimilar Heat Treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Dengkui; Li, Quan; Zhao, Yue; Liu, Xianli; Song, Jianling; Wang, Guoqing; Wu, Aiping

    2018-05-01

    2219-C10S and 2219-CYS aluminum alloys are 2219 aluminum alloys with different heat treatment processes, and they have been widely used in the aerospace industry. In the present study, 2219-C10S and 2219-CYS aluminum alloys were butt-welded by three-layer tungsten inert gas arc welding (with the welding center of the third layer shifted toward the CYS side), and the microstructure characteristics and mechanical properties of the welded joint were investigated. The lamellar θ' phases, the bulk or rod θ phases, and the coarse rod-shaped or pancake-shaped Al-Cu-Fe-Mn phases coexisted in the two aluminum alloys. The Cu content of the α-Al matrix and the distribution of eutectic structures of different welding layers in the weld zone (WZ) were varied, implying that the segregation degrees of the Cu element were different due to the different welding thermal cycles in different welding layers. The microhardness values of the CYS side were much higher than those of the C10S side in each region on both sides of the joint. The tensile test deformation was concentrated mainly in the regions of WZ and the over aged zone (OAZ), where the microhardness values were relatively low. The main deformation concentrated region was transferred from the CYS side to the C10S side with the increase in the tensile load during the tensile test. The fracture behavior of the tensile test showed that the macroscopic crack initiated near the front weld toe had gone through the crack blunt region, the shear fracture region of the partially melted zone (PMZ), and the shear fracture region of OAZ. Meanwhile, the fracture characteristics gradually evolved from brittle to ductile. The concentrated stress and the dense eutectic structure in the region near the front weld toe of the C10S side contributed to the fracture of the joint. The shift of the welding center of the third layer to the CYS side resulted in two effects: (i) the microhardness values from the middle layer to the top layer in the PMZ of the CYS side were the most significantly increased and (ii) the distance between the front weld toe and the fusion line of the CYS side was significantly larger.

  13. Friction Stir Welding for Aluminum Metal Matrix Composites (MMC's) (Center Director's Discretionary Fund, Project No. 98-09)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Carter, R. W.; Ding, J.

    1999-01-01

    This technical memorandum describes an investigation of using friction stir welding (FSW) process for joining a variety of aluminum metal matrix composites (MMC's) reinforced with discontinuous silicon-carbide (SiC) particulate and functional gradient materials. Preliminary results show that FSW is feasible to weld aluminum MMC to MMC or to aluminum-lithium 2195 if the SiC reinforcement is <25 percent by volume fraction. However, a softening in the heat-affected zone was observed and is known to be one of the major limiting factors for joint strength. The pin tool's material is made from a low-cost steel tool H-13 material, and the pin tool's wear was excessive such that the pin tool length has to be manually adjusted for every 5 ft of weldment. Initially, boron-carbide coating was developed for pin tools, but it did not show a significant improvement in wear resistance. Basically, FSW is applicable mainly for butt joining of flat plates. Therefore, FSW of cylindrical articles such as a flange to a duct with practical diameters ranging from 2-5 in. must be fully demonstrated and compared with other proven MMC joining techniques for cylindrical articles.

  14. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method

    PubMed Central

    Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han

    2015-01-01

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties. PMID:28793720

  15. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method.

    PubMed

    Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han

    2015-12-04

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.

  16. Weld residual stresses and plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybicki, E.; Shiratori, M.

    1989-01-01

    Residual stresses due to welding can play a primary role in the performance of piping systems and pressure vessels. The stresses are high, in the range of the yield stress of the material, and can influence the fatigue and fracture behavior as well as component service life. Thus, it is important to have an understanding of weld residual stresses. The papers in this section address the important topic of residual stresses and failure analysis. The paper by Boyles reviews computer simulation in the prediction and analysis of fatigue, fracture, and creep of welded structures. The growing use of expert systemsmore » for these purposes is also covered. Karisson, et al, determine the deformations and stresses during the butt-welding of a pipe. The determination of residual deformations and stresses is also presented. Oddy, Goldak, and McDill propose a method to incorporate transformation plasticity in a finite element program. A three-dimensional analysis of a short longitudinal pipe weld in a typical pressure vessel steel is presented. Chaaban, Morin, Ma, and Bazergui study the influence of ligament thickness, strain hardening, expansion sequence, and level of applied expansion pressure on the interference fit in a model of a tube-to-tubesheet joint in a heat exchanger. This section contains papers dealing with models for plastic deformation. Imatani, Teraura, and Inoue formulate a viscoplastic constitutive model based on an anisotropic yield criterion. Comparisons with experimental results obtained using thin walled tubular specimens made from SUS 304 stainless steel show that the present yield criterion adequately accounts for prior deformation history. Niitsu, Horiguchi, and Ikegami investigate the plastic behavior of S25C mild steel tubular specimens subjected to combined axial and torsional loading at both constant and variable temperatures.« less

  17. WORKERS FABRICATE ROOF SLABS FOR MTR BUILDING AT THE CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKERS FABRICATE ROOF SLABS FOR MTR BUILDING AT THE CONSTRUCTION SITE. FORMS WERE MADE OF STEEL. AFTER AN INCH OF CONCRETE HAD BEEN POURED IN THE FORM, A MAT OF REINFORCING STEEL WAS PLACED ON IT. THE REMAINDER OF THE FORM WAS FILLED, AND THE CONCRETE WAS VIBRATED, STRUCK, AND TROWELED. GROOVES AT CORNER WILL HAVE 1/4 INCH RODS WELDED INTO THE EYE OF THE STEEL MAT FOR GROUNDING. INL NEGATIVE NO. 578. Unknown Photographer, 9/1/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Re, Giuseppe; White, James D. L.; Muirhead, James D.; Ort, Michael H.

    2016-08-01

    Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (<1 km), which yield a spectrum of eruptive styles including weak to moderate explosive activity, violent phreatomagmatism, and lava effusion. Jagged Rocks Complex in the late Miocene Hopi Buttes Volcanic field (Arizona, USA) exposes the frozen remnants of the feeding systems for one or a few monogenetic volcanoes. It provides information on how a shallow magmatic plumbing system evolved within a stable non-marine sedimentary basin, and the processes by which magma flowing through dikes fragmented and conduits were formed. We have identified three main types of fragmental deposits, (1) buds (which emerge from dikes), (2) pyroclastic massifs, and (3) diatremes; these represent three different styles and intensities of shallow-depth magma fragmentation. They may develop successively and at different sites during the evolution of a monogenetic volcano. The deposits consist of a mixture of pyroclasts with varying degrees of welding and country-rock debris in various proportions. Pyroclasts are commonly welded together, but also reveal in places features consistent with phreatomagmatism, such as blocky shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

  19. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.

    PubMed

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen

    2016-05-01

    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of tool offsetting on microstructure and mechanical properties dissimilar friction stir welded Mg-Al alloys

    NASA Astrophysics Data System (ADS)

    Baghdadi, Amir Hossein; Fazilah Mohamad Selamat, Nor; Sajuri, Zainuddin

    2017-09-01

    Automotive and aerospace industries are attempting to produce lightweight structure by using materials with low density such as aluminum and magnesium alloys to increase the fuel efficiency and consequently reduce the environmental pollution. It can be beneficial to join Mg to Al to acquire ideal performance in special applications. Friction stir welding (FSW) is solid state welding processes and relatively lower temperature of the process compared to fusion welding processes. This makes FSW a potential joining technique for joining of the dissimilar materials. In this study, Mg-Al butt joints were performed by FSW under different tool offset conditions, rotation rates (500-600 rpm) and traverse speeds (20 mm/min) with tool axis offset 1 mm shifted into AZ31B or Al6061 (T6), and without offset. During the welding process AZ31B was positioned at the advancing side (AS) and Al6061 (T6) was located at the retreating side (RS). Defect free AZ31B-Al6061 (T6) dissimilar metal FSW joints with good mechanical properties were obtained with the combination of intermediate rotation rate and low traverse speed pin is in the middle. When tool positioned in -1 mm or +1 mm offsetting, some defects were found in SZ of dissimilar FSWed joints such as cavity, tunnel, and crack. Furthermore, a thin layer of intermetallic compounds was observed in the stir zone at the interface between Mg-Al plates. The strength of the joint was influenced by FSW parameters. Good mechanical properties obtained with the combination of intermediate rotational speed of 600 rpm and low travelling speed of 20 mm/min by locating Mg on advancing side when pin is in the middle. Also, Joint efficiency of the welds prepared in the present study was between 29% and 68% for the different welding parameters.

  1. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace

    PubMed Central

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T.

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr6+). Elemental manganese, nickel, chromium, iron emissions per unit length of weld and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered and analyzed by inductively-coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr6+. GMAW processes used were Surface Tension Transfer™, Regulated Metal Deposition™, Cold Metal Transfer™, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr6+ ranged from 50 to 7800 μg/min, and Cr6+ generation rates per g electrode ranged from 1 to 270μg/g. Elemental Cr generation rates spanned 13 to 330μg/g. Manganese emission rates ranged from 50 to 300μg/g. Nickel emission rates ranged from 4 to140 μg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as 5 times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr6+, manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions. PMID:26267301

  2. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    PubMed

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr(6+), manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions.

  3. Investigation on the Microstructure and Ductility-Dip Cracking Susceptibility of the Butt Weld Welded with ENiCrFe-7 Nickel-Base Alloy-Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Wang, Huang; He, Guo

    2015-03-01

    The weld metal of the ENiCrFe-7 nickel-based alloy-covered electrodes was investigated in terms of the microstructure, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility. Besides the dendritic gamma-Ni(Cr,Fe) phase, several types of precipitates dispersed on the austenitic matrix were observed, which were determined to be the Nb-rich MC-type carbides with "Chinese script" morphology and size of approximately 3 to 10 µm, the Mn-rich MO-type oxides with size of approximately 1 to 2 µm, and the spherical Al/Ti-rich oxides with size of less than 1 µm. The discontinuous Cr-rich M23C6-type carbides predominantly precipitate on the grain boundaries, which tend to coarsen during reheating but begin to dissolve above approximately 1273 K (1000 °C). The threshold strain for DDC at each temperature tested shows a certain degree of correlation with the grain boundary carbides. The DDC susceptibility increases sharply as the carbides coarsen in the temperature range of 973 K to 1223 K (700 °C to 950 °C). The growth and dissolution of the carbides during the welding heat cycles deteriorate the grain boundaries and increase the DDC susceptibility. The weld metal exhibits the minimum threshold strain of approximately 2.0 pct at 1323 K (1050 °C) and the DTR less than 873 K (600 °C), suggesting that the ENiCrFe-7—covered electrode has less DDC susceptibility than the ERNiCrFe-7 bare electrode but is comparable with the ERNiCrFe-7A.

  4. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    NASA Astrophysics Data System (ADS)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.

  5. Fundamental Study of Material Flow in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    1999-01-01

    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.

  6. Development of an innovative method to predict and to characterize the performances of Ti-6Al-4V LBW joints

    NASA Astrophysics Data System (ADS)

    Liberini, Mariacira; Esposito, Sara; Reshad, Kambitz; Previtali, Barbara; Viola, Marco; Squillace, Antonino

    2016-10-01

    Every manufacturing process leaves on the surface of the piece a typical "technology signature". In particular, the laser welding leaves a feature at the edge of the weld bead called "undercut". In this work an experimental campaign has been conducted on Ti6Al4V butt joints. In particular a Central Composite Design (CCD) with the central point repeated three times has been investigated. In the CCD there are two factors (power and speed of the fiber laser) and five levels for each factor. This paper deals with the investigation about the correlation between the severity of the undercut and the process parameters of the laser welding. In particular, through the confocal microscopy, the original geometry of the joint was accurately acquired and rebuilt in order to make a FEM model and simulate the mechanical behavior using Ansys14.5. Moreover, response surfaces and level curves were carried out to understand and predict the depth and the width of the undercut starting from the power and the speed of the laser. At last a mathematic and geometry regression was performed in order to find a unique conical curve that interpolates all the different undercuts and that varies its parameters according to the process parameters. It is established that the process with higher speed minimizes and optimizes the undercut in the joints.

  7. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-07-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  8. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  9. Investigation of Friction Stir Welding and Laser Engineered Net Shaping of Metal Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    2002-01-01

    The improvement in weld quality by the friction stir welding (FSW) process invented by TWI of Cambridge, England, patented in 1991, has prompted investigation of this process for advanced structural materials including Al metal matrix composite (Al-MMC) materials. Such materials can have high specific stiffness and other potential beneficial properties for the extreme environments in space. Developments of discontinuous reinforced Al-MMCs have found potential space applications and the future for such applications is quite promising. The space industry has recognized advantages of the FSW process over conventional welding processes such as the absence of a melt zone, reduced distortion, elimination of the need for shielding gases, and ease of automation. The process has been well proven for aluminum alloys, and work is being carried out for ferrous materials, magnesium alloys and copper alloys. Development work in the FSW welding process for joining of Al-MMCs is relatively recent and some of this and related work can be found in referenced research publications. NASA engineers have undertaken to spear head this research development work for FSW process investigation of Al-MMCs. Some of the reported related work has pointed out the difficulty in fusion welding of particulate reinforced MMCs where liquid Al will react with SiC to precipitate aluminum carbide (Al4C3). Advantages of no such reaction and no need for joint preparation for the FSW process is anticipated in the welding of Al-MMCs. The FSW process has been best described as a combination of extrusion and forging of metals. This is carried out as the pin tool rotates and is slowly plunged into the bond line of the joint as the pin tool's shoulder is in intimate contact with the work piece. The material is friction-stirred into a quality weld. Al-MMCs, 4 in. x 12 in. plates of 0.25 in. (6.35mm) thickness, procured from MMCC, Inc. were butt welded using FSW process at Marshall Space Flight Center (MSFC) using prior set of operating conditions. Weld quality was evaluated using radiography and standard metallography techniques. Another aspect of the MMCs centered around the use of the laser engineered net shaping (LENS) processing of selected Narloy-Z composites. Such an approach has been earlier studied for fabrication of stainless steels. In the present study, attempts were made to fabricate straight cylindrical specimens using LENS process of Narloy-Z and Narloy-Z with 20 vol. % Al2O3 MMCs using the direct metal deposition Optomec LENS-750 system.

  10. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well. The heat and mass transfer and the issues in joining of dissimilar alloys by the hybrid laser/arc welding process (HLAW) were explicitly explained in details. A finite element model was developed to simulate the heat transfer in HLAW of the aluminum alloys. Two double-ellipsoidal heat source models were considered to describe the heat input of the gas metal arc welding and laser welding processes. An experimental procedure was also developed for joining thick advanced high strength steel plates by using the HLAW, by taking into consideration different butt joint configurations. The geometry of the weld groove was optimized according to the requirements of ballistic test, where the length of the softened heat affected zone should be less than 15.9 mm measured from the weld centerline. Since the main issue in HLAW of the AHSS was the formation of the pores, the possible mechanisms of the pores formation and their mitigation methods during the welding process were investigated. Mitigation methods were proposed to reduce the pores inside in the weld area and the influence of each method on the process stability was investigated by an on-line monitoring system of the HLAW process. The groove angle was optimized for the welding process based on the allowed amount of heat input along the TRICLADRTM interface generated by an explosive welding. The weld was fractured in the heat affected zone of the aluminum side in the tensile test. The microharness was shown that the temperature variation caused minor softening in the heat affected zone satisfying the requirement that the width of the softened heat affected zone in the steel side falls within 15.9 mm far away from the weld centerline. The microstructure analysis showed the presence of tempered martensite at the vicinity of the weld area, which it was a cause of softening in the heat affected zone.

  11. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.; University of Campinas; Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showedmore » a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.« less

  12. Transient thermal analysis during friction stir welding between AA2014-T6 and pure copper

    NASA Astrophysics Data System (ADS)

    Gadhavi, A. R.; Ghetiya, N. D.; Patel, K. M.

    2018-04-01

    AA2xxx-Cu alloys showed larger applications in the defence sectors and in aerospace industries due to high strength to weight ratio and toughness. FSW in a butt joint configuration was carried out between AA2014-T6 and pure Copper placing AA2014 on AS and Cu on RS. Temperature profiles were observed by inserting K-type thermocouples in the mid-thickness at various locations of the plate. A sharp decrease in temperature profiles was observed on Copper side due to its higher thermal conductivity. A thermal numerical model was prepared in ANSYS to compare the simulated temperature profiles with the experimental temperature profiles and both the temperature profiles were found to be in good agreement.

  13. Process Model for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1996-01-01

    Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.

  14. Development of Friction Stir Welding Technologies for In-Space Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, William R.; Cox, Chase D.; Gibson, Brian T.

    Friction stir welding (FSW) has emerged as an attractive process for fabricating aerospace vehicles. Current FSW state-of-the-art uses large machines that are not portable. However, there is a growing need for fabrication and repair operations associated with in-space manufacturing. This need stems from a desire for prolonged missions and travel beyond low-earth orbit. To address this need, research and development is presented regarding two enabling technologies. The first is a self-adjusting and aligning (SAA) FSW tool that drastically reduces the axial force that has historically been quite large. The SAA-FSW tool is a bobbin style tool that floats freely, withoutmore » any external actuators, along its vertical axis to adjust and align with the workpiece s position and orientation. Successful butt welding of 1/8 in. (3.175 mm) thick aluminum 1100 was achieved in conjunction with a drastic reduction and near elimination of the axial process force. Along with the SAA-FSW, an innovative in-process monitor technique is presented in which a magnetoelastic force rate-of-change sensor is employed. The sensor consists of a magnetized FSW tool that is used to induce a voltage in a coil surrounding the tool when changes to the process forces occur. The sensor was able to detect 1/16 in. (1.5875 mm) diameter voids. It is concluded that these technologies could be applied toward the development of a portable FSW machine for use in space.« less

  15. Development of Friction Stir Welding Technologies for In-Space Manufacturing

    DOE PAGES

    Longhurst, William R.; Cox, Chase D.; Gibson, Brian T.; ...

    2016-08-26

    Friction stir welding (FSW) has emerged as an attractive process for fabricating aerospace vehicles. Current FSW state-of-the-art uses large machines that are not portable. However, there is a growing need for fabrication and repair operations associated with in-space manufacturing. This need stems from a desire for prolonged missions and travel beyond low-earth orbit. To address this need, research and development is presented regarding two enabling technologies. The first is a self-adjusting and aligning (SAA) FSW tool that drastically reduces the axial force that has historically been quite large. The SAA-FSW tool is a bobbin style tool that floats freely, withoutmore » any external actuators, along its vertical axis to adjust and align with the workpiece s position and orientation. Successful butt welding of 1/8 in. (3.175 mm) thick aluminum 1100 was achieved in conjunction with a drastic reduction and near elimination of the axial process force. Along with the SAA-FSW, an innovative in-process monitor technique is presented in which a magnetoelastic force rate-of-change sensor is employed. The sensor consists of a magnetized FSW tool that is used to induce a voltage in a coil surrounding the tool when changes to the process forces occur. The sensor was able to detect 1/16 in. (1.5875 mm) diameter voids. It is concluded that these technologies could be applied toward the development of a portable FSW machine for use in space.« less

  16. Mount assembly for porous transition panel at annular combustor outlet

    NASA Technical Reports Server (NTRS)

    Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.

  17. The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel

    NASA Astrophysics Data System (ADS)

    Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin

    Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.

