Science.gov

Sample records for buttercups

  1. Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae).

    PubMed

    Baack, Eric J

    2004-11-01

    Polyploid speciation is an important source of angiosperm diversity. Insights into the origin and establishment of new polyploid species may be gained by studying the distributions of ancestral and derivative cytotypes at multiple spatial scales. Diploid (2n = 16) and tetraploid (2n = 32) snow buttercups (Ranunculus adoneus: Ranunculaceae) occur in the alpine of the central and southern Rocky Mountains. Root-tip squashes and flow cytometry were used to determine the ploidy of 1618 individuals from 35 populations. Samples from 31 of the 35 sites were entirely of one cytotype, either diploid or tetraploid. Diploid and tetraploid snow buttercups have nonoverlapping regional distributions. Where both cytotypes occur on the same site, the two are spatially segregated despite no apparent change in habitat. Triploid snow buttercups were only found at a diploid/tetraploid contact zone, while two hexaploid plants were found in tetraploid populations. Tetraploid establishment once or twice in the history of the species complex could account for the regional distribution of the two cytotypes. Habitat differentiation between cytotypes or reproductive exclusion of minority cytotypes may explain the observed segregation at both microgeographic and regional scales. PMID:21652325

  2. Buttercup squash provides a marketable alternative to blue hubbard as a trap crop for control of striped cucumber beetles (Coleoptera: Chrysomelidae).

    PubMed

    Cavanagh, Andrew F; Adler, Lynn S; Hazzard, Ruth V

    2010-12-01

    Winter squash is a vital agricultural commodity worldwide. In the Northeastern United States, the primary insect pest is the striped cucumber beetle, Acalymma vittatum F. Using a Blue Hubbard squash (Cucurbita maxima Duchesne) perimeter trap crop system can reduce insecticide use by >90% in butternut squash (C. moschata Poir), the primary winter squash grown in this region. Despite the savings in insecticide costs, growers may be reluctant to give up field space for a perimeter crop of Blue Hubbard squash, which comprises only 5% of the winter squash market in New England as compared with 19% for buttercup squash. Finding a more marketable trap crop would lower the barrier for adoption of this system. We tested eight varieties of three species of cucurbits for attractiveness to beetles relative to Blue Hubbard and butternut squash, and chose buttercup squash as the most promising replacement. We compared the effect of a buttercup border, Blue Hubbard border, or control (no border) on beetle numbers, herbivory, insecticide use, pollination, and pollen limitation in the main crop. We found that buttercup squash performed equally well as Blue Hubbard as a trap crop, with 97% reduction in total insecticide use compared with control fields. Honey bees (Apis mellifera L.) and squash bees (Peponapis pruinosa Say) were the predominant pollinators, and border treatments did not affect visitation. Hand pollination did not increase reproduction or yield, indicating that natural pollination was sufficient for full yield. This study confirms the effectiveness of perimeter trap crop systems and offers growers a more marketable trap crop for managing cucumber beetle damage.

  3. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae).

    PubMed

    Zhang, Rui; Guo, Chunce; Zhang, Wengen; Wang, Peipei; Li, Lin; Duan, Xiaoshan; Du, Qinggao; Zhao, Liang; Shan, Hongyan; Hodges, Scott A; Kramer, Elena M; Ren, Yi; Kong, Hongzhi

    2013-03-26

    Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect.

  4. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae)

    PubMed Central

    Zhang, Rui; Guo, Chunce; Zhang, Wengen; Wang, Peipei; Li, Lin; Duan, Xiaoshan; Zhao, Liang; Shan, Hongyan; Hodges, Scott A.; Kramer, Elena M.; Ren, Yi; Kong, Hongzhi

    2013-01-01

    Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect. PMID:23479615

  5. Buttercups and Daisies: Building a Community of Practice amongst Teachers in a Brazilian University

    ERIC Educational Resources Information Center

    do Nascimento Botelho, Marcel; Kowalski, Robert; Bartlett, Steve

    2010-01-01

    This article examines the promotion and adoption of action research as an instrument of institutional change by academic staff in a Brazilian rural university. The results of the research are presented showing the mobilisation of a group of volunteers, the implementation of their action research projects and the sustainability of the process.…

  6. NITROGEN UPTAKE DURING SNOWMELT BY THE SNOW BUTTERCUP, RANUNCULUS ADONEUS (R823442)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Survival of Ranunculus repens L. (creeping buttercup) in an amphibious habitat.

