Science.gov

Sample records for butyrate induces cell

  1. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  2. Transcriptome characterization by deep-RNA-sequencing underlies the mechanisms of butyrate-induced epigenomic regulation in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile short-chain fatty acids (SCFAs, acetate, propionate, and butyrate), especially butyrate, alter cell differentiation, proliferation, motility, and in particular, induce cell cycle arrest and apoptosis through its histone deacetylase (HDAC) inhibition activity. Butyrate is a great inducer of ...

  3. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  4. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  5. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    PubMed Central

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Methods Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Results Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin

  6. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells.

    PubMed

    Pant, Kishor; Yadav, Ajay K; Gupta, Parul; Islam, Rakibul; Saraya, Anoop; Venugopal, Senthil K

    2017-03-07

    Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and β-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.

  7. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  8. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  9. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  10. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  11. Butyrate induced cell cycle arrest in bovine cells through targeting gene expression relevant to DNA replication apparatus.

    PubMed

    Li, Cong-jun; Li, Robert W

    2008-03-17

    Using real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the effects of butyrate on patterns of gene expression relevant to DNA replication apparatus. The real-time PCR and Western blot data generally confirmed previously reported microarray data. Of the five genes tested by quantitative RT-PCR, CDKN1A (p21(waf1)) was up regulated, CDC2/cdk1, MCM6, ORC1L were down regulated, while ORC3L expression remained unchanged following butyrate treatment. Also consistent with RT-PCR results, Western blot analysis confirmed that butyrate up-regulated cyclin-kinase inhibitor p21(waf1) in a does-dependent manner. In contrast, butyrate treatment had no effect on the expression of ERK 1/2 proteins. Also consistent with mRNA results, ORC1 and MCM3 proteins were down-regulated by butyrate treatment, while ORC2 protein remained unchanged. The present results suggest that ORC1, not ORC2 or ORC3, along with MCM proteins play a critical role in regulating the initiation of DNA replication and cell cycle progression in MDBK cells and are targets of butyrate regulation.

  12. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    SciTech Connect

    Belakavadi, Madesh . E-mail: belakama@umdnj.edu; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-10-07

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells.

  13. Butyrate Induced Cell Cycle Arrest in Bovine Cells through Targeting Gene Expression relevance to DNA Replication Apparatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using both real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the gene expression relevance to DNA replication apparatus targeted by butyrate. The real-time PCR and Western blot data generally confirmed the microarray analysis. From the quan...

  14. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  15. Inhibition of store-operated Ca2+ entry counteracts the apoptosis of nasopharyngeal carcinoma cells induced by sodium butyrate

    PubMed Central

    Huang, Wei; Ren, Caiping; Huang, Guoling; Liu, Jie; Liu, Weidong; Wang, Lei; Zhu, Bin; Feng, Xiangling; Shi, Jia; Li, Jinlong; Xia, Xiaomeng; Jia, Wei; Chen, Jiawen; Chen, Yuxiang; Jiang, Xingjun

    2017-01-01

    Sodium butyrate (NaBu), a histone deacetylase inhibitor, has demonstrated anti-tumor effects in several cancers, and is a promising candidate chemotherapeutic agent. However, its roles in nasopharyngeal carcinoma (NPC), an endemic malignant disease in Southern China and Southeast Asia, has rarely been studied. In the present study, MTT assay, colony formation assay, flow cytometry analysis and western blotting were performed to explore the influence of NaBu on NPC cells and its underlying mechanism. NaBu induced morphological changes and inhibited proliferation in 5–8F and 6–10B cells. MTT assay revealed that NaBu was cytotoxic to 5–8F and 6–10B cells in a dose- and time-dependent manner. Furthermore, flow cytometry analysis revealed that NaBu induced obvious cell apoptosis in 5–8F and 6–10B cells due to the activation of the mitochondrial apoptosis axis. In addition, flow cytometry analysis and western blotting demonstrated that NaBu could enhance the Ca2+ influx by promoting store-operated Ca2+ entry (SOCE) in 5–8F and 6–10B cells. Inhibition of SOCE by specific inhibitors or downregulated expression of calcium release-activated calcium channel protein 1 and stromal interaction molecule 1 could counteract the apoptosis of NPC cells induced by NaBu. Thus, the current study revealed that enhanced SOCE and activated mitochondrial apoptosis axis may account for the mechanisms of cytotoxicity of NaBu in NPC cells, and that NaBu serves as a promising chemotherapeutic agent in NPC therapy. PMID:28356979

  16. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  17. In vitro and in vivo study of transcriptome alternation induced by butyrate in cattle using deep RNA-seq

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short-chain fatty acids (SCFAs,), especially butyrate, affect cell differentiation, proliferation, and motility. Furthermore, butyrate induces cell cycle arrest and apoptosis through its inhibition on histone deacetylases (HDACs). Butyrate is a potent inducer of histone hyper-acetylation in cells a...

  18. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression.

    PubMed

    Tayebi, Behnoosh; Abrishami, Fatemeh; Alizadeh, Shaban; Minayi, Neda; Mohammadian, Mozhdeh; Soleimani, Masoud; Dehghanifard, Ali; Atwan, Hossein; Ajami, Monireh; Ajami, Mansoureh

    2017-02-01

    Context Inherited hemoglobin diseases are the most common single-gene disorders. Induction of fetal hemoglobin in beta hemoglobin disorders compensate for abnormal chain and ameliorate the clinical complications. Sodium butyrate is used conventionally for fetal hemoglobin induction; it can be replaced by safer therapeutic tools like microRNAs, small non-coding RNAs that control number of epigenetic mechanisms. Objective In this study, we compared the changes in the microRNAs of differentiated erythroid cells between control and sodium butyrate treated groups. The objective is to find significant association between these changes and gamma chain up regulation. Materials and methods First, CD133(+ ) hematopoietic stem cells were isolated from cord blood by magnetic cell sorting (MACS) technique. After proliferation, the cells were differentiated to erythroid lineage in culture medium by EPO, SCF, and IL3. Meanwhile, the test group was treated with sodium butyrate. Then, gamma chain upregulation was verified by qPCR technique. Finally, microRNA profiling was performed through microarray assay and some of them confirmed by qPCR. Result Results demonstrated that gamma chain was 5.9-fold upregulated in the treated group. Significant changes were observed at 76 microRNAs, in which 20 were up-regulated and 56 were down-regulated. Discussion Five of these microRNAs including U101, hsa-miR-4726-5p, hsa-miR7109 5p, hsa-miR3663, and hsa-miR940 had significant changes in expression and volume. Conclusion In conclusion, it can be assumed that sodium butyrate can up-regulate gamma chain gene, and change miRNAs expression. These results can be profitable in future studies to find therapeutic goal suitable for such disorders.

  19. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation.

    PubMed Central

    Birren, B W; Taplitz, S J; Herschman, H R

    1987-01-01

    We examined in the H4IIE rat hepatoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequences to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation. Images PMID:3431545

  20. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  1. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  2. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    PubMed

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  3. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors

    PubMed Central

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-01-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy. PMID:12153511

  4. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors.

    PubMed

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-08-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy.

  5. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    PubMed

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis.

  6. Induction of erythroid differentiadon in K562 cells by different butyrate regimens.

    PubMed

    Liu, Zhi-Jie; Qian, Xin-Hua; Li, Xi-Ping; Yao, Ying-Min

    2001-01-01

    OBJECTIVE: To investigate the hemoglobinization induced by butyrate and observe the effects of different butyrate regimens on erythroid differentiation of K562 cells. METHODS: K562 cells, used as an in vitro model system, were stained with benzidine to assess hemoglobin (Hb) production in response to different treatment regimens of butyrate at varied concentrations. Comparison of the percentage of benzidine-positive cells (BZ%)in untreated and butyrate-treated K562 cells was performed. Protein absorption at 414 nm using a spectrophotometer and cellulose acetate gel electrophoresis were employed to determine the changes of Hb production in K562 cells. RESULT: The BZ% increased by 4 to 6 fold and Hb production by 9 to 14 fold 3 d after the cells were incubated with butyrate which selectively promoted fetal hemoglobin(HbF) production in K562 cells. The BZ% increased gradually and reached the peak of l9% to 28% on day 3 or 4 in cells receiving pulse treatment with butyrate for only once, followed by a subsequent rapid fall and on day 7 to 9, it decreased to the level of untreated K562 cells. The length of time for incubation with butyrate was not related to in the increment or the maintenance of the increased level of BZ%. Continuous treatment with butyrate yielded a similar result to that of a single administration of pulse treatment. In contrast, in cells with intermittent pulse treatment the BZ% reached a peak after 72 h and was maintained between 20% and 30% till 3 cycles of treatment was completed. CONCLUSION: Butyrate can induce the expression of globin genes and augment Hb producfion especially that of HbF. A sustained erythroid differentiation of K562 cells can be achieved by intermittent pulse treatment with butyrate which can be an ideal regimen for children with beta globin diseases.

  7. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    SciTech Connect

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: Black-Right-Pointing-Pointer In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. Black-Right-Pointing-Pointer The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). Black-Right-Pointing-Pointer Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. Black-Right-Pointing-Pointer Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  8. Augmentation by 2-mercaptoethanol of in vitro anti-TNP antibody production induced by butyrate plus IL-2 in murine splenic B cells.

    PubMed

    Gohda, Eiichi; Okamura, Takayuki; Aoyama, Eriko; Yamamoto, Itaru

    2003-11-01

    We previously reported that anti-trinitrophenyl (TNP) antibody production in murine splenic B cells stimulated with TNP-lipopolysaccharide in vitro was promoted by sodium butyrate (NaBu) in an IL-2-dependent manner. In the present study, we found that the effect of NaBu plus IL-2 was markedly augmented by 2-mercaptoethanol (2-ME), which showed a slight or null effect on the response of untreated, IL-2-treated or NaBu-treated B cells, as assessed by both anti-TNP plaque-forming cell assay and anti-TNP IgM ELISA. Other thiol compounds such as dithiothreitol, cysteamine and reduced glutathione (GSH) also had this activity. 2-ME enhanced the anti-TNP antibody production induced by other short-chain fatty acids with three to five carbon atoms plus IL-2. The proliferation of B cells was significantly inhibited by NaBu or NaBu plus IL-2, and the proliferation was completely restored by the simultaneous addition of 2-ME. These results demonstrate that 2-ME markedly enhanced anti-TNP antibody production in murine B cells induced by NaBu plus IL-2 and suggest that the effect of 2-ME is at least partly due to its blocking activity of the growth-inhibitory action of NaBu.

  9. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    PubMed

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways.

  10. Effect of Butyrate on Collagen Expression, Cell Viability, Cell Cycle Progression and Related Proteins Expression of MG-63 Osteoblastic Cells

    PubMed Central

    Chang, Mei-Chi; Tsai, Yi-Ling; Liou, Eric Jein-Wein; Tang, Chia-Mei; Wang, Tong-Mei; Liu, Hsin-Cheng; Liao, Ming-Wei; Yeung, Sin-Yuet; Chan, Chiu-Po; Jeng, Jiiang-Huei

    2016-01-01

    Aims Butyric acid is one major metabolic product generated by anaerobic Gram-negative bacteria of periodontal and root canal infection. Butyric acid affects the activity of periodontal cells such as osteoblasts. The purposes of this study were to investigate the effects of butyrate on MG-63 osteoblasts. Methods MG-63 cells were exposed to butyrate and cell viability was estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mRNA and protein expression of type I collagen and cell cycle-related proteins were measured by reverse-transcriptase polymerase chain reaction (RT-PCR), western blotting or immunofluorescent staining. Cellular production of reactive oxygen species (ROS) was analyzed by 2',7'-dichlorofluorescein (DCF) fluorescence flow cytometry. Results Exposure to butyrate suppressed cell proliferation, and induced G2/M (8 and 16 mM) cell cycle arrest of MG-63 cells. Some cell apoptosis was noted. The mRNA expression of cdc2 and cyclin-B1 decreased after exposure to butyrate. The protein expression of type I collagen, cdc2 and cyclin B1 were decreased, whereas the expression of p21, p27 and p57 was stimulated. Under the treatment of butyrate, ROS production in MG-63 cells markedly increased. Conclusions The secretion of butyric acid by periodontal and root canal microorganisms may inhibit bone cell growth and matrix turnover. This is possibly due to induction of cell cycle arrest and ROS generation and inhibition of collagen expression. These results suggest the involvement of butyric acid in the pathogenesis of periodontal and periapical tissue destruction by impairing bone healing responses. PMID:27893752

  11. Butyrate stimulates tissue-type plasminogen-activator synthesis in cultured human endothelial cells.

    PubMed Central

    Kooistra, T; van den Berg, J; Töns, A; Platenburg, G; Rijken, D C; van den Berg, E

    1987-01-01

    Incubation of cultured human endothelial cells with 5 mM-dibutyryl cyclic AMP led to an approx. 2-fold increase in tissue-type plasminogen-activator (t-PA) production over a 24 h incubation period. The stimulating effect of dibutyryl cyclic AMP could be explained by the slow liberation of butyrate, as the effect could be reproduced by addition of free butyrate to the medium, but not by addition of 8-bromo cyclic AMP or forskolin, agents known to raise intracellular cyclic AMP levels. With butyrate, an accelerated accumulation of t-PA antigen in the conditioned medium (CM) was observed after a lag period of about 6 h. Increasing amounts of butyrate caused an increasingly stimulatory effect, reaching a plateau at 5 mM-butyrate. The relative enhancement of t-PA production in the presence of 5 mM-butyrate varied among different endothelial cell cultures from 6- to 25-fold in 24 h CM. Such an increase in t-PA production was observed with both arterial and venous endothelial cells. The butyrate-induced increases in t-PA production were accompanied by increased t-PA mRNA levels. Analysis of radiolabelled CM and cell extracts by SDS/polyacrylamide-gel electrophoresis indicated that the potent action of butyrate is probably restricted to a small number of proteins. The accumulation of plasminogen activator inhibitor type 1 (PAI-1) in CM from butyrate-treated cells varied only moderately. In our study of the relationship between structure and stimulatory activity, we found that a straight-chain C4 monocarboxylate structure with a methyl group at one end and a carboxy moiety at the other seems to be required for the optimal induction of t-PA in cultured endothelial cells. Images Fig. 2. Fig. 3. Fig. 5. Fig. 7. PMID:2827633

  12. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    SciTech Connect

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or

  13. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells

    PubMed Central

    Yan, Hui; Ajuwon, Kolapo M.

    2015-01-01

    Short chain fatty acids (SCFA), products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity. PMID:26713737

  14. Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells.

    PubMed

    Wippermann, Anna; Rupp, Oliver; Brinkrolf, Karina; Hoffrogge, Raimund; Noll, Thomas

    2016-11-24

    The cellular mechanisms responsible for the versatile properties of CHO cells as the major production cell line for biopharmaceutical molecules are not entirely understood yet, although several 'omics' data facilitate the understanding of CHO cells and their reactions to environmental conditions. However, genome-wide studies of epigenetic processes such as DNA methylation are still limited. To prove the applicability and usefulness of integrating DNA methylation and gene expression data in a biotechnological context, we exemplarily analyzed the time course of cellular reactions upon butyrate addition in antibody-producing CHO cells by whole-genome bisulfite sequencing and CHO-specific cDNA microarrays. Gene expression and DNA methylation analyses showed that pathways known to be affected by butyrate, including cell cycle and apoptosis, as well as pathways potentially involved in butyrate-induced hyperproductivity such as central energy metabolism and protein biosynthesis were affected. Differentially methylated regions were furthermore found to contain binding-site motifs of specific transcription factors and were hypothesized to represent regulatory regions closely connected to the cellular response to butyrate. Generally, our experiment underlines the benefit of integrating DNA methylation and gene expression data, as it provided potential novel candidate genes for rational cell line development and allowed for new insights into the butyrate effect on CHO cells.

  15. Alternate splicing regulated by butyrate in the bovine epithelial cell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a signaling molecule and a potent inhibitor of histone deacetylases (HADCs), butyrate exerts its impacts on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. In this study, we examined the effect of...

  16. Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG108-15 and NCB-20 cells

    SciTech Connect

    Zhu, X.Z.; Chuang, D.M.

    1987-08-31

    The authors previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha/sub 2/-adrenergic receptors. In the present study the authors investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of /sup 3/H-clonidine. A comparable increase in the number of binding sites was detected when /sup 3/H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha/sub 2/-adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids. 22 references, 2 figures, 2 tables.

  17. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    PubMed

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs.

  18. The synergistic effect of 1'-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells.

    PubMed

    Kato, Rie; Matsui-Yuasa, Isao; Azuma, Hideki; Kojima-Yuasa, Akiko

    2014-04-05

    It has been suggested that the combined effect of natural products may improve the effect of treatment against the proliferation of cancer cells. In this study, we evaluated the combination of 1'-acetoxychavicol acetate (ACA), obtained from Alpinia galangal, and sodium butyrate, a major short chain fatty acid, on the growth of HepG2 human hepatocellular carcinoma cells and found that treatment had a synergistic inhibitory effect. The number of HepG2 cells was synergistically decreased via apoptosis induction when cells were treated with both ACA and sodium butyrate. In ACA- and sodium butyrate-treated cells, intracellular reactive oxygen species (ROS) levels and NADPH oxidase activities were increased significantly. The decrease in cell number after combined treatment of ACA and sodium butyrate was diminished when cells were pretreated with catalase. These results suggest that an increase in intracellular ROS levels is involved in cancer cell death. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays an essential role in controlling processes related to tumor development. In ACA- and sodium butyrate-treated cells, AMPK phosphorylation was induced significantly, and this induction improved when cells were pretreated with catalase. These results suggest that the increase in intracellular ROS is involved in the increase of AMPK phosphorylation. In normal hepatocyte cells, treatment with ACA and sodium butyrate did not decrease cell numbers or increase ROS levels. In conclusion, combined treatment with ACA and sodium butyrate synergistically induced apoptotic cell death via an increase in intracellular ROS and phosphorylation of AMPK. Our findings may provide new insight into the development of novel combination therapies against hepatocellular carcinoma.

  19. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  20. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

    PubMed

    Peng, Luying; Li, Zhong-Rong; Green, Robert S; Holzman, Ian R; Lin, Jing

    2009-09-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.

  1. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  2. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells.

    PubMed

    Jung, YunJae

    2015-12-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity.

  3. Mechanism of butyrate-induced vasorelaxation of rat mesenteric resistance artery.

    PubMed Central

    Aaronson, P. I.; McKinnon, W.; Poston, L.

    1996-01-01

    1. The vasorelaxant effect of the sodium salt of the short chain fatty acid, butyrate, on preconstricted rat small mesenteric arteries (mean inner diameter approximately 300 microns) was characterized. Isometric force development was measured with a myograph, and intracellular pH (pHi) was simultaneously monitored, in arteries loaded with the fluorescent dye BCECF in its acetomethoxy form. Sodium butyrate (substituted isosmotically for NaCl) was applied to arteries after noradrenaline (NA) or high K+ contractures were established. 2. Arteries preconstricted with a concentration of NA inducing an approximately half maximal contraction were relaxed by 91.5 +/- 6.3% by 50 mmol l-1 butyrate. This concentration of butyrate did not, however, cause a significant relaxation of contractures to a maximal (5 mumol l-1) NA concentration, and also failed to relax significantly contractures stimulated by high (45 and 90 mmol l-1) K+ solutions. Contractures elicited with a combination of NA (at a submaximal concentration) and 45 mmol l-1 K+ were, however, markedly relaxed by butyrate. 3. Investigation of the concentration-dependency of the butyrate-induced relaxation of the half maximal NA response revealed an EC50 for butyrate of approximately 22 mmol l-1. 4. Sodium butyrate (50 mmol l-1) caused pHi to decrease from 7.25 +/- 0.02 to 6.89 +/- 0.08 (n = 4, P < 0.001). However, the vasorelaxant effect of butyrate on the submaximal NA contracture was not significantly modified when this fall in intracellular pH was prevented by the simultaneous application of NH4Cl. 5. Butyrate-induced relaxation was also unaffected by endothelial denudation and inhibition of NO synthase with N omega-nitro-L-arginine methyl ester (100 mumol l-1). 6. The relaxation of the NA contracture by 50 mmol l-1 sodium butyrate was abolished in arteries pretreated with the cyclic AMP antagonist Rp-cAMPS (25 mumol l-1). 7. We conclude that the butyrate-induced relaxation of the NA contracture is independent of

  4. Butyrate inhibits cancerous HCT116 cell proliferation but to a lesser extent in noncancerous NCM460 colon cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser...

  5. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate

    PubMed Central

    Schmidt, Angelika; Eriksson, Matilda; Shang, Ming-Mei; Weyd, Heiko; Tegnér, Jesper

    2016-01-01

    Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-β in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases. PMID:26886923

  6. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  7. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells

    PubMed Central

    Zeng, Huawei; Taussig, David P.; Cheng, Wen-Hsing; Johnson, LuAnn K.; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells. PMID:28045428

  8. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion*

    PubMed Central

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G.

    2013-01-01

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes. PMID:23836895

  9. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion.

    PubMed

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G

    2013-08-30

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes.

  10. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells.

    PubMed

    Mathew, Omana P; Ranganna, Kasturi; Yatsu, Frank M

    2010-12-01

    HDACs and HATs regulate histone acetylation, an epigenetic modification that controls chromatin structure and through it, gene expression. Butyrate, a dietary HDAC inhibitor, inhibits VSMC proliferation, a crucial factor in atherogenesis, and the principle mechanism in arterial and in-stent restenosis. Here, the link between antiproliferation action of butyrate and the portraits of global covalent modifications of histone H3 that it induces are characterized to understand the mechanics of butyrate-arrested VSMC proliferation. Analysis of histone H3 modifications specific to butyrate arrested VSMC proliferation display induction of histone H3-Lysine9 acetylation, inhibition of histone H3-Serine10 phosphorylation, reduction of histone H3-Lysine9 dimethylation and stimulation of histone H3-Lysine4 di-methylation, which is linked to transcriptional activation, cell cycle/mitosis, transcriptional suppression and activation, respectively. Conversely, untreated VSMCs exhibit inhibition of H3-Lysine9 acetylation, induction of H3-Serine10 phosphorylation, stimulation of H3-Lysine9 di-methylation and reduction in H3-Lysine4 di-methylation. Butyrate's cooperative effects on H3-Lysine9 acetylation and H3-Serine10 phosphorylation, and contrasting effects on di-methylation of H3-Lysine9 and H3-Lysine4 suggests that the interplay between these site-specific modifications cause distinct chromatin alterations that allow cyclin D1 and D3 induction, G1-specific cdk4, cdk6 and cdk2 downregulation, and upregulation of cdk inhibitors, p15INK4b and p21Cip1. Regardless of butyrate's effect on D-type cyclins, downregulation of G1-specific cdks and upregulation of cdk inhibitors by butyrate prevents cell cycle progression by failing to inactivate Rb. Overall, through chromatin remodeling, butyrate appears to differentially alter G1-specific cell cycle proteins to ensure proliferation arrest of VSMCs, a crucial cellular component of blood vessel wall.

  11. Butyrate plays differential roles in cellular signaling in cancerous HCT116 and noncancerous NCM460 colon cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects in colon. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate plays differential roles in cancerous and non-cancerous cells through si...

  12. Two cytotoxic cell proteinase genes are differentially sensitive to sodium butyrate.

    PubMed Central

    Frégeau, C J; Helgason, C D; Bleackley, R C

    1992-01-01

    The 5'-flanking regions of two cytotoxic cell protease genes, CCP1 and 2, are sufficient to confer cytotoxic T lymphocyte-specific expression when fused to a reporter gene. The two regulatory regions are, however, differentially sensitive to treatment of the recipient cell, MTL 2.8.2, with sodium butyrate. With CCP1 a six-fold increase in cat expression was observed, whereas CCP2 was insensitive to the butyrate treatment. One major butyrate-sensitive regions was defined in the CCP1 5'-flanking sequence between -243 to -112 and another less effective one between-682 to -427. These fragments of DNA were also able to confer responsiveness to butyrate when ligated to a heterologous fos promoter. These sequences within the 5' flank of CCP1 share homology with other elements that have been defined as butyrate-responsive. We believe that our results argue against a pleiotropic affect of butyrate such as histone acetylation. More likely sodium butyrate is mediating a specific stimulation of transcription through modification of the activities of selected transcriptional regulatory proteins that in turn affect their interactions with proteins bound to the promoter. Images PMID:1620608

  13. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    SciTech Connect

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J. . E-mail: gerhard.zlabinger@meduniwien.ac.at

    2006-10-20

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-{alpha} transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling.

  14. Effect of sodium butyrate on induction of cellular and viral DNA syntheses in polyoma virus-infected mouse kidney cells.

    PubMed Central

    Wawra, E; Pöckl, E; Müllner, E; Wintersberger, E

    1981-01-01

    Sodium butyrate inhibited initiation of viral and cellular DNA replication in polyoma virus-infected mouse kidney cells. Ongoing viral or cellular DNA replication, however, was not affected by the presence of the substance. Butyrate had no effect on T-antigen synthesis and on the stimulation of transcription, one of the earliest reactions of the infected cells to the appearance of T-antigen, nor did it inhibit expression of late viral genes (synthesis of viral capsid proteins). In addition to blocking the onset of DNA synthesis, butyrate also inhibited stimulation of the activities of enzymes involved in DNA synthesis. When butyrate was removed, viral and cellular DNA syntheses were induced in parallel after a lag period of approximately 4 h. At the same time, the activities of enzymes involved in DNA synthesis increase. If protein synthesis was inhibited during part of the lag period, the initiation of DNA synthesis was retarded for the same time interval, suggesting that the proteins involved in the initiation of DNA replication had to be made. We have developed an in vitro system for measuring DNA synthesis in crude nuclear preparations which mimics the status of DNA replication in intact cells and may help in future experiments to study the requirements for initiation of cellular and viral DNA synthesis and the possible involvement of T-antigens in this reaction. Images PMID:6264167

  15. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases.

    PubMed

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D; Martin, Pamela M; Lambert, Nevin A; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-09-03

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.

  16. Blockade of Dendritic Cell Development by Bacterial Fermentation Products Butyrate and Propionate through a Transporter (Slc5a8)-dependent Inhibition of Histone Deacetylases

    PubMed Central

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D.; Martin, Pamela M.; Lambert, Nevin A.; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-01-01

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na+-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8−/− and Gpr109a−/− mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate. PMID:20601425

  17. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc.

  18. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.

    PubMed

    Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa

    2014-10-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways.

  19. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    PubMed

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  20. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  1. Butyrate Histone Deacetylase Inhibitors

    PubMed Central

    Boosalis, Michael S.; Perrine, Susan P.; Sangerman, José

    2012-01-01

    Abstract In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition. PMID:23514803

  2. Chlorambucil-sensitive and -resistant lymphoid cells display different responses to the histone deacetylase inhibitor, sodium butyrate.

    PubMed

    Kwa, Faith A A; Cole-Sinclair, Merrole; Kapuscinski, Miroslav

    2010-12-17

    Clinical chemoresistance is a frequent complication of alkylating agent treatment of malignant tumours. Chromatin remodelling using histone deacetylase inhibitors (e.g., sodium butyrate, NaBu) may increase target cell chemosensitivity. Apoptotic responses and expression of chromatin modifying enzymes in lymphoid cell lines, LP-1 and NCI-H929, to chlorambucil (CLB) and/or NaBu were examined in this study. NaBu augmented the apoptotic response in CLB-resistant LP-1 cells but antagonised it in CLB-sensitive NCI-H929 cells. CLB increased expression of methyltransferase I and histone acetyltransferase I in both cell lines while NaBu had only small effect. CLB-induced increased gene expression was attenuated by NaBu in CLB-sensitive NCI-H929 cells but not in resistant LP-1 cells. These results suggest that chromatin modifying agents may have differential effects on cells depending on their chemosensitivity.

  3. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.

    PubMed

    Liu, Hong; Cheng, Shaoan; Logan, Bruce E

    2005-01-15

    Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/ L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 ohms) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 ohms). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power outputwere higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10-31 and 3-7% for acetate and 8-15 and 2-5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.

  4. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium

    PubMed Central

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn’t induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  5. Pitfalls in global normalization of ChIP-seq data in CD4(+) T cells treated with butyrate: A possible solution strategy.

    PubMed

    Furusawa, Yukihiro; Endo, Takaho A; Obata, Yuuki; Ohara, Osamu; Ohno, Hiroshi; Hase, Koji

    2014-12-01

    Regulatory T cells (Treg) play a central role in the suppression of inflammatory and allergic responses. Colonization of certain gut commensal microbes such as Clostridia class IV and XIVa in the gut can induce development of colonic Treg cells contributing to the maintenance of gut immune homeostasis. Clostridia-derived butyrate promotes the differentiation of naïve T cells into Treg cells through upregulation of Foxp3, the master transcription factor of Treg cells. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that treatment of naïve T cells with butyrate induces Treg-polarizing conditions by enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus. In general, global normalization was utilized for ChIP-seq analysis to compare the data obtained from two or more samples. However, global normalization is not appropriate for the evaluation of ChIP-seq data when treatment can affect the total amount of target protein. Here, we introduce a unique normalization method for ChIP-seq analysis in cells treated with butyrate, a pan-HDAC inhibitor that is likely to affect total acetylation levels of histone H3.

  6. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha.

    PubMed

    Hung, W C; Chuang, L Y

    1999-05-01

    Although interferon-alpha (IFN-alpha) has shown great promise in the treatment of chronic viral hepatitis, the anti-tumour effect of this agent in the therapy of liver cancer is unclear. Recent studies have demonstrated that differentiation-inducing agents could modulate the responsiveness of cancer cells to IFN-alpha by regulating the expression of signal transducers and activators of transcription (STAT) proteins, a group of transcription factors which play important roles in the IFN signalling pathway. We have reported that sodium butyrate is a potent differentiation inducer for human hepatoma cells. In this study, we investigated whether this drug could regulate the expression of STAT proteins and enhance the anti-tumour effect of IFN-alpha in hepatoma cells. We found that sodium butyrate specifically activated STAT1 gene expression and enhanced IFN-alpha-induced phosphorylation and activation of STAT1 proteins. Co-treatment with these two drugs led to G1 growth arrest, accompanied by down-regulation of cyclin D1 and up-regulation of p21WAF-1, and accumulation of hypophosphorylated retinoblastoma protein in hepatoma cells. Additionally, internucleosomal DNA fragmentation, a biological hallmark of apoptosis, was detected in hepatoma cells after continuous incubation with a combination of these two drugs for 72 h. Our results show that sodium butyrate potently enhances the anti-tumour effect of IFN-alpha in vitro and suggest that a rational combination of these two drugs may be useful for the treatment of liver cancer.

  7. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  8. Cell growth on in situ photo-cross-linked electrospun acrylated cellulose acetate butyrate.

    PubMed

    Çakmakçı, Emrah; Güngör, Atilla; Kayaman-Apohan, Nilhan; Kuruca, Serap Erdem; Çetin, Muzaffer Beyza; Dar, Kadriye Akgün

    2012-01-01

    In this study, electrospinning was combined with UV curing technology for producing in situ photo cross-linked fibers from methacrylated cellulose acetate butyrate (CABIEM). ECV304 and 3T3 cells were seeded on electrospun fibrous scaffolds. Collagen modified CABIEM fibers were also prepared for improving cell adhesion and proliferation. Cross-linking and the morphology of the fibers were characterized by ATR-FTIR spectrometry and environmental scanning electron microscopy (ESEM). The cytotoxicity of the fibers was examined using the MTT cytotoxicity assay. According to the results, electrospun fibrous scaffolds are non-toxic and cell viability depends on the amount of collagen. It was found that cell adhesion and cell growth were enhanced as the collagen percentage was increased.

  9. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    PubMed

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  10. Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells.

    PubMed

    Hu, Xiaoqing; Fu, Yutuo; Zhang, Xin; Dai, Linghui; Zhu, Jingxian; Bi, Zhenggang; Ao, Yingfang; Zhou, Chunyan

    2014-04-01

    Adult stem cells hold great promise for use in tissue repair and regeneration. Recently, adipose tissue-derived stem cells (ADSCs) were found to be an appealing alternative to bone marrow stem cells (BMSCs) for bone tissue engineering. The main benefit of ADSCs is that they can be easily and abundantly available from adipose tissue. However, our prior study discovered an important phenomenon that BMSCs have greater osteogenic potential than ADSCs in vitro and epigenetic regulation plays a critical role in runt-related transcription factor 2 (Runx2) expression and thus osteogenesis. In this study, we aimed to improve the osteogenic potential of ADSCs by histone deacetylase inhibitor sodium butyrate (NaBu). We found that NaBu promoted rat ADSC osteogenic differentiation by altering the epigenetic modifications on the Runx2 promoter.

  11. Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines.

