Science.gov

Sample records for butyrate induces cell

  1. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  2. Transcriptome characterization by deep-RNA-sequencing underlies the mechanisms of butyrate-induced epigenomic regulation in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Volatile short-chain fatty acids (SCFAs, acetate, propionate, and butyrate), especially butyrate, alter cell differentiation, proliferation, motility, and in particular, induce cell cycle arrest and apoptosis through its histone deacetylase (HDAC) inhibition activity. Butyrate is a great inducer of ...

  3. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  4. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  5. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    PubMed Central

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Methods Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Results Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin

  6. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells.

    PubMed

    Pant, Kishor; Yadav, Ajay K; Gupta, Parul; Islam, Rakibul; Saraya, Anoop; Venugopal, Senthil K

    2017-03-07

    Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and β-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.

  7. Propolis Augments Apoptosis Induced by Butyrate via Targeting Cell Survival Pathways

    PubMed Central

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L.

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors. PMID:24023824

  8. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    USDA-ARS?s Scientific Manuscript database

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  9. Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts.

    PubMed

    Chang, M-C; Tsai, Y-L; Chen, Y-W; Chan, C-P; Huang, C-F; Lan, W-C; Lin, C-C; Lan, W-H; Jeng, J-H

    2013-02-01

    Short-chain fatty acids, such as butyric acid and propionic acid, are metabolic by-products generated by periodontal microflora such as Porphyromonas gingivalis, and contribute to the pathogenesis of periodontitis. However, the effects of butyrate on the biological activities of gingival fibroblasts (GFs) are not well elucidated. Human GFs were exposed to various concentrations of butyrate (0.5-16 mm) for 24 h. Viable cells that excluded trypan blue were counted. Cell cycle distribution of GFs was analyzed by propidium iodide-staining flow cytometry. Cellular reactive oxygen species (ROS) production was measured by flow cytometry using 2',7'-dichlorofluorescein (DCF). Total RNA and protein lysates were isolated and subjected to RT-PCR using specific primers or to western blotting using specific antibodies, respectively. Butyrate inhibited the growth of GFs, as indicated by a decrease in the number of viable cells. This event was associated with an induction of G0/G1 and G2/M cell cycle arrest by butyrate (4-16 mm) in GFs. However, no marked apoptosis of GFs was noted in this experimental condition. Butyrate (> 2 mm) inhibited the expression of cdc2, cdc25C and cyclinB1 mRNAs and reduced the levels of Cdc2, Cdc25C and cyclinB1 proteins in GFs, as determined using RT-PCR and western blotting, respectively. This toxic effect of butyrate was associated with the production of ROS. These results suggest that butyrate generated by periodontal pathogens may be involved in the pathogenesis of periodontal diseases via the induction of ROS production and the impairment of cell growth, cell cycle progression and expression of cell cycle-related genes in GFs. These events are important in the initiation and prolongation of inflammatory processes in periodontal diseases. © 2012 John Wiley & Sons A/S.

  10. Specific cell cycle synchronization with butyrate and cell cycle analysis

    USDA-ARS?s Scientific Manuscript database

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  11. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  12. Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells.

    PubMed

    Tailor, Dhanir; Hahm, Eun-Ryeong; Kale, Raosaheb K; Singh, Shivendra V; Singh, Rana P

    2014-05-01

    Sodium butyrate (NaBt) is the byproduct of anaerobic microbial fermentation inside the gastro-intestinal tract that could reach up to 20mM, and has been shown to inhibit the growth of various cancers. Herein, we evaluated its effect on mitochondrial fusion and associated induction of apoptosis in colorectal cancer cells (CRC). NaBt treatment at physiological (1-5mM) concentrations for 12 and 24h decreased the cell viability and induced G2-M phase cell cycle arrest in HCT116 (12h) and SW480 human CRC cells. This cell cycle arrest was associated with mitochondria-mediated apoptosis accompanied by a decrease in survivin and Bcl-2 expression, and generation of reactive oxygen species (ROS). Furthermore, NaBt treatment resulted in a significant decrease in the mitochondrial mass which is an indicator of mitochondrial fusion. Level of dynamin-related protein 1 (DRP1), a key regulator of mitochondrial fission and fusion where its up-regulation correlates with fission, was found to be decreased in CRC cells. Further, at early treatment time, DRP1 down-regulation was noticed in mitochondria which later became drastically reduced in both mitochondria as well as cytosol. DRP1 is activated by cyclin B1-CDK1 complex by its ser616 phosphorylation in which both cyclin B1-CDK1 complex and phospho-DRP1 (ser616) were strongly reduced by NaBt treatment. DRP1 was observed to be regulated by apoptosis as pan-caspase inhibitor showing rescue from NaBt-induced apoptosis also caused the reversal of DRP1 to the normal level as in control proliferating cells. Together, these findings suggest that NaBt can modulate mitochondrial fission and fusion by regulating the level of DRP1 and induce cell cycle arrest and apoptosis in human CRC cells.

  13. Lactobacillus acidophilus 74-2 and butyrate induce cyclooxygenase (COX)-1 expression in gastric cancer cells.

    PubMed

    Mahkonen, Anna; Putaala, Heli; Mustonen, Harri; Rautonen, Nina; Puolakkainen, Pauli

    2008-01-01

    Cyclo-oxygenase (COX) profile predicts prognosis of gastric cancer; COX-2 positive tumors are more often aggressive, and COX-2 suppression is protective against gastric cancer. In contrast, COX-1 suppression is harmful to the intestinal mucosa. The COX-1, COX-2, and COX-1ir expression profiles were measured with real-time PCR in primary (AGS) and metastatic (NCI-N87) gastric adenocarcinoma cell lines treated with butyrate, hyperosmolar medium, and, in the case of NCI-N87, cell-free supernatants of probiotic bacteria Lactobacillus acidophilus 74-2 and Bifidobacterium lactis 420. The cell lines showed differences in the profile when treated with either hyperosmolar medium or butyrate. In NCI-N87 COX-2 expression was higher but only COX-1 expression was significantly upregulated by butyrate. Similarly to butyrate, the cell-free supernatant of L. acidophilus 74-2 upregulated COX-1, while COX-2 expression remained unchanged. COX-1ir, including COX-3, was upregulated by probiotics and osmotic stress. In conclusion, consumption of L. acidophilus 74-2 could be beneficial for the expression of cytoprotective COX-1.

  14. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    USDA-ARS?s Scientific Manuscript database

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  15. Butyrate induced cell cycle arrest in bovine cells through targeting gene expression relevant to DNA replication apparatus.

    PubMed

    Li, Cong-jun; Li, Robert W

    2008-03-17

    Using real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the effects of butyrate on patterns of gene expression relevant to DNA replication apparatus. The real-time PCR and Western blot data generally confirmed previously reported microarray data. Of the five genes tested by quantitative RT-PCR, CDKN1A (p21(waf1)) was up regulated, CDC2/cdk1, MCM6, ORC1L were down regulated, while ORC3L expression remained unchanged following butyrate treatment. Also consistent with RT-PCR results, Western blot analysis confirmed that butyrate up-regulated cyclin-kinase inhibitor p21(waf1) in a does-dependent manner. In contrast, butyrate treatment had no effect on the expression of ERK 1/2 proteins. Also consistent with mRNA results, ORC1 and MCM3 proteins were down-regulated by butyrate treatment, while ORC2 protein remained unchanged. The present results suggest that ORC1, not ORC2 or ORC3, along with MCM proteins play a critical role in regulating the initiation of DNA replication and cell cycle progression in MDBK cells and are targets of butyrate regulation.

  16. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    SciTech Connect

    Belakavadi, Madesh . E-mail: belakama@umdnj.edu; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-10-07

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells.

  17. TNF-alpha modulates the differentiation induced by butyrate in the HT-29 human colon adenocarcinoma cell line.

    PubMed

    Kovaríková, M; Pacherník, J; Hofmanová, J; Zadák, Z; Kozubík, A

    2000-09-01

    The aim of this study was to determine whether and how tumour necrosis factor alpha (TNF-alpha) modulates butyrate effects. After the treatment of human colon adenocarcinoma HT-29 cells with sodium butyrate (NaBt), TNF-alpha or with their combinations we detected cell cycle (flow cytometry), cell proliferation (amidoblack and MTT assays), the amount of dead (floating) and apoptotic cells (flow cytometry and fluorescence microscopy), and the level of differentiation by alkaline phosphatase (ALP) activity (spectrophotometry), relative F-actin content (confocal laser scanning microscopy analysis) and E-cadherin expression (Western blot analysis). Both TNF-alpha and NaBt decreased cell growth in a dose-dependent manner. After combined treatment of the cells with both agents used, either none or additive effects were observed as compared with NaBt treatment alone. The level of dead and apoptotic cells was dose-dependently increased after this combined treatment. In contrast, TNF-alpha suppressed ALP activity and F-actin accumulation induced by NaBt. The results suggest that TNF-alpha does not influence significantly the antiproliferative effects of NaBt but, contrary to its potentiation of apoptosis, it markedly reduces NaBt-induced differentiation of HT-29 colon adenocarcinoma cells.

  18. Butyrate Induced Cell Cycle Arrest in Bovine Cells through Targeting Gene Expression relevance to DNA Replication Apparatus

    USDA-ARS?s Scientific Manuscript database

    Using both real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the gene expression relevance to DNA replication apparatus targeted by butyrate. The real-time PCR and Western blot data generally confirmed the microarray analysis. From the quan...

  19. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B

    PubMed Central

    Chen, Jihong; Ghazawi, Feras M; Bakkar, Wafae; Li, Qiao

    2006-01-01

    Background In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood. Results Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death. Conclusion Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival. PMID:17156483

  20. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    USDA-ARS?s Scientific Manuscript database

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  1. Inhibition of store-operated Ca2+ entry counteracts the apoptosis of nasopharyngeal carcinoma cells induced by sodium butyrate

    PubMed Central

    Huang, Wei; Ren, Caiping; Huang, Guoling; Liu, Jie; Liu, Weidong; Wang, Lei; Zhu, Bin; Feng, Xiangling; Shi, Jia; Li, Jinlong; Xia, Xiaomeng; Jia, Wei; Chen, Jiawen; Chen, Yuxiang; Jiang, Xingjun

    2017-01-01

    Sodium butyrate (NaBu), a histone deacetylase inhibitor, has demonstrated anti-tumor effects in several cancers, and is a promising candidate chemotherapeutic agent. However, its roles in nasopharyngeal carcinoma (NPC), an endemic malignant disease in Southern China and Southeast Asia, has rarely been studied. In the present study, MTT assay, colony formation assay, flow cytometry analysis and western blotting were performed to explore the influence of NaBu on NPC cells and its underlying mechanism. NaBu induced morphological changes and inhibited proliferation in 5–8F and 6–10B cells. MTT assay revealed that NaBu was cytotoxic to 5–8F and 6–10B cells in a dose- and time-dependent manner. Furthermore, flow cytometry analysis revealed that NaBu induced obvious cell apoptosis in 5–8F and 6–10B cells due to the activation of the mitochondrial apoptosis axis. In addition, flow cytometry analysis and western blotting demonstrated that NaBu could enhance the Ca2+ influx by promoting store-operated Ca2+ entry (SOCE) in 5–8F and 6–10B cells. Inhibition of SOCE by specific inhibitors or downregulated expression of calcium release-activated calcium channel protein 1 and stromal interaction molecule 1 could counteract the apoptosis of NPC cells induced by NaBu. Thus, the current study revealed that enhanced SOCE and activated mitochondrial apoptosis axis may account for the mechanisms of cytotoxicity of NaBu in NPC cells, and that NaBu serves as a promising chemotherapeutic agent in NPC therapy. PMID:28356979

  2. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  3. In vitro and in vivo study of transcriptome alternation induced by butyrate in cattle using deep RNA-seq

    USDA-ARS?s Scientific Manuscript database

    Short-chain fatty acids (SCFAs,), especially butyrate, affect cell differentiation, proliferation, and motility. Furthermore, butyrate induces cell cycle arrest and apoptosis through its inhibition on histone deacetylases (HDACs). Butyrate is a potent inducer of histone hyper-acetylation in cells a...

  4. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression.

    PubMed

    Tayebi, Behnoosh; Abrishami, Fatemeh; Alizadeh, Shaban; Minayi, Neda; Mohammadian, Mozhdeh; Soleimani, Masoud; Dehghanifard, Ali; Atwan, Hossein; Ajami, Monireh; Ajami, Mansoureh

    2017-02-01

    Context Inherited hemoglobin diseases are the most common single-gene disorders. Induction of fetal hemoglobin in beta hemoglobin disorders compensate for abnormal chain and ameliorate the clinical complications. Sodium butyrate is used conventionally for fetal hemoglobin induction; it can be replaced by safer therapeutic tools like microRNAs, small non-coding RNAs that control number of epigenetic mechanisms. Objective In this study, we compared the changes in the microRNAs of differentiated erythroid cells between control and sodium butyrate treated groups. The objective is to find significant association between these changes and gamma chain up regulation. Materials and methods First, CD133(+ ) hematopoietic stem cells were isolated from cord blood by magnetic cell sorting (MACS) technique. After proliferation, the cells were differentiated to erythroid lineage in culture medium by EPO, SCF, and IL3. Meanwhile, the test group was treated with sodium butyrate. Then, gamma chain upregulation was verified by qPCR technique. Finally, microRNA profiling was performed through microarray assay and some of them confirmed by qPCR. Result Results demonstrated that gamma chain was 5.9-fold upregulated in the treated group. Significant changes were observed at 76 microRNAs, in which 20 were up-regulated and 56 were down-regulated. Discussion Five of these microRNAs including U101, hsa-miR-4726-5p, hsa-miR7109 5p, hsa-miR3663, and hsa-miR940 had significant changes in expression and volume. Conclusion In conclusion, it can be assumed that sodium butyrate can up-regulate gamma chain gene, and change miRNAs expression. These results can be profitable in future studies to find therapeutic goal suitable for such disorders.

  5. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation.

    PubMed Central

    Birren, B W; Taplitz, S J; Herschman, H R

    1987-01-01

    We examined in the H4IIE rat hepatoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequences to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation. Images PMID:3431545

  6. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    USDA-ARS?s Scientific Manuscript database

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  7. Sodium butyrate blocks interferon-gamma (IFN-γ)-induced biosynthesis of MHC class III gene products (complement C4 and factor B) in human fetal intestinal epithelial cells

    PubMed Central

    Kitamura, K; Andoh, A; Inoue, T; Amakata, Y; Hodohara, K; Fujiyama, Y; Bamba, T

    1999-01-01

    Human intestinal epithelial cells have been established as local sites for complement biosynthesis. In this study, we investigated the effects of IFN-γ and sodium butyrate on biosynthesis of MHC class III gene products (complement C4 and factor B) in the human fetal intestinal epithelial cell line INT-407. IFN-γ induced a dose- and time-dependent increase in C4 and factor B secretion. However, sodium butyrate dose-dependently inhibited IFN-γ-induced C4 and factor B secretion. These effects were also observed at the mRNA level. Immunoblotting indicated that IFN-γ induced a rapid activation of Stat1α, and fluorescence immunohistochemistry detected a translocation of Stat1α into the nucleus within 1 h. However, the translocation of Stat1α was not affected by the addition of sodium butyrate. Nuclear run-on assay indicated that IFN-γ induced a weak increase in the transcription rate of factor B gene, and sodium butyrate did not affect this response. IFN-γ and sodium butyrate induced a counter-regulatory effect on C4 and factor B secretion: IFN-γ acted as a potent inducer, but sodium butyrate potently abrogated these responses. These are mainly regulated through the post-transcriptional mechanism. PMID:10540154

  8. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  9. Diallyl disulphide, a beneficial component of garlic oil, causes a redistribution of cell-cycle growth phases, induces apoptosis, and enhances butyrate-induced apoptosis in colorectal adenocarcinoma cells (HT-29).

    PubMed

    Altonsy, Mohammed O; Andrews, Simon C

    2011-01-01

    Colon cancer is a leading and expanding cause of death worldwide. A major contributory factor to this disease is diet composition; some components are beneficial (e.g, dietary fiber), whereas others are detrimental (e.g., alcohol). Garlic oil is a prominent dietary constituent that prevents the development of colorectal cancer. This effect is believed to be mainly due to diallyl disulphide (DADS), which selectively induces redox stress in cancerous (rather than normal) cells that leads to apoptotic cell death. However, the detailed mechanism by which DADS causes apoptosis remains unclear. We show that DADS treatment of colonic adenocarcinoma cells (HT-29) initiates a cascade of molecular events characteristic of apoptosis. These include a decrease in cellular proliferation, translocation of phosphatidylserine to the plasma-membrane outer-layer, activation of caspase-3 and -9, genomic DNA fragmentation, and G(2)/M phase cell-cycle arrest. Short-chain fatty acids (SCFAs), particularly butyrate (abundantly produced in the gut by bacterial fermentation of dietary polysaccharides), enhance colonic cell integrity but, in contrast, inhibit colonic cancer cell growth. Combining DADS with butyrate augmented the apoptotic effect of butyrate on HT-29 cells. These results suggest that the anticancerous properties of DADS afford greater benefit when supplied with other favorable dietary factors (short chain fatty acids/polysaccharides) that likewise reduce colonic tumor development.

  10. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    PubMed

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  11. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors

    PubMed Central

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-01-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy. PMID:12153511

  12. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors.

    PubMed

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-08-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy.

  13. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    PubMed

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis. Copyright © 2016 the American Physiological Society.

  14. Induction of erythroid differentiadon in K562 cells by different butyrate regimens.

    PubMed

    Liu, Zhi-Jie; Qian, Xin-Hua; Li, Xi-Ping; Yao, Ying-Min

    2001-01-01

    OBJECTIVE: To investigate the hemoglobinization induced by butyrate and observe the effects of different butyrate regimens on erythroid differentiation of K562 cells. METHODS: K562 cells, used as an in vitro model system, were stained with benzidine to assess hemoglobin (Hb) production in response to different treatment regimens of butyrate at varied concentrations. Comparison of the percentage of benzidine-positive cells (BZ%)in untreated and butyrate-treated K562 cells was performed. Protein absorption at 414 nm using a spectrophotometer and cellulose acetate gel electrophoresis were employed to determine the changes of Hb production in K562 cells. RESULT: The BZ% increased by 4 to 6 fold and Hb production by 9 to 14 fold 3 d after the cells were incubated with butyrate which selectively promoted fetal hemoglobin(HbF) production in K562 cells. The BZ% increased gradually and reached the peak of l9% to 28% on day 3 or 4 in cells receiving pulse treatment with butyrate for only once, followed by a subsequent rapid fall and on day 7 to 9, it decreased to the level of untreated K562 cells. The length of time for incubation with butyrate was not related to in the increment or the maintenance of the increased level of BZ%. Continuous treatment with butyrate yielded a similar result to that of a single administration of pulse treatment. In contrast, in cells with intermittent pulse treatment the BZ% reached a peak after 72 h and was maintained between 20% and 30% till 3 cycles of treatment was completed. CONCLUSION: Butyrate can induce the expression of globin genes and augment Hb producfion especially that of HbF. A sustained erythroid differentiation of K562 cells can be achieved by intermittent pulse treatment with butyrate which can be an ideal regimen for children with beta globin diseases.

  15. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    SciTech Connect

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: Black-Right-Pointing-Pointer In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. Black-Right-Pointing-Pointer The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). Black-Right-Pointing-Pointer Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. Black-Right-Pointing-Pointer Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  16. Augmentation by 2-mercaptoethanol of in vitro anti-TNP antibody production induced by butyrate plus IL-2 in murine splenic B cells.

    PubMed

    Gohda, Eiichi; Okamura, Takayuki; Aoyama, Eriko; Yamamoto, Itaru

    2003-11-01

    We previously reported that anti-trinitrophenyl (TNP) antibody production in murine splenic B cells stimulated with TNP-lipopolysaccharide in vitro was promoted by sodium butyrate (NaBu) in an IL-2-dependent manner. In the present study, we found that the effect of NaBu plus IL-2 was markedly augmented by 2-mercaptoethanol (2-ME), which showed a slight or null effect on the response of untreated, IL-2-treated or NaBu-treated B cells, as assessed by both anti-TNP plaque-forming cell assay and anti-TNP IgM ELISA. Other thiol compounds such as dithiothreitol, cysteamine and reduced glutathione (GSH) also had this activity. 2-ME enhanced the anti-TNP antibody production induced by other short-chain fatty acids with three to five carbon atoms plus IL-2. The proliferation of B cells was significantly inhibited by NaBu or NaBu plus IL-2, and the proliferation was completely restored by the simultaneous addition of 2-ME. These results demonstrate that 2-ME markedly enhanced anti-TNP antibody production in murine B cells induced by NaBu plus IL-2 and suggest that the effect of 2-ME is at least partly due to its blocking activity of the growth-inhibitory action of NaBu.

  17. Butyrate Regulates the Expression of Inflammatory and Chemotactic Cytokines In Human Acute Leukemic Cells During Apoptosis

    PubMed Central

    Pulliam, Stephanie R.; Pellom, Samuel T.; Shanker, Anil; Adunyah, Samuel E.

    2016-01-01

    Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5 mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24 hours, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines. PMID:27253488

  18. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    PubMed

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways. Published by Elsevier Inc.

  19. Changes in X-ray sensitivity and glutathione content of human colon tumor cells after exposure to the differentiation-inducing agent sodium butyrate

    SciTech Connect

    Leith, J.T.; Hallows, K.T.; Arundel, C.M.; Bliven, S.F.

    1988-06-01

    Clone A human colon cancer cells were exposed to concentrations of sodium butyrate (NAB, 0-2 mM) for three passages in vitro, and responses to either graded single doses or split doses of 250 kVp X rays were determined. The survival data were fit to the single-hit, multitarget model of inactivation. For the graded single dose experiments, we found that NAB produced a decrease in the magnitude of the quasi-threshold (Dq) parameter after a concentration of about 0.9 mM was exceeded. Similarly, in split dose experiments, the amount of sublethal damage recovery (SLDR) was reduced in a concentration-dependent manner as shown by a decrease in the Dq parameter. However, the inhibition of SLDR occurred with no apparent threshold NAB concentration. NAB did not affect potentially lethal damage recovery. Paradoxically, increasing concentrations of NAB produced an exponential increase in the intracellular glutathione content, which could be blocked by exposure of the cells to buthionine sulfoximine (BSO). BSO treatment of NAB-adapted cells led to additional cell killing, again most noted by changes in the Dq parameter. We postulate that these responses are associated with NAB-induced changes in chromatin structure, particularly the association between DNA and nucleosomal histones H3 and H4.

  20. Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression

    PubMed Central

    Sunkara, Lakshmi T.; Achanta, Mallika; Schreiber, Nicole B.; Bommineni, Yugendar R.; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S.; Beker, Ali; Teeter, Robert G.; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  1. Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells.

    PubMed

    Hu, Shien; Liu, Lan; Chang, Eugene B; Wang, Jian-Ying; Raufman, Jean-Pierre

    2015-10-13

    Compromised colonic butyrate production resulting from low dietary fiber or altered gut microbiota may promote colon neoplasia. Previous reports indicate these actions are mediated in part by altered levels of miRNAs, including suppressed expression of the oncogenic miR-17-92a cluster. Here, we sought to identify the mechanisms underlying these effects of butyrate in colon cancer. miR-92a levels were measured in archived human colon cancer and adjacent normal colon specimens by microarray and quantitative RT-PCR (qPCR). The effects of butyrate and other histone deacetylase inhibitors (suberoylanilide hydroxamic acid (SAHA) and valproic acid) on primary (pri-miR17-92a), precursor and mature miR-92a were analyzed in HCT-116 and HT-29 human colon cancer cells using qPCR. The effects of butyrate, SAHA and valproic acid on protein levels of c-Myc, Drosha and p57 were measured in HCT-116 cells using immunoblotting. Regulation of C13orf25 promoter activity by butyrate was analyzed by luciferase reporter assay using modified pGL3 constructs containing a wild-type or mutated c-Myc binding site. Expression of c-Myc was modulated using siRNA or adenovirus vectors. p57 mRNA and protein were measured before and after transfection with miR-92a-mimic molecules. Following butyrate treatment and miR-92a-mimic transfection, apoptosis was analyzed by TUNEL staining and caspase-3 immunoblotting. Microarray, confirmed by qPCR, revealed a seven-fold increase in miR-92a levels in sporadic human colon cancer tissue compared to adjacent normal colon. Treating human colon cancer cells with butyrate reduced the levels of pri-miR17-92a, precursor and mature miR-92a, as well as c-Myc. SAHA and valproic acid had similar effects. Mutation of the c-Myc binding site diminished butyrate's inhibitory effects on C13orf25 promoter activity. Silencing c-Myc expression reduced miR-92a levels. c-Myc over-expression neutralized butyrate-induced attenuation of pri-miR17-92a. Exogenous miR-92a inhibited

  2. Effect of Butyrate on Collagen Expression, Cell Viability, Cell Cycle Progression and Related Proteins Expression of MG-63 Osteoblastic Cells

    PubMed Central

    Chang, Mei-Chi; Tsai, Yi-Ling; Liou, Eric Jein-Wein; Tang, Chia-Mei; Wang, Tong-Mei; Liu, Hsin-Cheng; Liao, Ming-Wei; Yeung, Sin-Yuet; Chan, Chiu-Po; Jeng, Jiiang-Huei

    2016-01-01

    Aims Butyric acid is one major metabolic product generated by anaerobic Gram-negative bacteria of periodontal and root canal infection. Butyric acid affects the activity of periodontal cells such as osteoblasts. The purposes of this study were to investigate the effects of butyrate on MG-63 osteoblasts. Methods MG-63 cells were exposed to butyrate and cell viability was estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mRNA and protein expression of type I collagen and cell cycle-related proteins were measured by reverse-transcriptase polymerase chain reaction (RT-PCR), western blotting or immunofluorescent staining. Cellular production of reactive oxygen species (ROS) was analyzed by 2',7'-dichlorofluorescein (DCF) fluorescence flow cytometry. Results Exposure to butyrate suppressed cell proliferation, and induced G2/M (8 and 16 mM) cell cycle arrest of MG-63 cells. Some cell apoptosis was noted. The mRNA expression of cdc2 and cyclin-B1 decreased after exposure to butyrate. The protein expression of type I collagen, cdc2 and cyclin B1 were decreased, whereas the expression of p21, p27 and p57 was stimulated. Under the treatment of butyrate, ROS production in MG-63 cells markedly increased. Conclusions The secretion of butyric acid by periodontal and root canal microorganisms may inhibit bone cell growth and matrix turnover. This is possibly due to induction of cell cycle arrest and ROS generation and inhibition of collagen expression. These results suggest the involvement of butyric acid in the pathogenesis of periodontal and periapical tissue destruction by impairing bone healing responses. PMID:27893752

  3. Butyrate stimulates tissue-type plasminogen-activator synthesis in cultured human endothelial cells.

    PubMed Central

    Kooistra, T; van den Berg, J; Töns, A; Platenburg, G; Rijken, D C; van den Berg, E

    1987-01-01

    Incubation of cultured human endothelial cells with 5 mM-dibutyryl cyclic AMP led to an approx. 2-fold increase in tissue-type plasminogen-activator (t-PA) production over a 24 h incubation period. The stimulating effect of dibutyryl cyclic AMP could be explained by the slow liberation of butyrate, as the effect could be reproduced by addition of free butyrate to the medium, but not by addition of 8-bromo cyclic AMP or forskolin, agents known to raise intracellular cyclic AMP levels. With butyrate, an accelerated accumulation of t-PA antigen in the conditioned medium (CM) was observed after a lag period of about 6 h. Increasing amounts of butyrate caused an increasingly stimulatory effect, reaching a plateau at 5 mM-butyrate. The relative enhancement of t-PA production in the presence of 5 mM-butyrate varied among different endothelial cell cultures from 6- to 25-fold in 24 h CM. Such an increase in t-PA production was observed with both arterial and venous endothelial cells. The butyrate-induced increases in t-PA production were accompanied by increased t-PA mRNA levels. Analysis of radiolabelled CM and cell extracts by SDS/polyacrylamide-gel electrophoresis indicated that the potent action of butyrate is probably restricted to a small number of proteins. The accumulation of plasminogen activator inhibitor type 1 (PAI-1) in CM from butyrate-treated cells varied only moderately. In our study of the relationship between structure and stimulatory activity, we found that a straight-chain C4 monocarboxylate structure with a methyl group at one end and a carboxy moiety at the other seems to be required for the optimal induction of t-PA in cultured endothelial cells. Images Fig. 2. Fig. 3. Fig. 5. Fig. 7. PMID:2827633

  4. Sustained Induction of Fetal Hemoglobin by Pulse Butyrate Therapy in Sickle Cell Disease

    PubMed Central

    Atweh, George F.; Sutton, Millicent; Nassif, Imad; Boosalis, Vassiliki; Dover, George J.; Wallenstein, Sylvan; Wright, Elizabeth; McMahon, Lillian; Stamatoyannopoulos, George; Faller, Douglas V.; Perrine, Susan P.

    2014-01-01

    High levels of fetal hemoglobin (Hb F) protect from many of the complications of sickle cell disease and lead to improved survival. Butyrate and other short chain fatty acids were previously shown to increase Hb F production in erythroid cells in vitro and in animal models in vivo. However, butyrates are also known to inhibit the proliferation of many cell types, including erythroid cells. Experience with the use of butyrate in animal models and in early clinical trials demonstrated that the Hb F response may be lost after prolonged administration of high doses of butyrate. We hypothesized that this loss of response may be a result of the antiproliferative effects of butyrate. We designed a regimen consisting of intermittent or pulse therapy in which butyrate was administered for 4 days followed by 10 to 24 days with no drug exposure. This pulse regimen induced fetal globin gene expression in 9 of 11 patients. The mean Hb F in this group increased from 7.2% to 21.0% (P < .002) after intermittent butyrate therapy for a mean duration of 29.9 weeks. This was associated with a parallel increase in the number of F cells and F reticulocytes. The total hemoglobin levels also increased from a mean of 7.8 g/dL to a mean of 8.8 g/dL (P < .006). The increased levels of Hb F were sustained in all responders, including 1 patient who has been on pulse butyrate therapy for more than 28 months. This regimen, which resulted in a marked and sustained increase in Hb F levels in more than two thirds of the adult sickle cell patients enrolled in this study, was well tolerated without adverse side effects. These encouraging results require confirmation along with an appropriate evaluation of clinical outcomes in a larger number of patients with sickle cell disease. PMID:10068649

  5. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    SciTech Connect

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or

  6. The induction of vimentin gene expression by sodium butyrate in human promonocytic leukemia U937 cells

    SciTech Connect

    Rius, C.; Aller, P. ); Cabanas, C. Universidad Complutense, Madrid )

    1990-05-01

    The administration of 1 mM sodium butyrate induced the phenotypic differentiation of human promonocytic leukemia U937 cells, as judged by the expression of cD11b and cD11c antigens, two differentiation-specific surface markers. At the same time, butyrate greatly induced the expression at the mRNA level of the vimentin gene. The increase in the level of this RNA started at 6 hours of treatment and reached the maximum at Hour 24. Such an increase was caused at least in part by a stimulation in the rate of gene transcription, as suggested by transcription assays in isolated nuclei. Experiments in the presence of cycloheximide suggested that vimentin induction is probably a direct response to the action of butyrate, not mediated by the prior induction of other gene products. Unlike the case the vimentin, the levels of other RNAs, namely {beta}-actin ornithine decarboxylase, and c-myc, were not enhanced, but they decreased at different times of treatment with butyrate. Finally, the authors observed that butyrate induced also the differentiation of HL60 cells, another human myeloid cell type. Nevertheless, the drug failed to stimulate the expression of vimentin in this cell line.

  7. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells

    PubMed Central

    Yan, Hui; Ajuwon, Kolapo M.

    2015-01-01

    Short chain fatty acids (SCFA), products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity. PMID:26713737

  8. Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells.

    PubMed

    Wippermann, Anna; Rupp, Oliver; Brinkrolf, Karina; Hoffrogge, Raimund; Noll, Thomas

    2016-11-24

    The cellular mechanisms responsible for the versatile properties of CHO cells as the major production cell line for biopharmaceutical molecules are not entirely understood yet, although several 'omics' data facilitate the understanding of CHO cells and their reactions to environmental conditions. However, genome-wide studies of epigenetic processes such as DNA methylation are still limited. To prove the applicability and usefulness of integrating DNA methylation and gene expression data in a biotechnological context, we exemplarily analyzed the time course of cellular reactions upon butyrate addition in antibody-producing CHO cells by whole-genome bisulfite sequencing and CHO-specific cDNA microarrays. Gene expression and DNA methylation analyses showed that pathways known to be affected by butyrate, including cell cycle and apoptosis, as well as pathways potentially involved in butyrate-induced hyperproductivity such as central energy metabolism and protein biosynthesis were affected. Differentially methylated regions were furthermore found to contain binding-site motifs of specific transcription factors and were hypothesized to represent regulatory regions closely connected to the cellular response to butyrate. Generally, our experiment underlines the benefit of integrating DNA methylation and gene expression data, as it provided potential novel candidate genes for rational cell line development and allowed for new insights into the butyrate effect on CHO cells.

  9. Alternate splicing regulated by butyrate in the bovine epithelial cell

    USDA-ARS?s Scientific Manuscript database

    As a signaling molecule and a potent inhibitor of histone deacetylases (HADCs), butyrate exerts its impacts on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. In this study, we examined the effect of...

  10. Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG108-15 and NCB-20 cells

    SciTech Connect

    Zhu, X.Z.; Chuang, D.M.

    1987-08-31

    The authors previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha/sub 2/-adrenergic receptors. In the present study the authors investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of /sup 3/H-clonidine. A comparable increase in the number of binding sites was detected when /sup 3/H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha/sub 2/-adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids. 22 references, 2 figures, 2 tables.

  11. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    PubMed

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs.

  12. The synergistic effect of 1'-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells.

    PubMed

    Kato, Rie; Matsui-Yuasa, Isao; Azuma, Hideki; Kojima-Yuasa, Akiko

    2014-04-05

    It has been suggested that the combined effect of natural products may improve the effect of treatment against the proliferation of cancer cells. In this study, we evaluated the combination of 1'-acetoxychavicol acetate (ACA), obtained from Alpinia galangal, and sodium butyrate, a major short chain fatty acid, on the growth of HepG2 human hepatocellular carcinoma cells and found that treatment had a synergistic inhibitory effect. The number of HepG2 cells was synergistically decreased via apoptosis induction when cells were treated with both ACA and sodium butyrate. In ACA- and sodium butyrate-treated cells, intracellular reactive oxygen species (ROS) levels and NADPH oxidase activities were increased significantly. The decrease in cell number after combined treatment of ACA and sodium butyrate was diminished when cells were pretreated with catalase. These results suggest that an increase in intracellular ROS levels is involved in cancer cell death. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays an essential role in controlling processes related to tumor development. In ACA- and sodium butyrate-treated cells, AMPK phosphorylation was induced significantly, and this induction improved when cells were pretreated with catalase. These results suggest that the increase in intracellular ROS is involved in the increase of AMPK phosphorylation. In normal hepatocyte cells, treatment with ACA and sodium butyrate did not decrease cell numbers or increase ROS levels. In conclusion, combined treatment with ACA and sodium butyrate synergistically induced apoptotic cell death via an increase in intracellular ROS and phosphorylation of AMPK. Our findings may provide new insight into the development of novel combination therapies against hepatocellular carcinoma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  14. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

    PubMed

    Peng, Luying; Li, Zhong-Rong; Green, Robert S; Holzman, Ian R; Lin, Jing

    2009-09-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.

  15. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    PubMed Central

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  16. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount.

  17. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells.

    PubMed

    Jung, YunJae

    2015-12-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity.

  18. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  19. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.

    PubMed

    Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B

    2017-08-31

    Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.

  20. Mechanism of butyrate-induced vasorelaxation of rat mesenteric resistance artery.

    PubMed Central

    Aaronson, P. I.; McKinnon, W.; Poston, L.

    1996-01-01

    1. The vasorelaxant effect of the sodium salt of the short chain fatty acid, butyrate, on preconstricted rat small mesenteric arteries (mean inner diameter approximately 300 microns) was characterized. Isometric force development was measured with a myograph, and intracellular pH (pHi) was simultaneously monitored, in arteries loaded with the fluorescent dye BCECF in its acetomethoxy form. Sodium butyrate (substituted isosmotically for NaCl) was applied to arteries after noradrenaline (NA) or high K+ contractures were established. 2. Arteries preconstricted with a concentration of NA inducing an approximately half maximal contraction were relaxed by 91.5 +/- 6.3% by 50 mmol l-1 butyrate. This concentration of butyrate did not, however, cause a significant relaxation of contractures to a maximal (5 mumol l-1) NA concentration, and also failed to relax significantly contractures stimulated by high (45 and 90 mmol l-1) K+ solutions. Contractures elicited with a combination of NA (at a submaximal concentration) and 45 mmol l-1 K+ were, however, markedly relaxed by butyrate. 3. Investigation of the concentration-dependency of the butyrate-induced relaxation of the half maximal NA response revealed an EC50 for butyrate of approximately 22 mmol l-1. 4. Sodium butyrate (50 mmol l-1) caused pHi to decrease from 7.25 +/- 0.02 to 6.89 +/- 0.08 (n = 4, P < 0.001). However, the vasorelaxant effect of butyrate on the submaximal NA contracture was not significantly modified when this fall in intracellular pH was prevented by the simultaneous application of NH4Cl. 5. Butyrate-induced relaxation was also unaffected by endothelial denudation and inhibition of NO synthase with N omega-nitro-L-arginine methyl ester (100 mumol l-1). 6. The relaxation of the NA contracture by 50 mmol l-1 sodium butyrate was abolished in arteries pretreated with the cyclic AMP antagonist Rp-cAMPS (25 mumol l-1). 7. We conclude that the butyrate-induced relaxation of the NA contracture is independent of

  1. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells

    PubMed Central

    Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C

    2012-01-01

    BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973

  2. Butyrate inhibits cancerous HCT116 cell proliferation but to a lesser extent in noncancerous NCM460 colon cells

    USDA-ARS?s Scientific Manuscript database

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser...