    PubMed

    Lynn, D E; Waldren, S

    2003-01-01

    The turlough form of Ranunculus repens is subjected to several months' complete inundation with hard groundwater. Experimental flooding to the level of the soil surface had no effect on turlough or ruderal populations relative to drained controls. Experimental submergence resulted in direct tissue death of the ruderal population but did not affect the turlough population relative to drained controls. There was no detectable difference in the proportion of aerenchyma in drained, flooded and submerged roots of plants from either population. The proportion of aerenchyma increased with root age in the ruderal population. Up to twice the proportion of aerenchyma occurred in the lower third of the root in the turlough population relative to the middle and upper thirds. Submergence in artificially hardened tap water increased the amount of tissue death in the ruderal population, whereas it appeared to enhance the growth of plants from the turlough population relative to that of plants submerged in tap water. Only the ruderal population demonstrated a depth accommodation response in submerged conditions. Root concentrations of ethanol-soluble carbohydrates were up to three times higher in a field- collected turlough population during winter and autumn months than those in a ruderal population. Low levels of ethanol-insoluble carbohydrates were present in the turlough population but were absent from the ruderal population. Starch concentrations fluctuated greatly in the turlough population and were generally higher than those in the ruderal population. These results, together with those from previous investigations, suggest that the turlough population survives prolonged submergence by maintaining low levels of submerged photosynthesis, which may circulate oxygen within the plant tissues, and by utilizing storage carbohydrates for maintenance respiration.

  8. Barney and Buttercup: The Big and Little Silent Hunters of the Night

    ERIC Educational Resources Information Center

    Gantert, Robert L.

    1973-01-01

    Describes the owls of the Rotating School Zoo which travels to all the schools in Seattle (Washington) for lecture-demonstrations in wildlife conservation. Outlines the behavior and major characteristics of owls. (JR)

  9. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  10. 76 FR 35906 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 12 Species in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Endangered........ U.S.A. (UT)....... September 28, 1978 argillacea. (43 FR 44810). Colorado butterfly plant...)....... October 6, 2005 lincolniana. (70 FR 58335). Madtom, Neosho Noturus placidus.. Threatened........ U.S.A. (KS, MO, May 22, 1990 (55 OK). FR 21148). ] PLANTS Autumn buttercup Ranunculus Endangered...........

  11. Comparison of perimeter trap crop varieties: effects on herbivory, pollination, and yield in butternut squash.

    PubMed

    Adler, L S; Hazzard, R V

    2009-02-01

    Perimeter trap cropping (PTC) is a method of integrated pest management (IPM) in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. Blue Hubbard (Cucurbita maxima Duch.) is a highly effective trap crop for butternut squash (C. moschata Duch. ex Poir) attacked by striped cucumber beetles (Acalymma vittatum Fabricius), but its limited marketability may reduce adoption of PTC by growers. Research comparing border crop varieties is necessary to provide options for growers. Furthermore, pollinators are critical for cucurbit yield, and the effect of PTC on pollination to main crops is unknown. We examined the effect of five border treatments on herbivory, pollination, and yield in butternut squash and manipulated herbivory and pollination to compare their importance for main crop yield. Blue Hubbard, buttercup squash (C. maxima Duch.), and zucchini (C. pepo L.) were equally attractive to cucumber beetles. Border treatments did not affect butternut leaf damage, but butternut flowers had the fewest beetles when surrounded by Blue Hubbard or buttercup squash. Yield was highest in the Blue Hubbard and buttercup treatments, but this effect was not statistically significant. Native bees accounted for 87% of pollinator visits, and pollination did not limit yield. There was no evidence that border crops competed with the main crop for pollinators. Our results suggest that both buttercup squash and zucchini may be viable alternatives to Blue Hubbard as borders for the main crop of butternut squash. Thus, growers may have multiple border options that reduce pesticide use, effectively manage pests, and do not disturb mutualist interactions with pollinators.