    PubMed

    Rodríguez-Salvador, J; Armas-Pineda, C; Perezpeña-Diazconti, M; Chico-Ponce de León, F; Sosa-Sáinz, G; Lezama, P; Recillas-Targa, F; Arenas-Huertero, F

    2005-09-01

    Matrix metalloproteinases (MMPs) are enzymes responsible for extracellular matrix degradation and contribute to local and distant cell invasion during cancer progression or metastasis. The effects of chromatin structure on gene expression and the use of histone deacetylase inhibitors such as sodium butyrate (NaBu) may directly influence pro-MMPs secretion. In the present study, we evaluated the effect of NaBu on pro-MMP-9 and pro-MMP-2 secretion in human Jurkat and HT1080 cells, and in 36 pediatric solid tumors. Cell lines and samples were exposed to 8 mM of NaBu and proteinase activity was evaluated in the supernatant by gelatin zymograms. Our results showed, for Jurkat cells treated with NaBu, increases of 2-fold and 1.5-fold in pro-MMP-9 and pro-MMP-2 secretion, respectively. A 50% decrease in pro-MMP-9 secretion due to NaBu was observed in HT1080 cells. NaBu induced a 0.62 reduction in levels of pro-MMP-9 secretion in untreated tumors. For cell lines and some NaBu-treated tumors we found histone H4 hyperacetylation. We conclude that pro-MMPs gene expression and their secretion can be epigenetically mis-regulated in tumoral processes.

  12. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    PubMed

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p < 0.05. GABAB1, GABAB2, GABAA1, and GABAA3 were ubiquitously expressed both on gene and protein level. GABAA2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABAB1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABAB2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  13. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.

    PubMed

    Ghorbaniaghdam, Atefeh; Henry, Olivier; Jolicoeur, Mario

    2013-04-01

    A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle.

  14. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis*

    PubMed Central

    Rajendran, Vazhaikkurichi M.; Nanda Kumar, Navalpur S.; Tse, Chung M.; Binder, Henry J.

    2015-01-01

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na+ absorption. Although colonic Na+ absorption is mediated by both epithelial Na+ channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na+ absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na+ absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na+ fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3−-dependent and butyrate-dependent Na+ absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3−-dependent Na+ absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3−-dependent and butyrate-dependent Na+ absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3−-dependent) Na+ absorption. In in vivo loop studies HCO3−-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3−-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na+ absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea. PMID:26350456

  15. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    SciTech Connect

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  16. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives.

  17. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon.

    PubMed

    Ramsay, Alan G; Scott, Karen P; Martin, Jenny C; Rincon, Marco T; Flint, Harry J

    2006-11-01

    Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria.

  18. Transport of 3-hydroxy(3-/sup 14/C)butyrate by dissociated cells from rat brain

    SciTech Connect

    Tildon, J.T.; Roeder, L.M.

    1988-08-01

    Recent studies suggest that the utilization of oxidizable substrates by the brain may be regulated in part by transport across the plasma membrane. Dissociated brain cells obtained by mechanical disruption of rat brain were used to measure the uptake of 3-hydroxy(3-14C)butyrate. Total uptake revealed two mechanisms (diffusion and a carrier-mediated system). A Lineweaver-Burk plot of the latter component yielded an apparent Km of 1.47 mM and a maximal velocity (Vmax) of 5 nmol.min-1.mg protein-1. The rates of uptake were temperature dependent and were significantly higher at pH 6.2 than at pH 7.4 or 8.2. Preloading the cells and increasing the intracellular concentration of 3-hydroxybutyrate using 12.5 and 25 mM increased the rate of uptake 143 and 206%, respectively, indicative of an accelerative exchange mechanism. Uptake was inhibited approximately 50% by (in mM) 10 phenylpyruvate, 10 alpha-ketoisocaproate, 10 KCN, and 1.5 NaAsO/sub 2/. Uptake was also decreased by (in mM) 5 lactate, 5 methyl malonic acid, 1 alpha-cyano-4-hydroxycinnamate, and 1 mersalyl. Dissociated brain cells from 14- to 16-day-old rats accumulated 3-hydroxybutyrate at a rate more than two-fold greater than cells from either younger (2-day-old) or older (28-day-old and adult) animals. These data are consistent with the proposal that 3-hydroxybutyrate is taken up by the brain by both diffusion and a carrier-mediated transport system, and they support the hypothesis that transport at the cellular level contributes to the regulation of substrate utilization by the brain.

  19. Expression of beta-catenin is regulated by PI-3 kinase and sodium butyrate in colorectal cancer cells.

    PubMed

    Turecková, Jolana; Kucerová, Dana; Vojtechová, Martina; Sloncová, Eva; Tuhácková, Zdena

    2006-01-01

    beta-catenin has a dual function; it is implicated in intercellular junctions and transcriptional co-activation. Here we examined the regulation of the expression and localization of beta-catenin in HT29 colorectal adenocarcinoma cells. Our results showed that inhibition of PI-3 kinase with wortmannin was accompanied by a considerably reduced expression of beta-catenin. This effect was overcome by butyrate and occurred at the protein level, not at the level of mRNA. Moreover, NaBT significantly increased the phosphorylation of the ribosomal protein, S6, known to participate in the translational control of gene expression. This was accompanied by the increased phosphorylation of p70 S6K and MAPKs, the effector proteins that are upstream of protein S6 in the distinct signaling pathways. These facts indicate that different signaling pathways may be involved in the regulation of beta-catenin synthesis. Modulation of beta-catenin expression induced by NaBT appeared to occur at the level of protein translation, suggesting that NaBT may act as a translational regulator.

  20. Pretranslational regulation of ectopic hCG alpha production in ChaGo lung cancer cells by sodium butyrate.

    PubMed

    Nagelberg, S B; Burnside, J; Maniatis, A; Lippman, S S; Weintraub, B D

    1985-12-31

    Ectopic production of hCG and its free alpha subunit by ChaGo lung cancer cells is stimulated by sodium butyrate. To investigate pretranslational regulation in this system, we examined the response of the hCG alpha and beta subunit mRNAs in ChaGo-K1 cells, a clone that produces free hCG alpha but no hCG or hCG beta in the basal state. When a Northern blot of total RNA from ChaGo cells was hybridized to a [32P]- labeled hCG alpha cDNA probe, a single band was detected that was identical in size (approximately 850 bases) to placental hCG alpha mRNA. RNA from butyrate-stimulated (5 mM, 24 h) ChaGo cells contained 7.7 times as much hCG alpha mRNA as RNA from control ChaGo cells. This increase appeared to be relatively selective since no difference in total polyA-containing mRNA levels was detected between butyrate-treated and control cells by [32P]oligo(dT) hybridization. In addition, no hCG beta mRNA was detected when Northern and dot blots were hybridized to an hCG beta cDNA probe. In a time course experiment, hCG alpha mRNA accumulation in butyrate-treated cells increased significantly by 8 h with a maximum increase of 6.1-fold at 24 h compared to control values. Major differences in immunoactive hCG alpha accumulation were not apparent, however, until after 24 h. These studies show that stimulation of ChaGo hCG alpha production by butyrate can be completely accounted for by pretranslational events and that failure to detect hCG or free hCG beta production by these cells is not due to poorly translatable RNA or post-translational protein degradation. Thus, exclusive ectopic production of only one of the hCG subunits is likely to be due to selective genomic expression.

  1. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of D...

  2. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  3. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53.

    PubMed

    Yaku, Keisuke; Enami, Yuka; Kurajyo, Chika; Matsui-Yuasa, Isao; Konishi, Yotaro; Kojima-Yuasa, Akiko

    2012-11-01

    Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner(;) however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.

  4. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet

    PubMed Central

    Mattace Raso, Giuseppina; Simeoli, Raffaele; Russo, Roberto; Iacono, Anna; Santoro, Anna; Paciello, Orlando; Ferrante, Maria Carmela; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2013-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Insulin resistance (IR) appears to be critical in its pathogenesis. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD). Methods After weaning, young male Sprague-Dawley rats were divided into 4 groups receiving different diets for 6 weeks: 1. control group (standard diet); 2. HFD; 3. HFD plus butyrate (20 mg/kg/die) and 4. HFD plus FBA (42.5 mg/Kg/die, the equimolecular dose of butyrate). Liver tissues of the rats were analyzed by Western blot and real-time PCR. Insulin resistance, liver inflammation and Toll-like pattern modifications were determined. Results Evaluation of these two preparations of butyrate showed a reduction of liver steatosis and inflammation in HFD fed animals. The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Finally, FBA showed a higher potency in reducing pro-inflammatory parameters in the liver, via suppression of Toll-like receptors and NF-κB activation. Conclusions Our results demonstrated a protective effect of butyrate in limiting molecular events underlying the onset of IR and NAFLD, suggesting a potential clinical relevance for this substance. In particular, its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance. PMID:23861927

  5. Butyrate modulates the expression of. beta. -adrenergic receptor subtype in 3T3-L1 cells

    SciTech Connect

    Poksay, K.S.; Nakada, M.T.; Crooke, S.T.; Stadel, J.M.

    1986-03-05

    In mouse 3T3-L1 fibroblasts, the glucocorticoid dexamethasone (dex) affects a switch in ..beta..-adrenergic receptor (..beta..AR) subtype expression from ..beta../sub 1/AR to ..beta../sub 2/AR and increases total ..beta..AR number. They now demonstrate a similar effect by sodium butyrate (B) and find that the combined effect of these two gene-activating agents is greater than additive suggesting different mechanisms of action on the ..beta..AR. ..beta..AR are assayed in membranes prepared from 3T3-L1 cells using the radiolabeled ..beta..AR-specific antagonist (/sup 125/I)-cyanopindolol. ..beta..AR subtype is determined by competition binding of the ..beta../sub 2/AR-selective antagonist ICI 118.551 for the radioligand. B (2-10mM) causes a dose-dependent increase in total ..beta..AR number (up to 2-fold over control) and the proportion of ..beta../sub 2/AR. B (5mM) causes a time-dependent increase in total ..beta..AR number (2-fold) and the proportion of ..beta../sub 2/AR up to 24 hr. Dex maximally increases total ..beta..AR number (2-fold) when treated for 48 hr at concentrations greater than or equal to 100nM. B (2 or 5mM) together with dex (250nM) have a greater than additive effect on total ..beta..AR number at 24 hr (1.7-fold) and at 48 hr (1.4-2.4-fold, using 5 or 10mM B and dex greater than or equal to 10nM). The proportion of ..beta../sub 2/AR is also greater when both compounds are added together. In comparison with proprionate and valerate, B increases total ..beta..AR number and the proportion of ..beta../sub 2/AR to a greater extent and at lower concentrations. To determine a functional correlate to these findings, cells were pre-treated for 48 hr with B and/or dex, intracellular ATP labeled with /sup 3/H-adenine, followed by treatment with forskolin (10..mu..M) and ..beta..AR agonists. B caused a dramatic increase in /sup 3/H-cAMP produced compared to control and dex treatments and a greater than additive effect was again achieved when B and dex were

  6. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier

    PubMed Central

    Zhou, Da; Pan, Qin; Xin, Feng-Zhi; Zhang, Rui-Nan; He, Chong-Xin; Chen, Guang-Yu; Liu, Chang; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-01

    AIM To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. RESULTS NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. CONCLUSION NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD. PMID:28104981

  7. n-Butyrate, a cell cycle blocker, inhibits the replication of polyomaviruses and papillomaviruses but not that of adenoviruses and herpesviruses.

    PubMed Central

    Shadan, F F; Cowsert, L M; Villarreal, L P

    1994-01-01

    Small DNA viruses are dependent on the interaction of early proteins (such as large T antigen) with host p53 and Rb to bring about the G1-to-S cell cycle transition. The large DNA viruses are less dependent on host regulatory genes since additional early viral proteins (such as viral DNA polymerase, DNA metabolic enzymes, and other replication proteins) are involved in DNA synthesis. A highly conserved domain of large T antigen (similar to the p53-binding region) exclusively identifies papovavirus, parvovirus, and papillomaviruses from all other larger DNA viruses and implies a conserved interaction with host regulatory genes. In this report, we show that 3 to 6 mM butyrate, a general cell cycle blocker implicated in inhibition of the G1-to-S transition, inhibits DNA replication of polyomavirus and human papillomavirus type 11 but not the replication of larger DNA viruses such as adenovirus types 2 and 5, herpes simplex virus type 1, Epstein-Barr virus, and cytomegalovirus, which all bypass the butyrate-mediated cell cycle block. This butyrate effect on polyomavirus replication is not cell type specific, nor does it depend on the p53 or Rb gene, as inhibition was seen in fibroblasts with intact or homozygous deleted p53 or Rb, 3T6 cells, keratinocytes, C2C12 myoblasts, and 3T3-L1 adipocytes. In addition, butyrate did not inhibit expression of polyomavirus T antigen. The antiviral effect of butyrate involves a form of imprinted state, since pretreatment of cells with 3 mM butyrate inhibits human papillomavirus type 11 DNA replication for at least 96 h after its removal. Butyrate, therefore, serves as a molecular tool in dissecting the life cycle of smaller DNA viruses from that of the larger DNA viruses in relation to the cell cycle. Images PMID:8035479

  8. Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

    PubMed

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-04-20

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease.

  9. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    SciTech Connect

    Smith, P.J.

    1986-03-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells.

  10. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  11. Solid lipid nanoparticles of cholesteryl butyrate inhibit the proliferation of cancer cells in vitro and in vivo models

    PubMed Central

    Minelli, R; Occhipinti, S; Gigliotti, C L; Barrera, G; Gasco, P; Conti, L; Chiocchetti, A; Zara, G P; Fantozzi, R; Giovarelli, M; Dianzani, U; Dianzani, C

    2013-01-01

    BACKGROUND AND PURPOSE Solid lipid nanoparticles containing cholesteryl butyrate (cholbut SLN) can be a delivery system for the anti-cancer drug butyrate. These nanoparticles inhibit adhesion of polymorphonuclear and tumour cells to endothelial cells and migration of tumour cells, suggesting that they may act as anti-inflammatory and anti-tumour agents. Here we have evaluated the effects of cholbut SLN on tumour cell growth using in vitro and in vivo models. EXPERIMENTAL APPROACH Cholbut SLNs were incubated with cultures of four tumour cell lines, and cell growth was analysed by assessing viability, clonogenic capacity and cell cycle. Effects on intracellular signalling was assessed by Western blot analysis of Akt expression. The in vivo anti-tumour activity was measured in two models of PC-3 cell xenografts in SCID/Beige mice. KEY RESULTS Cholbut SLN inhibited tumour cell line viability, clonogenic activity, Akt phosphorylation and cell cycle progression. In mice injected i.v. with PC3-Luc cells and treated with cholbut SLN, . in vivo optical imaging and histological analysis showed no metastases in the lungs of the treated mice. In another set of mice injected s.c. with PC-3 cells and treated with cholbut SLN when the tumour diameter reached 2 mm, analysis of the tumour dimensions showed that treatment with cholbut SLN substantially delayed tumour growth. CONCLUSION AND IMPLICATIONS Cholbut SLN were effective in inhibiting tumour growth in vitro and in vivo. These effects may involve, in part, inhibition of Akt phosphorylation, which adds another mechanism to the activity of this multipotent drug. PMID:23713413

  12. Pharmacokinetics of butyric acid derivative with xylitol.

    PubMed

    Desmet, G; Brazier, M; Cerutti, J; Chany, C; Arnould-Guerin, M L

    1991-01-01

    The short chain fatty acids, especially butyric acid salts have interesting biological properties. In some cases, transformed cells can recover a normal phenotype and in animal, butyrate salts increase antitumor resistance. Butyrate may be considered as possibly useful for antitumor therapy. But these products exhibit two essential disadvantages which restrict their clinical use in man: high concentrations required to achieve therapeutic effects and rapid excretion with short half life. In order to optimize the clinical use of butyrate, we studied a n-butyric acid ester obtained with xylitol selected for its physiological and metabolic inertia. Structure determination of tributyryl xylitol was carried out by mass and NMR spectrometry (MW = 344). The low toxicity and the antitumor effects of this ester, especially in association with Corynebacterium parvum and interferon, confirm its therapeutic interest. The slow excretion of this prodrug should make butyrate clinical use easier by preventing extensive systemic metabolism and metabolic side-effects due to cations of butyrate salts.

  13. Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation

    PubMed Central

    Jung, Hyo Young; Yoo, Dae Young; Kim, Jong Whi; Kim, Dae Won; Choi, Jung Hoon; Chung, Jin Young; Won, Moo-Ho; Yoon, Yeo Sung

    2016-01-01

    We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation, and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with 20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate, a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20 (training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration significantly reduced the time spent exploring new objects, while treatment in combination with sodium butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate reverses SIRT2-related age phenotypes. PMID:28053616

  14. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    SciTech Connect

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio.

  15. Genetic differences in the modulation of accumbal glutamate and γ-amino butyric acid levels after cocaine-induced reinstatement.

    PubMed

    Miguéns, Miguel; Botreau, Fanny; Olías, Oscar; Del Olmo, Nuria; Coria, Santiago M; Higuera-Matas, Alejandro; Ambrosio, Emilio

    2013-07-01

    The Lewis (LEW) and Fischer 344 (F344) inbred rat strains are frequently used to study the role of genetic factors in vulnerability to drug addiction and relapse. Glutamate and γ-amino butyric acid (GABA) transmission are significantly altered after cocaine-induced reinstatement, although whether LEW and F344 rats differ in their accumbal glutamate and GABA responsiveness to cocaine-induced reinstatement remains unknown. To investigate this, we measured by in vivo microdialysis extracellular glutamate and GABA levels in the core division of the nucleus accumbens after extinction of cocaine self-administration and during cocaine-induced reinstatement (7.5mg/kg, i.p.) in these two strains of rats. No strain differences were evident in cocaine self-administration or extinction behavior, although cocaine priming did induce a higher rate of lever pressing in LEW compared with F344 rats. After extinction, F344 rats that self-administered cocaine had less GABA than the saline controls, while the glutamate levels remained constant in both strains. There was more accumbal glutamate after cocaine priming in LEW rats that self-administered cocaine, while GABA levels were unaffected. By contrast, GABA increased transiently in F344 rats that self-administered cocaine, while glutamate levels were unaltered. In F344 saline controls, cocaine priming provoked contrasting effects in glutamate and GABA levels, inducing a delayed increase in glutamate and a delayed decrease in GABA levels. These amino acids were unaffected by cocaine priming in LEW saline rats. Together, these results suggest that genetic differences in cocaine-induced reinstatement reflect different responses of the accumbal GABA and glutamate systems to cocaine priming.

  16. Sodium Butyrate Protects Against High Fat Diet-induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice.

    PubMed

    Zhang, Ling; Du, Jianfeng; Yano, Naohiro; Wang, Hao; Zhao, Yu Tina; Patricia, Dubielecka-Szczerba; Zhuang, Shougang; Chin, Eugene Y; Qin, Gangjian; Zhao, Ting C

    2017-01-21

    Histone deacetylases are recently identified to act as key regulators for cardiac pathophysiology and metabolic disorders. However, the function of histone deacetylase (HDAC) in controlling cardiac performance in type II diabetes and obesity remains unknown. Here we determine whether HDAC inhibition attenuates high fat diet (HFD)-induced cardiac dysfunction and improves metabolic features. Adult mice were fed with either HFD or standard chow food for 24 weeks. Starting at 12 weeks, mice were divided into four groups randomly, in which sodium butyrate (1%), a potent HDAC inhibitor, was provided to chow and HFD-fed mice in drinking water, respectively. Glucose intolerance, metabolic parameters, cardiac function, and remodeling were assessed. Histological analysis and cellular signaling were examined at 24 weeks following euthanization of mice. HFD-fed mice demonstrated myocardial dysfunction and profound interstitial fibrosis, which were attenuated by HDAC inhibition. HFD-induced metabolic syndrome features insulin resistance, obesity, hyperinsulinemia, hyperglycemia, lipid accumulations, and cardiac hypertrophy, these effects were prevented by HDAC inhibition. Furthermore, HDAC inhibition attenuated myocyte apoptosis, reduced production of reactive oxygen species, and increased angiogenesis in the HFD-fed myocardium. Notably, HFD induced decreases in MKK3, p38, p38 regulated/activated protein kinase (PRAK) and Akt-1, but not p44/42 phosphorylation, which were prevented by HDAC inhibition. These results suggest that HDAC inhibition plays a critical role to preserve cardiac performance and mitigate metabolic disorders in obesity and diabetes, which is associated with MKK3/p38/PRAK pathway. The study holds promise in developing a new therapeutic strategy in the treatment of type II diabetic-induced heart failure and metabolic disorders. This article is protected by copyright. All rights reserved.

  17. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  18. [Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice].

    PubMed

    Gong, Quan; Chen, Mao-Jian; Wang, Chao; Nie, Hao; Zhang, Yan-Xiang; Shu, Ke-Gang; Li, Gang

    2014-10-25

    The purpose of the present study is to explore the protective effects of sodium butyrate (SB) pretreatment on concanavalin A (Con A)-induced acute liver injury in mice. The model animals were first administered intraperitoneally with SB. Half an hour later, acute liver injury mouse model was established by caudal vein injection with Con A (15 mg/kg). Then, levels of serous alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using standard clinical method by an automated chemistry analyzer, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by ELISA, and pathological changes in hepatic tissue were observed by using HE staining and light microscopy. The expression and release of high-mobility group box 1 (HMGB1) were assessed by using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and ELISA. The results showed that the pretreatment of SB significantly protected Con A-treated mice from liver injury as evidenced by the decrease of serum ALT, AST (P < 0.01) and reduction of hepatic tissues necrosis. SB also decreased levels of serous TNF-α and IFN-γ (P < 0.01). Furthermore, the expression and release of HMGB1 were markedly inhibited by SB pretreatment (P < 0.05 or P < 0.01). These results suggest that the attenuating effect of SB on Con A-induced acute liver injury may be due to its role of reducing the TNF-α and IFN-γ production, and inhibiting HMGB1 expression and release.

  19. HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of γH2AX foci.

    PubMed

    Abramova, Maria V; Svetlikova, Svetlana B; Kukushkin, Alexander N; Aksenov, Nikolai D; Pospelova, Tatiana V; Pospelov, Valery A

    2011-12-15

    HDAC inhibitors (HDACi) suppress the growth of tumor cells due to induction of cell cycle arrest, senescence or apoptosis. Recent data demonstrate that HDACi can interfere with DNA Damage Response (DDR) thereby sensitizing the cells to DNA damaging agents. Here, we show that HDACi sodium butyrate (NaBut) potentiates the formation of γH2AX foci predominantly in S-phase E1A+Ras cells. Accumulation of γH2AX foci sensitizes the cells toward such DNA damaging agents as irradiation (IR) and adriamycin. In fact, NaBut potentiates the persistence of γH2AX foci induced by genotoxic agents. The synergizing effects depend on DNA damaging factors and on the order of NaBut treatment. Indeed, NaBut treatment for 24 h leads to an accumulation of G 1-phase cells and a lack of S-phase cells, therefore, adriamycin, a powerful S-phase-specific inhibitor, when added to NaBut-treated cells, is unable to substantially add γH2AX foci. In contrast, IR produces both single- and double-strand DNA breaks at any stage of the cell cycle and was shown to increase γH2AX foci in NaBut-treated cells. Further, a lifetime of IR-induced γH2AX foci depends on the subsequent presence of HDACi. Correspondingly, NaBut withdrawal leads to the extinction of IR-induced γH2AX foci. This necessitates HDACi to hold the IR-induced γH2AX foci unrepaired. However, the IR-induced γH2AX foci persist after long-term NaBut treatment (72 h) even after washing the drug. Thus, although signaling pathways regulating H2AX phosphorylation in NaBut-treated cells remain to be investigated, the obtained results show that NaBut potentiates effects of DNA damaging agents by facilitating formation and persistence of γH2AX foci.

  20. Colonic butyrate- algesic or analgesic?

    PubMed

    Kannampalli, P; Shaker, R; Sengupta, J N

    2011-11-01

    Irritable bowel syndrome (IBS) is a common health issue that is characterized by abdominal pain, abnormal bowel movements, and altered visceral perception. The complexity and variability in symptoms pose serious challenges in treating IBS. Current therapy for IBS is primarily focused on reducing the abdominal pain, thereby improving the quality of life to a significant extent. Although the use of fiber rich diet is widely recommended in treating IBS, some studies have questioned its use. Intra-colonic butyrate, a short-chain fatty acid, is primarily produced by the fermentation of dietary fibers in the colon. In the existing literature there are conflicting reports about the function of butyrate. In rats it is known to induce visceral hypersensitivity without altered pathology, whereas in humans it has been reported to reduce visceral pain. Understanding the molecular mechanisms responsible for this contrasting effect of butyrate is important before recommending fiber rich diet to IBS patients.

  1. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    PubMed

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  2. Searching for Synbiotics to increase Colonic Butyrate Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is produced by microbial fermentation of plant fiber in the gut and a preferred substrate for gut epithelial cells. In ruminants, butyrate contributes to 70% of energy metabolism. In monogastric species, butyrate also plays an important role in energy metabolism in the hindgut. Moreover, bu...

  3. The inhibitor of histone deacetylases sodium butyrate enhances the cytotoxicity of mitomycin C.

    PubMed

    Gospodinov, Anastas; Popova, Stanislava; Vassileva, Ivelina; Anachkova, Boyka

    2012-10-01

    The use of histone deacetylase inhibitors has been proposed as a promising approach to increase the cell killing effect of DNA damage-inducing drugs in chemotherapy. However, the molecular mechanism of their action remains understudied. In the present article, we have assessed the effect of the histone deacetylase inhibitor sodium butyrate on the DNA damage response induced by the crosslinking agent mitomycin C. Sodium butyrate increased mitomycin C cytotoxicity, but did not impair the repair pathways required to remove mitomycin C-induced lesions as neither the rate of nucleotide excision repair nor the homologous recombination repair rate were diminished. Sodium butyrate treatment abrogated the S-phase cell-cycle checkpoint in mitomycin C-treated cells and induced the G(2)-M checkpoint. However, sodium butyrate treatment alone resulted in accumulation of reactive oxygen species, double-strand breaks in DNA, and apoptosis. These results imply that the accumulation of reactive oxygen species-mediated increase in DNA lesion burden may be the major mechanism by which sodium butyrate enhances the cytotoxicity of mitomycin C.

  4. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice

    PubMed Central

    Ahmad, M; Krishnan, S; Ramakrishna, B; Mathan, M; Pulimood, A; Murthy, S

    2000-01-01

    BACKGROUND/AIMS—Impaired colonocyte metabolism of butyrate has been implicated in the aetiopathogenesis of ulcerative colitis. Colonocyte butyrate metabolism was investigated in experimental colitis in mice.
METHODS—Colitis was induced in Swiss outbred white mice by oral administration of 4% dextran sulphate sodium (DSS). Colonocytes isolated from colitic and normal control mice were incubated with [14C]butyrate or glucose, and production of 14CO2, as well as of intermediate metabolites (acetoacetate, β-hydroxybutyrate and lactate), was measured. The effect of different substrate concentrations on oxidation was also examined.
RESULTS—Butyrate oxidation (µmol/h per mg protein; mean (SEM)) was significantly reduced in DSS colitis, values on day 7 of DSS administration being 0.177 (0.007) compared with 0.406 (0.035) for control animals (p<0.001). Glucose oxidation (µmol/h per mg protein; mean (SEM)) on day 7 of DSS administration was significantly higher than in controls (0.06 (0.006) v 0.027 (0.004), p<0.001). Production of β-hydroxybutyrate was decreased and production of lactate increased in DSS colitis compared with controls. Increasing butyrate concentration from 10 to 80 mM enhanced oxidation in DSS colitis (0.036 (0.002) to 0.285 (0.040), p<0.001), although it continued to remain lower than in controls. Surface and crypt epithelial cells showed similar ratios of butyrate to glucose oxidation. When 1 mM DSS was added to normal colonocytes in vitro, it did not alter butyrate oxidation. The initial histological lesion of DSS administration was very patchy and involved crypt cells. Abnormal butyrate oxidation became apparent only after six days of DSS administration, at which time histological abnormalities were more widespread.
CONCLUSIONS—Colonocyte metabolism of butyrate, but not of glucose, is impaired in DSS colitis, and may be important in pathophysiology. Histological abnormalities preceded measurable defects in butyrate

  5. Periodontal disease level-butyric acid amounts locally administered in the rat gingival mucosa induce ER stress in the systemic blood.

    PubMed

    Cueno, Marni E; Saito, Yuko; Ochiai, Kuniyasu

    2016-05-01

    Periodontal diseases have long been postulated to contribute to systemic diseases and, likewise, it has been proposed that periodontal disease treatment may ameliorate certain systemic diseases. Short-chain fatty acids (SCFA) are major secondary metabolites produced by oral anaerobic bacteria and, among the SCFAs, butyric acid (BA) in high amounts contribute to periodontal disease development. Periodontal disease level-butyric acid (PDL-BA) is found among patients suffering from periodontal disease and has previously shown to induce oxidative stress, whereas, oxidative stress is correlated to endoplasmic reticulum (ER) stress. This would imply that PDL-BA may likewise stimulate ER stress, however, this was never elucidated. A better understanding of the correlation between PDL-BA and systemic ER stress stimulation could shed light on the possible systemic effects of PDL-BA-related periodontal diseases. Here, PDL-BA was injected into the gingival mucosa and the systemic blood obtained from the rat jugular was collected at 0, 15, 60, and 180 min post-injection. Collected blood samples were purified and only the blood cytosol was used throughout this study. Subsequently, we measured blood cytosolic GADD153, Ca(2+), representative apoptotic and inflammatory caspases, and NF-κB amounts. We found that PDL-BA presence increased blood cytosolic GADD153 and Ca(2+) amounts. Moreover, we observed that blood cytosolic caspases and NF-κB were activated only at 60 and 180 min post-injection in the rat gingival mucosa. This suggests that PDL-BA administered through the gingival mucosa may influence the systemic blood via ER stress stimulation and, moreover, prolonged PDL-BA retention in the gingival mucosa may play a significant role in ER stress-related caspase and NF-κB activation. In a periodontal disease scenario, we propose that PDL-BA-related ER stress stimulation leading to the simultaneous activation of apoptosis and inflammation may contribute to periodontal disease

  6. The intestinal epithelial cell differentiation marker intestinal alkaline phosphatase (ALPi) is selectively induced by histone deacetylase inhibitors (HDACi) in colon cancer cells in a Kruppel-like factor 5 (KLF5)-dependent manner.

    PubMed

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A; Tögel, Lars; Dávalos-Salas, Mercedes; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D; Young, Joanne P; Malo, Madhu S; Hodin, Richard A; Arango, Diego; Sieber, Oliver M; Augenlicht, Leonard H; Dhillon, Amardeep S; Weber, Thomas K; Mariadason, John M

    2014-09-05

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect.

  7. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  8. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on γ-alumina.

    PubMed

    Syngiridis, Kostas; Bekatorou, Argyro; Kandylis, Panagiotis; Larroche, Christian; Kanellaki, Maria; Koutinas, Athanasios A

    2014-06-01

    The effect of γ-alumina as a fermentation advancing tool and as carrier for culture immobilisation, regarding VFAs and ethanol production during acidogenic fermentation of glucose, was examined at various process conditions (sugar concentration, pH) and operation modes (continuous with and without effluent recirculation and batch). The results showed that at high initial pH (8.9) the continuous acidogenic fermentation of glucose led to high yields of VFAs and favoured the accumulation of butyric acid. The batch process on the other hand at pH 6.5, favoured the ethanol-type fermentation. The results indicate that in the frame of technology development for new generation biofuels, using γ-alumina as a process advancing tool at optimum process conditions (pH, initial glucose concentration and mode of operation), the produced VFAs profile and ethanol concentration may be manipulated.

  9. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development.

  10. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

    PubMed Central

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-01-01

    Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882

  11. Inhibition of mouse B16 melanoma by sodium butyrate correlated to tumor associated macrophages differentiation suppression

    PubMed Central

    Xiong, Fen; Mou, Yun-Zhu; Xiang, Xiao-Yan

    2015-01-01

    Objective: As one member of the histone deacetylase inhibitor (HDACi) family, Sodium butyrate (NaB) was found out that could be used as a differentiation inducer of much cancer cell. But its effects on tumor microenvironment cells are not well recognized. The goal of this research is to investigate the effect of NaB on B16 melanoma and analysis its relevant mechanism. Methods: We observed the effect of sodium butyrate on B16 melanoma in vivo and in vitro. MTT method was performed to detect cell apoptosis rate after treatment. Tumor associated macrophage infiltration condition was detected by flow cytometry. Western-blotting and immunohistochemical method were used to detect the expression of tumor associated macrophage cytokines. Results: A certain concentration of sodium butyrate could effectively inhibit B16 melanoma growth in vivo and in vitro, and this inhibition effects related to the suppression of tumor associated macrophage differentiation. At the same time we observed the relevant macrophage factors were down-regulated compared to the control. Conclusion: Sodium butyrate could effectively inhibit B16 melanoma growth through suppressing tumor associated macrophage proliferation and reduce relevant pro-tumor macrophage factors expression, which may help to promote the clinical study of melanoma epigenetic therapy. PMID:26064327

  12. An Sp1 response element in the Kaposi's sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate.

    PubMed

    Ye, Jianjiang; Shedd, Duane; Miller, George

    2005-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) can be driven into the lytic cycle in vitro by phorbol esters and sodium butyrate. This report begins to analyze the process by which butyrate activates the promoter of KSHV open reading frame 50 (ORF50), the key viral regulator of the KSHV latency to lytic cycle switch. A short fragment of the promoter, 134 nucleotides upstream of the translational start of ORF50, retained basal uninduced activity and conferred maximal responsiveness to sodium butyrate. The butyrate response element was mapped to a consensus Sp1-binding site. By means of electrophoretic mobility shift assays, both Sp1 and Sp3 were shown to form complexes in vitro with the ORF50 promoter at the Sp1 site. Butyrate induced the formation of a group of novel complexes, including several Sp3-containing complexes, one Sp1-containing complex, and several other complexes that were not identified with antibodies to Sp1 or Sp3. Formation of all butyrate-induced DNA-protein complexes was mediated by the consensus Sp1 site. In insect and mammalian cell lines, Sp1 significantly activated the ORF50 promoter linked to luciferase. Chromatin immunoprecipitation experiments in a PEL cell line showed that butyrate induced Sp1, CBP, and p300 binding to the ORF50 promoter in vivo in an on-off manner. The results suggest that induction of the KSHV lytic cycle by butyrate is mediated through interactions at the Sp1/Sp3 site located 103 to 112 nucleotides upstream of the translational initiation of ORF50 presumably by enhancing the binding of Sp1 to this site.