  18. Friction Stir Welding of Curved Plates

    NASA Technical Reports Server (NTRS)

    Sanchez, Nestor

    1999-01-01

    Friction stir welding (FSW) is a remarkable technology for making butt and lap joints in aluminum alloys. The process operates by passing a rotating tool between two closely butted plates. This process generates heat and the heated material is stirred from both sides of the plates to generate a high quality weld. Application of this technique has a very broad field for NASA. In particular, NASA is interested in using this welding process to manufacture tanks and curved elements. Therefore, this research has been oriented to the study the FSW of curved plates. The study has covered a number of topics that are important in the model development and to uncover the physical process involve in the welding itself. The materials used for the experimental welds were as close to each other as we could possibly find, aluminum 5454-0 and 5456-0 with properties listed at http://matweb.com. The application of FSW to curved plates needs to consider the behavior that we observed in this study. There is going to be larger force in the normal direction (Fz) as the curvature of the plate increases. A particular model needs to be derived for each material and thickness. A more complete study should also include parameters such as spin rate, tool velocity, and power used. The force in the direction of motion (Fx) needs to be reconsidered to make sure of its variability with respect to other parameters such as velocity, thickness, etc. It seems like the curvature does not play a role in this case. Variations in temperature were found with respect to the curvature. However, these changes seem to be smaller than the effect on Fz. The temperatures were all below the melting point. We understand now that the process of FSW produces a three dimensional flow of material that takes place during the weld. This flow needs to be study in a more detailed way to see in which directions the flow of material is stronger. It could be possible to model the flow using a 2-dimensional model in the particular directions where the flow moves faster. More experimental information is required to enrich the knowledge about FSW, and from this point, derive useful mathematical formulas to optimize the process and the design of the machines that will perform it. More experiments and experimental equipment are required to uncover the mathematics of the process.

  19. Effect of tool rotation speed on microstructure and tensile properties of FSW joints of 2024-T351 and 7075-T651 reinforced with SiC nano particle: The role of FSW single pass

    NASA Astrophysics Data System (ADS)

    Kumar, K. S. Anil; Murigendrappa, S. M.; Kumar, Hemantha; Shekhar, Himanshu

    2018-04-01

    Friction stir welding (FSW) dissimilar joints of aluminium alloys of 2024-T351 and 7075-T651 were produced by reinforcing silicon carbide nano particle (SiCNP) in the rectangular cut groove made on the adjoining surface of the two dissimilar alloy plates joined in the butt configuration. A FSW tool of taper threaded cylindrical shape is used for producing the FSW dissimilar joints reinforced with SiCNP in the weld nugget zone (WNZ) and to produce metal matrix nano composite (MMNC) at the WNZ. In the experimental investigation, the constant FSW tool traverse speed of 40 mm/min and tool plunge depth of 6.2 mm/min is kept as constant, while the FSW tool rotation speed was varied from 400 rpm to 1800 rpm. The effect continuous varying tool rotation speed range from 400 rpm to 1800 rpm along the weld length and on the distribution of SiCNP in WNZ is analysed by conducting macro and microstructure study using optical microscopy (OM) and scanning electron microscopy (SEM) provided with energy dispersive spectrometry (EDS). In the experimental investigation, the combination of continuous varying FSW tool rotation speed range from 900rpm to 1150 rpm, constant tool traverse speed range 40 mm/min and tool plunge depth of 6.2 mm results in defect free, proper distribution of SiCNP and highest tensile properties for the FSW dissimilar joints. The highest ultimate tensile strength (UTS) of 380 MPa and yield strength (YS) of 150 MPa was observed for the combination of FSW tool rotation speed of 1000 rpm and tool traverse speed of 40 mm/min. The increasing in FSW tool rotation speed above 1250 rpm results in non homogeneous distribution of SiCNP in WNZ, excessive flash in the weld crown area and shows decreasing tendency in the tensile properties of the FSW dissimilar weld joints produced with reinforcing the SiCNP in the WNZ.

  20. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  1. Experimental Investigation of Material Flows Within FSWs Using 3D Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles R. Tolle; Timothy A. White; Karen S. Miller

    2008-06-01

    There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components ofmore » the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.« less

  2. Analytical design of sensors for measuring during terminal phase of atmospheric temperature planetary entry

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Green, M. J.; Sommer, S. C.

    1972-01-01

    An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.

  3. R. Freeman Butts: Educational Foundations and Educational Diplomacy

    ERIC Educational Resources Information Center

    Allison, John

    2014-01-01

    R. Freeman Butts was an American historian and philosopher of education who died in March 2010. This paper will investigate Butts' various roles and writings and ask the question: why is Butts important to the contemporary generation of teacher educators and teachers? This paper will argue that the breadth of Butts' work builds connections and is…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubblefield, M.A.; Yang, C.; Lea, R.H.

    The use of heat-activated thermal couplings is a quick and cost-effective joining method for composite-to-composite materials. In this study, a prepreg laminate which contains thermoset resins and fiberglass reinforcements is wrapped around the ends of components which are to be joined. A shrink tape, made of thermoplastic material, is placed over the prepreg laminate. When curing the shrink tape and the prepreg laminate, the shrink tape shrinks and compresses the prepreg to obtain good adhesion and the required mechanical properties. The mechanical strength of the heat coupling joint in bending increased by 29% over the currently used butt-weld method. Tomore » optimize the curing process, a finite element model was also developed to show the temperature distribution of the heat coupling joint during the curing process. Based on the tested prepreg material properties and model, the finite analysis temperature distribution differed less than 10% from that of the experimental data.« less

  5. Capturing Knowledge In Order To Optimize The Cutting Process For Polyethylene Pipes Using Knowledge Models

    NASA Astrophysics Data System (ADS)

    Rotaru, Ionela Magdalena

    2015-09-01

    Knowledge management is a powerful instrument. Areas where knowledge - based modelling can be applied are different from business, industry, government to education area. Companies engage in efforts to restructure the database held based on knowledge management principles as they recognize in it a guarantee of models characterized by the fact that they consist only from relevant and sustainable knowledge that can bring value to the companies. The proposed paper presents a theoretical model of what it means optimizing polyethylene pipes, thus bringing to attention two important engineering fields, the one of the metal cutting process and gas industry, who meet in order to optimize the butt fusion welding process - the polyethylene cutting part - of the polyethylene pipes. All approach is shaped on the principles of knowledge management. The study was made in collaboration with companies operating in the field.

  6. Littered cigarette butts as a source of nicotine in urban waters

    NASA Astrophysics Data System (ADS)

    Roder Green, Amy L.; Putschew, Anke; Nehls, Thomas

    2014-11-01

    The effect of nicotine from littered cigarette butts on the quality of urban water resources has yet to be investigated. This two-part study addresses the spatial variation, seasonal dynamics and average residence time of littered cigarette butts in public space, as well as the release of nicotine from cigarette butts to run-off in urban areas during its residence time. Thereby, we tested two typical situations: release to standing water in a puddle and release during alternating rainfall and drying. The study took place in Berlin, Germany, a city which completely relies on its own water resources to meet its drinking water demand. Nine typical sites located in a central district, each divided into 20 plots were studied during five sampling periods between May 2012 and February 2013. The nicotine release from standardized cigarette butts prepared with a smoking machine was examined in batch and rainfall experiments. Littered cigarette butts are unevenly distributed among both sites and plots. The average butt concentration was 2.7 m-2 (SD = 0.6 m-2, N = 862); the maximum plot concentration was 48.8 butts m-2. This heterogeneity is caused by preferential littering (gastronomy, entrances, bus stops), redistribution processes such as litter removal (gastronomy, shop owners), and the increased accumulation in plots protected from mechanized street sweeping (tree pits, bicycle stands). No significant seasonal variation of cigarette butt accumulation was observed. On average, cigarette butt accumulation is characterized by a 6 days cadence due to the rhythm and effectiveness of street sweeping (mean weekly butt accumulation rate = 0.18 m-2 d-1; SD = 0.15 m-1). Once the butt is exposed to standing water, elution of nicotine occurs rapidly. Standardized butts released 7.3 mg g-1 nicotine in a batch experiment (equivalent to 2.5 mg L-1), 50% of which occurred within the first 27 min. In the rainfall experiment, the cumulative nicotine release from fifteen consecutive precipitation events (each 1.4 mm) was 3.8 mg g-1, with 47% during the first event. According to these results, one cigarette butt may contaminate an amount of 1000 L water to concentrations above the predicted no effect concentration (PNEC) of only 2.4 × 10-3 mg L-1 (Valcárcel et al., 2011). Given the continuous littering of cigarette butts, and the rapid release of nicotine, cigarette butts are assessed to be a relevant threat to the quality of urban waters and consequently to drinking water.

  7. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  8. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  9. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  10. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  11. 46 CFR 56.75-30 - Pipe joining details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be either of the socket or butt type. When butt joints are employed the edges to be joined shall be.... Circumferential joints may be either of the butt or socket type. Where butt joints are employed, the included... annular clearance of socket joints shall be held to small clearances which experience indicates is...

  12. The Geology of East Butte, a Rhyolitic Volcanic Dome on the Eastern Snake River Plain, Idaho

    NASA Technical Reports Server (NTRS)

    Bretches, J. E.; King, J. S.

    1985-01-01

    East Butte is a prominent volcanic dome located on the eastern Snake River Plain. It is situated 51 km west of Idaho Fallls in the southeast corner of the Idaho National Engineering facility. East Butte rises 350 meters above the Quaternary basalt flows which encircle its 2.4 kilometer diameter base. Its maximum elevation is 2003 meters above sea level. East Butte is composed dominantly of rhyolite. Armstrong and others (1975) determined a K-Ar age of 0.6 +/- m.y. for a rhyolite sample from East Butte. Detailed geologic mapping revealed East Butte to be a single, large cumulo-dome composed dominantly of rhyolite. Major element geochemical analyses indicate that the rhyolite of East Butte is mildly peralkaline (molecular excess of Na2O and K2O over Al2O3 and compositionally homogeneous. Color variations in the East Butte rhyolite result from varying amounts of chemical and physical weathering and to the degree of devitrification that the glass in the groundmass of the rhyolite underwent.

  13. Whose butt is it? tobacco industry research about smokers and cigarette butt waste.

    PubMed

    Smith, Elizabeth A; Novotny, Thomas E

    2011-05-01

    Cigarette filters are made of non-biodegradable cellulose acetate. As much as 766,571 metric tons of butts wind up as litter worldwide per year. Numerous proposals have been made to prevent or mitigate cigarette butt pollution, but none has been effective; cigarette butts are consistently found to be the single most collected item in beach clean-ups and litter surveys. We searched the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu) and http://tobaccodocuments.org using a snowball strategy beginning with keywords (eg, 'filter', 'biodegradable', 'butts'). Data from approximately 680 documents, dated 1959-2006, were analysed using an interpretive approach. The tobacco industry has feared being held responsible for cigarette litter for more than 20 years. Their efforts to avoid this responsibility included developing biodegradable filters, creating anti-litter campaigns, and distributing portable and permanent ashtrays. They concluded that biodegradable filters would probably encourage littering and would not be marketable, and that smokers were defensive about discarding their tobacco butts and not amenable to anti-litter efforts. Tobacco control and environmental advocates should develop partnerships to compel the industry to take financial and practical responsibility for cigarette butt waste.

  14. Technical considerations in harvesting and sawing defective hardwood butts

    Treesearch

    Thomas W., Jr. Church; Thomas W. Church

    1971-01-01

    How important are butt defects in hardwoods? We have no reliable estimate of the volume or value of timber lost through basal injuries. However, butt defects will be almost as important in future timber harvests as they are at present. Why? Because most butt defects are due to two causes: fire and logging. Damage from both these agents may be reduced, but it certainly...

  15. Cigarette Litter: Smokers’ Attitudes and Behaviors

    PubMed Central

    Rath, Jessica M.; Rubenstein, Rebecca A.; Curry, Laurel E.; Shank, Sarah E.; Cartwright, Julia C.

    2012-01-01

    Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers’ littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers’ knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000) were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05). The majority (74.1%) of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7%) reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66) and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32). Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94). Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic waste and are harmful when disposed of improperly. PMID:22829798

  16. Aeolis Buttes

    NASA Image and Video Library

    2006-04-21

    Dozens of dark slope streaks, created by dry avalanches of dust, extend from toward the base of dust-covered buttes. Large, dust-covered, windblown ripples surround the group and occupy some of the low-lying areas between individual buttes

  17. Biostratigraphy and structural setting of the Permian Coyote Butte Formation of central Oregon.

    USGS Publications Warehouse

    Wardlaw, B.R.; Nestell, M.K.; Dutro, J.T.

    1982-01-01

    Larger isolated outcrops of the limestones of the Coyote Butte Formation consistently contain younger over older faunas that range through most of the Leonardian Series of the Early Permian. The outcrops of the Coyote Butte Formation are interpreted as right- side up blocks probably introduced into the area as one massive exotic unit. The Coyote Butte Formation is very similar to the Lower Permain limestone near Quinn River Crossing, Nevada, and both are suggested to have a similar origin. The Coyote Butte Formation was probably introduced during a late-stage event to deforming Mesozoic oceanic sediments in Mesozoic time. -Authors

  18. Petrography and stratigraphy of productive beds in the Morgan Formation, Church Buttes Unit No. 19, southwest Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, M.D.

    1977-01-01

    The combination stratigraphic and structural traps in the Morgan Formation of Pennsylvanian age of Church Buttes, Butcher Knife, and Bruff that produce gas and condensate are directly related to folding of the Church Buttes Arch in SW. Wyoming and NE. Utah. Present knowledge indicates that the Morgan gas and condensate originated in source beds in the lower Morgan formation west of the present Church Buttes Arch and were trapped mainly in porous barrier deposits in the Morgan. Folding of the Church Buttes Arch liberated these accumulations and they migrated updip in their present traps. This work summarizes the sedimentary petrographymore » of the productive beds in the Morgan Formation at the Church Buttes Unit No. 19 (SEC. 8, T 16 N, R 112 W), Uinta County, Wyoming. The stratigraphy is outlined for the whole region and the productive interval at Church Buttes is correlated with other rock units. Nearly all of the rocks studied are dolomite, which is difficult to interpret because of pronounced diagenesis. 33 references.« less

  19. Sutter Buttes-the lone volcano in California's Great Valley

    USGS Publications Warehouse

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  20. 21. On the left is the Butte Floral Co. It ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. On the left is the Butte Floral Co. It was built sometime before 1884, and housed the offices of the Daily Intermountain and the Butte Miner. The building was remodeled in 1906, and a green-glazed brick facade with three ogee-arched was added. There is a wide wooden cornice, with a band of egg-and-dart molding. The parapet is castellated. Adjacent to the Floral Co. is the Mantle and Bielenberg Building, constructed in 1891. Interesting features include the large arched entrance and romanesque-arched windows on the third floor. The original cornice has been removed. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  1. Assessing human metal accumulations in an urban superfund site.

    PubMed

    Hailer, M Katie; Peck, Christopher P; Calhoun, Michael W; West, Robert F; James, Kyle J; Siciliano, Steven D

    2017-09-01

    Butte, Montana is part of the largest superfund site in the continental United States. Open-pit mining continues in close proximity to Butte's urban population. This study seeks to establish baseline metal concentrations in the hair and blood of individuals living in Butte, MT and possible routes of exposure. Volunteers from Butte (n=116) and Bozeman (n=86) were recruited to submit hair and blood samples and asked to complete a lifestyle survey. Elemental analysis of hair and blood samples was performed by ICP-MS. Three air monitors were stationed in Butte to collect particulate and filters were analyzed by ICP-MS. Soil samples from the yards of Butte volunteers were quantified by ICP-MS. Hair analysis revealed concentrations of Al, As, Cd, Cu, Mn, Mo, and U to be statistically elevated in Butte's population. Blood analysis revealed that the concentration of As was also statistically elevated in the Butte population. Multiple regression analysis was performed for the elements As, Cu, and Mn for hair and blood samples. Soil samples revealed detectable levels of As, Pb, Cu, Mn, and Cd, with As and Cu levels being higher than expected in some of the samples. Air sampling revealed consistently elevated As and Mn levels in the larger particulate sampled as compared to average U.S. ambient air data. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. ARC-2009-ACD09-0150-007

    NASA Image and Video Library

    2009-07-22

    NASA Research Park (NRP) Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric.

  3. Geographic patterns of cigarette butt waste in the urban environment.

    PubMed

    Marah, Maacah; Novotny, Thomas E

    2011-05-01

    This reports the initial phase of a study to quantify the spatial pattern of cigarette butt waste in an urban environment. Geographic Information Systems (GIS) was used to create a weighted overlay analysis model which was then applied to the locations of businesses where cigarettes are sold or are likely to be consumed and venues where higher concentrations of butts may be deposited. The model's utility was tested using a small-scale litter audit in three zip codes of San Diego, California. We found that cigarette butt waste is highly concentrated around businesses where cigarettes are sold or consumed. The mean number of butts for predicted high waste sites was 38.1 (SD 18.87), for predicted low waste sites mean 4.8 (SD 5.9), p<0.001. Cigarette butt waste is not uniformly distributed in the urban environment, its distribution is linked to locations and patterns of sales and consumption. A GIS and weighted overlay model may be a useful tool in predicting urban locations of greater and lesser amounts of cigarette butt waste. These data can in turn be used to develop economic cost studies and plan mitigation strategies in urban communities.

  4. Geographic patterns of cigarette butt waste in the urban environment

    PubMed Central

    Novotny, Thomas E

    2011-01-01

    Background This reports the initial phase of a study to quantify the spatial pattern of cigarette butt waste in an urban environment. Methods Geographic Information Systems (GIS) was used to create a weighted overlay analysis model which was then applied to the locations of businesses where cigarettes are sold or are likely to be consumed and venues where higher concentrations of butts may be deposited. The model's utility was tested using a small-scale litter audit in three zip codes of San Diego, California. Results We found that cigarette butt waste is highly concentrated around businesses where cigarettes are sold or consumed. The mean number of butts for predicted high waste sites was 38.1 (SD 18.87), for predicted low waste sites mean 4.8 (SD 5.9), p<0.001. Conclusions Cigarette butt waste is not uniformly distributed in the urban environment, its distribution is linked to locations and patterns of sales and consumption. A GIS and weighted overlay model may be a useful tool in predicting urban locations of greater and lesser amounts of cigarette butt waste. These data can in turn be used to develop economic cost studies and plan mitigation strategies in urban communities. PMID:21504924

  5. 19. VIEW OF THE DIAMOND HEADFRAME LOOKING SOUTHEAST FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE DIAMOND HEADFRAME LOOKING SOUTHEAST FROM THE TOP OF BUTTE HILL. THE DRIES ARE ON THE LEFT, WITH THE TAR HOUSE, TOILET, AND ROPE CLAMP CLEANING TO THE RIGHT - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  6. DEGRADATION OF EMISSIONS CONTROL PERFORMANCE OF WOODSTOVES IN CRESTED BUTTE, CO

    EPA Science Inventory

    The report discusses the degradation of emissions control performance of woodstoves in Crested Butte, Colorado. Four seasons of field monitoring of EPA-certified woodstoves in and around Crested Butte has demonstrated some significant failures in emissions control performance. In...

  7. Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon

    DOE Data Explorer

    John Akerley

    2011-10-12

    This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.

  8. 14. LOW OBLIQUE VIEW OF WEST ELEVATION, FROM OPPOSITE BANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. LOW OBLIQUE VIEW OF WEST ELEVATION, FROM OPPOSITE BANK OF BUTTE CREEK Historic photograph no. 136, no date, held at Media Arts and Services Department, Pacific Gas & Electric Co., San Francisco, CA. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  9. 4. CARPENTER AND MACHINE SHOP AT EAST GREY ROCK MINE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CARPENTER AND MACHINE SHOP AT EAST GREY ROCK MINE, LOOKING EAST. THIS IS SAID TO BE THE OLDEST MINE BUILDING LEFT ON BUTTE HILL. SHIV WHEELS FROM VARIOUS LOCATIONS AROUND THE HILL ARE ALSO VISIBLE - Butte Mineyards, Butte, Silver Bow County, MT

  10. Oregon Department of Transportation greenroads pilot project : US 97 : Lava Butte-S. Century Drive section.

    DOT National Transportation Integrated Search

    2011-02-01

    This project is a Greenroads Pilot Project on the Oregon Department of Transportation (ODOT) project "US 97: Lava Butte S. : Century Drive Section." Greenroads is a sustainability rating system for roadway design and construction (a complete desc...