  12. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    SciTech Connect

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  13. A Genomic Duplication is Associated with Ectopic Eomesodermin Expression in the Embryonic Chicken Comb and Two Duplex-comb Phenotypes

    PubMed Central

    Dorshorst, Ben; Rubin, Carl-Johan; Ashwell, Chris; Gourichon, David; Tixier-Boichard, Michèle; Hallböök, Finn; Andersson, Leif

    2015-01-01

    Duplex-comb (D) is one of three major loci affecting comb morphology in the domestic chicken. Here we show that the two Duplex-comb alleles, V-shaped (D*V) and Buttercup (D*C), are both associated with a 20 Kb tandem duplication containing several conserved putative regulatory elements located 200 Kb upstream of the eomesodermin gene (EOMES). EOMES is a T-box transcription factor that is involved in mesoderm specification during gastrulation. In D*V and D*C chicken embryos we find that EOMES is ectopically expressed in the ectoderm of the comb-developing region as compared to wild-type embryos. The confinement of the ectopic expression of EOMES to the ectoderm is in stark contrast to the causal mechanisms underlying the two other major comb loci in the chicken (Rose-comb and Pea-comb) in which the transcription factors MNR2 and SOX5 are ectopically expressed strictly in the mesenchyme. Interestingly, the causal mutations of all three major comb loci in the chicken are now known to be composed of large-scale structural genomic variants that each result in ectopic expression of transcription factors. The Duplex-comb locus also illustrates the evolution of alleles in domestic animals, which means that alleles evolve by the accumulation of two or more consecutive mutations affecting the phenotype. We do not yet know whether the V-shaped or Buttercup allele correspond to the second mutation that occurred on the haplotype of the original duplication event. PMID:25789773

  14. Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken.

    PubMed

    Kerje, S; Lind, J; Schütz, K; Jensen, P; Andersson, L

    2003-08-01

    The co-segregation of plumage colour and sequence polymorphism in the melanocortin 1-receptor gene (MC1R) was investigated using an intercross between the red junglefowl and White Leghorn chickens. The results provided compelling evidence that the Extended black (E) locus controlling plumage colour is equivalent to MC1R. E/MC1R was assigned to chromosome 11 with overwhelming statistical support. Sequence analysis indicated that the E92K substitution, causing a constitutively active receptor in the sombre mouse, is the most likely causative mutation for the Extended black allele carried by the White Leghorn founders in this intercross. The MC1R sequence associated with the recessive buttercup (ebc) allele indicated that this allele evolved from a dominant Extended black allele as it shared the E92K and M71T substitutions with some E alleles. It also carried a third missense mutation H215P which thus may interfere with the constitutive activation of the receptor caused by E92K (and possibly M71T). PMID:12873211

  15. Functional characteristics, nutritional value and industrial applications of Madhuca longifolia seeds: an overview.

    PubMed

    Ramadan, Mohamed Fawzy; Mohdaly, Adel Abdelrazek Abdelazim; Assiri, Adel M A; Tadros, Monier; Niemeyer, Bernd

    2016-05-01

    New sustainable edible oil sources are desired to achieve supply chain flexibility and cost saving opportunities. Non-traditional fruit seeds are being considered because their constituents have unique chemical properties and may augment the supply of nutritional and functional products. Madhuca longifolia Syn. M. indica (Sapotaceae) is an important economic tree growing throughout the subtropical region of the Indo-Pak subcontinent. Information concerning the exact composition of mahua butter (known also as mowrah butter) from fruit-seeds of buttercup or Madhuca tree is scare. Few studies investigated mahua butter for its composition, nutritional value, biological activities and antioxidative properties. In consideration of potential utilization, detailed knowledge on the chemical composition, nutritional value and industrial applications of mahua butter is of major importance. The diversity of applications to which mahua butter can be put gives this substance great industrial importance. This review summarizes recent knowledge on bioactive compounds, functional properties as well as food and non-food industrial applications of mahua butter. Graphical abstractᅟ. PMID:27407181

  16. The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae

    PubMed Central

    Wang, Wei; Lin, Li; Xiang, Xiao-Guo; Ortiz, Rosa del C.; Liu, Yang; Xiang, Kun-Li; Yu, Sheng-Xiang; Xing, Yao-Wu; Chen, Zhi-Duan

    2016-01-01

    The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108–90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction. PMID:27251635

  17. Chemical and biological evaluation of Ranunculus muricatus.

    PubMed

    Khan, Farhat Ali; Zahoor, Muhammad; Khan, Ezzat

    2016-03-01

    Ranunculus muricatus is commonly known as spiny fruit buttercup and is used in the treatment of intermittent fevers, gout and asthma. Qualitative analysis of phytochemicals of Ranunculus muricatus indicated the presence of saponins, tannins, phenols, flavonoids and alkaloids. Saponins were present in high amount as compared with other chemicals. Inorganic and heavy metals constituents were determined. Heavy metals estimation in the sample showed that iron was present in high amount followed by zinc even then the concentration of these metals is below acceptable limit. The physical parameters, antioxidant and antimicrobial activities of the extracts were determined. Acetone extract fraction showed optimal antioxidant activity as compared to ethanol and chloroform fractions of the candidate plant. The antimicrobial and antifungal activities of the crude extract and extract fractions were determined by well agar diffusion method. Highest zone of inhibitions were observed for crude extract followed by acetone extract fraction against Micrococcus luteus. Antifungal activities were high for crude extracts against Candida Albican. Findings of this study show that Ranunculus muricatus has a good medicinal impact. PMID:27087095

  18. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change.