  3. Butyrate-rich Colonic Microenvironment Is a Relevant Selection Factor for Metabolically Adapted Tumor Cells*

    PubMed Central

    Serpa, Jacinta; Caiado, Francisco; Carvalho, Tânia; Torre, Cheila; Gonçalves, Luís G.; Casalou, Cristina; Lamosa, Pedro; Rodrigues, Margarida; Zhu, Zhenping; Lam, Eric W. F.; Dias, Sérgio

    2010-01-01

    The short chain fatty acid (SCFA) buyrate is a product of colonic fermentation of dietary fibers. It is the main source of energy for normal colonocytes, but cannot be metabolized by most tumor cells. Butyrate also functions as a histone deacetylase (HDAC) inhibitor to control cell proliferation and apoptosis. In consequence, butyrate and its derived drugs are used in cancer therapy. Here we show that aggressive tumor cells that retain the capacity of metabolizing butyrate are positively selected in their microenvironment. In the mouse xenograft model, butyrate-preselected human colon cancer cells gave rise to subcutaneous tumors that grew faster and were more angiogenic than those derived from untreated cells. Similarly, butyrate-preselected cells demonstrated a significant increase in rates of homing to the lung after intravenous injection. Our data showed that butyrate regulates the expression of VEGF and its receptor KDR at the transcriptional level potentially through FoxM1, resulting in the generation of a functional VEGF:KDR autocrine growth loop. Cells selected by chronic exposure to butyrate express higher levels of MMP2, MMP9, α2 and α3 integrins, and lower levels of E-cadherin, a marker for epithelial to mesenchymal transition. The orthotopic model of colon cancer showed that cells preselected by butyrate are able to colonize the animals locally and at distant organs, whereas control cells can only generate a local tumor in the cecum. Together our data shows that a butyrate-rich microenvironment may select for tumor cells that are able to metabolize butyrate, which are also phenotypically more aggressive. PMID:20926374

  4. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate

    PubMed Central

    Schmidt, Angelika; Eriksson, Matilda; Shang, Ming-Mei; Weyd, Heiko; Tegnér, Jesper

    2016-01-01

    Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-β in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases. PMID:26886923

  5. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  6. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    PubMed

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  7. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells

    PubMed Central

    Zeng, Huawei; Taussig, David P.; Cheng, Wen-Hsing; Johnson, LuAnn K.; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells. PMID:28045428

  8. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion*

    PubMed Central

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G.

    2013-01-01

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes. PMID:23836895

  9. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion.

    PubMed

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G

    2013-08-30

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes.

  10. Sodium Butyrate Protects against Severe Burn-Induced Remote Acute Lung Injury in Rats

    PubMed Central

    Liu, Sheng; Guo, Feng; Sun, Li; Wang, Yong-Jie; Sun, Ye-Xiang; Chen, Xu-Lin

    2013-01-01

    High-mobility group box 1 protein (HMGB1), a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI). Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague–Dawley rats were divided into three groups: 1) sham group, sham burn treatment; 2) burn group, third-degree burns over 30% total body surface area (TBSA) with lactated Ringer’s solution for resuscitation; 3) burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer’s solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D) ratio. Tumor necrosis factor (TNF)-α and interleukin (IL)-8 protein concentrations in bronchoalveolar lavage fluid (BALF) and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO) activity and malondialdehyde (MDA) concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  11. Characterization of the Pro-Inflammatory Cytokine IL-1β on Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Johnstone, Megan; Bennett, Natalie; Standifer, Cynthia; Smith, Alexis; Han, Anna; Bettaieb, Ahmed; Whelan, Jay; Donohoe, Dallas R

    2017-06-01

    Cancer, in part, is driven, by alterations in cellular metabolism that promote cell survival and cell proliferation. Identifying factors that influence this shift in cellular metabolism in cancer cells is important. Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that has been reported to be elevated in colorectal cancer patients. While much is known toward the effect of dietary nutrients on regulating inflammation and the inflammatory response, which includes cytokines such as IL-1β, far less is understood how cytokines impact nutrient fate to alter cancer cell metabolism. Butyrate, a nutrient derived from the fermentation of dietary fiber in the colon, is the preferential exogenous energetic substrate used by non-cancerous colonocytes, but is used less efficiently by colorectal cancer cells. To test whether IL-1β alters colonocyte energy metabolism, we measured butyrate oxidation in HCT116 colorectal cancer cells with and without IL-1β. We hypothesize that IL-1β will push cancerous colonocytes away from the utilization and oxidation of butyrate. In this study, we demonstrate that pretreatment of colorectal cancer cells with IL-1β diminished butyrate oxidation and NADH levels. This effect was blocked with the interleukin receptor antagonist A (IL-1RA). Moreover, IL-1β suppressed basal mitochondrial respiration and lowered the mitochondrial spare capacity. By using inhibitors to block downstream targets of the interleukin-1 receptor pathway, we show that p38 is required for the IL-1β-mediated decrease in butyrate oxidation. These data provide insight into the metabolic effects induced by IL-1β in colorectal cancer, and identify relevant targets that may be exploited to block the effects of this cytokine. J. Cell. Biochem. 118: 1614-1621, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells.

    PubMed

    Mathew, Omana P; Ranganna, Kasturi; Yatsu, Frank M

    2010-12-01

    HDACs and HATs regulate histone acetylation, an epigenetic modification that controls chromatin structure and through it, gene expression. Butyrate, a dietary HDAC inhibitor, inhibits VSMC proliferation, a crucial factor in atherogenesis, and the principle mechanism in arterial and in-stent restenosis. Here, the link between antiproliferation action of butyrate and the portraits of global covalent modifications of histone H3 that it induces are characterized to understand the mechanics of butyrate-arrested VSMC proliferation. Analysis of histone H3 modifications specific to butyrate arrested VSMC proliferation display induction of histone H3-Lysine9 acetylation, inhibition of histone H3-Serine10 phosphorylation, reduction of histone H3-Lysine9 dimethylation and stimulation of histone H3-Lysine4 di-methylation, which is linked to transcriptional activation, cell cycle/mitosis, transcriptional suppression and activation, respectively. Conversely, untreated VSMCs exhibit inhibition of H3-Lysine9 acetylation, induction of H3-Serine10 phosphorylation, stimulation of H3-Lysine9 di-methylation and reduction in H3-Lysine4 di-methylation. Butyrate's cooperative effects on H3-Lysine9 acetylation and H3-Serine10 phosphorylation, and contrasting effects on di-methylation of H3-Lysine9 and H3-Lysine4 suggests that the interplay between these site-specific modifications cause distinct chromatin alterations that allow cyclin D1 and D3 induction, G1-specific cdk4, cdk6 and cdk2 downregulation, and upregulation of cdk inhibitors, p15INK4b and p21Cip1. Regardless of butyrate's effect on D-type cyclins, downregulation of G1-specific cdks and upregulation of cdk inhibitors by butyrate prevents cell cycle progression by failing to inactivate Rb. Overall, through chromatin remodeling, butyrate appears to differentially alter G1-specific cell cycle proteins to ensure proliferation arrest of VSMCs, a crucial cellular component of blood vessel wall.

  13. Butyrate plays differential roles in cellular signaling in cancerous HCT116 and noncancerous NCM460 colon cells

    USDA-ARS?s Scientific Manuscript database

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects in colon. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate plays differential roles in cancerous and non-cancerous cells through si...

  14. Two cytotoxic cell proteinase genes are differentially sensitive to sodium butyrate.

    PubMed Central

    Frégeau, C J; Helgason, C D; Bleackley, R C

    1992-01-01

    The 5'-flanking regions of two cytotoxic cell protease genes, CCP1 and 2, are sufficient to confer cytotoxic T lymphocyte-specific expression when fused to a reporter gene. The two regulatory regions are, however, differentially sensitive to treatment of the recipient cell, MTL 2.8.2, with sodium butyrate. With CCP1 a six-fold increase in cat expression was observed, whereas CCP2 was insensitive to the butyrate treatment. One major butyrate-sensitive regions was defined in the CCP1 5'-flanking sequence between -243 to -112 and another less effective one between-682 to -427. These fragments of DNA were also able to confer responsiveness to butyrate when ligated to a heterologous fos promoter. These sequences within the 5' flank of CCP1 share homology with other elements that have been defined as butyrate-responsive. We believe that our results argue against a pleiotropic affect of butyrate such as histone acetylation. More likely sodium butyrate is mediating a specific stimulation of transcription through modification of the activities of selected transcriptional regulatory proteins that in turn affect their interactions with proteins bound to the promoter. Images PMID:1620608

  15. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    SciTech Connect

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J. . E-mail: gerhard.zlabinger@meduniwien.ac.at

    2006-10-20

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-{alpha} transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling.

  16. Effect of sodium butyrate on induction of cellular and viral DNA syntheses in polyoma virus-infected mouse kidney cells.

    PubMed Central

    Wawra, E; Pöckl, E; Müllner, E; Wintersberger, E

    1981-01-01

    Sodium butyrate inhibited initiation of viral and cellular DNA replication in polyoma virus-infected mouse kidney cells. Ongoing viral or cellular DNA replication, however, was not affected by the presence of the substance. Butyrate had no effect on T-antigen synthesis and on the stimulation of transcription, one of the earliest reactions of the infected cells to the appearance of T-antigen, nor did it inhibit expression of late viral genes (synthesis of viral capsid proteins). In addition to blocking the onset of DNA synthesis, butyrate also inhibited stimulation of the activities of enzymes involved in DNA synthesis. When butyrate was removed, viral and cellular DNA syntheses were induced in parallel after a lag period of approximately 4 h. At the same time, the activities of enzymes involved in DNA synthesis increase. If protein synthesis was inhibited during part of the lag period, the initiation of DNA synthesis was retarded for the same time interval, suggesting that the proteins involved in the initiation of DNA replication had to be made. We have developed an in vitro system for measuring DNA synthesis in crude nuclear preparations which mimics the status of DNA replication in intact cells and may help in future experiments to study the requirements for initiation of cellular and viral DNA synthesis and the possible involvement of T-antigens in this reaction. Images PMID:6264167

  17. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases.

    PubMed

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D; Martin, Pamela M; Lambert, Nevin A; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-09-03

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.

  18. Blockade of Dendritic Cell Development by Bacterial Fermentation Products Butyrate and Propionate through a Transporter (Slc5a8)-dependent Inhibition of Histone Deacetylases

    PubMed Central

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D.; Martin, Pamela M.; Lambert, Nevin A.; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-01-01

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na+-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8−/− and Gpr109a−/− mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate. PMID:20601425

  19. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc.

  20. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.

    PubMed

    Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa

    2014-10-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    PubMed Central

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  2. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    PubMed

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  3. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line.

    PubMed

    Kekuda, Ramesh; Manoharan, Palanikumar; Baseler, Walter; Sundaram, Uma

    2013-03-01

    Short chain fatty acids (SCFA) are absorbed by carrier mediated uptake in the small intestine by pH-dependent SCFA/HCO3 (-) exchangers on the apical membrane of epithelial cells. Conventional assumption is that MCT1 mediates SCFA/HCO3 (-) exchange in the intestine. Further, due to the presence of multiple such anion exchangers, the identity of the intestinal SCFA/HCO3 (-) has been controversial. The aim of this study was to determine the identities of the butyrate transporter in the intestinal epithelial cells (IEC-18). IEC-18 cells were treated with specific siRNAs for MCT1 and MCT4, and butyrate and lactate uptake studies were performed. Alpha-cyano-4-hydroxycinnamic acid inhibited lactate uptake but not butyrate uptake in IEC-18 cells, indicating that these two substrates are transported via two different transporter systems. MCT1 siRNA treatment abolished both MCT1 mRNA by more than 95 % and protein expression by 83 % as evidenced by RTQ-PCR and western blotting experiments. However, MCT1 siRNA treatment inhibited butyrate uptake upto 24 %, whereas it inhibited lactate uptake significantly by 70 %. Treatment with MCT4 siRNA inhibited MCT4 mRNA expression by 75 % and protein expression by 85 % in these cells. MCT4 siRNA inhibited butyrate uptake by 40 %. Further, several non-steroidal anti-inflammatory drugs (NSAIDs) are transported by the butyrate transporter. Finally, MCT4 siRNA inhibited salicylate uptake by 27 % indicating direct evidence for the transport of salicylate by MCT4. These data indicate that MCT1 is the high affinity lactate transporter and MCT4 is the high affinity butyrate transporter in the intestinal epithelial cell line IEC-18.

  4. Increased butyrate formation in the pig colon by feeding raw potato starch leads to a reduction of colonocyte apoptosis and a shift to the stem cell compartment.

    PubMed

    Mentschel, J; Claus, R

    2003-11-01

    Whereas butyrate is well known to induce apoptosis in transformed colon cells in vitro, evidence exists that it inhibits apoptosis of colon crypt cells in vivo. In this study, pigs were fed with resistant potato starch to increase microbial butyrate formation in the colon and to investigate its effects on mitosis and apoptosis. In addition, apoptosis regulating proteins were determined by immunocytochemistry, such as proapoptotic Bak, antiapoptotic Bcl-2, and the epidermal growth factor (EGF), which is synthesized by goblet cells and functions as a survival factor. Two groups of 6 barrows were both supplied with 381 g crude protein and 31 MJ metabolizable energy (ME) daily over a 19-day experimental period. The rations differed in the carbohydrate composition. The controls received gelatinized starch as the main carbohydrate, whereas the experimental group (butyrate group) received a ration with raw potato starch (low ileal digestibility). In the feces, butyrate concentration and pH were monitored daily. After killing the pigs, colon tissue was obtained for histologic and immunocytochemical evaluation, which was performed separately in the luminal, middle, and stem cell compartment of the crypts. In the butyrate group, the total number of apoptotic cells was reduced by 34% (P< or =.001) compared with controls, whereas the mitotic rate was not altered. The crypt depth was only moderately increased by 15%. Apoptosis in the luminal compartment of the butyrate group was reduced by 18.8%, but was increased by 21.7% in the stem cell compartment. The effect of butyrate on apoptosis was paralleled by an increased number of Bcl-2 positive cells mainly in the luminal compartment (butyrate: 2.6 cells; controls: 1.2 cells, P< or =.001), which was more pronounced compared with the number of Bak positive cells in the same compartment. Bak activity in the stem cell compartment was 3.4-fold increased compared with controls (P< or =.001). The size of EGF-positive stained mucus

  5. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    PubMed

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  6. In Vivo Regulation of Colonic Cell Proliferation, Differentiation, Apoptosis and P27Kip1 by Dietary Fish Oil and Butyrate in Rats

    PubMed Central

    Hong, Mee Young; Turner, Nancy D.; Murphy, Mary E.; Carroll, Raymond J.; Chapkin, Robert S.; Lupton, Joanne R.

    2015-01-01

    We have shown that dietary fish oil is protective against experimentally-induced colon cancer and the protective effect is enhanced by co-administration of pectin. However, the underlying mechanism(s) have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27Kip1 mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24 or 48 h post azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL) and p27Kip1 (cell cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N7-methylguanine) was determined by quantitative immunohistochemical analysis. Dietary fish oil decreased DNA damage by 19% (P=0.001) and proliferation by 50% (P=0.003) and increased differentiation by 56% (P=0.039) compared to corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 h post AOM injection compared to a corn oil/butyrate diet (P=0.039). There was an inverse relationship between crypt height and apoptosis in fish oil/butyrate group (r= −0.53, P=0.040). Corn oil/butyrate group showed a positive correlation between p27Kip1 expression and proliferation (r= 0.61, P=0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. PMID:26323483

  7. Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells.

    PubMed

    Leschelle, X; Delpal, S; Goubern, M; Blottière, H M; Blachier, F

    2000-11-01

    Butyrate is a short chain fatty acid (SCFA) produced by bacterial fermentation of dietary fibers in the colon lumen which severely affects the proliferation of colon cancer cells in in vitro experiments. Although butyrate is able to interfere with numerous cellular targets including cell cycle regulator expression, little is known about butyrate metabolism and its possible involvement in its effect upon colon carcinoma cell growth. In this study, we found that HT-29 Glc-/+ cells strongly accumulated and oxidized sodium butyrate without producing ketone bodies, nor modifying oxygen consumption nor mitochondrial ATP synthesis. HT-29 cells accumulated and oxidized sodium acetate at a higher level than butyrate. However, sodium butyrate, but not sodium acetate, reduced cell growth and increased the expression of the cell cycle effector cyclin D3 and the inhibitor of the G1/S cdk-cyclin complexes p21/WAF1/Cip1, demonstrating that butyrate metabolism downstream of acetyl-CoA synthesis is not required for the growth-restraining effect of this SCFA. Furthermore, HT-29 cells modestly incorporated the 14C-labelled carbon from sodium butyrate into cellular triacylglycerols and phospholipids. This incorporation was greatly increased when D-glucose was present in the incubation medium, corresponding to the capacity of hexose to circulate in the pentose phosphate pathway allowing NADPH synthesis required for lipogenesis. Interestingly, when HT-29 cells were cultured in the presence of sodium butyrate, their capacity to incorporate 14C-labelled sodium butyrate into triacylglycerols and phospholipids was increased more than twofold. In such experimental conditions, HT-29 cells when observed under an electronic microscope, were found to be characterized by an accumulation of lipid droplets in the cytosol. Our data strongly suggest that butyrate acts upon colon carcinoma cells upstream of acetyl-CoA synthesis. In contrast, the metabolism downstream of acetyl-CoA [i.e. oxidation in

  8. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  9. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis.

    PubMed

    Simeoli, Raffaele; Mattace Raso, Giuseppina; Pirozzi, Claudio; Lama, Adriano; Santoro, Anna; Russo, Roberto; Montero-Melendez, Trinidad; Berni Canani, Roberto; Calignano, Antonio; Perretti, Mauro; Meli, Rosaria

    2017-06-01

    Butyrate has shown benefits in inflammatory bowel diseases. However, it is not often administered orally because of its rancid smell and unpleasant taste. The efficacy of a more palatable butyrate-releasing derivative, N-(1-carbamoyl-2-phenylethyl) butyramide (FBA), was evaluated in a mouse model of colitis induced by dextran sodium sulphate (DSS). Male 10 week-old BALB/c mice received DSS (2.5%) in drinking water (for 5 days) followed by DSS-free water for 7 days (DSS group). Oral FBA administration (42.5 mg·kg(-1) ) was started 7 days before DSS as preventive (P-FBA), or 2 days after DSS as therapeutic (T-FBA); both treatments lasted 19 days. One DSS-untreated group received only tap water (CON). FBA treatments reduced colitis symptoms and colon damage. P-FBA and T-FBA significantly decreased polymorphonuclear cell infiltration score compared with the DSS group. FBA reversed the imbalance between pro- and anti-inflammatory cytokines (reducing inducible NOS protein expression, CCL2 and IL-6 transcripts in colon and increasing TGFβ and IL-10). Morever, P-FBA and T-FBA limited neutrophil recruitment (by expression and localization of the neutrophil granule protease Ly-6G), restored deficiency of the butyrate transporter and improved intestinal epithelial integrity, preventing tight-junction impairment (zonulin-1 and occludin). FBA, similar to its parental compound sodium butyrate, inhibited histone deacetylase-9 and restored H3 histone acetylation, exerting an anti-inflammatory effect through NF-κB inhibition and the up-regulation of PPARγ. FBA reduces inflammatory intestinal damage in mice indicating its potential as a postbiotic derivative without the problems associated with the oral administration of sodium butyrate. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British

  10. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress.

    PubMed

    Kabel, Ahmed M; Omar, Mohamed S; Elmaaboud, Maaly A Abd

    2016-10-01

    Bleomycin is one of the anticancer agents used frequently in management of various types of tumors. Pulmonary fibrosis is the major limiting factor for the use of bleomycin. Mechanisms of fibrosis may include disordered wound healing, infiltration with inflammatory cells and fibroblasts and release of reactive oxygen species and growth factors. The aim of this study was to investigate the effect of valproic acid and butyrate on lung fibrosis induced by bleomycin, and to clarify their mechanisms of action. Fifty male Wistar rats were divided into 5 equal groups as follows: control group; bleomycin group; bleomycin+valproic acid group; bleomycin+butyrate group and bleomycin+valproic acid+butyrate group. Weight of rats, lung tissue hydroxyproline, malondialdehyde, superoxide dismutase and catalase were measured. Also, bronchoalveolar lavage (BAL) was analyzed for total and differential leukocytic count, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor-beta 1 (TGF-β1). Lung tissue was examined histopathologically and immunostained for nuclear factor kappa B (NF-κB). Valproic acid and/or butyrate resulted in significant improvement of the body weight gain, oxidative stress, TGF-β1, IL-6, TNF-α, hydroxyproline and BAL cellularity together with significant improvement of the histopathological and immunohistochemical picture. The use of valproic acid/butyrate combination was better than the use of each of these drugs alone in bleomycin-induced pulmonary fibrosis. In conclusion, valproic acid/butyrate combination may be used prophylactically for amelioration of bleomycin-induced pulmonary fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Butyrate Histone Deacetylase Inhibitors

    PubMed Central

    Boosalis, Michael S.; Perrine, Susan P.; Sangerman, José

    2012-01-01

    Abstract In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition. PMID:23514803

  12. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.

    PubMed

    Liu, Hong; Cheng, Shaoan; Logan, Bruce E

    2005-01-15

    Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/ L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 ohms) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 ohms). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power outputwere higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10-31 and 3-7% for acetate and 8-15 and 2-5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.

  13. Chlorambucil-sensitive and -resistant lymphoid cells display different responses to the histone deacetylase inhibitor, sodium butyrate.

    PubMed

    Kwa, Faith A A; Cole-Sinclair, Merrole; Kapuscinski, Miroslav

    2010-12-17

    Clinical chemoresistance is a frequent complication of alkylating agent treatment of malignant tumours. Chromatin remodelling using histone deacetylase inhibitors (e.g., sodium butyrate, NaBu) may increase target cell chemosensitivity. Apoptotic responses and expression of chromatin modifying enzymes in lymphoid cell lines, LP-1 and NCI-H929, to chlorambucil (CLB) and/or NaBu were examined in this study. NaBu augmented the apoptotic response in CLB-resistant LP-1 cells but antagonised it in CLB-sensitive NCI-H929 cells. CLB increased expression of methyltransferase I and histone acetyltransferase I in both cell lines while NaBu had only small effect. CLB-induced increased gene expression was attenuated by NaBu in CLB-sensitive NCI-H929 cells but not in resistant LP-1 cells. These results suggest that chromatin modifying agents may have differential effects on cells depending on their chemosensitivity.

  14. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium

    PubMed Central

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn’t induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  15. Pitfalls in global normalization of ChIP-seq data in CD4(+) T cells treated with butyrate: A possible solution strategy.

    PubMed

    Furusawa, Yukihiro; Endo, Takaho A; Obata, Yuuki; Ohara, Osamu; Ohno, Hiroshi; Hase, Koji

    2014-12-01

    Regulatory T cells (Treg) play a central role in the suppression of inflammatory and allergic responses. Colonization of certain gut commensal microbes such as Clostridia class IV and XIVa in the gut can induce development of colonic Treg cells contributing to the maintenance of gut immune homeostasis. Clostridia-derived butyrate promotes the differentiation of naïve T cells into Treg cells through upregulation of Foxp3, the master transcription factor of Treg cells. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that treatment of naïve T cells with butyrate induces Treg-polarizing conditions by enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus. In general, global normalization was utilized for ChIP-seq analysis to compare the data obtained from two or more samples. However, global normalization is not appropriate for the evaluation of ChIP-seq data when treatment can affect the total amount of target protein. Here, we introduce a unique normalization method for ChIP-seq analysis in cells treated with butyrate, a pan-HDAC inhibitor that is likely to affect total acetylation levels of histone H3.

  16. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha.

    PubMed

    Hung, W C; Chuang, L Y

    1999-05-01

    Although interferon-alpha (IFN-alpha) has shown great promise in the treatment of chronic viral hepatitis, the anti-tumour effect of this agent in the therapy of liver cancer is unclear. Recent studies have demonstrated that differentiation-inducing agents could modulate the responsiveness of cancer cells to IFN-alpha by regulating the expression of signal transducers and activators of transcription (STAT) proteins, a group of transcription factors which play important roles in the IFN signalling pathway. We have reported that sodium butyrate is a potent differentiation inducer for human hepatoma cells. In this study, we investigated whether this drug could regulate the expression of STAT proteins and enhance the anti-tumour effect of IFN-alpha in hepatoma cells. We found that sodium butyrate specifically activated STAT1 gene expression and enhanced IFN-alpha-induced phosphorylation and activation of STAT1 proteins. Co-treatment with these two drugs led to G1 growth arrest, accompanied by down-regulation of cyclin D1 and up-regulation of p21WAF-1, and accumulation of hypophosphorylated retinoblastoma protein in hepatoma cells. Additionally, internucleosomal DNA fragmentation, a biological hallmark of apoptosis, was detected in hepatoma cells after continuous incubation with a combination of these two drugs for 72 h. Our results show that sodium butyrate potently enhances the anti-tumour effect of IFN-alpha in vitro and suggest that a rational combination of these two drugs may be useful for the treatment of liver cancer.

  17. Effect of methyl butyrate aroma on the survival and viability of human breast cancer cells in vitro.

    PubMed

    Khan, Mohsin Ali; Ahmad, Rumana; Srivastava, A N

    2016-06-01

    Aroma can have far reaching effects on mind, body and soul. Pleasant aromas are known to have a soothing effect on the mind and are known to relieve stress and enhance concentration. Recently, it has been demonstrated that aroma may also have some curative effects as well as benefits and can be used both for prophylaxis and therapy of diseases. Our aim was to test our hypothesis whether aroma can cure or prevent cancer. Methyl butyrate (MB) is the methyl ester of butyric acid having a characteristic sweet and fruity odor like that of apples and pineapples. It occurs in many plant products in minute quantities and in pineapple oil. In the present study, the effect of aroma of MB has been evaluated on human breast cancer cell line MDA-MB-231 in vitro. The percentage viability of the cell line was determined by using Trypan blue dye exclusion assay. It was found that MB at a concentration of 0.01M was effective in causing considerable cytotoxicity (40%) in breast cancer cells (without even coming in contact with cells) while at 0.02M, % cytotoxicity was found to be 50%. Mechanism of action of MB on cancer cells was investigated by acridine orange-ethidium bromide assay using fluorescence microscopy and DNA fragmentation assay. MB aroma appeared to induce necrosis in cancer cells exposed to it. No study involving the effect of aroma/smell on cancer cells has ever been reported before and warrants further investigation on other cancer and normal cell lines. Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  18. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  19. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.

    PubMed

    Lin, Hua V; Frassetto, Andrea; Kowalik, Edward J; Nawrocki, Andrea R; Lu, Mofei M; Kosinski, Jennifer R; Hubert, James A; Szeto, Daphne; Yao, Xiaorui; Forrest, Gail; Marsh, Donald J

    2012-01-01

    Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional mediators are required for these beneficial effects.

  20. Sodium Butyrate Ameliorates High-Concentrate Diet-Induced Inflammation in the Rumen Epithelium of Dairy Goats.

    PubMed

    Dai, Hongyu; Liu, Xinxin; Yan, Jinyu; Aabdin, Zain Ul; Bilal, Muhammad Shahid; Shen, Xiangzhen

    2017-01-25

    To investigate the effect of sodium butyrate on high-concentrate diet-induced local inflammation of the rumen epithelium, 18 midlactating dairy goats were randomly assigned to 3 groups: a low-concentrate diet group as the control (concentrate:forage = 4:6), a high-concentrate (HC) diet group (concentrate:forage = 6:4), and a sodium butyrate (SB) group (concentrate:forage = 6:4, with 1% SB by weight). The results showed that, with the addition of sodium butyrate, the concentration of lipopolysaccharide (LPS) in rumen fluid (2.62 × 10(4) ± 2.90 × 10(3) EU/mL) was significantly lower than that in the HC group (4.03 × 10(4) ± 2.77 × 10(3) EU/mL). The protein abundance of pp65, gene expression of proinflammatory cytokines, and activity of myeloperoxidase (MPO) and matrix metalloproteinase (MMP)-2,9 in the rumen epithelium were significantly down-regulated by SB compared with those in the HC group. With sodium butyrate administration, the concentration of NH3-N (19.2 ± 0.890 mM) in the rumen fluid was significantly higher than that for the HC group (12.7 ± 1.38 mM). Severe disruption of the rumen epithelium induced by HC was also ameliorated by dietary SB. Therefore, local inflammation and disruption of the rumen epithelium induced by HC were alleviated with SB administration.

  1. Cell growth on in situ photo-cross-linked electrospun acrylated cellulose acetate butyrate.

    PubMed

    Çakmakçı, Emrah; Güngör, Atilla; Kayaman-Apohan, Nilhan; Kuruca, Serap Erdem; Çetin, Muzaffer Beyza; Dar, Kadriye Akgün

    2012-01-01

    In this study, electrospinning was combined with UV curing technology for producing in situ photo cross-linked fibers from methacrylated cellulose acetate butyrate (CABIEM). ECV304 and 3T3 cells were seeded on electrospun fibrous scaffolds. Collagen modified CABIEM fibers were also prepared for improving cell adhesion and proliferation. Cross-linking and the morphology of the fibers were characterized by ATR-FTIR spectrometry and environmental scanning electron microscopy (ESEM). The cytotoxicity of the fibers was examined using the MTT cytotoxicity assay. According to the results, electrospun fibrous scaffolds are non-toxic and cell viability depends on the amount of collagen. It was found that cell adhesion and cell growth were enhanced as the collagen percentage was increased.

  2. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    PubMed

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  3. The c-Jun-N-terminal-Kinase inhibitor SP600125 enhances the butyrate derivative D1-induced apoptosis via caspase 8 activation in Kasumi 1 t(8;21) acute myeloid leukaemia cells.

    PubMed

    Rovida, Elisabetta; Gozzini, Antonella; Barbetti, Valentina; Giuntoli, Serena; Santini, Valeria; Dello Sbarba, Persio

    2006-12-01

    We recently showed that the histone deacetylase inhibitor D1 induced apoptosis in the t(8;21) Kasumi 1 acute myeloid leukaemia (AML) cell line and activated caspase 9. The present study characterised the effects of the combined administration of D1 with PD98059, SB203580 or SP600125, specific inhibitors of mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 or Jun N-terminal kinase (JNK), respectively. Among these inhibitors, SP600125 was the only one to markedly induce apoptosis and decrease cell proliferation. These experiments showed that SP600125 activated caspase 8 and confirmed that D1 activated the intrinsic pathway of apoptosis, as caspase 8 was not affected while Bcl-2 was down-regulated following D1 administration. The combination of the two drugs enhanced caspase-8 activation and induced apoptosis in an additive fashion. JNK was constitutively activated in the Kasumi 1, NB4, HL60 and THP-1 human AML cell lines, as well as in primary blasts from a t(8;21) AML patient. In all these cells, the pro-apoptotic effect of the two drugs alone was increased when they were combined. On this basis, the combined administration of D1 with SP600125 seems to be very promising as a potential anti-leukaemic tool in AML.

  4. Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells.

    PubMed

    Hu, Xiaoqing; Fu, Yutuo; Zhang, Xin; Dai, Linghui; Zhu, Jingxian; Bi, Zhenggang; Ao, Yingfang; Zhou, Chunyan

    2014-04-01

    Adult stem cells hold great promise for use in tissue repair and regeneration. Recently, adipose tissue-derived stem cells (ADSCs) were found to be an appealing alternative to bone marrow stem cells (BMSCs) for bone tissue engineering. The main benefit of ADSCs is that they can be easily and abundantly available from adipose tissue. However, our prior study discovered an important phenomenon that BMSCs have greater osteogenic potential than ADSCs in vitro and epigenetic regulation plays a critical role in runt-related transcription factor 2 (Runx2) expression and thus osteogenesis. In this study, we aimed to improve the osteogenic potential of ADSCs by histone deacetylase inhibitor sodium butyrate (NaBu). We found that NaBu promoted rat ADSC osteogenic differentiation by altering the epigenetic modifications on the Runx2 promoter.

  5. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring.

    PubMed

    Huang, Yanping; Gao, Shixing; Chen, Jinglong; Albrecht, Elke; Zhao, Ruqian; Yang, Xiaojing

    2017-02-21

    Maternal nutrition is important for the risk of the offspring to develop insulin resistance and adiposity later in life. The study was undertaken to determine effects of maternal butyrate supplementation on lipid metabolism and insulin sensitivity in the offspring skeletal muscle. The offspring of rats, fed a control diet or a butyrate diet (1% sodium butyrate) throughout gestation and lactation, was studied at weaning and at 60 days of age. The offspring of dams fed a butyrate diet had higher HOMA-insulin resistance and impaired glucose tolerance. This was associated with elevated mRNA and protein expressions of lipogenic genes and decreased amounts of lipolytic enzyme. Simultaneously, enhanced acetylation of histone H3 lysine 9 and histone H3 lysine 27 modification on the lipogenic genes in skeletal muscle of adult offspring was observed. Higher concentration of serum insulin and intramuscular triglyceride in skeletal muscle of offspring from the butyrate group at weaning were accompanied by increasing levels of lipogenic genes and enrichment of acetylation of histone H3 lysine 27. Maternal butyrate supplementation leads to insulin resistance and ectopic lipid accumulation in skeletal muscle of offspring, indicating the importance of short chain fatty acids in the maternal diet on lipid metabolism.

  6. Butyrate stimulates the growth of human intestinal smooth muscle cells by activation of Yes-Associated Protein.

    PubMed

    Dai, Li-Na; Yan, Jun-Kai; Xiao, Yong-Tao; Wen, Jie; Zhang, Tian; Zhou, Ke-Jun; Wang, Yang; Cai, Wei

    2017-08-23

    Intestinal smooth muscle cells play a critical role in the remodeling of intestinal structure and functional adaptation after bowel resection. Recent studies have shown that supplementation of butyrate (Bu) contributes to the compensatory expansion of a muscular layer of the residual intestine in a rodent model of short-bowel syndrome (SBS). However, the underlying mechanism remains elusive. In this study, we found that the growth of human intestinal smooth muscle cells (HISMCs) was significantly stimulated by Bu via activation of Yes-Associated Protein (YAP). Incubation with 0.5 mM Bu induced a distinct proliferative effect on HISMCs, as indicated by the promotion of cell cycle progression and increased DNA replication. Notably, YAP silencing by RNA interference or its specific inhibitor significantly abolished the proliferative effect of Bu on HISMCs. Furthermore, Bu induced YAP expression and enhanced the translocation of YAP from the cytoplasm to the nucleus, which led to changes in the expression of mitogenesis genes, including TEAD1, TEAD4, CTGF and Cyr61. These results provide evidence that Bu stimulates the growth of human intestinal muscle cells by activation of YAP, which may be a potential treatment for improving intestinal adaptation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines.

    PubMed

    Rodríguez-Salvador, J; Armas-Pineda, C; Perezpeña-Diazconti, M; Chico-Ponce de León, F; Sosa-Sáinz, G; Lezama, P; Recillas-Targa, F; Arenas-Huertero, F

    2005-09-01

    Matrix metalloproteinases (MMPs) are enzymes responsible for extracellular matrix degradation and contribute to local and distant cell invasion during cancer progression or metastasis. The effects of chromatin structure on gene expression and the use of histone deacetylase inhibitors such as sodium butyrate (NaBu) may directly influence pro-MMPs secretion. In the present study, we evaluated the effect of NaBu on pro-MMP-9 and pro-MMP-2 secretion in human Jurkat and HT1080 cells, and in 36 pediatric solid tumors. Cell lines and samples were exposed to 8 mM of NaBu and proteinase activity was evaluated in the supernatant by gelatin zymograms. Our results showed, for Jurkat cells treated with NaBu, increases of 2-fold and 1.5-fold in pro-MMP-9 and pro-MMP-2 secretion, respectively. A 50% decrease in pro-MMP-9 secretion due to NaBu was observed in HT1080 cells. NaBu induced a 0.62 reduction in levels of pro-MMP-9 secretion in untreated tumors. For cell lines and some NaBu-treated tumors we found histone H4 hyperacetylation. We conclude that pro-MMPs gene expression and their secretion can be epigenetically mis-regulated in tumoral processes.

  8. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation.

    PubMed

    Wang, Fangyan; Jin, Zengyou; Shen, Kaiyi; Weng, Tingting; Chen, Zhisong; Feng, Jiahui; Zhang, Zhengzheng; Liu, Jiaming; Zhang, Xiaolong; Chu, Maoping

    2017-03-01

    The depressed heart function is the main complication to cause death of septic patients in clinic. It is urgent to find effective interventions for this intractable disease. In this study, we investigated whether butyrate could be protective for heart against sepsis and the underlying mechanism. Mice were randomly divided into three groups. Model group challenged with LPS (30 mg/kg, i.p.) only. Butyrate group received butyrate (200 mg/kg·d) for 3days prior to LPS administration (30 mg/kg). Normal group received saline only. 6h and 12h after LPS administration were chosen for detection the parameters to estimate the effects or mechanism of butyrate pretreatment on heart of sepsis. The data showed that septic heart depression was attenuated by butyrate pretreatment through improvement of heart function depression (P<0.01) and reduction of morphological changes of myocardium. The overexpression of proinflammatory factors, TNF-α, IL-6 and LTB4, in heart tissues induced by sepsis was significantly alleviated by butyrate pretreatment (P<0.01). As oxidative stress indicators, SOD and CAT activity, and MDA content in heart were deteriorated by LPS challenge, which was noticeably ameliorated by butyrate pretreatment (P<0.01 or P<0.05). In conclusion, pretreatment with butyrate attenuated septic heart depression via anti-inflammation and anti-oxidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    PubMed

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p < 0.05. GABAB1, GABAB2, GABAA1, and GABAA3 were ubiquitously expressed both on gene and protein level. GABAA2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABAB1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABAB2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  10. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments.

    PubMed

    Ludwig-Müller, Jutta; Vertocnik, Amy; Town, Christopher D

    2005-08-01

    Root induction by auxins is still not well understood at the molecular level. In this study a system has been devised which distinguishes between the two active auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA). IBA, but not IAA, efficiently induced adventitious rooting in Arabidopsis stem segments at a concentration of 10 microM. In wild-type plants, roots formed exclusively out of calli at the basal end of the segments. Root formation was inhibited by 10 microM 3,4,5-triiodobenzoic acid (TIBA), an inhibitor of polar auxin transport. At intermediate IBA concentrations (3-10 microM), root induction was less efficient in trp1, a tryptophan auxotroph of Arabidopsis with a bushy phenotype but no demonstrable reduction in IAA levels. By contrast, two mutants of Arabidopsis with measurably higher levels of IAA (trp2, amt1) show root induction characteristics very similar to the wild type. Using differential display, transcripts specific to the rooting process were identified by devising a protocol that distinguished between callus production only and callus production followed by root initiation. One fragment was identical to the sequence of a putative regulatory subunit B of protein phosphatase 2A. It is suggested that adventitious rooting in Arabidopsis stem segments is due to an interaction between endogenous IAA and exogenous IBA. In stem explants, residual endogenous IAA is transported to the basal end of each segment, thereby inducing root formation. In stem segments in which the polar auxin transport is inhibited by TIBA, root formation does not occur.

  11. Transcriptome Analysis of Indole-3-Butyric Acid-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis (L.)

    PubMed Central

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties. PMID:25216187

  12. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).

    PubMed

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties.

  13. Effect of butyrate on immune response of a chicken macrophage cell line

    USDA-ARS?s Scientific Manuscript database

    Butyric acid is a major short chain fatty acid (SCFA) produced in the gastrointestinal tract by anaerobic bacterial fermentation which has been demonstrated to have beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on chicken macropha...

  14. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.

    PubMed

    Ghorbaniaghdam, Atefeh; Henry, Olivier; Jolicoeur, Mario

    2013-04-01

    A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle.