  11. 78 FR 21582 - Revisions to the California State Implementation Plan, Butte County Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... the California State Implementation Plan, Butte County Air Quality Management District and Sacramento Metropolitan Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Butte County Air Quality Management...

  12. 77 FR 12106 - Kapka Butte Sno-Park Construction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Kapka Butte Sno-Park Construction... Construction project. SUMMARY: The FHWA is issuing this notice to advise the public that the FHWA is officially designated as the Joint-Lead Agency pursuant to 23 U.S.C. 139(c)(1) for the Kapka Butte Sno-Park Construction...

  13. Whose butt is it? tobacco industry research about smokers and cigarette butt waste

    PubMed Central

    Novotny, Thomas E

    2011-01-01

    Background Cigarette filters are made of non-biodegradable cellulose acetate. As much as 766 571 metric tons of butts wind up as litter worldwide per year. Numerous proposals have been made to prevent or mitigate cigarette butt pollution, but none has been effective; cigarette butts are consistently found to be the single most collected item in beach clean-ups and litter surveys. Methods We searched the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu) and http://tobaccodocuments.org using a snowball strategy beginning with keywords (eg, ‘filter’, ‘biodegradable’, ‘butts’). Data from approximately 680 documents, dated 1959–2006, were analysed using an interpretive approach. Results The tobacco industry has feared being held responsible for cigarette litter for more than 20 years. Their efforts to avoid this responsibility included developing biodegradable filters, creating anti-litter campaigns, and distributing portable and permanent ashtrays. They concluded that biodegradable filters would probably encourage littering and would not be marketable, and that smokers were defensive about discarding their tobacco butts and not amenable to anti-litter efforts. Conclusions Tobacco control and environmental advocates should develop partnerships to compel the industry to take financial and practical responsibility for cigarette butt waste. PMID:21504919

  14. 77 FR 33211 - Horse Butte Wind I LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1838-000] Horse Butte Wind I LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Horse Butte...

  15. [Even cigarette butts can impact environment and health: preliminary considerations].

    PubMed

    Martino, Gianrocco; Gorini, Giuseppe; Chellini, Elisabetta

    2013-01-01

    In Italy, every year about 72 billion of cigarette butts are thrown away in the environment. Cigarette butts represent 50% of the wastes of urban areas (parks, roads) in the world, and 40% of Mediterranean Sea wastes. In particular, total polluting load is constituted of 1,872 Bq millions of Polonium-210, assuming 75 mBq per cigarette butt, and 1,800 tons of volatile organic compounds. As a matter of fact, according to several surveys, cigarette butts are considered by smokers and non-smokers as a common and acceptable waste in the environment. In 2008, European Union issued a Directive on wastes considering the «extended producer responsibility» (i.e., every industry is liable for costs of collection, transport and disposal of its own products). In October 2012, the Italian Parliament proposed a bill that classifies cigarette butts as special wastes in the frame of this responsibility. It could be interesting in the future to follow the legislative process of that bill in the Italian Parliament in order to show how strong it will be supported.

  16. Mineral resource potential maps of the Fiddler Butte Wilderness Study Area and the Fremont Gorge Study Area, Garfield and Wayne counties, Utah

    USGS Publications Warehouse

    Larson, M.J.; Dubiel, R.F.; Peterson, Fred; Willson, W.R.; Briggs, J.P.

    1985-01-01

    Field and laboratory investigations of the Fiddler Butte WSA (Wilderness Study Area) in Garfield County, Utah, and of the Fremont Gorge study area in Wayne County, Utah, were made to determine the mineral resource potential of these lands. The investigations indicate that two areas in the northeastern and southwestern parts of the Fiddler Butte WSA have a moderate potential for uranium resources. The entire Fiddler Butte WSA has a moderate potential for petroleum resources, and the northeastern part of the WSA has a high potential for tar sand resources. The studies indicate a low potential for metallic and nonmetallic resources in the Fiddler Butte WSA. The Fremont Gorge study area has a low potential for metallic, nonmetallic, and petroleum resources.

  17. 77 FR 61020 - Notice of Availability of Final Environmental Impact Statement for the Sigurd to Red Butte No. 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ...; UTU-83067] Notice of Availability of Final Environmental Impact Statement for the Sigurd to Red Butte... (BLM) has prepared a Final Environmental Impact Statement (EIS) for the Sigurd to Red Butte No. 2--345...; Utah School and Institutional Trust Lands Administration; Millard, Sevier, Beaver, Iron, and Washington...

  18. Butte Digital Image Project: Shifting Focus from Collection to Community

    ERIC Educational Resources Information Center

    Pierson, Patricia

    2010-01-01

    The Butte Free Public Library was established in 1894. At that time, head librarian J. Davies published a catalog of the opening collection. Two fires and one flood later, many of the monographs from that original collection list have, remarkably, survived. Because of this, in part, the library, now known as the Butte-Silver Bow Public Library…

  19. ARC-2009-ACD09-0150-002

    NASA Image and Video Library

    2009-07-22

    NASA Research Park (NRP) Moffett Field, California: Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation.

  20. Assessment of blood lead level declines in an area of historical mining with a holistic remediation and abatement program.

    PubMed

    Schoof, Rosalind A; Johnson, Dina L; Handziuk, Emma R; Landingham, Cynthia Van; Feldpausch, Alma M; Gallagher, Alexa E; Dell, Linda D; Kephart, Amy

    2016-10-01

    Lead exposure and blood lead levels (BLLs) in the United States have declined dramatically since the 1970s as many widespread lead uses have been discontinued. Large scale mining and mineral processing represents an additional localized source of potential lead exposure in many historical mining communities, such as Butte, Montana. After 25 years of ongoing remediation efforts and a residential metals abatement program that includes blood lead monitoring of Butte children, examination of blood lead trends offers a unique opportunity to assess the effectiveness of Butte's lead source and exposure reduction measures. This study examined BLL trends in Butte children ages 1-5 (n= 2796) from 2003-2010 as compared to a reference dataset matched for similar demographic characteristics over the same period. Blood lead differences across Butte during the same period are also examined. Findings are interpreted with respect to effectiveness of remediation and other factors potentially contributing to ongoing exposure concerns. BLLs from Butte were compared with a reference dataset (n=2937) derived from the National Health and Nutrition Examination Survey. The reference dataset was initially matched for child age and sample dates. Additional demographic factors associated with higher BLLs were then evaluated. Weights were applied to make the reference dataset more consistent with the Butte dataset for the three factors that were most disparate (poverty-to-income ratio, house age, and race/ethnicity). A weighted linear mixed regression model showed Butte geometric mean BLLs were higher than reference BLLs for 2003-2004 (3.48vs. 2.05µg/dL), 2005-2006 (2.65vs. 1.80µg/dL), and 2007-2008 (2.2vs. 1.72µg/dL), but comparable for 2009-2010 (1.53vs. 1.51µg/dL). This trend suggests that, over time, the impact of other factors that may be associated with Butte BLLs has been reduced. Neighborhood differences were examined by dividing the Butte dataset into the older area called "Uptown", located at higher elevation atop historical mine workings, and "the Flats", at lower elevation and more recently developed. Significant declines in BLLs were observed over time in both areas, though Uptown had slightly higher BLLs than the Flats (2003-2004: 3.57vs. 3.45µg/dL, p=0.7; 2005-2006: 2.84vs. 2.52µg/dL, p=0.1; 2007-2008: 2.58vs. 1.99µg/dL, p=0.001; 2009-2010: 1.71vs. 1.44µg/dL, p=0.02). BLLs were higher when tested in summer/fall than in winter/spring for both neighborhoods, and statistically higher BLLs were found for children in Uptown living in properties built before 1940. Neighborhood differences and the persistence of a greater percentage of high BLLs (>5µg/dL) in Butte vs. the reference dataset support continuation of the home lead abatement program. Butte BLL declines likely reflect the cumulative effectiveness of screening efforts, community-wide remediation, and the ongoing metals abatement program in Butte in addition to other factors not accounted for by this study. As evidenced in Butte, abatement programs that include home evaluations and assistance in addressing multiple sources of lead exposure can be an important complement to community-wide soil remediation activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. 75 FR 16828 - Notice of Availability of the Draft Environmental Impact Statement for the Proposed West Butte...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... construction of up to 52 wind turbines and ancillary facilities. The project is 25 miles southeast of Bend... Butte Wind Power Right-of-Way, Crook and Deschutes Counties, OR AGENCY: Bureau of Land Management... Statement (EIS) for the West Butte Wind Power Right-of-Way and by this notice is announcing the opening of...

  2. ELECTRICAL LINES ARRIVE FROM CENTRAL FACILITIES AREA, SOUTH OF MTR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRICAL LINES ARRIVE FROM CENTRAL FACILITIES AREA, SOUTH OF MTR. EXCAVATION RUBBLE IN FOREGROUND. CONTRACTOR CRAFT SHOPS, CRANES, AND OTHER MATERIALS ON SITE. CAMERA FACES EAST, WITH LITTLE BUTTE AND MIDDLE BUTTE IN DISTANCE. INL NEGATIVE NO. 335. Unknown Photographer, 7/1/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Radio and television use in Butte County, California: application to fire prevention

    Treesearch

    William S. Folkman

    1975-01-01

    A sample of Butte County residents were interviewed about their radio and television use habits. Their responses were analyzed in terms of demographic, social, and economic characteristics. The findings can be used in developing more effective fire prevention programs. Most people in Butte County listen to the radio or watch television but they differ widely in the way...

  4. Butt-log grade distributions for five Appalachian hardwood species

    Treesearch

    John R. Myers; Gary W. Miller; Harry V., Jr. Wiant; Joseph E. Barnard; Joseph E. Barnard

    1986-01-01

    Tree quality is an important factor in determining the market value of hardwood timber stands, but many forest inventories do not include estimates of tree quality. Butt-log grade distributions were developed for northern red oak, black oak, white oak, chestnut oak, and yellow-poplar using USDA Forest Service log grades on more than 4,700 trees in West Virginia. Butt-...

  5. Flood hydrology of Butte Basin, 1973-77 water years, Sacramento Valley, California

    USGS Publications Warehouse

    Simpson, R.G.

    1978-01-01

    Flooding in Butte Basin, CA., is caused primarily by overflow from the Sacramento River on the western boundary. Stage and discharge data were collected during 1973-77 at 6 recording and 45 crest-stage gages within the basin and combined with discharge records on the main channel of the Sacramento River to determine total flow and flow distribution at the latitudes of Ord Ferry, Butte City, and Gridley Road. Water-surface profiles throughout the basin, inflow/change-in-storage/outflow relations of the Butte Sink, and channel changes of the Sacramento River are shown. During 1973-77, total peak flows decreased an average of 7 percent between the latitudes of Ord Ferry and Butte City, with measured peaks from 100,000 to 200,000 cfs (cubic feet per second). The largest floodflow measured was 195,000 cfs on January 17, 1974, at the latitude of Ord Ferry. For a given flood, overland flow did not change significantly in peak magnitude between Afton Boulevard, Butte City, and Gridley road. Overland flows of about 45,000 and about 24,000 cfs were measured on January 18 and April 1, 1974, respectively. (Woodard-USGS)

  6. Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe?

    PubMed

    Suárez-Rodríguez, Monserrat; López-Rull, Isabel; Garcia, Constantino Macías

    2013-02-23

    Birds are known to respond to nest-dwelling parasites by altering behaviours. Some bird species, for example, bring fresh plants to the nest, which contain volatile compounds that repel parasites. There is evidence that some birds living in cities incorporate cigarette butts into their nests, but the effect (if any) of this behaviour remains unclear. Butts from smoked cigarettes retain substantial amounts of nicotine and other compounds that may also act as arthropod repellents. We provide the first evidence that smoked cigarette butts may function as a parasite repellent in urban bird nests. The amount of cellulose acetate from butts in nests of two widely distributed urban birds was negatively associated with the number of nest-dwelling parasites. Moreover, when parasites were attracted to heat traps containing smoked or non-smoked cigarette butts, fewer parasites reached the former, presumably due to the presence of nicotine. Because urbanization changes the abundance and type of resources upon which birds depend, including nesting materials and plants involved in self-medication, our results are consistent with the view that urbanization imposes new challenges on birds that are dealt with using adaptations evolved elsewhere.

  7. Stratigraphy of the Oliocene Sullivan Buttes Latite constrains transition zone development in Chino Valley, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, S.A.; Riggs, N.R.

    The 26.7--23.4 Ma Sullivan Buttes Latite of Chino Valley, Yavapai County, Arizona, erupted during the development of the Transition Zone between the Basin and Range and Colorado Plateau provinces. Detailed mapping and stratigraphic analysis of a portion of the volcanic field indicate volcanism began with the eruption of a shoshonite lava flow and associated cinder cone. Amphibole latite domes then erupted fallouts, surges, and mass flow breccias and culminated activity with a lava flow. Extrusive units from a biotite oxidized latite center to the east interfinger with the older amphibole lattice volcaniclastics. Sullivan Buttes Latite units erupted onto Precambrian andmore » lower Paleozoic strata and Tertiary gravels; the scarp of upper Paleozoic strata equivalent to the paleo' Mogollon Rim had retreated from the area by the time of emplacement of the oldest Sullivan Buttes Latite unit. Subsequent 15--10 Ma Hickey Formation basalts flowed onto an erosion surface cut into Sullivan Buttes deposits, and the nearby Verde River downcut through younger 4.62 Ma Perkinsville Formation basalt. Both situations demonstrate erosion and degradation post Sullivan Buttes activity. Normal faults offsetting Hickey Formation basalts and all older units constrain Basin and Range structural activity to 15 Ma or younger. These stratigraphic relationships of the Sullivan Buttes Latite in the context of Transition Zone development concur with 65--18 Ma retreat of the upper Paleozoic scarp and below-scarp aggradation, 18--12 Ma Basin and Range faulting, and subsequent degradation.« less

  8. Metal loading in Soda Butte Creek upstream of Yellowstone National Park, Montana and Wyoming; a retrospective analysis of previous research; and quantification of metal loading, August 1999

    USGS Publications Warehouse

    Boughton, G.K.

    2001-01-01

    Acid drainage from historic mining activities has affected the water quality and aquatic biota of Soda Butte Creek upstream of Yellowstone National Park. Numerous investigations focusing on metals contamination have been conducted in the Soda Butte Creek basin, but interpretations of how metals contamination is currently impacting Soda Butte Creek differ greatly. A retrospective analysis of previous research on metal loading in Soda Butte Creek was completed to provide summaries of studies pertinent to metal loading in Soda Butte Creek and to identify data gaps warranting further investigation. Identification and quantification of the sources of metal loading to Soda Butte Creek was recognized as a significant data gap. The McLaren Mine tailings impoundment and mill site has long been identified as a source of metals but its contribution relative to the total metal load entering Yellowstone National Park was unknown. A tracer-injection and synoptic-sampling study was designed to determine metal loads upstream of Yellowstone National Park.A tracer-injection and synoptic-sampling study was conducted on an 8,511-meter reach of Soda Butte Creek from upstream of the McLaren Mine tailings impoundment and mill site downstream to the Yellowstone National Park boundary in August 1999. Synoptic-sampling sites were selected to divide the creek into discrete segments. A lithium bromide tracer was injected continuously into Soda Butte Creek for 24.5 hours. Downstream dilution of the tracer and current-meter measurements were used to calculate the stream discharge. Stream discharge values, combined with constituent concentrations obtained by synoptic sampling, were used to quantify constituent loading in each segment of Soda Butte Creek.Loads were calculated for dissolved calcium, silica, and sulfate, as well as for dissolved and total-recoverable iron, aluminum, and manganese. Loads were not calculated for cadmium, copper, lead, and zinc because these elements were infrequently detected in mainstem synoptic samples. All of these elements were detected at high concentrations in the seeps draining the McLaren Mine tailings impoundment. The lack of detection of these elements in the downstream mainstem synoptic samples is probably because of sorption (coprecipitation and adsorption) to metal colloids in the stream.Most of the metal load that entered Soda Butte Creek was contributed by the inflows draining the McLaren Mine tailings impoundment (between 505 meters and 760 meters downstream from the tracer-injection site), Republic Creek (1,859 meters), and Unnamed Tributary (8,267 meters). Results indicate that treatment or removal of the McLaren Mine tailings impoundment would greatly reduce metal loading in Soda Butte Creek upstream of Yellowstone National Park. However, removing only that single source may not reduce metal loads to acceptable levels. The sources of metal loading in Republic Creek and Unnamed Tributary merit further investigation.

  9. Geomorphic analysis of the Middle Rio Grande-Elephant Butte Reach, New Mexico

    Treesearch

    Tracy Elizabeth Owen

    2012-01-01

    The Elephant Butte Reach spans about 30 miles, beginning from the South Boundary of the Bosque del Apache National Wildlife Refuge (River Mile 73.9) to the "narrows" of the Elephant Butte Reservoir (River Mile 44.65), in central New Mexico. Sediment plugs occasionally form along the Middle Rio Grande, completely blocking the main channel of the river. In 1991...

  10. 78 FR 39311 - Notice of Intent To Prepare a Resource Management Plan Amendment and an Associated Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... approximately 45 acres at the top of Glass Buttes from a VRM class 2 to a VRM class 4. The BLM intends to... atop Glass Buttes in the BLM Prineville District. This notice announces the beginning of the scoping... may submit comments on issues and planning criteria related to the Glass Buttes Communication Site and...

  11. East Butte: A volcanic dome of the Eastern Snake River Plain, Idaho

    NASA Technical Reports Server (NTRS)

    Bretches, J. E.; King, J. S.

    1984-01-01

    Preliminary mapping shows East Butte to be a single, large cumulo-dome composed dominantly of rhyolite which can be classified into three main groups based on color and structure. The rhyolite of East Butte is aphanitic with phenocrysts of sanidine and quartz which vary from 1 to 5 mm in length. Vesicular reddish black inclusions of basalt up to 10 cm in length, found in all varieties of the East Butte rhyolites are believed to have originated from fragmentation of the basalt walls of the conduit by rhyolitic magma as it was emplaced. Most of the inclusions contain plagioclase phenocrysts. These phenocrysts measure up to 1 to 2 cm in length and have a typical euhedral, tabular habit. A 250-m diameter depression which has the appearance of a crater is located at the top of East Butte. Evidence supporting the fact that the depression is a crater is displayed by three small (3 to 5 m in height) mounds of massive rhyolite which border the depression.

  12. 76 FR 43341 - Notice of Availability of the Record of Decision for the West Butte Wind Power Right-of-Way...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... construction of up to 52 wind turbines and ancillary facilities on adjacent private land. The portion of the... LVRWH09H0600; HAG 10-0338] Notice of Availability of the Record of Decision for the West Butte Wind Power Right... INFORMATION CONTACT: Steve Storo, BLM West Butte Wind Power Right-of-Way Project Lead: telephone (541) 416...

  13. ARC-2009-ACD09-0150-003

    NASA Image and Video Library

    2009-07-22

    Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation. The company is based at the NASA Research Park (NRP) Moffett Field, California as a lease holder.

  14. Bali Cattle Carcass Characteristic of Different Butt Shape Condition

    NASA Astrophysics Data System (ADS)

    Hafid, H.; Nuraini; Inderawati; Kurniawan, W.