  13. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.

    PubMed

    Khan, S; Jena, G B

    2014-04-25

    Type 1 diabetes (T1D) also known as juvenile diabetes is a chronic autoimmune disorder that precipitates in genetically susceptible individuals by environmental factors particularly during early age. Both genetic and epigenetic factors are implicated in the beta-cell development, proliferation, differentiation and function. Recent evidences suggested that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta-cell development, proliferation and function as well as improve glucose homeostasis. Sodium butyrate (NaB) is a short chain fatty acid having HDAC inhibition activity. The present study was aimed to investigate the protective role of NaB treatment on the beta-cell proliferation, function and glucose homeostasis as well as apoptosis in juvenile diabetic rat. Diabetes was induced by single injection of STZ (60 mg/kg, i.p.) in chilled citrate buffer, while NaB (500 mg/kg/day) was administrated by i.p. route for 21 days as pre- and post-treatment schedule. Plasma glucose and insulin levels, HbA1c, glucose tolerance, apoptosis, and expression of proliferating cell nuclear antigen (PCNA), p38, p53, caspase-3, extracellular signal-regulated kinase-1/2 (ERK-1/2), forkhead box protein O1 (FOXO1) and insulin receptor substrate-1 (IRS-1) as well as histone acetylation were evaluated. NaB treatment decreased plasma glucose, HbA1c, beta-cell apoptosis and improved plasma insulin level and glucose homeostasis through HDAC inhibition and histone acetylation in diabetic animal as compared to control. NaB treatment improved the beta-cell proliferation, function and glucose homeostasis as well as reduced beta-cell apoptosis in juvenile diabetic rat by the modulation of p38/ERK MAPK and apoptotic pathway.

  14. Enzymology of butyrate formation by Butyrivibrio fibrisolvens.

    PubMed

    Miller, T L; Jenesel, S E

    1979-04-01

    Butyrivibrio fibrisolvens is a major butyrate-forming species in the bovine and ovine rumen. The enzymology of butyrate formation from pyruvate was investigated in cell-free extracts of B. fibrisolvens D1. Pyruvate owas oxidized to acetylcoenzyme A (CoA) in the presence of CoA.SH and benzyl viologen or flavin nucleotides. The bacterium uses thiolase, beta-hydroxybutyryl-CoA dehydrogenase, crotonase, and crotonyl-CoA reductase to form butyryl-CoA from acetyl-CoA. Reduction of acetoacetyl-CoA to beta-hydroxybutyryl-CoA was faster with NADH than with NADPH. Crotonyl-CoA was reduced to butyryl-CoA by NADH, but not by NADPH, only in the presence of flavin nucleotides. Reduction of flavin nucleotides by NADH was much slower than the flavin-dependent reduction of crotonyl-CoA. This indicates that flavoproteins rather than free flavin participated in the reduction of crotonyl-CoA. Butyryl-CoA was converted to butyrate by phosphate butyryl transferase and butyrate kinase.

  15. Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate.

    PubMed

    Lee, Sang Min; Kim, Yeon-Gu; Lee, Eun Gyo; Lee, Gyun Min

    2014-02-10

    To understand the effects of sodium butyrate (NaBu) on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing Fc-fusion glycoprotein were subjected to 3mM NaBu. The addition of NaBu to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of the glycoprotein. Fifty-two N-glycosylation-related gene expressions were also assessed by the NanoString nCounter system, which can provide a direct digital readout using custom-designed color-coded probes. Among them, ten genes (ugp, slc35a2, ganc, man1a, man1c, mgat5a, st3gal5, glb1, neu1, and neu3) were up-regulated and three genes (b4galt2, st3gal3, and neu2) were down-regulated significantly. Altered expression patterns in st3gal3, neu1, and neu3, which have roles in the sialic acid biosynthesis pathway, correlated with reduced sialic acid content of the glycoprotein by NaBu. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of NaBu on N-glycosylation in rCHO cells.

  16. Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells.

    PubMed

    Qu, Shuxuan; Li, Minghua; Xie, Lixin; Huang, Xiao; Yang, Jinguo; Wang, Nan; Yang, Shangfeng

    2013-05-28

    A new graphene-fullerene composite (rGO-pyrene-PCBM), in which [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was attached onto reduced graphene oxide (rGO) via the noncovalent functionalization approach, was reported. The pyrene-PCBM moiety was synthesized via a facile esterification reaction, and pyrene was used as an anchoring bridge to link rGO and PCBM components. FTIR, UV-vis, and XPS spectroscopic characterizations were carried out to confirm the hybrid structure of rGO-pyrene-PCBM, and the composite formation is found to improve greatly the dispersity of rGO in DMF. The geometric configuration of rGO-pyrene-PCBM was studied by Raman, SEM, and AFM analyses, suggesting that the C60 moiety is far from the graphene sheet and is bridged with the graphene sheet via the pyrene anchor. Finally rGO-pyrene-PCBM was successfully applied as electron extraction layer for P3HT:PCBM bulk heterojunction polymer solar cell (BHJ-PSC) devices, affording a PCE of 3.89%, which is enhanced by ca. 15% compared to that of the reference device without electron extraction layer (3.39%). Contrarily, the comparative devices incorporating the rGO or pyrene-PCBM component as electron extraction layer showed dramatically decreased PCE, indicating the importance of composite formation between rGO and pyrene-PCBM components for its electron extraction property.

  17. Dual effects of 2-deoxyglucose on synthesis of the glycoprotein hormone common alpha-subunit in butyrate-treated HeLa cells.

    PubMed Central

    Cox, G S; McClure, D S; Cosgrove, D E

    1987-01-01

    Sodium butyrate (Btr) (3 mM) causes a 10-fold increase in production of the glycoprotein hormone alpha-subunit in HeLa cells. The following report demonstrates that this response could be inhibited about 95% by 5 mM 2-deoxy-D-glucose (dGlc), whereas alpha-subunit production in uninduced cells was affected little or not at all. Addition of D-mannose restored the Btr induction of Hela-alpha in cultures that had been treated with dGlc. When the alpha-subunits secreted by cells cultured in Btr plus dGlc or in Btr alone were compared by gel filtration (Sephadex G-75) and lectin affinity (concanavalin A and ricin) chromatography, differences were noted that probably reflect changes in their carbohydrate moieties. Immunoprecipitation of [35S]methionine-labeled HeLa-alpha and incubation with endoglycosidase H indicated that the subunit secreted from cells in the presence of dGlc contained oligosaccharide side chains that were not processed to the complex type. Cells that were simultaneously treated with Btr plus dGlc showed no increase in alpha-subunit production over cells receiving Btr only; in contrast, cells that were preincubated with Btr for either 16 or 36 h before dGlc was added exhibited high levels of subunit synthesis. Measurement of alpha-mRNA levels at various times after Btr and dGlc were added to cultures indicated that Btr brought about a dramatic increase in alpha-specific mRNA about 24 h after being added to cultures. This increase could be prevented by dGlc when added simultaneously with Btr but not when added after a 24-h preincubation. Although dGlc prevented the induction of alpha-subunit and alpha-mRNA in response to Btr, it had no effect on histone hyperacetylation, suggesting that if this chromatin modification is necessary for the induction process, it is not in itself sufficient. Together, the data demonstrate that dGlc inhibits the accumulation of alpha-subunit mRNA normally produced in response to Btr and that the subunit produced contains

  18. In vitro dissolution and in vivo absorption of calcium [1-14C]butyrate in free or protected forms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a by-product of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for the epithelial cell development and for mucosal integrity, and for animal grow...

  19. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation

    PubMed Central

    Kumar, Priyadarsini; Thirkill, Twanda L.; Ji, Jennifer; Monte, Louise H.; Douglas, Gordon C.

    2015-01-01

    Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The

  20. Untangling the fiber yarn: butyrate feeds Warburg to suppress colorectal cancer.

    PubMed

    Sebastián, Carlos; Mostoslavsky, Raul

    2014-12-01

    Dietary composition has an important role in shaping the gut microbiota. In turn, changes in the diet directly impinge on bacterial metabolites present in the intestinal lumen. Whether such metabolites play a role in intestinal cancer has been a topic of hot debate. In this issue of Cancer Discovery, Donohoe and colleagues show that dietary fiber protects against colorectal carcinoma in a microbiota-dependent manner. Furthermore, fiber-derived butyrate acts as a histone deacetylase inhibitor, inhibiting cell proliferation and inducing apoptosis in colorectal cancer cells experiencing the Warburg effect.

  1. Nanofibrillar self-organization of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C(61)-butyric acid methyl ester by dip-coating: a simple method to obtain efficient bulk heterojunction solar cells.

    PubMed

    Valentini, L; Bagnis, D; Kenny, J M

    2009-03-04

    In this paper the dip-coating technique has been investigated as a method for the production of regioregular poly(3-hexylthiophene) (RR-P3HT):[6,6]-phenyl C(61)-butyric acid methyl ester (PCBM)-based solar cells. We found that the utilization of the dip-coating technique for the RR-P3HT:PCBM system can facilitate its self-assembly into a nanofibrillar lamellar structure after evaporation of the solvent. The condition for the formation of the nanofibrillar structures leads to a power conversion efficiency of 3.6% by using only this approach without thermal treatment.

  2. Pyruvate sparing by butyrate and propionate in proliferating colonic epithelium.

    PubMed

    Butler, R N; Stafford, I; Triantafillos, E; O'Dee, C D; Jarrett, I G; Fettman, M J; Roberts-Thomson, I C

    1990-01-01

    1. The effects of fasting and fasting followed by refeeding on the relative activities of the pyruvate dehydrogenase (PDH) complex and the tricarboxylic acid (TCA) cycle in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]pyruvate and [3-14C]pyruvate, respectively. 2. Decarboxylation of pyruvate by the PDH complex exceeded that by the TCA cycle in both fasted and fasted/refed colonocytes, was higher in distal than in proximal colon, and was stimulated by refeeding following a fast. 3. Oxidation of pyruvate by both the PDH complex and the TCA cycle was inhibited by butyrate. 4. Propionate alone had no effect, but synergized with butyrate to further reduce pyruvate decarboxylation by the TCA cycle. 5. Preferential utilization of butyrate by proliferating colonic epithelial cells is postulated to maximize the energy yield and spare pyruvate and its precursors for alternative synthetic roles necessary for active cell division.

  3. Butyrate as preferred substrate for polyhydroxybutyrate production.

    PubMed

    Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2013-08-01

    In this study, the suitability of butyrate as substrate for polyhydroxyalkanoate (PHA) production by microbial enrichment cultures was assessed. Two sequencing batch reactors were operated under feast-famine conditions: one fed with butyrate, and another with mixed acetate and butyrate. The obtained results were compared to previous results with acetate as sole substrate. In all three reactors Plasticicumulans acidivorans dominated the enrichment culture. The carbon uptake rate and PHA yield were significantly higher on butyrate than on acetate, resulting in a higher PHA production rate. When both substrates were available the bacteria strongly preferred the uptake of butyrate. Only after butyrate depletion acetate was taken up at a high rate. The molar substrate uptake rate remained the same, suggesting that substrate uptake is the rate-limiting step. The results show that for optimized waste-based PHA production the pre-fermentation process should be directed towards butyrate production.

  4. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.

  5. Oxadiazoles Have Butyrate-Specific Conditional Activity against Mycobacterium tuberculosis

    PubMed Central

    Early, Julie V.; Casey, Allen; Martinez-Grau, Maria Angeles; Gonzalez Valcarcel, Isabel C.; Vieth, Michal; Ollinger, Juliane; Bailey, Mai Ann; Alling, Torey; Files, Megan; Ovechkina, Yulia

    2016-01-01

    Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells. PMID:27044545

  6. Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum.

    PubMed

    Yoo, Minyeong; Croux, Christian; Meynial-Salles, Isabelle; Soucaille, Philippe

    2017-01-31

    Clostridium acetobutylicum possesses two homologous buk genes, buk (or buk1) and buk2, which encode butyrate kinases involved in the last step of butyrate formation. To investigate the contribution of buk in detail, an in-frame deletion mutant was constructed. However, in all the Δbuk mutants obtained, partial deletions of the upstream ptb gene were observed, and low phosphotransbutyrylase and butyrate kinase activities were measured. This demonstrates that i) buk (CA_C3075) is the key butyrate kinase-encoding gene and that buk2 (CA_C1660) that is poorly transcribed only plays a minor role; and ii) strongly suggests that a Δbuk mutant is not viable if the ptb gene is not also inactivated, probably due to the accumulation of butyryl-phosphate, which might be toxic for the cell. One of the ΔbukΔptb mutants was subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomic analyses in acidogenic, solventogenic and alcohologenic chemostat cultures. In addition to the low butyrate production, drastic changes in metabolic fluxes were also observed for the mutant: i) under acidogenic conditions, the primary metabolite was butanol and a new metabolite, 2-hydroxy-valerate, was produced ii) under solventogenesis, 58% increased butanol production was obtained compared to the control strain under the same conditions, and a very high yield of butanol formation (0.3gg(-1)) was reached; and iii) under alcohologenesis, the major product was lactate. Furthermore, at the transcriptional level, adhE2, which encodes an aldehyde/alcohol dehydrogenase and is known to be a gene specifically expressed in alcohologenesis, was surprisingly highly expressed in all metabolic states in the mutant. The results presented here not only support the key roles of buk and ptb in butyrate formation but also highlight the metabolic flexibility of C. acetobutylicum in response to genetic alteration of its primary metabolism.

  7. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion.

    PubMed

    Malhi, Moolchand; Gui, Hongbing; Yao, Lei; Aschenbach, Jörg R; Gäbel, Gotthold; Shen, Zanming

    2013-01-01

    We tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum. In Exp. 1, goats received an intraruminal infusion of sodium butyrate at 0.3 (group B, n=8) or 0 (group C, n=7) g/kg of body weight (BW) per day before morning feeding for 28 d and were slaughtered 8 h after the butyrate infusion. In Exp. 2, goats (n=8) received butyrate infusion and feeding as in Exp. 1. On d 28, epithelial samples were biopsied from the antrium ruminis at 0, 3, and 7 h after the last butyrate infusion. In Exp. 1, the ruminal molar proportional concentration of butyrate increased in group B by about 110% after butyrate infusion and remained elevated for 1.5 h; thereafter, it gradually returned to the baseline (preinfusion) level. In group C, the molar proportional concentration of butyrate was unchanged over the time points. The length and width of papillae increased in B compared with C; this was associated with increased numbers of cells and cell layers in the epithelial strata and an increase in the surface area of 82%. The mRNA expression of CCND1 increased transiently at 3 h but returned to the preinfusion level at 7 h following butyrate infusion in Exp. 2. However, it did not differ between B and C in Exp. 1, in which the ruminal epithelium was sampled at 8 h after butyrate infusion. The mRNA expression of the monocarboxylate transporter MCT4, but not MCT1, was stably upregulated in B compared with C. The estimated absorption rate of total SCFA (%/h) increased in B compared with C. We conclude that transient increases in cyclin D1 transcription contribute to butyrate-induced papillae growth and subsequently to the increased absorption of SCFA in the ruminal epithelium

  8. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect

    Chauhan, A. K. E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  9. Induction of peroxisomes by butyrate-producing probiotics.

    PubMed

    Weng, Huachun; Endo, Kosuke; Li, Jiawei; Kito, Naoko; Iwai, Naoharu

    2015-01-01

    We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.

  10. Strategies to generate induced pluripotent stem cells.

    PubMed

    Hayes, Michael; Zavazava, Nicholas

    2013-01-01

    The isolation of embryonic stem cells (ESCs) has furthered our understanding of normal embryonic development and fueled the progression of stem cell derived therapies. However, the generation of ESCs requires the destruction of an embryo, making the use of these cells ethically controversial. In 2006 the Yamanaka group overcame this ethical controversy when they described a protocol whereby somatic cells could be dedifferentiated into a pluripotent state following the transduction of a four transcription factor cocktail. Following this initial study numerous groups have described protocols to generate induced pluripotent stem cells (iPSCs). These protocols have simplified the reprogramming strategy by employing polycistronic reprogramming cassettes and flanking such polycistronic cassettes with loxP or piggyBac recognition sequences. Thus, these strategies allow for excision of the entire transgene cassette, limiting the potential for the integration of exogenous transgenes to have detrimental effect. Others have prevented the potentially deleterious effects of integrative reprogramming strategies by using non-integrating adenoviral vectors, traditional recombinant DNA transfection, transfection of minicircle DNA, or transfection of episomally maintained EBNA1/OriP plasmids. Interestingly, transfection of mRNA or miRNA has also been shown to be capable of reprogramming cells, and multiple groups have developed protocols using cell penetrating peptide tagged reprogramming factors to de-differentiate somatic cells in the absence of exogenous nucleic acid. Despite the numerous different reprogramming strategies that have been developed, the reprogramming process remains extremely inefficient. To overcome this inefficiency multiple groups have successfully used small molecules such as valproic acid, sodium butyrate, PD0325901, and others to generate iPSCs.The fast paced field of cellular reprogramming has recently produced protocols to generate iPSCs using non

  11. CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer

    PubMed Central

    Bordonaro, Michael; Lazarova, Darina L

    2015-01-01

    This paper reviews the distinctive roles played by the transcriptional coactivators CREB-binding protein (CBP) and p300 in Wnt/β-catenin signaling and cell physiology in colorectal cancer (CRC). Specifically, we focus on the effects of CBP- and p300-mediated Wnt activity on (1) neoplastic progression; (2) the activities of butyrate, a breakdown product of dietary fiber, on cell signaling and colonic cell physiology; (3) the development of resistance to histone deacetylase inhibitors (HDACis), including butyrate and synthetic HDACis, in colonic cells; and (4) the physiology and number of cancer stem cells. Mutations of the Wnt/β-catenin signaling pathway initiate the majority of CRC cases, and we have shown that hyperactivation of this pathway by butyrate and other HDACis promotes CRC cell apoptosis. This activity by butyrate may in part explain the preventive action of fiber against CRC. However, individuals with a high-fiber diet may still develop neoplasia; therefore, resistance to the chemopreventive action of butyrate likely contributes to CRC. CBP or p300 may modify the ability of butyrate to influence colonic cell physiology since the two transcriptional coactivators affect Wnt signaling, and likely, its hyperactivation by butyrate. Also, CBP and p300 likely affect colonic tumorigenesis, as well as stem cell pluripotency. Improvement of CRC prevention and therapy requires a better understanding of the alterations in Wnt signaling and gene expression that underlie neoplastic progression, stem cell fate, and the development of resistance to butyrate and clinically relevant HDACis. Detailed knowledge of how CBP- and p300 modulate colonic cell physiology may lead to new approaches for anti-CRC prevention and therapeutics, particularly with respect to combinatorial therapy of CBP/p300 inhibitors with HDACis. PMID:26217075

  12. The Future of Butyric Acid in Industry

    PubMed Central

    Dwidar, Mohammed; Park, Jae-Yeon; Mitchell, Robert J.; Sang, Byoung-In

    2012-01-01

    In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches. PMID:22593687

  13. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.

  14. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    PubMed Central

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  15. Nutrient-induced modulation of gene expression and cellular functions: modeling epigenetic regulation in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acids (VFA), especially butyrate, participate in metabolism both as nutrients and as regulators of histone deacetylation. The major biochemical change that occurs in cells treated with butyrate is the global hyperacetylation of histones. One paradigmatic example of the nutrient-epige...

  16. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon.

    PubMed

    Louis, Petra; Duncan, Sylvia H; McCrae, Sheila I; Millar, Jacqueline; Jackson, Michelle S; Flint, Harry J

    2004-04-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate.

  17. Regioselective synthesis and biological profiling of butyric and phenylalkylcarboxylic esters derivated from D-mannose and xylitol: influence of alkyl chain length on acute toxicity.

    PubMed

    Pouillart, P; Douillet, O; Scappini, B; Gozzini, A; Santini, V; Grossi, A; Pagliai, G; Strippoli, P; Rigacci, L; Ronco, G; Villa, P

    1999-01-01

    Regiospecific synthesis of 12 novel n-butyric and phenylalkylcarboxylic monoesters of mannose and xylitol was achieved. The strategy adopted, avoided a tedious intramolecular transesterification step, previously described for the synthesis of analogous compounds and permitted the facile synthesis of a new generation of stable derivatives. The general tolerance of the drugs has been assayed after intravenous administration of a bolus dose into mice. Monobutyric esters showed a low toxicity commensurate with the requirements for future development. A relationship was observed between chain length and toxicity. In contrast, phenylacetic, 3-phenylpropionic and 4-phenylbutyric esters were found to be toxic. Phenylbutyric esters induced marked and specific neuromuscular damage. Preliminary biological investigations of the new series of monobutyric esters showed them to retain the benificial biological properties of butyric acid whilst remaining relatively non toxic. They induced an inhibition of in vitro proliferation of 10 human cases of de novo acute myeloid leukemia (AML) primary cultures and AML established cell lines. AML blasts growth appeared to be blocked and cell differentiation was established. Transcription and expression of maturation markers and finally apoptosis were observed. Moreover, human gamma-chain hemoglobin (HbF) synthesis in erythroleukemia cells was stimulated by monobutyric esters. Mannose and xylitol butyric derivatives would appear to have exciting potential in treatment of beta-Hemoglobinopathies, sickle cell anemia and cancer.

  18. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    SciTech Connect

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahya, Muhammad

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured by current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.

  19. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.

    PubMed

    Chen, Wen-Hsing; Jian, Zih-Ce

    2013-10-01

    Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g(-1) of dry cell was projected for 31.9 g L(-1) sucrose and 1.3 g L(-1) butyrate, and the maximum specific butanol production rate of 0.87 g d(-1) g(-1) of dry cell was predicted for 25.0 g L(-1) sucrose and 2.6 g L(-1) butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol(-1) was projected for 25.0 g L(-1) sucrose and 2.3 g L(-1) butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol(-1) when butyrate addition increased from 0 to 1 g L(-1) under low sugar concentration (3.8 g L(-1) sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone-butanol-ethanol fermentation.

  20. Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats.

    PubMed

    Patel, Bhoomika M

    2017-04-07

    The aim of the present research was to study the effect of sodium butyrate (SB) on partial abdominal aorta constriction (PAAC)-induced cardiac hypertrophy and determine its mechanism of action. Healthy Wistar rats were exposed to PAAC for eight weeks. After eight weeks, we carried out hypertrophic and hemodynamic evaluation and measured oxidative stress parameters and mitochondrial DNA concentration. PAAC control animals exhibited cardiac hypertrophy, decreased hemodynamic functions and oxidative stress. Treatment with SB reduced hypertrophic indices, LV wall thickness, LV collagen levels, cardiomyocyte diameter, serum lipid levels and serum cardiac biomarkers. Treatment with SB also improved hemodynamic functions, prevented oxidative stress and increased mitochondrial DNA concentration. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies which revealed that SB decreases expression of prohypertrophic HDAC, i.e., HDAC2, without altering the expression of anti-hypertrophic HDAC5. Sodium butyrate produces beneficial effect on cardiac hypertrophy as is evident, specifically from reduction in hypertrophic parameters including collagen levels, improvement in mitochondrial DNA concentration and preservation of LV systolic and diastolic dysfunction. This beneficial effect of sodium butyrate is mediated through downregulation of class I HDACs, specifically HDAC2 without any effect on class II HDAC, i.e., HDAC5. Thus, selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors which are class I inhibitor and class II promoter can be designed to obtain a 'pan' or 'dual' natural HDAC 'regulators.'

  1. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo

  2. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  3. Design, synthesis and biological evaluation of a phenyl butyric acid derivative, N-(4-chlorophenyl)-4-phenylbutanamide: A HDAC6 inhibitor with anti-proliferative activity on cervix cancer and leukemia cells.

    PubMed

    Alberto, Rodríguez-Fonseca Rolando; Yudibeth, Sixto-López; Jonathan, Fragoso-Vázquez M; Raúl, Flores-Mejía; Cristina, Cabrera-Pérez Laura; Ismael, Vázquez-Moctezuma; Cecilia, Rosales-Hernández Martha; Martiniano, Bello; Martínez-Archundia, M; Guadalupe, Trujillo-Ferrara José; Elvia, Becerra-Martínez; José, Correa-Basurto

    2017-01-02

    The epigenetic regulation of genes in cancer could be targeted by inhibiting Histone deacetylase 6 (HDAC6), an enzyme involved in several types of cancer such as lymphoma, leukemia, ovarian cancer, etc. Through in silico methods, a set of Phenyl butyric acid derivatives with possible HDAC6 inhibitory activity were designed, rendering monophenylamides and biphenylamides using tubacin (HDAC6 selective inhibitor) as reference. The target compounds were submitted to theoretical ADMET analyses and their binding properties on different HDAC6 conformers were evaluated through docking calculations. These in silico studies allowed us to identify a compound named B-R2B. In order to have more information about the B-R2B binding recognition properties on HDAC6, the B-R2B-HDAC6 complex was submitted through 100 ns-long Molecular Dynamics (MD) simulation coupled to MMGBSA approach, revealing that B-R2B is located at the entrance of HDAC6 active pocket, blocking the passage of the substrate without reaching the HDAC6 binding site. Based on these results, B-R2B was synthesized, characterized and biologically tested. The HDAC6 fluorometric drug discovery kit Fluor-de-Lys (ENZO Life Sciences Inc.) was used to determine the HDAC6 human inhibitory activity (IC50 value) of B-R2B compound. In addition, B-R2B show IC50 values on cancer cell lines (HeLa; IC50 = 72.6 µM), acute myeloid leukemia (THP-1; IC50 = 16.5 µM), human mast leukemia (HMC; IC50 = 79.29 µM) and chronic myelogenous leukemia (Kasumi; IC50 = 101 µM). In conclusion, these results show that B-R2B is a HDAC6 inhibitor, specifically a non-competitive type in a similar way that tubacin does, according to MD simulations.

  4. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  5. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  6. Potentiated antitumor effects of a combination therapy with a farnesyltransferase inhibitor L-744,832 and butyrate in vitro.

    PubMed

    Kopec, Maciej; Strusinska, Katarzyna; Legat, Magdalena; Makowski, Marcin; Jakobisiak, Marek; Golab, Jakub

    2004-05-01

    Farnesyltransferase inhibitors, butyrate and butyric acid derivatives have previously been reported to exert anti-tumor activity in experimental models in vitro and in vivo and have recently gained acceptance as potential anticancer agents. In our study, we examined antitumor effects of a combination of a farnesyltransferase inhibitor L-744,832 and butyrate in vitro against MDA-MB-231 and MIA PaCa-2 human cancer cells. This combination therapy showed synergistic antitumor activity against MDA-MB-231 cells, which was at least in part due to induction of p27KIP1 expression. Both drugs increased intracellular levels of p53 as well but there was no significant difference between the groups treated with single drugs and the group treated with their combination. In MIA PaCa-2 cells, the combination therapy exerted additive antitumor activity. Our results illustrate possible application of the farnesyltransferase inhibitor L-744,832 and butyrate as a combination therapy of cancer.

  7. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth.

  8. Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata).

    PubMed

    Robles, R; Lozano, A B; Sevilla, A; Márquez, L; Nuez-Ortín, W; Moyano, F J

    2013-12-01

    Butyrate is a short-chain fatty acid extensively used in animal nutrition since it promotes increases in body weight and other multiple beneficial effects on the intestinal tract. Although such effects have been demonstrated in several species, very few studies have assessed them in fish. On the other hand, little is known about the metabolic processes underlying these effects. In the present work, growth parameters and changes in more than 80 intestinal metabolites (nucleotides, amino acids and derivatives, glycolytic intermediates, redox coenzymes and lipid metabolism coenzymes) have been quantified in juvenile sea bream fed a butyrate-supplemented diet. Results showed a significant increase in the weight of fish receiving butyrate, while metabolomics provided some clues on the suggested effects of this feed additive. It seems that butyrate increased the availability of several essential amino acids and nucleotide derivatives. Also, the energy provision for enteric cells might have been enhanced by a decrease in glucose and amino acid oxidation related to the use of butyrate as fuel. Additionally, butyrate might have increased transmethylation activity. This work represents an advance in the knowledge of the metabolic consequences of using butyrate as an additive in fish diets.

  9. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  10. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2

    PubMed Central

    Miao, Wei; Wu, Xiujuan; Wang, Kang; Wang, Wenjing; Wang, Yumei; Li, Zhigang; Liu, Jingjing; Li, Li; Peng, Luying

    2016-01-01

    As a physiological small molecular product from the microbial fermentation of dietary fibers, butyrate plays an important role in maintaining intestinal health. Our previous works have proved that the effect of sodium butyrate (NaB) on the intestinal barrier function is mediated by activation of AMP-activated protein kinase (AMPK). However, the detailed pathway involved remains unknown. Using the calcium switch assay in the Caco-2 cell monolayer model, we found here that NaB activated AMPK mainly by increasing the calcium level, but not the ATP concentration, via promoting store-operated calcium entry (SOCE). Upon the activation of AMPK, NaB promoted the reassembly of tight junctions (TJs) based on reducing the phosphorylation of myosin II regulatory light chain (MLC2) at Ser19 and increasing phosphorylation of protein kinase C β2 (PKCβ2) at Ser660. Inhibiting (protein kinase C β) PKCβ blocked the reassembly of TJs induced by NaB in the barrier monolayer model. These results indicated that NaB could activate the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) pathway to mediate AMPK phosphorylating, which then inhibited the phosphorylation of MLC2 and promoted the phosphorylation of PKCβ2, respectively, so that the downstream molecules of AMPK coordinately contributed to the reassembly of TJs in the Caco-2 barrier model. These results suggested a potential mechanism of butyrate for intestine homeostasis and protection. PMID:27735862

  11. New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone

    NASA Astrophysics Data System (ADS)

    Matusevich, Vladislav; Tolstik, Elen; Kowarschik, Richard; Egorova, Elena; Matusevich, Yuri I.; Krul, Leonid

    2013-05-01

    The newly developed Plexiglas films containing polyvinyl butyral resins and phenanthrenequinone molecules as photosensitive dopant, which are proposed for the practical application as interlayer of laminated safety glass, are shown for the first time. The injection of the phenanthrenequinone-poly(methyl methacrylate) into the polyvinyl butyral protective interlayer provides a homogenous distribution of the recording holographic medium in the layer and allows fixing the entire surface grating in the laminated glass. In addition, the original properties of polyvinyl butyral as a connecting material were preserved during manufacturing of the laminated glass. This allows a recording of holographic structures directly after baking of the laminated glass, thus reducing the destruction of the gratings due to the elevated temperatures. The diffractive structures in phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral polymeric layers with thicknesses of hundreds of microns are sealed between two panels of glass (so-called laminated glass) and are generated by illumination with an Argon-laser of 514 nm. Efficiently fixed and long-term stable holographic gratings recorded in the phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral layer enable to produce transparent laminated glass with inserted diffractive elements, which can be used e.g. for Head-up Displays in automobile windshields or as holographic light concentrators for solar cells.

  12. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum.

    PubMed

    Wu, Zetang; Yang, Shang-Tian

    2003-04-05

    A novel extractive fermentation for butyric acid production from glucose, using immobilized cells of Clostridium tyrobutyricum in a fibrous bed bioreactor, was developed by using 10% (v/v) Alamine 336 in oleyl alcohol as the extractant contained in a hollow-fiber membrane extractor for selective removal of butyric acid from the fermentation broth. The extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor. The fermentation pH was self-regulated by a balance between acid production and removal by extraction, and was kept at approximately pH 5.5 throughout the study. Compared with conventional fermentation, extractive fermentation resulted in a much higher product concentration (>300 g/L) and product purity (91%). It also resulted in higher reactor productivity (7.37 g/L. h) and butyric acid yield (0.45 g/g). Without on-line extraction to remove the acid products, at the optimal pH of 6.0, the final butyric acid concentration was only approximately 43.4 g/L, butyric acid yield was 0.423 g/g, and reactor productivity was 6.77 g/L. h. These values were much lower at pH 5.5: 20.4 g/L, 0.38 g/g, and 5.11 g/L. h, respectively. The improved performance for extractive fermentation can be attributed to the reduced product inhibition by selective removal of butyric acid from the fermentation broth. The solvent was found to be toxic to free cells in suspension, but not harmful to cells immobilized in the fibrous bed. The process was stable and provided consistent long-term performance for the entire 2-week period of study.

  13. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia

    PubMed Central

    Sarker, Protim; Mily, Akhirunnesa; Mamun, Abdullah Al; Jalal, Shah; Bergman, Peter; Raqib, Rubhana; Gudmundsson, Gudmundur H.; Agerberth, Birgitta

    2014-01-01

    Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs), e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea. PMID:27025750

  14. Membrane Complexes of Syntrophomonas wolfei Involved in Syntrophic Butyrate Degradation and Hydrogen Formation

    PubMed Central

    Crable, Bryan R.; Sieber, Jessica R.; Mao, Xinwei; Alvarez-Cohen, Lisa; Gunsalus, Robert; Ogorzalek Loo, Rachel R.; Nguyen, Hong; McInerney, Michael J.