  15. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis*

    PubMed Central

    Rajendran, Vazhaikkurichi M.; Nanda Kumar, Navalpur S.; Tse, Chung M.; Binder, Henry J.

    2015-01-01

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na+ absorption. Although colonic Na+ absorption is mediated by both epithelial Na+ channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na+ absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na+ absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na+ fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3−-dependent and butyrate-dependent Na+ absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3−-dependent Na+ absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3−-dependent and butyrate-dependent Na+ absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3−-dependent) Na+ absorption. In in vivo loop studies HCO3−-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3−-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na+ absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea. PMID:26350456

  16. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    SciTech Connect

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  17. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives.

  18. Epigenetically Reprogramming of Human Embryonic Stem Cells by 3-Deazaneplanocin A and Sodium Butyrate

    PubMed Central

    Azghadi, Soheila; Clark, Amander T.

    2011-01-01

    Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit). Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state), and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs). Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep) is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu) shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction). Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively. PMID:21603011

  19. MUC2 Mucin and Butyrate Contribute to the Synthesis of the Antimicrobial Peptide Cathelicidin in Response to Entamoeba histolytica- and Dextran Sodium Sulfate-Induced Colitis.

    PubMed

    Cobo, Eduardo R; Kissoon-Singh, Vanessa; Moreau, France; Holani, Ravi; Chadee, Kris

    2017-03-01

    Embedded in the colonic mucus are cathelicidins, small cationic peptides secreted by colonic epithelial cells. Humans and mice have one cathelicidin-related antimicrobial peptide (CRAMP) each, LL-37/hCAP-18 and Cramp, respectively, with related structure and functions. Altered production of MUC2 mucin and antimicrobial peptides is characteristic of intestinal amebiasis. The interactions between MUC2 mucin and cathelicidins in conferring innate immunity against Entamoeba histolytica are not well characterized. In this study, we quantified whether MUC2 expression and release could regulate the expression and secretion of cathelicidin LL-37 in colonic epithelial cells and in the colon. The synthesis of LL-37 was enhanced with butyrate (a product of bacterial fermentation) and interleukin-1β (IL-1β) (a proinflammatory cytokine in colitis) in the presence of exogenously added purified MUC2. The LL-37 responses to butyrate and IL-1β were higher in high-MUC2-producing cells than in lentivirus short hairpin RNA (shRNA) MUC2-silenced cells. Activation of cyclic adenylyl cyclase (AMP) and mitogen-activated protein kinase (MAPK) signaling pathways was necessary for the simultaneous expression of MUC2 and cathelicidins. In Muc2 mucin-deficient (Muc2(-/-)) mice, murine cathelicidin (Cramp) was significantly reduced compared to that in Muc2(+/-) and Muc2(+/+) littermates. E. histolytica-induced acute inflammation in colonic loops stimulated high levels of cathelicidin in Muc2(+/+) but not in Muc2(-/-) littermates. In dextran sodium sulfate (DSS)-induced colitis in Muc2(+/+) mice, which depletes the mucus barrier and goblet cell mucin, Cramp expression was significantly enhanced during restitution. These studies demonstrate regulatory mechanisms between MUC2 and cathelicidins in the colonic mucosa where an intact mucus barrier is essential for expression and secretion of cathelicidins in response to E. histolytica- and DSS-induced colitis. Copyright © 2017 American Society

  20. Differential effects of adenovirus-p16 on bladder cancer cell lines can be overcome by the addition of butyrate.

    PubMed

    Lee, C T; Seol, J Y; Park, K H; Yoo, C G; Kim, Y W; Ahn, C; Song, Y W; Han, S K; Han, J S; Kim, S; Lee, J S; Shim, Y S

    2001-01-01

    High frequency of p16 alteration and high local recurrence rate of bladder cancer make this cancer an ideal target for p16 gene therapy. However, a low transduction rate of p16 via adenoviral vector causes an inconsistent result. In this study, we have tested adenovirus-p16 in several bladder cancer cell lines and investigated a way of improving the low transduction rate. Adenovirus-p16 showed a strong antitumor effect on bladder cancer cell lines (253J and T24) with strong Coxackie-adenoviral receptor (CAR) expression but little antitumor effect on bladder cancer cell lines (J82 and HT1376) with little CAR expression. In this study, we suggest a simple way of overcoming the differential effects of the adenovirus. The addition of butyrate to media was found to increase the transduction rate of adenovirus remarkably and increase the antitumor effect of adenovirus-p16 in bladder cancer cell lines with little CAR expression. Butyrate effects were related with increased CAR expression on the cell surface as well as increased transgene expression from adenoviral vector. From these observations, application of adenovirus-p16 gene therapy with butyrate can overcome the obstacle of low gene transfer and enhance the antitumor effect of adenovirus-p16 in bladder cancer.

  1. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon.

    PubMed

    Ramsay, Alan G; Scott, Karen P; Martin, Jenny C; Rincon, Marco T; Flint, Harry J

    2006-11-01

    Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria.

  2. Transport of 3-hydroxy(3-/sup 14/C)butyrate by dissociated cells from rat brain

    SciTech Connect

    Tildon, J.T.; Roeder, L.M.

    1988-08-01

    Recent studies suggest that the utilization of oxidizable substrates by the brain may be regulated in part by transport across the plasma membrane. Dissociated brain cells obtained by mechanical disruption of rat brain were used to measure the uptake of 3-hydroxy(3-14C)butyrate. Total uptake revealed two mechanisms (diffusion and a carrier-mediated system). A Lineweaver-Burk plot of the latter component yielded an apparent Km of 1.47 mM and a maximal velocity (Vmax) of 5 nmol.min-1.mg protein-1. The rates of uptake were temperature dependent and were significantly higher at pH 6.2 than at pH 7.4 or 8.2. Preloading the cells and increasing the intracellular concentration of 3-hydroxybutyrate using 12.5 and 25 mM increased the rate of uptake 143 and 206%, respectively, indicative of an accelerative exchange mechanism. Uptake was inhibited approximately 50% by (in mM) 10 phenylpyruvate, 10 alpha-ketoisocaproate, 10 KCN, and 1.5 NaAsO/sub 2/. Uptake was also decreased by (in mM) 5 lactate, 5 methyl malonic acid, 1 alpha-cyano-4-hydroxycinnamate, and 1 mersalyl. Dissociated brain cells from 14- to 16-day-old rats accumulated 3-hydroxybutyrate at a rate more than two-fold greater than cells from either younger (2-day-old) or older (28-day-old and adult) animals. These data are consistent with the proposal that 3-hydroxybutyrate is taken up by the brain by both diffusion and a carrier-mediated transport system, and they support the hypothesis that transport at the cellular level contributes to the regulation of substrate utilization by the brain.

  3. Expression of beta-catenin is regulated by PI-3 kinase and sodium butyrate in colorectal cancer cells.

    PubMed

    Turecková, Jolana; Kucerová, Dana; Vojtechová, Martina; Sloncová, Eva; Tuhácková, Zdena

    2006-01-01

    beta-catenin has a dual function; it is implicated in intercellular junctions and transcriptional co-activation. Here we examined the regulation of the expression and localization of beta-catenin in HT29 colorectal adenocarcinoma cells. Our results showed that inhibition of PI-3 kinase with wortmannin was accompanied by a considerably reduced expression of beta-catenin. This effect was overcome by butyrate and occurred at the protein level, not at the level of mRNA. Moreover, NaBT significantly increased the phosphorylation of the ribosomal protein, S6, known to participate in the translational control of gene expression. This was accompanied by the increased phosphorylation of p70 S6K and MAPKs, the effector proteins that are upstream of protein S6 in the distinct signaling pathways. These facts indicate that different signaling pathways may be involved in the regulation of beta-catenin synthesis. Modulation of beta-catenin expression induced by NaBT appeared to occur at the level of protein translation, suggesting that NaBT may act as a translational regulator.

  4. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier.

    PubMed

    Zhou, Da; Pan, Qin; Xin, Feng-Zhi; Zhang, Rui-Nan; He, Chong-Xin; Chen, Guang-Yu; Liu, Chang; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-07

    To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD.

  5. Pretranslational regulation of ectopic hCG alpha production in ChaGo lung cancer cells by sodium butyrate.

    PubMed

    Nagelberg, S B; Burnside, J; Maniatis, A; Lippman, S S; Weintraub, B D

    1985-12-31

    Ectopic production of hCG and its free alpha subunit by ChaGo lung cancer cells is stimulated by sodium butyrate. To investigate pretranslational regulation in this system, we examined the response of the hCG alpha and beta subunit mRNAs in ChaGo-K1 cells, a clone that produces free hCG alpha but no hCG or hCG beta in the basal state. When a Northern blot of total RNA from ChaGo cells was hybridized to a [32P]- labeled hCG alpha cDNA probe, a single band was detected that was identical in size (approximately 850 bases) to placental hCG alpha mRNA. RNA from butyrate-stimulated (5 mM, 24 h) ChaGo cells contained 7.7 times as much hCG alpha mRNA as RNA from control ChaGo cells. This increase appeared to be relatively selective since no difference in total polyA-containing mRNA levels was detected between butyrate-treated and control cells by [32P]oligo(dT) hybridization. In addition, no hCG beta mRNA was detected when Northern and dot blots were hybridized to an hCG beta cDNA probe. In a time course experiment, hCG alpha mRNA accumulation in butyrate-treated cells increased significantly by 8 h with a maximum increase of 6.1-fold at 24 h compared to control values. Major differences in immunoactive hCG alpha accumulation were not apparent, however, until after 24 h. These studies show that stimulation of ChaGo hCG alpha production by butyrate can be completely accounted for by pretranslational events and that failure to detect hCG or free hCG beta production by these cells is not due to poorly translatable RNA or post-translational protein degradation. Thus, exclusive ectopic production of only one of the hCG subunits is likely to be due to selective genomic expression.

  6. Expression and up-regulation of interleukin-6 in oesophageal carcinoma cells by n-sodium butyrate

    PubMed Central

    Wang, L-S; Chow, K-C; Wu, C-W

    1999-01-01

    Recently, the serum level of interleukin (IL)-6 has been shown to correlate with disease progression and prognosis of cancer patients. However, the available information about the source and the pathophysiological regulation of IL-6 in cancer cells is limited. Thus, in this study, we tried to identify the source and the clinical roles of serum IL-6 in patients with oesophageal squamous cell carcinoma (ESCC), and then further to characterize the biological regulation of IL-6 in ESCC cell lines. Sera and tissue specimens from 80 consecutive patients with ESCC were collected between 1993 and 1997. Additionally, three ESCC cell lines were used for in vitro study. The concentration of serum IL-6 was measured by enzyme-linked immunosorbent assay (ELISA), and correlated the survival time with measured IL-6 level. Expressions of IL-6, IL-6Rα (IL-6 receptor alpha) and gp130 in pathological sections and cell lines were characterized by immunological staining. Detection of IL-6 mRNA was determined by in situ hybridization (ISH) and reverse transcription-polymerase chain reaction (RT-PCR). Up-regulation of IL-6 by n-sodium butyrate (n-BT) was studied in ESCC cell lines. The levels of serum IL-6 in patients with ESCC were significantly higher than those in the healthy controls. Serum levels of IL-6 were also shown to correlate with disease progression and survival. However, sCD8 levels and lymphocyte counts in the peripheral blood were not parallel to the changed pattern of serum IL-6. In pathological sections and ESCC cell lines, message of IL-6 was identified by ISH in cancer cells. Expression of IL-6 mRNA was further confirmed with RT-PCR in ESCC cell lines. Although IL-6 was detected in some ESCC cell lines, IL-6 gene expression and protein production could be induced or enhanced by n-BT treatment in all three cell lines. The serum levels of IL-6 are frequently elevated at diagnosis of ESCC, and are associated with poor prognosis. IL-6 that could be produced by cancer

  7. Sodium Butyrate Improves Locomotor Impairment and Early Mortality in a Rotenone-Induced Drosophila Model of Parkinson’s Disease

    PubMed Central

    St. Laurent, Robyn; O’Brien, Liam M.; Ahmad, S. Tariq

    2013-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder primarily affecting the dopaminergic neurons in the nigrastriatal pathway resulting in debilitating motor impairment in both familial and sporadic cases. Histone deacetylase (HDAC) inhibitors have been recently implicated as a therapeutic candidate because of their ability to correct the disrupted HDAC activity in PD and other neurodegenerative diseases. Sodium butyrate (SB), an HDAC inhibitor, reduces degeneration of dopaminergic neurons in a mutant alpha-synuclein Drosophila transgenic model of familial PD. Chronic exposure to the pesticide rotenone also causes selective degeneration of dopaminergic neurons and causes locomotor impairment and early mortality in a Drosophila model of chemically-induced PD. This study investigated the effects of sodium butyrate on locomotor impairment and early mortality in a rotenone-induced PD model. We show that treatment with 10 mM SB-supplemented food rescued the rotenone-induced locomotor impairment and early mortality in flies. Additionally, flies with the genetic knockdown of HDAC activity through Sin3A loss-of-function mutation (Sin3Alof) were resistant to rotenone-induced locomotor impairment and early mortality. Furthermore, SB-supplemented Sin3Alof flies had a modest additive effect for improving locomotor impairment. We also show SB-mediated improvement of rotenone-induced locomotor impairment was associated with elevated dopamine levels in the brain. However, the possibility of SB-mediated protective role through mechanisms independent from dopamine system is also discussed. These findings demonstrate that HDAC inhibitors like SB can ameliorate locomotor impairment in a rotenone-induced PD model. PMID:23623990

  8. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide.

    PubMed

    Wang, Jing-Jing; Wei, Zheng-Kai; Zhang, Xu; Wang, Ya-Nan; Fu, Yun-He; Yang, Zheng-Tao

    2017-08-11

    Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis. © 2017 The British Pharmacological Society.

  9. Sodium butyrate increases the effect of the photodynamic therapy: a mechanism that involves modulation of gene expression and differentiation in astrocytoma cells.

    PubMed

    Bueno-Carrazco, José; Castro-Leyva, Violeta; García-Gomez, Fanny; Solís-Paredes, Mario; Ramon-Gallegos, Eva; Cruz-Orea, Alfredo; Eguía-Aguilar, Pilar; Arenas-Huertero, Francisco

    2012-10-01

    In order to evaluate the improvement of the photodynamic therapy (PDT) due to sodium butyrate (NaBu), its effectiveness in U373-MG and D54-MG astrocytoma cell lines was evaluated. Cells were exposed to delta-aminolevulinic acid (δ-ALA) as a precursor to endogenous photosensitizer protoporphyrin IX (PpIX). In both astrocytoma cells, an important increase by ALA was observed in uroporphyrinogen synthetase gene expression: 1.8- and 52-fold for D54-MG and U373-MG cells, respectively. After irradiation, they showed 16.67 and 28.9% of mortality in U373-MG and D54-MG, respectively. These mortalities increased to 70.62 and 96.7% when U373-MG and D54-MG cells, respectively, were exposed 24 h to 8 mM NaBu, before to PpIX induction. NaBu induced expression of caspase-3, caspase-9, and Bcl-2 and increased Bax in U373-MG cells. ALA-induced morphological changes are compatible to differentiation. Genes and differentiation induced mainly by NaBu improve cell death performed by PDT in astrocytoma cells. These facts prove the synergistic effect of NaBu on cytotoxic damage induced by PDT.

  10. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    USDA-ARS?s Scientific Manuscript database

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of D...

  11. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    USDA-ARS?s Scientific Manuscript database

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  12. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53.

    PubMed

    Yaku, Keisuke; Enami, Yuka; Kurajyo, Chika; Matsui-Yuasa, Isao; Konishi, Yotaro; Kojima-Yuasa, Akiko

    2012-11-01

    Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner(;) however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.

  13. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    PubMed

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  14. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet

    PubMed Central

    Mattace Raso, Giuseppina; Simeoli, Raffaele; Russo, Roberto; Iacono, Anna; Santoro, Anna; Paciello, Orlando; Ferrante, Maria Carmela; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2013-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Insulin resistance (IR) appears to be critical in its pathogenesis. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD). Methods After weaning, young male Sprague-Dawley rats were divided into 4 groups receiving different diets for 6 weeks: 1. control group (standard diet); 2. HFD; 3. HFD plus butyrate (20 mg/kg/die) and 4. HFD plus FBA (42.5 mg/Kg/die, the equimolecular dose of butyrate). Liver tissues of the rats were analyzed by Western blot and real-time PCR. Insulin resistance, liver inflammation and Toll-like pattern modifications were determined. Results Evaluation of these two preparations of butyrate showed a reduction of liver steatosis and inflammation in HFD fed animals. The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Finally, FBA showed a higher potency in reducing pro-inflammatory parameters in the liver, via suppression of Toll-like receptors and NF-κB activation. Conclusions Our results demonstrated a protective effect of butyrate in limiting molecular events underlying the onset of IR and NAFLD, suggesting a potential clinical relevance for this substance. In particular, its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance. PMID:23861927

  15. Butyrate modulates the expression of. beta. -adrenergic receptor subtype in 3T3-L1 cells

    SciTech Connect

    Poksay, K.S.; Nakada, M.T.; Crooke, S.T.; Stadel, J.M.

    1986-03-05

    In mouse 3T3-L1 fibroblasts, the glucocorticoid dexamethasone (dex) affects a switch in ..beta..-adrenergic receptor (..beta..AR) subtype expression from ..beta../sub 1/AR to ..beta../sub 2/AR and increases total ..beta..AR number. They now demonstrate a similar effect by sodium butyrate (B) and find that the combined effect of these two gene-activating agents is greater than additive suggesting different mechanisms of action on the ..beta..AR. ..beta..AR are assayed in membranes prepared from 3T3-L1 cells using the radiolabeled ..beta..AR-specific antagonist (/sup 125/I)-cyanopindolol. ..beta..AR subtype is determined by competition binding of the ..beta../sub 2/AR-selective antagonist ICI 118.551 for the radioligand. B (2-10mM) causes a dose-dependent increase in total ..beta..AR number (up to 2-fold over control) and the proportion of ..beta../sub 2/AR. B (5mM) causes a time-dependent increase in total ..beta..AR number (2-fold) and the proportion of ..beta../sub 2/AR up to 24 hr. Dex maximally increases total ..beta..AR number (2-fold) when treated for 48 hr at concentrations greater than or equal to 100nM. B (2 or 5mM) together with dex (250nM) have a greater than additive effect on total ..beta..AR number at 24 hr (1.7-fold) and at 48 hr (1.4-2.4-fold, using 5 or 10mM B and dex greater than or equal to 10nM). The proportion of ..beta../sub 2/AR is also greater when both compounds are added together. In comparison with proprionate and valerate, B increases total ..beta..AR number and the proportion of ..beta../sub 2/AR to a greater extent and at lower concentrations. To determine a functional correlate to these findings, cells were pre-treated for 48 hr with B and/or dex, intracellular ATP labeled with /sup 3/H-adenine, followed by treatment with forskolin (10..mu..M) and ..beta..AR agonists. B caused a dramatic increase in /sup 3/H-cAMP produced compared to control and dex treatments and a greater than additive effect was again achieved when B and dex were

  16. Indolyl-3-butyric acid-induced Arabidopsis stomatal opening mediated by 3',5'-cyclic guanosine-monophosphate.

    PubMed

    Cousson, A

    2010-12-01

    It has been pharmacologically suggested that 3',5'-cyclic guanosine-monophosphate (cGMP) mediates indolyl-3-butyric acid (IBA)-induced stomatal opening. In Arabidopsis thaliana (L.) Heynh., such investigations compared the wild type (Columbia and Ws ecotypes) to mutants knockout for either GTP-binding protein (G protein) α subunit 1 (gpa1-4), putative G protein-coupled receptor 1 (gcr1-5), calcineurin B-like isoform 1 (cbl1) or 9 (cbl9), or the NADPH oxidases AtrbohD and AtrbohF (atrbohD/F). Stomatal opening to IBA or the permeant cGMP analogue, 8-bromo-cGMP (8-Br-cGMP) was abolished in the atrbohD/F mutant. The IBA response was fully or partially suppressed, respectively, in the gcr1-5 mutant, or the gpa1-4 and cbl1 mutants. In the cbl9 mutant, the response to IBA or 8-Br-cGMP, respectively, was partially or fully suppressed. Phenylarsine oxide (PAO) affected the IBA response, which the cbl1 mutant overlapped or the gpa1-4 and cbl9 mutants increased up to 100% inhibition. 6-anilino-5,8-quinolinedione, mas17, the (Rp)-diastereomer of 8-bromo-3',5'-cyclic guanosine monophosphorothioate (Rp-8-Br-cGMPS), nicotinamide, ruthenium red (RRed), 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), cyclosporine A (CsA) and FK506 converged to affect the IBA response, which the gpa1-4 and cbl9 mutants overlapped or the cbl1 mutant and PAO increased up to 100% inhibition. Rp-8-Br-cGMPS, nicotinamide, RRed, BAPTA, CsA or FK506 paralled the cbl9 and atrbohD/F mutants to abolish the 8-Br-cGMP response. Based on so far revealed features of these mutants and pharmacological compounds, these results confirmed cGMP as a Ca(2+)-mobilizing second messenger for apoplastic auxin whose perception and transduction would implicate a seven-transmembrane receptor - G protein - guanylyl cyclase unit at the guard cell plasma membrane. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  17. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier

    PubMed Central

    Zhou, Da; Pan, Qin; Xin, Feng-Zhi; Zhang, Rui-Nan; He, Chong-Xin; Chen, Guang-Yu; Liu, Chang; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-01

    AIM To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. RESULTS NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. CONCLUSION NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD. PMID:28104981

  18. n-Butyrate, a cell cycle blocker, inhibits the replication of polyomaviruses and papillomaviruses but not that of adenoviruses and herpesviruses.

    PubMed Central

    Shadan, F F; Cowsert, L M; Villarreal, L P

    1994-01-01

    Small DNA viruses are dependent on the interaction of early proteins (such as large T antigen) with host p53 and Rb to bring about the G1-to-S cell cycle transition. The large DNA viruses are less dependent on host regulatory genes since additional early viral proteins (such as viral DNA polymerase, DNA metabolic enzymes, and other replication proteins) are involved in DNA synthesis. A highly conserved domain of large T antigen (similar to the p53-binding region) exclusively identifies papovavirus, parvovirus, and papillomaviruses from all other larger DNA viruses and implies a conserved interaction with host regulatory genes. In this report, we show that 3 to 6 mM butyrate, a general cell cycle blocker implicated in inhibition of the G1-to-S transition, inhibits DNA replication of polyomavirus and human papillomavirus type 11 but not the replication of larger DNA viruses such as adenovirus types 2 and 5, herpes simplex virus type 1, Epstein-Barr virus, and cytomegalovirus, which all bypass the butyrate-mediated cell cycle block. This butyrate effect on polyomavirus replication is not cell type specific, nor does it depend on the p53 or Rb gene, as inhibition was seen in fibroblasts with intact or homozygous deleted p53 or Rb, 3T6 cells, keratinocytes, C2C12 myoblasts, and 3T3-L1 adipocytes. In addition, butyrate did not inhibit expression of polyomavirus T antigen. The antiviral effect of butyrate involves a form of imprinted state, since pretreatment of cells with 3 mM butyrate inhibits human papillomavirus type 11 DNA replication for at least 96 h after its removal. Butyrate, therefore, serves as a molecular tool in dissecting the life cycle of smaller DNA viruses from that of the larger DNA viruses in relation to the cell cycle. Images PMID:8035479

  19. Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

    PubMed

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-04-20

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease.

  20. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  1. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    SciTech Connect

    Smith, P.J.

    1986-03-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells.

  2. Solid lipid nanoparticles of cholesteryl butyrate inhibit the proliferation of cancer cells in vitro and in vivo models

    PubMed Central

    Minelli, R; Occhipinti, S; Gigliotti, C L; Barrera, G; Gasco, P; Conti, L; Chiocchetti, A; Zara, G P; Fantozzi, R; Giovarelli, M; Dianzani, U; Dianzani, C

    2013-01-01

    BACKGROUND AND PURPOSE Solid lipid nanoparticles containing cholesteryl butyrate (cholbut SLN) can be a delivery system for the anti-cancer drug butyrate. These nanoparticles inhibit adhesion of polymorphonuclear and tumour cells to endothelial cells and migration of tumour cells, suggesting that they may act as anti-inflammatory and anti-tumour agents. Here we have evaluated the effects of cholbut SLN on tumour cell growth using in vitro and in vivo models. EXPERIMENTAL APPROACH Cholbut SLNs were incubated with cultures of four tumour cell lines, and cell growth was analysed by assessing viability, clonogenic capacity and cell cycle. Effects on intracellular signalling was assessed by Western blot analysis of Akt expression. The in vivo anti-tumour activity was measured in two models of PC-3 cell xenografts in SCID/Beige mice. KEY RESULTS Cholbut SLN inhibited tumour cell line viability, clonogenic activity, Akt phosphorylation and cell cycle progression. In mice injected i.v. with PC3-Luc cells and treated with cholbut SLN, . in vivo optical imaging and histological analysis showed no metastases in the lungs of the treated mice. In another set of mice injected s.c. with PC-3 cells and treated with cholbut SLN when the tumour diameter reached 2 mm, analysis of the tumour dimensions showed that treatment with cholbut SLN substantially delayed tumour growth. CONCLUSION AND IMPLICATIONS Cholbut SLN were effective in inhibiting tumour growth in vitro and in vivo. These effects may involve, in part, inhibition of Akt phosphorylation, which adds another mechanism to the activity of this multipotent drug. PMID:23713413

  3. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats

    PubMed Central

    Malago, Joshua J.; Sangu, Catherine L.

    2015-01-01

    Intrarectal infusion of butyrate improves colorectal disorders including ulcerative colitis (UC). However, it is not established whether systemically administered butyrate benefits such patients. The current study aimed at exploring and comparing the potential of intraperitoneally, intrarectally, and orally administered butyrate against acetic acid (AA)-induced UC in rats. Intrarectal administration of 2 ml of 50% AA was done after or without prior treatment of rats for 7 consecutive days with 100 mg/kg sodium butyrate (SB) intraperitoneally, intrarectally, or orally. Rats were sacrificed after 48 h of AA-treatment. Subsequently, colon sections were processed routinely for histopathological examination. We clinically observed diarrhea, loose stools, and hemoccult-positive stools, and histologically, epithelial loss and ulceration, crypt damage, goblet cell depletion, hemorrhage, and mucosal infiltration of inflammatory cells. The changes were significantly reduced by intraperitoneal, intrarectal, or oral butyrate, with intraperitoneal butyrate exhibiting the highest potency. It is concluded that intraperitoneal administration of butyrate abrogates the lesions of AA-induced UC and its potency surpasses that of intrarectal or oral butyrate. PMID:25743124

  4. Pharmacokinetics of butyric acid derivative with xylitol.

    PubMed

    Desmet, G; Brazier, M; Cerutti, J; Chany, C; Arnould-Guerin, M L

    1991-01-01

    The short chain fatty acids, especially butyric acid salts have interesting biological properties. In some cases, transformed cells can recover a normal phenotype and in animal, butyrate salts increase antitumor resistance. Butyrate may be considered as possibly useful for antitumor therapy. But these products exhibit two essential disadvantages which restrict their clinical use in man: high concentrations required to achieve therapeutic effects and rapid excretion with short half life. In order to optimize the clinical use of butyrate, we studied a n-butyric acid ester obtained with xylitol selected for its physiological and metabolic inertia. Structure determination of tributyryl xylitol was carried out by mass and NMR spectrometry (MW = 344). The low toxicity and the antitumor effects of this ester, especially in association with Corynebacterium parvum and interferon, confirm its therapeutic interest. The slow excretion of this prodrug should make butyrate clinical use easier by preventing extensive systemic metabolism and metabolic side-effects due to cations of butyrate salts.

  5. A durable polyvinyl butyral-CsH2PO4 composite electrolyte for solid acid fuel cells

    NASA Astrophysics Data System (ADS)

    Dang, Dai; Zhao, Bote; Chen, Dongchang; Yoo, Seonyoung; Lai, Samson Y.; Doyle, Brian; Dai, Shuge; Chen, Yu; Qu, Chong; Zhang, Lei; Liao, Shijun; Liu, Meilin

    2017-08-01

    A composite electrolyte membrane composed of polyvinyl butyral (PVB) and CsH2PO4 has been prepared via a facile and cost-effective method for solid acid fuel cells. The effect of PVB content on conductivity, mechanical integrity, and fuel cell performance is investigated. A minimum amount of 3 wt% PVB in the CsH2PO4-based composite electrolyte not only offers the required mechanical integrity but also allows high conductivity (∼28 mS cm-1 at 260 °C). Single cells based on the composite electrolytes demonstrate a peak power density of 108 mW cm-2 at 260 °C. Almost no degradation in electrochemical performance could be observed during the stability test for 10 h and three thermal-cycling test in H2/O2 fuel cell, indicating the promising application of the composite electrolyte in solid acid fuel cells.

  6. Cooperation between the bacterial-derived short-chain fatty acid butyrate and interleukin-22 detected in human Caco2 colon epithelial/carcinoma cells.

    PubMed

    Bachmann, Malte; Meissner, Carlotta; Pfeilschifter, Josef; Mühl, Heiko

    2017-03-01

    By generating biologically active factors luminal microbiota shape the intestinal micro-milieu thereby regulating pathological processes such as inflammation and carcinogenesis. Preclinical data suggest that bacterial-derived butyrate and the signal transducer and activator of transcription (STAT)-3 activating cytokine interleukin (IL)-22 display concordant protective properties at the inflamed colonic epithelium. Herein, biochemical cooperation between the short-chain fatty acid butyrate and IL-22 was investigated by focusing on human Caco2 colon epithelial/carcinoma cells. We report that physiological levels of butyrate enhance IL-22 signaling thereby enforcing expression of the prototypic STAT3-downstrean target genes α1-antichymotrypsin and suppressor of cytokine signaling (SOCS)-3. A dual mode of butyrate action on the IL-22/STAT3 axis was identified. Butyrate acted by upregulating IL-22R1, the decisive chain of the heterodimeric IL-22 receptor, and, independent from that, has the potential to directly amplify STAT3-mediated gene activation as detected by chromatin immunoprecipitation analysis of STAT3 binding to the SOCS3 promoter. Since trichostatin A acted similarly, inhibition of histone deacetylases is likely at the root of these butyrate biological properties. The mutual benefit gained from interactions between the host and commensal intestinal bacteria-derived factors is an expanding field of research beginning to affect clinical practice. Data presented herein propose a supportive and fine-tuning role for butyrate in IL-22 signaling that might be therapeutically exploited by local butyrate administration or by increasing its bacterial production in the context of a fiber-rich diet. © 2016 BioFactors, 43(2):283-292, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  7. Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation

    PubMed Central

    Jung, Hyo Young; Yoo, Dae Young; Kim, Jong Whi; Kim, Dae Won; Choi, Jung Hoon; Chung, Jin Young; Won, Moo-Ho; Yoon, Yeo Sung

    2016-01-01

    We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation, and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with 20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate, a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20 (training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration significantly reduced the time spent exploring new objects, while treatment in combination with sodium butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate reverses SIRT2-related age phenotypes. PMID:28053616

  8. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    SciTech Connect

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio.

  9. Genetic differences in the modulation of accumbal glutamate and γ-amino butyric acid levels after cocaine-induced reinstatement.

    PubMed

    Miguéns, Miguel; Botreau, Fanny; Olías, Oscar; Del Olmo, Nuria; Coria, Santiago M; Higuera-Matas, Alejandro; Ambrosio, Emilio

    2013-07-01

    The Lewis (LEW) and Fischer 344 (F344) inbred rat strains are frequently used to study the role of genetic factors in vulnerability to drug addiction and relapse. Glutamate and γ-amino butyric acid (GABA) transmission are significantly altered after cocaine-induced reinstatement, although whether LEW and F344 rats differ in their accumbal glutamate and GABA responsiveness to cocaine-induced reinstatement remains unknown. To investigate this, we measured by in vivo microdialysis extracellular glutamate and GABA levels in the core division of the nucleus accumbens after extinction of cocaine self-administration and during cocaine-induced reinstatement (7.5mg/kg, i.p.) in these two strains of rats. No strain differences were evident in cocaine self-administration or extinction behavior, although cocaine priming did induce a higher rate of lever pressing in LEW compared with F344 rats. After extinction, F344 rats that self-administered cocaine had less GABA than the saline controls, while the glutamate levels remained constant in both strains. There was more accumbal glutamate after cocaine priming in LEW rats that self-administered cocaine, while GABA levels were unaffected. By contrast, GABA increased transiently in F344 rats that self-administered cocaine, while glutamate levels were unaltered. In F344 saline controls, cocaine priming provoked contrasting effects in glutamate and GABA levels, inducing a delayed increase in glutamate and a delayed decrease in GABA levels. These amino acids were unaffected by cocaine priming in LEW saline rats. Together, these results suggest that genetic differences in cocaine-induced reinstatement reflect different responses of the accumbal GABA and glutamate systems to cocaine priming.

  10. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    PubMed

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Sodium Butyrate Protects Against High Fat Diet-induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice.

    PubMed

    Zhang, Ling; Du, Jianfeng; Yano, Naohiro; Wang, Hao; Zhao, Yu Tina; Patricia, Dubielecka-Szczerba; Zhuang, Shougang; Chin, Eugene Y; Qin, Gangjian; Zhao, Ting C

    2017-01-21

    Histone deacetylases are recently identified to act as key regulators for cardiac pathophysiology and metabolic disorders. However, the function of histone deacetylase (HDAC) in controlling cardiac performance in type II diabetes and obesity remains unknown. Here we determine whether HDAC inhibition attenuates high fat diet (HFD)-induced cardiac dysfunction and improves metabolic features. Adult mice were fed with either HFD or standard chow food for 24 weeks. Starting at 12 weeks, mice were divided into four groups randomly, in which sodium butyrate (1%), a potent HDAC inhibitor, was provided to chow and HFD-fed mice in drinking water, respectively. Glucose intolerance, metabolic parameters, cardiac function, and remodeling were assessed. Histological analysis and cellular signaling were examined at 24 weeks following euthanization of mice. HFD-fed mice demonstrated myocardial dysfunction and profound interstitial fibrosis, which were attenuated by HDAC inhibition. HFD-induced metabolic syndrome features insulin resistance, obesity, hyperinsulinemia, hyperglycemia, lipid accumulations, and cardiac hypertrophy, these effects were prevented by HDAC inhibition. Furthermore, HDAC inhibition attenuated myocyte apoptosis, reduced production of reactive oxygen species, and increased angiogenesis in the HFD-fed myocardium. Notably, HFD induced decreases in MKK3, p38, p38 regulated/activated protein kinase (PRAK) and Akt-1, but not p44/42 phosphorylation, which were prevented by HDAC inhibition. These results suggest that HDAC inhibition plays a critical role to preserve cardiac performance and mitigate metabolic disorders in obesity and diabetes, which is associated with MKK3/p38/PRAK pathway. The study holds promise in developing a new therapeutic strategy in the treatment of type II diabetic-induced heart failure and metabolic disorders. This article is protected by copyright. All rights reserved.

  12. Blockade of ethanol-induced behavioral sensitization by sodium butyrate: descriptive analysis of gene regulations in the striatum.

    PubMed

    Legastelois, Rémi; Botia, Béatrice; Naassila, Mickaël

    2013-07-01

    Behavioral sensitization induced by repeated ethanol (EtOH) exposure may play a critical role in the development of alcohol dependence. Because recent data demonstrate that histone deacetylase inhibitor (HDACi) may be of interest in the treatment of addiction, we explored the effect of the HDACi sodium butyrate (NaB) on EtOH-induced behavioral sensitization (EIBS) in DBA/2J mice. We also investigated gene regulations in the striatum of sensitized mice using epigenetic- and signal transduction-related PCR arrays. Mice were injected with saline or EtOH (0.5 to 2.5 g/kg) once a day for 10 days. Mice received NaB (200 to 600 mg/kg) 30 minutes before each injection (prevention protocol) or once daily between days 11 and 16 (reversal protocol). At day 17, brains were removed 30 minutes after a saline or EtOH challenge to assess gene and proteins levels. Only the intermediate EtOH doses (1.0 and 2.0 g/kg) were effective in inducing EIBS, and both doses were associated with specific gene regulations in the striatum. The induction of sensitization by 1.0 g/kg (but not 2.0 g/kg) EtOH was dose-dependently prevented or reversed by NaB. Among the 168 studied genes, EIBS blockade was associated with specific gene regulations (bcl-2, bdnf, hdac4, pak1, penk, tacr1, vip…) and changes in brain-derived neurotrophic factor in both striatum and prefrontal cortex. These results indicate that EIBS is associated with specific gene regulations in the striatum depending on the EtOH dose and that NaB can be useful in blocking some long-lasting neuro-adaptations to repeated EtOH administrations. Copyright © 2013 by the Research Society on Alcoholism.

  13. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  14. [Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice].

    PubMed

    Gong, Quan; Chen, Mao-Jian; Wang, Chao; Nie, Hao; Zhang, Yan-Xiang; Shu, Ke-Gang; Li, Gang

    2014-10-25

    The purpose of the present study is to explore the protective effects of sodium butyrate (SB) pretreatment on concanavalin A (Con A)-induced acute liver injury in mice. The model animals were first administered intraperitoneally with SB. Half an hour later, acute liver injury mouse model was established by caudal vein injection with Con A (15 mg/kg). Then, levels of serous alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using standard clinical method by an automated chemistry analyzer, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by ELISA, and pathological changes in hepatic tissue were observed by using HE staining and light microscopy. The expression and release of high-mobility group box 1 (HMGB1) were assessed by using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and ELISA. The results showed that the pretreatment of SB significantly protected Con A-treated mice from liver injury as evidenced by the decrease of serum ALT, AST (P < 0.01) and reduction of hepatic tissues necrosis. SB also decreased levels of serous TNF-α and IFN-γ (P < 0.01). Furthermore, the expression and release of HMGB1 were markedly inhibited by SB pretreatment (P < 0.05 or P < 0.01). These results suggest that the attenuating effect of SB on Con A-induced acute liver injury may be due to its role of reducing the TNF-α and IFN-γ production, and inhibiting HMGB1 expression and release.

  15. Colonic butyrate- algesic or analgesic?

    PubMed

    Kannampalli, P; Shaker, R; Sengupta, J N

    2011-11-01

    Irritable bowel syndrome (IBS) is a common health issue that is characterized by abdominal pain, abnormal bowel movements, and altered visceral perception. The complexity and variability in symptoms pose serious challenges in treating IBS. Current therapy for IBS is primarily focused on reducing the abdominal pain, thereby improving the quality of life to a significant extent. Although the use of fiber rich diet is widely recommended in treating IBS, some studies have questioned its use. Intra-colonic butyrate, a short-chain fatty acid, is primarily produced by the fermentation of dietary fibers in the colon. In the existing literature there are conflicting reports about the function of butyrate. In rats it is known to induce visceral hypersensitivity without altered pathology, whereas in humans it has been reported to reduce visceral pain. Understanding the molecular mechanisms responsible for this contrasting effect of butyrate is important before recommending fiber rich diet to IBS patients.