    2018-02-01

    Carcass was main product on cattle slaughtering which contain beef for human consumption and it has high nutritional and economical value. Carcass production on cattle has been influenced by several factors, such as cattle breed, feed, and body conformation. Cattle Butt Shape was one of part cattle body conformation which allegedly has have positive correlation on produced carcass. This research was aimed to evaluate Butt Shape condition influenced on Bali cattle carcass characteristic. The research was using Bali cattle which slaughter in Kendari Slaughtering House (Rumah Potong Hewan/RPH - Kendari). The observation includes weighing, and measuring parts of carcass was conducted on 60 heads of Halal process slaughtered Bali cattle which traditionally maintained. The research parameters were carcass productivity parameters i.e: slaughtering weight, carcass weight and length, leg length and circumstances. Obtained data were analyzed using Complete Randomized Design and post hoc analyzed using Least Significant Different if have any influence. The research result showed that cattle Butt Shape condition have significant (p<0, 05) influence on all Bali cattle carcass productivity parameters. Butt shape with B category was result the best carcass productivity compare the others, while C category was better than D. It can be concluded that body and carcass weight were linearly influenced by cattle butt shape.

  15. Microstructural and strain rate effects on plastic deformation in aluminum 2219-T87

    NASA Astrophysics Data System (ADS)

    Rincon, Carlos D.

    A fundamental investigation has been conducted on the effects of microstructure and strain rate on the plastic deformation of theta-prime-strengthened 2219 aluminum. The motivation for this work is based upon a previous study which showed inhomogeneous and locally extreme work hardening in the HAZ regions in VPPA 2219-T87 butt welds. This strongly suggests that the HAZ microstructure plays a major role in the deformation and fracture process in precipitation hardened aluminum alloy 2219. Tensile specimens of the weld joint exhibited more rapid work hardening in the heat-affected-zone (HAZ) at higher strain levels. Microhardness contour maps for these welds illustrated that late stage deformation was concentrated in two crossing bands at about 45sp° to the tensile axis. The width of the deformation bands and the ultimate tensile strength seemed to be dictated by the amount of work hardening in the HAZ. In this study, three different heat treatments were used to produce samples with different particle sizes and particle spacings, but all hardened by copper aluminide precipitates of the thetasp' structure. The heat treatments were categorized as being (A) as-received T87 condition, (B) T87 condition aged at approximately 204sp°C for 3 hours and (C) T87 over-aged at 204sp°C for 7 days. Uniaxial tensile tests consisted of two sets of experiments: (1) three heat treatments (A, B, and C) at two strain rates (0.02 minsp{-1} and 0.2 minsp{-1}) and (2) three heat treatments that were interrupted at select stress-strain levels (0.8% and 2% total strain) during the tensile tests at strain rate equal to 0.02 minsp{-1} at room temperature. Furthermore, a detailed transmission electron microscopy (TEM) study demonstrates the microstructural development during tensile deformation. The Voce equation of strain-hardening provides a slightly better fit to the tensile curves than the Ludwik-Hollomon equation. At higher strains, localized areas showed strain fields around thetasp' platelets had diminished. Lastly, in every treatment, both the yield and tensile strength were slightly higher for the higher strain rate, but only by 0.5 to 2.0 ksi.

  16. The microstructure and fracture behavior of the dissimilar alloy 690-SUS 304L joint with various Nb addition

    NASA Astrophysics Data System (ADS)

    Lee, H. T.; Jeng, S. L.; Kuo, T. Y.

    2003-05-01

    This study investigates the microstructure and fracture behavior of dissimilar weldments of alloy 690 and SUS 304L for various additions of niobium (0.1, 1.03, 2.49, and 3.35 wt pct) in the flux. With identical parameters and procedures, weldments were butt welded by the shielding metal arc welding (SMAW) process using three layers, with each layer being deposited in a single pass. The results indicate that the microstructure of the fusion zone was primarily dendritic and that the contents of Ni, Cr, and Fe within this zone remain relatively constant and resemble alloy 690. With Nb addition, it is noted that the microstructure changes from a cellular to columnar dendrite and equiaxed dendrite. Meanwhile, the dendrite arm spacing reduces and the secondary arms grow longer. Moreover, the composition of the interdendritic phase, whose precipitate volume percentage increases from 5 to 25 pct, changes from Al-Ti-O to Nb rich. The spread of the interdendritic phase is less in the root bead than in the cap bead due to the greater influence of base metal dilution in this region. Mechanical tests indicate that Nb addition increases the average hardness of the weldment and reduces its elongation prior to rupture. However, the tensile strength is essentially unchanged by Nb addition. It is found that the average hardness of the root bead is generally lower than the cap bead, and that the tensile specimens all rupture in the fusion zone, with the fracture surfaces exhibiting ductile features. It is noted that the cap bead tends to rupture interdendritically with increasing Nb addition. Finally, fractography shows that the dimples in the root become larger and shallower with Nb addition and are rich with an interdendritic phase.

  17. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    NASA Astrophysics Data System (ADS)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the stainless steel resulted in embrittlement as discussed by Glickman.

  18. Cigarette Waste in Popular Beaches in Thailand: High Densities that Demand Environmental Action

    PubMed Central

    Kungskulniti, Nipapun; Charoenca, Naowarut; Hamann, Stephen L.; Pitayarangsarit, Siriwan; Mock, Jeremiah

    2018-01-01

    Thailand, like all nations, has a responsibility to initiate environmental actions to preserve marine environments. Low- and middle-income countries face difficulties implementing feasible strategies to fulfill this ambitious goal. To contribute to the revitalization of Thailand’s marine ecosystems, we investigated the level of tobacco product waste (TPW) on Thailand’s public beaches. We conducted a cross-sectional observational survey at two popular public beaches. Research staff collected cigarette butts over two eight-hour days walking over a one-kilometer stretch of beach. We also compiled and analyzed data on butts collected from sieved sand at 11 popular beaches throughout Thailand’s coast, with 10 samples of sieved sand collected per beach. Our survey at two beaches yielded 3067 butts in lounge areas, resulting in a mean butt density of 0.44/m2. At the 11 beaches, sieved sand samples yielded butt densities ranging from 0.25 to 13.3/m2, with a mean butt density of 2.26/m2 (SD = 3.78). These densities show that TPW has become a serious problem along Thailand’s coastline. Our findings are comparable with those in other countries. We report on government and civil society initiatives in Thailand that are beginning to address marine TPW. The solution will only happen when responsible parties, especially and primarily tobacco companies, undertake actions to eliminate TPW. PMID:29596385

  19. Petrography and petrology of Smoky Butte intrusives, Garfield County, Montana

    USGS Publications Warehouse

    Matson, Robert E.

    1960-01-01

    The Smoky Butte intrusives are located in T. 18 N., R. 36 E. Garfield County, Montana on the extreme eastern edge of the petrographic province of Central Montana. They consist of dikes and plugs arranged in linear, en-echelon pattern with a northeast trend and intrude the Tullock member (Paleocene age) of the Fort Union formation. Extrusive rocks are absent. The rocks are potassium-rich volcanic types showing a disequilibrium mineral assemblage consisting of sanidine, leucite, biotite, olivine, pyroxene, magnetite plus. ilmenite, apatite, calcite, quartz, and a yellowish to dark greenish glassy groundmass. Two chemical analyses of Smoky Butte rocks show high magnesium, potassium, titanium, and phosphorous and low aluminum and sodium content. The two norm calculations show that the rocks are oversaturated with 1.3 and 3.1 per-cent excess silica. Because of the peculiar nature of the Smoky Butte rocks, descriptive names have been applied to them. They are divided into six different types. Three periods of intrusion are proposed for Smoky Butte quarry where three rock types crop out. Other evidence for multiple injection occurs in several multiple dikes. The upper contact of the intrusion is visible on a few plugs and dikes. Smoky Butte rocks show some similarities to the undersaturated potassium-rich rocks of the Highwood and Bearpaw Mountains of Montana, the rocks of the Leucite Hills of Wyoming, and the oversaturated rocks of the West Kimberly District of Australia.

  20. Cigarette Waste in Popular Beaches in Thailand: High Densities that Demand Environmental Action.

    PubMed

    Kungskulniti, Nipapun; Charoenca, Naowarut; Hamann, Stephen L; Pitayarangsarit, Siriwan; Mock, Jeremiah

    2018-03-29

    Thailand, like all nations, has a responsibility to initiate environmental actions to preserve marine environments. Low- and middle-income countries face difficulties implementing feasible strategies to fulfill this ambitious goal. To contribute to the revitalization of Thailand's marine ecosystems, we investigated the level of tobacco product waste (TPW) on Thailand's public beaches. We conducted a cross-sectional observational survey at two popular public beaches. Research staff collected cigarette butts over two eight-hour days walking over a one-kilometer stretch of beach. We also compiled and analyzed data on butts collected from sieved sand at 11 popular beaches throughout Thailand's coast, with 10 samples of sieved sand collected per beach. Our survey at two beaches yielded 3067 butts in lounge areas, resulting in a mean butt density of 0.44/m². At the 11 beaches, sieved sand samples yielded butt densities ranging from 0.25 to 13.3/m², with a mean butt density of 2.26/m² (SD = 3.78). These densities show that TPW has become a serious problem along Thailand's coastline. Our findings are comparable with those in other countries. We report on government and civil society initiatives in Thailand that are beginning to address marine TPW. The solution will only happen when responsible parties, especially and primarily tobacco companies, undertake actions to eliminate TPW.

  1. A Process to Reduce DC Ingot Butt Curl and Swell

    NASA Astrophysics Data System (ADS)

    Yu, Ho

    1980-11-01

    A simple and effective process to reduce DC ingot butt curl and swell has been developed in the Ingot Casting Division of Alcoa Technical Center.1 In the process, carbon dioxide gas is dissolved under high pressure into the ingot cooling water upstream of the mold during the first several inches of the ingot cast. As the cooling water exits from the mold, the dissolved gas evolves as micron-size bubbles, forming a temporary effective insulation layer on the ingot surface. This reduces thermal stress in the ingot butt. An insulation pad covering about 60% of the bottom block is used in conjunction with the carbon dioxide injection when maximum butt swell reduction is desired. The process, implemented in four Alcoa ingot plants, has proven extremely successful.

  2. Farewell to Murray Buttes Image 2

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows sloping buttes and layered outcrops within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21042

  3. Pueblo Folklore, Landscape Phenomenology and the Visual Poetics of Fajada Butte

    NASA Astrophysics Data System (ADS)

    Carey, C.

    2009-08-01

    In the interest of reexamining the site of Fajada Butte in Chaco Canyon, this paper seeks to recontextualize discussions of its controversial spiral petroglyphs and astronomical phenomena (Sun Daggers) with reference to landscape phenomenology, visual and literary poetics, and the astronomical orientation of contemporary Pueblo ceremonial practices. The dearth of recent scholarship on Fajada Butte may have arisen from the many controversial arguments about its function from a variety of disciplinary locations including archaeology, anthropology, geology, and archeoastronomy. Via an emphasis on the physical landscape, storytelling, contemporary ceremonial practices and ancestral ties to Chaco Canyon, the Zuni and Hopi pueblos provide a context for re-examining the astronomical phenomena of Fajada Butte as a natural shrine of the of Chacoan culture and repository of an array of symbolic content.

  4. 54. The Curtis Music Hall (15 West Park) dates from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. The Curtis Music Hall (15 West Park) dates from 1892. This is one if the more architecturally interesting buildings remaining in Butte, with a variety of window types, a corbelled parapet extending over one bay, a central gable flanked by decorative square towers, a turret, and a richly decorated facade. The storefront has been modernized with plate glass windows and a metal canopy. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  5. 76 FR 70132 - Federal Home Loan Bank Members Selected for Community Support Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Bank Hyannis Massachusetts Northeast Bank Lewiston Maine Bangor Savings Bank Bangor Maine Bangor... Guam, Inc Agana Guam Panhandle State Bank Sandpoint Idaho First Citizens Bank of Butte Butte Montana...

  6. 5. INTERIOR VIEW OF POWER HOUSE, LOOKING SOUTH, SHOWING 1500 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW OF POWER HOUSE, LOOKING SOUTH, SHOWING 1500 HP TURBINE AND GENERATOR IN FOREGROUND, FRANCIS TURBINE AND GENERATOR AT REAR - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  7. 28. Brick apartment buildings with arched window openings, string courses, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Brick apartment buildings with arched window openings, string courses, a brick cornice, and an interrupted brick frieze. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  8. The geology of Pine and Crater Buttes: Two basaltic constructs on the far eastern Snake River Plain

    NASA Technical Reports Server (NTRS)

    Mazierski, Paul F.; King, John S.

    1987-01-01

    The emplacement history and petrochemical evolution of the volcanics associated with Pine Butte, Crater Butte, and other nearby vents are developed and described. Four major vents were identified in the study area and their associated eruptive products were mapped. All of the vents show a marked physical elongation or linear orientation coincident with the observed rift set. Planetary exploration has revealed the importance of volcanic processes in the genesis and modification of extraterrestrial surfaces. Interpretation of surface features has identified plains-type basaltic volcanism in various mare regions of the Moon and the volcanic provinces of Mars. Identification of these areas with features that appear analogous to those observed in the Pine Butte area suggests similar styles of eruption and mode of emplacement. Such terrestrial analogies serve as a method to interpret the evolution of volcanic planetary surfaces on the inner planets.

  9. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  10. Regulating the disposal of cigarette butts as toxic hazardous waste

    PubMed Central

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  11. Contraband tobacco on post-secondary campuses in Ontario, Canada: analysis of discarded cigarette butts

    PubMed Central

    2013-01-01

    Background No studies to date have assessed young adults’ use of First Nations/Native tobacco, a common form of contraband tobacco in Canada. This study examined the proportion of First Nations/Native cigarette butts discarded on post-secondary campuses in the province of Ontario, and potential differences between colleges and universities and across geographical regions. Methods In 2009, discarded cigarette butts were collected from high-traffic smoking locations at 12 universities and 13 colleges purposively selected to represent a variety of institutions from all 7 health service regions across Ontario. Cigarette butts were identified as First Nations/Native tobacco if they were: known First Nations/Native brands; had names not matching domestic and international legally-manufactured cigarettes; had no visible branding or logos. Results Of 36,355 butts collected, 14% (95% CI = 9.75–19.04) were First Nations/Native. Use of this tobacco was apparent on all campuses, accounting for as little as 2% to as much as 39% of cigarette consumption at a particular school. Proportions of First Nations/Native butts were not significantly higher on colleges (M = 17%) than universities (M = 12%), but were significantly higher in the North region. Conclusions The presence of cheap First Nations/Native (contraband) tobacco on post-secondary campuses suggests the need for regulation and public education strategies aimed to reduce its use. Strategies should account for regional variations, and convey messages that resonate with young adults. Care must be taken to present fair messages about First Nations/Native tobacco, and avoid positioning regulated tobacco as a healthier option than contraband. PMID:23577796

  12. Cigarettes Butts and the Case for an Environmental Policy on Hazardous Cigarette Waste

    PubMed Central

    Novotny, Thomas E.; Lum, Kristen; Smith, Elizabeth; Wang, Vivian; Barnes, Richard

    2009-01-01

    Discarded cigarette butts are a form of non-biodegradable litter. Carried as runoff from streets to drains, to rivers, and ultimately to the ocean and its beaches, cigarette filters are the single most collected item in international beach cleanups each year. They are an environmental blight on streets, sidewalks, and other open areas. Rather than being a protective health device, cigarette filters are primarily a marketing tool to help sell ‘safe’ cigarettes. They are perceived by much of the public (especially current smokers) to reduce the health risks of smoking through technology. Filters have reduced the machine-measured yield of tar and nicotine from burning cigarettes, but there is controversy as to whether this has correspondingly reduced the disease burden of smoking to the population. Filters actually may serve to sustain smoking by making it seem less urgent for smokers to quit and easier for children to initiate smoking because of reduced irritation from early experimentation. Several options are available to reduce the environmental impact of cigarette butt waste, including developing biodegradable filters, increasing fines and penalties for littering butts, monetary deposits on filters, increasing availability of butt receptacles, and expanded public education. It may even be possible to ban the sale of filtered cigarettes altogether on the basis of their adverse environmental impact. This option may be attractive in coastal regions where beaches accumulate butt waste and where smoking indoors is increasingly prohibited. Additional research is needed on the various policy options, including behavioral research on the impact of banning the sale of filtered cigarettes altogether. PMID:19543415

  13. 17. VIEW OF THE DIAMOND MINEYARD LOOKING NORTHEAST. THE DRIES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE DIAMOND MINEYARD LOOKING NORTHEAST. THE DRIES ARE ON THE LEFT, WITH THE TAR HOUSE, TOILET, AND ROPE CLAMP CLEANING BUILDING TO THE RIGHT - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  14. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  15. 40 CFR 81.342 - South Dakota.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... County Butte County Campbell County Charles Mix County Clark County Clay County Codington County Corson... County Brule County Buffalo County Butte County Campbell County Charles Mix County Clark County Clay... Charles Mix County Unclassifiable/Attainment Clark County Unclassifiable/Attainment Clay County...

  16. 40 CFR 81.342 - South Dakota.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... County Butte County Campbell County Charles Mix County Clark County Clay County Codington County Corson... County Brule County Buffalo County Butte County Campbell County Charles Mix County Clark County Clay... Charles Mix County Unclassifiable/Attainment Clark County Unclassifiable/Attainment Clay County...

  17. 1. Context view shows approach of access road to summit, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Context view shows approach of access road to summit, communication towers and NW corner of lookout tower at center right. Camera is pointed SE. - Chelan Butte Lookout, Summit of Chelan Butte, Chelan, Chelan County, WA

  18. 22. ASSEMBLY OF 9700 H.P. ALLIS CHALMERS TURBINE, CENTERVILLE P.H. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. ASSEMBLY OF 9700 H.P. ALLIS CHALMERS TURBINE, CENTERVILLE P.H. Drawing no. 50153, traced from Allis Chalmers drawing #699, April 24, 1906. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  19. FRAUD/SABOTAGE Killing Nuclear-Reactors!!! ``Super"alloys GENERIC ENDEMIC Wigner's-Disease IN-stability!!!

    NASA Astrophysics Data System (ADS)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Siegel [[J.Mag.Mag.Mtls.7,312(78); PSS(a)11,45(72); Semis.& Insuls.5(79)] (at: ORNL, ANS, Westin``KL"ouse, PSEG, IAEA, ABB) warning of old/new nuclear-reactors/spent-fuel-casks/refineries/ jet/missile/rocket-engines austenitic/FCC Ni/Fe-based (so MIS- called)``super"alloys(182/82;Hastelloy-X; 600;304/304L-SSs; 690 !!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's- diseas(WD)[J.Appl.Phys.17,857(46)]; Ostwald-ripening; spinodal- decomposition; overageing-embrittlement; thermomechanical- INstability: Mayo[Google: ``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: [Siegel<<<``Fert"(88) 2007-Nobel/Wolf/Japan-prizes]necessitating NRC inspections on 40+25=65 Westin``KL"ouse PWRs(12/06)]; Lai[Met.Trans.AIME,9A,827 (78)]-Sabol-Stickler[PSS(70)]; Ashpahani[Intl.Conf. H in Metals (77)]; Russell[Prog. Mtls.Sci.(83)]; Pollard[last UCS rept. (9/95)]; Lofaro[BNL/DOE/NRC Repts.]; Pringle[Nuclear-Power:From Physics to Politics(79)]; Hoffman[animatedsoftware.com],...what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrit- tlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n``u''tional-la``v''atories sabotage!!!