    2016-01-01

    Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in co-culture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and co-cultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS) oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic butyrate degradation

  15. Effect of abomasal butyrate infusion on gene expression in the duodenum of lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previous study infusing butyrate into the abomasum of sheep produced increased oxygen, glucose, glutamate, and glutamine uptake by the portal-drained viscera. These changes were thought to be partially due to increases in glycolysis and cell proliferation. The purpose of this study was to evaluate...

  16. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    PubMed Central

    Canani, Roberto Berni; Costanzo, Margherita Di; Leone, Ludovica; Pedata, Monica; Meli, Rosaria; Calignano, Antonio

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine. PMID:21472114

  17. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  18. Leukotactin-1/CCL15 induces cell migration and differentiation of human eosinophilic leukemia EoL-1 cells through PKCdelta activation.

    PubMed

    Lee, Ji-Sook; Kim, In Sik

    2010-06-01

    Leukotactin-1 (Lkn-1)/CCL15 is a CC chemokine that binds to the CCR1 and CCR3. Lkn-1 functions as an essential factor in the migration of monocytes, lymphocytes, and neutrophils. Although eosinophils express both receptors, the role of Lkn-1 in immature eosinophils remains to be elucidated. In this present study, we investigated the contribution of the CCR1-binding chemokines to chemotactic activity and in the differentiation in the human eosinophilic leukemia cell line EoL-1. Lkn-1 induced the stronger migration of EoL-1 cells than other CCR1-binding chemokines such as RANTES/CCL5, MIP-1alpha/CCL3 and HCC-4/CCL16. Lkn-1-induced chemotaxis was inhibited by pertussis toxin, an inhibitor of G(i)/G(o) protein; U73122, an inhibitor of phospholipase C and rottlerin, an inhibitor of protein kinase C delta (PKCdelta). Lkn-1 increased PKCdelta activity, which was partially blocked by the pertussis toxin and U73122. Lkn-1 enhanced the butyric acid-induced differentiation via PKCdelta after binding to the increased CCR1 because Lkn-1 caused EoL-1 cells to change morphologically into mature eosinophil-like cells. Likewise, Lkn-1 increased the expression of both eosinophil peroxidase (EPO) and the major basic protein (MBP). PKCdelta activation due to Lkn-1 is involved in migration, as well as the butyric acid-induced differentiation. This finding contributes to an understanding of CC chemokines in eosinophil biology and to the development of novel therapies for the treatment of eosinophilic disorders. This study suggests the pivotal roles of Lkn-1 in the regulation of the movement and development of eosinophils.

  19. Studies on the induction of Epstein-Barr virus (EBV) DNA polymerase (POL) and deoxyribonuclease (DNase) by the combined action of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and N-butyrate (SB in EBV-carrying cells

    SciTech Connect

    Nutter, L.M.; Tan, R.S.; Grill, S.; Li, J.S.; Cheng, Y.C.

    1986-03-05

    TPA and SB were found to induce EBV early antigen in EBV-carrying Raji cells, a Burkitt's Lymphoma-derived human cell line. The mode of interaction of these agents was unclear. They have examined the induction of EBV-POL and DNase activities by TPA and SB. It was found that neither agent alone could induce EBV-POL and DNase activities, even though the virus DNA could be induced by either compound alone. Induction of virus enzymes could only occur when cells were exposed to both compounds. A 2h exposure to TPA followed by 46h to SB resulted in levels of induction of EBV-POL and DNase activities comparable to those induced with simultaneous exposure to both agents for 48h. No induction of the enzymes will occur if the sequence of exposure to these agents is reversed. Phospholipase C, which increases intracellular diacylglycerol (and subsequently the activation of Protein Kinase C), and 5-Aza-deoxycytidine, a DNA hypomethylating agent, were able to partially substitute for TPA and SB, respectively. These results suggest that the mechanism of induction of EBV enzyme activities by TPA and SB could involve both Protein Kinase C activation and DNA hypomethylation. Furthermore, the synthesis of EBV DNA is not sufficient for induction of these virus enzyme activities.

  20. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  1. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  2. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  3. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    PubMed

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.

  4. TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways.

    PubMed

    Larraufie, Pierre; Doré, Joël; Lapaque, Nicolas; Blottière, Hervé M

    2017-02-01

    The intestinal epithelium is an active barrier separating the host from its microbiota. It senses microbial compounds through expression of a wide range of receptors including the Toll-like receptors (TLRs). TLRs have been shown to regulate epithelium permeability or secretion of defensin by Paneth cells. However, the expression and function of TLRs in enteroendocrine L-cells, a specific subtype of intestinal cells secreting PYY and GLP-1, have not yet been assessed. PYY and GLP-1 are implicated in regulation of gut motility, food intake and insulin secretion, and are of great interest regarding obesity and type 2 diabetes. Using a cellular model of human L-cells and a reporter system for NF-κB activation pathway, we reported functional expression of TLRs in these cells. Stimulation with specific TLR-agonists increased expression of Pyy but not Proglucagon in an NF-κB-dependent manner. Moreover, the effect of TLR stimulation was additive to butyrate, a product of bacterial fermentation, on Pyy expression. Additionally, butyrate also increased Tlr expression, including Tlr4, and the NF-κB response to TLR stimulation. Altogether, our results demonstrated a role of TLRs in the modulation of Pyy expression and the importance of butyrate, a product of bacterial fermentation in regulation of microbial TLR-dependent sensing.

  5. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-01-11

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture.

  6. Listeria monocytogenes induces mast cell extracellular traps.

    PubMed

    Campillo-Navarro, Marcia; Leyva-Paredes, Kahiry; Donis-Maturano, Luis; González-Jiménez, Marco; Paredes-Vivas, Yuriria; Cerbulo-Vázquez, Arturo; Serafín-López, Jeanet; García-Pérez, Blanca; Ullrich, Stephen E; Flores-Romo, Leopoldo; Pérez-Tapia, Sonia M; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2017-02-01

    Mast cells play an essential role in different immunological phenomena including allergy and infectious diseases. Several bacteria induce mast cell activation leading to degranulation and the production of several cytokines and chemokines. However, mast cells also have different microbicidal activities such as phagocytosis and the release of DNA with embedded granular proteins known as Mast Cell Extracellular Traps (MCETs). Although previous reports indicate that extracellular bacteria are able to induce MCETs little is known if intracellular bacteria can induce these structures. In this work, we evaluated MCETs induction by the intracellular bacteria Listeria monocytogenes. We found that mast cells released DNA after stimulation with L. monocytogenes, and this DNA was complexed to histone and tryptase. Before extracellular DNA release, L. monocytogenes induced modifications to the mast cell nuclear envelope and DNA was detected outside the nucleus. L. monocytogenes stimulated mast cells to produce significant amounts of reactive oxygen species (ROS) and blocking NADPH oxidase diminished DNA release by mast cells. Finally, MCETs showed antimicrobial activity against L. monocytogenes that was partially blocked when β-hexosaminidase activity was inhibited. These results show that L. monocytogenes induces mast cells to produce microbicidal MCETs, suggesting a role for mast cells in containing infection beyond the induction of inflammation.

  7. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  8. Clinical evaluation of clobetasone butyrate: a comparative study of its effects in postoperative inflammation and on intraocular pressure.

    PubMed Central

    Ramsell, T G; Bartholomew, R S; Walker, S R

    1980-01-01

    Clobetasone butyrate, a new corticosteroid with a high topical activity, has been compared with prednisolone phosphate and a placebo in the treatment of inflammation following cataract extraction. These 2 steroids were more effective in relieving postoperative inflammation than placebo (P less than 0.05), though no obvious clinical differences between the 2 compounds emerged from this investigation. However, a single-blind comparative study against betamethasone phosphate in patients suspected of having steroid-induced glaucoma showed that, while betamethasone phosphate significantly raised intraocular pressure, clobetasone butyrate had only a minimal effect, and this difference was statistically significant (P less than 0.02). PMID:6986899

  9. Aspects of pharmacodynamics and biotransformation of the glucocorticoid resocortol butyrate.

    PubMed

    Coert, A; Verheijen, F; Horspool, L J I; Mol, J A

    2004-10-01

    Aspects of the biotransformation and pharmacodynamics of the novel glucocorticoid resocortol butyrate (RCB) and its metabolites were assessed in vitro and in vivo in comparison with selected reference compounds. The main route of biotransformation of ((3)H)-RCB in the skin and the liver was 5alpha-reduction of the A-ring followed by reduction of the 3-carbonyl group. In the liver, metabolism was much more rapid than in the skin and 5beta-reduction also occurred. RCB had a relative binding affinity for the glucocorticoid receptor similar to that of triamcinolone acetonide, about 1.5 times that of dexamethasone, three times that of betamethasone valerate (BMV) and 10-14 times that of cortisol. The metabolites of RCB displayed only low to very low affinities for the receptor. The suppression of the hypothalamic-pituitary-adrenal axis was investigated in placebo- and positive-controlled studies in dogs by measurement of basal and corticotrophin-releasing hormone (CRH) stimulated plasma cortisol concentrations. The AUC of the plasma cortisol vs. time curve following CRH stimulation, a measure of adrenal suppression, was reduced significantly after topical application of BMV compared with the pretreatment values. The AUC in the RCB group was not reduced significantly. Adrenocorticotrophic hormone concentrations were not affected. Oral administration of RCB did not suppress adrenocortical function, whereas BMV induced almost complete suppression of basal and CRH-induced cortisol concentrations. The pharmacodynamics of RCB makes it a relatively safe glucocorticosteroid for topical application.

  10. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  11. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid (MFG) and fat protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS) induced in...

  12. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis1

    PubMed Central

    Park, Jeongho; Goergen, Craig J.; HogenEsch, Harm; Kim, Chang H.

    2016-01-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10+ regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and induced T-cell mediated ureteritis leading to kidney hydronephrosis (hereafter called C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction (UPJ) and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mTOR activation, T cell-derived inflammatory cytokines such as IFNγ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. PMID:26819206

  13. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  14. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin-Mei; Panozzo, J.; Libertin, C.R.

    1993-11-01

    In this report, we demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evident in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture.

  15. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  16. Effects of seasonal changes in food quality and food intake on the transport of sodium and butyrate across ruminal epithelium of reindeer.

    PubMed

    Storeheier, P V; Sehested, J; Diernaes, L; Sundset, M A; Mathiesen, S D

    2003-07-01

    Transport of 22Na and 14C-butyrate across the ruminal epithelium of captive reindeer fed a concentrate diet in summer (n=5) and in winter (n=5) and from free-ranging reindeer taken from summer (n=3) and winter pasture (n=5) was measured in vitro in Ussing chambers. Significant amounts of both Na+ and butyrate were transported across the isolated epithelium without any external driving force. The ruminal transport of Na+ and butyrate were interacting, as evidenced by both the observed amiloride-induced reduction of net butyrate-transport and by the positive correlation between net transport of butyrate and Na+. Amiloride also reduced the net transport of Na+ without significantly affecting the short-circuit current, indicating the presence of an apical Na+/H+ exchanger in the ruminal epithelium of reindeer. The captive reindeer increased the dry matter intake of a constant quality concentrate from winter to summer, but this neither affected their ruminal transport capacity nor their ruminal surface enlargement factor (SEF). Free-ranging reindeer increased their ruminal transport capacity for Na+ and butyrate from summer to winter but simultaneously reduced their ruminal SEF. The present data indicate that this food-induced increase in transport capacity was attributed to changes in the nutrient composition of the diet.

  17. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  18. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth.

    PubMed

    Tan, Xiaoling; Feng, Lan; Huang, Xiaoyong; Yang, Yidong; Yang, Chengzhong; Gao, Yuqi

    2017-03-07

    Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia-induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI-treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia-induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.

  19. Invariant NKT cells increase drug-induced osteosarcoma cell death

    PubMed Central

    Fallarini, S; Paoletti, T; Orsi Battaglini, N; Lombardi, G

    2012-01-01

    BACKGROUND AND PURPOSE In osteosarcoma (OS) patients, only a limited number of drugs are active and the regimens currently in use include a combination of at least two of these drugs: doxorubicin, cisplatin, methotrexate and ifosfamide. Today, 30–40% of patients still die of OS highlighting the urgent need for new treatments. Invariant NKT (iNKT) cells are a lymphocyte lineage with features of both T and NK cells, playing important roles in tumour suppression. Our aim was to test whether the cytoxicity induced by cisplatin, doxorubicin and methotrexate against OS cells can be enhanced by iNKT cell treatment. EXPERIMENTAL APPROACH iNKT cells were purified from human peripheral blood mononuclear cells by cell sorting (Vα24Vβ11+ cells) and used as effector cells against OS cells (U2-OS, HOS, MG-63). Cell death (calcein-AM method), perforin/granzyme B and Fas/FasL expressions were determined by flow cytometry. CD1d expression was analysed at both the gene and protein level. KEY RESULTS iNKT cells were cytotoxic against OS cells through a CD1d-dependent mechanism. This activity was specific for tumour cells, because human CD1d+ mesenchymal stem cells and CD1d- osteoblasts were not affected. iNKT cell treatment enhanced drug-induced OS cell death in a concentration-dependent manner and this effect was reduced in CD1d-silenced OS cells. CONCLUSION AND IMPLICATIONS iNKT cells kill malignant, but not non-malignant, cells. iNKT cell treatment enhances the cytotoxicity of anti-neoplastic drugs against OS cells in a CD1d-dependent manner. The present data encourage further studies on the use of iNKT cells in OS therapy. PMID:22817659

  20. Induced Pluripotent Stem Cells from Nonhuman Primates.

    PubMed

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  1. Methadone induced lysis of mammalian cells.

    PubMed

    Will, P C; Noteboom, W D

    1978-08-01

    Methadone induced lysis of human erythrocytes and mouse leukemic cells was studied. The cells lyse without prior swelling that is a necessary step of colloid osmotic lysis. Methadone is accumulated by both cell types, and is widely distributed intracellurly in mouse leukemic cells. The maximum lytic rate is roughly proportional to the amount of methadone uptake and the Q10 for lysis is equal to the Q10 for methadone partitioning between octanol and water. It is concluded that the cells lyse as a result of a non-specific disruption of the plasma membrane.

  2. Sulfur dioxide induced programmed cell death in Vicia guard cells.

    PubMed

    Yi, Huilan; Yin, Jingjing; Liu, Xin; Jing, Xiuqing; Fan, Sanhong; Zhang, Hufang

    2012-04-01

    Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.

  3. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  4. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    PubMed Central

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology. PMID:26489085

  5. Combination of specific allergen and probiotics induces specific regulatory B cells and enhances specific immunotherapy effect on allergic rhinitis

    PubMed Central

    Yang, Gui; Luo, Xiang-Qian; Miao, Bei-Ping; Geng, Xiao-Rui; Liu, Zhi-Qiang; Liu, Jun; Wen, Zhong; Wang, Shuai; Zhang, Huan-Ping; Li, Jing; Liu, Zhi-Gang; Li, Hua-Bin; Yang, Ping-Chang

    2016-01-01

    The therapeutic efficacy of allergen specific immunotherapy (SIT) on allergic diseases is to be improved. Probiotics can regulate immune response. This study aims to promote the effect of SIT on allergic rhinitis (AR) by co-administration with Clostridium butyricum (Cb). In this study, patients with AR sensitized to mite allergens were enrolled to this study, and treated with SIT or/and Cb. The therapeutic efficacy was evaluated by the total nasal symptom scores (NSS), medication scores, serum specific IgE levels and T helper (Th)2 cytokine levels. The improvement of immune regulation in the AR patients was assessed by immunologic approaches. The results showed that treating AR patients with SIT alone markedly reduced NSS and medication scores; but did not alter the serum specific IgE, Th2 cytokines and skin prick test (SPT) index. The clinical symptoms on AR in SIT group relapsed one month after stopping SIT. Co-administration of Cb significantly enhanced the efficacy of SIT on AR as shown by suppression of NSS, medication scores, serum specific IgE, Th2 cytokines and SPT index; the regulatory B cell frequency was also markedly increased. Such an effect on AR was maintained throughout the observation period even after stopping the treatment. Butyrate blocked the activation of histone deacetylase-1, the downstream activities of epsilon chain promoter activation, and the IgE production in the antigen specific B cells. On the other hand, butyrate induced the IL-10 expression in B cells with a premise of the B cell receptor activation by specific antigens. In conclusion, administration with Cb can markedly enhance the efficacy of SIT on AR. PMID:27486985

  6. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  7. Novel Role of ER Stress and Autophagy in Microcystin-LR Induced Apoptosis in Chinese Hamster Ovary Cells

    PubMed Central

    Zhang, Shenshen; Liu, Chuanrui; Li, Yang; Imam, Mustapha U.; Huang, Hui; Liu, Haohao; Xin, Yongjuan; Zhang, Huizhen

    2016-01-01

    Microcystin-LR (MC-LR) is a ubiquitous peptide that exhibits strong reproductive toxicity, although the mechanistic basis for such toxicity remains largely unknown. The present study was conducted to investigate the mechanisms underlying the adverse effects of exposure to MC-LR in Chinese hamster ovary (CHO) cells. The results showed that MC-LR inhibited the in vitro proliferation of CHO cells significantly, with an IC50 of 10 μM. Moreover, MC-LR-treated CHO cells revealed strong induction of cell cycle arrest and apoptosis. Additionally, exposure of CHO cells to MC-LR resulted in excess reactive oxygen species production and intracellular calcium release, with resultant endoplasmic reticulum stress (ERs). There was also extensive accumulation of autophagic vacuoles with the highest concentration of MC-LR used (10 μM). Furthermore, the expression of ERs (GRP78, ATF-6, PERK, IRE1, CHOP) and autophagy (Beclin1 and LC3II) proteins was increased, with concomitantly reduced expression of LC3I suggesting that ERs and autophagy were induced in CHO cells by MC-LR treatment. Conversely, pretreatment of CHO cells with 4-Phenyl butyric acid, the ERs inhibitor reduced the MC-LR-induced apoptotic cell death and cellular autophagy as evidenced by the reduced expression of Beclin1 and LC3II. Similarly, MC-LR treatment in combination with an autophagy inhibitor (3-methyladenine) increased apoptotic cell death compared with MC-LR alone, and induced ERs via upregulating ERs proteins. The overall results indicated that activation of ERs and autophagy are both associated with MC-LR-induced apoptosis in CHO cells. ERs may be a trigger of autophagy in this process. PMID:27877136

  8. An introduction to induced pluripotent stem cells.

    PubMed

    Hanley, Joanna; Rastegarlari, Ghasem; Nathwani, Amit C

    2010-10-01

    Recent landmark studies show that it is now possible to convert somatic cells, such as skin fibroblasts and B lymphocytes, into pluripotent stem cells that closely resemble embryonic stem cells. These induced pluripotent stem (iPS) cells can be generated without using human embryos or oocytes, thus bypassing some of the ethical issues that have limited the use of human embryonic stems (hES) cells. Additionally, they can be derived from the patient to be treated, thereby overcoming problems of immunological rejection associated with the use of allogeneic hES cell derived progenitors. Whilst these patient-specific iPS cells have great clinical potential, their immediate utility is likely to be in drug screening and for understanding the disease process. This review discusses the promise of iPS cells as well as the challenges to their use in the clinic.

  9. Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H₂O₂) levels in guard cells in Vicia faba.

    PubMed

    Ma, Yinli; She, Xiaoping; Yang, Shushen

    2012-11-01

    The role and signaling of sphingosine-1-phosphate (S1P) during darkness-induced stomatal closure were examined in Vicia faba. Darkness substantially raised S1P and hydrogen peroxide (H(2)O(2)) levels and closed stomata. These darkness effects were significantly suppressed by DL-threo-dihydrosphingosine (DL-threo-DHS) and N,N-dimethylsphingosine (DMS), two inhibitors of long-chain base kinases. Exogenous S1P led to stomatal closure and H(2)O(2) production, and the effects of S1P were largely prevented by the H(2)O(2) modulators ascorbic acid, catalase, and diphenyleneiodonium. These results indicated that S1P mediated darkness-induced stomatal closure by triggering H(2)O(2) production. In addition, DL-threo-DHS and DMS significantly suppressed both darkness-induced cytosolic alkalization in guard cells and stomatal closure. Exogenous S1P caused cytosolic alkalization and stomatal closure, which could be largely abolished by butyric acid. These results demonstrated that S1P synthesis was necessary for cytosolic alkalization during stomatal closure caused by darkness. Furthermore, together with the data described above, inhibition of darkness-induced H(2)O(2) production by butyric acid revealed that S1P synthesis-induced cytosolic alkalization was a prerequisite for H(2)O(2) production during stomatal closure caused by darkness, a conclusion supported by the facts that the pH increase caused by exogenous S1P had a shorter lag and peaked faster than H(2)O(2) levels and that butyric acid prevented exogenous S1P-induced H(2)O(2) production. Altogether, our data suggested that darkness induced S1P synthesis, causing cytosolic alkalization and subsequent H(2)O(2) production, finally leading to stomatal closure.

  10. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10.

  11. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin Mei; Panozzo, J.; Libertin, C.R.

    1994-01-01

    Previous work has shown that HeLa cells stably transfected with an HIV-LTR-CAT construct are induced to express chloramphenicol acetyl transferase (CAT) following exposure to DNA-damaging agents such as ultraviolet radiation, {gamma} rays, neutrons, and others. In this report, the authors demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evidence in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture. Other agents which caused no cell killing (such as heat-shock for up to 2 h, treatment with metronidazole, exposure to sunlight, vitamin C treatment, and others) had no effect on HIV-LTR induction. These results suggest that HIV transcription is induced as a consequence of the turn on of a cellular death or apoptotic pathway.

  12. The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects.

    PubMed

    Serrano-Villar, S; Vázquez-Castellanos, J F; Vallejo, A; Latorre, A; Sainz, T; Ferrando-Martínez, S; Rojo, D; Martínez-Botas, J; Del Romero, J; Madrid, N; Leal, M; Mosele, J I; Motilva, M J; Barbas, C; Ferrer, M; Moya, A; Moreno, S; Gosalbes, M J; Estrada, V

    2016-12-21

    Altered interactions between the gut mucosa and bacteria during HIV infection seem to contribute to chronic immune dysfunction. A deeper understanding of how nutritional interventions could ameliorate gut dysbiosis is needed. Forty-four subjects, including 12 HIV(+) viremic untreated (VU) patients, 23 antiretroviral therapy-treated (ART(+)) virally suppressed patients (15 immunological responders and 8 non-responders) and 9 HIV(-) controls (HIV(-)), were blindly randomized to receive either prebiotics (scGOS/lcFOS/glutamine) or placebo (34/10) over 6 weeks in this pilot study. We assessed fecal microbiota composition using deep 16S rRNA gene sequencing and several immunological and genetic markers involved in HIV immunopathogenesis. The short dietary supplementation attenuated HIV-associated dysbiosis, which was most apparent in VU individuals but less so in ART(+) subjects, whose gut microbiota was found more resilient. This compositional shift was not observed in the placebo arm. Significantly, declines in indirect markers of bacterial translocation and T-cell activation, improvement of thymic output, and changes in butyrate production were observed. Increases in the abundance of Faecalibacterium and Lachnospira strongly correlated with moderate but significant increases of butyrate production and amelioration of the inflammatory biomarkers soluble CD14 and high-sensitivity C-reactive protein, especially among VU. Hence, the bacterial butyrate synthesis pathway holds promise as a viable target for interventions.Mucosal Immunology advance online publication, 21 December 2016; doi:10.1038/mi.2016.122.

  13. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    PubMed Central

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, < 0.03 U mg−1 protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24–7.64 U mg−1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  14. Schwann cells induce neuronal differentiation of bone marrow stromal cells.

    PubMed

    Zurita, Mercedes; Vaquero, Jesús; Oya, Santiago; Miguel, Miriam

    2005-04-04

    Bone marrow stromal cells are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. Recently, bone marrow stromal cells have been shown to have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. We now describe how bone marrow stromal cells can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells. When compared with chemical differentiation, expression of neuronal differentiation markers begins later, but one week after beginning co-culture, most bone marrow stromal cells showed a typical neuronal morphology. Our present findings support the transdifferentiation of bone marrow stromal cells, and the potential utility of these cells for the treatment of degenerative and acquired disorders of the nervous system.

  15. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  16. Induction of Trabecular Meshwork Cells From Induced Pluripotent Stem Cells

    PubMed Central

    Ding, Qiong J.; Zhu, Wei; Cook, Amy C.; Anfinson, Kristin R.; Tucker, Budd A.; Kuehn, Markus H.

    2014-01-01

    Purpose. Loss or dysfunction of trabecular meshwork (TM) cells has been associated with the development of pathologically elevated IOP, and it is conceivable that replacement of damaged TM cells could restore function to the TM. We propose that the use of TM-like cells derived from induced pluripotent stem cells (iPSCs) created from a patient's own dermal fibroblasts offers the best solution to this challenge. Here we demonstrate that mouse iPSCs can be induced to differentiate into TM-like cells suitable for autologous transplantation. Methods. Directed induction of stem cell differentiation was achieved through coculture of mouse iPSCs with human TM cells for up to 21 days. The resultant TM-like cells (iPSC-TM) were characterized morphologically, immunohistochemically, and functionally. Results. The iPSC-TM cells closely resembled cultured human TM cells morphologically and began to express many markers of TM cells while ceasing to express pluripotency markers such as Nanog, Oct4, and Sox2. Functionally, these cells developed the ability to phagocytose particles. Finally, exposure to dexamethasone or phorbol 12-myristate acetate caused a distinct increase in the production and secretion of myocilin and matrix metalloproteinase-3, respectively, behavior characteristic of TM cells. Conclusions. Our data demonstrate that iPSCs can be induced to assume a phenotype that resembles native TM cells in many important aspects. Not only do these cells represent a valuable research tool, but transplantation into glaucomatous eyes with elevated IOP may also restore function to the TM, resulting in re-establishment of IOP. PMID:25298418

  17. Schwann cells induce cancer cell dispersion and invasion.

    PubMed

    Deborde, Sylvie; Omelchenko, Tatiana; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J

    2016-04-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

  18. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  19. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  20. TALEN-Induced Translocations in Human Cells.

    PubMed

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  1. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  2. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    PubMed Central

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  3. Induced pluripotent stem cells and neurodegenerative diseases.

    PubMed

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  4. [Research for cell therapy by induced pluripotent stem cell].

    PubMed

    Sakurai, Hidetoshi; Yamanaka, Shinya

    2011-12-01

    Induced pluripotent stem (iPS) cells, which are generated from somatic cells, are expected to be a hopeful source for cell therapy to treat intractable diseases due to its unlimited proliferation potential, differentiation potentials and the capability of autotransplantation characteristics. In this review, we have summarized the extension of iPS cell researches into cell therapy and the new researches associated with iPS cell technology. However, transplantation of iPS cell-derived tissue is considered to have a risk of tumorigenesis which is one of the major hurdles of using pluripotent stem cell in clinical application. This review is also focused on new strategies for reducing a risk of tumorigenesis.

  5. Failure of cell cleavage induces senescence in tetraploid primary cells.

    PubMed

    Panopoulos, Andreas; Pacios-Bras, Cristina; Choi, Justin; Yenjerla, Mythili; Sussman, Mark A; Fotedar, Rati; Margolis, Robert L

    2014-10-15

    Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen-transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.

  6. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  7. A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei

    PubMed Central

    Schmidt, Alexander; Müller, Nicolai; Schink, Bernhard; Schleheck, David

    2013-01-01

    In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a

  8. PAI-1 Expression Is Required for HDACi-Induced Proliferative Arrest in ras-Transformed Renal Epithelial Cells.

    PubMed

    Higgins, Stephen P; Higgins, Craig E; Higgins, Paul J

    2011-01-01

    Malignant transformation of mammalian cells with ras family oncogenes results in dramatic changes in cellular architecture and growth traits. The generation of flat revertants of v-K-ras-transformed renal cells by exposure to the histone deacetylase inhibitor sodium butyrate (NaB) was previously found to be dependent on transcriptional activation of the PAI-1 (SERPINE1) gene (encoding the type-1 inhibitor of urokinase and tissue-type plasminogen activators). NaB-initiated PAI-1 expression preceded induced cell spreading and entry into G(1) arrest. To assess the relevance of PAI-1 induction to growth arrest in this cell system more critically, two complementary approaches were used. The addition of a stable, long half-life, recombinant PAI-1 mutant to PAI-1-deficient v-K-ras-/c-Ha-ras-transformants or to PAI-1 functionally null, NaB-resistant, 4HH cells (engineered by antisense knockdown of PAI-1 mRNA transcripts) resulted in marked cytostasis in the absence of NaB. The transfection of ras-transformed cells with the Rc/CMVPAI expression construct, moreover, significantly elevated constitutive PAI-1 synthesis (10- to 20-fold) with a concomitant reduction in proliferative rate. These data suggest that high-level PAI-1 expression suppresses growth of chronic ras-oncogene transformed cells and is likely a major cytostatic effector of NaB exposure.

  9. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  10. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    SciTech Connect

    Saleem, M.; Cutler, A.J.

    1986-04-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of /sup 14/C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37/sup 0/C. The heat shocked protoplasts incorporated 33% more /sup 14/C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids.

  11. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  12. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  13. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    PubMed Central

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2016-01-01

    Background Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance. Design Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis. PMID:26842399

  14. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  15. Induced pluripotent stem cells in dentistry

    PubMed Central

    Sunil, Paramel Mohan

    2016-01-01

    Induced pluripotent stem cells (iPSCs), a path-breaking invention, have revolutionized the regenerative medicine field. The biggest advantage of this technology is its patient-specific nature and so it is nonimmunogenic. It involves autologous tissues with limitless source of cells throughout life. The Nobel-winning concept involves the reprograming of terminally differentiated cells by external factors and has a tremendous role in the treatment of genetic disorders, regeneration of tissues, drug discovery, and disease modeling. This short review aims at the probable applications of iPSC technology in dentistry with respect to regeneration of oral and maxillofacial tissues and also its role in oral malignancies. PMID:27829740

  16. Honey induces apoptosis in renal cell carcinoma

    PubMed Central

    Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saiedeh

    2011-01-01

    Background: The fact that antioxidants have several preventative effects against different diseases, such as coronary diseases, inflammatory disorders, neurologic degeneration, aging, and cancer, has led to the search for food rich in antioxidants. Honey has been used as a traditional food and medical source since ancient times. However, recently many scientists have been concentrating on the antioxidant property of honey. By use of human renal cancer cell lines (ACHN), we investigated the antiproliferative activity, apoptosis, and the antitumor activity of honey. Materials and Methods: The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of honey for 3 consecutive days. Cell viability was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using Annexin-V-fluorescein isothiocyanate (FITC) by flow cytometry. Results: Honey decreased the cell viability in the malignant cells in a concentration- and time-dependent manner. The IC 50 values against the ACHN cell lines were determined as 1.7 ± 0.04% and 2.1 ± 0.03% μg/mL after 48 and 72 h, respectively. Honey induced apoptosis of the ACHN cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells. Conclusion: It might be concluded that honey may cause cell death in the ACHN cells, in which apoptosis plays an important role. Most of the drugs used in the cancer treatment are apoptotic inducers, hence apoptotic nature of honey is considered vital. Therefore, it prompted us to investigate honey as a potential candidate for renal cancer treatment. PMID:21472079

  17. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers.

    PubMed

    Elamin, Elhaseen E; Masclee, Ad A; Dekker, Jan; Pieters, Harm-Jan; Jonkers, Daisy M

    2013-12-01

    Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier dysfunction and to examine the role of AMP-activated protein kinase (AMPK) as a possible mechanism using Caco-2 monolayers. The monolayers were treated apically with butyrate (2, 10, or 20 mmol/L), propionate (4, 20, or 40 mmol/L), or acetate (8, 40, or 80 mmol/L) for 1 h before ethanol (40 mmol/L) for 3 h. Barrier function was analyzed by measurement of transepithelial resistance and permeation of fluorescein isothiocyanate-labeled dextran. Distribution of the tight junction (TJ) proteins zona occludens-1, occludin, and filamentous-actin (F-actin) was examined by immunofluorescence. Metabolic stress was determined by measuring oxidative stress, mitochondrial function, and ATP using dichlorofluorescein diacetate, dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, and bioluminescence assay, respectively. AMPK was knocked down by small interfering RNA (siRNA), and its activity was assessed by a cell-based ELISA. Exposure to ethanol significantly impaired barrier function compared with controls (P < 0.0001), disrupted TJ and F-actin cytoskeleton integrity, and induced metabolic stress. However, pretreatment with 2 mmol/L butyrate, 4 mmol/L propionate, and 8 mmol/L acetate significantly alleviated the ethanol-induced barrier dysfunction, TJ and F-actin disruption, and metabolic stress compared with ethanol-exposed monolayers (P < 0.0001). The promoting effects on barrier function were abolished by inhibiting AMPK using either compound C or siRNA. These observations indicate that SCFAs exhibit protective effects against ethanol-induced barrier disruption via AMPK activation, suggesting a potential for SCFAs as prophylactic and/or therapeutic factors against ethanol-induced

  18. SWCNTs induced autophagic cell death in human bronchial epithelial cells.

    PubMed

    Park, Eun-Jung; Zahari, Nur Elida M; Lee, Eun-Woo; Song, Jaewhan; Lee, Jae-Hyeok; Cho, Myung-Haing; Kim, Jae-Ho

    2014-04-01

    Carbon nanotubes are being actively introduced in electronics, computer science, aerospace, and other industries. Thus, the urgent need for toxicological studies on CNTs is mounting. In this study, we investigated the alterations in cellular response with morphological changes induced by single-walled carbon nanotubes (SWCNTs) in BEAS-2B cells, a human bronchial epithelial cell line. At 24h after exposure, SWCNTs rapidly decreased ATP production and cell viability as well a slight increase in the number of cells in the subG1 and G1 phases. In addition, SWCNTs increased the expression of superoxide dismutase (SOD)-1, but not SOD-2, and the number of cells generating ROS. The concentration of Cu and Zn ions also increased in a dose-dependent manner in cells exposed to SWCNTs. SWCNTs significantly enhanced the release of nitric oxide, interleukin (IL)-6, and IL-8 and up-regulated the expression of chemokine- and cytokine-related genes. Furthermore, the levels of autophagy-related genes, especially the DRAM1 gene, and the autophagosome formation-related proteins, were clearly up-regulated together with an increase of autophagosome-like vacuoles. Based on these results, we suggest that SWCNTs induce autophagic cell death through mitochondrial dysfunction and cytosolic damage in human bronchial epithelial cells.