  16. Potential anti-genotoxic effect of sodium butyrate to modulate induction of DNA damage by tamoxifen citrate in rat bone marrow cells.

    PubMed

    El-Shorbagy, Haidan M

    2017-02-01

    Sodium butyrate (SB) is one of the histone deacetylase inhibitors (HDACi's) that is recently evidenced to have a prooxidant activity and an ability to reduce hydrogen peroxide-induced DNA damage. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen citrate (TC), which exerts well established oxidative and genotoxic effects, thus the basic objective of this study is to determine whether SB could ameliorate or curate tamoxifen citrate-induced oxidative DNA damage and genotoxic effect in vivo through up-regulation of some antioxidant enzymes. The individual and combined effects of SB and TC have been examined on rat bone marrow cells, using Micronucleus assays (MN), Comet assay, DNA fragmentation, expression of some antioxidant genes using Real time-PCR and finally, oxidative stress analysis. SB significantly increased the mitotic activity (P < 0.05), while TC induced marked micronuclei and oxidative DNA damage, in the SB post-treatment group, the combination of SB (300 mg/kg) and TC (40 mg/kg) was able to decrease the induction of MN and oxidative DNA damage through up-regulation of Cat, Sod and Gpx1 genes significantly at (P < 0.05) more efficiently than that in the SB pre-treatment one. Therefore, we postulate that SB can be used therapeutically in combination with TC treatment to modulate TC genotoxic effect by reducing its oxidative stress, and thus being an appropriate agonist agent to combine with TC than each compound alone.

  17. HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of γH2AX foci.

    PubMed

    Abramova, Maria V; Svetlikova, Svetlana B; Kukushkin, Alexander N; Aksenov, Nikolai D; Pospelova, Tatiana V; Pospelov, Valery A

    2011-12-15

    HDAC inhibitors (HDACi) suppress the growth of tumor cells due to induction of cell cycle arrest, senescence or apoptosis. Recent data demonstrate that HDACi can interfere with DNA Damage Response (DDR) thereby sensitizing the cells to DNA damaging agents. Here, we show that HDACi sodium butyrate (NaBut) potentiates the formation of γH2AX foci predominantly in S-phase E1A+Ras cells. Accumulation of γH2AX foci sensitizes the cells toward such DNA damaging agents as irradiation (IR) and adriamycin. In fact, NaBut potentiates the persistence of γH2AX foci induced by genotoxic agents. The synergizing effects depend on DNA damaging factors and on the order of NaBut treatment. Indeed, NaBut treatment for 24 h leads to an accumulation of G 1-phase cells and a lack of S-phase cells, therefore, adriamycin, a powerful S-phase-specific inhibitor, when added to NaBut-treated cells, is unable to substantially add γH2AX foci. In contrast, IR produces both single- and double-strand DNA breaks at any stage of the cell cycle and was shown to increase γH2AX foci in NaBut-treated cells. Further, a lifetime of IR-induced γH2AX foci depends on the subsequent presence of HDACi. Correspondingly, NaBut withdrawal leads to the extinction of IR-induced γH2AX foci. This necessitates HDACi to hold the IR-induced γH2AX foci unrepaired. However, the IR-induced γH2AX foci persist after long-term NaBut treatment (72 h) even after washing the drug. Thus, although signaling pathways regulating H2AX phosphorylation in NaBut-treated cells remain to be investigated, the obtained results show that NaBut potentiates effects of DNA damaging agents by facilitating formation and persistence of γH2AX foci.

  18. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    PubMed

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  19. Searching for Synbiotics to increase Colonic Butyrate Concentration

    USDA-ARS?s Scientific Manuscript database

    Butyrate is produced by microbial fermentation of plant fiber in the gut and a preferred substrate for gut epithelial cells. In ruminants, butyrate contributes to 70% of energy metabolism. In monogastric species, butyrate also plays an important role in energy metabolism in the hindgut. Moreover, bu...

  20. Effects of ultra-high dilutions of sodium butyrate on viability and gene expression in HEK 293 cells.

    PubMed

    Olsen, Steven

    2017-02-01

    Several recent studies reported the capability of high diluted homeopathic medicines to modulate gene expression in cell cultures. In line with these studies, we examined whether ultra-high dilutions (30C and 200C) of sodium butyrate (SB) can affect the expression levels of genes involved in acquisition of a senescence-associated secretory phenotype (SASP) in human embryonic kidney (HEK) 293 cells. Cell viability was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of TNF-α, interleukin (IL)-2, IL-4, IL-6 and IL-10 genes were determined by real-time PCR assay. Exposure to both 30C and 200C during 48 h led to a significant decrease of the level of expression of TNF-α gene, while expression of IL-2 gene was increased when exposed to 30C, and expression of IL-10 gene was decreased when exposed to 200C. No changes in expression levels of all genes studied were observed in cells treated with both 30C and 200C remedies of SB during the 24 h. Observed changes in gene expression levels after exposure to 30C and 200C remedies of SB during 48 h suggest that extremely low concentrations of this agent can modulate the transcriptome of HEK 293 cells. These results are in line with findings from other studies confirming the ability of homeopathic remedies to modulate gene expression in cell cultures. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  1. Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson.

    PubMed

    2012-06-01

    The following article from Proteins: Structure, Function, and Bioinformatics, "Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation," by Jiasheng Diao, Yunglin D. Ma, and Miriam S. Hasson, published online on 21 October 2010 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief, Bertrand Garcia-Moreno, and Wiley Periodicals. The retraction has been agreed because it was established by internal investigation performed by Purdue University that the authors of this article are not the owners of the data and have no right to publication.

  2. The inhibitor of histone deacetylases sodium butyrate enhances the cytotoxicity of mitomycin C.

    PubMed

    Gospodinov, Anastas; Popova, Stanislava; Vassileva, Ivelina; Anachkova, Boyka

    2012-10-01

    The use of histone deacetylase inhibitors has been proposed as a promising approach to increase the cell killing effect of DNA damage-inducing drugs in chemotherapy. However, the molecular mechanism of their action remains understudied. In the present article, we have assessed the effect of the histone deacetylase inhibitor sodium butyrate on the DNA damage response induced by the crosslinking agent mitomycin C. Sodium butyrate increased mitomycin C cytotoxicity, but did not impair the repair pathways required to remove mitomycin C-induced lesions as neither the rate of nucleotide excision repair nor the homologous recombination repair rate were diminished. Sodium butyrate treatment abrogated the S-phase cell-cycle checkpoint in mitomycin C-treated cells and induced the G(2)-M checkpoint. However, sodium butyrate treatment alone resulted in accumulation of reactive oxygen species, double-strand breaks in DNA, and apoptosis. These results imply that the accumulation of reactive oxygen species-mediated increase in DNA lesion burden may be the major mechanism by which sodium butyrate enhances the cytotoxicity of mitomycin C.

  3. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice

    PubMed Central

    Ahmad, M; Krishnan, S; Ramakrishna, B; Mathan, M; Pulimood, A; Murthy, S

    2000-01-01

    BACKGROUND/AIMS—Impaired colonocyte metabolism of butyrate has been implicated in the aetiopathogenesis of ulcerative colitis. Colonocyte butyrate metabolism was investigated in experimental colitis in mice.
METHODS—Colitis was induced in Swiss outbred white mice by oral administration of 4% dextran sulphate sodium (DSS). Colonocytes isolated from colitic and normal control mice were incubated with [14C]butyrate or glucose, and production of 14CO2, as well as of intermediate metabolites (acetoacetate, β-hydroxybutyrate and lactate), was measured. The effect of different substrate concentrations on oxidation was also examined.
RESULTS—Butyrate oxidation (µmol/h per mg protein; mean (SEM)) was significantly reduced in DSS colitis, values on day 7 of DSS administration being 0.177 (0.007) compared with 0.406 (0.035) for control animals (p<0.001). Glucose oxidation (µmol/h per mg protein; mean (SEM)) on day 7 of DSS administration was significantly higher than in controls (0.06 (0.006) v 0.027 (0.004), p<0.001). Production of β-hydroxybutyrate was decreased and production of lactate increased in DSS colitis compared with controls. Increasing butyrate concentration from 10 to 80 mM enhanced oxidation in DSS colitis (0.036 (0.002) to 0.285 (0.040), p<0.001), although it continued to remain lower than in controls. Surface and crypt epithelial cells showed similar ratios of butyrate to glucose oxidation. When 1 mM DSS was added to normal colonocytes in vitro, it did not alter butyrate oxidation. The initial histological lesion of DSS administration was very patchy and involved crypt cells. Abnormal butyrate oxidation became apparent only after six days of DSS administration, at which time histological abnormalities were more widespread.
CONCLUSIONS—Colonocyte metabolism of butyrate, but not of glucose, is impaired in DSS colitis, and may be important in pathophysiology. Histological abnormalities preceded measurable defects in butyrate

  4. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain.

    PubMed

    Valvassori, Samira S; Dal-Pont, Gustavo C; Steckert, Amanda V; Varela, Roger B; Lopes-Borges, Jéssica; Mariot, Edemilson; Resende, Wilson R; Arent, Camila O; Carvalho, André F; Quevedo, João

    2016-01-30

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidence indicates that epigenetic regulations have been implicated in the pathophysiology of mood disorders. Considering these evidences, the present study aimed to investigate the effects of sodium butyrate (SB), a histone deacetylase (HDAC)inhibitor, on manic-like behavior and oxidative stress parameters (TBARS and protein carbonyl content and SOD and CAT activities) in frontal cortex and hippocampus of rats subjected to the animal model of mania induced by intracerebroventricular (ICV) ouabain administration.The results showed that SB reversed ouabain-induced hyperactivity, which represents a manic-like behavior in rats. In addition, the ouabain ICV administration induced oxidative damage to lipid and protein and alters antioxidant enzymes activity in all brain structures analyzed. The treatment with SB was able to reversesboth behavioral and oxidative stress parameters alteration induced by ouabain.In conclusion, we suggest that SB can be considered a potential new mood stabilizer by acts on manic-like behavior and regulatesthe antioxidant enzyme activities, protecting the brain against oxidative damage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial

    PubMed Central

    2012-01-01

    Background Treatment of shigellosis in rabbits with butyrate reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. Here, we aimed to evaluate whether butyrate can be used as an adjunct to antibiotics in the treatment of shigellosis in patients. Methods A randomized, double-blind, placebo-controlled, parallel-group designed clinical trial was conducted. Eighty adult patients with shigellosis were randomized to either the Intervention group (butyrate, n = 40) or the Placebo group (normal saline, n = 40). The Intervention group was given an enema containing sodium butyrate (80 mM), twice daily for 3 days, while the Placebo group received the same dose of normal saline. The primary endpoint of the trial was to assess the efficacy of butyrate in improving clinical, endoscopic and histological features of shigellosis. The secondary endpoint was to study the effect of butyrate on the induction of antimicrobial peptides in the rectum. Clinical outcomes were assessed and concentrations of antimicrobial peptides (LL-37, human beta defensin1 [HBD-1] and human beta defensin 3 [HBD-3]) and pro-inflammatory cytokines (interleukin-1β [IL-1β] and interleukin-8 [IL-8]) were measured in the stool. Sigmoidoscopic and histopathological analyses, and immunostaining of LL-37 in the rectal mucosa were performed in a subgroup of patients. Results Compared with placebo, butyrate therapy led to the early reduction of macrophages, pus cells, IL-8 and IL-1β in the stool and improvement in rectal histopathology. Butyrate treatment induced LL-37 expression in the rectal epithelia. Stool concentration of LL-37 remained significantly higher in the Intervention group on days 4 and 7. Conclusion Adjunct therapy with butyrate during shigellosis led to early reduction of inflammation and enhanced LL-37 expression in the rectal epithelia with prolonged release of LL-37 in the stool. Trial Registration Clinical

  6. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure.

    PubMed

    Cresci, Gail A M; Mayor, Paul C; Thompson, Stuart A

    2017-03-01

    Campylobacter jejuni frequently infects humans causing many gastrointestinal symptoms, fever, fatigue and several long-term debilitating diseases. Current treatment for campylobacteriosis includes rehydration and in some cases, antibiotic therapy. Probiotics are used to treat several gastrointestinal diseases. Butyrate is a short-chain fatty acid known to promote intestinal health. Interaction of butyrate with its respective receptor (HCAR2) and transporter (SLC5A8), both expressed in the intestine, is associated with water and electrolyte absorption as well as providing defense against colon cancer and inflammation. Alterations in gut microbiota influence the presence of HCAR2 and SLC5A8 in the intestine. We hypothesized that adherence and/or invasion of C. jejuni and alterations in HCAR2 and SLC5A8 expression would be minimized with butyrate or Lactobacillus GG (LGG) pretreatment of Caco-2 cells. We found that both C. jejuni adhesion but not invasion was reduced with butyrate pretreatment. While LGG pretreatment did not prevent C. jejuni adhesion, it did result in reduced invasion which was associated with altered cell supernate pH. Both butyrate and LGG protected HCAR2 and SLC5A8 protein expression following C. jejuni infection. These results suggest that the first stages of C. jejuni infection of Caco-2 cells may be minimized by LGG and butyrate pretreatment. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization.

    PubMed

    Alva-Murillo, Nayeli; Medina-Estrada, Ivan; Báez-Magaña, Marisol; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2015-12-01

    Staphylococcus aureus is an etiological agent of human and animal diseases, and it is able to internalize into non-professional phagocytic cells (i.e. bovine mammary epithelial cells, bMECs), which is an event that is related to chronic and recurrent infections. bMECs contribute to host innate immune responses (IIR) through TLR pathogen recognition, whereby TLR2 is the most relevant for S. aureus. In a previous report, we showed that sodium butyrate (NaB, 0.5mM), which is a short chain fatty acid (SCFA), reduced S. aureus internalization into bMECs by modulating their IIR. However, the molecular mechanism of this process has not been described, which was the aim of this study. The results showed that the TLR2 membrane abundance (MA) and mRNA expression were induced by 0.5mM NaB ∼1.6-fold and ∼1.7-fold, respectively. Additionally, 0.5mM NaB induced p38 phosphorylation, but not JNK1/2 or ERK1/2 phosphorylation in bMECs, which reached the baseline when the bMECs were S. aureus-challenged. Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged. Additionally, 0.5mM NaB (24h) up-regulated mRNA expression of the antimicrobial peptides, TAP (∼4.8-fold), BNBD5 (∼3.2-fold) and BNBD10 (∼2.6-fold). Notably, NaB-treated and S. aureus-challenged bMECs increased the mRNA expression of all of the antimicrobial peptides that were evaluated, and this was evident for LAP and BNBD5. In the NaB-treated bMECs, we did not detect significant expression changes for IL-1β and IL-6 and only TNF-α, IL-10 and IL-8 were induced. Interestingly, the NaB-treated and S. aureus-challenged bMECs maintained the anti-inflammatory response that was induced by this SCFA. In conclusion, our results suggest that 0.5mM NaB activates bMECs via TLR2/p38, which leads to improved antimicrobial defense before/after pathogen

  8. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on γ-alumina.

    PubMed

    Syngiridis, Kostas; Bekatorou, Argyro; Kandylis, Panagiotis; Larroche, Christian; Kanellaki, Maria; Koutinas, Athanasios A

    2014-06-01

    The effect of γ-alumina as a fermentation advancing tool and as carrier for culture immobilisation, regarding VFAs and ethanol production during acidogenic fermentation of glucose, was examined at various process conditions (sugar concentration, pH) and operation modes (continuous with and without effluent recirculation and batch). The results showed that at high initial pH (8.9) the continuous acidogenic fermentation of glucose led to high yields of VFAs and favoured the accumulation of butyric acid. The batch process on the other hand at pH 6.5, favoured the ethanol-type fermentation. The results indicate that in the frame of technology development for new generation biofuels, using γ-alumina as a process advancing tool at optimum process conditions (pH, initial glucose concentration and mode of operation), the produced VFAs profile and ethanol concentration may be manipulated. Copyright © 2014. Published by Elsevier Ltd.

  9. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development.

  10. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  11. Periodontal disease level-butyric acid amounts locally administered in the rat gingival mucosa induce ER stress in the systemic blood.

    PubMed

    Cueno, Marni E; Saito, Yuko; Ochiai, Kuniyasu

    2016-05-01

    Periodontal diseases have long been postulated to contribute to systemic diseases and, likewise, it has been proposed that periodontal disease treatment may ameliorate certain systemic diseases. Short-chain fatty acids (SCFA) are major secondary metabolites produced by oral anaerobic bacteria and, among the SCFAs, butyric acid (BA) in high amounts contribute to periodontal disease development. Periodontal disease level-butyric acid (PDL-BA) is found among patients suffering from periodontal disease and has previously shown to induce oxidative stress, whereas, oxidative stress is correlated to endoplasmic reticulum (ER) stress. This would imply that PDL-BA may likewise stimulate ER stress, however, this was never elucidated. A better understanding of the correlation between PDL-BA and systemic ER stress stimulation could shed light on the possible systemic effects of PDL-BA-related periodontal diseases. Here, PDL-BA was injected into the gingival mucosa and the systemic blood obtained from the rat jugular was collected at 0, 15, 60, and 180 min post-injection. Collected blood samples were purified and only the blood cytosol was used throughout this study. Subsequently, we measured blood cytosolic GADD153, Ca(2+), representative apoptotic and inflammatory caspases, and NF-κB amounts. We found that PDL-BA presence increased blood cytosolic GADD153 and Ca(2+) amounts. Moreover, we observed that blood cytosolic caspases and NF-κB were activated only at 60 and 180 min post-injection in the rat gingival mucosa. This suggests that PDL-BA administered through the gingival mucosa may influence the systemic blood via ER stress stimulation and, moreover, prolonged PDL-BA retention in the gingival mucosa may play a significant role in ER stress-related caspase and NF-κB activation. In a periodontal disease scenario, we propose that PDL-BA-related ER stress stimulation leading to the simultaneous activation of apoptosis and inflammation may contribute to periodontal disease

  12. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning.

    PubMed

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-06-01

    Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the -1 nucleosome in association with altered gene expression. NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing -1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. © 2015 The British Pharmacological Society.

  13. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

    PubMed Central

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-01-01

    Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882

  14. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils.

    PubMed

    Timbermont, L; Lanckriet, A; Dewulf, J; Nollet, N; Schwarzer, K; Haesebrouck, F; Ducatelle, R; Van Immerseel, F

    2010-04-01

    The efficacy of target-released butyric acid, medium-chain fatty acids (C(6) to C(12) but mainly lauric acid) and essential oils (thymol, cinnamaldehyde, essential oil of eucalyptus) micro-encapsulated in a poly-sugar matrix to control necrotic enteritis was investigated. The minimal inhibitory concentrations of the different additives were determined in vitro, showing that lauric acid, thymol, and cinnamaldehyde are very effective in inhibiting the growth of Clostridium perfringens. The in vivo effects were studied in two trials in an experimental necrotic enteritis model in broiler chickens. In the first trial, four groups of chickens were fed a diet supplemented with butyric acid, with essential oils, with butyric acid in combination with medium-chain fatty acids, or with butyric acid in combination with medium-chain fatty acids and essential oils. In all groups except for the group receiving only butyric acid, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. In the second trial the same products were tested but at a higher concentration. An additional group was fed a diet supplemented with only medium-chain fatty acids. In all groups except for that receiving butyric acid in combination with medium-chain fatty acids and essential oils, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. These results suggest that butyric acid, medium-chain fatty acids and/or essential oils may contribute to the prevention of necrotic enteritis in broilers.

  15. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers.

    PubMed

    Jerzsele, A; Szeker, K; Csizinszky, R; Gere, E; Jakab, C; Mallo, J J; Galfi, P

    2012-04-01

    Necrotic enteritis caused by Clostridium perfringens leads to serious economical losses to the poultry industry. There is a growing need to find effective, nontoxic, antibiotic alternatives to prevent and cure the disease. In our study, the efficacy of protected sodium butyrate at 1.5 g/kg (BP70), a Bacillus amyloliquefaciens spore suspension with 10(9) cfu/g (BAL; Ecobiol), a protected blend of essential oils (1%) at 1.5 g/kg (EO), and a combination of sodium butyrate with essential oils (1%) protected with vegetable fat at 1.5 g/kg (BP70+EO; Natesse) was investigated in an artifical C. perfringens-infection model. Body weight gain, gross pathological and histopathological lesion scores, villus lengths, and villus length:crypt depth ratio was determined and compared with the control group. Broilers infected with C. perfringens and treated with essential oils or the combination of sodium butyrate and essential oils showed significantly better BW gain (P < 0.05), increased villus length and villus length:crypt depth ratio (P < 0.001), and decreased gross pathological and histopathological lesion scores (P < 0.05) compared with the control. Sodium butyrate alone and B. amyloliquefaciens spore suspension had no beneficial effects on the course of the disease in this study. According to our results, the protected combination of sodium butyrate and essential oils, as well as the protected essential oils, can be potential candidates for the prevention and treatment of necrotic enteritis in broiler chickens.

  16. Inhibition of mouse B16 melanoma by sodium butyrate correlated to tumor associated macrophages differentiation suppression

    PubMed Central

    Xiong, Fen; Mou, Yun-Zhu; Xiang, Xiao-Yan

    2015-01-01

    Objective: As one member of the histone deacetylase inhibitor (HDACi) family, Sodium butyrate (NaB) was found out that could be used as a differentiation inducer of much cancer cell. But its effects on tumor microenvironment cells are not well recognized. The goal of this research is to investigate the effect of NaB on B16 melanoma and analysis its relevant mechanism. Methods: We observed the effect of sodium butyrate on B16 melanoma in vivo and in vitro. MTT method was performed to detect cell apoptosis rate after treatment. Tumor associated macrophage infiltration condition was detected by flow cytometry. Western-blotting and immunohistochemical method were used to detect the expression of tumor associated macrophage cytokines. Results: A certain concentration of sodium butyrate could effectively inhibit B16 melanoma growth in vivo and in vitro, and this inhibition effects related to the suppression of tumor associated macrophage differentiation. At the same time we observed the relevant macrophage factors were down-regulated compared to the control. Conclusion: Sodium butyrate could effectively inhibit B16 melanoma growth through suppressing tumor associated macrophage proliferation and reduce relevant pro-tumor macrophage factors expression, which may help to promote the clinical study of melanoma epigenetic therapy. PMID:26064327

  17. An Sp1 response element in the Kaposi's sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate.

    PubMed

    Ye, Jianjiang; Shedd, Duane; Miller, George

    2005-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) can be driven into the lytic cycle in vitro by phorbol esters and sodium butyrate. This report begins to analyze the process by which butyrate activates the promoter of KSHV open reading frame 50 (ORF50), the key viral regulator of the KSHV latency to lytic cycle switch. A short fragment of the promoter, 134 nucleotides upstream of the translational start of ORF50, retained basal uninduced activity and conferred maximal responsiveness to sodium butyrate. The butyrate response element was mapped to a consensus Sp1-binding site. By means of electrophoretic mobility shift assays, both Sp1 and Sp3 were shown to form complexes in vitro with the ORF50 promoter at the Sp1 site. Butyrate induced the formation of a group of novel complexes, including several Sp3-containing complexes, one Sp1-containing complex, and several other complexes that were not identified with antibodies to Sp1 or Sp3. Formation of all butyrate-induced DNA-protein complexes was mediated by the consensus Sp1 site. In insect and mammalian cell lines, Sp1 significantly activated the ORF50 promoter linked to luciferase. Chromatin immunoprecipitation experiments in a PEL cell line showed that butyrate induced Sp1, CBP, and p300 binding to the ORF50 promoter in vivo in an on-off manner. The results suggest that induction of the KSHV lytic cycle by butyrate is mediated through interactions at the Sp1/Sp3 site located 103 to 112 nucleotides upstream of the translational initiation of ORF50 presumably by enhancing the binding of Sp1 to this site.

  18. The Short-Chain Fatty Acid Sodium Butyrate Functions as a Regulator of the Skin Immune System.

    PubMed

    Schwarz, Agatha; Bruhs, Anika; Schwarz, Thomas

    2017-04-01

    There is evidence that gut commensal microbes affect the mucosal immune system via expansion of regulatory T cells (Tregs) in the colon. This is mediated via short-chain fatty acids, bacterial metabolites generated during fiber fermentation, which include butyrate, propionate, and acetate. We postulated that short-chain fatty acids produced by commensal skin bacteria may also activate resident skin Tregs, the activity of which is diminished in certain inflammatory dermatoses. Sodium butyrate (SB) either injected subcutaneously or applied topically onto the ears of hapten-sensitized mice significantly reduced the contact hypersensitivity reaction. This effect was histone acetylation-dependent because suppression was abrogated by anacardic acid, a histone acetyltransferase inhibitor. The genes encoding for the Treg-specific transcription factor foxp3 and for IL-10 were up-regulated upon treatment with sodium butyrate, as determined by quantitative real-time reverse transcription-PCR. Immunofluorescence analysis showed enhanced numbers of Foxp3-positive cells in sodium butyrate-treated skin. Additionally, CD4(+)CD25(-) nonregulatory human T cells exerted suppressive features upon incubation with sodium butyrate. This indicates that Tregs can be induced by short-chain fatty acids, suggesting (i) that resident skin microbes may prevent exaggerated inflammatory responses by exerting a down-regulatory function and thereby maintaining a stable state under physiologic conditions and (ii) that short-chain fatty acids may be used therapeutically to mitigate inflammatory skin reactions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Osmotic stress- and indole-3-butyric acid-induced NO generation are partially distinct processes in root growth and development in Pisum sativum.

    PubMed

    Kolbert, Zsuzsanna; Bartha, Bernadett; Erdei, László

    2008-06-01

    In this work, the effects of osmotic stress and exogenous auxin (indole-3-butyric acid, IBA) on root morphology and nitric oxide (NO) generation in roots were compared in pea plants. Five-day-old plants were treated with 0, 10(-3), 10(-4), 10(-5), 10(-6), 10(-7), 10(-8) or 10(-9) M IBA or with PEG 6000 at concentrations that determined 0, 50, 100, 200 or 400 mOsm in the medium, during 5 days. NO generation was examined by in situ and in vivo fluorescence method. Increasing concentrations of PEG as well as IBA resulted in shortening of primary root (PR), enhancement of lateral root (LR) number and significant increase of NO generation. Time-dependent investigations revealed that in the case of IBA treatments, the LR number increased in parallel with an intensified NO generation, while elongation of PR was not followed by changes in NO levels. Under osmotic stress, the time curve of NO development was distinct compared with that of IBA-treated roots, because significantly, the appearance of lateral initials was preceded by a transient burst of NO. This early phase of NO generation under osmotic stress was clearly distinguishable from that which accompanied LR initiation. It is concluded that osmotic stress and the presence of exogenous auxin resulted in partly similar root architecture but different time courses of NO synthesis. We suppose that the early phase of NO generation may fulfill a role in the osmotic stress-induced signalization process leading to the modification of root morphology.

  20. The Effect of Inflammatory Status on Butyrate and Folate Uptake by Tumoral (Caco-2) and Non-Tumoral (IEC-6) Intestinal Epithelial Cells.

    PubMed

    Couto, Mafalda R; Gonçalves, Pedro; Catarino, Telmo A; Martel, Fátima

    2017-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer death in occidental countries. Chronic inflammatory bowel disease (crohn's disease and ulcerative colitis) is associated with an increased risk for CRC development. The aim of this work was to investigate the relationship between inflammatory status and absorption of nutrients with a role in CRC pathogenesis. In this experimental study, we evaluated the in vitro effect of tumour necrosis factor-alpha (TNF-α), interferon-γ (IF-γ), and acetylsalicylic acid on 14C-butyrate (14C- BT), 3H-folic acid (3H-FA) uptake, and on proliferation, viability and differentiation of Caco-2 and IEC-6 cells in culture. The proinflammatory cytokines TNF-α and INF-γ were found to decrease uptake of a low concentration of 14C-BT (10 µM) by Caco-2 (tumoral) and IEC-6 (normal) intestinal epithelial cell lines. However, the effect of TNF-α and INF-γ in IEC-6 cells is most probably related to a cytotoxic and antiproliferative impact. In contrast, INF-γ increases uptake of a high concentration (10 mM) of 14C-BT in Caco-2 cells. The anticarcinogenic effect of BT (10 mM) in these cells is not affected by the presence of this cytokine. On the other hand, acetylsalicylic acid stimulates 14C-BT uptake by Caco-2 cells and potentiates its antiproliferative effect. Finally, both TNF-α and INF-γ cause a significant decrease in 3H-FA uptake by Caco-2 cells. The inflammatory status has an impact upon cellular uptake of BT and FA, two nutrients with a role in CRC pathogenesis. Moreover, the anti-inflammatory acetylsalicylic acid potentiates the anticarcinogenic effect of BT in Caco-2 cells by increasing its cellular uptake.

  1. Enzymology of butyrate formation by Butyrivibrio fibrisolvens.

    PubMed

    Miller, T L; Jenesel, S E

    1979-04-01

    Butyrivibrio fibrisolvens is a major butyrate-forming species in the bovine and ovine rumen. The enzymology of butyrate formation from pyruvate was investigated in cell-free extracts of B. fibrisolvens D1. Pyruvate owas oxidized to acetylcoenzyme A (CoA) in the presence of CoA.SH and benzyl viologen or flavin nucleotides. The bacterium uses thiolase, beta-hydroxybutyryl-CoA dehydrogenase, crotonase, and crotonyl-CoA reductase to form butyryl-CoA from acetyl-CoA. Reduction of acetoacetyl-CoA to beta-hydroxybutyryl-CoA was faster with NADH than with NADPH. Crotonyl-CoA was reduced to butyryl-CoA by NADH, but not by NADPH, only in the presence of flavin nucleotides. Reduction of flavin nucleotides by NADH was much slower than the flavin-dependent reduction of crotonyl-CoA. This indicates that flavoproteins rather than free flavin participated in the reduction of crotonyl-CoA. Butyryl-CoA was converted to butyrate by phosphate butyryl transferase and butyrate kinase.

  2. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.

    PubMed

    Khan, S; Jena, G B

    2014-04-25

    Type 1 diabetes (T1D) also known as juvenile diabetes is a chronic autoimmune disorder that precipitates in genetically susceptible individuals by environmental factors particularly during early age. Both genetic and epigenetic factors are implicated in the beta-cell development, proliferation, differentiation and function. Recent evidences suggested that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta-cell development, proliferation and function as well as improve glucose homeostasis. Sodium butyrate (NaB) is a short chain fatty acid having HDAC inhibition activity. The present study was aimed to investigate the protective role of NaB treatment on the beta-cell proliferation, function and glucose homeostasis as well as apoptosis in juvenile diabetic rat. Diabetes was induced by single injection of STZ (60 mg/kg, i.p.) in chilled citrate buffer, while NaB (500 mg/kg/day) was administrated by i.p. route for 21 days as pre- and post-treatment schedule. Plasma glucose and insulin levels, HbA1c, glucose tolerance, apoptosis, and expression of proliferating cell nuclear antigen (PCNA), p38, p53, caspase-3, extracellular signal-regulated kinase-1/2 (ERK-1/2), forkhead box protein O1 (FOXO1) and insulin receptor substrate-1 (IRS-1) as well as histone acetylation were evaluated. NaB treatment decreased plasma glucose, HbA1c, beta-cell apoptosis and improved plasma insulin level and glucose homeostasis through HDAC inhibition and histone acetylation in diabetic animal as compared to control. NaB treatment improved the beta-cell proliferation, function and glucose homeostasis as well as reduced beta-cell apoptosis in juvenile diabetic rat by the modulation of p38/ERK MAPK and apoptotic pathway.

  3. Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate.

    PubMed

    Lee, Sang Min; Kim, Yeon-Gu; Lee, Eun Gyo; Lee, Gyun Min

    2014-02-10

    To understand the effects of sodium butyrate (NaBu) on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing Fc-fusion glycoprotein were subjected to 3mM NaBu. The addition of NaBu to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of the glycoprotein. Fifty-two N-glycosylation-related gene expressions were also assessed by the NanoString nCounter system, which can provide a direct digital readout using custom-designed color-coded probes. Among them, ten genes (ugp, slc35a2, ganc, man1a, man1c, mgat5a, st3gal5, glb1, neu1, and neu3) were up-regulated and three genes (b4galt2, st3gal3, and neu2) were down-regulated significantly. Altered expression patterns in st3gal3, neu1, and neu3, which have roles in the sialic acid biosynthesis pathway, correlated with reduced sialic acid content of the glycoprotein by NaBu. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of NaBu on N-glycosylation in rCHO cells.

  4. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust.

    PubMed

    Quan, Jine; Meng, Seng; Guo, Erhui; Zhang, Sheng; Zhao, Zhong; Yang, Xitian

    2017-02-16

    Indole-3-butyric acid (IBA) is applied to the cuttings of various plant species to induce formation of adventitious roots (ARs) in commercial settings. Tetraploid black locust is an attractive ornamental tree that is drought resistant, sand tolerant, can prevent sand erosion and has various commercial uses. To further elucidate the mechanisms of AR formation, we used Illumina sequencing to analyze transcriptome dynamics and differential gene expression at four developmental stages in control (CK) and IBA-treated groups. The short reads were assembled into 127,038 unitranscripts and 101,209 unigenes, with average lengths of 986 and 852 bp. In total, 10,181 and 14,924 differentially expressed genes (DEGs) were detected in the CK and IBA-treated groups, respectively. Comparison of the four consecutive developmental stages showed that 282 and 260 DEGs were shared between IBA-treated and CK, suggesting that IBA treatment increased the number of DEGs. We observed 1,721 up-regulated and 849 down-regulated genes in CI vs. II, 849 up-regulated and 836 down-regulated genes in CC vs. IC, 881 up-regulated and 631 down-regulated genes in CRP vs. IRP, and 5,626 up-regulated and 4,932 down-regulated genes in CAR vs. IAR, of which 25 up-regulated DEGs were common to four pairs, and these DEGs were significantly up-regulated at AR. These results suggest that substantial changes in gene expression are associated with adventitious rooting. GO functional category analysis indicated that IBA significantly up- or down-regulated processes associated with regulation of transcription, transcription of DNA dependent, integral to membrane and ATP binding during the development process. KEGG pathway enrichment indicated that glycolysis/gluconeogenesis, cysteine and methionine metabolism, photosynthesis, nucleotide sugar metabolism, and lysosome were the pathways most highly regulated by IBA. We identified a number of differentially regulated unigenes, including 12 methionine-related genes

  5. Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells.

    PubMed

    Qu, Shuxuan; Li, Minghua; Xie, Lixin; Huang, Xiao; Yang, Jinguo; Wang, Nan; Yang, Shangfeng

    2013-05-28

    A new graphene-fullerene composite (rGO-pyrene-PCBM), in which [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was attached onto reduced graphene oxide (rGO) via the noncovalent functionalization approach, was reported. The pyrene-PCBM moiety was synthesized via a facile esterification reaction, and pyrene was used as an anchoring bridge to link rGO and PCBM components. FTIR, UV-vis, and XPS spectroscopic characterizations were carried out to confirm the hybrid structure of rGO-pyrene-PCBM, and the composite formation is found to improve greatly the dispersity of rGO in DMF. The geometric configuration of rGO-pyrene-PCBM was studied by Raman, SEM, and AFM analyses, suggesting that the C60 moiety is far from the graphene sheet and is bridged with the graphene sheet via the pyrene anchor. Finally rGO-pyrene-PCBM was successfully applied as electron extraction layer for P3HT:PCBM bulk heterojunction polymer solar cell (BHJ-PSC) devices, affording a PCE of 3.89%, which is enhanced by ca. 15% compared to that of the reference device without electron extraction layer (3.39%). Contrarily, the comparative devices incorporating the rGO or pyrene-PCBM component as electron extraction layer showed dramatically decreased PCE, indicating the importance of composite formation between rGO and pyrene-PCBM components for its electron extraction property.

  6. Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and Lawsonia intracellularis humoral vaccine response in weaned pigs.

    PubMed

    Le Bourgot, Cindy; Le Normand, Laurence; Formal, Michèle; Respondek, Frédérique; Blat, Sophie; Apper, Emmanuelle; Ferret-Bernard, Stéphanie; Le Huërou-Luron, Isabelle

    2017-01-01

    Prebiotic supplementation modulates immune system development and function. However, less is known about the effects of maternal prebiotic consumption on offspring intestinal defences and immune system responsiveness. We investigated the effects of maternal short-chain fructo-oligosaccharide (scFOS) supplementation on mucin-secreting cells, ileal secretory IgA and cytokine secretion of weaned offspring and their humoral response to an oral vaccine against obligate intracellular Lawsonia intracellularis. Sows were fed a control diet (CTRL) or scFOS-supplemented diet during the last third of gestation and throughout lactation. At weaning, each litter was divided into two groups receiving a post-weaning CTRL or scFOS diet for a month. Pigs from the four groups were either non-vaccinated (n 16) or vaccinated (n 117) at day 33. Biomarkers related to intestinal defences and immune parameters were analysed 3 weeks later. SCFA production was assessed over time in suckling and weaned pigs. Maternal scFOS supplementation improved ileal cytokine secretions (interferon (IFN)-γ, P<0·05; IL-4, P=0·07) and tended to increase caecal goblet cell number (P=0·06). It increased IgA vaccine response in the serum (P<0·01) and ileal mucosa (P=0·08). Higher bacterial fermentative activity was observed during lactation (total faecal SCFA, P<0·001) and after weaning (colonic butyrate, P=0·10) in pigs from scFOS-supplemented mothers. No synergistic effect between maternal and post-weaning scFOS supplementation was observed. Therefore, maternal scFOS supplementation has long-lasting consequences by strengthening gut defences and immune response to a vaccine against an intestinal obligate intracellular pathogen. Prebiotic consumption by gestating and lactating mothers is decisive in modulating offspring intestinal immunity.

  7. Placental stem cells pre-treated with a hyaluronan mixed ester of butyric and retinoic acid to cure infarcted pig hearts: a multimodal study.

    PubMed

    Simioniuc, Anca; Campan, Manuela; Lionetti, Vincenzo; Marinelli, Martina; Aquaro, Giovanni D; Cavallini, Claudia; Valente, Sabrina; Di Silvestre, Dario; Cantoni, Silvia; Bernini, Fabio; Simi, Claudia; Pardini, Silvia; Mauri, Pierluigi; Neglia, Danilo; Ventura, Carlo; Pasquinelli, Gianandrea; Recchia, Fabio A

    2011-06-01

    Pre-treating placenta-derived human mesenchymal stem cells (FMhMSCs) with a hyaluronan mixed ester of butyric and retinoic acid (HBR) potentiates their reparative capacity in rodent hearts. Our aim was to test FMhMSCs in a large-animal model by employing a novel combination of in vivo and ex vivo analyses. Matched regional quantifications of myocardial function and viability were performed by magnetic resonance imaging (MRI) and positron emission tomography (PET) 4 weeks after myocardial infarction combined with intramyocardial injection of FMhMSCs (n = 7), or HBR-pre-treated FMhMSCs (HBR-FMhMSCs, n = 6), or saline solution (PBS, n = 7). Sham-operated pigs (n = 4) were used as control animals. Despite no differences in the ejection fraction and haemodynamics, regional MRI revealed, in pigs treated with HBR-FMhMSCs compared with the other infarcted groups, a 40% smaller infarct scar size and a significant improvement of the end-systolic wall thickening and circumferential shortening of the infarct border zone. Consistently, PET showed that myocardial perfusion and glucose uptake were, respectively, 35 and 23% higher in the border zone of pigs treated with HBR-FMhMSCs compared with the other infarcted groups. Histology supported in vivo imaging; the delivery of HBR-FMhMSCs significantly enhanced capillary density and decreased fibrous tissue by approximately 68%. Moreover, proteomic analysis of the border zone in the HBR-FMhMSCs group and the FMhMSCs group indicated, respectively, 45 and 30% phenotypic homology with healthy tissue, while this homology was only 26% in the border zone of the PBS group. Our results support a more pronounced reparative potential of HBR-pre-treated FMhMSCs in a clinically relevant animal model of infarction and highlight the necessity of using combined diagnostic imaging to avoid underestimations of stem cell therapeutic effects in the heart.