    PubMed

    Willis, Charles G; Ruhfel, Brad; Primack, Richard B; Miller-Rushing, Abraham J; Davis, Charles C

    2008-11-01

    Climate change has led to major changes in the phenology (the timing of seasonal activities, such as flowering) of some species but not others. The extent to which flowering-time response to temperature is shared among closely related species might have important consequences for community-wide patterns of species loss under rapid climate change. Henry David Thoreau initiated a dataset of the Concord, Massachusetts, flora that spans approximately 150 years and provides information on changes in species abundance and flowering time. When these data are analyzed in a phylogenetic context, they indicate that change in abundance is strongly correlated with flowering-time response. Species that do not respond to temperature have decreased greatly in abundance, and include among others anemones and buttercups [Ranunculaceae pro parte (p.p.)], asters and campanulas (Asterales), bluets (Rubiaceae p.p.), bladderworts (Lentibulariaceae), dogwoods (Cornaceae), lilies (Liliales), mints (Lamiaceae p.p.), orchids (Orchidaceae), roses (Rosaceae p.p.), saxifrages (Saxifragales), and violets (Malpighiales). Because flowering-time response traits are shared among closely related species, our findings suggest that climate change has affected and will likely continue to shape the phylogenetically biased pattern of species loss in Thoreau's woods.

  19. The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae.

    PubMed

    Wang, Wei; Lin, Li; Xiang, Xiao-Guo; Ortiz, Rosa Del C; Liu, Yang; Xiang, Kun-Li; Yu, Sheng-Xiang; Xing, Yao-Wu; Chen, Zhi-Duan

    2016-01-01

    The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108-90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction. PMID:27251635

  20. Functional characteristics, nutritional value and industrial applications of Madhuca longifolia seeds: an overview.

    PubMed

    Ramadan, Mohamed Fawzy; Mohdaly, Adel Abdelrazek Abdelazim; Assiri, Adel M A; Tadros, Monier; Niemeyer, Bernd

    2016-05-01

    New sustainable edible oil sources are desired to achieve supply chain flexibility and cost saving opportunities. Non-traditional fruit seeds are being considered because their constituents have unique chemical properties and may augment the supply of nutritional and functional products. Madhuca longifolia Syn. M. indica (Sapotaceae) is an important economic tree growing throughout the subtropical region of the Indo-Pak subcontinent. Information concerning the exact composition of mahua butter (known also as mowrah butter) from fruit-seeds of buttercup or Madhuca tree is scare. Few studies investigated mahua butter for its composition, nutritional value, biological activities and antioxidative properties. In consideration of potential utilization, detailed knowledge on the chemical composition, nutritional value and industrial applications of mahua butter is of major importance. The diversity of applications to which mahua butter can be put gives this substance great industrial importance. This review summarizes recent knowledge on bioactive compounds, functional properties as well as food and non-food industrial applications of mahua butter. Graphical abstractᅟ.

  1. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    PubMed

    Cano, Liliana M; Raffaele, Sylvain; Haugen, Riston H; Saunders, Diane G O; Leonelli, Lauriebeth; MacLean, Dan; Hogenhout, Saskia A; Kamoun, Sophien

    2013-01-01

    Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

  2. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    PubMed

    Cano, Liliana M; Raffaele, Sylvain; Haugen, Riston H; Saunders, Diane G O; Leonelli, Lauriebeth; MacLean, Dan; Hogenhout, Saskia A; Kamoun, Sophien