  19. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    PubMed

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  20. Microlens array induced light absorption enhancement in polymer solar cells

    SciTech Connect

    Chen, Yuqing; Elshobaki, Moneim; Ye, Zhuo; Park, Joong-Mok; Noack, Max A.; Ho, Kai-Ming; Chaudhary, Sumit

    2013-01-24

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure – the microlens array (MLA) – to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems – poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) – were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by [similar]4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for [similar]40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate.

  1. Development of a specific radioimmunoassay for cortisol 17-butyrate

    SciTech Connect

    Smith, G.N.; Lee, Y.F.; Bu'Lock, D.E.; August, P.; Anderson, D.C.

    1983-07-01

    We describe the development and validation of an assay for cortisol 17-butyrate in blood in which there is no significant cross reaction with endogenous corticosteroids at levels encountered normally in man. Preliminary data on blood levels of the drug in absorption studies are presented.

  2. 4-(2-Methyl-4-chlorophenoxy) butyric acid (MCPB)

    Integrated Risk Information System (IRIS)

    4 - ( 2 - Methyl - 4 - chlorophenoxy ) butyric acid ( MCPB ) ; CASRN 94 - 81 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Hea

  3. Disease-specific induced pluripotent stem cells.

    PubMed

    Park, In-Hyun; Arora, Natasha; Huo, Hongguang; Maherali, Nimet; Ahfeldt, Tim; Shimamura, Akiko; Lensch, M William; Cowan, Chad; Hochedlinger, Konrad; Daley, George Q

    2008-09-05

    Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.

  4. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  5. Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-05

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success.

  6. Induced pluripotent stem cells: the new patient?

    PubMed

    Bellin, Milena; Marchetto, Maria C; Gage, Fred H; Mummery, Christine L

    2012-11-01

    Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and age-associated disorders, particularly of the cardiovascular, neural and metabolic systems. This has not been met by commensurate development of new drugs and therapies, which is in part owing to the difficulty in modelling human diseases in laboratory assays or experimental animals. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable.

  7. Virus-induced aggregates in infected cells.

    PubMed

    Moshe, Adi; Gorovits, Rena

    2012-10-17

    During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.

  8. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  9. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling based on increased expression of urea transporter (UT-B) in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concent...

  10. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

    PubMed

    Li, Huijuan; Chang, Jiali; Liu, Pengfei; Fu, Li; Ding, Dewen; Lu, Yahai

    2015-05-01

    Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3 O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3 O4 concentration but was dismissed when Fe3 O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3 O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA-based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3 O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3 O4 amendment. Collectively, our study demonstrated that the nanoFe3 O4 -facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.

  11. Ischemia-induced endothelial cell dysfunction.

    PubMed

    Keep, R F; Andjelkovic, A V; Stamatovic, S M; Shakui, P; Ennis, S R

    2005-01-01

    Hemorrhagic transformation upon reperfusion therapy has focused attention on ischemia-induced endothelial dysfunction. This study examined whether hyperglycemia may induce hemorrhagic transformation by enhancing endothelial mitochondrial damage during ischemia and whether preconditioning (PC) stimuli may limit ischemia-induced endothelial damage. In vivo, rats received 2.8 M D-glucose or arabinose (1 ml/100 g; i.p.) prior to undergoing two hours of middle cerebral artery occlusion and transcardiac fixation for electron microscopy. In vitro, brain endothelial cells were exposed to a PC impulse (short-term oxygen glucose deprivation; OGD) prior to an injurious event (5 hours OGD). Endothelial injury was assessed by measuring lactate dehydrogenase release. Hyperglycemia during cerebral ischemia resulted in marked changes in endothelial morphology and mitochondrial swelling. Thus, in the ischemic hemisphere, there was no evidence of endothelial mitochondrial swelling in normoglycemic rats (mean profile width 0.22 +/- 0.04 vs. 0.17 +/- 0.01 microm in contralateral hemisphere) but there was marked swelling in hyperglycemic rats (0.44 +/- 0.02 microm). In vitro, cells preconditioned with one hour of OGD one day prior to 5 hours of OGD, showed reduced lactate dehydrogenase release (p < 0.05). In conclusion, hyperglycemia may have specific adverse effects on endothelial cell mitochondria during ischemia. Preventing those effects may help to ameliorate blood-brain barrier disruption on reperfusion. Insights into how to prevent endothelial injury may come from determining the mechanisms involved in endothelial preconditioning.

  12. Consumption of a Bifidobacterium bifidum Strain for 4 Weeks Modulates Dominant Intestinal Bacterial Taxa and Fecal Butyrate in Healthy Adults

    PubMed Central

    Gargari, Giorgio; Taverniti, Valentina; Balzaretti, Silvia; Ferrario, Chiara; Gardana, Claudio; Simonetti, Paolo

    2016-01-01

    ABSTRACT Modulation of the intestinal microbial ecosystem (IME) is a useful target to establish probiotic efficacy in a healthy population. We conducted a randomized, double-blind, crossover, and placebo-controlled intervention study to determine the impact of Bifidobacterium bifidum strain Bb on the IME of adult healthy volunteers of both sexes. High-throughput 16S rRNA gene sequencing was used to characterize the fecal microbiota before and after 4 weeks of daily probiotic cell consumption. The intake of approximately one billion live B. bifidum cells affected the relative abundance of dominant taxa in the fecal microbiota and modulated fecal butyrate levels. Specifically, Prevotellaceae (P = 0.041) and Prevotella (P = 0.034) were significantly decreased, whereas Ruminococcaceae (P = 0.039) and Rikenellaceae (P = 0.010) were significantly increased. We also observed that the probiotic intervention modulated the fecal concentrations of butyrate in a manner dependent on the initial levels of short-chain fatty acids (SCFAs). In conclusion, our study demonstrates that a single daily administration of Bifidobacterium bifidum strain Bb can significantly modify the IME in healthy (not diseased) adults. These findings demonstrate the need to reassess the notion that probiotics do not influence the complex and stable IME of a healthy individual. IMPORTANCE Foods and supplements claimed to contain health-promoting probiotic microorganisms are everywhere these days and mainly intended for consumption by healthy people. However, it is still debated what actual effects probiotic products may have on the healthy population. In this study, we report the results of an intervention trial aimed at assessing the modifications induced in the intestinal microbial ecosystem of healthy adults from the consumption of a probiotic product. Our results demonstrate that the introduction of a probiotic product in the dietary habits of healthy people may significantly modify dominant taxa of

  13. Human mesenchymal stem cell homing induced by SKOV3 cells

    PubMed Central

    Fan, Dongmei; Xie, Xiaojuan; Qi, Pengwei; Yang, Xianan; Jin, Ximeng

    2017-01-01

    Human mesenchymal stem cell (hMSC) homing is the migration of endogenous and exogenous hMSCS to the target organs and the subsequent colonization under the action chemotaxic factors. This is an important process involved in the repair of damaged tissues. However, we know little about the mechanism of hMSC homing. Stromal cell derived factor-1 (SDF-1) is a cytokine secreted by stromal cells. Its only receptor CXCR4 is widely expressed in blood cells, immune cells and cells in the central nervous system. SDF-1/CXCR4 signaling pathway plays an important role in hMSC homing and tissue repair. Human cbll1 gene encodes E3 ubiquitin-protein ligase Hakai (also known as CBLL1) consisting of RING-finger domain that is involved in ubiquitination, endocytosis and degradation of epithelial cadherin (E-cadherin) as well as in the regulation of cell proliferation. We successfully constructed LV3-CXCR4 siRNA lentiviral vector, LV3-CBLL1 RNAi lentiviral vector and the corresponding cell systems which were used to induce hMSC homing in the presence of SKOV3 cells. Thus the mechanism of hMSC homing was studied. PMID:28337256

  14. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  15. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  16. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.

    PubMed

    Takuma, Kazuhiro; Hara, Yuta; Kataoka, Shunsuke; Kawanai, Takuya; Maeda, Yuko; Watanabe, Ryo; Takano, Erika; Hayata-Takano, Atsuko; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2014-11-01

    We recently showed that prenatal exposure to valproic acid (VPA) in mice causes autism-like behavioral abnormalities, including social interaction deficits, anxiety-like behavior and spatial learning disability, in male offspring. In the present study, we examined the effect of prenatal VPA on cognitive function and whether the effect is improved by chronic treatment with VPA and sodium butyrate, histone deacetylase inhibitors. In addition, we examined whether the cognitive dysfunction is associated with hippocampal dendritic morphological changes. Mice given prenatal exposure to VPA exhibited novel object recognition deficits at 9 weeks of age, and that the impairment was blocked by chronic (5-week) treatment with VPA (30 mg/kg/d, i.p.) or sodium butyrate (1.2g/kg/d, i.p.) starting at 4 weeks of age. In agreement with the behavioral findings, the mice prenatally exposed to VPA showed a decrease in dendritic spine density in the hippocampal CA1 region, and the spine loss was attenuated by chronic treatment with sodium butyrate or VPA. Furthermore, acute treatment with sodium butyrate, but not VPA, significantly increased acetylation of histone H3 in the hippocampus at 30 min, suggesting the difference in the mechanism for the effects of chronic VPA and sodium butyrate. These findings suggest that prenatal VPA-induced cognitive dysfunction is associated with changes in hippocampal dendritic spine morphology.

  17. ER stress-induced cell death mechanisms

    PubMed Central

    Sano, Renata; Reed, John C.

    2013-01-01

    The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. PMID:23850759

  18. Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming.

    PubMed

    Polak, Urszula; Li, Yanjie; Butler, Jill Sergesketter; Napierala, Marek

    2016-12-01

    Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene, which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs, the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming, modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds, sodium butyrate (NaB) and Parnate, led to an increase in FXN expression and correction of repressive marks at the FXN locus, which persisted for several passages. However, prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore, we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together, these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications, thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA.

  19. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  20. Derivation of induced pluripotent stem cells from pig somatic cells.

    PubMed

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Alexenko, Andrei P; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R Michael

    2009-07-07

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after approximately 22 days, providing an overall reprogramming efficiency of approximately 0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of approximately 17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age.

  1. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene.

    PubMed

    Louis, Petra; Young, Pauline; Holtrop, Grietje; Flint, Harry J

    2010-02-01

    Butyrate-producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl-CoA:acetate CoA-transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty-eight per cent of amplified sequences showed >98% DNA sequence identity to CoA-transferases from cultured butyrate-producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate-producing strains. Samples taken after ingestion of inulin showed significant (P=0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl-CoA:acetate CoA-transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community.

  2. Formation of propionate and butyrate by the human colonic microbiota.

    PubMed

    Louis, Petra; Flint, Harry J

    2017-01-01

    The human gut microbiota ferments dietary non-digestible carbohydrates into short-chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health-promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross-feeding of intermediary metabolites (in particular lactate, succinate and 1,2-propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.

  3. Cellulose acetate butyrate microparticles for controlled release of carbamazepine.

    PubMed

    Arnaud, P; Boué, C; Chaumeil, J C

    1996-01-01

    Cellulose acetate butyrate microparticles loaded in carbamazepine were prepared by a solvent evaporation technique. A decrease of the amount of organic solvent (from 80 to 40 ml of methylene chloride) increased the microparticle average diameter (73-111 and 207 microns) and decreased the carbamazepine release rate (T50% increased from 3.3 to 16.8 and 166.4 min). The microparticle area under the curve at 120 min was similar to that obtained with Tegretol LP 200 tablets.

  4. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  5. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Wang, Hanning; Xiang, Jinzhu; Zhang, Wei; Li, Junhong; Wei, Qingqing; Zhong, Liang; Ouyang, Hongsheng; Han, Jianyong

    2016-01-01

    The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms. PMID:27264660

  6. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  7. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  8. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro.

    PubMed

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection.

  9. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro

    PubMed Central

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection. PMID:26904517

  10. Effect of the butyrate prodrug pivaloyloxymethyl butyrate (AN9) on a mouse model for spinal muscular atrophy

    PubMed Central

    Edwards, Jonathan D.; Butchbach, Matthew E. R.

    2016-01-01

    Spinal muscular atrophy (SMA) is an early-onset motor neuron disease that leads to loss of muscle function. Butyrate (BA)-based compounds markedly improve the survival and motor phenotype of SMA mice. In this study, we examine the protective effects of the BA prodrug pivaloyloxymethyl butyrate (AN9) on the survival of SMNΔ7 SMA mice. Oral administration of AN9 beginning at PND04 almost doubled the average lifespan of SMNΔ7 SMA mice. AN9 treatment also increased the growth rate of SMNΔ7 SMA mice when compared to vehicle-treated SMNΔ7 SMA mice. In conclusion, BA prodrugs like AN9 have ameliorative effects on SMNΔ7 SMA mice. PMID:27911337

  11. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments.

    PubMed

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation.

  12. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    PubMed Central

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  13. Metabolic Stress Induced by Arginine Deprivation Induces Autophagy Cell Death in Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Research, 69(2):700-708...TITLE: Metabolic stress induced by arginine deprivation induces autophagy cell death in prostate cancer PRINCIPAL INVESTIGATOR: Richard Bold, MD...4. TITLE AND SUBTITLE Metabolic stress induced by arginine deprivation induces autophagy cell 5a. CONTRACT NUMBER death in prostate cancer 5b

  14. Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae.

    PubMed

    Haas, Kelly Nicole; Blanchard, Jeffrey L

    2017-02-01

    An anaerobic, saccharolytic, spore-forming, butyrate-producing bacterium, strain KNHs209T, was isolated from a switchgrass microcosm seeded with forest soil. Cells were highly motile rods, often forming long filamentous chains which were easily observed moving under the microscope. Its closest phylogenetic relative was Eisenbergiella tayi (16S rRNA gene sequence identity 94.2 %), although it was easily distinguishable based on its morphology and physiology. Whole-genome sequencing enabled development of a minimal medium, and also suggested that the organism is capable of fixing nitrogen. Its wide variety of growth substrates was mirrored by a high number of encoded chemotaxis receptors (45, the highest in the family Lachnospiraceae). Strain KNHs209T utilized a wide variety of carbohydrates, but not cellulose or xylan. Fermentation products included formate, acetate and butyrate; sulfur compounds and nitrate were not reduced. Strain KNHs209T grew optimally at 35-40 °C and pH 7. The genomic DNA G+C content was 42.74 mol%; the major membrane fatty acids were C14 : 0 and C16 : 0. Based on phenotypic, genomic, phylogenetic and chemotaxonomic analyses, this organism represents a novel genus and species within the family Lachnospiraceae for which the name Kineothrix alysoides, gen. nov., sp. nov. is proposed. The type strain is KNHs209T (=ATCC TSD-26T=DSM 100556T).

  15. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop.

    PubMed

    Li, Xin; Shi, Zhongping; Li, Zhigang

    2014-08-01

    In this study, we attempted to increase butanol/acetone ratio and total solvent productivity in ABE fermentations with corn- and cassava-based media, by consecutively feeding a small amount of butyrate/acetate during solventogenic phase to weaken the metabolic strengths in butyrate/acetate closed-loops. Consecutively feeding a small amount of butyrate (a total of 3.0 g/L-broth) is most effective in improving performance of corn-based ABE fermentations, as it simultaneously increased average butanol/acetone ratio by 23 % (1.92-2.36) and total solvent productivity by 16 % (0.355-0.410 g/L/h) as compared with those of control. However, the butyrate feeding strategy could not improve butanol/acetone ratio and total solvent productivity in cassava-based ABE fermentations, where the metabolic strength of butyrate closed-loop had already been very low.

  16. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid.

  17. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-stage process was described for continuous bioconversion of n-butyrate into n-butanol with planktonic cells of Clostridium saccharoperbutylacetonicum N1-4. Online product removal via gas stripping was integrated within the system. Our work focused on a continuous fermentation system specifically...

  18. [Current progress and application prospects of induced pluripotent stem cells].

    PubMed

    Qin, Tong; Miao, Xiang-Yang

    2010-12-01

    Induced pluripotent stem (iPS) cells can be directly generated from somatic cells by transduction of a few defined transcription factors. This technique avoids immunological rejection and ethical difficulties, which is a great revolution in life sciences. Like embryonic stem (ES) cells, iPS cells have the ability to self-renew through mitotic cell division and thus remain in its undifferentiated state and the ability to differentiate into not only all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm, but also many mature cells in vitro. Therefore, iPS cells are important for theoretic study and therapeutic application. Here, we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods, and clinical applications of iPS cells. Finally, current problems of iPS cells and its prospects in transgenic animals are also discussed. This article is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  19. Low Concentration of Sodium Butyrate from Ultrabraid+NaBu suture, Promotes Angiogenesis and Tissue Remodelling in Tendon-bones Injury

    PubMed Central

    Liu, Donghui; Andrade, Silvia Passos; Castro, Pollyana Ribeiro; Treacy, John; Ashworth, Jason; Slevin, Mark

    2016-01-01

    Sodium butyrate (NaBu), a form of short-chain fatty acid (SCFA), acts classically as a potent anti-angiogenic agent in tumour angiogenesis models, some authors demonstrated that low concentrations of NaBu may contribute to healing of tendon-bone injury in part at least through promotion of tissue remodelling. Here, we investigated the effects of low-range concentrations of NaBu using in vitro and in vivo assays using angiogenesis as the primary outcome measure and the mechanisms through which it acts. We demonstrated that NaBu, alone or perfused from the UltraBraid+NaBu suture was pro-angiogenic at very low-range doses promoting migration, tube formation and cell invasion in bovine aortic endothelial cells (BAECs). Furthermore, cell exposure to low NaBu concentrations increased expression of proteins involved in angiogenic cell signalling, including p-PKCβ1, p-FAK, p-ERK1/2, p-NFκβ, p-PLCγ1 and p-VEGFR2. In addition, inhibitors of both VEGFR2 and PKCβ1 blocked the angiogenic response. In in vivo assays, low concentrations of NaBu induced neovascularization in sponge implants in mice, evidenced by increased numbers of vessels and haemoglobin content in these implants. The findings in this study indicate that low concentrations of NaBu could be an important compound to stimulate angiogenesis at a site where vasculature is deficient and healing is compromised. PMID:27694930

  20. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    PubMed

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases.

  1. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  2. PDGF upregulates CLEC-2 to induce T regulatory cells.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Hajian, Pega; Cao, Jia-Ning; Agrawal, Anshu

    2015-10-06

    The effect of platelet derived growth factor (PDGF) on immune cells is not elucidated. Here, we demonstrate PDGF inhibited the maturation of human DCs and induced IL-10 secretion. Culture of PDGF-DCs with T cells induced the polarization of T cells towards FoxP3 expressing T regulatory cells that secreted IL-10. Gene expression studies revealed that PDGF induced the expression of C-type lectin like receptor member 2, (CLEC-2) receptor on DCs. Furthermore, DCs transfected with CLEC-2 induced T regulatory cells in DC-T cell co-culture. CLEC-2 is naturally expressed on platelets. Therefore, to confirm whether CLEC-2 is responsible for inducing the T regulatory cells, T cells were cultured with either CLEC-2 expressing platelets or soluble CLEC-2. Both conditions resulted in the induction of regulatory T cells. The generation of T regulatory cells was probably due to the binding of CLEC-2 with its ligand podoplanin on T cells, since crosslinking of podoplanin on the T cells also resulted in the induction of T regulatory cells. These data demonstrate that PDGF upregulates the expression of CLEC-2 on cells to induce T regulatory cells.

  3. Long-Term Culture of Porcine Induced Pluripotent Stem-Like Cells Under Feeder-Free Conditions in the Presence of Histone Deacetylase Inhibitors.

    PubMed

    Petkov, Stoyan; Glage, Silke; Nowak-Imialek, Monika; Niemann, Heiner

    2016-03-01

    The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation.

  4. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    PubMed Central

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentiation markers filaggrin and transglutaminase 1. Co-treatment with EGF significantly blunted these effects of SB. Combined treatment with SB and PD153035 alleviated these inhibitory actions of EGF, resulting in improved effects of decreased cell growth and increased terminal differentiation, relative to the individual treatments. These results indicate that the combined use of a differentiation-promoting agent and an EGFR inhibitor may offer an additional approach to the management of hyperproliferative skin diseases. PMID:24451036

  5. [Dementia study using induced pluripotent stem cells].

    PubMed

    Matsuzono, Kosuke; Abe, Koji; Inoue, Haruhisa

    2016-03-01

    Recent developments in induced pluripotent stem cell (iPSC) technology have facilitated, and have contributed to overcome the difficulty of modeling dementia caused by Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD), etc. The following models using iPSCs were reported: the pathophysiology caused by gene mutations such as presenilin or amyloid β precursor protein in AD, α-synuclein in DLB, and microtubule-associated protein tau, fused in sarcoma, progranulin, or chromosome 9 open reading frame 72 in FTLD, anti-AD drug screening, sortilin-related receptor L 1 haplotype influence in sporadic AD, and amyloid β secretion in Down syndrome. Patient-specific iPSC could be expected to reveal the disease pathology and lead to drug discoveries for dementia patients.

  6. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  7. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect

    Ramey, David E.; Yang, Shang-Tian

    2005-08-25

    as a chemical are at $3.00 per gallon – wholesaling in 55 gallon drums for $6.80, with a worldwide market of 1.4 billion gallon per year. The market demand is expected to increase dramatically since butanol can now be produced economically from low-cost biomass. Butanol’s application as a replacement for gasoline will outpace ethanol, biodiesel and hydrogen when its safety and simplicity of use are seen. Butanol’s application for the Department of Defense as a clean-safe replacement for batteries when used in conjunction with fuel cell technology is seen as an application for the future. Disposable canisters made of PLA that carry butanol to be reformed and used to generate electricity for computers, night vision and stealth equipment can be easily disposed of. In a typical ABE fermentation, butyric, propionic and acetic acids are produced first by C. acetobutylicum; the culture then undergoes a metabolic shift and solvents (butanol, acetone, and ethanol) are formed (Fond et al., 1985). In conventional ABE fermentations, the butanol yield from glucose is low, typically at ~15% (w/w) and rarely exceeds 25% (0.77–1.3 gallons per bushel corn respectfully). The production of butanol is also limited by severe product inhibition. Butanol at a concentration of 10 g/L can significantly inhibit cell growth and the fermentation. Consequently, butanol titers in conventional ABE fermentations are usually lower than 13 g/L. The low butanol yield and butanol concentration made butanol production from glucose by ABE fermentation uneconomical.

  8. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  9. Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep.

    PubMed

    Lettat, A; Nozière, P; Silberberg, M; Morgavi, D P; Berger, C; Martin, C

    2010-09-01

    A study was conducted to determine the feasibility to induce rumen acidosis with propionate, butyrate, or lactate as the major fermentation end products. Three rumen-cannulated Texel wethers were used in a 3 x 3 Latin square design. Each period consisted of 11 d of adaptation where wethers were daily fed at 90% of ad libitum intake a hay and wheat-based concentrate diet (4:1 ratio on a DM basis) in 2 equal portions followed by 3 d of acidosis induction. During the challenge, the morning feeding was replaced by an intraruminal supply of wheat (readily fermentable starch), corn (slowly fermentable starch), or beet pulp (easily digestible fiber), dosed at 1.2% of BW. Ruminal liquid samples were taken daily 1 h before (-1) and 1, 3, 5, and 6 h after intraruminal feed supply to measure pH, VFA, and lactic acid concentration. The differences between treatments accentuated throughout the 3-d challenge, being maximal and significant on d 3. Indeed, 6 h after the third day of the challenge, mean ruminal pH was less for wheat (4.85) than for corn (5.61; P = 0.008) and beet pulp (6.09; P = 0.001), and total VFA tended to be less for wheat (48.7 mM) than for corn and beet pulp (84.7 mM on average; P = 0.08). At the same time, the proportion of acetate was greater for wheat than for corn (75.5 and 62.2%, respectively; P = 0.005) but did not differ from beet pulp challenge (69.0%). The proportion of propionate was greatest for beet pulp compared with corn and wheat (21.0, 17.3, and 12.1%, respectively; P = 0.03), whereas the butyrate proportion was greatest for corn, intermediate for wheat, and least for beet pulp (16.3, 10.8, and 8.3%, respectively; P = 0.05). Lactate concentration was greatest for wheat (45.5 mM) compared with corn and beet pulp (8.3 mM on average; P = 0.01). Under our experimental conditions, ruminal lactic acidosis was successfully induced by wheat, whereas butyric and propionic subacute ruminal acidosis were respectively provoked by corn and beet pulp. We

  10. Achieving high efficiency laminated polymer solar cell with interfacial modified metallic electrode and pressure induced crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbo; Bi, Yu; Huang, Jinsong

    2011-02-01

    We report efficient laminated organic photovoltaic device with efficiency approach the optimized device by regular method based on Poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The high efficiency is mainly attributed to the formation of a concrete polymer/metal interface mechanically and electrically by the use of electronic-glue, and using the highly conductive and flexible silver film as anode to reduce photovoltage loss and modifying its work function for efficiency hole extraction by ultraviolet/ozone treatment, and the pressure induced crystallization of PCBM.

  11. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  12. In vitro cell injury by oxidized low density lipoprotein involves lipid hydroperoxide-induced formation of alkoxyl, lipid, and peroxyl radicals.

    PubMed Central

    Coffey, M D; Cole, R A; Colles, S M; Chisolm, G M

    1995-01-01

    Mounting evidence supports current theories linking lipoprotein oxidation to atherosclerosis. We sought the cellular biochemical mechanism by which oxidized LDL inflicts cell injury. Inhibitors of candidate pathways of cell death were used to treat human fibroblast target cells exposed to oxidized LDL.. Ebselen, which degrades lipid hydroperoxides, inhibited oxidized LDL toxicity, consistent with our recent report that 7 beta-hydroperoxycholesterol (7 beta-OOH chol) is the major cytotoxin of oxidized LDL. Intracellular chelation of metal ions inhibited, while preloading cells with iron enhanced, toxicity, Inhibition of oxidized LDL and 7 beta-OOH chol toxicity by 2-keto-4-thiolmethyl butyric acid, a putative alkoxyl radical scavenger and by vitamin E, probucol and diphenylphenylenediamine, putative scavengers of peroxyl radicals was consistent with the involvement of these radicals in the lethal sequence. Cell death was thus postulated to occur due to lipid peroxidation via a sequence involving lipid hydroperoxide-induced, iron-mediated formation of alkoxyl, lipid, and peroxyl radicals. Pathways involving other reactive oxygen species, new protein synthesis, or altered cholesterol metabolism were considered less likely, since putative inhibitors failed to lessen toxicity. Understanding the mechanism of cell injury by oxidized LDL and its toxic moiety, 7 beta-OOH chol, may indicate specific interventions in the cell injury believed to accompany vascular lesion development. PMID:7560078

  13. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis

    PubMed Central

    Eshak, M. G.; Elmenawey, M. A.; Atta, A.; Gharib, H. B.; Shalaby, B.; Awaad, M. H. H.

    2016-01-01

    Aim: To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE) with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA) fragmentation. Materials and Methods: A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence). Birds of groups 1 and 2 were inoculated by crop gavages with 4×108 CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Results: Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF) with higher hemagglutination inhibition titers against Newcastle disease (ND) vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1) and decreased the DNA fragmentation induced by C. perfringens. Conclusion: Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased antibody titers

  14. HIV transcription is induced with some forms of cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Panozzo, J.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-11-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct`, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {Gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture.

  15. Molecular Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death: Early and Late Cell Responses

    DTIC Science & Technology

    2005-10-01

    Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death : Early and late cell responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...It possess mutagenic, carcinogenic, cytotoxic, vesicating effects, and results in cell death . However, the biomedical mechanism of cell death induced... cell death via apoptosis: • In early stage, It induces JNK activity and then triggers apoptosis pathway. • In late stage, sulphur mustard attacks the

  16. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  17. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  18. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  19. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  20. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells.

    PubMed

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G H

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  1. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    PubMed Central

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G.H.

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer. PMID:27141211

  2. Induced stem cells as a novel multiple sclerosis therapy

    PubMed Central

    Xie, Chong; Liu, Yan-qun; Guan, Yang-tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS. PMID:25732737

  3. Nanonization of poorly water-soluble drug clobetasone butyrate by using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Pan, Sunqiang; Takebe, Gen; Suzuki, Masumi; Takamoto, Hisayoshi; Ge, Jianhong; Liu, Chong; Hiramatsu, Mitsuo

    2014-02-01

    Nanonization, which involves the formation of the drug with nanometer particle size, is an effective method to improve the dissolution rate and bioavailability of poorly water-soluble drugs. A pulsewidth-tunable femtosecond laser was used to produce nanoparticles of clobetasone butyrate using poloxamer 188 as stabilizing agent. The effects of temperature and pulsewidth on the particle size and concentration were studied for the first time. The particle size and drug concentration dependence on the laser intensity and irradiation time were also investigated. Permeability test releaved that laser nanonization improved the drug permeability across Caco-2 cell monolayer. This laser nanonization method has a great potential to be used for new drug development.

  4. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells

    PubMed Central

    Monfared, Mahdieh Hajian; Minaee, Bagher; Rastegar, Tayebeh; Khrazinejad, Ebrahim; Barbarestani, Mohammad

    2016-01-01

    Objective(s): Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. Materials and Methods: BMMSCs were collected from the bone marrow of 6-8-week old NMRI mice and their mesenchymal entities were proven using superficial markers (expression of CD44 and CD73 and non-expresion of CD45 and CD11b) by fow cytometry. Their multi-potential entities were proved with differentiation to osteogenic and adipogenic cells for 21 days. Also isolated Sertoli cells were enriched using lectin coated plates and Sertoli cell condition medium (SCCM) was collected. Sertoli cells were identified by immunocytochemistry and Vimentin marker. The cells were then differentiated into germ cells with SCCM for 2 weeks. Finally induced cells were evaluated by RT-PCR and immunocytochemistry. Results: Differentiation of mesenchymal stem cells to osteoblast and adipocyte showed their multi-potential property. Expression of CD44 and CD73 and non-expression of CD45 and CD11b confirmed mesenchyme cells. Immunocytochemistry and RT-PCR results showed expression of germ cells specific marker (Mvh). Conclusion: This study confirmed the effect of SCCM as a motivational factor that can used for differentiation of germ cells from BMMSCs. PMID:27917274

  5. Dendritic cells fused with different pancreatic carcinoma cells induce different T-cell responses

    PubMed Central

    Andoh, Yoshiaki; Makino, Naohiko; Yamakawa, Mitsunori

    2013-01-01

    Background It is unclear whether there are any differences in the induction of cytotoxic T lymphocytes (CTL) and CD4+CD25high regulatory T-cells (Tregs) among dendritic cells (DCs) fused with different pancreatic carcinomas. The aim of this study was to compare the ability to induce cytotoxicity by human DCs fused with different human pancreatic carcinoma cell lines and to elucidate the causes of variable cytotoxicity among cell lines. Methods Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells (PBMCs), were fused with carcinoma cells such as Panc-1, KP-1NL, QGP-1, and KP-3L. The induction of CTL and Tregs, and cytokine profile of PBMCs stimulated by fused DCs were evaluated. Results The cytotoxicity against tumor targets induced by PBMCs cocultured with DCs fused with QGP-1 (DC/QGP-1) was very low, even though PBMCs cocultured with DCs fused with other cell lines induced significant cytotoxicity against the respective tumor target. The factors causing this low cytotoxicity were subsequently investigated. DC/QGP-1 induced a significant expansion of Tregs in cocultured PBMCs compared with DC/KP-3L. The level of interleukin-10 secreted in the supernatants of PBMCs cocultured with DC/QGP-1 was increased significantly compared with that in DC/KP-3L. Downregulation of major histocompatibility complex class I expression and increased secretion of vascular endothelial growth factor were observed with QGP-1, as well as in the other cell lines. Conclusion The present study demonstrated that the cytotoxicity induced by DCs fused with pancreatic cancer cell lines was different between each cell line, and that the reduced cytotoxicity of DC/QGP-1 might be related to the increased secretion of interleukin-10 and the extensive induction of Tregs. PMID:23378772

  6. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field

    PubMed Central

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue. PMID:27594887

  7. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens.