  8. Dual effects of 2-deoxyglucose on synthesis of the glycoprotein hormone common alpha-subunit in butyrate-treated HeLa cells.

    PubMed Central

    Cox, G S; McClure, D S; Cosgrove, D E

    1987-01-01

    Sodium butyrate (Btr) (3 mM) causes a 10-fold increase in production of the glycoprotein hormone alpha-subunit in HeLa cells. The following report demonstrates that this response could be inhibited about 95% by 5 mM 2-deoxy-D-glucose (dGlc), whereas alpha-subunit production in uninduced cells was affected little or not at all. Addition of D-mannose restored the Btr induction of Hela-alpha in cultures that had been treated with dGlc. When the alpha-subunits secreted by cells cultured in Btr plus dGlc or in Btr alone were compared by gel filtration (Sephadex G-75) and lectin affinity (concanavalin A and ricin) chromatography, differences were noted that probably reflect changes in their carbohydrate moieties. Immunoprecipitation of [35S]methionine-labeled HeLa-alpha and incubation with endoglycosidase H indicated that the subunit secreted from cells in the presence of dGlc contained oligosaccharide side chains that were not processed to the complex type. Cells that were simultaneously treated with Btr plus dGlc showed no increase in alpha-subunit production over cells receiving Btr only; in contrast, cells that were preincubated with Btr for either 16 or 36 h before dGlc was added exhibited high levels of subunit synthesis. Measurement of alpha-mRNA levels at various times after Btr and dGlc were added to cultures indicated that Btr brought about a dramatic increase in alpha-specific mRNA about 24 h after being added to cultures. This increase could be prevented by dGlc when added simultaneously with Btr but not when added after a 24-h preincubation. Although dGlc prevented the induction of alpha-subunit and alpha-mRNA in response to Btr, it had no effect on histone hyperacetylation, suggesting that if this chromatin modification is necessary for the induction process, it is not in itself sufficient. Together, the data demonstrate that dGlc inhibits the accumulation of alpha-subunit mRNA normally produced in response to Btr and that the subunit produced contains

  9. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.

    PubMed

    Xin, Fengxue; Basu, Anindya; Yang, Kun-Lin; He, Jianzhong

    2016-02-01

    In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. In vitro dissolution and in vivo absorption of calcium [1-14C]butyrate in free or protected forms

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a by-product of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for the epithelial cell development and for mucosal integrity, and for animal grow...

  11. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation

    PubMed Central

    Kumar, Priyadarsini; Thirkill, Twanda L.; Ji, Jennifer; Monte, Louise H.; Douglas, Gordon C.

    2015-01-01

    Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The

  12. Untangling the fiber yarn: butyrate feeds Warburg to suppress colorectal cancer.

    PubMed

    Sebastián, Carlos; Mostoslavsky, Raul

    2014-12-01

    Dietary composition has an important role in shaping the gut microbiota. In turn, changes in the diet directly impinge on bacterial metabolites present in the intestinal lumen. Whether such metabolites play a role in intestinal cancer has been a topic of hot debate. In this issue of Cancer Discovery, Donohoe and colleagues show that dietary fiber protects against colorectal carcinoma in a microbiota-dependent manner. Furthermore, fiber-derived butyrate acts as a histone deacetylase inhibitor, inhibiting cell proliferation and inducing apoptosis in colorectal cancer cells experiencing the Warburg effect.

  13. AMPK synergizes with the combined treatment of 1'-acetoxychavicol acetate and sodium butyrate to upregulate phase II detoxifying enzyme activities.

    PubMed

    Yaku, Keisuke; Matsui-Yuasa, Isao; Konishi, Yotaro; Kojima-Yuasa, Akiko

    2013-07-01

    Phase II enzymes play important roles in detoxifying xenobiotics. We previously reported that both 1'-acetoxychavicol acetate (ACA) and sodium butyrate individually increased phase II enzyme activities. Here, we determined the combined action of ACA and sodium butyrate on phase II enzyme activities in intestinal epithelial cells (IEC 6). ACA and sodium butyrate synergistically increased phase II enzyme activities. Protein levels of intranuclear transcription factor NF-E2-related factor 2 (Nrf2) were increased by ACA or sodium butyrate treatment, but treatment with both did not produce a synergistic effect. Intranuclear p53 protein levels were increased by ACA but decreased by sodium butyrate alone or combined treatment with ACA and sodium butyrate. In contrast, p53 acetylation was promoted by sodium butyrate and the ACA and sodium butyrate combination. Inhibition of AMPK activity decreased phase II enzyme activities that were upregulated by treatment with ACA plus sodium butyrate or other phytochemicals, including kaempferol, quercetin, and epigallocatechin-3-gallate. Combined treatment with ACA and sodium butyrate increased phosphorylated AMPK levels. These results suggest that ACA and sodium butyrate synergistically contribute to xenobiotics metabolism. The combined ACA and sodium butyrate treatment synergistically upregulated phase II enzyme activities through AMPK activation and p53 acetylation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nanofibrillar self-organization of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C(61)-butyric acid methyl ester by dip-coating: a simple method to obtain efficient bulk heterojunction solar cells.

    PubMed

    Valentini, L; Bagnis, D; Kenny, J M

    2009-03-04

    In this paper the dip-coating technique has been investigated as a method for the production of regioregular poly(3-hexylthiophene) (RR-P3HT):[6,6]-phenyl C(61)-butyric acid methyl ester (PCBM)-based solar cells. We found that the utilization of the dip-coating technique for the RR-P3HT:PCBM system can facilitate its self-assembly into a nanofibrillar lamellar structure after evaporation of the solvent. The condition for the formation of the nanofibrillar structures leads to a power conversion efficiency of 3.6% by using only this approach without thermal treatment.

  15. Butyrate and propionate: important components of toxic dental plaque extracts.

    PubMed Central

    Singer, R E; Buckner, B A

    1981-01-01

    Extracts of in vitro-cultured human dental plaque contain factors toxic to mammalian cells. Previous studies demonstrated that those toxic factors most readily released from cultured plaque had very low molecular weights and were heat stable. Studies reported here demonstrate that metabolic end products including short-chain fatty acids were present in fractions containing the low-molecular-weight, heat-stable factors. The salts of two of these acids, butyrate and propionate, inhibited proliferation of both mouse L929 cells and human gingival fibroblasts. Furthermore, when tested at concentrations present in plaque extracts, the inhibitory effects of butyrate and propionate accounted for essentially all the inhibitory potential of the extracts. These findings, taken together with those of other groups, suggest that butyrate and propionate, end products of dental plaque metabolism, may have an etiological role in periodontal disease. PMID:7251132

  16. Pyruvate sparing by butyrate and propionate in proliferating colonic epithelium.

    PubMed

    Butler, R N; Stafford, I; Triantafillos, E; O'Dee, C D; Jarrett, I G; Fettman, M J; Roberts-Thomson, I C

    1990-01-01

    1. The effects of fasting and fasting followed by refeeding on the relative activities of the pyruvate dehydrogenase (PDH) complex and the tricarboxylic acid (TCA) cycle in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]pyruvate and [3-14C]pyruvate, respectively. 2. Decarboxylation of pyruvate by the PDH complex exceeded that by the TCA cycle in both fasted and fasted/refed colonocytes, was higher in distal than in proximal colon, and was stimulated by refeeding following a fast. 3. Oxidation of pyruvate by both the PDH complex and the TCA cycle was inhibited by butyrate. 4. Propionate alone had no effect, but synergized with butyrate to further reduce pyruvate decarboxylation by the TCA cycle. 5. Preferential utilization of butyrate by proliferating colonic epithelial cells is postulated to maximize the energy yield and spare pyruvate and its precursors for alternative synthetic roles necessary for active cell division.

  17. Butyrate as preferred substrate for polyhydroxybutyrate production.

    PubMed

    Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2013-08-01

    In this study, the suitability of butyrate as substrate for polyhydroxyalkanoate (PHA) production by microbial enrichment cultures was assessed. Two sequencing batch reactors were operated under feast-famine conditions: one fed with butyrate, and another with mixed acetate and butyrate. The obtained results were compared to previous results with acetate as sole substrate. In all three reactors Plasticicumulans acidivorans dominated the enrichment culture. The carbon uptake rate and PHA yield were significantly higher on butyrate than on acetate, resulting in a higher PHA production rate. When both substrates were available the bacteria strongly preferred the uptake of butyrate. Only after butyrate depletion acetate was taken up at a high rate. The molar substrate uptake rate remained the same, suggesting that substrate uptake is the rate-limiting step. The results show that for optimized waste-based PHA production the pre-fermentation process should be directed towards butyrate production.

  18. Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C{sub 61}-butyric acidmethyl ester concentration graded bilayers

    SciTech Connect

    Wang, Dong Hwan; Lee, Hang Ken; Park, O Ok; Choi, Dae-Geun; Park, Jong Hyeok

    2009-07-27

    Polymer photovoltaic (PV) device prepared with a vertical phase separation has intensified the research on the effectiveness of the concentration graded active layer. In this paper, a polymer PV device with a poly(3-hexylthiophene)/[6,6]-phenyl C{sub 61}-butyric acidmethyl ester (P3HT/PCBM) bilayers active film with a concentration gradient has been fabricated via solution process. The concentration variation has been confirmed by the Auger spectroscopy. The devices showed an enhanced photocurrent density and power conversion efficiency compared to those of the bulk heterojunction PV prepared under the same fabrication condition.

  19. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.

  20. Sodium Butyrate Stimulates Expression of Fibroblast Growth Factor 21 in Liver by Inhibition of Histone Deacetylase 3

    PubMed Central

    Li, Huating; Gao, Zhanguo; Zhang, Jin; Ye, Xin; Xu, Aimin; Ye, Jianping; Jia, Weiping

    2012-01-01

    Fibroblast growth factor 21 (FGF21) stimulates fatty acid oxidation and ketone body production in animals. In this study, we investigated the role of FGF21 in the metabolic activity of sodium butyrate, a dietary histone deacetylase (HDAC) inhibitor. FGF21 expression was examined in serum and liver after injection of sodium butyrate into dietary obese C57BL/6J mice. The role of FGF21 was determined using antibody neutralization or knockout mice. FGF21 transcription was investigated in liver and HepG2 hepatocytes. Trichostatin A (TSA) was used in the control as an HDAC inhibitor. Butyrate was compared with bezafibrate and fenofibrate in the induction of FGF21 expression. Butyrate induced FGF21 in the serum, enhanced fatty acid oxidation in mice, and stimulated ketone body production in liver. The butyrate activity was significantly reduced by the FGF21 antibody or gene knockout. Butyrate induced FGF21 gene expression in liver and hepatocytes by inhibiting HDAC3, which suppresses peroxisome proliferator–activated receptor-α function. Butyrate enhanced bezafibrate activity in the induction of FGF21. TSA exhibited a similar set of activities to butyrate. FGF21 mediates the butyrate activity to increase fatty acid use and ketogenesis. Butyrate induces FGF21 transcription by inhibition of HDAC3. PMID:22338096

  1. Oxadiazoles Have Butyrate-Specific Conditional Activity against Mycobacterium tuberculosis

    PubMed Central

    Early, Julie V.; Casey, Allen; Martinez-Grau, Maria Angeles; Gonzalez Valcarcel, Isabel C.; Vieth, Michal; Ollinger, Juliane; Bailey, Mai Ann; Alling, Torey; Files, Megan; Ovechkina, Yulia

    2016-01-01

    Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells. PMID:27044545

  2. Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum.

    PubMed

    Yoo, Minyeong; Croux, Christian; Meynial-Salles, Isabelle; Soucaille, Philippe

    2017-01-31

    Clostridium acetobutylicum possesses two homologous buk genes, buk (or buk1) and buk2, which encode butyrate kinases involved in the last step of butyrate formation. To investigate the contribution of buk in detail, an in-frame deletion mutant was constructed. However, in all the Δbuk mutants obtained, partial deletions of the upstream ptb gene were observed, and low phosphotransbutyrylase and butyrate kinase activities were measured. This demonstrates that i) buk (CA_C3075) is the key butyrate kinase-encoding gene and that buk2 (CA_C1660) that is poorly transcribed only plays a minor role; and ii) strongly suggests that a Δbuk mutant is not viable if the ptb gene is not also inactivated, probably due to the accumulation of butyryl-phosphate, which might be toxic for the cell. One of the ΔbukΔptb mutants was subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomic analyses in acidogenic, solventogenic and alcohologenic chemostat cultures. In addition to the low butyrate production, drastic changes in metabolic fluxes were also observed for the mutant: i) under acidogenic conditions, the primary metabolite was butanol and a new metabolite, 2-hydroxy-valerate, was produced ii) under solventogenesis, 58% increased butanol production was obtained compared to the control strain under the same conditions, and a very high yield of butanol formation (0.3gg(-1)) was reached; and iii) under alcohologenesis, the major product was lactate. Furthermore, at the transcriptional level, adhE2, which encodes an aldehyde/alcohol dehydrogenase and is known to be a gene specifically expressed in alcohologenesis, was surprisingly highly expressed in all metabolic states in the mutant. The results presented here not only support the key roles of buk and ptb in butyrate formation but also highlight the metabolic flexibility of C. acetobutylicum in response to genetic alteration of its primary metabolism.

  3. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion.

    PubMed

    Malhi, Moolchand; Gui, Hongbing; Yao, Lei; Aschenbach, Jörg R; Gäbel, Gotthold; Shen, Zanming

    2013-01-01

    We tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum. In Exp. 1, goats received an intraruminal infusion of sodium butyrate at 0.3 (group B, n=8) or 0 (group C, n=7) g/kg of body weight (BW) per day before morning feeding for 28 d and were slaughtered 8 h after the butyrate infusion. In Exp. 2, goats (n=8) received butyrate infusion and feeding as in Exp. 1. On d 28, epithelial samples were biopsied from the antrium ruminis at 0, 3, and 7 h after the last butyrate infusion. In Exp. 1, the ruminal molar proportional concentration of butyrate increased in group B by about 110% after butyrate infusion and remained elevated for 1.5 h; thereafter, it gradually returned to the baseline (preinfusion) level. In group C, the molar proportional concentration of butyrate was unchanged over the time points. The length and width of papillae increased in B compared with C; this was associated with increased numbers of cells and cell layers in the epithelial strata and an increase in the surface area of 82%. The mRNA expression of CCND1 increased transiently at 3 h but returned to the preinfusion level at 7 h following butyrate infusion in Exp. 2. However, it did not differ between B and C in Exp. 1, in which the ruminal epithelium was sampled at 8 h after butyrate infusion. The mRNA expression of the monocarboxylate transporter MCT4, but not MCT1, was stably upregulated in B compared with C. The estimated absorption rate of total SCFA (%/h) increased in B compared with C. We conclude that transient increases in cyclin D1 transcription contribute to butyrate-induced papillae growth and subsequently to the increased absorption of SCFA in the ruminal epithelium

  4. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect

    Chauhan, A. K. E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  5. Induction of peroxisomes by butyrate-producing probiotics.

    PubMed

    Weng, Huachun; Endo, Kosuke; Li, Jiawei; Kito, Naoko; Iwai, Naoharu

    2015-01-01

    We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.

  6. Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro.

    PubMed

    Katzenmaier, Eva-Maria; André, Sabine; Kopitz, Jürgen; Gabius, Hans-Joachim

    2014-10-01

    The physiological compound sodium butyrate can induce differentiation in colon cancer cells in vitro. Due to the role of galectins in growth control we explored its effect on this network beyond galectins-1 and -3, with deliberate consideration of the status of microsatellite stability, for nine cell lines. Microscopical monitoring and measurement of alkaline phosphatase activity ascertained butyrate's impact on cells. Monitoring by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting with galectin-type-specific probes characterized galectin expression. Controlled by expectable strong up-regulation of galectin-1 and comparatively small effects on galectin-3 regulation for galectins-4, -7, -8 and -9 were reported with no obvious association to microsatellite stability status. Neoexpression of the GAL-12 gene was observed in eight out of nine tested lines. Butyrate affects the galectin network beyond galectins-1 and -3, warranting further cell biological and histochemical studies. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Activation of the receptor (Gpr109a) for niacin and the commensal metabolite butyrate suppresses colonic inflammation and carcinogenesis

    PubMed Central

    Singh, Nagendra; Gurav, Ashish; Sivaprakasam, Sathish; Brady, Evan; Padia, Ravi; Shi, Huidong; Thangaraju, Muthusamy; Prasad, Puttur D.; Manicassamy, Santhakumar; Munn, David H.; Lee, Jeffrey R.; Offermanns, Stefan; Ganapathy, Vadivel

    2015-01-01

    SUMMARY Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1−/− mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon. PMID:24412617

  8. Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer

    NASA Astrophysics Data System (ADS)

    Liang, Chin-Wei; Su, Wei-Fang; Wang, Leeyih

    2009-09-01

    This work presents an approach for improving the unfavorable vertical composition gradients of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the photoactive layer of bulk heterojunction solar cells. The proposed method involves simply depositing a thin layer of P3HT on top of poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) prior to the P3HT:PCBM blend is spin coated. The results from photoluminescence and photovoltaic measurements indicate that incorporating this P3HT layer significantly enhances the electron blocking ability of PEDOT:PSS, the efficiency of photoinduced electron transfer and the photocurrent of the device, resulting in an improvement of the power conversion efficiency from 3.98% to 5.05%.

  9. CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer

    PubMed Central

    Bordonaro, Michael; Lazarova, Darina L

    2015-01-01

    This paper reviews the distinctive roles played by the transcriptional coactivators CREB-binding protein (CBP) and p300 in Wnt/β-catenin signaling and cell physiology in colorectal cancer (CRC). Specifically, we focus on the effects of CBP- and p300-mediated Wnt activity on (1) neoplastic progression; (2) the activities of butyrate, a breakdown product of dietary fiber, on cell signaling and colonic cell physiology; (3) the development of resistance to histone deacetylase inhibitors (HDACis), including butyrate and synthetic HDACis, in colonic cells; and (4) the physiology and number of cancer stem cells. Mutations of the Wnt/β-catenin signaling pathway initiate the majority of CRC cases, and we have shown that hyperactivation of this pathway by butyrate and other HDACis promotes CRC cell apoptosis. This activity by butyrate may in part explain the preventive action of fiber against CRC. However, individuals with a high-fiber diet may still develop neoplasia; therefore, resistance to the chemopreventive action of butyrate likely contributes to CRC. CBP or p300 may modify the ability of butyrate to influence colonic cell physiology since the two transcriptional coactivators affect Wnt signaling, and likely, its hyperactivation by butyrate. Also, CBP and p300 likely affect colonic tumorigenesis, as well as stem cell pluripotency. Improvement of CRC prevention and therapy requires a better understanding of the alterations in Wnt signaling and gene expression that underlie neoplastic progression, stem cell fate, and the development of resistance to butyrate and clinically relevant HDACis. Detailed knowledge of how CBP- and p300 modulate colonic cell physiology may lead to new approaches for anti-CRC prevention and therapeutics, particularly with respect to combinatorial therapy of CBP/p300 inhibitors with HDACis. PMID:26217075

  10. The Future of Butyric Acid in Industry

    PubMed Central

    Dwidar, Mohammed; Park, Jae-Yeon; Mitchell, Robert J.; Sang, Byoung-In

    2012-01-01

    In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches. PMID:22593687

  11. Strategies to generate induced pluripotent stem cells.

    PubMed

    Hayes, Michael; Zavazava, Nicholas

    2013-01-01

    The isolation of embryonic stem cells (ESCs) has furthered our understanding of normal embryonic development and fueled the progression of stem cell derived therapies. However, the generation of ESCs requires the destruction of an embryo, making the use of these cells ethically controversial. In 2006 the Yamanaka group overcame this ethical controversy when they described a protocol whereby somatic cells could be dedifferentiated into a pluripotent state following the transduction of a four transcription factor cocktail. Following this initial study numerous groups have described protocols to generate induced pluripotent stem cells (iPSCs). These protocols have simplified the reprogramming strategy by employing polycistronic reprogramming cassettes and flanking such polycistronic cassettes with loxP or piggyBac recognition sequences. Thus, these strategies allow for excision of the entire transgene cassette, limiting the potential for the integration of exogenous transgenes to have detrimental effect. Others have prevented the potentially deleterious effects of integrative reprogramming strategies by using non-integrating adenoviral vectors, traditional recombinant DNA transfection, transfection of minicircle DNA, or transfection of episomally maintained EBNA1/OriP plasmids. Interestingly, transfection of mRNA or miRNA has also been shown to be capable of reprogramming cells, and multiple groups have developed protocols using cell penetrating peptide tagged reprogramming factors to de-differentiate somatic cells in the absence of exogenous nucleic acid. Despite the numerous different reprogramming strategies that have been developed, the reprogramming process remains extremely inefficient. To overcome this inefficiency multiple groups have successfully used small molecules such as valproic acid, sodium butyrate, PD0325901, and others to generate iPSCs.The fast paced field of cellular reprogramming has recently produced protocols to generate iPSCs using non

  12. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.

  13. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    PubMed Central

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  14. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon.

    PubMed

    Louis, Petra; Duncan, Sylvia H; McCrae, Sheila I; Millar, Jacqueline; Jackson, Michelle S; Flint, Harry J

    2004-04-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate.

  15. Nutrient-induced modulation of gene expression and cellular functions: modeling epigenetic regulation in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Volatile fatty acids (VFA), especially butyrate, participate in metabolism both as nutrients and as regulators of histone deacetylation. The major biochemical change that occurs in cells treated with butyrate is the global hyperacetylation of histones. One paradigmatic example of the nutrient-epige...

  16. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    SciTech Connect

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahya, Muhammad

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured by current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.

  17. Regioselective synthesis and biological profiling of butyric and phenylalkylcarboxylic esters derivated from D-mannose and xylitol: influence of alkyl chain length on acute toxicity.

    PubMed

    Pouillart, P; Douillet, O; Scappini, B; Gozzini, A; Santini, V; Grossi, A; Pagliai, G; Strippoli, P; Rigacci, L; Ronco, G; Villa, P

    1999-01-01

    Regiospecific synthesis of 12 novel n-butyric and phenylalkylcarboxylic monoesters of mannose and xylitol was achieved. The strategy adopted, avoided a tedious intramolecular transesterification step, previously described for the synthesis of analogous compounds and permitted the facile synthesis of a new generation of stable derivatives. The general tolerance of the drugs has been assayed after intravenous administration of a bolus dose into mice. Monobutyric esters showed a low toxicity commensurate with the requirements for future development. A relationship was observed between chain length and toxicity. In contrast, phenylacetic, 3-phenylpropionic and 4-phenylbutyric esters were found to be toxic. Phenylbutyric esters induced marked and specific neuromuscular damage. Preliminary biological investigations of the new series of monobutyric esters showed them to retain the benificial biological properties of butyric acid whilst remaining relatively non toxic. They induced an inhibition of in vitro proliferation of 10 human cases of de novo acute myeloid leukemia (AML) primary cultures and AML established cell lines. AML blasts growth appeared to be blocked and cell differentiation was established. Transcription and expression of maturation markers and finally apoptosis were observed. Moreover, human gamma-chain hemoglobin (HbF) synthesis in erythroleukemia cells was stimulated by monobutyric esters. Mannose and xylitol butyric derivatives would appear to have exciting potential in treatment of beta-Hemoglobinopathies, sickle cell anemia and cancer.

  18. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.

    PubMed

    Chen, Wen-Hsing; Jian, Zih-Ce

    2013-10-01

    Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g(-1) of dry cell was projected for 31.9 g L(-1) sucrose and 1.3 g L(-1) butyrate, and the maximum specific butanol production rate of 0.87 g d(-1) g(-1) of dry cell was predicted for 25.0 g L(-1) sucrose and 2.6 g L(-1) butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol(-1) was projected for 25.0 g L(-1) sucrose and 2.3 g L(-1) butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol(-1) when butyrate addition increased from 0 to 1 g L(-1) under low sugar concentration (3.8 g L(-1) sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone-butanol-ethanol fermentation.

  19. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats.

    PubMed

    Patel, Bhoomika M

    2017-04-07

    The aim of the present research was to study the effect of sodium butyrate (SB) on partial abdominal aorta constriction (PAAC)-induced cardiac hypertrophy and determine its mechanism of action. Healthy Wistar rats were exposed to PAAC for eight weeks. After eight weeks, we carried out hypertrophic and hemodynamic evaluation and measured oxidative stress parameters and mitochondrial DNA concentration. PAAC control animals exhibited cardiac hypertrophy, decreased hemodynamic functions and oxidative stress. Treatment with SB reduced hypertrophic indices, LV wall thickness, LV collagen levels, cardiomyocyte diameter, serum lipid levels and serum cardiac biomarkers. Treatment with SB also improved hemodynamic functions, prevented oxidative stress and increased mitochondrial DNA concentration. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies which revealed that SB decreases expression of prohypertrophic HDAC, i.e., HDAC2, without altering the expression of anti-hypertrophic HDAC5. Sodium butyrate produces beneficial effect on cardiac hypertrophy as is evident, specifically from reduction in hypertrophic parameters including collagen levels, improvement in mitochondrial DNA concentration and preservation of LV systolic and diastolic dysfunction. This beneficial effect of sodium butyrate is mediated through downregulation of class I HDACs, specifically HDAC2 without any effect on class II HDAC, i.e., HDAC5. Thus, selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors which are class I inhibitor and class II promoter can be designed to obtain a 'pan' or 'dual' natural HDAC 'regulators.'

  1. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    PubMed

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  2. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo

  3. The hypophagic response to heat stress is not mediated by GPR109A or peripheral β-OH butyrate.

    PubMed

    Hepler, Chelsea; Foy, Caroline E; Higgins, Mark R; Renquist, Benjamin J

    2016-05-15

    Rising temperatures resulting from climate change will increase the incidence of heat stress, negatively impacting the labor force and food animal production. Heat stress elevates circulating β-OH butyrate, which induces vasodilation through GPR109a. Interestingly, both heat stress and intraperitoneal β-OH butyrate administration induce hypophagia. Thus, we aimed to investigate the role of β-OH butyrate in heat stress hypophagia in mice. We found that niacin, a β-OH butyrate mimetic that cannot be oxidized to generate ATP, also reduces food intake. Interestingly, the depression in food intake as a result of 8-h intraperitoneal niacin or 48-h heat exposure did not result from changes in hypothalamic expression of orexigenic or anorexigenic signals (AgRP, NPY, or POMC). Genetically eliminating GPR109a expression did not prevent the hypophagic response to heat exposure, intraperitoneal β-OH butyrate (5.7 mmol/kg), or niacin (0.8 mmol/kg). Hepatic vagotomy eliminated the hypophagic response to β-OH butyrate and niacin but did not affect the hypophagic response to heat exposure. We subsequently hypothesized that the hypophagic response to heat stress may depend on direct effects of β-OH butyrate at the central nervous system: β-OH butyrate induced hormonal changes (hyperinsulinemia, hypercorticosteronemia, and hyperleptinemia), or gene expression changes. To test these possibilities, we blocked expression of hepatic hydroxyl methyl glutaryl CoA synthase II (HMGCS2) to prevent hepatic β-OH butyrate synthesis. Mice that lack HMGCS2 maintain a hypophagic response to heat stress. Herein, we establish that the hypophagia of heat stress is independent of GPR109a, the hepatic vagus afferent nerve, and hepatic ketone body synthesis. Copyright © 2016 the American Physiological Society.

  4. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  5. Design, synthesis and biological evaluation of a phenyl butyric acid derivative, N-(4-chlorophenyl)-4-phenylbutanamide: A HDAC6 inhibitor with anti-proliferative activity on cervix cancer and leukemia cells.

    PubMed

    Alberto, Rodríguez-Fonseca Rolando; Yudibeth, Sixto-López; Jonathan, Fragoso-Vázquez M; Raúl, Flores-Mejía; Cristina, Cabrera-Pérez Laura; Ismael, Vázquez-Moctezuma; Cecilia, Rosales-Hernández Martha; Martiniano, Bello; Martínez-Archundia, M; Guadalupe, Trujillo-Ferrara José; Elvia, Becerra-Martínez; José, Correa-Basurto

    2017-01-02

    The epigenetic regulation of genes in cancer could be targeted by inhibiting Histone deacetylase 6 (HDAC6), an enzyme involved in several types of cancer such as lymphoma, leukemia, ovarian cancer, etc. Through in silico methods, a set of Phenyl butyric acid derivatives with possible HDAC6 inhibitory activity were designed, rendering monophenylamides and biphenylamides using tubacin (HDAC6 selective inhibitor) as reference. The target compounds were submitted to theoretical ADMET analyses and their binding properties on different HDAC6 conformers were evaluated through docking calculations. These in silico studies allowed us to identify a compound named B-R2B. In order to have more information about the B-R2B binding recognition properties on HDAC6, the B-R2B-HDAC6 complex was submitted through 100 ns-long Molecular Dynamics (MD) simulation coupled to MMGBSA approach, revealing that B-R2B is located at the entrance of HDAC6 active pocket, blocking the passage of the substrate without reaching the HDAC6 binding site. Based on these results, B-R2B was synthesized, characterized and biologically tested. The HDAC6 fluorometric drug discovery kit Fluor-de-Lys (ENZO Life Sciences Inc.) was used to determine the HDAC6 human inhibitory activity (IC50 value) of B-R2B compound. In addition, B-R2B show IC50 values on cancer cell lines (HeLa; IC50 = 72.6 µM), acute myeloid leukemia (THP-1; IC50 = 16.5 µM), human mast leukemia (HMC; IC50 = 79.29 µM) and chronic myelogenous leukemia (Kasumi; IC50 = 101 µM). In conclusion, these results show that B-R2B is a HDAC6 inhibitor, specifically a non-competitive type in a similar way that tubacin does, according to MD simulations.

  6. Fragrance material review on phenethyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl butyrate when used as a fragrance ingredient is presented. Phenethyl butyrate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fragrance material review on benzyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl butyrate when used as a fragrance ingredient is presented. Benzyl butyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, toxicokinetics, and repeated dose data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Gum Arabic as fetal hemoglobin inducing agent in sickle cell anemia; in vivo study.

    PubMed

    Kaddam, Lamis; FdleAlmula, Imad; Eisawi, Omer Ali; Abdelrazig, Haydar Awad; Elnimeiri, Mustafa; Lang, Florian; Saeed, Amal M

    2015-01-01

    High levels of fetal haemoglobin (HbF) decrease sickle cell anaemia (SCA) severity and leads to improved survival. According to in vivo and in vitro studies, butyrate increases HbF production. Its utilization in clinical practice is hampered, however, by its short half-life. Serum butyrate concentrations could be enhanced by colonic bacterial fermentation of Gum Arabic (GA), edible, dried, gummy exudates from Acacia Senegal tree. We hypothesized that regular intake of GA increases serum butyrate levels, thus inducing HbF production and ameliorating symptoms of sickle cell anemia. Fourty seven patients (5-42 years) carrying hemoglobin SS were recruited from April 2014 to January 2015. Patients received 30 g/day GA for 12 weeks. HbF, blood count and erythropoietin level were measured. The main outcome of interest was the level of HbF after 12 weeks. The secondary outcomes were improvement in clinical and laboratory results. The study was ethically approved by Alneelain University IRB. The study revealed significant increase in HbF level P.V0.000 [95 % CI, 0.43-1.02], MCV P.V:000 [95 % CI, 2.312-6.058] and Hematocrit level P.V:0.026 [95 % CI, 0.124-1.902]. No significant difference was encountered in platelets count P.V: 0.346 [95 % CI,-25.76-71.94], and WBCs count P.V:0.194 [95 % CI,-8.035-1.68]. Thirty seven percent of patients experienced minor side effects which resolved within a week. These findings reveal a novel effect of GA, which may be used to foster fetal hemoglobin production. ClinicalTrials.gov Identifier: NCT02467257. Registered 3rd June 2015.

  9. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  10. Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum-evidence from a mathematical model.

    PubMed

    Millat, Thomas; Voigt, Christine; Janssen, Holger; Cooksley, Clare M; Winzer, Klaus; Minton, Nigel P; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2014-11-01

    The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant.

  11. Potentiated antitumor effects of a combination therapy with a farnesyltransferase inhibitor L-744,832 and butyrate in vitro.

    PubMed

    Kopec, Maciej; Strusinska, Katarzyna; Legat, Magdalena; Makowski, Marcin; Jakobisiak, Marek; Golab, Jakub

    2004-05-01

    Farnesyltransferase inhibitors, butyrate and butyric acid derivatives have previously been reported to exert anti-tumor activity in experimental models in vitro and in vivo and have recently gained acceptance as potential anticancer agents. In our study, we examined antitumor effects of a combination of a farnesyltransferase inhibitor L-744,832 and butyrate in vitro against MDA-MB-231 and MIA PaCa-2 human cancer cells. This combination therapy showed synergistic antitumor activity against MDA-MB-231 cells, which was at least in part due to induction of p27KIP1 expression. Both drugs increased intracellular levels of p53 as well but there was no significant difference between the groups treated with single drugs and the group treated with their combination. In MIA PaCa-2 cells, the combination therapy exerted additive antitumor activity. Our results illustrate possible application of the farnesyltransferase inhibitor L-744,832 and butyrate as a combination therapy of cancer.

  12. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  13. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  14. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth.

  15. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  16. Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata).

    PubMed

    Robles, R; Lozano, A B; Sevilla, A; Márquez, L; Nuez-Ortín, W; Moyano, F J

    2013-12-01

    Butyrate is a short-chain fatty acid extensively used in animal nutrition since it promotes increases in body weight and other multiple beneficial effects on the intestinal tract. Although such effects have been demonstrated in several species, very few studies have assessed them in fish. On the other hand, little is known about the metabolic processes underlying these effects. In the present work, growth parameters and changes in more than 80 intestinal metabolites (nucleotides, amino acids and derivatives, glycolytic intermediates, redox coenzymes and lipid metabolism coenzymes) have been quantified in juvenile sea bream fed a butyrate-supplemented diet. Results showed a significant increase in the weight of fish receiving butyrate, while metabolomics provided some clues on the suggested effects of this feed additive. It seems that butyrate increased the availability of several essential amino acids and nucleotide derivatives. Also, the energy provision for enteric cells might have been enhanced by a decrease in glucose and amino acid oxidation related to the use of butyrate as fuel. Additionally, butyrate might have increased transmethylation activity. This work represents an advance in the knowledge of the metabolic consequences of using butyrate as an additive in fish diets.

  17. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2.

    PubMed

    Miao, Wei; Wu, Xiujuan; Wang, Kang; Wang, Wenjing; Wang, Yumei; Li, Zhigang; Liu, Jingjing; Li, Li; Peng, Luying

    2016-10-10

    As a physiological small molecular product from the microbial fermentation of dietary fibers, butyrate plays an important role in maintaining intestinal health. Our previous works have proved that the effect of sodium butyrate (NaB) on the intestinal barrier function is mediated by activation of AMP-activated protein kinase (AMPK). However, the detailed pathway involved remains unknown. Using the calcium switch assay in the Caco-2 cell monolayer model, we found here that NaB activated AMPK mainly by increasing the calcium level, but not the ATP concentration, via promoting store-operated calcium entry (SOCE). Upon the activation of AMPK, NaB promoted the reassembly of tight junctions (TJs) based on reducing the phosphorylation of myosin II regulatory light chain (MLC2) at Ser19 and increasing phosphorylation of protein kinase C β2 (PKCβ2) at Ser660. Inhibiting (protein kinase C β) PKCβ blocked the reassembly of TJs induced by NaB in the barrier monolayer model. These results indicated that NaB could activate the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) pathway to mediate AMPK phosphorylating, which then inhibited the phosphorylation of MLC2 and promoted the phosphorylation of PKCβ2, respectively, so that the downstream molecules of AMPK coordinately contributed to the reassembly of TJs in the Caco-2 barrier model. These results suggested a potential mechanism of butyrate for intestine homeostasis and protection.

  18. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2

    PubMed Central

    Miao, Wei; Wu, Xiujuan; Wang, Kang; Wang, Wenjing; Wang, Yumei; Li, Zhigang; Liu, Jingjing; Li, Li; Peng, Luying

    2016-01-01

    As a physiological small molecular product from the microbial fermentation of dietary fibers, butyrate plays an important role in maintaining intestinal health. Our previous works have proved that the effect of sodium butyrate (NaB) on the intestinal barrier function is mediated by activation of AMP-activated protein kinase (AMPK). However, the detailed pathway involved remains unknown. Using the calcium switch assay in the Caco-2 cell monolayer model, we found here that NaB activated AMPK mainly by increasing the calcium level, but not the ATP concentration, via promoting store-operated calcium entry (SOCE). Upon the activation of AMPK, NaB promoted the reassembly of tight junctions (TJs) based on reducing the phosphorylation of myosin II regulatory light chain (MLC2) at Ser19 and increasing phosphorylation of protein kinase C β2 (PKCβ2) at Ser660. Inhibiting (protein kinase C β) PKCβ blocked the reassembly of TJs induced by NaB in the barrier monolayer model. These results indicated that NaB could activate the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) pathway to mediate AMPK phosphorylating, which then inhibited the phosphorylation of MLC2 and promoted the phosphorylation of PKCβ2, respectively, so that the downstream molecules of AMPK coordinately contributed to the reassembly of TJs in the Caco-2 barrier model. These results suggested a potential mechanism of butyrate for intestine homeostasis and protection. PMID:27735862

  19. New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone

    NASA Astrophysics Data System (ADS)

    Matusevich, Vladislav; Tolstik, Elen; Kowarschik, Richard; Egorova, Elena; Matusevich, Yuri I.; Krul, Leonid

    2013-05-01

    The newly developed Plexiglas films containing polyvinyl butyral resins and phenanthrenequinone molecules as photosensitive dopant, which are proposed for the practical application as interlayer of laminated safety glass, are shown for the first time. The injection of the phenanthrenequinone-poly(methyl methacrylate) into the polyvinyl butyral protective interlayer provides a homogenous distribution of the recording holographic medium in the layer and allows fixing the entire surface grating in the laminated glass. In addition, the original properties of polyvinyl butyral as a connecting material were preserved during manufacturing of the laminated glass. This allows a recording of holographic structures directly after baking of the laminated glass, thus reducing the destruction of the gratings due to the elevated temperatures. The diffractive structures in phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral polymeric layers with thicknesses of hundreds of microns are sealed between two panels of glass (so-called laminated glass) and are generated by illumination with an Argon-laser of 514 nm. Efficiently fixed and long-term stable holographic gratings recorded in the phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral layer enable to produce transparent laminated glass with inserted diffractive elements, which can be used e.g. for Head-up Displays in automobile windshields or as holographic light concentrators for solar cells.