    2013-01-01

    Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry. PMID:24069397

  3. Cardiovascular effects of Adonis aestivalis in anesthetized sheep.

    PubMed

    Maham, Masoud; Sarrafzadeh-Rezaei, Farshid

    2014-01-01

    Adonis aestivalis (summer pheasant-eye) is an annual plant with a crimson flower, distributed in southern Europe and Asia. The plant has large buttercup-like blossoms and soft, fern-like leaves. It blooms in spring and is often found as a weed in cereal fields. Like other Adonis spp., the plant produces cardiac glycosides. It is used in remedies for mild weakness of the heart, especially when accompanied by nervous complaints. Cardiovascular and toxic effects of a hydroalcoholic extract from the aerial parts of A. aestivalis were investigated in sheep and mice. Six male sheep were anesthetized with sodium pentobarbital and arterial blood pressure was measured with a transducer connected to the left femoral artery. Heart rate and electrocardiogram (ECG) were registered from lead base-apex ECG derivatives connected to a Powerlab recorder. Three successive equal doses (75 mg kg(-1)) of the hydroalcoholic extract of A. aestivalis intravenously administered to anesthetized sheep. Adonis aestivalis extract induced a significant bradycardia and hypotension in sheep. Various ECG abnormalities in sheep included sinus arrhythmia, shortened and depressed S-T interval, and absence of P wave and flattened or inverted T wave. In addition, ventricular arrhythmias, bradyarrhythmias, atrioventricular block, ventricular premature beats, ventricular tachycardia and ventricular fibrillation have also been observed. The acute intraperitoneal toxicity (LD50) of the extract in mice was 2150 mg kg(-1). In conclusion, bradycardia and ECG alterations induced by the extract could explain the justification of traditional use of the of Adonis aestivalis in treating cardiovascular insufficiency. PMID:25568718

  4. Lutein in selected Canadian crops and agri-food processing by-products and purification by high-speed counter-current chromatography.

    PubMed

    Tsao, Rong; Yang, Raymond

    2006-04-21

    This study mainly focused on lutein content in several selected crops grown in southern Ontario, Canada. Marigold flower, a good rotation crop for the control of nematodes in tobacco fields was found to contain 0.77% lutein (after saponification, on dry basis). A high-speed counter-current chromatography (HSCCC) method using a two-phase solvent system consisting of hexane-ethanol-water (6:4.5:1.5, v/v/v) was developed for the purification of lutein from the saponification mixture of marigold flower extract. The purity of lutein prepared using this HSCCC method was 97%. Free lutein was found to be the predominant form in three squash varieties, and it was mostly found in the peel rather than the commonly consumed flesh. Sweet Mamma, Buttercup and Pepper squash varieties contained 25.4, 18.4 and 30.1mg/100g fresh weigh (FW) of lutein in the peels, respectively. These concentrations were significantly higher than that in spinach and kale (3.7 and 12.3 mg/100 g FW). beta-Carotene was found most in the peel of Sweet Mamma squash at 13.6 mg/100g FW, whereas it was below 2mg/100g FW in all other samples. Cooking increased extractable free lutein by 22-65% in squash peels. Lutein in Yukon Gold potato was at ca. 0.4 mg/100 g FW. Certain Yukon Gold was also found to contain violaxanthin (0.35 mg/100 g FW). Structures of lutein, beta-carotene and violaxanthin were identified by LC-atmospheric pressure chemical ionization MS in positive ion mode, and by comparing the retention time and UV-vis spectral data with standards. Results from this study suggest the selected crops and agri-food industrial processing by-products of these can be a good source of free lutein.

  5. Palynostratigraphical correlation of the excavated Miocene lignite seams of the Yataǧan basin (Muǧla Province, south-western Turkey)

    NASA Astrophysics Data System (ADS)

    Bouchal, Johannes Martin; Grímsson, Friðgeir; Denk, Thomas

    2016-04-01

    (basswood, mallow family), Myricaceae (bayberry), Oleaceae (olive family), Onagraceae (evening primrose family), Plumbaginaceae (sea-lavender), Polygonaceae (docks, knotweed), Ranunculaceae (buttercup family), Rosaceae (rose family), Salicaceae (willow), Sapindaceae (maple), Sapotaceae, and Ulmaceae (elm, Zelkova). The objectives of this investigation were (1) to evaluate whether the three palynological sections were deposited at the same time, and (2) to show regional vegetation differences within a single sedimentary basin. We found three general pollen zones corresponding to different sedimentary settings and palaeoenvironments. The first pollen zone was linked to lignite formation (swamp forest, fern spores, Alnus, Decodon). The second pollen zone reflects lacustrine conditions (Typhaceae) and surrounding hinterland vegetation dominated by Fagaceae. The third pollen zone is dominated by herbaceous taxa, whereas woody taxa are less diverse and less abundant. In general, the three palynological sections are congruent in reflecting distinct pollen zones. However main vegetation types may be represented by different dominating taxa (e. g. Alnus dominace in Eskihisar and Tı naz localities while absent in Salihpaşalar) and rare taxa may differ between localities. Our results demonstrate that in order to achieve a comprehensive understanding of environmental and vegetation conditions in a sedimentary basin, a single palynological section (locality) may not capture the entirety of environmental conditions and changes.