    PubMed

    Namkung, H; Yu, H; Gong, J; Leeson, S

    2011-10-01

    The antimicrobial activities of n-butyric acid and its derivatives against Salmonella Typhimurium and Clostridium perfringens were studied. n-Butyric acid and its derivatives (monobutyrin and a mixture of mono-, di-, and tri-glycerides of butyric acid) were added at different concentrations (ranging from 250 to 7,000 mg/kg to a media inoculated with either Salmonella Typhimurium or C. perfringens. The antimicrobial activity of butyric acid against C. perfringens was measured at 2 bacterium concentrations and 2 inoculations involving ambient aerobic or anaerobic conditions. The most effective antimicrobial activity for Salmonella Typhimurium was observed with n-butyric acid, with 90% inhibition rate at a concentration of 1,500 mg/kg. Although minimal inhibition for Salmonella Typhimurium was observed with butyric acid glycerides, lipase addition to a mixture of mono-, di-, and triglycerides of butyric acid increased (P < 0.01) antimicrobial activity of these derivatives. Antimicrobial activity of butyric acid and its derivative against C. perfringens was higher when using a moderate initial inoculation concentration (10(5)) compared with a higher initial concentration (10(7)) of this bacterium. At a lower inoculation of C. perfringens (10(5)), >90% inhibition rate by all butyric acid glycerides was observed with prior aerobic inoculation at 2,000 mg/kg, whereas using anaerobic inoculation, only 50% monobutyrin maintained >90% inhibitory effect at 3,000 mg/kg. The antimicrobial effect of monobutyrin against C. perfringens was generally higher (P < 0.01) for 50% monobutyrin than for 100% monobutyrin. Either a mixture of butyric acid derivatives or 50% monobutyrin decreased (P < 0.01) C. perfringens in a media containing intestinal contents whereas only 50% monobutyrin decreased (P < 0.01) Salmonella Typhimurium within a media containing cecal contents from mature Leghorns. These results show that n-butyric acid and 50% monobutyrin could be used to control Salmonella

  8. Effects of dietary sodium butyrate on hepatic biotransformation and pharmacokinetics of erythromycin in chickens.

    PubMed

    Csikó, G; Nagy, G; Mátis, G; Neogrády, Z; Kulcsár, Á; Jerzsele, A; Szekér, K; Gálfi, P

    2014-08-01

    Butyrate, a commonly applied feed additive in poultry nutrition, can modify the expression of certain genes, including those encoding cytochrome P450 (CYP) enzymes. In comparative in vitro and in vivo experiments, the effect of butyrate on hepatic CYP genes was examined in primary cultures of chicken hepatocytes and in liver samples of chickens collected from animals that had been given butyrate as a feed additive. Moreover, the effect of butyrate on the biotransformation of erythromycin, a marker substance for the activity of enzymes of the CYP3A family, was investigated in vitro and in vivo. Butyrate increased the expression of the avian-specific CYP2H1 both in vitro and in vivo. In contrast, the avian CYP3A37 expression was decreased in hepatocytes following butyrate exposure, but not in the in vivo model. CYP1A was suppressed by butyrate in the in vitro experiments, and overexpressed in vivo in butyrate-fed animals. The concomitant incubation of hepatocytes with butyrate and erythromycin led to an increased CYP2H1 expression and a less pronounced inhibition of CYP3A37. In in vivo pharmacokinetic experiments, butyrate-fed animals given a single i.m. injection of erythromycin, a slower absorption phase (longer T(half-abs) and delayed T(max)) but a rapid elimination phase of this marker substrate was observed. Although these measurable differences were detected in the pharmacokinetics of erythromycin, it is unlikely that a concomitant application of sodium butyrate with erythromycin or other CYP substrates will cause clinically significant feed-drug interaction in chickens.

  9. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    PubMed

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  10. An Alteration in the Cecal Microbiota Composition by Feeding of 1-Kestose Results in a Marked Increase in the Cecal Butyrate Content in Rats

    PubMed Central

    Nakamura, Saki; Sugawa, Chie; Takahashi, Motoki; Endo, Akihito; Shimomura, Yoshiharu

    2016-01-01

    Functional food ingredients, including prebiotics, have been ardently developed for improving the intestinal environment. Fructooligosaccarides (FOS), including fructans, are the well researched and commercialized prebiotics. However, to our knowledge, few studies have been conducted on the physiological effects of each component of FOS as prebiotics. 1-Kestose, a component of FOS, is composed of one glucose and two fructose molecules, and is considered as a key prebiotic component in short-chain FOS. In the present study, we examined the effects of dietary 1-kestose using 0.5–5% 1-kestose diets on cecal microbiota composition and cecal contents of short-chain fatty acids and lactate in rats. The findings indicate that dietary 1-kestose induced cecal hypertrophy and alterations in the cecal microbiota composition, including a marked increase in the cell number of Bifidobacterium spp. These alterations were associated with significant increases in acetate and lactate, and a marked increase in butyrate in cecal contents. Furthermore, dietary 1-kestose induced a significant decrease in serum insulin concentration in rats fed 2.5–5% 1-kestose diet. These findings suggest a potential of 1-kestose to be a prebiotic for improving the metabolism of the host. PMID:27861621

  11. An Alteration in the Cecal Microbiota Composition by Feeding of 1-Kestose Results in a Marked Increase in the Cecal Butyrate Content in Rats.

    PubMed

    Tochio, Takumi; Kitaura, Yasuyuki; Nakamura, Saki; Sugawa, Chie; Takahashi, Motoki; Endo, Akihito; Shimomura, Yoshiharu

    2016-01-01

    Functional food ingredients, including prebiotics, have been ardently developed for improving the intestinal environment. Fructooligosaccarides (FOS), including fructans, are the well researched and commercialized prebiotics. However, to our knowledge, few studies have been conducted on the physiological effects of each component of FOS as prebiotics. 1-Kestose, a component of FOS, is composed of one glucose and two fructose molecules, and is considered as a key prebiotic component in short-chain FOS. In the present study, we examined the effects of dietary 1-kestose using 0.5-5% 1-kestose diets on cecal microbiota composition and cecal contents of short-chain fatty acids and lactate in rats. The findings indicate that dietary 1-kestose induced cecal hypertrophy and alterations in the cecal microbiota composition, including a marked increase in the cell number of Bifidobacterium spp. These alterations were associated with significant increases in acetate and lactate, and a marked increase in butyrate in cecal contents. Furthermore, dietary 1-kestose induced a significant decrease in serum insulin concentration in rats fed 2.5-5% 1-kestose diet. These findings suggest a potential of 1-kestose to be a prebiotic for improving the metabolism of the host.

  12. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  13. Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0176 TITLE: Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem Cells PRINCIPAL INVESTIGATOR...Prescribed by ANSI Std. Z39.18 July 2015 Annual 01-July 2014 -- 30 Jun 2015 Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem...induced pluripotent stem cells by Atoh1 induction can be efficiently transformed by MYC oncogene to form aggressive brain tumors that recapitulate human

  14. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  15. Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells

    PubMed Central

    1991-01-01

    To assess the role of different types of antigen-presenting cells (APC) in the induction of tolerance, we isolated B cells, macrophages, and dendritic cells from thymus and spleen, and injected these into neonatal BALB/c mice across an Mls-1 antigenic barrier. One week after injection of APC from Mls-1-incompatible mice or from control syngeneic mice, we measured the number of thymic, Mls-1a-reactive, V beta 6+ T cells and the capacity of thymocytes to induce a graft-vs.-host (GVH) reaction in popliteal lymph nodes of Mls-1a mice. Injection of thymic but not spleen B cells deleted thymic, Mls-1a-reactive V beta 6+ T cells and induced tolerance in the GVH assay. The thymic B cells were primarily of the CD5+ type, and fluorescence-activated cell sorter- purified CD5+ thymic B cells were active. Injection of dendritic cells from spleen or thymus also induced tolerance, but the V beta 6 cells were anergized rather than deleted. Macrophages from thymus did not induce tolerance. Dendritic cells and thymic B cells were also effective in inducing tolerance even when injected into Mls-, major histocompatibility complex-incompatible, I-E- mice, but only thymic B cells depleted V beta 6-expressing T cells. Therefore, different types of bone marrow-derived APC have different capacities for inducing tolerance, and the active cell types (dendritic cells and CD5+ thymic B cells) can act by distinct mechanisms. PMID:1900075

  16. Tris (1,3-dichloro-2-propyl) phosphate-induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells.

    PubMed

    Li, Ruiwen; Zhou, Peijiang; Guo, Yongyong; Lee, Jae-Seong; Zhou, Bingsheng

    2017-01-01

    Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP, also known as TDCPP), an extensively used flame retardant, is frequently detected in the environment and biota. Recent studies have shown that TDCIPP has neurotoxic effects. In this study, we determined the mechanisms of TDCIPP-induced neurotoxicity in human neuroblastoma (SH-SY5Y) cells. By using morphological examination, flow cytometry, and mitochondrial membrane potential (ΔYm) measurement, we confirmed that exposure to TDCIPP caused apoptosis accompanied by the activation of apoptosis-related genes (e.g. Bax and Bcl-2) and caspase 3 protein in SH-SY5Y cells. Increased reactive oxygen species (ROS) formation and intracellular calcium ions ([Ca(2+)]i) were also observed in TDCIPP-treated SH-SY5Y cells. Exposure to TDCIPP led to the activation of protein markers of endoplasmic reticulum (ER) stress, including eukaryotic translation initiation factor 2a subunit (p-EIF2a), activation transcription factor (ATF4), glucose-regulated protein (GRP78), and the proapoptotic factor C/EBP homologous protein (CHOP). To determine the role of the ER in apoptosis, phenyl butyric acid (PBA), an ER stress inhibitor, was applied. Treatment with PBA effectively attenuated TDCIPP-induced ER stress and protected against apoptotic death in SH-SY5Y cells by inhibition of Bax expression and promotion of Bcl-2 expression. Furthermore, we found that pretreatment of the cells with the ROS scavenger N-acetyl cysteine (NAC) inhibited the ER stress response and prevented apoptosis. The combination of PBA and NAC pretreatment could further prevent TDCIPP induced ER-stress and apoptotic death compared with PBA or NAC pretreatment alone. Thus, in the present study, we demonstrated that TDCIPP induces cytotoxicity through a ROS-dependent mechanism involving ER stress and activation of mitochondrial apoptotic pathways in SH-SY5Y cells.

  17. Efficient killing of radioresistant breast cancer cells by cytokine-induced killer cells.

    PubMed

    Guo, Qingming; Zhu, Danni; Bu, Xiaocui; Wei, Xiaofang; Li, Changyou; Gao, Daiqing; Wei, Xiaoqiang; Ma, Xuezhen; Zhao, Peng

    2017-03-01

    Recurrence of breast cancer after radiotherapy may be partly explained by the presence of radioresistant cells. Thus, it would be desirable to develop an effective therapy against radioresistant cells. In this study, we demonstrated the intense antitumor activity of cytokine-induced killer cells against MCF-7 and radioresistant MCF-7 cells, as revealed by cytokine-induced killer-mediated cytotoxicity, tumor cell proliferation, and tumor invasion. Radioresistant MCF-7 cells were more susceptible to cytokine-induced killer cell killing. The stronger cytotoxicity of cytokine-induced killer cells against radioresistant MCF-7 cells was dependent on the expression of major histocompatibility complex class I polypeptide-related sequence A/B on radioresistant MCF-7 cells after exposure of cytokine-induced killer cells to sensitized targets. In addition, we demonstrated that cytokine-induced killer cell treatment sensitized breast cancer cells to chemotherapy via the downregulation of TK1, TYMS, and MDR1. These results indicate that cytokine-induced killer cell treatment in combination with radiotherapy and/or chemotherapy may induce synergistic antitumor activities and represent a novel strategy for breast cancer.

  18. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    SciTech Connect

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  19. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2003-09-01

    We are using experimental infection with reoviruses to study how viruses induce cell death . (apoptosis), and the significance of apoptosis in the...pathogenesis of viral infection. We have developed one of the best-characterized experimental models for investigating and manipulating viral cell death pathways...We have shown that apoptosis is a major mechanism of reovirus-induced cell death in murine models of key human viral infections including

  20. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  1. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2012-07-01 2012-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  2. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2013-07-01 2013-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  3. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  4. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium sp. strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...

  5. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated Clostridium sp. strain RPT-4213 was found to produce butyrate under anaerobic conditions. Fermentations using Lactobacilli MRS Broth produced 9.47 g L-1 butyric acid from glucose (0.48 g/g glucose). However, the strain was not capable of utilizing five carbon sugars. To assess the a...

  6. Effect of Sodium Butyrate on Growth Performance and Response to Lipopolysaccharide in Weanling Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to determine the effects of dietary sodium butyrate on growth performance and response to E. coli. lipopolysaccharide (LPS) in weanling pigs. In the first 28 d experiment, 180 pigs (initial BW 6.3 kg) were fed 0, 0.05, 0.1, 0.2, and 0.4% sodium butyrate, or 110 mg/kg d...

  7. Interferon induces natural killer cell blastogenesis in vivo

    NASA Technical Reports Server (NTRS)

    Biron, C. A.; Sonnenfeld, G.; Welsh, R. M.

    1984-01-01

    Interferon (IFN), types beta and gamma, and IFN inducers polyinosinic-polycytidylic acid and lymphocytic choriomeningitis virus, all stimulated the generation of blast-natural killer (NK) cells in mouse spleens, Blast-NK cells were characterized on the basis of size, 3H-thymidine uptake, and NK cell markers These data indicate that in addition to augmenting NK cell-mediated lysis, IFN may regulate NK cell proliferation in vivo.

  8. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  9. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.

    PubMed

    Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon

    2016-10-01

    The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid.

  10. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    PubMed

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  11. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?

    PubMed

    Brahe, L K; Astrup, A; Larsen, L H

    2013-12-01

    It is increasingly recognized that there is a connection between diet, intestinal microbiota, intestinal barrier function and the low-grade inflammation that characterizes the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment relevant. In this context, the ability of some Gram-positive anaerobic bacteria to produce the short-chain fatty acid butyrate is interesting. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans, and recent studies suggest that butyrate might have an anti-inflammatory potential that can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Here, we review and discuss the potential of butyrate as an anti-inflammatory mediator in metabolic diseases, and the potential for dietary interventions increasing the intestinal availability of butyrate.

  12. Induced Pluripotent Stem Cells: Characteristics and Perspectives

    NASA Astrophysics Data System (ADS)

    Cantz, Tobias; Martin, Ulrich

    The induction of pluripotency in somatic cells is widely considered as a major breakthrough in regenerative medicine, because this approach provides the basis for individualized stem cell-based therapies. Moreover, with respect to cell transplantation and tissue engineering, expertise from bioengineering to transplantation medicine is now meeting basic research of stem cell biology.

  13. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  14. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  15. Mechanisms Involved in Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2001-09-01

    We are using experimental infection with reoviruses as a model to study how viruses induce cell death (apoptosis) and cause dysregulation of the cell...and their ligand (TRAIL). Apoptosis involves both death-receptor (DR) and mitochondrial-associated cell death pathways, and leads to the early

  16. Hexavalent chromium induces chromosome instability in human urothelial cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general.

  17. Ultraviolet Irradiation-Induced Volume Alteration of Corneal Epithelial Cells

    PubMed Central

    Wang, Ling; Lu, Luo

    2016-01-01

    Purpose The purpose of the study is to understand how extracellular stresses, such as ultraviolet (UV) irradiation, affect corneal epithelial cells. Cell volume changes, damage to corneal epithelial integrity, and cellular responses were assessed after exposure to UVC stresses. Methods Primary human and rabbit corneal epithelial cells were exposed to UVC light in culture conditions. Ultraviolet C irradiation–induced changes in cell size and volume were measured by real-time microscopy and self-quenching of the fluorescent dye calcein, respectively. The effects of UVC irradiation on Src and focal adhesion kinase (FAK) phosphorylation and FAK-dependent integrin signaling were detected by ELISA, immunoblotting, and immunostaining. Results Ultraviolet C irradiation induced both size and volume shifts in human and rabbit corneal epithelial cells. Ultraviolet C irradiation-induced decrease of cell volume elicited activation of Src and FAK, characterized by increased phosphorylations of SrcY416, FAKY397, and FAKY925. In addition, immunostaining studies showed UVC irradiation–induced increases in phosphorylation of FAK and formation of integrin β5 clustering. Application of Kv channel blockers, including 4-aminopyridine (4-AP), α-DTX, and depressing substance-1 (BDS-1), effectively suppressed UVC irradiation–induced cell volume changes, and subsequently inhibited UVC irradiation–induced phosphorylation of Src/FAK, and formation of integrin β5 clustering, suggesting UVC irradiation–induced volume changes and Src/FAK activation. Hyperosmotic pressure–induced volume decreases were measured in comparison with effects of UVC irradiation on volume and Src/FAK activation. However, Kv channel blocker, 4-AP, had no effect on hyperosmotic pressure–induced responses. Conclusions The present study demonstrates that UVC irradiation–induced decreases in cell volume lead to Src/FAK activation due to a rapid loss of K ions through membrane Kv channels. PMID:27978555

  18. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  19. Iron Modulates Butyrate Production by a Child Gut Microbiota In Vitro

    PubMed Central

    Dostal, Alexandra; Bircher, Lea; Pham, Van Thanh; Follador, Rainer; Zimmermann, Michael Bruce; Chassard, Christophe

    2015-01-01

    ABSTRACT The aim of this study was to investigate the effect of iron (Fe) availability on butyrate production in the complex bacterial ecosystem of the human gut. Hence, different Fe availabilities were mimicked in an in vitro colonic fermentation model (the polyfermenter intestinal model called PolyFermS) inoculated with immobilized gut microbiota from a child and in batch cultures of the butyrate producer Roseburia intestinalis. Shifts in the microbial community (16S rRNA sequencing and quantitative PCR), metabolic activity (high-performance liquid chromatography), and expression of genes involved in butyrate production were assessed. In the PolyFermS, moderate Fe deficiency resulted in a 1.4-fold increase in butyrate production and a 5-fold increase in butyryl-coenzyme A (CoA):acetate CoA-transferase gene expression, while very strong Fe deficiency significantly decreased butyrate concentrations and butyrate-producing bacteria compared with the results under normal Fe conditions. Batch cultures of R. intestinalis grown in a low-Fe environment preferentially produced lactate and had reduced butyrate and hydrogen production, in parallel with upregulation of the lactate dehydrogenase gene and downregulation of the pyruvate:ferredoxin-oxidoreductase gene. In contrast, under high-Fe conditions, R. intestinalis cultures showed enhanced butyrate and hydrogen production, along with increased expression of the corresponding genes, compared with the results under normal-Fe conditions. Our data reveal the strong regulatory effect of Fe on gut microbiota butyrate producers and on the concentrations of butyrate, which contributes to the maintenance of host gut health. PMID:26578675

  20. In vitro intestinal bioaccessibility of alkylglycerols versus triacylglycerols as vehicles of butyric acid.

    PubMed

    Martín, Diana; Morán-Valero, María I; Señoráns, Francisco J; Reglero, Guillermo; Torres, Carlos F

    2011-03-01

    Butyric acid has been the subject of much attention last years due to its bioactivity. However, the potential advantages of butyrate are limited by the problem to reach enough plasma concentrations; therefore, pro-drugs have been proposed as an alternative to natural butyrate. A comparative study on in vitro intestinal digestion of 2,3-dibutyroil-1-O-octadecyl glycerol (D-SCAKG) and tributyrin (TB), as potential pro-drugs of butyric acid, was performed. Aliquots were taken at different times of digestion for studying the extent and rate of hydrolysis of both substrates. The micellar phase (MP) and oily phase (OP) formed in the digestion media were separated and their composition in lipid products was analyzed. Initially, it was confirmed that the in vitro model reproduced physiological results by testing against olive oil as a standard lipid. The progress of in vitro intestinal digestion of D-SCAKG was slower than that of TB. TB hydrolyzed completely to butyric acid, whereas D-SCAKG mainly yielded 2-butyroil-1-O-octadecyl glycerol (M-SCAKG), followed by butyric acid and 1-O-octadecyl glycerol (AKG). The MP from both substrates mainly consisted of butyric acid. Minor levels of M-SCAKG and AKG were also found in the MP after hydrolysis of D-SCAKG, the M-SCAKG being mainly distributed in the OP. Therefore, D-SCAKG produced a stable form of esterified butyric acid as M-SCAKG after in vitro intestinal digestion, unlike TB. Additionally, such a product would integrate both bioactive compounds, butyric acid and alkylglycerol, within the same molecule. Free butyric acid and AKG would be also released, which are lipid products of interest as well.

  1. Gas-permeable cellulose acetate butyrate (CAB) contact lenses.

    PubMed

    Hales, R H

    1977-09-01

    Gas-permeable cellulose acetate butyrate (CAB) contact lenses may often be worn succesfully by aphakic and other patients who are unable to wear hard contact lenses. The comfort characteristics of the CAB lenses are betweeen those of hard and soft contact lenses. They are much more permeable to O2 and CO2 than soft lenses and thus are less apt to cause edema. They are more flexible and more wettable than hard lenses. This study presents 50 patients who, having had to discontinue wearing hard contact lenses because of discomfort, diffuse central corneal edema, or visual problems, were fitted with CAB contact lenses. Thirty of the fifty were able to wear the CAB lenses successfully.

  2. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  3. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    PubMed Central

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957

  4. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  5. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

  6. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    PubMed

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  7. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells

    PubMed Central

    Biswas, Dhruba; Jiang, Peng

    2016-01-01

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming. PMID:26861316

  8. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production.

    PubMed

    Seo, Seung-Oh; Wang, Yi; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2017-01-01

    Spo0A is a master regulator that governs the metabolic shift of solventogenic Clostridium species such as Clostridium beijerinckii. Its disruption can thus potentially cause a significant alteration of cellular physiology as well as metabolic patterns. To investigate the specific effect of spo0A disruption in C. beijerinckii, a spo0A mutant of C. beijerinckii was characterized in this study. In a batch fermentation with pH control at 6.5, the spo0A mutant accumulated butyrate and butanol up to 8.96 g/L and 3.32 g/L, respectively from 60 g/L glucose. Noticing the unique phenotype of the spo0A mutant accumulating both butyrate and butanol at significant concentrations, we decided to use the spo0A mutant for the production of butyl butyrate that can be formed by the condensation of butyrate and butanol during the ABE fermentation in the presence of the enzyme lipase. Butyl butyrate is a value-added chemical that has numerous uses in the food and fragrance industry. Moreover, butyl butyrate as a biofuel is compatible with Jet A-1 aviation kerosene and used for biodiesel enrichment. In an initial trial of small-scale extractive batch fermentation using hexadecane as the extractant with supplementation of lipase CalB, the spo0A mutant was subjected to acid crash due to the butyrate accumulation, and thus produced only 98 mg/L butyl butyrate. To alleviate the butyrate toxicity, the biphasic medium was supplemented with 10 g/L CaCO3 and 5 g/L butanol. The butyl butyrate production was then increased up to 2.73 g/L in the hexadecane layer. When continuous agitation was performed to enhance the esterification and extraction of butyl butyrate, 3.32 g/L butyl butyrate was obtained in the hexadecane layer. In this study, we successfully demonstrated the use of the C. beijerinckii spo0A mutant for the butyl butyrate production through the simultaneous ABE fermentation, condensation, and extraction. Biotechnol. Bioeng. 2017;114: 106-112. © 2016 Wiley Periodicals

  9. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    PubMed

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  10. Induced pluripotent stem cells in hematology: current and future applications

    PubMed Central

    Focosi, D; Amabile, G; Di Ruscio, A; Quaranta, P; Tenen, D G; Pistello, M

    2014-01-01

    Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation. PMID:24813079

  11. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  12. Chemically induced bidirectional differentiation of embryonal carcinoma cells in vitro.

    PubMed Central

    Speers, W. C.; Birdwell, C. R.; Dixon, F. J.

    1979-01-01

    N,N-dimethylacetamide, hexamethylene bisacetamide, and Polybrene induced rapid and extensive differentiation in vitro in an otherwise slowly differentiating subline of embryonal carcinoma cells. The type of differentiated cell induced was dependent on the spatial organization of the stem cells during drug treatment. In monalayer culture "epithelial" cells were produced exclusively. However, treatment of aggregated suspension cultures yielded predominantly "fibroblast-like" cells. The undifferentiated embryonal carcinoma cells and the two differentiated cell types were morphologically distinct when examined by light microscopy, scanning electron microscopy, and transmission electron microscopy; and they had differences in cell surface antigens. Both differential cell types produced large amounts of fibronectin, whereas the embryonal carcinoma cells produced only minimal amounts. This system provides a convenient way to induce relatively synchronous differentiation of embryonal carcinoma cells into specific differentiated cell types. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:507191

  13. Glucotoxic conditions induce endoplasmic reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic β-cells: protection by nifedipine.

    PubMed

    Syeda, Khadija; Mohammed, Abiy M; Arora, Daleep K; Kowluru, Anjaneyulu

    2013-11-01

    Nuclear lamins form the lamina on the interior of the nuclear envelope, and are involved in the regulation of various cellular processes, including DNA replication and chromatin organization. Despite this evidence, little is known about potential alterations in nuclear metabolism, specifically lamin structure and integrity in isolated β-cells subjected to stress conditions, including chronic exposure to hyperglycemia (i.e., glucotoxicity). Herein, we investigated effects of glucotoxic conditions on the catalytic activation of caspase 3 and the associated degradation of one of its substrate proteins, namely lamin-B. We report that incubation of insulin-secreting INS-1 832/13 cells, normal rat islets or human islets under glucotoxic conditions (20 mM; 12-48 h) results in the degradation of native lamin B leading to accumulation of the degraded products in non-relevant cellular compartments, including cytosol. Moreover, the effects of high glucose on caspase 3 activation and lamin B degradation were mimicked by thapsigargin, a known inducer of endoplasmic reticulum stress (ER stress). Nifedipine, a known blocker of calcium channel activation, inhibited high glucose-induced caspase 3 activation and lamin B degradation in these cells. 4-Phenyl butyric acid, a known inhibitor of ER stress, markedly attenuated glucose-induced CHOP expression (ER stress marker), caspase 3 activation and lamin B degradation. We conclude that glucotoxic conditions promote caspase 3 activation and lamin B degradation, which may, in part, be due to increased ER stress under these conditions. We also provide further evidence to support beneficial effects of calcium channel blockers against metabolic dysfunction of the islet β-cell induced by hyperglycemic conditions.

  14. Glucotoxic conditions induce endoplasmic reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic β-cells: Protection by nifedipine

    PubMed Central

    Syeda, Khadija; Mohammed, Abiy M.; Arora, Daleep K.; Kowluru, Anjaneyulu

    2013-01-01

    Nuclear lamins form the lamina on the interior of the nuclear envelope, and are involved in the regulation of various cellular processes, including DNA replication and chromatin organization. Despite this evidence, little is known about potential alterations in nuclear metabolism, specifically lamin structure and integrity in isolated β-cells subjected to stress conditions, including chronic exposure to hyperglycemia [i.e., glucotoxicity]. Herein, we investigated effects of glucotoxic conditions on the catalytic activation of caspase 3 and the associated degradation of one of its substrate proteins, namely lamin-B. We report that incubation of insulin-secreting INS-1 832/13 cells, normal rat islets or human islets under glucotoxic conditions [20 mM; 12–48 hr] results in the degradation of native lamin B leading to accumulation of the degraded products in non-relevant cellular compartments, including cytosol. Moreover, the effects of high glucose on caspase 3 activation and lamin B degradation were mimicked by thapsigargin, a known inducer of endoplasmic reticulum stress [ER stress]. Nifedipine, a known blocker of calcium channel activation, inhibited high glucose-induced caspase 3 activation and lamin B degradation in these cells. 4-phenyl butyric acid, a known inhibitor of ER stress, markedly attenuated glucose-induced CHOP expression [ER stress marker], caspase 3 activation and lamin B degradation. We conclude that glucotoxic conditions promote caspase 3 activation and lamin B degradation, which may, in part, be due to increased ER stress under these conditions. We also provide further evidence to support beneficial effects of calcium channel blockers against metabolic dysfunction of the islet β-cell induced by hyperglycemic conditions. PMID:23994168

  15. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease.

    PubMed

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G

    2014-12-12

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.

  16. Suppression of T cell-induced osteoclast formation

    SciTech Connect

    Karieb, Sahar; Fox, Simon W.

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  17. Butyrate Protects Rat Liver against Total Hepatic Ischemia Reperfusion Injury with Bowel Congestion

    PubMed Central

    Wang, Qingbao; Wang, Fangrui; Ma, Zhenyu; Qiao, Yingli

    2014-01-01

    Hepatic ischemia/reperfusion (I/R) injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation. PMID:25171217

  18. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  19. Substrate Induced Osteoblast-Like Differentiation of Stromal Stem Cells

    NASA Astrophysics Data System (ADS)

    Belizar, Jacqueline; Glaser, Reena; Hung, Matthew; Simon, Marcia; Jurukovski, Vladimir; Rafailovich, Miriam; Shih, Alice

    2009-03-01

    We have demonstrated that Adipose-derived stem cells (ASCs) can be induced to biomineralize on a polybutadiene (PB) coated Si substrate. The cells began to generate calcium phosphate deposits after a five-day incubation period in the absence of dexamethasone. Control cells plated on tissue culture PS culture dish (TCP) did not biomineralize. In addition, the biomineralizing culture retained proliferative cells In order to determine whether the induction was transient, we transferred the cells exposed to polybutadiene after 14 and 28-day incubation periods to TCP dishes. These cells continued to biominerlize. Genetic testing is underway which will determine whether differentiation is maintained after transfer.

  20. Activation-induced CD154 expression abrogates tolerance induced by apoptotic cells*

    PubMed Central

    Gurung, Prajwal; Kucaba, Tamara A.; Ferguson, Thomas A.; Griffith, Thomas S.

    2009-01-01

    The decision to generate a productive immune response or tolerance often depends on the context in which T cells first see Ag. Using a classical system of tolerance induction, we examined the immunological consequence of Ag encountered in the presence of naïve or activated apoptotic cells. Naïve apoptotic cells induced tolerance when injected i.v.; however, previously activated apoptotic cells induced immunity. Further analysis revealed a key role for CD154, as tolerance resulted after i.v. injection of either naïve or activated apoptotic CD154−/− T cells, while co-injection of an agonistic anti-CD40 mAb with naïve apoptotic T cells induced robust immunity. DC fed activated apoptotic T cells in vitro produced IL-12p40 in a CD154-dependent manner, and the use of IL-12p40−/− mice or mAb-mediated neutralization of IL-12 revealed a link between CD154, IL-12, and the ability of activated apoptotic T cells to induce immunity rather than tolerance. Collectively these results show that CD154 expression on apoptotic T cells can determine the outcome of an immune response to Ag recognized within the context of the apoptotic cells, and suggest the balance between naïve and activated apoptotic T cells may dictate whether a productive immune response is encouraged. PMID:19841180

  1. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides

    PubMed Central

    Yin, Fugui; Yu, Hai; Lepp, Dion; Shi, Xuejiang; Yang, Xiaojian; Hu, Jielun; Leeson, Steve; Yang, Chengbo; Nie, Shaoping; Hou, Yongqing; Gong, Joshua

    2016-01-01

    Background & Aims Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. Methodology/Principal Findings Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis

  2. Inducible expression of endomorphins in murine dendritic cells.

    PubMed

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  3. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  4. Sodium butyrate mitigates in vitro ammonia generation in cecal content of laying hens.

    PubMed

    Wang, Anping; Wang, Yan; Di Liao, Xin; Wu, Yinbao; Liang, Juan Boo; Laudadio, Vito; Tufarelli, Vincenzo

    2016-08-01

    One of the environmental challenges that modern poultry industry faced is odor pollution caused by ammonia emission. The objectives of the study were to determine the effect of sodium butyrate on the production of ammonia in the cecal contents of laying hens using in vitro gas production study and to elucidate the mechanism behind it. The study consisted of a control (without sodium butyrate), and three experimental groups added with 10, 15, and 20 mg of sodium butyrate, respectively. Results showed that ammonia production in headspace of the syringe decreased by 8.2, 23, and 23 %, respectively, while ammonium production from the fermentation broth decreased by 6.3, 14.4, and 13.7 %, respectively. Sodium butyrate had no significant effect on the contents of uric acid and urea, nitrate-N, or total N in all treatments. However, sodium butyrate decreased the urease and uricase activities (P < 0.05) in the fermentation broth. Sodium butyrate also altered volatile fatty acids profile of the fermentation broth by decreasing the production of isovalerate (P < 0.05) and increasing those of acetate, butyrate, and isobutyrate (P < 0.05). The MiSeq System Sequencing results showed that sodium butyrate increased the relative abundance of Bacteroides and Faecalibacterium (P < 0.05) and decreased the relative abundance of Desulfovibrio, Helicobacter, and Campylobacter (P < 0.05).Our results concluded that sodium butyrate changes the diversity and relative abundance of the microbes which altered the fermentation characteristics leading to reduction in ammonia production.