  20. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: "Super"alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    NASA Astrophysics Data System (ADS)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Carbides solid-state chemistry domination of old/new nuclear- reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe-based(so miscalled)``super"alloys(182/82; Hastelloy-X,600,304/304L-SSs,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-diseas(WD)[J.Appl.Phys.17,857 (1946)]/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google:``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: Siegel[J.Mag.Mag.Mtls.7,312 (1978)]<<<``Fert"-"Gruenberg"(1988/89)2007-physics Nobel/Wolf/ Japan-prizes]necessitating NRC-inspections of 40+25 = 65 Westin- ``KLouse PWRs(12/2006)]-Lai[Met.Trans.AIME,9A,827(1978)]-Sabol- Stickler[Phys.Stat.Sol.(1970)]-Ashpahani[Intl.Conf. H in Metals, Paris(1977]-Russell[Prog.Mtls.Sci.(1983)]-Pollard[last UCS rept. (9/1995)]-Lofaro[BNL/DOE/NRC Repts.]-Pringle[Nuclear-Power:From Physics to Politics(1979)]-Hoffman[animatedsoftware.com], what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embritt- lement caused brittle-fracture cracking from early/ongoing AEC/ DOE-n"u"tional-la"v"atories sabotage!!!

  1. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: ``Super'' alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    NASA Astrophysics Data System (ADS)

    O'Grady, Joseph; Bument, Arlden; Siegel, Edward

    2011-03-01

    Carbides solid-state chemistry domination of old/new nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines is austenitic/FCC Ni/Fe-based (so miscalled)"super"alloys(182/82;Hastelloy-X,600,304/304L-SSs,...690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-disease(WD) [J.Appl.Phys.17,857 (46)]/Ostwald-ripening/spinodal-decomposition/overageing-embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google: fLeaksCouldKill > ; - Siegel [ J . Mag . Mag . Mtls . 7 , 312 (78) = atflickr . comsearchonGiant - Magnotoresistance [Fert" [PRL(1988)]-"Gruenberg"[PRL(1989)] 2007-Nobel]necessitating NRC inspections on 40+25=65 Westin"KL"ouse PWRs(12/2006)]-Lai [Met.Trans.AIME, 9A,827(78)]-Sabol-Stickler[Phys.Stat.Sol.(70)]-Ashpahani[ Intl.Conf. Hydrogen in Metals, Paris(1977]-Russell [Prog.Mtls.Sci.(1983)]-Pollard [last UCS rept.(9/1995)]-Lofaro [BNL/DOE/NRC Repts.]-Pringle [ Nuclear-Power:From Physics to Politics(1979)]-Hoffman [animatedsoftware.com], what DOE/NRC MISlabels as "butt-welds" "stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrittlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n"u"tional-la"v"atories sabotage!!!

  2. 30. VIEW OF THE LOCKERS IN THE OLD PART OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF THE LOCKERS IN THE OLD PART OF THE ANSELMO DRY LOOKING WEST FROM WITHIN THE SHOWERS. THE LOCKERS ARE ALONG THE EAST WALL OF THE OLD SECTION - Butte Mineyards, Anselmo Mine, Butte, Silver Bow County, MT

  3. NPDES Permit for City of Eagle Butte Wastewater Treatment Facility in South Dakota

    EPA Pesticide Factsheets

    Under NPDES permit SD-0020192, the City of Eagle Butte, South Dakota, is authorized to discharge from its wastewater treatment facility within the Cheyenne River Sioux Reservation in Dewey County, South Dakota, to Green Grass Creek.

  4. 13. WEST ELEVATION, POWERHOUSE, WITH FIGURES AND AUTOMOBILES Historic photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WEST ELEVATION, POWERHOUSE, WITH FIGURES AND AUTOMOBILES Historic photograph no. 1646, no date, held at Media Arts and Services Department, Pacific Gas & Electric Co., San Francisco, CA. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  5. Synthetic Minor NSR Permit: Thunder Butte Petroleum Services, Inc. - Crude Storage and Loading Facility

    EPA Pesticide Factsheets

    This page contains documents relevant to the synthetic minor NSR permi for the Thunder Butte Petroleum Services, Inc., Crude Storage and Loading Facility, located on the Fort Berthold Indian Reservation in Ward County, ND.

  6. 11. ANSELMO HEADFRAME LOOKING NORTHWEST. THE DEBRIS ON THE LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. ANSELMO HEADFRAME LOOKING NORTHWEST. THE DEBRIS ON THE LEFT IS WHAT REMAINS OF THE SLIME PLANT. THE ORE SORTER IS TO THE LEFT OF THE HEADFRAME, WITH TRACKS BENEATH - Butte Mineyards, Anselmo Mine, Butte, Silver Bow County, MT

  7. 1. GENERAL VIEW OF THE DIAMOND MINEYARD LOOKING NORTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF THE DIAMOND MINEYARD LOOKING NORTHWEST SHOWING THE DRIES ON THE LEFT, TAR STORAGE AND TOILET FACILITIES IN THE CENTER, AND A ROPE CLEANING HOUSE ON THE RIGHT - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  8. NPDES Permit for Thunder Butte Petroleum Services Inc. Refinery in North Dakota

    EPA Pesticide Factsheets

    Under NPDES permit ND-003098, the Thunder Butte Petroleum Services Inc. refinery is authorized to discharge from its wastewater treatment facilities near Makoti in Ward County, North Dakota, to wetlands tributary to the East Fork of Shell Creek.

  9. Comparison of the use of notched wedge joints vs. traditional butt joints in Connecticut

    DOT National Transportation Integrated Search

    2008-11-07

    Performance of Hot Mix Asphalt (HMA) longitudinal joints have been an item of increasing scrutiny in : Connecticut. The traditional butt joint has typically been the method used in Connecticut. These joints : have been reportedly opening up, creating...

  10. Episodic Holocene eruption of the Salton Buttes rhyolites, California, from paleomagnetic, U-Th, and Ar/Ar dating

    USGS Publications Warehouse

    Wright, Heather M.; Vazquez, Jorge A.; Champion, Duane E.; Calvert, Andrew T.; Mangan, Margaret T.; Stelten, Mark E.; Cooper, Kari M.; Herzig, Charles; Schriener Jr., Alexander

    2015-01-01

    In the Salton Trough, CA, five rhyolite domes form the Salton Buttes: Mullet Island, Obsidian Butte, Rock Hill, North and South Red Hill, from oldest to youngest. Results presented here include 40Ar/39Ar anorthoclase ages, 238U-230Th zircon crystallization ages, and comparison of remanent paleomagnetic directions with the secular variation curve, which indicate that all domes are Holocene. 238U-230Th zircon crystallization ages are more precise than but within uncertainty of 40Ar/39Ar anorthoclase ages, suggesting that zircon crystallization proceeded until shortly before eruption in all cases except one. Remanent paleomagnetic directions require three eruption periods: (1) Mullet Island, (2) Obsidian Butte, and (3) Rock Hill, North Red Hill, and South Red Hill. Borehole cuttings logs document up to two shallow tephra layers. North and South Red Hills likely erupted within 100 years of each other, with a combined 238U-230Th zircon isochron age of: 2.83 ± 0.60 ka (2 sigma); paleomagnetic evidence suggests this age predates eruption by hundreds of years (1800 cal BP). Rock Hill erupted closely in time to these eruptions. The Obsidian Butte 238U-230Th isochron age (2.86 ± 0.96 ka) is nearly identical to the combined Red Hill age, but its Virtual Geomagnetic Pole position suggests a slightly older age. The age of aphyric Mullet Island dome is the least well constrained: zircon crystals are resorbed and the paleomagnetic direction is most distinct; possible Mullet Island ages include ca. 2300, 5900, 6900, and 7700 cal BP. Our results constrain the duration of Salton Buttes volcanism to between ca. 5900 and 500 years.

  11. Rover Panorama of Entrance to Murray Buttes on Mars

    NASA Image and Video Library

    2016-08-19

    This 360-degree panorama was acquired by the Mast Camera (Mastcam) on NASA's Curiosity Mars rover as the rover neared features called "Murray Buttes" on lower Mount Sharp. The view combines more than 130 images taken on Aug. 5, 2016, during the afternoon of the mission's 1,421st sol, or Martian day, by Mastcam's left-eye camera. This date also was the fourth anniversary of Curiosity's landing. The dark, flat-topped mesa seen to the left of Curiosity's robotic arm is about 300 feet (about 90 meters) from the rover's position. It stands about 50 feet (about 15 meters) high. The horizontal ledge near the top of the mesa is about 200 feet (about 60 meters) across. An upper portion of Mount Sharp appears on the distant horizon to the left of this mesa. The relatively flat foreground is part of a geological layer called the Murray formation, which formed from lakebed mud deposits. The buttes and mesas rising above this surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- the Stimson formation -- during the first half of 2016 while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The buttes and mesas of Murray Buttes are capped by material that is relatively resistant to erosion, just as is the case with many similarly shaped buttes and mesas on Earth. The informal naming honors Bruce Murray (1931-2013), a Caltech planetary scientist and director of NASA's Jet Propulsion Laboratory, Pasadena, California. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20765

  12. 10. DIAMOND MINE YARD FROM THE NORTH SHOWING A COMPRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DIAMOND MINE YARD FROM THE NORTH SHOWING A COMPRESSED AIR PIPE AND TRESTLE IN THE LOWER LEFT, AND THE LORRY HOUSE. A PART OF A RETAINING WALL IS VISIBLE ABOVE THE RAILROAD CUT - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  13. 78 FR 21540 - Revisions to the California State Implementation Plan, Butte County Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... the California State Implementation Plan, Butte County Air Quality Management District and Sacramento Metropolitan Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Direct... Quality Management District (BCAQMD) and Sacramento Metropolitan Air Quality Management District (SMAQMD...

  14. 19. OVERVIEW OF INTERIOR, LOOKING SOUTH. UNIT #2 IS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. OVERVIEW OF INTERIOR, LOOKING SOUTH. UNIT #2 IS AT RIGHT FOREGROUND Historic photograph no. H-145, no date, held at Media Arts and Services Department, Pacific Gas & Electric Co., San Francisco, CA. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  15. FIELD PERFORMANCE OF WOODBURNING STOVES IN CRESTED BUTTE, COLORADO

    EPA Science Inventory

    The paper discusses field emissions from woodstoves measured in Crested Butte, Colorado, during the winters of 1988-89 and 1989-90. Both particulate matter and carbon monoxide emissions were measured. The database from this work is large, including conventional stoves and EPA-cer...

  16. 13. Bottom floor, tower interior showing concrete floor and cast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Bottom floor, tower interior showing concrete floor and cast iron bases for oil butts (oil butts removed when lighthouse lamp was converted to electric power.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  17. 75 FR 870 - Granting of Request for Early Termination of the Waiting Period Under the Premerger Notification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... Brokers Network, LLC. G FNI International, Inc. 03-DEC-09 20100178 G Windstream Corporation. G NuVox, Inc. G NuVox, Inc. 20100179 G ALLETE, Inc. G Square Butte Electric Cooperative. G Square Butte Electric...

  18. Thermal fatigue and oxidation data for alloy/braze combinations

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1977-01-01

    Thermal fatigue and oxidation data were obtained for 62 brazed specimens of 3 iron-, 3 nickel-, and 1 cobalt-base alloy. Fluidized bed thermal cycling was conducted over the range 740/25 C employing 10 cm long single-edge wedge specimens. Immersion time was always 4 minutes in each bed. Types of test specimens employed in the program include those with brazed overlays on the specimen radius, those butt brazed at midspan and those with a brazed foil overlay on the specimen radius. Of the 18 braze overlay specimens, 5 generated fatigue cracks by 7000 cycles. Thermal cracking of butt brazed specimens occurred exclusively through the butt braze. Of the 23 butt brazed specimens, 7 survived 11,000 thermal cycles without cracking. Only 2 of the 21 foil overlaid specimens exhibiting cracking in 7,000 cycles. Blistering of the foil did occur for 2 alloys by 500 cycles. Oxidation of the alloy/braze combination was limited at the test maximum test temperature of 740 C.

  19. Loss of butt-end leg bands on male wild turkeys

    USGS Publications Warehouse

    Diefenbach, Duane R.; Casalena, Mary Jo; Schiavone, Michael V.; Swanson, David A.; Reynolds, Michael; Boyd, Robert C.; Eriksen, Robert; Swift, Bryan L.

    2009-01-01

    We estimated loss of butt-end leg bands on male wild turkeys (Meleagris gallapavo) captured in New York, Ohio, and Pennsylvania (USA) during December–March, 2006–2008. We used aluminum rivet leg bands as permanent marks to estimate loss of regular aluminum, enameled aluminum, anodized aluminum, and stainless steel butt-end leg bands placed below the spur. We used band loss information from 887 turkeys recovered between 31 days and 570 days after release (x¯  =  202 days). Band loss was greater for turkeys banded as adults (>1 yr old) than juveniles and was greater for aluminum than stainless steel bands. We estimated band retention was 79–96%, depending on age at banding and type of band, for turkeys recovered 3 months after release. Band retention was <50% for all age classes and band types 15 months after banding. We concluded that use of butt-end leg bands on male wild turkeys is inappropriate for use in mark–recapture studies.

  20. Paleomagnetic correlation of basalt flows in selected coreholes near the Advanced Test Reactor Complex, the Idaho Nuclear Technology and Engineering Center, and along the southern boundary, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Champion, Duane E.

    2016-10-03

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, used paleomagnetic data from 18 coreholes to construct three cross sections of subsurface basalt flows in the southern part of the Idaho National Laboratory (INL). These cross sections, containing descriptions of the subsurface horizontal and vertical distribution of basalt flows and sediment layers, will be used in geological studies, and to construct numerical models of groundwater flow and contaminant transport.Subsurface cross sections were used to correlate surface vents to their subsurface flows intersected by coreholes, to correlate subsurface flows between coreholes, and to identify possible subsurface vent locations of subsurface flows. Correlations were identified by average paleomagnetic inclinations of flows, and depth from land surface in coreholes, normalized to the North American Datum of 1927. Paleomagnetic data were combined, in some cases, with other data, such as radiometric ages of flows. Possible vent locations of buried basalt flows were identified by determining the location of the maximum thickness of flows penetrated by more than one corehole.Flows from the surface volcanic vents Quaking Aspen Butte, Vent 5206, Mid Butte, Lavatoo Butte, Crater Butte, Pond Butte, Vent 5350, Vent 5252, Tin Cup Butte, Vent 4959, Vent 5119, and AEC Butte are found in coreholes, and were correlated to the surface vents by matching their paleomagnetic inclinations, and in some cases, their stratigraphic positions.Some subsurface basalt flows that do not correlate to surface vents, do correlate over several coreholes, and may correlate to buried vents. Subsurface flows which correlate across several coreholes, but not to a surface vent include the D3 flow, the Big Lost flow, the CFA buried vent flow, the Early, Middle, and Late Basal Brunhes flows, the South Late Matuyama flow, the Matuyama flow, and the Jaramillo flow. The location of vents buried in the subsurface by younger basalt flows can be inferred if their flows are penetrated by several coreholes, by tracing the flows in the subsurface, and determining where the greatest thickness occurs.

  1. California Air Quality State Implementation Plans; Final Approval; Butte County Air Quality Management District; Stationary Source Permits

    EPA Pesticide Factsheets

    EPA is taking final action to approve a revision to the Butte County Air Quality Management District (BCAQMD) portion of the California State Implementation Plan (SIP). This revision concerns the District's New Source Review (NSR) permitting program.

  2. California State Implementation Plan; Butte County Air Quality Management District; New Source Review (NSR) Permitting Program

    EPA Pesticide Factsheets

    EPA is proposing to approve a revision to the Butte County Air Quality Management District (BCAQMD) portion of the California SIP concerning the District's New Source Review (NSR) permitting program for new and modified sources of air pollution.

  3. 18. VIEW OF NORTH ELEVATION, FRANCIS TURBINE, WITH RHEOSTATS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF NORTH ELEVATION, FRANCIS TURBINE, WITH RHEOSTATS AND CONTROL PANEL IN BACKGROUND Historic photograph no. SC8730, 1913, curated in the Jon Kitchen Collection, Special Collections, Meriam Library, California State University, Chico, CA. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  4. Comparison of the use of a notched wedge joint vs. traditional butt joints in Connecticut : phase 1 report.

    DOT National Transportation Integrated Search

    2008-05-14

    Performance of Hot Mix Asphalt (HMA) longitudinal joints have been an : item of increasing scrutiny in Connecticut. The traditional butt joint : has typically been the method used in Connecticut. These joints have : been reportedly opening up creatin...

  5. 77 FR 13072 - Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental Impact Statement to the 2009 Salmon- Challis National Forest... of intent to prepare a supplemental environmental impact statement. SUMMARY: The Salmon-Challis...

  6. Assessing contraband tobacco in two jurisdictions: a direct collection of cigarette butts.

    PubMed

    Stratton, Julie; Shiplo, Samantha; Ward, Megan; Babayan, Alexey; Stevens, Adam; Edwards, Sarah

    2016-07-22

    The sale of contraband tobacco allows for tobacco tax evasion, which can undermine the effectiveness of tobacco tax policies in reducing the number of smokers. Estimates of the proportion of contraband vary widely as do the methods used to measure the proportion of contraband being smoked. The purpose of this study is to determine the proportion of contraband use in two different jurisdictions. A cross-sectional direct collection of cigarette butts was conducted in Peel and Brantford, Ontario, Canada in 2013 and 2014, respectively. Cigarette butts were collected from a variety of locations within both regions. Cigarette butts were assessed and classified into one of the following categories: contraband, legal Canadian, legal Native, International, unknown, and discards. The overall proportion of contraband cigarettes in Peel was 5.3 %, ranging from 2.8 to 8.6 % by location. In Brantford, the proportion of contraband was 33.0 %, with a range from 32.8 to 33.1 % by location. The direct collection of cigarette butts was determined to be a feasible method for a local public health unit in determining the proportion of contraband cigarettes. This approach showed that Brantford has a higher proportion of contraband consumption compared to Peel, which may be due to geographic location and proximity to the United States (US)-Canada border and Native Reserves. More research is needed to confirm this geographic association with other jurisdictions.

  7. Bald eagle winter roost characteristics in Lava Beds National Monument, California

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1993-01-01

    This study provided a survey of bald eagle (Haliaeetus leucocephalus) winter roost habitat (in 4 km2 of potential roost areas) in southern Lava Beds National Monument, California. A systematic-clustered sampling design (n=381 plots) was used to compare forest stand characteristics in two primary roost areas (Caldwell Butte and Eagle Nest Butte) and two potential roost areas (Hidden Valley and Island Butte). A 100 percent inventory of roost trees in Caldwell Butte (n=103 trees) and Eagle Nest Butte (n=44 trees) showed they were spatially clumped and restricted to 12.7 percent and 2.8 percent, respectively, of the study areas. Roost trees, primarily ponderosa pine (Pinus ponderosa), averaged 81.1 ± 1.3 cm dbh (mean ± 1 S.E.) compared to non-roost trees (>35 cm dbh) that averaged 52.2 ± 1.0 cm dbh. Roost trees were generally taller and more open-structured than non-roost trees. All four study sites had adequate numbers of mid-sized trees (10 to 50 cm dbh) to replace the current stock of older, larger roost trees. However, seedling and small trees (<10 cm dbh) in the roost areas were spatially clumped and few, suggesting that maintaining a continuous population of roost trees may be a problem in the distant future. Long-term studies of changing winter roost habitat and eagle use are essential to protect the bald eagle in the northwestern US.

  8. 2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND MINE, LOOKING NORTH. THE MAIN HOIST USED A FLAT CABLE, WHICH WAS SCRAPPED IN THE 1950s. THE ORIGINAL DIXON CABLE STILL EXISTS IN THE CHIPPY HOIST HOUSE. - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  9. What Crested Butte Mountain Resort Feels the Ski Industry Is, In General, Looking for in College Graduates.