  20. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic.

    PubMed

    Raqib, Rubhana; Sarker, Protim; Bergman, Peter; Ara, Gul; Lindh, Monica; Sack, David A; Nasirul Islam, K M; Gudmundsson, Gudmundur H; Andersson, Jan; Agerberth, Birgitta

    2006-06-13

    Shigella is a major cause of morbidity, mortality, and growth retardation for children in developing countries. Emergence of antibiotic resistance among Shigellae demands the development of effective medicines. Previous studies found that the endogenous antimicrobial peptide LL-37 is down-regulated in the rectal epithelium of patients during shigellosis and that butyrate up-regulates the expression of LL-37 in colonic epithelial cells in vitro and decreases severity of inflammation in experimental shigellosis. In this study, Shigella-infected dysenteric rabbits were treated with butyrate (0.14 mmol/kg of body weight) twice daily for 3 days, and the expression levels of the rabbit homologue to LL-37, CAP-18, were monitored in the colon. Butyrate treatment resulted in (i) reduced clinical illness, severity of inflammation in the colon, and bacterial load in the stool, (ii) significant up-regulation of CAP-18 in the surface epithelium, and (iii) disappearance of CAP-18-positive cells in lamina propria. The active CAP-18 peptide was released in stool from its proform by butyrate treatment. In healthy controls, CAP-18 expression was localized predominantly to the epithelial surface of the colon. In infected rabbits, CAP-18 expression was localized to immune and inflammatory cells in the colon, whereas the ulcerated epithelium was devoid of CAP-18 expression. The combination of CAP-18 and butyrate was more efficient in killing Shigella in vitro than CAP-18 alone. Our findings indicate that oral butyrate treatment in shigellosis may be of clinical value because of induction of the endogenous cathelicidin CAP-18 in the colonic epithelium, stimulation of the release of the active peptide CAP-18, and promoting elimination of Shigella.

  1. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum.

    PubMed

    Wu, Zetang; Yang, Shang-Tian

    2003-04-05

    A novel extractive fermentation for butyric acid production from glucose, using immobilized cells of Clostridium tyrobutyricum in a fibrous bed bioreactor, was developed by using 10% (v/v) Alamine 336 in oleyl alcohol as the extractant contained in a hollow-fiber membrane extractor for selective removal of butyric acid from the fermentation broth. The extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor. The fermentation pH was self-regulated by a balance between acid production and removal by extraction, and was kept at approximately pH 5.5 throughout the study. Compared with conventional fermentation, extractive fermentation resulted in a much higher product concentration (>300 g/L) and product purity (91%). It also resulted in higher reactor productivity (7.37 g/L. h) and butyric acid yield (0.45 g/g). Without on-line extraction to remove the acid products, at the optimal pH of 6.0, the final butyric acid concentration was only approximately 43.4 g/L, butyric acid yield was 0.423 g/g, and reactor productivity was 6.77 g/L. h. These values were much lower at pH 5.5: 20.4 g/L, 0.38 g/g, and 5.11 g/L. h, respectively. The improved performance for extractive fermentation can be attributed to the reduced product inhibition by selective removal of butyric acid from the fermentation broth. The solvent was found to be toxic to free cells in suspension, but not harmful to cells immobilized in the fibrous bed. The process was stable and provided consistent long-term performance for the entire 2-week period of study.

  2. Membrane Complexes of Syntrophomonas wolfei Involved in Syntrophic Butyrate Degradation and Hydrogen Formation

    PubMed Central

    Crable, Bryan R.; Sieber, Jessica R.; Mao, Xinwei; Alvarez-Cohen, Lisa; Gunsalus, Robert; Ogorzalek Loo, Rachel R.; Nguyen, Hong; McInerney, Michael J.

    2016-01-01

    Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in co-culture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and co-cultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS) oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic butyrate degradation

  3. Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells

    PubMed Central

    Matusiak, Katarzyna; Gałęcki, Remigiusz; Borowski, Sebastian; Gutarowska, Beata

    2017-01-01

    Animal breeding and management of organic wastes pose a serious problem to the health of livestock and workers, as well as the nearby residents. The aim of the present study was to determine the mechanisms of toxicity of selected common odorous compounds from poultry manure, including ammonia, dimethylamine (DMA), trimethylamine (TMA), butyric acid, phenol, and indole. We measured their genotoxic and cytotoxic activity in the model chicken cell line (LMH), in vitro, by comet assay and lactate dehydrogenase assay, respectively. We also made microscopic observations of any morphological changes in these cells by DAPI staining. Four compounds, namely ammonia, DMA, TMA, and butyric acid increased DNA damage in a dose-dependent manner (p < 0.05), reaching genotoxicity as high as 73.2 ± 1.9%. Phenol and indole induced extensive DNA damage independent of the concentration used. Ammonia, DMA, and TMA caused a dose-dependent release of lactate dehydrogenase (p < 0.05). The IC50 values were 0.02%, 0.05%, and 0.1% for DMA, ammonia and TMA, respectively. These compounds also induced nuclear morphological changes, such as chromatin condensation, shrinkage, nuclear fragmentation (apoptotic bodies), and chromatin lysis. Our study exhibited the damaging effects of odorous compounds in chick LMH cell line. PMID:28820500

  4. Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells.

    PubMed

    Nowak, Adriana; Bakuła, Tadeusz; Matusiak, Katarzyna; Gałęcki, Remigiusz; Borowski, Sebastian; Gutarowska, Beata

    2017-08-18

    Animal breeding and management of organic wastes pose a serious problem to the health of livestock and workers, as well as the nearby residents. The aim of the present study was to determine the mechanisms of toxicity of selected common odorous compounds from poultry manure, including ammonia, dimethylamine (DMA), trimethylamine (TMA), butyric acid, phenol, and indole. We measured their genotoxic and cytotoxic activity in the model chicken cell line (LMH), in vitro, by comet assay and lactate dehydrogenase assay, respectively. We also made microscopic observations of any morphological changes in these cells by DAPI staining. Four compounds, namely ammonia, DMA, TMA, and butyric acid increased DNA damage in a dose-dependent manner (p < 0.05), reaching genotoxicity as high as 73.2 ± 1.9%. Phenol and indole induced extensive DNA damage independent of the concentration used. Ammonia, DMA, and TMA caused a dose-dependent release of lactate dehydrogenase (p < 0.05). The IC50 values were 0.02%, 0.05%, and 0.1% for DMA, ammonia and TMA, respectively. These compounds also induced nuclear morphological changes, such as chromatin condensation, shrinkage, nuclear fragmentation (apoptotic bodies), and chromatin lysis. Our study exhibited the damaging effects of odorous compounds in chick LMH cell line.

  5. Effect of abomasal butyrate infusion on gene expression in the duodenum of lambs

    USDA-ARS?s Scientific Manuscript database

    A previous study infusing butyrate into the abomasum of sheep produced increased oxygen, glucose, glutamate, and glutamine uptake by the portal-drained viscera. These changes were thought to be partially due to increases in glycolysis and cell proliferation. The purpose of this study was to evaluate...

  6. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model.

    PubMed

    Van den Abbeele, Pieter; Belzer, Clara; Goossens, Margot; Kleerebezem, Michiel; De Vos, Willem M; Thas, Olivier; De Weirdt, Rosemarie; Kerckhof, Frederiek-Maarten; Van de Wiele, Tom

    2013-05-01

    The human gut is colonized by a complex microbiota with multiple benefits. Although the surface-attached, mucosal microbiota has a unique composition and potential to influence human health, it remains difficult to study in vivo. Therefore, we performed an in-depth microbial characterization (human intestinal tract chip (HITChip)) of a recently developed dynamic in vitro gut model, which simulates both luminal and mucosal gut microbes (mucosal-simulator of human intestinal microbial ecosystem (M-SHIME)). Inter-individual differences among human subjects were confirmed and microbial patterns unique for each individual were preserved in vitro. Furthermore, in correspondence with in vivo studies, Bacteroidetes and Proteobacteria were enriched in the luminal content while Firmicutes rather colonized the mucin layer, with Clostridium cluster XIVa accounting for almost 60% of the mucin-adhered microbiota. Of the many acetate and/or lactate-converting butyrate producers within this cluster, Roseburia intestinalis and Eubacterium rectale most specifically colonized mucins. These 16S rRNA gene-based results were confirmed at a functional level as butyryl-CoA:acetate-CoA transferase gene sequences belonged to different species in the luminal as opposed to the mucin-adhered microbiota, with Roseburia species governing the mucosal butyrate production. Correspondingly, the simulated mucosal environment induced a shift from acetate towards butyrate. As not only inter-individual differences were preserved but also because compared with conventional models, washout of relevant mucin-adhered microbes was avoided, simulating the mucosal gut microbiota represents a breakthrough in modeling and mechanistically studying the human intestinal microbiome in health and disease. Finally, as mucosal butyrate producers produce butyrate close to the epithelium, they may enhance butyrate bioavailability, which could be useful in treating diseases, such as inflammatory bowel disease.

  7. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia

    PubMed Central

    Sarker, Protim; Mily, Akhirunnesa; Mamun, Abdullah Al; Jalal, Shah; Bergman, Peter; Raqib, Rubhana; Gudmundsson, Gudmundur H.; Agerberth, Birgitta

    2014-01-01

    Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs), e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea. PMID:27025750

  8. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    PubMed Central

    Canani, Roberto Berni; Costanzo, Margherita Di; Leone, Ludovica; Pedata, Monica; Meli, Rosaria; Calignano, Antonio

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine. PMID:21472114

  9. Cell-to-cell binding induced by different lectins.

    PubMed

    Rutishauser, U; Sachs, L

    1975-05-01

    The cell-to-cell binding induced by concanavalin A (Con A) and the lectins from wheatgerm, soybean, and waxbean has been analyzed by measuring the ability of single cells to bind to lectin-coated cells immobilized on nylon fibers. The cells used were lymphoma, myeloid leukemia, and normal fibroblast cells. With all lectins, cell-to-cell binding was inhibited if both cells were prefixed with glutaraldehyde. However, in most cases cell-to-cell binding was enhanced when only the lectin-coated cell was prefixed. With normal fibroblasts, treatment of either one or both cells with trypsin enhanced the cell-to-cell binding induced by Con A and the wheatgerm lectin. Neuraminidase, which increases the number of receptors for soybean agglutinin, increased cell-to-cell binding only if both cells were treated. Although cell-to-cell binding induced by the lectins from soybean and wheatgerm could be partially reversed by the appropriate competitive saccharide inhibitor, binding induced by Con A could not be reversed. The experiments indicate that cell-to-cell binding induced by a lectin can be prevented by an insufficient density of receptors for the lectin, insufficient receptor mobility, or induced clustering of receptors. These effects can explain the differences in cell-to-cell binding and agglutination observed with different cell types and lectins. They also suggest that cell-to-cell binding induced by different lectins with a variety of cell types is initiated by a mechanism involving the alignment of complementary receptors on the colliding cells for the formation of multiple cell-to-lectin-to-cell bridges.

  10. Studies on the induction of Epstein-Barr virus (EBV) DNA polymerase (POL) and deoxyribonuclease (DNase) by the combined action of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and N-butyrate (SB in EBV-carrying cells

    SciTech Connect

    Nutter, L.M.; Tan, R.S.; Grill, S.; Li, J.S.; Cheng, Y.C.

    1986-03-05

    TPA and SB were found to induce EBV early antigen in EBV-carrying Raji cells, a Burkitt's Lymphoma-derived human cell line. The mode of interaction of these agents was unclear. They have examined the induction of EBV-POL and DNase activities by TPA and SB. It was found that neither agent alone could induce EBV-POL and DNase activities, even though the virus DNA could be induced by either compound alone. Induction of virus enzymes could only occur when cells were exposed to both compounds. A 2h exposure to TPA followed by 46h to SB resulted in levels of induction of EBV-POL and DNase activities comparable to those induced with simultaneous exposure to both agents for 48h. No induction of the enzymes will occur if the sequence of exposure to these agents is reversed. Phospholipase C, which increases intracellular diacylglycerol (and subsequently the activation of Protein Kinase C), and 5-Aza-deoxycytidine, a DNA hypomethylating agent, were able to partially substitute for TPA and SB, respectively. These results suggest that the mechanism of induction of EBV enzyme activities by TPA and SB could involve both Protein Kinase C activation and DNA hypomethylation. Furthermore, the synthesis of EBV DNA is not sufficient for induction of these virus enzyme activities.

  11. Leukotactin-1/CCL15 induces cell migration and differentiation of human eosinophilic leukemia EoL-1 cells through PKCdelta activation.

    PubMed

    Lee, Ji-Sook; Kim, In Sik

    2010-06-01

    Leukotactin-1 (Lkn-1)/CCL15 is a CC chemokine that binds to the CCR1 and CCR3. Lkn-1 functions as an essential factor in the migration of monocytes, lymphocytes, and neutrophils. Although eosinophils express both receptors, the role of Lkn-1 in immature eosinophils remains to be elucidated. In this present study, we investigated the contribution of the CCR1-binding chemokines to chemotactic activity and in the differentiation in the human eosinophilic leukemia cell line EoL-1. Lkn-1 induced the stronger migration of EoL-1 cells than other CCR1-binding chemokines such as RANTES/CCL5, MIP-1alpha/CCL3 and HCC-4/CCL16. Lkn-1-induced chemotaxis was inhibited by pertussis toxin, an inhibitor of G(i)/G(o) protein; U73122, an inhibitor of phospholipase C and rottlerin, an inhibitor of protein kinase C delta (PKCdelta). Lkn-1 increased PKCdelta activity, which was partially blocked by the pertussis toxin and U73122. Lkn-1 enhanced the butyric acid-induced differentiation via PKCdelta after binding to the increased CCR1 because Lkn-1 caused EoL-1 cells to change morphologically into mature eosinophil-like cells. Likewise, Lkn-1 increased the expression of both eosinophil peroxidase (EPO) and the major basic protein (MBP). PKCdelta activation due to Lkn-1 is involved in migration, as well as the butyric acid-induced differentiation. This finding contributes to an understanding of CC chemokines in eosinophil biology and to the development of novel therapies for the treatment of eosinophilic disorders. This study suggests the pivotal roles of Lkn-1 in the regulation of the movement and development of eosinophils.

  12. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  13. Simultaneous Clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate.

    PubMed

    van den Berg, Corjan; Heeres, Arjan S; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-01-01

    The recovery of 1-butanol from fermentation broth is energy-intensive since typical concentrations in fermentation broth are below 20 g L(-1). To prevent butanol inhibition and high downstream processing costs, we aimed at producing butyl esters instead of 1-butanol. It is shown that it is possible to perform simultaneously clostridial fermentation, esterification of the formed butanol to butyl butyrate, and extraction of this ester by hexadecane. The very high partition coefficient of butyl butyrate pulls the esterification towards the product side even at fermentation pH and relatively low butanol concentrations. The hexadecane extractant is a model diesel compound and is nontoxic to the cells. If butyl butyrate enriched diesel can directly be used as car fuel, no product recovery is required. A proof-of-principle experiment for the one-pot bio-ester production from glucose led to 5 g L(-1) butyl butyrate in the hexadecane phase. The principle may be extended to a wide range of esters, especially to longer chain ones. Copyright © 2012 Wiley Periodicals, Inc.

  14. Synergistic effects of dimethyloxalylglycine and butyrate incorporated into α-calcium sulfate on bone regeneration.

    PubMed

    Woo, Kyung Mi; Jung, Hong-Moon; Oh, Joung-Hwan; Rahman, Saeed Ur; Kim, Soung Min; Baek, Jeong-Hwa; Ryoo, Hyun-Mo

    2015-01-01

    Osteogenesis is closely related to angiogenesis, and the combined delivery of angiogenic and osteogenic factors has been suggested to enhance bone regeneration. Small molecules have been explored as alternatives to growth factors for tissue regeneration applications. In this study, we examined the effects of the combined application of angiogenic and osteogenic small molecules on bone regeneration using a prolyl hydroxylase, dimethyloxalylglycine (DMOG), and a histone deacetylase inhibitor, butyrate. In a critical size bone defect model in rats, DMOG and butyrate, which were incorporated into α calcium sulfate (αCS), resulted in synergistic enhancements in bone and blood vessel formation, eventually leading to bone healing, as confirmed by micro-CT and histological analyses. In MC4 pre-osteoblast cultures, DMOG and butyrate enhanced the pro-angiogenic responses and osteoblast differentiation, respectively, which were evaluated based on the levels of hypoxia inducible factor (HIF)-1α protein and the expression of pro-angiogenic molecules (VEGF, home oxidase-1, glucose transporter-1) and by alkaline phosphatase (ALP) activity and the expression of osteoblast phenotype marker molecules (ALP, α1(I)col, osteocalcin, and bone sialoprotein). DMOG combined with butyrate synergistically improved osteoblast differentiation and pro-angiogenic responses, the levels of which were drastically increased in the cultures on αCS disks. Furthermore, it was demonstrated that αCS increased the level of HIF-1α and as a consequence VEGF expression, and supported osteoblast differentiation through the release of calcium ions from the αCS. Altogether, the results of this study provide evidence that a combination treatment with the small molecules DMOG and butyrate can expedite the process of bone regeneration and that αCS can be an efficient delivery vehicle for the small molecules for bone regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Enhancement of the Power Conversion Efficiency in the Inverted Organic Solar Cells Fabricated Utilizing a CeO2 Interlayer Between the Poly(3-hexylthiophene) (P3HT):[6,6]-Phenyl C6 Butyric Acid Methyl Ester and the Cathode.

    PubMed

    Arul, N Sabari; Lee, Yong Hun; Lee, Dea Uk; Kim, Tae Whan

    2015-01-01

    CeO2 nanoparticles were synthesized by using a precipitation method. High-resolution transmission electron microscopy images, X-ray diffraction patterns, energy dispersive X-ray spectroscopy spectra, and UV-Visible absorption spectroscopy spectra showed that the formed samples were CeO2 polycrystalline nanoparticles. Inverted organic solar cells with a structure of indium-tin-oxide/CeO2/poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM)/MoO3/Ag were fabricated. Current density-voltage results showed that the power conversion efficiency of the device of the fabricated inverted OPV cells with a CeO2 interlayer between the P3HT:PCBM and the cathode was 0.39% larger than that without a CeO2 interlayer.

  16. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    PubMed

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.

  17. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  18. TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways.

    PubMed

    Larraufie, Pierre; Doré, Joël; Lapaque, Nicolas; Blottière, Hervé M

    2017-02-01

    The intestinal epithelium is an active barrier separating the host from its microbiota. It senses microbial compounds through expression of a wide range of receptors including the Toll-like receptors (TLRs). TLRs have been shown to regulate epithelium permeability or secretion of defensin by Paneth cells. However, the expression and function of TLRs in enteroendocrine L-cells, a specific subtype of intestinal cells secreting PYY and GLP-1, have not yet been assessed. PYY and GLP-1 are implicated in regulation of gut motility, food intake and insulin secretion, and are of great interest regarding obesity and type 2 diabetes. Using a cellular model of human L-cells and a reporter system for NF-κB activation pathway, we reported functional expression of TLRs in these cells. Stimulation with specific TLR-agonists increased expression of Pyy but not Proglucagon in an NF-κB-dependent manner. Moreover, the effect of TLR stimulation was additive to butyrate, a product of bacterial fermentation, on Pyy expression. Additionally, butyrate also increased Tlr expression, including Tlr4, and the NF-κB response to TLR stimulation. Altogether, our results demonstrated a role of TLRs in the modulation of Pyy expression and the importance of butyrate, a product of bacterial fermentation in regulation of microbial TLR-dependent sensing.

  19. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  20. Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction.

    PubMed

    Batlle-Vilanova, Pau; Ganigué, Ramon; Ramió-Pujol, Sara; Bañeras, Lluís; Jiménez, Gerard; Hidalgo, Manuela; Balaguer, M Dolors; Colprim, Jesús; Puig, Sebastià

    2017-10-01

    To date acetate is the main product of microbial electrosynthesis (MES) from carbon dioxide (CO2). In this work a tubular bioelectrochemical system was used to carry out MES and enhance butyrate production over the other organic products. Batch tests were performed at a fixed cathode potential of -0.8V vs SHE. The reproducibility of the results according to previous experiments was validated in a preliminary test. According to the literature butyrate production could take place by chain elongation reactions at low pH and high hydrogen partial pressure (pH2). During the experiment, CO2 supply was limited to build up pH2 and trigger the production of compounds with a higher degree of reduction. In test 1 butyrate became the predominant end-product, with a concentration of 59.7mMC versus 20.3mMC of acetate, but limitation on CO2 supply resulted in low product titers. CO2 limitation was relaxed in test 2 to increase the bioelectrochemical activity but increase pH2 and promote the production of butyrate, what resulted in the production of 87.5mMC of butyrate and 34.7mMC of acetate. The consumption of ethanol, and the presence of other products in the biocathode (i.e. caproate) suggested that butyrate production took place through chain elongation reactions, likely driven by Megasphaera sueciensis (>39% relative abundance). Extraction and concentration of butyrate was performed by liquid membrane extraction. A concentration phase with 252.4mMC of butyrate was obtained, increasing also butyrate/acetate ratio to 16.4. The results are promising for further research on expanding the product portfolio of MES. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  2. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  3. Clinical evaluation of clobetasone butyrate: a comparative study of its effects in postoperative inflammation and on intraocular pressure.

    PubMed Central

    Ramsell, T G; Bartholomew, R S; Walker, S R

    1980-01-01

    Clobetasone butyrate, a new corticosteroid with a high topical activity, has been compared with prednisolone phosphate and a placebo in the treatment of inflammation following cataract extraction. These 2 steroids were more effective in relieving postoperative inflammation than placebo (P less than 0.05), though no obvious clinical differences between the 2 compounds emerged from this investigation. However, a single-blind comparative study against betamethasone phosphate in patients suspected of having steroid-induced glaucoma showed that, while betamethasone phosphate significantly raised intraocular pressure, clobetasone butyrate had only a minimal effect, and this difference was statistically significant (P less than 0.02). PMID:6986899

  4. Aspects of pharmacodynamics and biotransformation of the glucocorticoid resocortol butyrate.

    PubMed

    Coert, A; Verheijen, F; Horspool, L J I; Mol, J A

    2004-10-01

    Aspects of the biotransformation and pharmacodynamics of the novel glucocorticoid resocortol butyrate (RCB) and its metabolites were assessed in vitro and in vivo in comparison with selected reference compounds. The main route of biotransformation of ((3)H)-RCB in the skin and the liver was 5alpha-reduction of the A-ring followed by reduction of the 3-carbonyl group. In the liver, metabolism was much more rapid than in the skin and 5beta-reduction also occurred. RCB had a relative binding affinity for the glucocorticoid receptor similar to that of triamcinolone acetonide, about 1.5 times that of dexamethasone, three times that of betamethasone valerate (BMV) and 10-14 times that of cortisol. The metabolites of RCB displayed only low to very low affinities for the receptor. The suppression of the hypothalamic-pituitary-adrenal axis was investigated in placebo- and positive-controlled studies in dogs by measurement of basal and corticotrophin-releasing hormone (CRH) stimulated plasma cortisol concentrations. The AUC of the plasma cortisol vs. time curve following CRH stimulation, a measure of adrenal suppression, was reduced significantly after topical application of BMV compared with the pretreatment values. The AUC in the RCB group was not reduced significantly. Adrenocorticotrophic hormone concentrations were not affected. Oral administration of RCB did not suppress adrenocortical function, whereas BMV induced almost complete suppression of basal and CRH-induced cortisol concentrations. The pharmacodynamics of RCB makes it a relatively safe glucocorticosteroid for topical application.

  5. Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells.

    PubMed

    Li, Shasha; Zhao, Fei; Cheng, Shaoli; Wang, Xinyang; Hao, Yaning

    2013-10-01

    The aim of this study was to explore the contribution and the mechanism of uric acid (UA) to phenotypic change in rat glomerular mesangial cells. Rat glomerular mesangial cells (HBZY-1) were exposed to UA (0.05 mmol/L to 0.4 mmol/L) for 24 h to 48 h. Subsequently, 4-phenyl butyric acid (4-PBA) (5 mg/dL) was added and 48 h incubation was performed. HBZY-1 cells exposed to UA (0.4 mmol/L) were incubated for 48 h. After incubation, the cells were examined under an inverted microscope and transmission electron microscope to observe their morphologies and the expressions of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), fibronectin (FN), glucose regulated protein 78 (GRP78), and the protein disulfide isomerase (PDI) proteins and mRNA in the HBZY-1 cells were measured by Western blot and reversed transcription-polymerase chain reaction. HBZY-1 cultured in UA showed evident morphological changes under transmission electron microscopy. The soluble UA stimulated the upregulation of the α-SMA, TGF-β1 and FN mRNA and proteins in a concentration- and time-dependent manner. UA-induced endoplasmic reticulum (ER) stress, as evidenced by the upregulation of the mRNA and protein expressions of GRP78 and PDI. However, the upregulation was reverted by 4-PBA, an inhibitor of ER stress. Uric acid induces phenotypic change in HBZY-1 cells. ER stress plays a central role in UA-induced phenotypic transformation in vitro. 4-PBA may be beneficial in attenuating UA-induced glomerular injury. © 2013 The Authors. Nephrology © 2013 Asian Pacific Society of Nephrology.

  6. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  7. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs

    USDA-ARS?s Scientific Manuscript database

    Humic acid (MFG) and fat protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS) induced in...

  8. Impact of butyric acid on butanol formation by Clostridium pasteurianum.

    PubMed

    Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars

    2015-11-01

    The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Listeria monocytogenes induces mast cell extracellular traps.

    PubMed

    Campillo-Navarro, Marcia; Leyva-Paredes, Kahiry; Donis-Maturano, Luis; González-Jiménez, Marco; Paredes-Vivas, Yuriria; Cerbulo-Vázquez, Arturo; Serafín-López, Jeanet; García-Pérez, Blanca; Ullrich, Stephen E; Flores-Romo, Leopoldo; Pérez-Tapia, Sonia M; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2017-02-01

    Mast cells play an essential role in different immunological phenomena including allergy and infectious diseases. Several bacteria induce mast cell activation leading to degranulation and the production of several cytokines and chemokines. However, mast cells also have different microbicidal activities such as phagocytosis and the release of DNA with embedded granular proteins known as Mast Cell Extracellular Traps (MCETs). Although previous reports indicate that extracellular bacteria are able to induce MCETs little is known if intracellular bacteria can induce these structures. In this work, we evaluated MCETs induction by the intracellular bacteria Listeria monocytogenes. We found that mast cells released DNA after stimulation with L. monocytogenes, and this DNA was complexed to histone and tryptase. Before extracellular DNA release, L. monocytogenes induced modifications to the mast cell nuclear envelope and DNA was detected outside the nucleus. L. monocytogenes stimulated mast cells to produce significant amounts of reactive oxygen species (ROS) and blocking NADPH oxidase diminished DNA release by mast cells. Finally, MCETs showed antimicrobial activity against L. monocytogenes that was partially blocked when β-hexosaminidase activity was inhibited. These results show that L. monocytogenes induces mast cells to produce microbicidal MCETs, suggesting a role for mast cells in containing infection beyond the induction of inflammation.

  10. Effects of seasonal changes in food quality and food intake on the transport of sodium and butyrate across ruminal epithelium of reindeer.

    PubMed

    Storeheier, P V; Sehested, J; Diernaes, L; Sundset, M A; Mathiesen, S D

    2003-07-01

    Transport of 22Na and 14C-butyrate across the ruminal epithelium of captive reindeer fed a concentrate diet in summer (n=5) and in winter (n=5) and from free-ranging reindeer taken from summer (n=3) and winter pasture (n=5) was measured in vitro in Ussing chambers. Significant amounts of both Na+ and butyrate were transported across the isolated epithelium without any external driving force. The ruminal transport of Na+ and butyrate were interacting, as evidenced by both the observed amiloride-induced reduction of net butyrate-transport and by the positive correlation between net transport of butyrate and Na+. Amiloride also reduced the net transport of Na+ without significantly affecting the short-circuit current, indicating the presence of an apical Na+/H+ exchanger in the ruminal epithelium of reindeer. The captive reindeer increased the dry matter intake of a constant quality concentrate from winter to summer, but this neither affected their ruminal transport capacity nor their ruminal surface enlargement factor (SEF). Free-ranging reindeer increased their ruminal transport capacity for Na+ and butyrate from summer to winter but simultaneously reduced their ruminal SEF. The present data indicate that this food-induced increase in transport capacity was attributed to changes in the nutrient composition of the diet.

  11. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  12. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis1

    PubMed Central

    Park, Jeongho; Goergen, Craig J.; HogenEsch, Harm; Kim, Chang H.

    2016-01-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10+ regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and induced T-cell mediated ureteritis leading to kidney hydronephrosis (hereafter called C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction (UPJ) and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mTOR activation, T cell-derived inflammatory cytokines such as IFNγ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. PMID:26819206

  13. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes

    PubMed Central

    Rada-Iglesias, Alvaro; Enroth, Stefan; Ameur, Adam; Koch, Christoph M.; Clelland, Gayle K.; Respuela-Alonso, Patricia; Wilcox, Sarah; Dovey, Oliver M.; Ellis, Peter D.; Langford, Cordelia F.; Dunham, Ian; Komorowski, Jan; Wadelius, Claes

    2007-01-01

    Butyrate is a histone deacetylase inhibitor (HDACi) with anti-neoplastic properties, which theoretically reactivates epigenetically silenced genes by increasing global histone acetylation. However, recent studies indicate that a similar number or even more genes are down-regulated than up-regulated by this drug. We treated hepatocarcinoma HepG2 cells with butyrate and characterized the levels of acetylation at DNA-bound histones H3 and H4 by ChIP-chip along the ENCODE regions. In contrast to the global increases of histone acetylation, many genomic regions close to transcription start sites were deacetylated after butyrate exposure. In order to validate these findings, we found that both butyrate and trichostatin A treatment resulted in histone deacetylation at selected regions, while nucleosome loss or changes in histone H3 lysine 4 trimethylation (H3K4me3) did not occur in such locations. Furthermore, similar histone deacetylation events were observed when colon adenocarcinoma HT-29 cells were treated with butyrate. In addition, genes with deacetylated promoters were down-regulated by butyrate, and this was mediated at the transcriptional level by affecting RNA polymerase II (POLR2A) initiation/elongation. Finally, the global increase in acetylated histones was preferentially localized to the nuclear periphery, indicating that it might not be associated to euchromatin. Our results are significant for the evaluation of HDACi as anti-tumourogenic drugs, suggesting that previous models of action might need to be revised, and provides an explanation for the frequently observed repression of many genes during HDACi treatment. PMID:17567991

  14. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  15. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  16. Synthesis of the building block 2-hydroxyisobutyrate from fructose and butyrate by Cupriavidus necator H16.

    PubMed

    Przybylski, Denise; Rohwerder, Thore; Harms, Hauke; Yaneva, Nadya; Müller, Roland H

    2013-10-01

    2-Hydroxyisobutyryl-coenzyme A mutase, originally discovered in the context of methyl tert-butyl ether degradation in Aquincola tertiaricarbonis L108, catalyzes the isomerization of 3-hydroxybutyryl-coenzyme A (3-HB-CoA) to 2-hydroxyisobutyryl-CoA. It thus constitutes the basis for a biotechnological route from practically any renewable carbon to 2-hydroxyisobutyrate (2-HIB) via the common metabolite 3-hydroxybutyrate. At first sight, recombinant Cupriavidus necator H16 expressing the mutase seems to be well suited for such a synthesis process, as a strong overflow metabolism via (R)-3-HB-CoA is easily induced in this bacterium possessing the poly-3-hydroxybutyrate metabolism. However, the recently established stereospecificity of the mutase, dominantly preferring the (S)-enantiomer of 3-HB-CoA, calls for a closer investigation of C. necator as potential 2-HIB production strain and raised the question about the strain's potential to yield 2-HIB from substrates directly providing (S)-3-HB-CoA. We compared two mutase-expressing C. necator H16 strains for their capability to synthesize 2-HIB from fructose and butyrate, delivering either (R)- or (S)-3-HB-CoA. Our results indicate that due to the enantiospecificity of the mutase, fructose is a weaker substrate for 2-HIB synthesis than butyrate. Production rates achieved with the PHB-negative strain H16 PHB(-)4 on butyrate were higher than on fructose. Using the wild-type did not significantly improve the production rates as the latter showed a 34-fold and a 5-fold lower 2-HIB synthesis rate compared to H16 PHB(-)4 on fructose and butyrate, respectively. Moreover, both strains showed concomitant excretion of undesired side products, such as pyruvate and 3-hydroxybutyrate, significantly decreasing the 2-HIB yield.

  17. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    PubMed Central

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology. PMID:26489085

  18. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  19. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin-Mei; Panozzo, J.; Libertin, C.R.

    1993-11-01

    In this report, we demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evident in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture.

  20. Gangliosides induce autophagic cell death in astrocytes

    PubMed Central

    Hwang, Jaegyu; Lee, Shinrye; Lee, Jung Tae; Kwon, Taeg Kyu; Kim, Deok Ryong; Kim, Ho; Park, Hae-Chul; Suk, Kyoungho

    2010-01-01

    Background and purpose: Gangliosides, sialic acid-containing glycosphingolipids, abundant in brain, are involved in neuronal function and disease, but the precise molecular mechanisms underlying their physiological or pathological activities are poorly understood. In this study, the pathological role of gangliosides in the extracellular milieu with respect to glial cell death and lipid raft/membrane disruption was investigated. Experimental approach: We determined the effect of gangliosides on astrocyte death or survival using primary astrocyte cultures and astrocytoma/glioma cell lines as a model. Signalling pathways of ganglioside-induced autophagic cell death of astrocytes were examined using pharmacological inhibitors and biochemical and genetic assays. Key results: Gangliosides induced autophagic cell death in based on the following observations. Incubation of the cells with a mixture of gangliosides increased a punctate distribution of fluorescently labelled microtubule-associated protein 1 light chain 3 (GFP-LC3), the ratio of LC3-II/LC3-I and LC3 flux. Gangliosides also increased the formation of autophagic vacuoles as revealed by monodansylcadaverine staining. Ganglioside-induced cell death was inhibited by either a knockdown of beclin-1/Atg-6 or Atg-7 gene expression or by 3-methyladenine, an inhibitor of autophagy. Reactive oxygen species (ROS) were involved in ganglioside-induced autophagic cell death of astrocytes, because gangliosides induced ROS production and ROS scavengers decreased autophagic cell death. In addition, lipid rafts played an important role in ganglioside-induced astrocyte death. Conclusions and implications: Gangliosides released under pathological conditions may induce autophagic cell death of astrocytes, identifying a neuropathological role for gangliosides. PMID:20067473

  1. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  2. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth.

    PubMed

    Tan, Xiaoling; Feng, Lan; Huang, Xiaoyong; Yang, Yidong; Yang, Chengzhong; Gao, Yuqi

    2017-03-07

    Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia-induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI-treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia-induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.

  3. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10.

  4. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed Central

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon

    2016-01-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  5. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  6. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    PubMed Central

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, < 0.03 U mg−1 protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24–7.64 U mg−1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  7. The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects.

    PubMed

    Serrano-Villar, S; Vázquez-Castellanos, J F; Vallejo, A; Latorre, A; Sainz, T; Ferrando-Martínez, S; Rojo, D; Martínez-Botas, J; Del Romero, J; Madrid, N; Leal, M; Mosele, J I; Motilva, M J; Barbas, C; Ferrer, M; Moya, A; Moreno, S; Gosalbes, M J; Estrada, V

    2017-09-01

    Altered interactions between the gut mucosa and bacteria during HIV infection seem to contribute to chronic immune dysfunction. A deeper understanding of how nutritional interventions could ameliorate gut dysbiosis is needed. Forty-four subjects, including 12 HIV(+) viremic untreated (VU) patients, 23 antiretroviral therapy-treated (ART(+)) virally suppressed patients (15 immunological responders and 8 non-responders) and 9 HIV(-) controls (HIV(-)), were blindly randomized to receive either prebiotics (scGOS/lcFOS/glutamine) or placebo (34/10) over 6 weeks in this pilot study. We assessed fecal microbiota composition using deep 16S rRNA gene sequencing and several immunological and genetic markers involved in HIV immunopathogenesis. The short dietary supplementation attenuated HIV-associated dysbiosis, which was most apparent in VU individuals but less so in ART(+) subjects, whose gut microbiota was found more resilient. This compositional shift was not observed in the placebo arm. Significantly, declines in indirect markers of bacterial translocation and T-cell activation, improvement of thymic output, and changes in butyrate production were observed. Increases in the abundance of Faecalibacterium and Lachnospira strongly correlated with moderate but significant increases of butyrate production and amelioration of the inflammatory biomarkers soluble CD14 and high-sensitivity C-reactive protein, especially among VU. Hence, the bacterial butyrate synthesis pathway holds promise as a viable target for interventions.