  5. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    PubMed Central

    Liu, D; Pearlman, E; Diaconu, E; Guo, K; Mori, H; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the "molecular saboteurs" to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755562

  6. Turkish propolis supresses MCF-7 cell death induced by homocysteine.

    PubMed

    Tartik, Musa; Darendelioglu, Ekrem; Aykutoglu, Gurkan; Baydas, Giyasettin

    2016-08-01

    Elevated plasma homocysteine (Hcy) level is a most important risk factor for various vascular diseases including coronary, cerebral and peripheral arterial and venous thrombosis. Propolis is produced by honeybee from various oils, pollens and wax materials. Therefore, it has various biological properties including antioxidant, antitumor and antimicrobial activities. This study investigated the effects of propolis and Hcy on apoptosis in cancer cells. According to our findings, Hcy induced apoptosis in human breast adenocarcinoma (MCF-7) cells by regulating numerous genes and proteins involved in the apoptotic signal transduction pathway. In contrast, treatment with propolis inhibited caspase- 3 and -9 induced by Hcy in MCF-7 cells. It can be concluded that Hcy may augment the activity of anticancer agents that induce excessive reactive oxygen species (ROS) generation and apoptosis in their target cells. In contrast to the previous studies herein we found that propolis in low doses protected cancer cells inhibiting cellular apoptosis mediated by intracellular ROS-dependent mitochondrial pathway.

  7. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  8. Caffeine augments Alprazolam induced cytotoxicity in human cell lines.

    PubMed

    Saha, Biswarup; Mukherjee, Ananda; Samanta, Saheli; Saha, Piyali; Ghosh, Anup Kumar; Santra, Chitta Ranjan; Karmakar, Parimal

    2009-09-01

    Combined effects of alprazolam (Alp), a member of benzodiazepine group of drugs and caffeine on human cell lines, HeLa and THP1 were investigated in this study. Alp mediated cytotoxicity was enhanced while caffeine was present. The cell death was confirmed by observing morphological changes, LDH assay and membrane anisotropic study. Also such combined effects induced elevated level of ROS and depletion of GSH. The mechanism of cell death induced by simultaneous treatment of Alp and caffeine was associated with the calcium-mediated activation of mu-calpain, release of lysosomal protease cathepsin B, activation of PARP and cleavage of caspase 3. Our results indicate that, Alp alone induces apoptosis in human cells but in the presence of caffeine it augments necrosis in a well-regulated pathway. Thus our observations strongly suggest that, alprazolam and caffeine together produce severe cytotoxicity in human cell lines.

  9. Simulating cell apoptosis induced sinus node dysfunction.

    PubMed

    Kharche, Sanjay; Beling, John; Biktasheva, Irina V; Zhang, Henggui; Biktashev, Vadim N

    2013-01-01

    Sinus node dysfunction (SND) is correlated to the pacemaker sinoatrial node (SAN) cell apoptosis. This study explores the effect of such a dysfunctional SAN on electrical propagation into neighboring atrial tissue. The Fenton Karma model was extended to simulate mouse SAN and atrial cell action potentials. The cell models were incorporated into a 2D model consisting of a central SAN region surrounded by atrial tissue. The intercellular gap junctional coupling, as quantified by the diffusion constant, was estimated to give conduction speeds as observed in mouse atrial tissue. The size of mouse SAN pacemaking region was estimated using the 2D model. In multiple simulations, the effects of an increasing proportion of apoptotic pacemaker cells on atrial tissue pacing were simulated and quantified. The SAN size that gave a basal mouse atrial cycle length (ACL) of 295 ms was found to be 0.6 mm in radius. At low pacemaker cell apoptosis proportion, there was a drastic increase of ACL. At modest increase in the number of apoptotic cells, bradycardia was observed. The incidence of sinus arrest was also found to be high. When the number of apoptotic cells were 10% of the total number of pacemaking cells, all pacemaking was arrested. Phenomenological models have been developed to study mouse atrial electrophysiology and confirm experimental findings. The results show the significance of cell apoptosis as a major mechanism of SND.

  10. An inducible caspase 9 safety switch can halt cell therapy-induced autoimmune disease.

    PubMed

    de Witte, Moniek A; Jorritsma, Annelies; Swart, Erwin; Straathof, Karin C; de Punder, Karin; Haanen, John B A G; Rooney, Cliona M; Schumacher, Ton N M

    2008-05-01

    Transfer of either allogeneic or genetically modified T cells as a therapy for malignancies can be accompanied by T cell-mediated tissue destruction. The introduction of an efficient "safety switch" can potentially be used to control the survival of adoptively transferred cell populations and as such reduce the risk of severe graft-vs-host disease. In this study, we have tested the value of an inducible caspase 9-based safety switch to halt an ongoing immune attack in a murine model for cell therapy-induced type I diabetes. The data obtained in this model indicate that self-reactive T cells expressing this conditional safety switch show unimpaired lymphopenia- and vaccine-induced proliferation and effector function in vivo, but can be specifically and rapidly eliminated upon triggering. These data provide strong support for the evaluation of this conditional safety switch in clinical trials of adoptive cell therapy.

  11. NETRIN-4 protects glioblastoma cells FROM temozolomide induced senescence.

    PubMed

    Li, Li; Hu, Yizhou; Ylivinkka, Irene; Li, Huini; Chen, Ping; Keski-Oja, Jorma; Hyytiäinen, Marko

    2013-01-01

    Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ) prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT) and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4) and integrin beta-4 (ITGB4), which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.

  12. Chlorpyrifos induces endoplasmic reticulum stress in JEG-3 cells.

    PubMed

    Reyna, Luciana; Flores-Martín, Jésica; Ridano, Magali E; Panzetta-Dutari, Graciela M; Genti-Raimondi, Susana

    2017-04-01

    Chlorpyrifos (CPF) is an organophosphorous pesticide widely used in agricultural, industrial, and household applications. We have previously shown that JEG-3 cells are able to attenuate the oxidative stress induced by CPF through the adaptive activation of the Nrf2/ARE pathway. Considering that there is a relationship between oxidative stress and endoplasmic reticulum stress (ER), herein we investigated whether CPF also induces ER stress in JEG-3 cells. Cells were exposed to 50μM or 100μM CPF during 24h in conditions where cell viability was not altered. Western blot and PCR assays were used to explore the protein and mRNA levels of ER stress biomarkers, respectively. CPF induced an increase of the typical ER stress-related proteins, such as GRP78/BiP and IRE1α, a sensor for the unfolded protein response, as well as in phospho-eIF2α and XBP1 mRNA splicing. Additionally, CPF led to a decrease in p53 protein expression. The downregulation of p53 levels induced by CPF was partially blocked when cells were exposed to CPF in the presence of the proteasome inhibitor MG132. Altogether, these findings point out that CPF induces ER stress in JEG-3 cells; however these cells are able to attenuate it downregulating the levels of the pro-apoptotic protein p53.

  13. PDT-apoptotic tumor cells induce macrophage immune response

    NASA Astrophysics Data System (ADS)

    Zhou, Fei-fan; Xing, Da; Chen, Wei R.

    2008-02-01

    Photodynamic therapy (PDT) functions as a cancer therapy through two major cell death mechanisms: apoptosis and necrosis. Immunological responses induced by PDT has been mainly associated with necrosis while apoptosis associated immune responses have not fully investigated. Heat shock proteins (HSPs) play an important role in regulating immune responses. In present study, we studied whether apoptotic tumor cells could induce immune response and how the HSP70 regulates immune response. The endocytosis of tumor cells by the activated macrophages was observed at single cell level by LSM. The TNF-α release of macrophages induced by co-incubated with PDT-apoptotic tumor cells was detected by ELISA. We found that apoptotic tumor cells treated by PDT could activate the macrophages, and the immune effect decreased evidently when HSP70 was blocked. These findings not only show that apoptosis can induce immunological responses, but also show HSP70 may serves as a danger signal for immune cells and induce immune responses to regulate the efficacy of PDT.

  14. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells.

    PubMed

    Ordoñez, Raquel; Fernández, Anna; Prieto-Domínguez, Néstor; Martínez, Laura; García-Ruiz, Carmen; Fernández-Checa, José C; Mauriz, José L; González-Gallego, Javier

    2015-09-01

    Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mm) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin-1 expression, p62 degradation, and LC3II and LAMP-2 colocalization, which translated in decreased cell viability. Moreover, ATG5 silencing sensitized HepG2 cells to melatonin-induced apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyltransferase (SPT) inhibition with myriocin prevented melatonin-induced autophagy and ASMase inhibition with imipramine-impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin, while SPT inhibition significantly enhanced cell death. Findings suggest a crosstalk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerges as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells.

  15. Rational design of efficient modular cells.

    PubMed

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  16. Comparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens

    PubMed Central

    Anand, Swadha; Kaur, Harrisham; Mande, Sharmila S.

    2016-01-01

    Biosynthesis of butyrate by commensal bacteria plays a crucial role in maintenance of human gut health while dysbiosis in gut microbiome has been linked to several enteric disorders. Contrastingly, butyrate shows cytotoxic effects in patients with oral diseases like periodontal infections and oral cancer. In addition to these host associations, few syntrophic bacteria couple butyrate degradation with sulfate reduction and methane production. Thus, it becomes imperative to understand the distribution of butyrate metabolism pathways and delineate differences in substrate utilization between pathogens and commensals. The bacteria utilize four pathways for butyrate production with different initial substrates (Pyruvate, 4-aminobutyrate, Glutarate and Lysine) which follow a polyphyletic distribution. A comprehensive mining of complete/draft bacterial genomes indicated conserved juxtaposed genomic arrangement in all these pathways. This gene context information was utilized for an accurate annotation of butyrate production pathways in bacterial genomes. Interestingly, our analysis showed that inspite of a beneficial impact of butyrate in gut, not only commensals, but a few gut pathogens also possess butyrogenic pathways. The results further illustrated that all the gut commensal bacteria (Faecalibacterium, Roseburia, Butyrivibrio, and commensal species of Clostridia etc) ferment pyruvate for butyrate production. On the contrary, the butyrogenic gut pathogen Fusobacterium utilizes different amino acid metabolism pathways like those for Glutamate (4-aminobutyrate and Glutarate) and Lysine for butyrogenesis which leads to a concomitant release of harmful by-products like ammonia in the process. The findings in this study indicate that commensals and pathogens in gut have divergently evolved to produce butyrate using distinct pathways. No such evolutionary selection was observed in oral pathogens (Porphyromonas and Filifactor) which showed presence of pyruvate as well as

  17. Induction of anergy in Th1 cells associated with increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1.

    PubMed

    Jackson, S K; DeLoose, A; Gilbert, K M

    2001-01-15

    Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.

  18. Matrine induces RIP3-dependent necroptosis in cholangiocarcinoma cells

    PubMed Central

    Xu, Beibei; Xu, Minying; Tian, Yuan; Yu, Qiang; Zhao, Yujie; Chen, Xiong; Mi, Panying; Cao, Hanwei; Zhang, Bing; Song, Gang; Zhan, Yan-yan; Hu, Tianhui

    2017-01-01

    The development of acquired resistance to pro-apoptotic antitumor agents is a major impediment to the cure of cholangiocarcinoma (CCA). Antitumor drugs inducing non-apoptotic cell death are considered as a new approach to overcome such drug resistance. Here, we reported for the first time that matrine-induced necroptosis in CCA cell lines, differing from its classical role to induce apoptosis in many other kinds of cancer cells. CCA cells under matrine treatment exhibited typical necrosis-like but not apoptotic morphologic change. These matrine-induced morphologic change and cell death in CCA cells were greatly attenuated by necroptosis inhibitor necrostatin-1, but not apoptosis inhibitor z-VAD-fmk. Unlike many cancer cells with negative receptor-interacting protein 3 (RIP3) expression, moderate expression of RIP3 in CCA cells was observed and was required for matrine to induce necroptosis, which was switched to apoptosis after knocking down endogenous RIP3. Moreover, matrine could increase RIP3 expression level, which may facilitate the necroptosis process. Translocation of mixed lineage kinase-domain like (MLKL) from cytoplasm to plasma membrane as a downstream event of RIP3, as well as the increased production of reactive oxygen species (ROS) by RIP3/MLKL, was critical for matrine to induce necroptosis. In clinical study, we found RIP3 was lower but still moderately expressed in most CCA tissue samples compared with adjacent normal tissues. Taken together, we identified matrine as a necroptosis inducer in CCA by enhancing RIP3 expression and the following RIP3/MLKL/ROS signaling pathway, which provided new individualized strategies based on RIP3 expression to overcome chemoresistance in CCA therapy. PMID:28179994

  19. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    PubMed

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016.

  20. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  1. Generation of induced pluripotent stem cells from the pig

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The value of stem cells has become increasingly evident in recent years with the advent of genetic engineering tools that allow site-specific modifications to the genome. The use of stem cells to induce modifications has several potential benefits for the livestock industry including improving anim...

  2. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  3. Light induced drug delivery into cancer cells.

    PubMed

    Shamay, Yosi; Adar, Lily; Ashkenasy, Gonen; David, Ayelet

    2011-02-01

    Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.

  4. Resveratrol-induced autophagocytosis in ovarian cancer cells.

    PubMed

    Opipari, Anthony W; Tan, Lijun; Boitano, Anthony E; Sorenson, Dorothy R; Aurora, Anjili; Liu, J Rebecca

    2004-01-15

    Resveratrol (3,5,4-trihydroxystilbene), a natural phytoalexin present in grapes, nuts, and red wine, has antineoplastic activities. Several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo. In the present study, the response of ovarian cancer cells to resveratrol is explored. Resveratrol inhibited growth and induced death in a panel of five human ovarian carcinoma cell lines. The response was associated with mitochondrial release of cytochrome c, formation of the apoptosome complex, and caspase activation. Surprisingly, even with these molecular features of apoptosis, analysis of resveratrol-treated cells by light and electron microscopy revealed morphology and ultrastructural changes indicative of autophagocytic, rather than apoptotic, death. This suggests that resveratrol can induce cell death through two distinct pathways. Consistent with resveratrol's ability to kill cells via nonapoptotic processes, cells transfected to express high levels of the antiapoptotic proteins Bcl-x(L) and Bcl-2 are equally sensitive as control cells to resveratrol. Together, these findings show that resveratrol induces cell death in ovarian cancer cells through a mechanism distinct from apoptosis, therefore suggesting that it may provide leverage to treat ovarian cancer that is chemoresistant on the basis of ineffective apoptosis.

  5. Octylphenol induces vitellogenin production and cell death in fish hepatocytes

    SciTech Connect

    Toomey, B.H.; Monteverdi, G.H.; Di Giulio, R.T.

    1999-04-01

    The effects of octylphenol (OP) on vitellogenin production and cell death in hepatocytes from brown bullhead catfish (Americurus nebulosus) were studied. Production of vitellogenin was induced in hepatocytes exposed to 10 to 50 {micro}M OP, whereas a higher concentration of OP (100 {micro}M) induced apoptotic cell death. By 3 h after the addition of 100 {micro}M OP, dying cells showed chromatin condensation and DNA fragmentation as determined by fluorescence microscopy and gel electrophoresis. Later stages of cell death (nuclear membrane breakdown and cell fragmentation into apoptotic bodies) were identified in cells exposed to OP for at least 6 h. Hepatocytes exposed to 100 {micro}M OP also produced less vitellogenin than cells exposed to 50 {micro}M OP. An estrogen receptor antagonist, tamoxifen, greatly decreased vitellogenin production in OP-exposed hepatocytes from male fish but did not decrease cell death in these cells. Thus, although the ability of OP to induce vitellogenin production is likely mediated through interactions with the estrogen receptor, the induction of apoptotic cell death by OP does not appear to be dependent on its estrogenic activity but may be a more general toxic effect.

  6. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

    PubMed Central

    Seo, Kyuhwa; Ki, Sung Hwan

    2014-01-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  7. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death

    PubMed Central

    Kim, Hyun-Ji

    2016-01-01

    Paclitaxel was isolated from the bark of the Pacific yew, Taxus brevifolia, and used as an anticancer agent. Paclitaxel prevents cancer cell division by inhibiting spindle fiber function, inducing cell death. A recent study demonstrated that paclitaxel binds to myeloid differentiation protein-2 of Toll-like receptor 4 and prevents the signal transduction of lipopolysaccharide (LPS). Paclitaxel converts immune cells hypo-responsive to LPS. In this study, we investigated whether paclitaxel can inhibit the phenotype and function of immune cells. To accomplish this, we used spleen cells, a major type of immune cell, LPS, a representative inflammatory agent and a mitogen for B lymphocytes. LPS profoundly increased the activation and cytokine production of spleen cells. However, paclitaxel significantly inhibited LPS-induced hyper-activation of spleen cells. Furthermore, we found that paclitaxel induced cell death of LPS-treated spleen cells. These results suggest that paclitaxel can inhibit the hyper-immune response of LPS in spleen cells via a variety of mechanisms. These findings suggest that paclitaxel can be used as a modulating agent for diseases induced by hyper-activation of B lymphocytes. Taken together, these results demonstrate that paclitaxel inhibits the function of spleen cells activated by LPS, and further induces cell death. PMID:27030196

  8. A minimum number of autoimmune T cells to induce autoimmunity?

    PubMed

    Bosch, Angela J T; Bolinger, Beatrice; Keck, Simone; Stepanek, Ondrej; Ozga, Aleksandra J; Galati-Fournier, Virginie; Stein, Jens V; Palmer, Ed

    2017-03-12

    While autoimmune T cells are present in most individuals, only a minority of the population suffers from an autoimmune disease. To better appreciate the limits of T cell tolerance, we carried out experiments to determine how many autoimmune T cells are required to initiate an experimental autoimmune disease. Variable numbers of autoimmune OT-I T cells were transferred into RIP-OVA mice, which were injected with antigen-loaded DCs in a single footpad; this restricted T cell priming to a few OT-I T cells that are present in the draining popliteal lymph node. Using selective plane illumination microscopy (SPIM) we counted the number of OT-I T cells present in the popliteal lymph node at the time of priming. Analysis of our data suggests that a single autoimmune T cell cannot induce an experimental autoimmune disease, but a "quorum" of 2-5 autoimmune T cells clearly has this capacity.

  9. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells.

    PubMed

    Tian, Zuojun; Guo, Fuzheng; Biswas, Sangita; Deng, Wenbin

    2016-04-20

    Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.

  10. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells

    PubMed Central

    Tian, Zuojun; Guo, Fuzheng; Biswas, Sangita; Deng, Wenbin

    2016-01-01

    Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs. PMID:27104529

  11. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    SciTech Connect

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  12. Induced Accelerated Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease

    DTIC Science & Technology

    2014-07-01

    Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease PRINCIPAL INVESTIGATOR: Dr. Birgitt Schuele CONTRACTING...contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision...Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease 5b. GRANT NUMBER W81XWH-12-1-0003 5c. PROGRAM ELEMENT NUMBER

  13. Resveratrol induces cell death and inhibits human herpesvirus 8 replication in primary effusion lymphoma cells.

    PubMed

    Tang, Feng-Yi; Chen, Chang-Yu; Shyu, Huey-Wen; Hong, Shin; Chen, Hung-Ming; Chiou, Yee-Hsuan; Lin, Kuan-Hua; Chou, Miao-Chen; Wang, Lin-Yu; Wang, Yi-Fen

    2015-12-05

    Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been reported to inhibit proliferation of various cancer cells. However, the effects of resveratrol on the human herpesvirus 8 (HHV8) harboring primary effusion lymphoma (PEL) cells remains unclear. The anti-proliferation effects and possible mechanisms of resveratrol in the HHV8 harboring PEL cells were examined in this study. Results showed that resveratrol induced caspase-3 activation and the formation of acidic vacuoles in the HHV8 harboring PEL cells, indicating resveratrol treatment could cause apoptosis and autophagy in PEL cells. In addition, resveratrol treatment increased ROS generation but did not lead to HHV8 reactivation. ROS scavenger (N-acetyl cysteine, NAC) could attenuate both the resveratrol induced caspase-3 activity and the formation of acidic vacuoles, but failed to attenuate resveratrol induced PEL cell death. Caspase inhibitor, autophagy inhibitors and necroptosis inhibitor could not block resveratrol induced PEL cell death. Moreover, resveratrol disrupted HHV8 latent infection, inhibited HHV8 lytic gene expression and decreased virus progeny production. Overexpression of HHV8-encoded viral FLICE inhibitory protein (vFLIP) could partially block resveratrol induced cell death in PEL cells. These data suggest that resveratrol-induced cell death in PEL cells may be mediated by disruption of HHV8 replication. Resveratrol may be a potential anti-HHV8 drug and an effective treatment for HHV8-related tumors.

  14. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells.

    PubMed

    Cilenti, Lucia; Kyriazis, George A; Soundarapandian, Mangala M; Stratico, Valerie; Yerkes, Adam; Park, Kwon Moo; Sheridan, Alice M; Alnemri, Emad S; Bonventre, Joseph V; Zervos, Antonis S

    2005-02-01

    Omi/HtrA2 is a mitochondrial proapoptotic serine protease that is able to induce both caspase-dependent and caspase-independent cell death. After apoptotic stimuli, Omi is released to the cytoplasm where it binds and cleaves inhibitor of apoptosis proteins. In this report, we investigated the role of Omi in renal cell death following cisplatin treatment. Using primary mouse proximal tubule cells, as well as established renal cell lines, we show that the level of Omi protein is upregulated after treatment with cisplatin. This upregulation is followed by the release of Omi from mitochondria to the cytoplasm and degradation of XIAP. Reducing the endogenous level of Omi protein using RNA interference renders renal cells resistant to cisplatin-induced cell death. Furthermore, we show that the proteolytic activity of Omi is necessary and essential for cisplatin-induced cell death in this system. When renal cells are treated with Omi's specific inhibitor, ucf-101, they become significantly resistant to cisplatin-induced cell death. Ucf-101 was also able to minimize cisplatin-induced nephrotoxic injury in animals. Our results demonstrate that Omi is a major mediator of cisplatin-induced cell death in renal cells and suggest a way to limit renal injury by specifically inhibiting its proteolytic activity.

  15. Glioma-Derived ADAM10 Induces Regulatory B Cells to Suppress CD8+ T Cells

    PubMed Central

    Li, Wen-sheng; Luo, Lun; Huang, Zhen-chao; Guo, Ying

    2014-01-01

    CD8+ T cells play an important role in the anti-tumor activities of the body. The dysfunction of CD8+ T cells in glioma is unclear. This study aims to elucidate the glioma cell-derived ADAM10 (A Disintegrin and metalloproteinase domain-containing protein 10) in the suppression of CD8+ effector T cells by the induction of regulatory B cells. In this study, glioma cells were isolated from surgically removed glioma tissue and stimulated by Phorbol myristate acetage (PMA) in the culture. The levels of ADAM10 in the culture were determined by enzyme-linked immunosorbent assay. Immune cells were assessed by flow cytometry. The results showed that the isolated glioma cells express ADAM10, which was markedly up regulated after stimulated with PMA. The glioma-derived ADAM10 induced activated B cells to differentiate into regulatory B cells, the later suppressed CD8+ T cell proliferation as well as the induced regulatory T cells, which also showed the immune suppressor effect on CD8+ effector T cell proliferation. In conclusion, glioma cells produce ADAM10 to induce Bregs; the latter suppresses CD8+ T cells and induces Tregs. PMID:25127032

  16. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    SciTech Connect

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji . E-mail: yhama@med.nagoya-u.ac.jp

    2007-05-25

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.

  17. Generation of functional podocytes from human induced pluripotent stem cells.

    PubMed

    Ciampi, Osele; Iacone, Roberto; Longaretti, Lorena; Benedetti, Valentina; Graf, Martin; Magnone, Maria Chiara; Patsch, Christoph; Xinaris, Christodoulos; Remuzzi, Giuseppe; Benigni, Ariela; Tomasoni, Susanna

    2016-07-01

    Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.

  18. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  19. Stapled peptide induces cancer cell death.

    PubMed

    Whelan, Jo

    2004-11-01

    Hydrocarbon stapling could enable peptides from the key domains of natural proteins to be used therapeutically. Using the technique on a peptide involved in apoptosis, researchers have succeeded in destroying cancer cells in a mouse model of leukaemia.

  20. Diphenylhydantoin-induced pure red cell aplasia.

    PubMed

    Rusia, Usha; Malhotra, Purnima; Joshi, Panul

    2006-01-01

    Pure red cell aplasia is an uncommon complication of diphenylhydantoin therapy. It has not been reported in Indian literature. Awareness of the entity helps in establishing the cause of anaemia in these patients and alerts the physicians to the need of comprehensive haematological monitoring in these patients. A case of 58-year-old male who developed pure red cell aplasia following three months of diphenylhydantoin therapy is reported here.

  1. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  2. Induction of human choriogonadotropin in HeLa-cell cultures by aliphatic monocarboxylates and inhibitors of deoxyribonucleic acid synthesis

    PubMed Central

    Ghosh, Nimai K.; Rukenstein, Adriana; Cox, Rody P.

    1977-01-01

    The ectopic production of the glycopeptide hormone human placental choriogonadotropin by HeLa65 cells was measured by radioimmunoassay with antiserum against the β-subunit of choriogonadotropin and with the 125I-labelled β-subunit as a tracer antigen. Choriogonadotropin synthesis was markedly (500-fold) stimulated by sodium butyrate. Kinetic studies and the use of an inhibitor of protein synthesis, cycloheximide, indicated that protein synthesis was required for this induction. Investigation of the efficiency of 22 aliphatic short-chain fatty acids and derivatives in causing increased choriogonadotropin synthesis by HeLa cells showed stringent structural requirements. Induction of choriogonadotropin synthesis in HeLa cells was not restricted to butyrate. Other aliphatic acids (propionate, isobutyrate, valerate and hexanoate) were also capable of inducing choriogonadotropin synthesis at 10–50% of the efficiency of butyrate. Hydroxy derivatives of monocarboxylate inducers, related mono- and di-carboxylic acids, alcohols, amines, ketones, esters and sulphoxide were ineffective in increasing choriogonadotropin production by HeLa cells. A saturated C4 straight-chain acid without substituent hydroxyl groups but with a methyl group at one end and a carboxyl moiety at the other appeared to be most efficient in activating choriogonadotropin production. A second clonal line of HeLa cells, HeLa71, showed a higher constitutive synthesis of choriogonadotropin than HeLa65 cells, which was also markedly increased by butyrate. Butyrate and other aliphatic monocarboxylate inducers of choriogonadotropin synthesis inhibited HeLa-cell growth and DNA synthesis. This inhibition of DNA replication may be related to the mechanism of choriogonadotropin synthesis, since two well-characterized anti-neoplastic inhibitors of DNA synthesis, hydroxyurea and 1-β-d-arabinofuranosylcytosine, also stimulated a 300-fold increase in choriogonadotropin synthesis in HeLa cells and were synergistic

  3. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    PubMed

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  4. Bisphenol A-induced apoptosis of cultured rat Sertoli cells.

    PubMed

    Iida, Hiroshi; Maehara, Kazue; Doiguchi, Masamichi; Mōri, Takayuki; Yamada, Fumio

    2003-01-01

    Bisphenol A (BPA) was examined for its effects on cultured Sertoli cells established from 18-day-old rat testes. We demonstrated that exposure of cultured Sertoli cells to BPA decreased the cell viability in a dose- and a time-dependent manner and that exposure to BPA brought about morphologic changes of the cells, such as membrane blebs, cell rounding, cytoskeletal collapse, and chromatin condensation or fragmentation, all of which conform to the morphologic criteria for apoptosis. Immunocytochemistry showed that active caspase-3, a major execution caspase, was expressed in round Sertoli cells positively labeled by the TUNEL method. Co-localization of active caspase-3 and aggregated actin fragments was also observed in the round Sertoli cells. Theses results suggest that BPA induces cell death of Sertoli cells by promoting apoptosis. Apoptosis-inducing cell death was observed in cells exposed to 150-200 microM BPA, while BPA at <100 microM had only slight cytotoxic effects on the cells.

  5. Advances and applications of induced pluripotent stem cells.

    PubMed

    Pietronave, Stefano; Prat, Maria

    2012-03-01

    Direct reprogramming of somatic cells into pluripotent cells is an emerging technology for creating patient-specific cells, and potentially opens new scenarios in medical and pharmacological fields. From the discovery of Shinya Yamanaka, who first obtained pluripotent cells from fibroblasts by retrovirus-derived ectopic expression of defined embryonic transcription factors, new methods have been developed to generate safe induced pluripotent stem (iPS) cells without genomic manipulations. This review will focus on the recent advances in iPS technology and their application in pharmacology and medicine.

  6. Elastase induces lung epithelial cell autophagy through placental growth factor

    PubMed Central

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  7. Material-induced shunts in multicrystalline silicon solar cells

    SciTech Connect

    Breitenstein, O. Bauer, J.; Rakotoniaina, J. P.

    2007-04-15

    By applying lock-in thermography imaging, light-beam-induced current imaging, electron-beam-induced current imaging at different stages of sample preparation, and infrared light microscopy in transmission mode, the physical nature of the dominant material-induced shunts in multicrystalline solar cells made from p-type silicon material has been investigated. It turns out that these shunts are due to silicon carbide (SiC) filaments, which grow preferentially in grain boundaries and cross the whole cell. These filaments are highly n-type doped, like the emitter layer on the surface of the cells. They are electrically connected both with the emitter and with the back contact, thereby producing internal shunts in the solar cell.

  8. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  9. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  10. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  11. Mitochondrial control of cell death induced by hyperosmotic stress.

    PubMed

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  12. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  13. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  14. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    PubMed

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells.

  15. Gentian violet induces wtp53 transactivation in cancer cells.

    PubMed

    Garufi, Alessia; D'Orazi, Valerio; Arbiser, Jack L; D'Orazi, Gabriella

    2014-04-01

    Recent studies suggest that gentian violet (GV) may have anticancer activity by inhibiting for instance NADPH oxidases (Nox genes) whose overexpression is linked to tumor progression. Nox1 overexpression has been shown to inhibit transcriptional activity of the oncosuppressor p53, impairing tumor cell response to anticancer drugs. The tumor suppressor p53 is a transcription factor that, upon cellular stress, is activated to induce target genes involved in tumor cell growth inhibition and apoptosis. Thus, its activation is important for efficient tumor eradication. In this study, we examined the effect of GV on wild-type (wt) p53 activity in cancer cells. We found that GV was able to overcome the inhibitory effect of the NADPH oxidase Nox1 on p53 transcriptional activity. For the first time we show that GV was able to directly induce p53/DNA binding and transcriptional activity. In vitro, GV markedly induced cancer cell death and apoptotic marker PARP cleavage in wtp53-carrying cells. GV-induced cell death was partly inhibited in cells deprived of p53, suggesting that the anticancer activity of GV may partly depend on p53 activation. GV is US Food and Drug Administration approved for human use and may, therefore, have therapeutic potential in the management of cancer through p53 activation.

  16. Gentian violet induces wtp53 transactivation in cancer cells

    PubMed Central

    GARUFI, ALESSIA; D’ORAZI, VALERIO; ARBISER, JACK L.; D’ORAZI, GABRIELLA

    2014-01-01

    Recent studies suggest that gentian violet (GV) may have anticancer activity by inhibiting for instance NADPH oxidases (Nox genes) whose overexpression is linked to tumor progression. Nox1 overexpression has been shown to inhibit transcriptional activity of the oncosuppressor p53, impairing tumor cell response to anticancer drugs. The tumor suppressor p53 is a transcription factor that, upon cellular stress, is activated to induce target genes involved in tumor cell growth inhibition and apoptosis. Thus, its activation is important for efficient tumor eradication. In this study, we examined the effect of GV on wild-type (wt) p53 activity in cancer cells. We found that GV was able to overcome the inhibitory effect of the NADPH oxidase Nox1 on p53 transcriptional activity. For the first time we show that GV was able to directly induce p53/DNA binding and transcriptional activity. In vitro, GV markedly induced cancer cell death and apoptotic marker PARP cleavage in wtp53-carrying cells. GV-induced cell death was partly inhibited in cells deprived of p53, suggesting that the anticancer activity of GV may partly depend on p53 activation. GV is US Food and Drug Administration approved for human use and may, therefore, have therapeutic potential in the management of cancer through p53 activation. PMID:24535435

  17. Mitochondrial DNA damage by bleomycin induces AML cell death.

    PubMed

    Yeung, ManTek; Hurren, Rose; Nemr, Carine; Wang, Xiaoming; Hershenfeld, Samantha; Gronda, Marcela; Liyanage, Sanduni; Wu, Yan; Augustine, Jeevan; Lee, Eric A; Spagnuolo, Paul A; Southall, Noel; Chen, Catherine; Zheng, Wei; Jeyaraju, Danny V; Minden, Mark D; Laposa, Rebecca; Schimmer, Aaron D

    2015-06-01

    Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.

  18. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  19. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis.

    PubMed

    Hornik, Tamara C; Vilalta, Anna; Brown, Guy C

    2016-01-01

    Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.

  20. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    PubMed Central

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  1. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut

    PubMed Central

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV

  2. Hypoxia Inducible Factor-1α Inactivation Unveils a Link between Tumor Cell Metabolism and Hypoxia-Induced Cell Death

    PubMed Central

    Favaro, Elena; Nardo, Giorgia; Persano, Luca; Masiero, Massimo; Moserle, Lidia; Zamarchi, Rita; Rossi, Elisabetta; Esposito, Giovanni; Plebani, Mario; Sattler, Ulrike; Mann, Thomas; Mueller-Klieser, Wolfgang; Ciminale, Vincenzo; Amadori, Alberto; Indraccolo, Stefano

    2008-01-01

    Hypoxia and the acquisition of a glycolytic phenotype are intrinsic features of the tumor microenvironment. The hypoxia inducible factor-1α (HIF-1α) pathway is activated under hypoxic conditions and orchestrates a complex transcriptional program that enhances cell survival. Although the consequences of HIF-1α inactivation in cancer cells have been widely investigated, only a few studies have addressed the role of HIF-1α in the survival of cancer cells endowed with different glycolytic capacities. In this study, we investigated this aspect in ovarian cancer cells. Hypoxia-induced toxicity was increased in highly glycolytic cells compared with poorly glycolytic cells; it was also associated with a sharp decrease in intracellular ATP levels and was prevented by glucose supplementation. Stable HIF-1α silencing enhanced hypoxia-induced cell death in vitro due to a lack of cell cycle arrest. Tumors bearing attenuated HIF-1α levels had similar growth rates and vascularization as did controls, but tumors showed higher proliferation levels and increased necrosis. Moreover, tumors formed by HIF-1α deficient cells had higher levels of lactate and lower ATP concentrations than controls as shown by metabolic imaging. The findings that such metabolic properties can affect the survival of cancer cells under hypoxic conditions and that these properties contribute to the determination of the consequences of HIF-1α inactivation could have important implications on the understanding of the effects of anti-angiogenic and HIF-1α-targeting drugs in cancer. PMID:18772337

  3. Amniotic fluid stem cells morph into a cardiovascular lineage: analysis of a chemically induced cardiac and vascular commitment.