  6. Antarctic Miocene Climate

    NASA Astrophysics Data System (ADS)

    Ashworth, A. C.; Lewis, A. R.

    2013-12-01

    Fossils from Antarctic Miocene terrestrial deposits, coupled with stratigraphic, geochemical and paleontological data from marine boreholes, provide new insights into the climatic history of the continent. During the Miocene, ice caps coalesced to form ice sheets and vegetated surfaces gave way to barren expanses. The cryospheric changes especially have global climatic implications. The fossil data consists of diatoms, pollen and spores, and macroscopic remains of plants, ostracods, insects, molluscs and a fish. Plant fossils include wood and leaves of Nothofagus (southern beech), seeds of several vascular plants, including Ranunculus (buttercup), Hippuris (mare's-tail) and Myriophyllum (watermilfoil), megaspores of Isoetes (quillwort), and moss species. The insect chitin consists of larval head capsules of Chironomidae (midges) and exoskeletal parts of Coleoptera (beetles). The molluscs include freshwater gastropods and bivalves. The majority of these taxa are likely descendants of taxa that had survived on the continent from the Paleogene or earlier. Even though early Miocene glaciations may have been large, the climate was never cold enough to cause the extinction of the biota, which probably survived in coastal refugia. Early Miocene (c. 20 Ma) macrofossils from the McMurdo Dry Valleys (77°S) support palynological interpretations from the Cape Roberts and ANDRILL marine records that the upland vegetation was a shrub tundra. Mean summer temperature (MST) in the uplands was c. 6°C and possibly higher at the coast. The climate was wet, supporting mires and lakes. By the mid-Miocene, even though the climate continued to be wet. MST was c. 4°C which was too cold to support Nothofagus and most vascular plant species. Stratigraphic evidence indicates that the time between the Early and Mid-Miocene was a time of repeated ice advances and retreats of small glaciers originating from ice caps. At c. 14 Ma there appears to have been a modal shift in climate to

  7. Miocene Antarctic Terrestrial Realm

    NASA Astrophysics Data System (ADS)

    Ashworth, A. C.; Lewis, A.; Marchant, D. R.

    2009-12-01

    The discovery of several locations in the Transantarctic Mountains that contain macrofossils and pollen is transforming our understanding of late Cenozoic Antarctica. The most southerly location is on the Beardmore Glacier (85.1°S) about 500 km from the South Pole. The environment was an active glacial margin in which plants, insects and freshwater mollusks inhabited the sand and gravel bars and small lakes on an outwash plain. In addition to leaves and wood of dwarf Nothofagus (Southern Beech) shrubs, achenes of Ranunculus (Buttercup), in situ cushion growth forms of mosses and a vascular plant, the assemblages contains various exoskeletal parts of carabid and curculionid beetles and a cyclorrhaphan fly, the shells of freshwater bivalve and gastropod species and a fish tooth. Initially the deposits were assigned a Pliocene age (3.5 Ma) but a mid- to early Miocene age is more probable (c. 14 - 25 Ma) based on correlation of fossil pollen from the deposits with 39Ar/40Ar dated pollen assemblages from the McMurdo Dry Valleys locations. The oldest location within the Dry Valleys also involved an active ice margin but was part of a valley system that was completely deglaciated for intervals long enough for thick paleosols to develop. The Friis Hills fossil deposits of the Taylor Valley region (77.8°S) are at least 19.76 Ma based on the 39Ar/40Ar age of a volcanic ash bed. The valley floor during the non-glacial phases had poorly-drained soils and the extensive development of mossy mires. Wood and leaves of Nothofagus are abundant in lacustrine deposits. The silts of shallow fluvial channels contain abundant megaspores and spiky leaves of the aquatic lycopod Isoetes (Quillwort). Fossils of beetles are also present in these deposits. During the glacial phases, proglacial lakes were surrounded by dwarfed, deciduous Nothofagus shrubs. The youngest fossils recovered from the Dry Valleys are from the Olympus Range (77.5°S) with an age of 14.07 Ma. The environment was an