  8. Invariant NKT cells increase drug-induced osteosarcoma cell death

    PubMed Central

    Fallarini, S; Paoletti, T; Orsi Battaglini, N; Lombardi, G

    2012-01-01

    BACKGROUND AND PURPOSE In osteosarcoma (OS) patients, only a limited number of drugs are active and the regimens currently in use include a combination of at least two of these drugs: doxorubicin, cisplatin, methotrexate and ifosfamide. Today, 30–40% of patients still die of OS highlighting the urgent need for new treatments. Invariant NKT (iNKT) cells are a lymphocyte lineage with features of both T and NK cells, playing important roles in tumour suppression. Our aim was to test whether the cytoxicity induced by cisplatin, doxorubicin and methotrexate against OS cells can be enhanced by iNKT cell treatment. EXPERIMENTAL APPROACH iNKT cells were purified from human peripheral blood mononuclear cells by cell sorting (Vα24Vβ11+ cells) and used as effector cells against OS cells (U2-OS, HOS, MG-63). Cell death (calcein-AM method), perforin/granzyme B and Fas/FasL expressions were determined by flow cytometry. CD1d expression was analysed at both the gene and protein level. KEY RESULTS iNKT cells were cytotoxic against OS cells through a CD1d-dependent mechanism. This activity was specific for tumour cells, because human CD1d+ mesenchymal stem cells and CD1d- osteoblasts were not affected. iNKT cell treatment enhanced drug-induced OS cell death in a concentration-dependent manner and this effect was reduced in CD1d-silenced OS cells. CONCLUSION AND IMPLICATIONS iNKT cells kill malignant, but not non-malignant, cells. iNKT cell treatment enhances the cytotoxicity of anti-neoplastic drugs against OS cells in a CD1d-dependent manner. The present data encourage further studies on the use of iNKT cells in OS therapy. PMID:22817659

  9. Combination of specific allergen and probiotics induces specific regulatory B cells and enhances specific immunotherapy effect on allergic rhinitis

    PubMed Central

    Yang, Gui; Luo, Xiang-Qian; Miao, Bei-Ping; Geng, Xiao-Rui; Liu, Zhi-Qiang; Liu, Jun; Wen, Zhong; Wang, Shuai; Zhang, Huan-Ping; Li, Jing; Liu, Zhi-Gang; Li, Hua-Bin; Yang, Ping-Chang

    2016-01-01

    The therapeutic efficacy of allergen specific immunotherapy (SIT) on allergic diseases is to be improved. Probiotics can regulate immune response. This study aims to promote the effect of SIT on allergic rhinitis (AR) by co-administration with Clostridium butyricum (Cb). In this study, patients with AR sensitized to mite allergens were enrolled to this study, and treated with SIT or/and Cb. The therapeutic efficacy was evaluated by the total nasal symptom scores (NSS), medication scores, serum specific IgE levels and T helper (Th)2 cytokine levels. The improvement of immune regulation in the AR patients was assessed by immunologic approaches. The results showed that treating AR patients with SIT alone markedly reduced NSS and medication scores; but did not alter the serum specific IgE, Th2 cytokines and skin prick test (SPT) index. The clinical symptoms on AR in SIT group relapsed one month after stopping SIT. Co-administration of Cb significantly enhanced the efficacy of SIT on AR as shown by suppression of NSS, medication scores, serum specific IgE, Th2 cytokines and SPT index; the regulatory B cell frequency was also markedly increased. Such an effect on AR was maintained throughout the observation period even after stopping the treatment. Butyrate blocked the activation of histone deacetylase-1, the downstream activities of epsilon chain promoter activation, and the IgE production in the antigen specific B cells. On the other hand, butyrate induced the IL-10 expression in B cells with a premise of the B cell receptor activation by specific antigens. In conclusion, administration with Cb can markedly enhance the efficacy of SIT on AR. PMID:27486985

  10. Induced Pluripotent Stem Cells from Nonhuman Primates.

    PubMed

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  11. Novel Role of ER Stress and Autophagy in Microcystin-LR Induced Apoptosis in Chinese Hamster Ovary Cells

    PubMed Central

    Zhang, Shenshen; Liu, Chuanrui; Li, Yang; Imam, Mustapha U.; Huang, Hui; Liu, Haohao; Xin, Yongjuan; Zhang, Huizhen

    2016-01-01

    Microcystin-LR (MC-LR) is a ubiquitous peptide that exhibits strong reproductive toxicity, although the mechanistic basis for such toxicity remains largely unknown. The present study was conducted to investigate the mechanisms underlying the adverse effects of exposure to MC-LR in Chinese hamster ovary (CHO) cells. The results showed that MC-LR inhibited the in vitro proliferation of CHO cells significantly, with an IC50 of 10 μM. Moreover, MC-LR-treated CHO cells revealed strong induction of cell cycle arrest and apoptosis. Additionally, exposure of CHO cells to MC-LR resulted in excess reactive oxygen species production and intracellular calcium release, with resultant endoplasmic reticulum stress (ERs). There was also extensive accumulation of autophagic vacuoles with the highest concentration of MC-LR used (10 μM). Furthermore, the expression of ERs (GRP78, ATF-6, PERK, IRE1, CHOP) and autophagy (Beclin1 and LC3II) proteins was increased, with concomitantly reduced expression of LC3I suggesting that ERs and autophagy were induced in CHO cells by MC-LR treatment. Conversely, pretreatment of CHO cells with 4-Phenyl butyric acid, the ERs inhibitor reduced the MC-LR-induced apoptotic cell death and cellular autophagy as evidenced by the reduced expression of Beclin1 and LC3II. Similarly, MC-LR treatment in combination with an autophagy inhibitor (3-methyladenine) increased apoptotic cell death compared with MC-LR alone, and induced ERs via upregulating ERs proteins. The overall results indicated that activation of ERs and autophagy are both associated with MC-LR-induced apoptosis in CHO cells. ERs may be a trigger of autophagy in this process. PMID:27877136

  12. Methadone induced lysis of mammalian cells.

    PubMed

    Will, P C; Noteboom, W D

    1978-08-01

    Methadone induced lysis of human erythrocytes and mouse leukemic cells was studied. The cells lyse without prior swelling that is a necessary step of colloid osmotic lysis. Methadone is accumulated by both cell types, and is widely distributed intracellurly in mouse leukemic cells. The maximum lytic rate is roughly proportional to the amount of methadone uptake and the Q10 for lysis is equal to the Q10 for methadone partitioning between octanol and water. It is concluded that the cells lyse as a result of a non-specific disruption of the plasma membrane.

  13. Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H₂O₂) levels in guard cells in Vicia faba.

    PubMed

    Ma, Yinli; She, Xiaoping; Yang, Shushen

    2012-11-01

    The role and signaling of sphingosine-1-phosphate (S1P) during darkness-induced stomatal closure were examined in Vicia faba. Darkness substantially raised S1P and hydrogen peroxide (H(2)O(2)) levels and closed stomata. These darkness effects were significantly suppressed by DL-threo-dihydrosphingosine (DL-threo-DHS) and N,N-dimethylsphingosine (DMS), two inhibitors of long-chain base kinases. Exogenous S1P led to stomatal closure and H(2)O(2) production, and the effects of S1P were largely prevented by the H(2)O(2) modulators ascorbic acid, catalase, and diphenyleneiodonium. These results indicated that S1P mediated darkness-induced stomatal closure by triggering H(2)O(2) production. In addition, DL-threo-DHS and DMS significantly suppressed both darkness-induced cytosolic alkalization in guard cells and stomatal closure. Exogenous S1P caused cytosolic alkalization and stomatal closure, which could be largely abolished by butyric acid. These results demonstrated that S1P synthesis was necessary for cytosolic alkalization during stomatal closure caused by darkness. Furthermore, together with the data described above, inhibition of darkness-induced H(2)O(2) production by butyric acid revealed that S1P synthesis-induced cytosolic alkalization was a prerequisite for H(2)O(2) production during stomatal closure caused by darkness, a conclusion supported by the facts that the pH increase caused by exogenous S1P had a shorter lag and peaked faster than H(2)O(2) levels and that butyric acid prevented exogenous S1P-induced H(2)O(2) production. Altogether, our data suggested that darkness induced S1P synthesis, causing cytosolic alkalization and subsequent H(2)O(2) production, finally leading to stomatal closure.

  14. Sulfur dioxide induced programmed cell death in Vicia guard cells.

    PubMed

    Yi, Huilan; Yin, Jingjing; Liu, Xin; Jing, Xiuqing; Fan, Sanhong; Zhang, Hufang

    2012-04-01

    Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.

  15. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  16. A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei

    PubMed Central

    Schmidt, Alexander; Müller, Nicolai; Schink, Bernhard; Schleheck, David

    2013-01-01

    In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a

  17. Water-induced degradation of polymer solar cells studied by H2(18)O labeling.

    PubMed

    Norrman, Kion; Gevorgyan, Suren A; Krebs, Frederik C

    2009-01-01

    Water-induced degradation of polymer photovoltaics based on the active materials poly(3-hexylthiophene) (P3HT) or poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) was studied. The solar cell devices comprised a bulk heterojunction formed by the active material and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in a standard device geometry. The use of H2(18)O in conjunction with time-of-flight secondary ion mass spectrometry enabled mapping of the parts of the device that were induced by water. A comparison was made between the two active materials and between devices that were kept in the dark and devices that had been subjected to illumination under simulated sunlight. Devices that were exposed to ambient humidity were compared to devices exposed to saturated humidity. Finally, a comparison was made between results obtained using H2(18)O and earlier work involving 18O2. Water was found to have behavior similar to but not identical with molecular oxygen.

  18. An introduction to induced pluripotent stem cells.

    PubMed

    Hanley, Joanna; Rastegarlari, Ghasem; Nathwani, Amit C

    2010-10-01

    Recent landmark studies show that it is now possible to convert somatic cells, such as skin fibroblasts and B lymphocytes, into pluripotent stem cells that closely resemble embryonic stem cells. These induced pluripotent stem (iPS) cells can be generated without using human embryos or oocytes, thus bypassing some of the ethical issues that have limited the use of human embryonic stems (hES) cells. Additionally, they can be derived from the patient to be treated, thereby overcoming problems of immunological rejection associated with the use of allogeneic hES cell derived progenitors. Whilst these patient-specific iPS cells have great clinical potential, their immediate utility is likely to be in drug screening and for understanding the disease process. This review discusses the promise of iPS cells as well as the challenges to their use in the clinic.

  19. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin Mei; Panozzo, J.; Libertin, C.R.

    1994-01-01

    Previous work has shown that HeLa cells stably transfected with an HIV-LTR-CAT construct are induced to express chloramphenicol acetyl transferase (CAT) following exposure to DNA-damaging agents such as ultraviolet radiation, {gamma} rays, neutrons, and others. In this report, the authors demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evidence in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture. Other agents which caused no cell killing (such as heat-shock for up to 2 h, treatment with metronidazole, exposure to sunlight, vitamin C treatment, and others) had no effect on HIV-LTR induction. These results suggest that HIV transcription is induced as a consequence of the turn on of a cellular death or apoptotic pathway.

  20. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    PubMed

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  1. Schwann cells induce neuronal differentiation of bone marrow stromal cells.

    PubMed

    Zurita, Mercedes; Vaquero, Jesús; Oya, Santiago; Miguel, Miriam

    2005-04-04

    Bone marrow stromal cells are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. Recently, bone marrow stromal cells have been shown to have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. We now describe how bone marrow stromal cells can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells. When compared with chemical differentiation, expression of neuronal differentiation markers begins later, but one week after beginning co-culture, most bone marrow stromal cells showed a typical neuronal morphology. Our present findings support the transdifferentiation of bone marrow stromal cells, and the potential utility of these cells for the treatment of degenerative and acquired disorders of the nervous system.

  2. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    SciTech Connect

    Saleem, M.; Cutler, A.J.

    1986-04-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of /sup 14/C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37/sup 0/C. The heat shocked protoplasts incorporated 33% more /sup 14/C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids.

  3. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  4. Induction of Trabecular Meshwork Cells From Induced Pluripotent Stem Cells

    PubMed Central

    Ding, Qiong J.; Zhu, Wei; Cook, Amy C.; Anfinson, Kristin R.; Tucker, Budd A.; Kuehn, Markus H.

    2014-01-01

    Purpose. Loss or dysfunction of trabecular meshwork (TM) cells has been associated with the development of pathologically elevated IOP, and it is conceivable that replacement of damaged TM cells could restore function to the TM. We propose that the use of TM-like cells derived from induced pluripotent stem cells (iPSCs) created from a patient's own dermal fibroblasts offers the best solution to this challenge. Here we demonstrate that mouse iPSCs can be induced to differentiate into TM-like cells suitable for autologous transplantation. Methods. Directed induction of stem cell differentiation was achieved through coculture of mouse iPSCs with human TM cells for up to 21 days. The resultant TM-like cells (iPSC-TM) were characterized morphologically, immunohistochemically, and functionally. Results. The iPSC-TM cells closely resembled cultured human TM cells morphologically and began to express many markers of TM cells while ceasing to express pluripotency markers such as Nanog, Oct4, and Sox2. Functionally, these cells developed the ability to phagocytose particles. Finally, exposure to dexamethasone or phorbol 12-myristate acetate caused a distinct increase in the production and secretion of myocilin and matrix metalloproteinase-3, respectively, behavior characteristic of TM cells. Conclusions. Our data demonstrate that iPSCs can be induced to assume a phenotype that resembles native TM cells in many important aspects. Not only do these cells represent a valuable research tool, but transplantation into glaucomatous eyes with elevated IOP may also restore function to the TM, resulting in re-establishment of IOP. PMID:25298418

  5. Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis.

    PubMed

    Ramoino, P; Milanese, M; Candiani, S; Diaspro, A; Fato, M; Usai, C; Bonanno, G

    2010-04-01

    Paramecium primaurelia expresses a significant amount of gamma-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca(2+) but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.

  6. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  7. Schwann cells induce cancer cell dispersion and invasion.

    PubMed

    Deborde, Sylvie; Omelchenko, Tatiana; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J

    2016-04-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

  8. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    PubMed Central

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  9. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  10. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  11. Induced Pluripotent Stem Cells for Regenerative Medicine

    PubMed Central

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine. PMID:24905879

  12. TALEN-Induced Translocations in Human Cells.

    PubMed

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  13. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    PubMed Central

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2016-01-01

    Background Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance. Design Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis. PMID:26842399

  14. Induced pluripotent stem cells and neurodegenerative diseases.

    PubMed

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  15. [Research for cell therapy by induced pluripotent stem cell].

    PubMed

    Sakurai, Hidetoshi; Yamanaka, Shinya

    2011-12-01

    Induced pluripotent stem (iPS) cells, which are generated from somatic cells, are expected to be a hopeful source for cell therapy to treat intractable diseases due to its unlimited proliferation potential, differentiation potentials and the capability of autotransplantation characteristics. In this review, we have summarized the extension of iPS cell researches into cell therapy and the new researches associated with iPS cell technology. However, transplantation of iPS cell-derived tissue is considered to have a risk of tumorigenesis which is one of the major hurdles of using pluripotent stem cell in clinical application. This review is also focused on new strategies for reducing a risk of tumorigenesis.

  16. Failure of cell cleavage induces senescence in tetraploid primary cells.

    PubMed

    Panopoulos, Andreas; Pacios-Bras, Cristina; Choi, Justin; Yenjerla, Mythili; Sussman, Mark A; Fotedar, Rati; Margolis, Robert L

    2014-10-15

    Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen-transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.

  17. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  18. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  19. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  20. 4-(2-Methyl-4-chlorophenoxy) butyric acid (MCPB)

    Integrated Risk Information System (IRIS)

    4 - ( 2 - Methyl - 4 - chlorophenoxy ) butyric acid ( MCPB ) ; CASRN 94 - 81 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Hea

  1. Development of a specific radioimmunoassay for cortisol 17-butyrate

    SciTech Connect

    Smith, G.N.; Lee, Y.F.; Bu'Lock, D.E.; August, P.; Anderson, D.C.

    1983-07-01

    We describe the development and validation of an assay for cortisol 17-butyrate in blood in which there is no significant cross reaction with endogenous corticosteroids at levels encountered normally in man. Preliminary data on blood levels of the drug in absorption studies are presented.

  2. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  3. Induced pluripotent stem cells in dentistry

    PubMed Central

    Sunil, Paramel Mohan

    2016-01-01

    Induced pluripotent stem cells (iPSCs), a path-breaking invention, have revolutionized the regenerative medicine field. The biggest advantage of this technology is its patient-specific nature and so it is nonimmunogenic. It involves autologous tissues with limitless source of cells throughout life. The Nobel-winning concept involves the reprograming of terminally differentiated cells by external factors and has a tremendous role in the treatment of genetic disorders, regeneration of tissues, drug discovery, and disease modeling. This short review aims at the probable applications of iPSC technology in dentistry with respect to regeneration of oral and maxillofacial tissues and also its role in oral malignancies. PMID:27829740

  4. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  5. Honey induces apoptosis in renal cell carcinoma

    PubMed Central

    Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saiedeh

    2011-01-01

    Background: The fact that antioxidants have several preventative effects against different diseases, such as coronary diseases, inflammatory disorders, neurologic degeneration, aging, and cancer, has led to the search for food rich in antioxidants. Honey has been used as a traditional food and medical source since ancient times. However, recently many scientists have been concentrating on the antioxidant property of honey. By use of human renal cancer cell lines (ACHN), we investigated the antiproliferative activity, apoptosis, and the antitumor activity of honey. Materials and Methods: The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of honey for 3 consecutive days. Cell viability was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using Annexin-V-fluorescein isothiocyanate (FITC) by flow cytometry. Results: Honey decreased the cell viability in the malignant cells in a concentration- and time-dependent manner. The IC 50 values against the ACHN cell lines were determined as 1.7 ± 0.04% and 2.1 ± 0.03% μg/mL after 48 and 72 h, respectively. Honey induced apoptosis of the ACHN cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells. Conclusion: It might be concluded that honey may cause cell death in the ACHN cells, in which apoptosis plays an important role. Most of the drugs used in the cancer treatment are apoptotic inducers, hence apoptotic nature of honey is considered vital. Therefore, it prompted us to investigate honey as a potential candidate for renal cancer treatment. PMID:21472079

  6. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep

    USDA-ARS?s Scientific Manuscript database

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling based on increased expression of urea transporter (UT-B) in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concent...

  7. Effects of oral butyrate application on insulin signaling in various tissues of chickens.

    PubMed

    Mátis, G; Kulcsár, A; Turowski, V; Fébel, H; Neogrády, Zs; Huber, K

    2015-01-01

    The influence of butyrate on insulin signaling in chickens was studied because butyrate is produced during microbial fermentation in the large intestine of birds, and butyrate is widely used as a feed additive in animal production. Ross 308 broiler chickens received a daily intraingluvial bolus of sodium butyrate (0.25 g/kg body weight) on days 20-24 of life (n = 10). Plasma butyrate concentration increased after receiving oral butyrate treatment (P < 0.001). Oral butyrate application was associated with decreased protein expression of insulin receptor β subunit (IRβ) in liver (P = 0.008) and both abdominal (P = 0.003) and subcutaneous adipose tissue (P < 0.001), but with elevated IRβ expression in muscle (P = 0.045), assessed by Western blotting. The quantity of hepatic phosphatidyl-inositol-3-kinase was reduced in the butyrate-treated group (P = 0.007); further, mammalian target of rapamycin was downregulated by butyrate in liver (P < 0.001) and subcutaneous adipose tissue (P = 0.038). Oral butyrate application provoked reduced systemic insulin sensitivity in chickens, indicated by elevated fasting blood glucose and subsequently, insulin level. However, responses of insulin signaling cascade to butyrate were tissue specific, suggesting that butyrate could act on glucose shifting among tissues by selectively increasing the glucose uptake of skeletal muscle via IRβ upregulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    USDA-ARS?s Scientific Manuscript database

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  9. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers.

    PubMed

    Elamin, Elhaseen E; Masclee, Ad A; Dekker, Jan; Pieters, Harm-Jan; Jonkers, Daisy M

    2013-12-01

    Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier dysfunction and to examine the role of AMP-activated protein kinase (AMPK) as a possible mechanism using Caco-2 monolayers. The monolayers were treated apically with butyrate (2, 10, or 20 mmol/L), propionate (4, 20, or 40 mmol/L), or acetate (8, 40, or 80 mmol/L) for 1 h before ethanol (40 mmol/L) for 3 h. Barrier function was analyzed by measurement of transepithelial resistance and permeation of fluorescein isothiocyanate-labeled dextran. Distribution of the tight junction (TJ) proteins zona occludens-1, occludin, and filamentous-actin (F-actin) was examined by immunofluorescence. Metabolic stress was determined by measuring oxidative stress, mitochondrial function, and ATP using dichlorofluorescein diacetate, dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, and bioluminescence assay, respectively. AMPK was knocked down by small interfering RNA (siRNA), and its activity was assessed by a cell-based ELISA. Exposure to ethanol significantly impaired barrier function compared with controls (P < 0.0001), disrupted TJ and F-actin cytoskeleton integrity, and induced metabolic stress. However, pretreatment with 2 mmol/L butyrate, 4 mmol/L propionate, and 8 mmol/L acetate significantly alleviated the ethanol-induced barrier dysfunction, TJ and F-actin disruption, and metabolic stress compared with ethanol-exposed monolayers (P < 0.0001). The promoting effects on barrier function were abolished by inhibiting AMPK using either compound C or siRNA. These observations indicate that SCFAs exhibit protective effects against ethanol-induced barrier disruption via AMPK activation, suggesting a potential for SCFAs as prophylactic and/or therapeutic factors against ethanol-induced

  10. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

    PubMed

    Li, Huijuan; Chang, Jiali; Liu, Pengfei; Fu, Li; Ding, Dewen; Lu, Yahai

    2015-05-01

    Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3 O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3 O4 concentration but was dismissed when Fe3 O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3 O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA-based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3 O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3 O4 amendment. Collectively, our study demonstrated that the nanoFe3 O4 -facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.

  11. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    PubMed

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  12. Consumption of a Bifidobacterium bifidum Strain for 4 Weeks Modulates Dominant Intestinal Bacterial Taxa and Fecal Butyrate in Healthy Adults

    PubMed Central

    Gargari, Giorgio; Taverniti, Valentina; Balzaretti, Silvia; Ferrario, Chiara; Gardana, Claudio; Simonetti, Paolo

    2016-01-01

    ABSTRACT Modulation of the intestinal microbial ecosystem (IME) is a useful target to establish probiotic efficacy in a healthy population. We conducted a randomized, double-blind, crossover, and placebo-controlled intervention study to determine the impact of Bifidobacterium bifidum strain Bb on the IME of adult healthy volunteers of both sexes. High-throughput 16S rRNA gene sequencing was used to characterize the fecal microbiota before and after 4 weeks of daily probiotic cell consumption. The intake of approximately one billion live B. bifidum cells affected the relative abundance of dominant taxa in the fecal microbiota and modulated fecal butyrate levels. Specifically, Prevotellaceae (P = 0.041) and Prevotella (P = 0.034) were significantly decreased, whereas Ruminococcaceae (P = 0.039) and Rikenellaceae (P = 0.010) were significantly increased. We also observed that the probiotic intervention modulated the fecal concentrations of butyrate in a manner dependent on the initial levels of short-chain fatty acids (SCFAs). In conclusion, our study demonstrates that a single daily administration of Bifidobacterium bifidum strain Bb can significantly modify the IME in healthy (not diseased) adults. These findings demonstrate the need to reassess the notion that probiotics do not influence the complex and stable IME of a healthy individual. IMPORTANCE Foods and supplements claimed to contain health-promoting probiotic microorganisms are everywhere these days and mainly intended for consumption by healthy people. However, it is still debated what actual effects probiotic products may have on the healthy population. In this study, we report the results of an intervention trial aimed at assessing the modifications induced in the intestinal microbial ecosystem of healthy adults from the consumption of a probiotic product. Our results demonstrate that the introduction of a probiotic product in the dietary habits of healthy people may significantly modify dominant taxa of

  13. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    PubMed Central

    Liu, Jiaming; Sun, Jing; Wang, Fangyan; Yu, Xichong; Ling, Zongxin; Li, Haixiao; Zhang, Huiqing; Jin, Jiangtao; Chen, Wenqian; Pang, Mengqi; Yu, Junjie; He, Yiwen; Xu, Jiru

    2015-01-01

    Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD) remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO) to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E) staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt) and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD. PMID:26523278

  14. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  15. Microlens array induced light absorption enhancement in polymer solar cells

    SciTech Connect

    Chen, Yuqing; Elshobaki, Moneim; Ye, Zhuo; Park, Joong-Mok; Noack, Max A.; Ho, Kai-Ming; Chaudhary, Sumit

    2013-01-24

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure – the microlens array (MLA) – to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems – poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) – were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by [similar]4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for [similar]40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate.

  16. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.

    PubMed

    Takuma, Kazuhiro; Hara, Yuta; Kataoka, Shunsuke; Kawanai, Takuya; Maeda, Yuko; Watanabe, Ryo; Takano, Erika; Hayata-Takano, Atsuko; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2014-11-01

    We recently showed that prenatal exposure to valproic acid (VPA) in mice causes autism-like behavioral abnormalities, including social interaction deficits, anxiety-like behavior and spatial learning disability, in male offspring. In the present study, we examined the effect of prenatal VPA on cognitive function and whether the effect is improved by chronic treatment with VPA and sodium butyrate, histone deacetylase inhibitors. In addition, we examined whether the cognitive dysfunction is associated with hippocampal dendritic morphological changes. Mice given prenatal exposure to VPA exhibited novel object recognition deficits at 9 weeks of age, and that the impairment was blocked by chronic (5-week) treatment with VPA (30 mg/kg/d, i.p.) or sodium butyrate (1.2g/kg/d, i.p.) starting at 4 weeks of age. In agreement with the behavioral findings, the mice prenatally exposed to VPA showed a decrease in dendritic spine density in the hippocampal CA1 region, and the spine loss was attenuated by chronic treatment with sodium butyrate or VPA. Furthermore, acute treatment with sodium butyrate, but not VPA, significantly increased acetylation of histone H3 in the hippocampus at 30 min, suggesting the difference in the mechanism for the effects of chronic VPA and sodium butyrate. These findings suggest that prenatal VPA-induced cognitive dysfunction is associated with changes in hippocampal dendritic spine morphology.

  17. Disease-specific induced pluripotent stem cells.

    PubMed

    Park, In-Hyun; Arora, Natasha; Huo, Hongguang; Maherali, Nimet; Ahfeldt, Tim; Shimamura, Akiko; Lensch, M William; Cowan, Chad; Hochedlinger, Konrad; Daley, George Q

    2008-09-05

    Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.

  18. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  19. Leukemia cells induce changes in human bone marrow stromal cells

    PubMed Central

    2013-01-01

    Background Bone marrow stromal cells (BMSCs) are multipotent cells that support angiogenesis, wound healing, and immunomodulation. In the hematopoietic niche, they nurture hematopoietic cells, leukemia, tumors and metastasis. BMSCs secrete of a wide range of cytokines, growth factors and matrix proteins which contribute to the pro-tumorigenic marrow microenvironment. The inflammatory cytokines IFN-γ and TNF-α change the BMSC secretome and we hypothesized that factors produced by tumors or leukemia would also affect the BMSC secretome and investigated the interaction of leukemia cells with BMSCs. Methods BMSCs from healthy subjects were co-cultured with three myeloid leukemia cell lines (TF-1, TF-1α and K562) using a trans-well system. Following co-culture, the BMSCs and leukemia cells were analyzed by global gene expression analysis and culture supernatants were analyzed for protein expression. As a control, CD34+ cells were also cocultured with BMSCs. Results Co-culture induced leukemia cell gene expression changes in stem cell pluripotency, TGF-β signaling and carcinoma signaling pathways. BMSCs co-cultured with leukemia cells up-regulated a number of proinflammatory genes including IL-17 signaling-related genes and IL-8 and CCL2 levels were increased in co-culture supernatants. In contrast, purine metabolism, mTOR signaling and EIF2 signaling pathways genes were up-regulated in BMSCs co-cultured with CD34+ cells. Conclusions BMSCs react to the presence of leukemia cells undergoing changes in the cytokine and chemokine secretion profiles. Thus, BMSCs and leukemia cells both contribute to the creation of a competitive niche more favorable for leukemia stem cells. PMID:24304929

  20. Induced pluripotent stem cells meet genome editing

    PubMed Central

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-01-01

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments --the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-- have fundamentally reshaped our approach to biomedical research, stem cell biology and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided, and have set the stage for their success. PMID:27152442

  1. Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-05

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success.

  2. Induced pluripotent stem cells: the new patient?

    PubMed

    Bellin, Milena; Marchetto, Maria C; Gage, Fred H; Mummery, Christine L

    2012-11-01

    Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and age-associated disorders, particularly of the cardiovascular, neural and metabolic systems. This has not been met by commensurate development of new drugs and therapies, which is in part owing to the difficulty in modelling human diseases in laboratory assays or experimental animals. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable.

  3. Virus-induced aggregates in infected cells.

    PubMed

    Moshe, Adi; Gorovits, Rena

    2012-10-17

    During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.

  4. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.

    PubMed

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-09-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23-0.99 U mg(-1) protein), butyrate kinase (Buk, < 0.03 U mg(-1) protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24-7.64 U mg(-1) protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH₃ and NH₄(+)-N), and a negative dependency can be postulated. Thus, high concentrations of NH₃ and NH₄(+)-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  6. Ischemia-induced endothelial cell dysfunction.

    PubMed

    Keep, R F; Andjelkovic, A V; Stamatovic, S M; Shakui, P; Ennis, S R

    2005-01-01

    Hemorrhagic transformation upon reperfusion therapy has focused attention on ischemia-induced endothelial dysfunction. This study examined whether hyperglycemia may induce hemorrhagic transformation by enhancing endothelial mitochondrial damage during ischemia and whether preconditioning (PC) stimuli may limit ischemia-induced endothelial damage. In vivo, rats received 2.8 M D-glucose or arabinose (1 ml/100 g; i.p.) prior to undergoing two hours of middle cerebral artery occlusion and transcardiac fixation for electron microscopy. In vitro, brain endothelial cells were exposed to a PC impulse (short-term oxygen glucose deprivation; OGD) prior to an injurious event (5 hours OGD). Endothelial injury was assessed by measuring lactate dehydrogenase release. Hyperglycemia during cerebral ischemia resulted in marked changes in endothelial morphology and mitochondrial swelling. Thus, in the ischemic hemisphere, there was no evidence of endothelial mitochondrial swelling in normoglycemic rats (mean profile width 0.22 +/- 0.04 vs. 0.17 +/- 0.01 microm in contralateral hemisphere) but there was marked swelling in hyperglycemic rats (0.44 +/- 0.02 microm). In vitro, cells preconditioned with one hour of OGD one day prior to 5 hours of OGD, showed reduced lactate dehydrogenase release (p < 0.05). In conclusion, hyperglycemia may have specific adverse effects on endothelial cell mitochondria during ischemia. Preventing those effects may help to ameliorate blood-brain barrier disruption on reperfusion. Insights into how to prevent endothelial injury may come from determining the mechanisms involved in endothelial preconditioning.

  7. Human mesenchymal stem cell homing induced by SKOV3 cells

    PubMed Central

    Fan, Dongmei; Xie, Xiaojuan; Qi, Pengwei; Yang, Xianan; Jin, Ximeng

    2017-01-01

    Human mesenchymal stem cell (hMSC) homing is the migration of endogenous and exogenous hMSCS to the target organs and the subsequent colonization under the action chemotaxic factors. This is an important process involved in the repair of damaged tissues. However, we know little about the mechanism of hMSC homing. Stromal cell derived factor-1 (SDF-1) is a cytokine secreted by stromal cells. Its only receptor CXCR4 is widely expressed in blood cells, immune cells and cells in the central nervous system. SDF-1/CXCR4 signaling pathway plays an important role in hMSC homing and tissue repair. Human cbll1 gene encodes E3 ubiquitin-protein ligase Hakai (also known as CBLL1) consisting of RING-finger domain that is involved in ubiquitination, endocytosis and degradation of epithelial cadherin (E-cadherin) as well as in the regulation of cell proliferation. We successfully constructed LV3-CXCR4 siRNA lentiviral vector, LV3-CBLL1 RNAi lentiviral vector and the corresponding cell systems which were used to induce hMSC homing in the presence of SKOV3 cells. Thus the mechanism of hMSC homing was studied. PMID:28337256

  8. Sodium Butyrate, a Histone Deacetylase Inhibitor, Exhibits Neuroprotective/Neurogenic Effects in a Rat Model of Neonatal Hypoxia-Ischemia.

    PubMed

    Ziemka-Nalecz, Malgorzata; Jaworska, Joanna; Sypecka, Joanna; Polowy, Rafał; Filipkowski, Robert K; Zalewska, Teresa

    2017-09-01

    Neonatal hypoxic-ischemic (HI) injury still remains an important issue as it is a major cause of neonatal death and neurological dysfunctions. Currently, there are no well-established treatments to reduce brain damage and its long-term sequel in infants. Recently, reported data show that histone deacetylase inhibitors provide neuroprotection in adult stroke models. However, the proof of their relevance in vivo after neonatal HI brain injury remains particularly limited. In the present study, we show neuroprotective/neurogenic effect of sodium butyrate (SB), one of histone deacetylase inhibitors (HDACis), in the dentate gyrus of HI-injured immature rats. Postnatal day 7 (P7) rats underwent left carotid artery ligation followed by 7.6 % O2 exposure for 1 h. SB (300 mg/kg) was administered in a 5-day regime with the first injection given immediately after the onset of HI. The damage of the ipsilateral hemisphere was evaluated by weight deficit. Newly produced cells were labeled with BrdU, at 50 mg/kg, injected twice daily for 3 consecutive days. Subsequent differentiation of the newborn cells was investigated 2 and 4 weeks after the insult by immunohistochemistry using neuronal and glial cell-lineage markers and BrdU incorporation. Finally, we performed several behavioral tests to evaluate functional outcome. In summary, SB led to a remarkable reduction of the brain damage caused by HI. Moreover, the application of this HDACi protected against HI-induced loss of neuroblasts and oligodendrocyte precursor cells, as well as against neuroinflammation. The observed neuroprotective action suggests that SB may serve as a potential candidate for future treatment of HI-evoked injury in neonates.

  9. Specific Signatures of the Gut Microbiota and Increased Levels of Butyrate in Children Treated with Fermented Cow's Milk Containing Heat-Killed Lactobacillus paracasei CBA L74.

    PubMed

    Berni Canani, Roberto; De Filippis, Francesca; Nocerino, Rita; Laiola, Manolo; Paparo, Lorella; Calignano, Antonio; De Caro, Carmen; Coretti, Lorena; Chiariotti, Lorenzo; Gilbert, Jack A; Ercolini, Danilo

    2017-10-01

    We recently demonstrated that cow's milk fermented with the probiotic Lactobacillus paracasei CBA L74 (FM-CBAL74) reduces the incidence of respiratory and gastrointestinal tract infections in young children attending school. This effect apparently derives from a complex regulation of non-immune and immune protective mechanisms. We investigated whether FM-CBAL74 could regulate gut microbiota composition and butyrate production. We randomly selected 20 healthy children (12 to 48 months) from the previous randomized controlled trial, before (t0) and after 3 months (t3) of dietary treatment with FM-CBAL74 (FM) or placebo (PL). Fecal microbiota was profiled using 16S rRNA gene amplicon sequencing, and the fecal butyrate concentration was also measured. Microbial alpha and beta diversities were not significantly different between groups prior to treatment. FM-CBAL74 but not PL treatment increased the relative abundance of Lactobacillus Individual Blautia, Roseburia, and Faecalibacterium oligotypes were associated with FM-CBAL74 treatment and demonstrated correlative associations with immune biomarkers. Accordingly, PICRUSt analysis predicted an increase in the proportion of genes involved in butyrate production pathways, consistent with an increase in fecal butyrate observed only in the FM group. Dietary supplementation with FM-CBAL74 induces specific signatures in gut microbiota composition and stimulates butyrate production. These effects are associated with changes in innate and acquired immunity.IMPORTANCE The use of a fermented milk product containing the heat-killed probiotic strain Lactobacillus paracasei CBAL74 induces changes in the gut microbiota, promoting the development of butyrate producers. These changes in the gut microbiota composition correlate with increased levels of innate and acquired immunity biomarkers. Copyright © 2017 American Society for Microbiology.

  10. Formation of propionate and butyrate by the human colonic microbiota.

    PubMed

    Louis, Petra; Flint, Harry J

    2017-01-01

    The human gut microbiota ferments dietary non-digestible carbohydrates into short-chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health-promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross-feeding of intermediary metabolites (in particular lactate, succinate and 1,2-propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.

  11. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene.

    PubMed

    Louis, Petra; Young, Pauline; Holtrop, Grietje; Flint, Harry J

    2010-02-01

    Butyrate-producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl-CoA:acetate CoA-transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty-eight per cent of amplified sequences showed >98% DNA sequence identity to CoA-transferases from cultured butyrate-producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate-producing strains. Samples taken after ingestion of inulin showed significant (P=0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl-CoA:acetate CoA-transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community.

  12. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  13. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  14. Cellulose acetate butyrate microparticles for controlled release of carbamazepine.

    PubMed

    Arnaud, P; Boué, C; Chaumeil, J C

    1996-01-01

    Cellulose acetate butyrate microparticles loaded in carbamazepine were prepared by a solvent evaporation technique. A decrease of the amount of organic solvent (from 80 to 40 ml of methylene chloride) increased the microparticle average diameter (73-111 and 207 microns) and decreased the carbamazepine release rate (T50% increased from 3.3 to 16.8 and 166.4 min). The microparticle area under the curve at 120 min was similar to that obtained with Tegretol LP 200 tablets.

  15. Sodium butyrate down-regulation of indoleamine 2, 3-dioxygenase at the transcriptional and post-transcriptional levels.

    PubMed

    Jiang, Guan-Min; He, Yu-Wen; Fang, Rui; Zhang, Ge; Zeng, Jun; Yi, Yan-Mei; Zhang, Shu; Bu, Xian-Zhang; Cai, Shao-Hui; Du, Jun

    2010-11-01

    The clinical outcomes of most immunotherapeutic strategies have been less effective than anticipated partially because of the tumor immune tolerance induced by many immune tolerance factors, which originate from the tumor and tumor microenvironment. Indoleamine 2, 3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-inducible enzyme and is one of main immune tolerance factors during tumor development. Sodium butyrate (NaB) has received much attention as a potential chemopreventive agent for cancer treatment due to its protective action against intracellular events including IFN-γ-mediated signaling transduction. Therefore, the question remains whether IDO is a target of the anti-tumor action of NaB. In this study, we demonstrate for the first time that NaB down-regulated IDO via both transcriptional and post-transcriptional mechanisms. NaB repressed the activity of STAT1 to inhibit STAT1-driven transcriptional activity of IDO. These mechanisms included inhibiting STAT1 701 tyrosine phosphorylation, nuclear translocation, and repression of STAT1 binding to γ-activated sites (GAS). Moreover, immunoprecipitation and immunoblotting assays showed that treatment of cells with NaB caused dramatic ubiquitination of total intracellular proteins, including IDO. Blocking 26S proteasome activity by addition of its specific inhibitor, bortezomib, reversed the ubiquitination and down-regulation of IDO. These results suggest that NaB-induced STAT1 activity inhibition and ubiquitin/proteasome-dependent proteolysis are involved in the down-regulation of IDO. The discoveries in this study represent a new mechanism in the anti-tumor action of NaB and may have implications for development of clinical cancer immunotherapy.

  16. ER stress-induced cell death mechanisms

    PubMed Central

    Sano, Renata; Reed, John C.

    2013-01-01

    The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. PMID:23850759

  17. Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming.

    PubMed

    Polak, Urszula; Li, Yanjie; Butler, Jill Sergesketter; Napierala, Marek

    2016-12-01

    Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene, which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs, the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming, modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds, sodium butyrate (NaB) and Parnate, led to an increase in FXN expression and correction of repressive marks at the FXN locus, which persisted for several passages. However, prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore, we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together, these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications, thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA.

  18. Effect of the butyrate prodrug pivaloyloxymethyl butyrate (AN9) on a mouse model for spinal muscular atrophy

    PubMed Central

    Edwards, Jonathan D.; Butchbach, Matthew E. R.