    PubMed

    Maioli, Margherita; Contini, Giovanni; Santaniello, Sara; Bandiera, Pasquale; Pigliaru, Gianfranco; Sanna, Raimonda; Rinaldi, Salvatore; Delitala, Alessandro P; Montella, Andrea; Bagella, Luigi; Ventura, Carlo

    2013-01-01

    Mouse embryonic stem cells were previously observed along with mesenchymal stem cells from different sources, after being treated with a mixed ester of hyaluronan with butyric and retinoic acids, to show a significant increase in the yield of cardiogenic and vascular differentiated elements. The aim of the present study was to determine if stem cells derived from primitive fetal cells present in human amniotic fluid (hAFSCs) and cultured in the presence of a mixture of hyaluronic (HA), butyric (BU), and retinoic (RA) acids show a higher yield of differentiation toward the cardiovascular phenotype as compared with untreated cells. During the differentiation process elicited by exposure to HA + BU + RA, genes controlling pluripotency and plasticity of stem cells, such as Sox2, Nanog, and Oct4, were significantly downregulated at the transcriptional level. At this point, a significant increase in expression of genes controlling the appearance of cardiogenic and vascular lineages in HA + BU + RA-treated cells was observed. The protein expression levels typical of cardiac and vascular phenotypes, evaluated by Western blotting, immunofluorescence, and flow cytometry, were higher in hAFSCs cultured in the presence of HA + BU + RA, as compared with untreated control cells. Appearance of the cardiac phenotype was further inferred by ultrastructural analysis using transmission and scanning electron microscopy. These results demonstrate that a mixture of HA + BU + RA significantly increased the yield of elements committed toward cardiac and vascular phenotypes, confirming what we have previously observed in other cellular types.

  4. Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming

    PubMed Central

    Han, Ji Woong

    2011-01-01

    Abstract Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed. Antioxid. Redox Signal. 15, 1799–1820. PMID:21194386

  5. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells.

    PubMed

    Linden, Arne; Gülden, Michael; Martin, Hans-Jörg; Maser, Edmund; Seibert, Hasso

    2008-08-01

    Peroxides are often used as models to induce oxidative damage in cells in vitro. The aim of the present study was to elucidate the role of lipid peroxidation in peroxide-induced cell death. To this end (i) the ability to induce lipid peroxidation in C6 rat astroglioma cells of hydrogen peroxide (H2O2), cumene hydroperoxide (CHP) and t-butyl hydroperoxide (t-BuOOH) (ii) the relation between peroxide-induced lipid peroxidation and cell death in terms of time and concentration dependency and (iii) the capability of the lipid peroxidation chain breaking alpha-tocopherol to prevent peroxide-induced lipid peroxidation and/or cell death were investigated. Lipid peroxidation was characterised by measuring thiobarbituric acid reactive substances (TBARS) and, by HPLC, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and hexanal. Within 2 h CHP, t-BuOOH and H2O2 induced cell death with EC50 values of 59+/-9 microM, 290+/-30 microM and 12+/-1.1 mM, respectively. CHP and t-BuOOH, but not H2O2 induced lipid peroxidation in C6 cells with EC50 values of 15+/-14 microM and 130+/-33 microM, respectively. The TBARS measured almost exclusively consisted of MDA. 4-HNE was mostly not detectable. The concentration of hexanal slightly increased with increasing concentrations of organic peroxides. Regarding time and concentration dependency lipid peroxidation preceded cell death. Pretreatment with alpha-tocopherol (10 microM, 24 h) prevented both, peroxide-induced lipid peroxidation and cell death. The results strongly indicate a major role of lipid peroxidation in the killing of C6 cells by organic peroxides but also that lipid peroxidation is not involved in H2O2 induced cell death.

  6. Inducible human immunodeficiency virus type 1 packaging cell lines.

    PubMed Central

    Yu, H; Rabson, A B; Kaul, M; Ron, Y; Dougherty, J P

    1996-01-01

    Packaging cell lines are important tools for transferring genes into eukaryotic cells. Human immunodeficiency virus type 1 (HIV-1)-based packaging cell lines are difficult to obtain, in part owing to the problem that some HIV-1 proteins are cytotoxic in a variety of cells. To overcome this, we have developed an HIV-1-based packaging cell line which has an inducible expression system. The tetracycline-inducible expression system was utilized to control the expression of the Rev regulatory protein, which in turn controls the expression of the late proteins including Gag, Pol, and Env. Western blotting (immunoblotting) demonstrated that the expression of p24gag and gp120env from the packaging cells peaked on days 6 and 7 postinduction. Reverse transcriptase activity could be detected by day 4 after induction and also peaked on days 6 and 7. Defective vector virus could be propagated, yielding titers as high as 7 x 10(3) CFU/ml, while replication-competent virus was not detectable at any time. Thus, the cell line should enable the transfer of specific genes into CD4+ cells and should be a useful tool for studying the biology of HIV-1. We have also established an inducible HIV-1 Env-expressing cell line which could be used to propagate HIV-1 vectors that require only Env in trans. The env-minus vector virus titer produced from the Env-expressing cells reached 2 x 10(4) CFU/ml. The inducible HIV-1 Env-expressing cell line should be a useful tool for the study of HIV-1 Env as well. PMID:8676479

  7. Light regulation of cadmium-induced cell death in Arabidopsis

    PubMed Central

    Smith, Sarah J; Wang, Yun; Slabas, Antoni R; Chivasa, Stephen

    2014-01-01

    Cadmium is an environmental pollutant with deleterious effects on both prokaryotic and eukaryotic organisms. In plants, the effects of cadmium toxicity are concentration dependent; lower doses destabilize many physiological processes and inhibit cell growth and multiplication, while higher doses evoke a more severe response that triggers activation of cell death. We recently investigated the effects of light on cadmium toxicity in Arabidopsis using a cell suspension culture system. Although not affecting the inhibitory effects on cell multiplication, we found that light is a powerful regulator of Cd-induced cell death. A very specific proteomic response, which was clearly controlled by light, preceded cell death. Here we discuss the implications of these findings and highlight similarities between the regulation of cell death triggered by Cd and fumonisin B1. We consider how both compounds could be useful tools in dissecting plant cell death signaling. PMID:24398567

  8. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  9. Ionizing radiation induces tumor cell lysyl oxidase secretion

    PubMed Central

    2014-01-01

    Background Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. Methods LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. Results LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. Conclusions These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in

  10. Optimizing atoh1 induced vestibular hair cell regeneration

    PubMed Central

    Staecker, Hinrich; Schlecker, Christina; Kraft, Shannon; Praetorius, Mark; Hsu, Chi; Brough, Douglas E.

    2016-01-01

    Objectives/Hypothesis Determine the optimal design characteristics of an adenoviral vector to deliver atoh1 and induce regeneration of vestibular hair cells. Study Design Evaluation of a mouse model of intra-labyrinthine gene delivery. Tissue culture of mouse and human macular organs. Methods Macular organs from adult C57Bl/6 mice were treated with binding modified and alternate adenovectors expressing green fluorescent protein (gfp) or luciferase (L). Expression of marker genes was determined over time to determine vector transfection efficiency. The inner ear of adult mice was then injected with modified vectors. Expression of gfp and distribution of vector DNA was followed. Hearing and balance function was evaluated in normal animals to ensure safety of the novel vector designs. An optimized vector was identified and tested for its ability to induce hair cell regeneration in a mouse vestibulopathy model. Finally this vector was tested for its ability to induce hair cell regeneration in human tissue. Results Ad5 serotype based vectors were identified as having a variety of different binding capacities for inner ear tissue. This makes it difficult to limit the dose of vector due to entry into non-targeted cells. Screening of rare adenovector serotypes demonstrated that Ad28 based vectors were ideally suited for delivery to supporting cells and therefore useful for hair cell regeneration studies. Utilization of an Ad28 based vector to deliver atoh1 to a mouse model of vestibular loss resulted significant functional recovery of balance. This vector was also capable of transfecting human macular organs and inducing regeneration of human vestibular hair cells in vitro. Conclusions Improvement in vector design can lead to more specific cell based delivery and reduction of non specific delivery of the trans gene leading to the development of optimized molecular therapeutics to induce hair cell regeneration. Level of Evidence N/A Controlled basic science study. PMID

  11. Disc-electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances.

    PubMed

    Huang, Chen; Niu, Haitao; Wu, Chunchen; Ke, Qinfei; Mo, Xiumei; Lin, Tong

    2013-01-01

    Cellulose acetate butyrate nanofibers were prepared separately by two electrospinning techniques; a needleless electrospinning using a disc as spinneret and a rotary drum as collector and a conventional needle electrospinning using a rotary drum as collector. Compared to the needle-electrospun nanofibers, the disc-electrospun nanofibers were coarser with a wider diameter distribution. Both fibers had a similar surface morphology and they showed no difference in chemical components, but the disc-electrospun nanofibers were slightly higher in crystallinity. The productivity of disc electrospinning was 150 times larger than that of needle electrospinning. The disc-electrospun nanofiber mats were found to have a three dimensional fibrous structure with an average pore size of 9.1 μm, while the needle-electrospun nanofibers looked more like a two-dimensional sheet with a much smaller average pore size (3.2 μm). Fibroblasts and Schwann cells were cultured on the fibrous matrices to assess the biocompatibility. The disc-electrospun nanofiber webs showed enhanced cellular growth for both fibroblasts and Schwann cells, especially in a long culture period.

  12. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  13. Oligogalacturonides induce flowers in tobacco thin cell layers

    SciTech Connect

    Marfa-Riera, V.; Gollin, D.; Mohnen, D.; Darvill, A.; Albersheim, P. )

    1989-04-01

    An optimized tobacco thin-cell-layer (TCL) bioassay was used to study the induction of flowers by plant oligosaccharins. Endopolygalacturonase (EPG)-released fragments of suspension-cultured sycamore cell walls induced flowers on TCLs grown on a medium containing 1.5 {mu}M IBA and 0.9 {mu}M kinetin. The EPG-released fragments were primarily composed of the polysaccharides rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II), and {alpha}-1,4-linked oligogalacturonides. The {alpha}-1,4-linked oligogalacturonides, subsequently purified from the EPG-released sycamore cell wall fragment mixture, induced flowers on TCLs. Purified RG-I and RG-II did not induce flowers. Oligosaccharide fragments, generated by partial acid hydrolysis of citrus pectin, were also capable of inducing flowers on the TCLs. The active components in the pectin fragment mixture were {alpha}-1,4-linked oligogalacturonides. Oligogalacturonides with a degree of polymerization (DP) of 8-16, at concentrations of {approx} 0.1 {mu}M, induced flowers, while oligogalacturonides with a DP 2-7, even at higher concentrations, did not. Oligogalacturonides have previously been shown to induce the synthesis of phytoalexins, protease inhibitors, lignin, and ethylene in other plant systems. Thus, the ability of {alpha}-1,4-linked oligogalacturonides to induce flower formation in the tobacco TCLs represents a new biological activity of these oligosaccharins.

  14. Langerhans Cells Facilitate UVB-induced Epidermal Carcinogenesis

    PubMed Central

    Lewis, Julia M.; Bürgler, Christina D.; Freudzon, Marianna; Golubets, Kseniya; Gibson, Juliet F.; Filler, Renata B.; Girardi, Michael

    2015-01-01

    Ultraviolet B (UVB) light is considered the major environmental inducer of human keratinocyte DNA mutations, including within the tumor-suppressor gene p53, and chronic exposure is associated with cutaneous squamous cell carcinoma (SCC) formation. Langerhans cells (LC) comprise a dendritic network within the suprabasilar epidermis, yet the role of LC in UVB-induced carcinogenesis is largely unknown. Herein, we show that LC-intact epidermis develops UVB-induced tumors more readily than LC-deficient epidermis. While levels of epidermal cyclopyrimidine dimers (CPD) following acute UVB exposure are equivalent in the presence or absence of LC, chronic UVB-induced p53 mutant clonal islands expand more readily in association with LC which remain largely intact and are preferentially found in proximity to the expanding mutant keratinocyte populations. The observed LC facilitation of mutant p53 clonal expansion is completely αβ and γδ T-cell independent, and is associated with increased intraepidermal expression of interleukin (IL)-22 and the presence of group 3 innate lymphoid cells (ILC3). These data demonstrate that LC play a key role in UVB-induced cutaneous carcinogenesis, and suggest that LC locally stimulate keratinocyte proliferation and innate immune cells that provoke tumor outgrowth. PMID:26053049

  15. Unraveling the mechanism of cell death induced by chemical fibrils

    PubMed Central

    Julien, Olivier; Kampmann, Martin; Bassik, Michael C.; Zorn, Julie A.; Venditto, Vincent J.; Shimbo, Kazutaka; Agard, Nicholas J.; Shimada, Kenichi; Rheingold, Arnold L.; Stockwell, Brent R.; Weissman, Jonathan S.

    2014-01-01

    We previously discovered a small-molecule inducer of cell death, named 1541, that non-covalently self-assembles into chemical fibrils (“chemi-fibrils”) and activates procaspase-3 in vitro. We report here that 1541-induced cell death is caused by the fibrillar, rather than the soluble form of the drug. An shRNA screen reveals that knockdown of genes involved in endocytosis, vesicle trafficking, and lysosomal acidification causes partial 1541 resistance. We confirm the role of these pathways using pharmacological inhibitors. Microscopy shows that the fluorescent chemi-fibrils accumulate in punctae inside cells that partially co-localize with lysosomes. Notably, the chemi-fibrils bind and induce liposome leakage in vitro, suggesting they may do the same in cells. The chemi-fibrils induce extensive proteolysis including caspase substrates, yet modulatory profiling reveals that chemi-fibrils form a distinct class from existing inducers of cell death. The chemi-fibrils share similarities to proteinaceous fibrils and may provide insight into their mechanism of cellular toxicity. PMID:25262416

  16. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  17. Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells.

    PubMed

    Inui, Shoki; Minami, Kazumasa; Ito, Emiko; Imaizumi, Hiromasa; Mori, Seiji; Koizumi, Masahiko; Fukushima, Satsuki; Miyagawa, Shigeru; Sawa, Yoshiki; Matsuura, Nariaki

    2017-03-03

    Induced pluripotent stem (iPS) cells have demonstrated they can undergo self-renewal, attain pluripotency, and differentiate into various types of functional cells. In clinical transplantation of iPS cells, however, a major problem is the prevention of tumorigenesis. We speculated that tumor formation could be inhibited by means of irradiation. Since the main purpose of this study was to explore the prevention of tumor formation in human iPS (hiPS) cells, we tested the effects of irradiation on tumor-associated factors such as radiosensitivity, pluripotency and cell death in hiPS cells. The irradiated hiPS cells showed much higher radiosensitivity, because the survival fraction of hiPS cells irradiated with 2 Gy was < 10%, and there was no change of pluripotency. Irradiation with 2 and 4 Gy caused substantial cell death, which was mostly the result of apoptosis. Irradiation with 2 Gy was detrimental enough to cause loss of proliferation capability and trigger substantial cell death in vitro. The hiPS cells irradiated with 2 Gy were injected into NOG mice (NOD/Shi-scid, IL-2 Rγnull) for the analysis of tumor formation. The group of mice into which hiPS cells irradiated with 2 Gy was transplanted showed significant suppression of tumor formation in comparison with that of the group into which non-irradiated hiPS cells were transplanted. It can be presumed that this diminished rate of tumor formation was due to loss of proliferation and cell death caused by irradiation. Our findings suggest that tumor formation following cell therapy or organ transplantation induced by hiPS cells may be prevented by irradiation.

  18. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  19. Role of hypoxia‑inducible factor‑1α in autophagic cell death in microglial cells induced by hypoxia.

    PubMed

    Wang, Xintao; Ma, Jun; Fu, Qiang; Zhu, Lei; Zhang, Zhiling; Zhang, Fan; Lu, Nan; Chen, Aimin

    2017-03-01

    Microglial cells are phagocytic cells of the central nervous system (CNS) and have been proposed to be a primary component of the innate immune response and maintain efficient CNS homeostasis. Microglial cells are activated during various phases of tissue repair and participate in various pathological conditions in the CNS. Following spinal cord injury (SCI), anoxemia is a key problem that results in tissue destruction. Hypoxia‑inducible factor 1‑α (HIF‑1α) may protect hypoxic cells from apoptosis or necrosis under ischemic and anoxic conditions. However, numerous studies have revealed that hypoxia upregulates HIF‑1α expression leading to the death of microglial cells. The present study investigated the alterations in HIF‑1α expression levels and the mechanism of autophagic cell death mediated by HIF‑1α in microglial cells induced by hypoxia. Hypoxia was demonstrated to induce HIF‑1α expression and autophagic cell death in microglial cells. Enhanced autophagy reduced cell death during the initial stages by restraining the functions of autophagy‑associated genes (microtubule‑associated protein 1A/1B‑light chain 3 phosphatidylethanolamine conjugate and Beclin‑1) and modulating the expression of inflammatory cytokines (tumor necrosis factor‑α and interleukin‑1β). Target value was determined by Cell Counting Kit 8 and cell death by flow cytometry. Transmission electron microscopy, immunohistochemical staining, reverse transcription‑quantitative polymerase chain reaction, western blotting, and ELISA were used for further analysis. However, increased expression of HIF‑1α induced cell death and autophagic cell death in microglial cells. Furthermore, the effects of the HIF‑1α inhibitor 2‑methoxyestradiol and HIF‑1α small interfering RNA on the death and autophagy of microglial cells in vitro were investigated. These investigations revealed the suppression of autophagy, the decrease of cell viability and the increase of

  20. [Cell cycle arrest at M phase induced by vinblastine in MOLT-4 cells].

    PubMed

    Zhong, Yi-Sheng; Pan, Chang-Chuan; Jin, Chang-Nan; Li, Jian-Jun; Xiong, Gong-Peng; Zhang, Jian-Xi; Gong, Jian-Ping

    2009-04-01

    This study was purposed to investigate the biological effect of vinblastine (VLS), usually known as inductor of mitotic arrest, on MOLT-4 of ALL cells and to evaluate its significance. The cell arrest in M phase and/or cell apoptosis were induced by treatment of MOLT-4 cells with 0.05 microg/ml VLS for 0 - 12 hours; the DNA histogram was detected by flow cytometry; the morphological changes of cells were observed by confocal microscopy; the cell cycle distribution, cell apoptosis and morphological changes of cells before and after arrest were analyzed by using arrest increasing rate (AIR), arrest efficiency (AE), apoptosis rate (AR) and morphologic parameters respectively. The results indicated that the cell arrest did not accompanied by significant increase of apoptosis rate; the DNA histogram of cell arrest showed dynamic change of cell cycle in time-dependent manner; the arrest efficiency could be quantified. The cell arrest at M phase was accompanied by cell stack in S phase, the cell proliferation rate dropped after cell arrest occurred. The cells arrested at M phase possessed of characteristic morphologic features in cell mitosis. It is concluded that the vinblastine can solely induce arrest of MOLT-4 cells at M phase. This study provides experimental basis for further investigating the relation of cell cycle arrest to apoptosis, mechanism of checkpoint and development of new anticancer drugs.

  1. Sodium azide induces necrotic cell death in rat squamous cell carcinoma SCC131.

    PubMed

    Sato, Eiju; Suzuki, Toshimitsu; Hoshi, Nobuo; Sugino, Takashi; Hasegawa, Hiroshi

    2008-12-01

    Sodium azide (NaN(3)) is widely used in industry and agriculture, and also in laboratories as a potent preservative. NaN(3) induces cell death when applied to cultured cells. However, whether the mode of cell death is apoptosis or necrosis remains a subject of debate. There have been no previous reports on NaN(3)-induced cell death in squamous cell carcinoma (SCC), and so we studied the mode of cell death induced by NaN(3) using the rat SCC cell line, SCC131. In this experiment, SCC131 cells died 48-72 h after NaN(3) treatment with concentrations greater than 5 mM. The NaN(3) treatment reduced the mitochondrial membrane potential and ATP content. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and DNA ladder detection assay indicated that no DNA fragmentation occurred. In addition, phosphatidyl serine did not appear on the cell surface, according to the findings of dye-uptake bioassay and flow cytometric analysis of Annexin V labeling. Electron microscopic analysis revealed that the NaN(3)-treated cells showed mitochondrial swelling and rupture of the cell membrane. In conclusion, NaN(3) induces necrotic cell death in SCC131. This experimental model may be used in the study of necrotic cell death.

  2. Shape anisotropy induces rotations in optically trapped red blood cells

    NASA Astrophysics Data System (ADS)

    Bambardekar, Kapil; Dharmadhikari, Jayashree A.; Dharmadhikari, Aditya K.; Yamada, Toshihoro; Kato, Tsuyoshi; Kono, Hirohiko; Fujimura, Yuichi; Sharma, Shobhona; Mathur, Deepak

    2010-07-01

    A combined experimental and theoretical study is carried out to probe the rotational behavior of red blood cells (RBCs) in a single beam optical trap. We induce shape changes in RBCs by altering the properties of the suspension medium in which live cells float. We find that certain shape anisotropies result in the rotation of optically trapped cells. Indeed, even normal (healthy) RBCs can be made to rotate using linearly polarized trapping light by altering the osmotic stress the cells are subjected to. Hyperosmotic stress is found to induce shape anisotropies. We also probe the effect of the medium's viscosity on cell rotation. The observed rotations are modeled using a Langevin-type equation of motion that takes into account frictional forces that are generated as RBCs rotate in the medium. We observe good correlation between our measured data and calculated results.

  3. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  4. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  5. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  6. Imipramine protects mouse hippocampus against tunicamycin-induced cell death.

    PubMed

    Ono, Yoko; Shimazawa, Masamitsu; Ishisaka, Mitsue; Oyagi, Atsushi; Tsuruma, Kazuhiro; Hara, Hideaki

    2012-12-05

    Endoplasmic reticulum (ER) stress is implicated in various diseases. Recently, some reports have suggested that the sigma-1 receptor may play a role in ER stress, and many antidepressants have a high affinity for the sigma-1 receptor. In the present study, we focused on imipramine, a widely used antidepressant, and investigated whether it might protect against the neuronal cell death induced by tunicamycin, an ER stress inducer. In mouse cultured hippocampal HT22 cells, imipramine inhibited cell death and caspase-3 activation induced by tunicamycin, although it did not alter the elevated expressions of 78 kDa glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP). Interestingly, in such cells application of imipramine normalized the expression of the sigma-1 receptor, which was decreased by treatment with tunicamycin alone. Additionally, NE-100, a selective sigma-1 receptor antagonist, abolished the protective effect of imipramine against such tunicamycin-induced cell death. Imipramine inhibited the reduction of mitochondrial membrane potential induced by tunicamycin, and NE-100 blocked this modulating effect of imipramine. Furthermore, in anesthetized mice intracerebroventricular administration of tunicamycin decreased the number of neuronal cells in the hippocampus, particularly in the CA1 and dentate gyrus (DG) areas, and 7 days' imipramine treatment (10mg/kg/day; i.p.) significantly suppressed these reductions in CA1 and DG. These findings suggest that imipramine protects against ER stress-induced hippocampal neuronal cell death both in vitro and in vivo. Such protection may be partly due to the sigma-1 receptor.

  7. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    SciTech Connect

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin; Kwon, Ho Jeong

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  8. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking

    PubMed Central

    Focosi, Daniele

    2016-01-01

    Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256

  9. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  10. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    PubMed

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  11. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum.

    PubMed

    Eeckhaut, Venessa; Van Immerseel, Filip; Croubels, Siska; De Baere, Siegrid; Haesebrouck, Freddy; Ducatelle, Richard; Louis, Petra; Vandamme, Peter

    2011-07-01

    Sixteen butyrate-producing bacteria were isolated from the caecal content of chickens and analysed phylogenetically. They did not represent a coherent phylogenetic group, but were allied to four different lineages in the Firmicutes phylum. Fourteen strains appeared to represent novel species, based on a level of ≤ 98.5% 16S rRNA gene sequence similarity towards their nearest validly named neighbours. The highest butyrate concentrations were produced by the strains belonging to clostridial clusters IV and XIVa, clusters which are predominant in the chicken caecal microbiota. In only one of the 16 strains tested, the butyrate kinase operon could be amplified, while the butyryl-CoA:acetate CoA-transferase gene was detected in eight strains belonging to clostridial clusters IV, XIVa and XIVb. None of the clostridial cluster XVI isolates carried this gene based on degenerate PCR analyses. However, another CoA-transferase gene more similar to propionate CoA-transferase was detected in the majority of the clostridial cluster XVI isolates. Since this gene is located directly downstream of the remaining butyrate pathway genes in several human cluster XVI bacteria, it may be involved in butyrate formation in these bacteria. The present study indicates that butyrate producers related to cluster XVI may play a more important role in the chicken gut than in the human gut.

  12. Cellulose acetate butyrate/poly(caprolactonetriol) blends: Miscibility, mechanical properties, and in vivo inflammatory response.

    PubMed

    Kanis, Luiz A; Marques, Ellen L; Zepon, Karine M; Pereira, Jefferson R; Pamato, Saulo; de Oliveira, Marcelo T; Danielski, Lucinéia G; Petronilho, Fabricia C

    2014-11-01

    This study reports the results of the characterization of cellulose acetate butyrate and polycaprolactone-triol blends in terms of miscibility, swelling capacity, mechanical properties, and inflammatory response in vivo. The cellulose acetate butyrate film was opaque and rigid, with glass transition (T g ) at 134℃ and melting temperature of 156℃. The cellulose acetate butyrate/polycaprolactone-triol films were transparent up to a polycaprolactone-triol content of 60%. T g of the cellulose acetate butyrate films decreased monotonically as polycaprolactone-triol was added to the blend, thus indicating miscibility. FTIR spectroscopy revealed a decrease in intramolecular hydrogen bonding in polycaprolactone-triol, whereas no hydrogen bonding was observed between cellulose acetate butyrate and -OH from polycaprolactone-triol. The increase in polycaprolactone-triol content in the blend decreased the water uptake. An increase in polycaprolactone-triol content decreased the modulus of elasticity and increased the elongation at break. A cellulose acetate butyrate/polycaprolactone-triol 70/30 blend implanted in rats showed only an acute inflammatory response 7 days after surgery. No change in inflammation mediators was observed.

  13. Current progress and prospects of induced pluripotent stem cells.

    PubMed

    Chen, LingYi; Liu, Lin

    2009-07-01

    Induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of few transcription factors. Like embryonic stem (ES) cells, iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body. iPS cells hold great promise for regenerative medicine, because iPS cells circumvent not only immunological rejection but also ethical issues. Since the first report on the derivation of iPS cells in 2006, many laboratories all over the world started research on iPS cells and have made significant progress. This paper reviews recent progress in iPS cell research, including the methods to generate iPS cells, the molecular mechanism of reprogramming in the formation of iPS cells, and the potential applications of iPS cells in cell replacement therapy. Current problems that need to be addressed and the prospects for iPS research are also discussed.

  14. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  15. Cell-Cell Fusion Induced by Measles Virus Amplifies the Type I Interferon Response▿ †

    PubMed Central

    Herschke, F.; Plumet, S.; Duhen, T.; Azocar, O.; Druelle, J.; Laine, D.; Wild, T. F.; Rabourdin-Combe, C.; Gerlier, D.; Valentin, H.

    2007-01-01

    Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response. PMID:17898060

  16. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells.

    PubMed

    Di Stefano, Bruno; Sardina, Jose Luis; van Oevelen, Chris; Collombet, Samuel; Kallin, Eric M; Vicent, Guillermo P; Lu, Jun; Thieffry, Denis; Beato, Miguel; Graf, Thomas

    2014-02-13

    CCAAT/enhancer binding protein-α (C/EBPα) induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem (iPS) cells when co-expressed with the transcription factors Oct4 (Pou5f1), Sox2, Klf4 and Myc (hereafter called OSKM). However, how C/EBPα accomplishes these effects is unclear. Here we find that in mouse primary B cells transient C/EBPα expression followed by OSKM activation induces a 100-fold increase in iPS cell reprogramming efficiency, involving 95% of the population. During this conversion, pluripotency and epithelial-mesenchymal transition genes become markedly upregulated, and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a 'path-breaker' as it transiently makes the chromatin of pluripotency genes more accessible to DNase I. C/EBPα also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated after OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B-cell reprogramming. Because the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data indicate that Tet2 provides a mechanistic link between iPS cell reprogramming and B-cell transdifferentiation. The rapid iPS reprogramming approach described here should help to fully elucidate the process and has potential clinical applications.

  17. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system

    PubMed Central

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  18. Cysteine aggravates palmitate-induced cell death in hepatocytes

    PubMed Central

    Dou, Xiaobing; Wang, Zhigang; Yao, Tong; Song, Zhenyuan

    2011-01-01

    Aims Lipotoxicity, defined as cell death induced by excessive fatty acids, especially saturated fatty acids, is critically involved in the development of non-alcoholic steatohepatitis (NASH). Recent studies report that plasma cysteine concentrations is elevated in the subjects with either alcoholic steatohepatitis (ASH) or NASH than normal subjects. The present study was conducted to determine if elevation of cysteine could be a deleterious factor in palmitate-induced hepatocyte cell death. Main methods HepG2 and Hep3B cells were treated with palmitate with/without the inclusion of cysteine in the media for 24 hours. The effects of cysteine inclusion on palmitate induced cell death were determined by lactate dehydrogenase (LDH) release and MTT assay. Oxidative stress was evaluated by intracellular glutathione (GSH) level, malondialdehyde (MDA) formation, and DCFH-DA assay. Western blotting was performed to detect the changes of endoplasmic reticulum(ER) stress markers: C/EBP homologous transcription factor (CHOP), GRP-78, and phosphorylated c-jun N-terminal kinase (p-JNK). Key findings Elevated intracellular cysteine aggravates hepatocytes to palmitate-induced cell death. Enhancement of ER stress, specifically increased activation of JNK pathway, contributed to this cell death process. Significance Increase of plasma cysteine levels, as observed in both ASH and NASH patients, may play a pathological role in the development of the liver diseases. Manipulation of dietary amino acids supplementation could be a therapeutic choice. PMID:22008477

  19. Modeling human neurological disorders with induced pluripotent stem cells.

    PubMed

    Imaizumi, Yoichi; Okano, Hideyuki

    2014-05-01

    Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained

  20. Progesterone prevents radiation-induced apoptosis in breast cancer cells.

    PubMed

    Vares, Guillaume; Ory, Katherine; Lectard, Bruno; Levalois, Céline; Altmeyer-Morel, Sandrine; Chevillard, Sylvie; Lebeau, Jérôme

    2004-06-03

    Sex steroid hormones play an essential role in the control of homeostasis in the mammary gland. Although the involvement of progesterone in cellular proliferation and differentiation is well established, its exact role in the control of cell death still remains unclear. As dysregulation of the apoptotic process plays an important role in the pathogenesis of breast cancer, we investigated the regulation of apoptosis by progesterone in various breast cancer cell lines. Our results show that progesterone treatment protects against radiation-induced apoptosis. This prevention appears to be mediated by the progesterone receptor and is unrelated to p53 status. There is also no correlation with the intrinsic hormonal effect on cell proliferation, as the presence of cells in a particular phase of the cell cycle. Surprisingly, progesterone partly allows bypassing of the irradiation-induced growth arrest in G(2)/M in PgR+ cells, leading to an increase in cell proliferation after irradiation. One consequence of this effect is a higher rate of chromosome damage in these proliferating progesterone-treated cells compared to what is observed in untreated irradiated cells. We propose that progesterone, by inhibiting apoptosis and promoting the proliferation of cells with DNA damage, potentially facilitates the emergence of genetic mutations that may play a role in malignant transformation.

  1. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    PubMed

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  2. Enhancing cytokine-induced killer cell therapy of multiple myeloma.

    PubMed

    Liu, Chunsheng; Suksanpaisan, Lukkana; Chen, Yun-Wen; Russell, Stephen J; Peng, Kah-Whye

    2013-06-01

    Cytokine-induced killer (CIK) cells are in clinical testing against various tumor types, including multiple myeloma. In this study, we show that CIK cells have activity against subcutaneous and disseminated models of human myeloma (KAS-6/1), which can be enhanced by infecting the CIK cells with an oncolytic measles virus (MV) or by pretreating the myeloma cells with ionizing radiation (XRT). KAS-6/1 cells were killed by coculture with CIK or MV-infected CIK (CIK/MV) cells, and the addition of an anti-NKG2D antibody inhibited cytolysis by 50%. However, human bone marrow stromal cells can reduce CIK and CIK/MV med