    ERIC Educational Resources Information Center

    Jernigan, Rick

    This paper describes general employment requirements for employment candidates in the skiing industry, as seen by Crested Butte Mountain Resort personnel. General educational requirements are primarily business skills, including: communications, computers, math, finance, accounting, economics, personnel administration, and psychology. Other…

  10. 9. VIEW OF FRANCIS TURBINE, GENERATOR DRIVE SHAFT. NOTE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF FRANCIS TURBINE, GENERATOR DRIVE SHAFT. NOTE ORIGINAL EXCITER AND GENERATOR RHEOSTATS ATOP CONTROL PANEL AT REAR. CONTROL PANEL IS ORIGINAL EXCEPT FOR HORIZONTAL TOP PANEL WITH CLOCK AT LEFT AND SYNCHROSCOPE AT RIGHT, LOOKING EAST - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  11. FIELD PERFORMANCE OF WOODBURNING STOVES IN CRESTED BUTTE DURING THE 1991-92 HEATING SEASON

    EPA Science Inventory

    The report gives results of an evaluation of the 1991-92 field performance of 11 woodburning stoves in and around Crested Butte, CO. Measurements included particulate matter (PM), carbon monoxide, total unburned hydrocarbons, and weekly average burn rates. The monitored stoves in...

  12. 77 FR 5724 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... proposed AD would require repetitive low frequency eddy current inspections of the forward fuselage butt... repetitive [low frequency eddy current] inspections of the forward fuselage butt joints for cracks and, when... effective date of this AD, whichever occurs later, do a low frequency eddy current inspection of the forward...

  13. "Fumble: Bear Bryant, Wally Butts and the Great College Football Scandal," by James Kirby: Book Review.

    ERIC Educational Resources Information Center

    Rasnic, Carol

    1989-01-01

    The book reviewed focuses on legal aspects of the 1962 trial of Alabama head football coach Paul "Bear" Bryant and the University of Georgia Athletic Director Wally Butts. Noted is how the trial demonstrated problems within college football, the law, and the press. (DB)

  14. 75 FR 430 - Notice of Intent To Prepare an Environmental Impact Statement for the Sigurd-Red Butte...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ...; UTU-83067] Notice of Intent To Prepare an Environmental Impact Statement for the Sigurd-Red Butte...) Cedar City Field Office, Cedar City, Utah, intends to prepare an Environmental Impact Statement (EIS... Fishlake National Forests), State of Utah, Millard County, Sevier County, Beaver County, Utah Division of...

  15. Round Top Butte Research Natural Area: guidebook supplement 46

    Treesearch

    Marcia L. Wineteer; Reid Schuller

    2014-01-01

    This guidebook describes major biological and physical attributes of the 243-ha (600-ac) Round Top Butte Research Natural Area. The area supports high-quality examples of valley upland grasslands and savanna of the Cascade foothills. Plant communities include Oregon white oak (Quercus garryana) savanna and open woodland with forbs and grasses;...

  16. Mineral Content Comparison at Two Gale Crater Sites

    NASA Image and Video Library

    2016-12-13

    This graphic shows proportions of minerals identified in mudstone exposures at the "Yellowknife Bay" location where NASA's Curiosity Mars rover first analyzed bedrock, in 2013, and at the "Murray Buttes" area investigated in 2016. Minerals were identified by X-ray diffraction analysis of sample powder from the rocks. The samples were acquired by drilling and delivered to the Chemistry and Mineralogy (CheMin) instrument inside the rover. Two key differences in the Murray Buttes mudstone include hematite rather than magnetite, and far less abundance of crystalline mafic minerals, compared to the Yellowknife Bay mudstone composition. Hematite and magnetite are both iron oxide minerals, with hematite as a more oxidized one. That difference could result from the Murray Buttes mudstone layer experiencing more weathering than the Yellowknife Bay mudstone. More weathering could also account for the lower abundance of crystalline mafics, which are volcanic-origin minerals such as pyroxene and olivine. The Yellowknife Bay site is on the floor of Gale Crater. The Murray Buttes site is on lower Mount Sharp, the layered mound in the center of the crater. http://photojournal.jpl.nasa.gov/catalog/PIA21149

  17. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah

    USGS Publications Warehouse

    Morgan, C.D.; Bereskin, S.R.

    2003-01-01

    The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.

  18. Petrographic and geochemical investigation of magma chamber processes beneath small Quaternary volcanic centers between Mt. Jefferson and Mt. Hood volcanoes, Cascade Range Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Cunningham, E.; Cribb, J. W.

    2017-12-01

    The northern Oregon Cascade Range has been dominated by andesite to rhyodacite lavas at both Mt. Jefferson (Conrey, 1991) and at Mt. Hood (Cribb and Barton, 1996) during the Quaternary period. Eruptive sequences at both Mt. Hood and Mt. Jefferson have been attributed to open-system mama mixing (Kent et al., 2010) (Ferrell et al., 2015), and the narrow range of lavas erupted at both centers has been derived from repeated cycles of magma mixing-fractionation (Cribb and Barton, 1996). This research examines major and trace element geochemistry as well as the petrographic characteristics of Clear Lake Butte (CLB), Pinhead Butte (PB), and Olallie Butte (OB), all of which are located between Mt. Hood and Mt. Jefferson, and have ben active in the Quaternary period. The research investigates whether the same type of open-system magma mixing known to have occurred at Mt. Hood and Mt. Jefferson has also occurred at CLB, PB, or OB, or whether those systems were closed to mixing and dominated by fractional crystallization. One of the main goals of this project is to highlight the similarities and differences exhibited by neighboring magmatic systems of similar age, but different scale. Disequilibrium textures observed in thin sections from CLB, OB, and PB suggest open-system magma mixing is likely occurring beneath all three buttes. This petrographic evidence includes plagioclase and pyroxene zoning, embayed margins, sieving, and reaction rims. Major element oxide trends at all three buttes are consistent with fractional crystallization, but show narrow concentrations and non-overlapping compositions between PB, CLB, and OB. All three buttes are characterized by narrow ranges of incompatible and compatible trace element concentrations. CLB, PB, and OB all exhibit LREE enrichment and lack significant HFSE depletions, with PB exhibiting greatest enrichment in REE.

  19. Earth Observation

    NASA Image and Video Library

    2012-07-29

    ISS032-E-010482 (29 July 2012) --- Sutter Buttes in California are featured in this image photographed by an Expedition 32 crew member on the International Space Station. Sometimes called the ?smallest mountain range in the world?, the Sutter Buttes rise almost 610 meters above the surrounding flat agricultural fields of the Great Valley of central California. Scientists believe the Sutter Buttes are remnants of a volcano that was active approximately 1.6 ? 1.4 million years ago during the Pleistocene Epoch. The central core of the Buttes is characterized by lava domes?piles of viscous lava that erupted onto the surface, building higher with each successive layer. Today, these lava domes form the high central hills of the Buttes; shadows cast by the hills are visible at center. Surrounding the central core is an apron of fragmental material created by occasional eruptions of the lava domes ? this apron extends roughly 18 kilometers east-west and 16 kilometers north-south. The volcanic material was transported outwards from the central core during eruptions by hot gasses (pyroclastic flows) or by cooler water-driven flows (lahars). Later stream erosion of the debris apron is evident from the radial drainage pattern surrounding the central core. A third geomorphic region of valleys known as the ?moat? is present between the core and the debris apron, and was formed from erosion of older, exposed sedimentary rocks that underlie the volcanic rocks. The Sutter Buttes present a striking visual contrast with the surrounding green agricultural fields?here mostly rice, with some sunflower, winter wheat, tomato, and almonds?of the Great Valley. Urban areas such as Yuba City, CA (located 18 kilometers to the southeast) appear as light to dark gray stippled regions. Sacramento, CA (not shown) is located approximately 80 kilometers to the south-southeast. The image appears slightly distorted (oblique) due to the viewing angle from the space station.

  20. Map showing mineral resource assessment for vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, John L.; Moll, S.H.

    1992-01-01

    The purpose of this report is to assess the potential for undiscovered vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten in the Butte 1 °X2° quadrangle. This quadrangle, in west-central Montana, is one of the most mineralized and productive regions in the United States. Its mining districts, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion. Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were also supported by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in resource assessment include a compilation of all data into data sets, the development of a descriptive model for vein and replacement deposits in the quadrangle, and the analysis of data using techniques provided by the Geographic Information System (GIS). This map is one of a number of reports and maps on the Butte 1 °X2° quadrangle. Other publications resulting from this study include U.S. Geological Survey Miscellaneous Investigations Series Maps 1-2050-A (Rowan and Segal, in press) and I-2050-B (Purdy and Rowan, in press); Miscellaneous Field Studies Map MF-1925 (Wallace, 1987); and Open-File Reports 86-292 (Wallace and others, 1986) and 86--0632 (Elliott and others, 1986). Reports on mineral resource assessment for several other types of deposits in the Butte quadrangle are in preparation.

  1. Geologic map and digital database of the Cougar Buttes 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Powell, R.E.; Matti, J.C.; Cossette, P.M.

    2000-01-01

    The Southern California Areal Mapping Project (SCAMP) of Geologic Division has undertaken regional geologic mapping investigations in the Lucerne Valley area co-sponsored by the Mojave Water Agency and the San Bernardino National Forest. These investigations span the Lucerne Valley basin from the San Bernardino Mountains front northward to the basin axis on the Mojave Desert floor, and from the Rabbit Lake basin east to the Old Woman Springs area. Quadrangles mapped include the Cougar Buttes 7.5' quadrangle, the Lucerne Valley 7.5' quadrangle (Matti and others, in preparation b), the Fawnskin 7.5' quadrangle (Miller and others, 1998), and the Big Bear City 7.5' quadrangle (Matti and others, in preparation a). The Cougar Buttes quadrangle has been mapped previously at scales of 1:62,500 (Dibblee, 1964) and 1:24,000 (Shreve, 1958, 1968; Sadler, 1982a). In line with the goals of the National Cooperative Geologic Mapping Program (NCGMP), our mapping of the Cougar Buttes quadrangle has been directed toward generating a multipurpose digital geologic map database. Guided by the mapping of previous investigators, we have focused on improving our understanding and representation of late Pliocene and Quaternary deposits. In cooperation with the Water Resources Division of the U.S. Geological Survey, we have used our mapping in the Cougar Buttes and Lucerne Valley quadrangles together with well log data to construct cross-sections of the Lucerne Valley basin (R.E. Powell, unpublished data, 1996-1998) and to develop a hydrogeologic framework for the basin. Currently, our mapping in these two quadrangles also is being used as a base for studying soils on various Quaternary landscape surfaces on the San Bernardino piedmont (Eppes and others, 1998). In the Cougar Buttes quadrangle, we have endeavored to represent the surficial geology in a way that provides a base suitable for ecosystem assessment, an effort that has entailed differentiating surficial veneers on piedmont and pediment surfaces and distinguishing the various substrates found beneath these veneers.

  2. Mapping the Extent of the Lovejoy Basalt Beneath the Sacramento Valley, CA, Using Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Sweetkind, D. S.; Springhorn, S.

    2014-12-01

    The Lovejoy Basalt is a distinctive Miocene (~16 Ma) unit that erupted from Thompson Peak in the northeast Sierra Nevada, flowed southwest across the Sierra Nevada into the Sacramento Valley. It crops out in a few places in Sacramento Valley: (1) near Chico and Oroville on the east side of the valley, (2) Orland Buttes on the west side, and (3) Putnam Peak, some 250 km southwest of Thompson Peak. The basalt is also encountered in drill holes, but its extent is not entirely known. The Lovejoy Basalt is strongly magnetic and, in general, reversely magnetized, making it an excellent target for aeromagnetic mapping. Recently acquired aeromagnetic data (flight line spacing 800 m at an altitude of 240 m) indicate a characteristic, sinuous, short-wavelength magnetic pattern associated with outcrops and known subcrops of Lovejoy Basalt. Filtering of these data to enhance negative, short-wavelength anomalies defines two large bands of negative anomalies that trend southwest of Chico and Oroville and appear to coalesce about 25 km north of Sutter Buttes. Another band of negative anomalies extends north of the junction roughly along the Sacramento River 40 km to Deer Creek. The anomalies become more subdued to the north, suggesting that the Lovejoy thins to the north. Aeromagnetic data also indicate a large subcrop of Lovejoy Basalt that extends 25 km north-northeast from exposures at Orland Buttes. Driller logs from gas and water wells confirm our mapping of Lovejoy within these areas. The sinuous magnetic lows are not continuous south of Sutter Buttes, but form isolated patches that are aligned in a north-south direction south of the concealed Colusa Dome to Putnam Peak and an east-west, 20-km-long band about 15 km south of Sutter Buttes. Other reversed anomalies in the Sacramento Valley coincide with volcanic necks in the Sutter Buttes and Colusa Dome; these produce semicircular anomalies that are distinct from those caused by the Lovejoy Basalt.

  3. Maps showing mineral resource assessment for porphyry and stockwork deposits of copper, molybdenum, and tungsten and for stockwork and disseminated deposits of gold and silver in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Moll, S.H.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, John L.

    1993-01-01

    This report documents the assessment for potential occurrences of undiscovered porphyry and stockwork deposits of copper, molybdenum, and tungsten (porphyry Cu-Mo-W) and stockwork and disseminated deposits of gold and silver (disseminated Au-Ag) in the Butte 1 °X2° quadrangle. The Butte quadrangle, in west-central Montana, is one of the best known mineral producing regions in the U.S. Mining districts in the quadrangle, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion (at the time of production). Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were supported, in part, by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in this resource assessment for porphyry Cu-Mo-W and disseminated Au-Ag deposits in the quadrangle include a compilation of all data, the development of descriptive occurrence models, and the analysis of data using techniques provided by a Geographic Information System (GIS). This map is one of several maps on the Butte 1 °X2° quadrangle. Other deposit types have been assessed for the Butte quadrangle, and maps (U.S. Geological Survey (USGS) Miscellaneous Investigation Series Maps) for each of the following have been prepared: Vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten (Elliott, Wallace, and others, 1992a) and skarn deposits of gold, silver, copper, tungsten, and iron (Elliott and others, 1992b ). Other publications resulting from this study include linear features map (Rowan and others, 1991 ); limonite and hydrothermal alteration map (Rowan and Segal, 1989); mineral occurrence maps (Elliott and others, 1986; Elliott, Loen, and others, 1992); and geologic maps (Wallace, 1987; Wallace and others, 1987).

  4. Preliminary Investigation and Surficial Mapping of the Faults North and South of Blacktail Butte, Teton County, Wyoming

    NASA Astrophysics Data System (ADS)

    Wittke, S.

    2016-12-01

    The Wyoming State Geological Survey has focused on surficial mapping and examination of the location and offset of faults north and south of Blacktail Butte in eastern Jackson Hole, Wyoming. The fault strands south of Blacktail Butte are classified as Late Quaternary, the faults north of the butte are considered Class B structures by the USGS. Little to no detailed studies, including paleoseismic investigations or fault scarp morphology, have been conducted on these fault strands. The acquisition of LiDAR for the Grand Teton National Park and recent aerial photographs provided data necessary for revised mapping and geomorphic interpretation of fault-related features north and south of Blacktail Butte. New fault traces and geomorphic features were identified in the LiDAR data which had not been previously mapped. Mapped fault traces are intermittent, forming a 1.5 km-long graben that extends south from Blacktail Butte and crosses a loess-mantle late-Pleistocene terrace generated from the Pinedale glaciation. Other lineaments were identified that continued for another 0.5 km to the south. With very little vertical offset across the system and comparatively short fault strands, the faults may represent secondary features related to movement on another unidentified fault within the basin. The secondary faults north of Blacktail Butte were mapped based on geomorphic features and through LiDAR-based spatial analysis. The fault scarps are relatively short and are present on alluvial fan and/or terrace deposits related to the Pinedale glaciation or on undated Holocene deposits. The scarps have little net vertical offset, suggesting they could also be secondary features related to movement from another unidentified fault within the basin. Improved understanding of these fault strands is significant because of the vicinity to populated areas within Jackson Hole and the possible relevance to the Teton Fault system. To our knowledge, these fault strands have not been proposed as antithetic to the Teton fault. The faults are located on the eastern edge of the valley, approximately 8-16 km from the Teton fault, and based on their orientation and sense of slip, the Teton fault may be the unidentified fault within the basin. Detailed paleoseismic surveys, including fault trenching, may shed light on the question in the future.

  5. Dutchwoman Butte revisited: Examining paradigms for livestock grazing exclusion

    Treesearch

    J. Sprinkle; M. Holder; C. Erickson; A. Medina; D. Robinett; G. Ruyle; J. Maynard; S. Tuttle; Jr. J. Hays; W. Meyer; S. Stratton; A. Rogstad; K. Eldredge; J. Harris; L. Howery; W. Sprinkle

    2006-01-01

    In 2000, a collaborative rangeland monitoring program was established with the University of Arizona, Gila County Cattlegrowers, and the Tonto National Forest. Dutchwoman Butte (DWB) is an isolated, ungrazed 40 ha mesa with relict vegetation. Our objective was to contrast the vegetation of DWB to that of a grazed site, Whiskey tank (WT), across multiple years (2001,...

  6. Multiple data sets converge on a geologic structural model for Glass Buttes, Oregon geothermal prospect, Patrick Walsh, et al, 2010 American Geophysical Union Poster Session

    DOE Data Explorer

    Ezra Zemach

    2010-01-01

    Multiple data sets converge on a geologic structural model for Glass Buttes, Oregon geothermal prospect, Patrick Walsh, Brigette Martini, Chet Lide, Darrick Boschmann, John DIlles, Andrew Meigs, 2010 Ormat Nevada, Zonge Geophysical, Oregon State University American Geophysical Union, Poster Session

  7. 77 FR 4825 - Golden Eagles; Programmatic Take Permit Application; Draft Environmental Assessment; West Butte...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... regulations, as well as the first eagle take permit issued to a wind- energy company. Background BGEPA allows... methods. Email: pacific_birds@fws.gov . Include ``DEA for the West Butte Wind Project'' in the subject..., Division of Migratory Birds and Habitat Programs, Pacific Region, U.S. Fish and Wildlife Service, 911 NE...

  8. 77 FR 129 - Golden Eagles; Programmatic Take Permit Application; Draft Environmental Assessment; West Butte...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... permit issued to a wind- energy company. Background BGEPA allows us to authorize bald eagle and golden... information by one of the following methods. Email: pacific_birds@fws.gov . Include ``DEA for the West Butte... Michael Green, Acting Chief, Division of Migratory Birds and Habitat Programs, Pacific Region, U.S. Fish...

  9. 76 FR 30962 - Notice of Availability of Draft Environmental Impact Statement for the Sigurd to Red Butte No. 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...; UTU-83067] Notice of Availability of Draft Environmental Impact Statement for the Sigurd to Red Butte..., as amended, the Bureau of Land Management (BLM) has prepared a Draft Environmental Impact Statement... Service; State of Utah; Millard, Sevier, Beaver, Iron, and Washington counties, Utah; and the cities of St...

  10. Teacher's Guide to Architectural Styles. Skinner's Butte Historical District. Revised Edition.

    ERIC Educational Resources Information Center

    Bauer, Mary; Neimand, Hahn

    This document is a teacher's guide to the historic buildings of Eugene, Oregon. Eighteen buildings in the Skinner's Butte Historical District are highlighted, including the U.S. Post Office, the Eagles Building, the Lane Hotel, the Oregon Electric Depot, the Southern Pacific Railroad Depot, and several houses. For each structure there is a brief…

  11. A GREENER BUTTE! REVEGETATION THROUGH IRRIGATION USING TREATED MINE WATER FROM THE BELMONT MINE'S FLOODED UNDERGROUND WORKINGS

    EPA Science Inventory

    Historic mining activities in Butte, Montana have degraded much of the local landscape and vegetation. During the last 5 years, mine tailings located near the Belmont Mine have been successfully capped and reseeded in an effort to “green” and spark development in the area. The B...

  12. Quantifying Littered Cigarette Butts to Measure Effectiveness of Smoking Bans to Building Perimeters

    ERIC Educational Resources Information Center

    Seitz, Christopher M.; Strack, Robert W.; Orsini, Muhsin Michael; Rosario, Carrie; Haugh, Christie; Rice, Rebecca; Wyrick, David L.; Wagner, Lorelei

    2012-01-01

    Objective: The authors estimated the number of violations of a university policy that prohibited smoking within 25 ft of all campus buildings. Participants: The project was conducted by 13 student researchers from the university and a member of the local public health department. Methods: Students quantified cigarette butts that were littered in a…

  13. 33 CFR 208.22 - Twin Buttes Dam and Reservoir, Middle and South Concho Rivers, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the reservoir level; number of river outlet works gates in operation with their respective openings... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Twin Buttes Dam and Reservoir... and Reservoir, Middle and South Concho Rivers, Tex. The Bureau of Reclamation, or its designated agent...

  14. 33 CFR 208.22 - Twin Buttes Dam and Reservoir, Middle and South Concho Rivers, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the reservoir level; number of river outlet works gates in operation with their respective openings... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Twin Buttes Dam and Reservoir... and Reservoir, Middle and South Concho Rivers, Tex. The Bureau of Reclamation, or its designated agent...

  15. 75 FR 61747 - Coffin Butte Energy Park, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... Power Act (FPA), proposing to study the feasibility of the Coffin Butte Pumped Storage Water Power... triangular earth and roller compacted concrete embankment; creating a 50-acre upper reservoir with a storage...); (2) a 6,300-foot-long, 60-foot-high oval earth and roller compacted concrete embankment; creating a...

  16. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    USGS Publications Warehouse

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  17. 75 FR 2886 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed West Butte Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... wind farm development on adjacent private lands which would include up to 52 wind turbines and... Wind Power Right-of-Way, Crook and Deschutes Counties, OR AGENCY: Bureau of Land Management, Interior... Impact Statement (EIS) for the proposed West Butte Wind Power Right-of- Way (ROW) in Crook and Deschutes...

  18. Regeneration outlook on BLM lands in the Southern Oregon Cascades.

    Treesearch

    William I. Stein

    1981-01-01

    A survey of cutover timberland in the Butte Falls and Dead Indian areas showed that most partial cuts were moderately or well-stocked with natural regeneration. Clearcuts in the Butte Falls area were also well stocked, primarily with planted ponderosa pine; but many in the Dead Indian area were not. Advance regeneration was an important stocking component in partial...

  19. Follow-up evaluation of fire hazard inspection procedures...Butte County, California

    Treesearch

    William S. Folkman

    1968-01-01

    A study made in 1966 in Butte County, Calif., to assess the effectiveness of fire hazard inspection procedures was repeated in 1967. Purpose of the inspections is to secure compliance with fire safety requirements. The observed drop in number of violations suggests a carryover effect in 1967 from the first study. In many cases, personal contact was still necessary to...

  20. Geohydrology of the Cheyenne River Indian Reservation, South Dakota

    USGS Publications Warehouse

    Howells, Lewis W.

    1979-01-01

    The cooperation and courtesy extended by many farmers, ranchers, and residents of the area contributed greatly to the success of the study.  Special thanks are due to Mr. John Wall, U.S. Public Health Service, Eagle Butte, and to the personnel of the Land Operations and Conservation Unites of the U.S. Bureau of Indian Affairs, Eagle Butte.

  1. Characterizing butt-rot fungi on USA-affiliated islands in the western Pacific

    Treesearch

    Phil Cannon; Ned B. Klopfenstein; Robert L. Schlub; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Roland J. Quitugua; John W. Hanna; Amy L. Ross-Davis; J. D. Sweeney

    2014-01-01

    Ganoderma and Phellinus are genera that commonly cause tree butt-rot on USA-affiliated islands of the western Pacific. These fungal genera can be quite prevalent, especially in older mangrove stands. Although the majority of infections caused by these fungi lead to severe rotting of the heartwood, they typically do not directly kill the living tissues of the sapwood,...

  2. 78 FR 61380 - Notice of Realty Action: Modified Competitive Sealed-Bid Sale of Public Land at Schoolhouse Butte...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLNV930000.L14300000.EU0000 241A; N-85116; 13-08807; MO 4500053892; TAS: 14X5260] Notice of Realty Action: Modified Competitive Sealed-Bid Sale of Public Land at Schoolhouse Butte (N-85116), Humboldt County, NV Correction In notice document 2013...

  3. 75 FR 60804 - Notice of Availability of the Final Environmental Impact Statement for the West Butte Wind Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... transmission line on public land to support the construction of up to 52 wind turbines and ancillary facilities... Wind Power Right-of-Way, Crook and Deschutes Counties, OR AGENCY: Bureau of Land Management, Interior... Final Environmental Impact Statement (EIS) for the West Butte Wind Power Right-of-Way and by this Notice...

  4. Fenceposts butt-soaked in Pentachlorophenol still sound after 22 years

    Treesearch

    Don A. Duncan; Harold W. Wolfram

    1970-01-01

    Seventeen types of fenceposts from 15 tree species installed in 1945 on the San Joaquin Experimental Range, Calif., were evaluated for durability in 1968. Post butts of one-half of each type had been soaked overnight in 5 percent pentachlorophenol in diesel oil; the other half of each type was untreated. After 22 years, every untreated post except split incense-cedar...

  5. Wildfire case study: Butte City Fire, southeastern Idaho, July 1, 1994

    Treesearch

    Bret W. Butler; Timothy D. Reynolds

    1997-01-01

    The Butte City Fire occurred on July 1, 1994, west of Idaho Falls, ID. Ignited from a burning flat tire, the blaze was driven by high winds that caused it to cover over 20,500 acres in just over 6.5 hours. Sagebrush (Artemisia tridentata ssp. wyomingensis) is the principal shrub species of this high desert rangeland...

  6. 78 FR 77165 - Notice of Availability of a Draft Environmental Impact Statement for the Monument Butte Area Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... implemented. Based on the foregoing documents and a review of information from the Utah Division of Oil, Gas... Availability of a Draft Environmental Impact Statement for the Monument Butte Area Oil and Gas Development..., and cumulative environmental impacts of a proposal to develop oil and natural gas in Duchesne and...

  7. Farewell to Murray Buttes Image 3

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows finely layered rocks within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21043

  8. Farewell to Murray Buttes Image 4

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows an outcrop with finely layered rocks within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21044

  9. Farewell to Murray Buttes Image 5

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows a hillside outcrop with layered rocks within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21045

  10. 50. The apartment building on the left (164166 West Granite) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. The apartment building on the left (164-166 West Granite) was built about 1885-1886, and was used as a combination of residence and rooming house. It is one of the few remaining wood-frame structures dating from the beginning of Butte's economic and building development. Modifications, both interior and exterior, have been minimal, and the historic integrity of the structure has been retained. The Courthouse Grocery on the right (ca. 1887), is another early wood-frame building, and was also originally used as a residence and rooming house. It was modified in the early 20th century to accomodate commercial use on the ground floor, but the historic fabric of the structure is largely intact. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  11. Synthesis of petrographic, geochemical, and isotopic data for the Boulder batholith, southwest Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Aleinikoff, John N.; Lund, Karen

    2012-01-01

    The Late Cretaceous Boulder batholith in southwest Montana consists of the Butte Granite and a group of associated smaller intrusions emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and into the Late Cretaceous Elkhorn Mountains Volcanics. The Boulder batholith is dominated by the voluminous Butte Granite, which is surrounded by as many as a dozen individually named, peripheral intrusions. These granodiorite, monzogranite, and minor syenogranite intrusions contain varying abundances of plagioclase, alkali feldspar, quartz, biotite, hornblende, rare clinopyroxene, and opaque oxide minerals. Mafic, intermediate, and felsic subsets of the Boulder batholith intrusions are defined principally on the basis of color index. Most Boulder batholith plutons have inequigranular to seriate textures although several are porphyritic and some are granophyric (and locally miarolitic). Most of these plutons are medium grained but several of the more felsic and granophyric intrusions are fine grained. Petrographic characteristics, especially relative abundances of constituent minerals, are distinctive and foster reasonably unambiguous identification of individual intrusions. Seventeen samples from plutons of the Boulder batholith were dated by SHRIMP (Sensitive High Resolution Ion Microprobe) zircon U-Pb geochronology. Three samples of the Butte Granite show that this large pluton may be composite, having formed during two episodes of magmatism at about 76.7 ± 0.5 Ma (2 samples) and 74.7 ± 0.6 million years ago (Ma) (1 sample). However, petrographic and chemical data are inconsistent with the Butte Granite consisting of separate, compositionally distinct intrusions. Accordingly, solidification of magma represented by the Butte Granite appears to have spanned about 2 million year (m.y.). The remaining Boulder batholith plutons were emplaced during a 6-10 m.y. span (81.7 ± 1.4 Ma to 73.7 ± 0.6 Ma). The compositional characteristics of these plutons are similar to those of moderately differentiated subduction-related magmas. The plutons form relatively coherent, distinct but broadly overlapping major oxide composition clusters or linear arrays on geochemical variation diagrams. Rock compositions are subalkaline, magnesian, calc-alkalic to calcic, and metaluminous to weakly peraluminous. The Butte Granite intrusion is homogeneous with respect to major oxide abundances. Each of the plutons is also characterized by distinct trace element abundances although absolute trace element abundance variations are relatively minor. Limited Sr and Nd isotope data for whole-rock samples of the Boulder batholith are more radiogenic than those for plutonic rocks of western Idaho, eastern Oregon, the Salmon River suture, and most of the Big Belt Mountains. Initial strontium (Sri) values are low and epsilon neodymium (εNd) values are comparable relative to those of other southwest Montana basement and Mesozoic intrusive rocks. Importantly, although the Boulder batholith hosts significant mineral deposits, including the world-class Butte Cu-Ag deposit, ore metal abundances in the Butte Granite, as well as in its peripheral plutons, are not elevated but are comparable to global average abundances in igneous rocks.

  12. 78 FR 38608 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    .... This proposed AD was prompted by a report of cracks in stringer splices at body station STA 360 and STA 908, between stringer (S) S-10L and S-10R; cracks in butt straps between S-5L and S- 3L, and S-3R and S-5R; vertical chem-mill fuselage skin cracks at certain butt joints; and an instance of cracking...

  13. DNA-based characterization of wood-, butt- and root-rot fungi from the western Pacific Islands

    Treesearch

    Sara M. Ashiglar; Phil G. Cannon; Robert L. Schlub; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Ned B. Klopfenstein

    2015-01-01

    Although the islands of the western Pacific comprise a hotspot of species, including fungi, a large number of these species have not been catalogued or documented in the scientific literature on an island to island basis. Butt- and root-rot fungi were collected from infected wood and fruiting bodies of diverse tropical trees from forest, agricultural, and...

  14. The ancient environment of the Beartooth Butte Formation (Devonian) in Wyoming and Montana: combining paleontological inquiry with federal management needs

    Treesearch

    Anthony R. Fiorillo

    2000-01-01

    The Beartooth Butte Formation is found in many mountain ranges throughout central Montana and northern Wyoming. This study combines a variety of geologic data to provide a clearer understanding of the fossil fauna and environmental setting of this rock unit. Results show not all exposures of this unit are fossil-bearing and where present, faunal...

  15. Recreational Use and Value of Water at Elephant Butte and Navajo Reservoirs. New Mexico State University Agricultural Experiment Station Bulletin 535.

    ERIC Educational Resources Information Center

    Coppedge, Robert O.; Gray, James R.

    This document is a descriptive study of the recreational use and the value of water at Elephant Butte and Navajo Reservoirs. Previous research studies, as well as the study areas and recreational characteristics and procedures of investigation used in this study (sampling and data collection, data organization, analysis) are described. Discussions…

  16. Butt in, Butt out: Pupils' Views on the Extent to Which Staff Could and Should Enforce Smoking Restrictions

    ERIC Educational Resources Information Center

    Turner, K. M.; Gordon, J.

    2004-01-01

    Schools which enforce a no-smoking policy may experience lower rates of pupil smoking. Little is known, however, about how young people view such restrictions and it has been argued that smoking bans might actually encourage adolescent smoking. This paper presents pupils' views on the extent to which staff could, and should, enforce smoking…

  17. Fire prevention in Butte County, California ... evaluation of an experimental program

    Treesearch

    William S. Folkman

    1973-01-01

    An initial survey in 1964 measured the existing levels of knowledge and attitudes concerning use and abuse of fire in wildland areas among residents of Butte County, California. During the next 6 years, the California Division of Forestry carried out an intensive fire prevention program. A resurvey was conducted in 1970 to find out if any changes in levels of knowledge...

  18. Assessment of undiscovered oil and gas resources in the Uteland Butte Member of the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.; Charpentier, Ronald R.; Klett, Timothy R.; Leathers, Heidi M.; Schenk, Christopher J.; Tennyson, Marilyn E.

    2015-09-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered resources of 214 million barrels of oil, 329 billion cubic feet of associated/dissolved natural gas, and 14 million barrels of natural gas liquids in the informal Uteland Butte member of the Green River Formation, Uinta Basin, Utah.

  19. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-05-02

    The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for hydrocarbon generation but is clay-rich and contains little carbonate, and thus is a poor prospect for tight oil development.

  20. Unstable ground in western North Dakota

    USGS Publications Warehouse

    Trimble, Donald E.

    1979-01-01

    Unstable ground in western North Dakota is mainly the result of mass-wasting processes. The units most affected are mudstones, siltstones, and sandstones of the Fort Union Formation. Ground instability generally is indicated by landslides, soil slides, or subsidence. Landslides are mostly of the slump-earthflow type and are localized along the flanks of the high buttes in southwestern North Dakota, including HT (Black) Butte, Chalky Buttes, Sentinel Butte, and East and West Rainy Buttes, and along parts of the valleys of the Des Lacs, Missouri, Little Missouri, and Heart Rivers. Landslides are sparse elsewhere. Soil slides are common in the areas south and southwest of the maximum position of the Pleistocene glacial ice margin on slopes of 15 degrees or more, and have taken place on some slopes as gentle as five degrees. The weathered, exposed surface of the Fort Union Formation seems to be especially susceptible to soil slides. Soil slides constitute the major type of ground instability in southwestern North Dakota. Subsidence is of two types: (1) subsidence over old underground mine workings, and (2) subsidence over naturally ignited and burned underground coal beds. Major subsidence has taken place over old, underground workings near Beulah, Wilton, Lehigh, Haynes, and Belfield, and lesser subsidence near Scranton, and west and north of Bowman. Thickness of overburden above the coal in all these areas is believed to be less than 30 m (100 ft). Subsidence has not taken place over old underground workings along the Des Lacs and-Souris valleys northwest of Minot, where the thickness of overburden is more than 60 m (200 ft). Spectacular subsidence has occurred over a burning underground coal bed at Burning Coal Vein Park near the Little Missouri River, northwest of Amidon.

  1. Uranium-bearing lignite in southwestern North Dakota

    USGS Publications Warehouse

    Moore, George W.; Melin, Robert E.; Kepferle, Roy C.

    1954-01-01

    Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.

  2. A 24 h investigation of the hydrogeochemistry of baseflow and stormwater in an urban area impacted by mining: Butte, Montana

    USGS Publications Warehouse

    Gammons, Christopher H.; Shope, Christopher L.; Duaime, Terence E.

    2005-01-01

    Changes in water quality during a storm event were continuously monitored over a 24 h period at a single location along an urban stormwater drain in Butte, Montana. The Butte Metro Storm Drain (MSD) collects groundwater baseflow and stormwater draining Butte Hill, a densely populated site that has been severely impacted by 130 years of mining, milling, and smelting of copper-rich, polymetallic mineral deposits. On the afternoon of 26 June 2002, a heavy thunderstorm caused streamflow in the MSD to increase 100-fold, from 0·2 ft3 s−1 to more than 20 ft3 s−1. Hourly discharge and water quality data were collected before, during, and following the storm. The most significant finding was that the calculated loads (grams per hour) of both dissolved and particulate copper passing down the MSD increased more than 100-fold in the first hour following the storm, and remained elevated over baseline conditions for the remainder of the study period. Other metals, such as zinc, cadmium, and manganese, showed a decrease in load from pre-storm to post-storm conditions. In addition to the large flush of copper, loads of soluble phosphorus increased during the storm, whereas dissolved oxygen dropped to low levels (<2 mg l−1). These results show that infrequent storm events in Butte have the potential to generate large volumes of runoff that exceed Montana water quality standards for acute exposure of aquatic life to copper, as well as depressed levels of dissolved oxygen. This study has important implications to ongoing reclamation activities in the upper Clark Fork Superfund site, particularly with respect to management of storm flow, and may be applicable to other watersheds impacted by mining activities.

  3. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geochemical, remote sensing, and mineral resources maps of the Butte 1 degree x 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, James E.; Trautwein, C.M.; Wallace, C.A.; Lee, G.K.; Rowan, L.C.; Hanna, W.F.

    1993-01-01

    The Butte 1?x2 ? quadrangle in west-central Montana was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP). These investigations included geologic mapping, geochemical surveys, gravity and aeromagnetic surveys, examinations of mineral deposits, and specialized geochronologic and remote-sensing studies. The data collected during these studies were compiled, combined with available published and unpublished data, analyzed, and used in a mineral-resource assessment of the quadrangle. The results, including data, interpretations, and mineral-resource assessments for nine types of mineral deposits, are published separately as a folio of maps. These maps are accompanied by figures, tables, and explanatory text. This circular provides background information on the Butte quadrangle, summarizes the studies and published maps, and lists a selected bibliography of references pertinent to the geology, geochemistry, geophysics, and mineral resources of the quadrangle. The Butte quadrangle, which includes the world-famous Butte mining district, has a long history of mineral production. Many mining districts within the quadrangle have produced large quantities of many commodities; the most important in dollar value of production were copper, gold, silver, lead, zinc, manganese, molybdenum, and phosphate. At present, mines at several locations produce copper, molybdenum, gold, silver, lead, zinc, and phosphate. Exploration, mainly for gold, has indicated the presence of other mineral deposits that may be exploited in the future. The results of the investigations by the U.S. Geological Survey indicate that many areas of the quadrangle are highly favorable for the occurrence of additional undiscovered resources of gold, silver, copper, molybdenum, tungsten, and other metals in several deposit types.

  4. A survey of injection site lesions in fed cattle in Canada.

    PubMed Central

    Van Donkersgoed, J; Dixon, S; Brand, G; VanderKop, M

    1997-01-01

    During November 1996 to January 1997, a survey was conducted at 5 Canadian purveyors to measure the prevalence of injection site lesions in the top butt, boneless blade, outside round, inside round, and eye of the round. As trimmers were cutting these subprimals into steaks, technicians monitored each steak for grossly obvious scars. These scars were trimmed, weighed, and scored as either a "clear scar," "woody callus," or "cyst." All scars were subsequently examined histologically and classified as a "clear scar," "woody callus," "scar with nodules," "mineralized scar," or "cyst." Pieces were observed for broken needles while being processed and none were found. The estimated prevalence of injection site lesions was 18.8% (95% CI, 16.4% to 21.2%) in top butts, 22.2% (95% CI, 18.8% to 25.7%) in boneless blades, 4.9% (95% CI, 3.6% to 6.3%) in the eye of round, 1.8% (95% CI, 1.1% to 2.9%) in the inside round, and 7.6% (95% CI, 5.6% to 9.8%) in the outside round. Some top butts originated from American fed cattle; the estimated prevalence of lesions was 9.0% (95% CI, 5.9% to 12.9%) in American top butts and 22.3% (95% CI, 19.4% to 25.3%) in Canadian top butts. The median weight of the lesions varied among subprimals and ranged from 64 g to 117 g. Histologically, 13% of the scars were clear scars, 47% were woody calluses, 5% were mineralized scars, 34% were scars with nodules, 0.2% were cysts, and 0.9% were normal fat infiltrations. An economic analysis estimated an average loss of $8.95 per fed animal processed or $19 million dollars annually to the Canadian beef industry from injection scars. PMID:9426942

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fecht, K.R.

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending majormore » fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems.« less

  6. Comparison of log quality from even-aged and uneven-aged loblolly pine stands in south Arkansas

    Treesearch

    James M. Guldin; Michael W. Fitzpatrick

    1991-01-01

    Log grade, number of knots, and log volume of the first two logs, as well as form class of the butt log, were compared across three broad sawtimber categories among even-aged plantations, even-aged natural stands, and uneven-aged natural stands of loblolly pine (Pinus taeda L .) in Ashley County, AR. Trees from uneven-aged stands had butt logs of...

  7. Downstream effects of the Pelton-Round Butte hydroelectric project on bedload, transport, channel morphology, and channel-bed texture, lower Deschutes River, Oregon.

    Treesearch

    Heidi Fassnacht; Ellen M. McClure; Gordon E. Grant; Peter C. Klingeman

    2003-01-01

    Field, laboratory, and historical data provide the basis for interpreting the effects of the Pelton-Round Butte dam complex on the surface water hydrology and geomorphology of the lower Deschutes River, Oregon, USA. The river's response to upstream impoundment and flow regulation is evaluated in terms of changes in predicted bedload transport rates, channel...

  8. Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour

    USDA-ARS?s Scientific Manuscript database

    The complement of gamma gliadin genes expressed in the wheat cultivar Butte 86 was evaluated by analyzing publicly available expressed sequence tag (EST) data. Eleven contigs were assembled from 153 Butte 86 ESTs. Nine of the contigs encoded full-length proteins and four of the proteins contained an...

  9. Laminating butt-jointed, log-run southern pine veneers into long beams of uniform high strength

    Treesearch

    Peter Koch; G.E. Woodson

    1968-01-01

    Twenty laminated beams were constructed of log-run, butt-jointed, loblolly pine veneers 1|6 inch thick and 100 inches long. The beams were 18 inches deep, 2 inches wide, and 25 feet long. Veneers were arranged in the beams according to their modulus of elasticity (MOE). The stiffest were placed outermost, and the most limber in the center. The veneers, which were cut...

  10. LOFT complex, aerial view taken on same on same day ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT complex, aerial view taken on same on same day as HAER photo ID-33-E-376. Camera facing south. Note curve of rail track toward hot shop (TAN-607). Earth shielding on control building (TAN-630) is partly removed, showing edge of concrete structure. Great southern butte on horizon. Date: 1975. INEEL negative no. 75-3693 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackketter, Donald

    2015-06-01

    Executive Summary An innovative 50-ton ground-source heat pump (GSHP) system was installed to provide space heating and cooling for a 56,000 square foot (5,200 square meter) building in Butte Montana, in conjunction with its heating and chiller systems. Butte is a location with winter conditions much colder than the national average. The GSHP uses flooded mine waters at 78F (25C) as the heat source and heat sink. The heat transfer performance and efficiency of the system were analyzed using data from January through July 2014. This analysis indicated that for typical winter conditions in Butte, Montana, the GSHP could delivermore » about 88% of the building’s annual heating needs. Compared with a baseline natural-gas/electric system, the system demonstrated at least 69% site energy savings, 38% source energy savings, 39% carbon dioxide emissions reduction, and a savings of $17,000 per year (40%) in utility costs. Assuming a $10,000 per ton cost for installing a production system, the payback period at natural gas costs of $9.63/MMBtu and electricity costs of $0.08/kWh would be in the range of 40 to 50 years. At higher utility prices, or lower installation costs, the payback period would obviously be reduced.« less

  12. Evaluation of small arms noise in a natural soundscape-Bear Butte, SD

    NASA Astrophysics Data System (ADS)

    Braslau, David

    2005-09-01

    Most studies on soundscape intrusion have been limited to moving sources. Of less concern is noise from small arms. Potential impact was predicted from a proposed large small arms facility with 10000 rounds or more per day on the natural soundscape at Bear Butte, one of the most sacred sites of the Northern Cheyenne and other tribes. The primary impacted activity is meditation and oneness with the natural environment that can continue for several days through day and night. Non-natural sources included limited vehicles on a nearby highway and farm equipment, but few aircraft. Second-by-second ambient octave band readings were taken at 20 sites starting before sunrise. The minimum ambient level observed was 19.6 dBA but limits were encountered with a 1/2 in. microphone. Sound level data on small arms were projected from the proposed range four miles north of Bear Butte to elevated points on the Butte assuming a zero wind environment. Impact was evaluated using audibility, intrusiveness and impulse-weighted DNL. Projected levels were well above ambient. While the DNL was projected to increase by 15 dBA, this metric has little meaning for this type of activity. Assumptions related to outdoor sound propagation, audibility and impulsive noise perception are discussed.

  13. REACTOR SERVICE BUILDING, TRA635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR SERVICE BUILDING, TRA-635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ATOP MTR BUILDING AND LOOKING SOUTHERLY. FOUNDATION AND DRAINS ARE UNDER CONSTRUCTION. THE BUILDING WILL BUTT AGAINST CHARGING FACE OF PLUG STORAGE BUILDING. HOT CELL BUILDING, TRA-632, IS UNDER CONSTRUCTION AT TOP CENTER OF VIEW. INL NEGATIVE NO. 8518. Unknown Photographer, 8/25/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Preceedings of the International Congress (12th), Corrosion Control for Low-Cost Reliability, Held in Houston, Texas on September 19 -24, 1993. Volume 4. Oil/Gas/Pipeline

    DTIC Science & Technology

    1993-09-24

    the ottion of H2S and the quaternary ammonium group in the -10-8 molecules would strengthen the ability of ad; sorption by interactions of charges. The...Joint Torch/plasma gas Arc number thickn. prep energy PA 3 Sq butt Ar 0.5 P5N 3 Sq butt Ar+5%N, 0.5 PIONH 3 Sq butt Ar+10%N2 +S%H 2 0.7 PFA P16 3 Sq...P5N 0.61 100 0.3 BP PIONH 0.44 100 0.7 95 PFA 0.43 91 0.7 BP PF1ONH 0.38 93 0.5 BP PF-tube, AW 0.42 84 0.8 90 PF-tube, PWHT 0.42 84 0.0 BP Note: AW

  15. Metallurgical and Mechanical Characterization of High Temperature Titanium Alloys Joined by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Gangwar, Kapil Dev

    In the world of joining, riveting and additive manufacturing, weight reduction, and omission of defects (at both macro and micro level) remain of paramount. Therefore, in the wake of ubiquitous fusion welding (FW) and widely accepted approach of riveting using Inconel bolts to resist corrosion at higher temperature, friction stir welding (FSW) has emerged as a novice jewel in friction based additive manufacturing industry. With advancements in automation of welding process and tool material, FSW of materials with higher work hardening such as steel and titanium has also become probable. Process and property relations associated with FSW are inevitable in case of dissimilar titanium alloys, due to presence of heterogeneity (whether atrocious or advantageous) in and around the weld nugget. These process property relationships are needed to be studied and addressed properly in order to optimize the processing window for improved mechanical and metallurgical properties. In this study FSWed similar and dissimilar butt joints of α+β, and near α titanium, alloys have been produced for varying processing conditions in order to study the effect of rotation speed (rpm) and traverse speed (TS; mm-min-1). The aim of this study is to assess the effect of tool geometry, tool rpm, TS on microstructure and mechanical properties of most widely used α+β titanium alloy, Ti-6Al-4V (Ti-64), standard grain and fine grain in addition to α+β,Ti-5Al-4V (T-54M), standard grain, and near α, Ti-6Al-2Mo-4Zr-2Sn (Ti-6242), standard grain (SG) and fine grain (FG). During FSW, a unique α+β fine-grained microstructure has been formed depending on whether or not the peak temperature in the weld nugget (WN) reached above or below β transus temperature. The resulting microstructure consists of acicular α+β, emanating from the prior β grain boundary as the weld cools off. The changes in the microstructure are observed by optical microscopy (OM). Later, a detailed analysis of material flow has been done by scanning electron microscopy (SEM), and electron dispersive spectroscopy (EDS). Hardness profiles on the transverse cross section of the weld have been measured in order to relate the deformation of main constituents, α {hexagonal close packed (hcp)}, and β {body centered cubic (bcc)} that provides a new paradigm into grain refinement mechanism. Material flow and evolving microstructure along with distribution of corresponding elements distribution was characterized by SEM, and EDS respectively. For the case of dissimilar alloys (Ti-6242 & Ti-54M, and Ti-6242 & Ti-64 ) a necklace shaped macrostructure has been observed in the WN consisting of untransformed α migrating from the side of Ti-6242, and of basket-weave morphology (prior β grains transforming into α+β decorated with grain boundary α) of Ti-54M. Microhardness characterization undoubtedly reveals distinct boundaries between weld nugget and parent material. However, to understand the constitutive behavior of the thermo mechanically affected zone (TMAZ) on the advancing side (ADV), or retreating side (RET) and of WN, digital image correlation (DIC) technique has been adapted to develop strain maps in transverse tensile specimens. Improved mechanical properties of TMAZ on the ADV in comparison with RET TMAZ are in accordance with hardness values. Occurrence of fracture on the RET side, and morphology of the fractured surface have also been discussed. Based on the fractured morphology, it can be said that the presence of distinct and clustered island like morphologies in the form of transcrystalline and intercrystalline fracture is a results of microstructure that evolves due to difference in β transus temperature of two alloys. The mechanical properties are analyzed and discussed in that regard. Evolving volume fraction of phases along with their crystallographic orientation has also been elucidated. Evolution of texture has been discussed in terms of (100)_α,(002)_α,(110)_β,(101)_α and (102)_α. Main constituents of texture in friction stir welded dissimilar titanium alloys, (101)_α and (002)_α have been discussed for their strength and orientation at various rotation speed. It has been highlighted that for the FSW of dissimilar titanium alloys (near α,and α+β), center of the WN is stronger in texture in comparison with RET and ADV side. Furthermore, state-of-the-art FSW technique has been used to weld dissimilar titanium alloys for post weld heat treatment (PWHT) studies at 933°C for 45 minutes. The processing parameters for welding are 225 rpm, and 125 mm-min-1. In light of recent PWHT, conducted for FSWed Ti-6Al-4V, in order to achieve super plasticity, our study focuses on dissimilar titanium alloys, Ti-54M, and Ti-6242 FG. A proper understanding of underlying material flow during FSW of dissimilar titanium alloys is essential in designing a monolithic structure operating under varying thermal and mechanical loading. Higher fraction of α with no pre-defined prior β grain boundaries has been observed in PWHTed condition. Uniform, rather lower values of hardness have been achieved in the PWHTed specimen. Furthermore, Spatial arrangement, whether on ADV or RET, can significantly affect the evolution of microstructure, and congruent mechanical properties. In this study, Ti-54M and Ti-6242 FG have been joined by FSW with Ti-6242 FG being on ADV side. X-ray diffraction (XRD) technique has been utilized for phase evaluation, pole figure analysis, and residual stress measurements. Finally, a wide range of weld surfaces, macrostructures, microstructures, microhardness profiles, phase evolution, pole figures, full field strain maps, material flow patterns, fractographs and development of residual stresses has been presented in corresponding appendices. The morphology of the fractured surfaces along with the residual stress distribution, rendered by different rpm and TS employed on different combination of similar and dissimilar joints of titanium alloys, provided an insight to correlate the material flow, hardness distributions, tensile properties; yield strength (YS), ultimate tensile strength (UTS), and percentage elongation (% Elong.).

  16. Control of complex components with Smart Flexible Phased Arrays.

    PubMed

    Casula, O; Poidevin, C; Cattiaux, G; Dumas, Ph

    2006-12-22

    The inspection is mainly performed in contact with ultrasonic wedge transducers; However, the shape cannot fit the changing geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam.... Flexible phased arrays have been developed to fit the complex profile and improve such controls. The radiating surface is composed with independent piezoelectric elements mechanically assembled and a profilometer, embedded in the transducer, measures the local distortion. The computed shape is used by an algorithm to compute in real-time the adapted delay laws compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviors of these probes.

  17. Rover Panorama Taken Amid Murray Buttes on Mars

    NASA Image and Video Library

    2016-10-03

    Original Caption Released with Image: This 360-degree panorama was acquired by the Mast Camera (Mastcam) on NASA's Curiosity Mars rover while the rover was in an area called "Murray Buttes" on lower Mount Sharp, one of the most scenic landscapes yet visited by any Mars rover. The view stitches together many individual images taken by Mastcam's left-eye camera on Sept. 4, 2016, during the 1,451st Martian day, or sol, of the mission. North is at both ends and south is in the center. The rover's location when it recorded this scene was the site it reached in its Sol 1448 drive. (See map at http://mars.nasa.gov/msl/multimedia/images/?ImageID=8015.) The dark, flat-topped mesa near the center of the scene rises to about 39 feet (about 12 meters) above the surrounding plain. From the rover's position, the top of this mesa is about 131 feet (about 40 meters) away, and the beginning of the debris apron at the base of the mesa is about 98 feet (about 30 meters) away. In the left half of the image, the dark butte that appears largest sits eastward from the rover and about 33 feet (about 10 meters) high. From the rover's position, the top of this butte is about 85 feet (about 26 meters) away, and the beginning of the debris apron at its base is about 33 feet (about 10 meters) away. An upper portion of Mount Sharp appears on the horizon to the right of it. The relatively flat foreground is part of a geological layer called the Murray formation, which includes lakebed mud deposits. The buttes and mesas rising above this surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. They are capped by material that is relatively resistant to erosion, just as is the case with many similarly shaped buttes and mesas on Earth. The area's informal naming honors Bruce Murray (1931-2013), a Caltech planetary scientist and director of NASA's Jet Propulsion Laboratory, Pasadena, California. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20840

  18. Maps showing mineral resource assessment for skarn deposits of gold, silver, copper, tungsten, and iron in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, John L.; Moll, S.H.

    1992-01-01

    The purpose of this report is to assess the potential for undiscovered skarn deposits of gold, silver, copper, tungsten, and iron in the Butte 1 °X2° quadrangle. Other deposit types have been assessed and reports for each of the following have been prepared: Vein and replacement deposits of gold, silver, copper, lead, zinc, ·manganese, and tungsten; porphyry-stockwork deposits of copper, molybdenum, and tungsten; stockwork-disseminated deposits of gold and silver; placer deposits of gold; and miscellaneous deposit types including strata-bound deposits of copper and silver in rocks of the Middle Proterozoic Belt Supergroup, phosphate deposits in the Permian Phosporia Formation, and deposits of barite and fluorite. The Butte quadrangle, in west-central Montana, is one of the most mineralized and productive mining regions in the U.S. Its mining districts, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion (at the time of production). Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were supported, in part, by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in resource assessment include a compilation of all data into data sets, the development of an occurrence model for skarn deposits in the quadrangle, and the analysis of data using techniques provided by a Geographic Information System (GIS). This map is one of a number of reports and maps on the Butte 1 °X2° quadrangle. Other publications resulting from this study include U.S. Geological Survey (USGS) Miscellaneous Investigations Series Maps 1-2050-A (Rowan and Segal, 1989), 1-2050-B (Rowan and others, 1991), 1-2050-D (Elliott and others, in press); Miscellaneous Field Studies Map MF-1925 (Wallace, 1987a); and Open-File Reports OF-86-292 (Wallace and others, 1986) and OF-86-0632 (Elliott and others, 1986).

  19. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  20. SHRIMP U-Pb and 40Ar/39Ar age constraints for relating plutonism and mineralization in the Boulder batholith region, Montana

    USGS Publications Warehouse

    Lund, K.; Aleinikoff, J.N.; Kunk, Michael J.; Unruh, D.M.; Zeihen, G.D.; Hodges, W.C.; du Bray, E.A.; O'Neill, J. M.

    2002-01-01

    The composite Boulder batholith, Montana, hosts a variety of mineral deposit types, including important silver-rich polymetallic quartz vein districts in the northern part of the batholith and the giant Butte porphyry copper-molybdenum pre-Main Stage system and crosscutting copper-rich Main Stage vein system in the southern part of the batholith. Previous dating studies have identified ambiguous relationships among igneous and mineralizing events. Mineralizing hydrothermal fluids for these types of deposits and magma for quartz porphyry dikes at Butte have all been considered to be late-stage differentiates of the Boulder batholith. However, previous dating studies indicated that the Boulder batholith plutons cooled from about 78 to 72 Ma, whereas copper-rich Main Stage veins at Butte were dated at about 61 Ma. Recent efforts to date the porphyry copper-molybdenum pre-Main Stage deposits at Butte resulted in conflicting estimates of both 64 and 76 Ma for the mineralizing events. Silver-rich polymetallic quartz vein deposits elsewhere in the batholith have not been dated previously. To resolve this controversy, we used the U.S. Geological Survey, Stanford, SHRIMP RG ion mic??roprobe to date single-age domains within zircons from plutonic rock samples and 40Ar/39Ar geochronology to date white mica, biotite, and K-feldspar from mineral deposits. U-Pb zircon ages are Rader Creek Granodiorite, 80.4 ?? 1.2 Ma; Unionville Granodiorite, 78.2 ?? 0.8 Ma; Pulpit Rock granite, 76.5 ?? 0.8 Ma; Butte Granite, 74.5 ?? 0.9 Ma; altered Steward-type quartz porphyry dike (I-15 roadcut), 66.5 ?? 1.0 Ma; altered Steward-type quartz porphyry dike (Continental pit), 65.7 ?? 0.9 Ma; and quartz monzodiorite of Boulder Baldy (Big Belt Mountains), 66.2 ?? 0.9 Ma. Zircons from Rader Creek Granodiorite and quartz porphyry dike samples contain Archean inheritance. The 40Ar/39Ar ages are muscovite, silver-rich polymetallic quartz vein (Basin district), 74.4 ?? 0.3 Ma; muscovite, silver-rich polymetallic quartz vein (Boulder district), 74.4 ?? 1.2 Ma; muscovite, early dark micaceous vein (Continental pit), 63.6 ?? 0.2 Ma; biotite, early dark micaceous vein (Continental pit), 63.6 ?? 0.2 Ma; potassium feldspar, early dark micaceous vein (Continental pit), 63 to 59 Ma; and biotite, biotite breccia dike (Continental pit), 63.6 ?? 0.2 Ma. Outlying silver-rich polymetallic quartz veins of the Basin and Boulder mining districts probably are directly related to the 74.5 Ma Butte Granite, whereas Steward-type east-west quartz porphyry dikes and Butte pre-Main Stage deposits are parts of a 66 to 64 Ma magmatic-mineralization system unrelated to emplacement of the Boulder batholith. The age of the crosscutting Main Stage veins may be about 61 Ma as originally reported but can only be bracketed as younger than the 64 Ma pre-Main Stage mineralization and older than the about 50 Ma Eocene Lowland Creek intrusions. The 66 Ma age for the quartz monzodiorite of Boulder Baldy and consideration of previous dating studies in the region indicate that small ca. 66 Ma plutonic systems may be common in the Boulder batholith region and especially to the east. The approximately 64 Ma porphyry copper systems at Butte and gold mineralization at Miller Mountain are indicative of regionally important mineralizing systems of this age in the Boulder batholith region. Resolution of the age and probable magmatic source of the Butte pre-Main Stage porphyry copper-molybdenum system and of the silver-rich polymetallic quartz vein systems in the northern part of the Boulder batholith documents that these deposits formed from two discrete periods of hydrothermal mineralization related to two discrete magmatic events.

Top