    2016-01-01

    Spinal muscular atrophy (SMA) is an early-onset motor neuron disease that leads to loss of muscle function. Butyrate (BA)-based compounds markedly improve the survival and motor phenotype of SMA mice. In this study, we examine the protective effects of the BA prodrug pivaloyloxymethyl butyrate (AN9) on the survival of SMNΔ7 SMA mice. Oral administration of AN9 beginning at PND04 almost doubled the average lifespan of SMNΔ7 SMA mice. AN9 treatment also increased the growth rate of SMNΔ7 SMA mice when compared to vehicle-treated SMNΔ7 SMA mice. In conclusion, BA prodrugs like AN9 have ameliorative effects on SMNΔ7 SMA mice. PMID:27911337

  19. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    PubMed Central

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  20. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments.

    PubMed

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation.

  1. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop.

    PubMed

    Li, Xin; Shi, Zhongping; Li, Zhigang

    2014-08-01

    In this study, we attempted to increase butanol/acetone ratio and total solvent productivity in ABE fermentations with corn- and cassava-based media, by consecutively feeding a small amount of butyrate/acetate during solventogenic phase to weaken the metabolic strengths in butyrate/acetate closed-loops. Consecutively feeding a small amount of butyrate (a total of 3.0 g/L-broth) is most effective in improving performance of corn-based ABE fermentations, as it simultaneously increased average butanol/acetone ratio by 23 % (1.92-2.36) and total solvent productivity by 16 % (0.355-0.410 g/L/h) as compared with those of control. However, the butyrate feeding strategy could not improve butanol/acetone ratio and total solvent productivity in cassava-based ABE fermentations, where the metabolic strength of butyrate closed-loop had already been very low.

  2. Derivation of induced pluripotent stem cells from pig somatic cells

    PubMed Central

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V. L.; Alexenko, Andrei P.; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R. Michael

    2009-01-01

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after ≈22 days, providing an overall reprogramming efficiency of ≈0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of ≈17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age. PMID:19541600

  3. Derivation of induced pluripotent stem cells from pig somatic cells.

    PubMed

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Alexenko, Andrei P; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R Michael

    2009-07-07

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after approximately 22 days, providing an overall reprogramming efficiency of approximately 0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of approximately 17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age.

  4. Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae.

    PubMed

    Haas, Kelly Nicole; Blanchard, Jeffrey L

    2017-02-01

    An anaerobic, saccharolytic, spore-forming, butyrate-producing bacterium, strain KNHs209T, was isolated from a switchgrass microcosm seeded with forest soil. Cells were highly motile rods, often forming long filamentous chains which were easily observed moving under the microscope. Its closest phylogenetic relative was Eisenbergiella tayi (16S rRNA gene sequence identity 94.2 %), although it was easily distinguishable based on its morphology and physiology. Whole-genome sequencing enabled development of a minimal medium, and also suggested that the organism is capable of fixing nitrogen. Its wide variety of growth substrates was mirrored by a high number of encoded chemotaxis receptors (45, the highest in the family Lachnospiraceae). Strain KNHs209T utilized a wide variety of carbohydrates, but not cellulose or xylan. Fermentation products included formate, acetate and butyrate; sulfur compounds and nitrate were not reduced. Strain KNHs209T grew optimally at 35-40 °C and pH 7. The genomic DNA G+C content was 42.74 mol%; the major membrane fatty acids were C14 : 0 and C16 : 0. Based on phenotypic, genomic, phylogenetic and chemotaxonomic analyses, this organism represents a novel genus and species within the family Lachnospiraceae for which the name Kineothrix alysoides, gen. nov., sp. nov. is proposed. The type strain is KNHs209T (=ATCC TSD-26T=DSM 100556T).

  5. Induced Accelerated Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease

    DTIC Science & Technology

    2013-11-01

    Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease PRINCIPAL INVESTIGATOR: Dr. Birgitt Schuele CONTRACTING...5a. CONTRACT NUMBER Induced Accelerated Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease 5b. GRANT...induced pluripotent stem cells , cellular model, accelerated aging, lamin A, progerin 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  6. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid.

  7. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal

    USDA-ARS?s Scientific Manuscript database

    A 2-stage process was described for continuous bioconversion of n-butyrate into n-butanol with planktonic cells of Clostridium saccharoperbutylacetonicum N1-4. Online product removal via gas stripping was integrated within the system. Our work focused on a continuous fermentation system specifically...

  8. Montelukast Induces Apoptosis-Inducing Factor-Mediated Cell Death of Lung Cancer Cells

    PubMed Central

    Chang, Wei-An; Tsai, Pei-Hsun; Wu, Cheng-Ying; Ho, Ya-Wen; Yen, Meng-Chi; Lin, Yi-Shiuan; Kuo, Po-Lin; Hsu, Ya-Ling

    2017-01-01

    Developing novel chemo-prevention techniques and advancing treatment are key elements to beating lung cancer, the most common cause of cancer mortality worldwide. Our previous cohort study showed that cysteinyl leukotriene receptor antagonists, mainly montelukast, decreased the lung cancer risk in asthma patients. In the current study, we conducted in vivo and in vitro experiments to demonstrate the inhibiting effect of montelukast on lung cancer and to investigate the underlying mechanisms. Using Lewis lung carcinoma-bearing mice, we showed that feeding montelukast significantly delayed the tumor growth in mice (p < 0.0001). Montelukast inhibited cell proliferation and colony formation and induced the cell death of lung cancer cells. Further investigation showed the down-regulation of B-cell lymphoma 2 (Bcl-2), up-regulation of Bcl-2 homologous antagonist/killer (Bak), and nuclear translocation of apoptosis-inducing factor (AIF) in montelukast-treated lung cancer cells. Montelukast also markedly decreased the phosphorylation of several proteins, such as with no lysine 1 (WNK1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (Erk1/2), MAPK/Erk kinase (MEK), and proline-rich Akt substrate of 40-kDa (PRAS40), which might contribute to cell death. In conclusion, montelukast induced lung cancer cell death via the nuclear translocation of AIF. This study confirmed the chemo-preventive effect of montelukast shown in our previous cohort study. The utility of montelukast in cancer prevention and treatment thus deserves further studies. PMID:28672809

  9. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    PubMed

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases.

  10. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  11. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Wang, Hanning; Xiang, Jinzhu; Zhang, Wei; Li, Junhong; Wei, Qingqing; Zhong, Liang; Ouyang, Hongsheng; Han, Jianyong

    2016-01-01

    The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms. PMID:27264660

  12. Low Concentration of Sodium Butyrate from Ultrabraid+NaBu suture, Promotes Angiogenesis and Tissue Remodelling in Tendon-bones Injury

    PubMed Central

    Liu, Donghui; Andrade, Silvia Passos; Castro, Pollyana Ribeiro; Treacy, John; Ashworth, Jason; Slevin, Mark

    2016-01-01

    Sodium butyrate (NaBu), a form of short-chain fatty acid (SCFA), acts classically as a potent anti-angiogenic agent in tumour angiogenesis models, some authors demonstrated that low concentrations of NaBu may contribute to healing of tendon-bone injury in part at least through promotion of tissue remodelling. Here, we investigated the effects of low-range concentrations of NaBu using in vitro and in vivo assays using angiogenesis as the primary outcome measure and the mechanisms through which it acts. We demonstrated that NaBu, alone or perfused from the UltraBraid+NaBu suture was pro-angiogenic at very low-range doses promoting migration, tube formation and cell invasion in bovine aortic endothelial cells (BAECs). Furthermore, cell exposure to low NaBu concentrations increased expression of proteins involved in angiogenic cell signalling, including p-PKCβ1, p-FAK, p-ERK1/2, p-NFκβ, p-PLCγ1 and p-VEGFR2. In addition, inhibitors of both VEGFR2 and PKCβ1 blocked the angiogenic response. In in vivo assays, low concentrations of NaBu induced neovascularization in sponge implants in mice, evidenced by increased numbers of vessels and haemoglobin content in these implants. The findings in this study indicate that low concentrations of NaBu could be an important compound to stimulate angiogenesis at a site where vasculature is deficient and healing is compromised. PMID:27694930

  13. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  14. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro

    PubMed Central

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection. PMID:26904517

  15. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro.

    PubMed

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection.

  16. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1

    PubMed Central

    Tang, Xu; Weber, Christopher R.; Shen, Le; Turner, Jerrold R.; Matthews, Jeffrey B.

    2013-01-01

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-Isc). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-Isc by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-Isc. Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca2+]i) in T84 cells and AMG-9810 blocked the rise in [Ca2+]i induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  17. PMA and Ionomycin Induce Glioblastoma Cell Death: Activation-Induced Cell-Death-Like Phenomena Occur in Glioma Cells

    PubMed Central

    Han, Sheng; Tie, Xinxin; Meng, Lingxuan; Wang, Yunjie; Wu, Anhua

    2013-01-01

    Phorbol myristate acetate (PMA) and ionomycin (Io) can induce T cell activation and proliferation. Furthermore, they stimulate activation-induced cell death (AICD) in mature lymphocytes via Fas/Fas ligand (FasL) up-regulation. In this study, we explored the influence of PMA/Io treatment on glioblastoma cells, and found that AICD-like phenomena may also occur in glioma. Using the MTT assay and cell counting, we demonstrated that treatment of PMA/Io significantly inhibited the proliferation of glioma cell lines, U87 and U251. TUNEL assays and transmission electron microscopy revealed that PMA/Io markedly induced U87 and U251 cell apoptosis. Propidium iodide staining and flow cytometry showed that treatment with PMA/Io resulted in an arrestment of cell cycle and an increase in cell death. Using real-time PCR and western blot, we found that PMA/Io up-regulated the expression of Fas and FasL at both mRNA and protein level, which confirmed that PMA/Io induced glioma cell death. Specific knockdown of NFAT1 expression by small hairpin RNA greatly reduced the PMA/Io induced cell death and apoptosis by inhibition of FasL expression. Microarray analysis showed that the expression of NFAT1 significantly correlated with the expression of Fas. The coexistence of Fas with NFAT1 in vivo provides the background for AICD-like phenomena to occur in glioma. These findings demonstrate that PMA/Io can induce glioblastoma cell death through the NFAT1-Fas/FasL pathway. Glioma-related AICD-like phenomena may provide a novel avenue for glioma treatment. PMID:24130787

  18. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    PubMed Central

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentiation markers filaggrin and transglutaminase 1. Co-treatment with EGF significantly blunted these effects of SB. Combined treatment with SB and PD153035 alleviated these inhibitory actions of EGF, resulting in improved effects of decreased cell growth and increased terminal differentiation, relative to the individual treatments. These results indicate that the combined use of a differentiation-promoting agent and an EGFR inhibitor may offer an additional approach to the management of hyperproliferative skin diseases. PMID:24451036

  19. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  20. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition

    PubMed Central

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-01-01

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment. PMID:25853502

  1. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect

    Ramey, David E.; Yang, Shang-Tian

    2005-08-25

    as a chemical are at $3.00 per gallon – wholesaling in 55 gallon drums for $6.80, with a worldwide market of 1.4 billion gallon per year. The market demand is expected to increase dramatically since butanol can now be produced economically from low-cost biomass. Butanol’s application as a replacement for gasoline will outpace ethanol, biodiesel and hydrogen when its safety and simplicity of use are seen. Butanol’s application for the Department of Defense as a clean-safe replacement for batteries when used in conjunction with fuel cell technology is seen as an application for the future. Disposable canisters made of PLA that carry butanol to be reformed and used to generate electricity for computers, night vision and stealth equipment can be easily disposed of. In a typical ABE fermentation, butyric, propionic and acetic acids are produced first by C. acetobutylicum; the culture then undergoes a metabolic shift and solvents (butanol, acetone, and ethanol) are formed (Fond et al., 1985). In conventional ABE fermentations, the butanol yield from glucose is low, typically at ~15% (w/w) and rarely exceeds 25% (0.77–1.3 gallons per bushel corn respectfully). The production of butanol is also limited by severe product inhibition. Butanol at a concentration of 10 g/L can significantly inhibit cell growth and the fermentation. Consequently, butanol titers in conventional ABE fermentations are usually lower than 13 g/L. The low butanol yield and butanol concentration made butanol production from glucose by ABE fermentation uneconomical.

  2. Solar light induced opacity of MIND cells

    NASA Astrophysics Data System (ADS)

    Kuznicki, Zbigniew T.; Meyrueis, Patrick

    2006-04-01

    Multi-interface novel devices (MIND) exhibit a dramatically low UV- and blue-spectrum photovoltaic (PV) performance. A paradox could even be observed, the better the electronic passivation the poorer the PV performance. The paradox appears under relatively low excitations in comparison with intense laser fluxes usually at its origin. The effect can be explained by solar light induced opacity, which reduces considerably or even totally the photon penetration into deeper layers, from which exclusively the photocarrier collection is possible. This opacity results from a feedback occasioned by the free-carrier absorption: better surface passivation, higher free-carrier density, stronger surface dead zone absorptance. The total energy of the incident short wavelength beam can be absorbed before a carrier collection limit buried in the emitter. This limit acts simultaneously on the electronic performance, blocking free-carriers, and on the optical performance, being at the origin of an enhancement of the surface absorptance. As a consequence, a thin surface zone dominates the optical functions of MIND cells through the free-carrier gas confined inside it. In this work we report specific effects concerning the solar-light induced opacity in MIND cells. The investigation allows modification of the free-carrier confinement using different device architectures. The main characterization methods were reflectivity and spectral response with a varying incident beam. The results prove the domination of the free-carrier optical functions on the MIND PV conversion.

  3. Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep.

    PubMed

    Lettat, A; Nozière, P; Silberberg, M; Morgavi, D P; Berger, C; Martin, C

    2010-09-01

    A study was conducted to determine the feasibility to induce rumen acidosis with propionate, butyrate, or lactate as the major fermentation end products. Three rumen-cannulated Texel wethers were used in a 3 x 3 Latin square design. Each period consisted of 11 d of adaptation where wethers were daily fed at 90% of ad libitum intake a hay and wheat-based concentrate diet (4:1 ratio on a DM basis) in 2 equal portions followed by 3 d of acidosis induction. During the challenge, the morning feeding was replaced by an intraruminal supply of wheat (readily fermentable starch), corn (slowly fermentable starch), or beet pulp (easily digestible fiber), dosed at 1.2% of BW. Ruminal liquid samples were taken daily 1 h before (-1) and 1, 3, 5, and 6 h after intraruminal feed supply to measure pH, VFA, and lactic acid concentration. The differences between treatments accentuated throughout the 3-d challenge, being maximal and significant on d 3. Indeed, 6 h after the third day of the challenge, mean ruminal pH was less for wheat (4.85) than for corn (5.61; P = 0.008) and beet pulp (6.09; P = 0.001), and total VFA tended to be less for wheat (48.7 mM) than for corn and beet pulp (84.7 mM on average; P = 0.08). At the same time, the proportion of acetate was greater for wheat than for corn (75.5 and 62.2%, respectively; P = 0.005) but did not differ from beet pulp challenge (69.0%). The proportion of propionate was greatest for beet pulp compared with corn and wheat (21.0, 17.3, and 12.1%, respectively; P = 0.03), whereas the butyrate proportion was greatest for corn, intermediate for wheat, and least for beet pulp (16.3, 10.8, and 8.3%, respectively; P = 0.05). Lactate concentration was greatest for wheat (45.5 mM) compared with corn and beet pulp (8.3 mM on average; P = 0.01). Under our experimental conditions, ruminal lactic acidosis was successfully induced by wheat, whereas butyric and propionic subacute ruminal acidosis were respectively provoked by corn and beet pulp. We

  4. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry.

    PubMed

    Van Immerseel, F; Boyen, F; Gantois, I; Timbermont, L; Bohez, L; Pasmans, F; Haesebrouck, F; Ducatelle, R

    2005-12-01

    Short-chain fatty acids have been widely used as feed additives to control Salmonella in poultry. Data on the use of butyric acid in poultry are lacking. In this study, powder form and coated butyric acid were compared in their ability to reduce Salmonella colonization of ceca and internal organs shortly after infection of young chickens with Salmonella enteritidis. In the first trial, 4 groups of 25 specific pathogen free layer chickens were given feed either supplemented with powder form butyric acid, coated butyric acid, a combination of powder form and coated butyric acid (all groups received a total of 0.63 g of butyric acid/kg) or nonsupplemented feed. The specific pathogen free layer chickens were orally infected with 10(6) cfu of S. enteritidis. Coated butyric acid significantly decreased cecal colonization 3 d post-infection compared with control chickens, and powder form butyric acid had no effect. To study long-term shedding and colonization of Salmonella in broilers given coated butyric acid as feed additive (0.63 g of active product butyric acid/kg), 10 Ross broiler chickens were infected at d 5 with 10(5) cfu of S. enteritidis and housed together with 40 noninfected broilers. A control group received nonsupplemented feed. The group of broilers receiving coated butyric acid had a significantly lower number of broilers shedding Salmonella bacteria, but cecal colonization at slaughter age was equal for both groups. In conclusion, butyric acid decreases cecal colonization shortly after infection, decreases fecal shedding, and as a consequence, decreases environmental contamination by S. enteritidis-infected broilers. However, complete elimination can probably only be achieved with a combined approach using both hygienic measures and different protection measures, as the broilers still carried S. enteritidis bacteria in the ceca at slaughter age, although at enrichment level.

  5. Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells

    PubMed Central

    Lee, Soung-Hoon; Yoon, Juyong; Shin, Seung Ho; Zahoor, Muhamad; Kim, Hyoung Jun; Park, Phil June; Park, Won-Seok; Min, Do Sik; Kim, Hyun-Yi; Choi, Kang-Yell

    2012-01-01

    Background Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA), a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. Methodology/ Principal Findings Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP). VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX), a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. Conclusions/ Significance Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth. PMID:22506014

  6. Metabolic Stress Induced by Arginine Deprivation Induces Autophagy Cell Death in Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Research, 69(2):700-708...TITLE: Metabolic stress induced by arginine deprivation induces autophagy cell death in prostate cancer PRINCIPAL INVESTIGATOR: Richard Bold, MD...4. TITLE AND SUBTITLE Metabolic stress induced by arginine deprivation induces autophagy cell 5a. CONTRACT NUMBER death in prostate cancer 5b

  7. Long-Term Culture of Porcine Induced Pluripotent Stem-Like Cells Under Feeder-Free Conditions in the Presence of Histone Deacetylase Inhibitors.

    PubMed

    Petkov, Stoyan; Glage, Silke; Nowak-Imialek, Monika; Niemann, Heiner

    2016-03-01

    The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation.

  8. [Current progress and application prospects of induced pluripotent stem cells].

    PubMed

    Qin, Tong; Miao, Xiang-Yang

    2010-12-01

    Induced pluripotent stem (iPS) cells can be directly generated from somatic cells by transduction of a few defined transcription factors. This technique avoids immunological rejection and ethical difficulties, which is a great revolution in life sciences. Like embryonic stem (ES) cells, iPS cells have the ability to self-renew through mitotic cell division and thus remain in its undifferentiated state and the ability to differentiate into not only all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm, but also many mature cells in vitro. Therefore, iPS cells are important for theoretic study and therapeutic application. Here, we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods, and clinical applications of iPS cells. Finally, current problems of iPS cells and its prospects in transgenic animals are also discussed. This article is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  9. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis.

    PubMed

    Eshak, M G; Elmenawey, M A; Atta, A; Gharib, H B; Shalaby, B; Awaad, M H H

    2016-05-01

    To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE) with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA) fragmentation. A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence). Birds of groups 1 and 2 were inoculated by crop gavages with 4×10(8) CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF) with higher hemagglutination inhibition titers against Newcastle disease (ND) vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1) and decreased the DNA fragmentation induced by C. perfringens. Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased antibody titers against ND vaccination, numerically lowered

  10. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis

    PubMed Central

    Eshak, M. G.; Elmenawey, M. A.; Atta, A.; Gharib, H. B.; Shalaby, B.; Awaad, M. H. H.

    2016-01-01

    Aim: To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE) with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA) fragmentation. Materials and Methods: A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence). Birds of groups 1 and 2 were inoculated by crop gavages with 4×108 CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Results: Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF) with higher hemagglutination inhibition titers against Newcastle disease (ND) vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1) and decreased the DNA fragmentation induced by C. perfringens. Conclusion: Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased antibody titers

  11. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    PubMed Central

    Wang, Lihong; Liu, Liping; Shi, Yan; Cao, Hanwei; Chaturvedi, Rupesh; Calcutt, M. Wade; Hu, Tianhui; Ren, Xiubao; Wilson, Keith T.; Polk, D. Brent; Yan, Fang

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apcmin mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth. PMID:22574158

  12. [Application of small molecule compounds inducing differentiation of stem cells].

    PubMed

    Li, Xia; Shan, Lei; Li, Wen-lin; Zhang, Shou-de; Zhang, Wei-dong

    2011-02-01

    With the development of stem cells and regenerative medicine (treatment of various diseases using stem cells) research, the induction of differentiation of human stem cell technology has also made significant progress. The development of chemical biology offers a variety of small biological molecules for stem cell biology. This review focuses on how small molecule compounds (natural and synthetic) induce differentiation of stem cells.

  13. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors.

    PubMed

    Talbot, Neil C; Sparks, Wendy O; Phillips, Caitlin E; Ealy, Alan D; Powell, Anne M; Caperna, Thomas J; Garrett, Wesley M; Donovan, David M; Blomberg, Le Ann

    2017-06-01

    Thirteen independent induced bovine trophectroderm (iBT) cell lines were established by reprogramming bovine fetal liver-derived fibroblasts after viral-vector transduction with either six or eight factors, including POU5F1 (OCT4), KLF4, SOX2, MYC, NANOG, LIN28, SV40 large T antigen, and hTERT. Light- and electron-microscopy analysis showed that the iBT cells had epithelial cell morphology typical of bovine trophectoderm cells. Reverse-transcription-PCR assays indicated that all of the cell lines expressed interferon-tau (IFNT) at passages 1 or 2. At later passages (≥ passage 8), however, immunoblot and antiviral activity assays revealed that more than half of the iBT cell lines had stopped expressing IFNT. Messenger RNAs specific to trophectoderm differentiation and function were found in the iBT cell lines, and 2-dimensional-gel analysis for cellular proteins showed an expression pattern similar to that of trophectoderm cell lines derived from bovine blastocysts. Integration of some of the human reprogramming factors, including POU5F1, KLF4, SOX2, MYC, NANOG, and LIN28, were detected by PCR, but their transcription was mostly absent in the iBT cell lines. Gene expression assessment of endogenous bovine reprogramming factor orthologs revealed endogenous bLIN28 and bMYC transcripts in all; bSOX2 and bNANOG in none; and bKLF4 and bPOU5F1 in less than half of the iBT cell lines. These results demonstrate that bovine trophectoderm can be induced via reprogramming factor expression from bovine liver-derived fibroblasts, although other fibroblast populations-e.g., derived from fetal thigh tissue-may produce similar results, albeit at lower frequencies. © 2017 Wiley Periodicals, Inc.

  14. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  15. PDGF upregulates CLEC-2 to induce T regulatory cells.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Hajian, Pega; Cao, Jia-Ning; Agrawal, Anshu

    2015-10-06

    The effect of platelet derived growth factor (PDGF) on immune cells is not elucidated. Here, we demonstrate PDGF inhibited the maturation of human DCs and induced IL-10 secretion. Culture of PDGF-DCs with T cells induced the polarization of T cells towards FoxP3 expressing T regulatory cells that secreted IL-10. Gene expression studies revealed that PDGF induced the expression of C-type lectin like receptor member 2, (CLEC-2) receptor on DCs. Furthermore, DCs transfected with CLEC-2 induced T regulatory cells in DC-T cell co-culture. CLEC-2 is naturally expressed on platelets. Therefore, to confirm whether CLEC-2 is responsible for inducing the T regulatory cells, T cells were cultured with either CLEC-2 expressing platelets or soluble CLEC-2. Both conditions resulted in the induction of regulatory T cells. The generation of T regulatory cells was probably due to the binding of CLEC-2 with its ligand podoplanin on T cells, since crosslinking of podoplanin on the T cells also resulted in the induction of T regulatory cells. These data demonstrate that PDGF upregulates the expression of CLEC-2 on cells to induce T regulatory cells.

  16. Achieving high efficiency laminated polymer solar cell with interfacial modified metallic electrode and pressure induced crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbo; Bi, Yu; Huang, Jinsong

    2011-02-01

    We report efficient laminated organic photovoltaic device with efficiency approach the optimized device by regular method based on Poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The high efficiency is mainly attributed to the formation of a concrete polymer/metal interface mechanically and electrically by the use of electronic-glue, and using the highly conductive and flexible silver film as anode to reduce photovoltage loss and modifying its work function for efficiency hole extraction by ultraviolet/ozone treatment, and the pressure induced crystallization of PCBM.

  17. [Dementia study using induced pluripotent stem cells].

    PubMed

    Matsuzono, Kosuke; Abe, Koji; Inoue, Haruhisa

    2016-03-01

    Recent developments in induced pluripotent stem cell (iPSC) technology have facilitated, and have contributed to overcome the difficulty of modeling dementia caused by Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD), etc. The following models using iPSCs were reported: the pathophysiology caused by gene mutations such as presenilin or amyloid β precursor protein in AD, α-synuclein in DLB, and microtubule-associated protein tau, fused in sarcoma, progranulin, or chromosome 9 open reading frame 72 in FTLD, anti-AD drug screening, sortilin-related receptor L 1 haplotype influence in sporadic AD, and amyloid β secretion in Down syndrome. Patient-specific iPSC could be expected to reveal the disease pathology and lead to drug discoveries for dementia patients.

  18. Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

    PubMed

    Wada, Haruka; Kojo, Satoshi; Kusama, Chie; Okamoto, Naoki; Sato, Yorino; Ishizuka, Bunpei; Seino, Ken-ichiro

    2011-01-01

    Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). B-iPS cells were identical to embryonic stem (ES) cells and mouse embryonic fibroblast (MEF)-derived iPS cells in morphology, ES cell marker expression as well as teratoma and chimera mouse formation. Both B-iPS and MEF-derived iPS cells differentiated into lymphocytes in OP9 co-culture systems. Both efficiently differentiated into T-cell lineage that produced IFN-γ on T-cell receptor stimulation. However, iPS cells including B-iPS cells were relatively resistant to B-cell lineage differentiation. One of the reasons of the failure of B-cell lineage differentiation seemed due to a defect of Pax5 expression in the differentiated cells. Therefore, current in vitro differentiation systems using iPS cells are sufficient for inducing T-cell but not B-cell lineage.

  19. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  20. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  1. Transport and Metabolism of the Endogenous Auxin Precursor Indole-3-Butyric Acid

    PubMed Central

    Strader, Lucia C.; Bartel, Bonnie

    2011-01-01

    Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development. PMID:21357648

  2. Nanonization of poorly water-soluble drug clobetasone butyrate by using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Pan, Sunqiang; Takebe, Gen; Suzuki, Masumi; Takamoto, Hisayoshi; Ge, Jianhong; Liu, Chong; Hiramatsu, Mitsuo

    2014-02-01

    Nanonization, which involves the formation of the drug with nanometer particle size, is an effective method to improve the dissolution rate and bioavailability of poorly water-soluble drugs. A pulsewidth-tunable femtosecond laser was used to produce nanoparticles of clobetasone butyrate using poloxamer 188 as stabilizing agent. The effects of temperature and pulsewidth on the particle size and concentration were studied for the first time. The particle size and drug concentration dependence on the laser intensity and irradiation time were also investigated. Permeability test releaved that laser nanonization improved the drug permeability across Caco-2 cell monolayer. This laser nanonization method has a great potential to be used for new drug development.

  3. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum.

    PubMed

    Jung, Eui Hwan; Jung, Ho Won; Lee, Sung Chul; Han, Sang Wook; Heu, Sunggi; Hwang, Byung Kook

    2004-02-20

    The CALRR1 gene, expressed in pepper leaves following infection by Xanthomonas campestris pv. vesicatoria, encodes a secreted leucine-rich repeat (LRR) with five tandem repeats of a 24-amino-acid LRR motif. Northern blot analyses revealed that CALRR1 is not constitutively expressed in pepper plants, but is strongly induced upon the infection by X. campestris pv. vesicatoria, Phytophthora capsici, Colletotrichum coccodes and Colletotrichum gloeosporioides on leaves. CALRR1 was not systemically induced in upper leaves by bacterial infection. The inoculation of bacterial live cells, and treatment with dead cells and culture filtrates of pathogenic or nonpathogenic bacteria triggered the accumulation of CALRR1 transcripts. Treatment with signaling molecules, including salicylic acid (SA), ethylene (ET), methyl jasmonate (MeJA), dl-beta-amino-n-butyric acid (BABA) and benzothiadiazole (BTH), did not activate the transcription of the CALRR1 gene, indicating that CALRR1 expression is not regulated by defense signaling pathways activated by these molecules. CALRR1 was induced by treatment with high salinity, abscisic acid (ABA) and wounding, but not by drought and cold stress. An in situ hybridization study showed that CALRR1 mRNA was localized in phloem tissues of leaves, stems, and green fruits of pepper plants during the pathogen infection and ABA exposure. The location characteristics and the spatio-temporal expression pattern of CALRR1 suggest that it may play a role in protecting phloem cells against biotic and abiotic stresses affecting phloem function.

  4. In vitro cell injury by oxidized low density lipoprotein involves lipid hydroperoxide-induced formation of alkoxyl, lipid, and peroxyl radicals.

    PubMed Central

    Coffey, M D; Cole, R A; Colles, S M; Chisolm, G M

    1995-01-01

    Mounting evidence supports current theories linking lipoprotein oxidation to atherosclerosis. We sought the cellular biochemical mechanism by which oxidized LDL inflicts cell injury. Inhibitors of candidate pathways of cell death were used to treat human fibroblast target cells exposed to oxidized LDL.. Ebselen, which degrades lipid hydroperoxides, inhibited oxidized LDL toxicity, consistent with our recent report that 7 beta-hydroperoxycholesterol (7 beta-OOH chol) is the major cytotoxin of oxidized LDL. Intracellular chelation of metal ions inhibited, while preloading cells with iron enhanced, toxicity, Inhibition of oxidized LDL and 7 beta-OOH chol toxicity by 2-keto-4-thiolmethyl butyric acid, a putative alkoxyl radical scavenger and by vitamin E, probucol and diphenylphenylenediamine, putative scavengers of peroxyl radicals was consistent with the involvement of these radicals in the lethal sequence. Cell death was thus postulated to occur due to lipid peroxidation via a sequence involving lipid hydroperoxide-induced, iron-mediated formation of alkoxyl, lipid, and peroxyl radicals. Pathways involving other reactive oxygen species, new protein synthesis, or altered cholesterol metabolism were considered less likely, since putative inhibitors failed to lessen toxicity. Understanding the mechanism of cell injury by oxidized LDL and its toxic moiety, 7 beta-OOH chol, may indicate specific interventions in the cell injury believed to accompany vascular lesion development. PMID:7560078

  5. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens.

    PubMed

    Namkung, H; Yu, H; Gong, J; Leeson, S

    2011-10-01

    The antimicrobial activities of n-butyric acid and its derivatives against Salmonella Typhimurium and Clostridium perfringens were studied. n-Butyric acid and its derivatives (monobutyrin and a mixture of mono-, di-, and tri-glycerides of butyric acid) were added at different concentrations (ranging from 250 to 7,000 mg/kg to a media inoculated with either Salmonella Typhimurium or C. perfringens. The antimicrobial activity of butyric acid against C. perfringens was measured at 2 bacterium concentrations and 2 inoculations involving ambient aerobic or anaerobic conditions. The most effective antimicrobial activity for Salmonella Typhimurium was observed with n-butyric acid, with 90% inhibition rate at a concentration of 1,500 mg/kg. Although minimal inhibition for Salmonella Typhimurium was observed with butyric acid glycerides, lipase addition to a mixture of mono-, di-, and triglycerides of butyric acid increased (P < 0.01) antimicrobial activity of these derivatives. Antimicrobial activity of butyric acid and its derivative against C. perfringens was higher when using a moderate initial inoculation concentration (10(5)) compared with a higher initial concentration (10(7)) of this bacterium. At a lower inoculation of C. perfringens (10(5)), >90% inhibition rate by all butyric acid glycerides was observed with prior aerobic inoculation at 2,000 mg/kg, whereas using anaerobic inoculation, only 50% monobutyrin maintained >90% inhibitory effect at 3,000 mg/kg. The antimicrobial effect of monobutyrin against C. perfringens was generally higher (P < 0.01) for 50% monobutyrin than for 100% monobutyrin. Either a mixture of butyric acid derivatives or 50% monobutyrin decreased (P < 0.01) C. perfringens in a media containing intestinal contents whereas only 50% monobutyrin decreased (P < 0.01) Salmonella Typhimurium within a media containing cecal contents from mature Leghorns. These results show that n-butyric acid and 50% monobutyrin could be used to control Salmonella

  6. Effects of dietary sodium butyrate on hepatic biotransformation and pharmacokinetics of erythromycin in chickens.

    PubMed

    Csikó, G; Nagy, G; Mátis, G; Neogrády, Z; Kulcsár, Á; Jerzsele, A; Szekér, K; Gálfi, P

    2014-08-01

    Butyrate, a commonly applied feed additive in poultry nutrition, can modify the expression of certain genes, including those encoding cytochrome P450 (CYP) enzymes. In comparative in vitro and in vivo experiments, the effect of butyrate on hepatic CYP genes was examined in primary cultures of chicken hepatocytes and in liver samples of chickens collected from animals that had been given butyrate as a feed additive. Moreover, the effect of butyrate on the biotransformation of erythromycin, a marker substance for the activity of enzymes of the CYP3A family, was investigated in vitro and in vivo. Butyrate increased the expression of the avian-specific CYP2H1 both in vitro and in vivo. In contrast, the avian CYP3A37 expression was decreased in hepatocytes following butyrate exposure, but not in the in vivo model. CYP1A was suppressed by butyrate in the in vitro experiments, and overexpressed in vivo in butyrate-fed animals. The concomitant incubation of hepatocytes with butyrate and erythromycin led to an increased CYP2H1 expression and a less pronounced inhibition of CYP3A37. In in vivo pharmacokinetic experiments, butyrate-fed animals given a single i.m. injection of erythromycin, a slower absorption phase (longer T(half-abs) and delayed T(max)) but a rapid elimination phase of this marker substrate was observed. Although these measurable differences were detected in the pharmacokinetics of erythromycin, it is unlikely that a concomitant application of sodium butyrate with erythromycin or other CYP substrates will cause clinically significant feed-drug interaction in chickens.

  7. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  8. An Alteration in the Cecal Microbiota Composition by Feeding of 1-Kestose Results in a Marked Increase in the Cecal Butyrate Content in Rats

    PubMed Central

    Nakamura, Saki; Sugawa, Chie; Takahashi, Motoki; Endo, Akihito; Shimomura, Yoshiharu

    2016-01-01

    Functional food ingredients, including prebiotics, have been ardently developed for improving the intestinal environment. Fructooligosaccarides (FOS), including fructans, are the well researched and commercialized prebiotics. However, to our knowledge, few studies have been conducted on the physiological effects of each component of FOS as prebiotics. 1-Kestose, a component of FOS, is composed of one glucose and two fructose molecules, and is considered as a key prebiotic component in short-chain FOS. In the present study, we examined the effects of dietary 1-kestose using 0.5–5% 1-kestose diets on cecal microbiota composition and cecal contents of short-chain fatty acids and lactate in rats. The findings indicate that dietary 1-kestose induced cecal hypertrophy and alterations in the cecal microbiota composition, including a marked increase in the cell number of Bifidobacterium spp. These alterations were associated with significant increases in acetate and lactate, and a marked increase in butyrate in cecal contents. Furthermore, dietary 1-kestose induced a significant decrease in serum insulin concentration in rats fed 2.5–5% 1-kestose diet. These findings suggest a potential of 1-kestose to be a prebiotic for improving the metabolism of the host. PMID:27861621

  9. An Alteration in the Cecal Microbiota Composition by Feeding of 1-Kestose Results in a Marked Increase in the Cecal Butyrate Content in Rats.

    PubMed

    Tochio, Takumi; Kitaura, Yasuyuki; Nakamura, Saki; Sugawa, Chie; Takahashi, Motoki; Endo, Akihito; Shimomura, Yoshiharu

    2016-01-01

    Functional food ingredients, including prebiotics, have been ardently developed for improving the intestinal environment. Fructooligosaccarides (FOS), including fructans, are the well researched and commercialized prebiotics. However, to our knowledge, few studies have been conducted on the physiological effects of each component of FOS as prebiotics. 1-Kestose, a component of FOS, is composed of one glucose and two fructose molecules, and is considered as a key prebiotic component in short-chain FOS. In the present study, we examined the effects of dietary 1-kestose using 0.5-5% 1-kestose diets on cecal microbiota composition and cecal contents of short-chain fatty acids and lactate in rats. The findings indicate that dietary 1-kestose induced cecal hypertrophy and alterations in the cecal microbiota composition, including a marked increase in the cell number of Bifidobacterium spp. These alterations were associated with significant increases in acetate and lactate, and a marked increase in butyrate in cecal contents. Furthermore, dietary 1-kestose induced a significant decrease in serum insulin concentration in rats fed 2.5-5% 1-kestose diet. These findings suggest a potential of 1-kestose to be a prebiotic for improving the metabolism of the host.

  10. Electronic properties of electron-doped [6,6]-phenyl-C61-butyric acid methyl ester and silylmethylfullerene

    NASA Astrophysics Data System (ADS)

    Furutani, Sho; Okada, Susumu

    2017-06-01

    Electronic properties of electron-doped chemically decorated C60 fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and silylmethylfullerene (SIMEF), by a planar electrode were studied using density functional theory combined with the effective screening medium method to simulate the heterointerface between the chemically decorated C60 and cationic counter materials. We find that the distribution of accumulated electrons and induced electric field depend on the molecular arrangement with respect to the external electric field of the electrode. We also show that the quantum capacitance of the molecule is sensitive to molecular arrangement owing to the asymmetric distribution of the accumulated electrons.

  11. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  12. HIV transcription is induced with some forms of cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Panozzo, J.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-11-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct`, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {Gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture.

  13. Molecular Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death: Early and Late Cell Responses

    DTIC Science & Technology

    2005-10-01

    Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death : Early and late cell responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...It possess mutagenic, carcinogenic, cytotoxic, vesicating effects, and results in cell death . However, the biomedical mechanism of cell death induced... cell death via apoptosis: • In early stage, It induces JNK activity and then triggers apoptosis pathway. • In late stage, sulphur mustard attacks the

  14. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  15. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  16. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  17. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells.

    PubMed

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G H

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  18. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    PubMed Central

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G.H.

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer. PMID:27141211

  19. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  20. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2012-07-01 2012-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  1. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2013-07-01 2013-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  2. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  3. Effect of Sodium Butyrate on Growth Performance and Response to Lipopolysaccharide in Weanling Pigs

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to determine the effects of dietary sodium butyrate on growth performance and response to E. coli. lipopolysaccharide (LPS) in weanling pigs. In the first 28 d experiment, 180 pigs (initial BW 6.3 kg) were fed 0, 0.05, 0.1, 0.2, and 0.4% sodium butyrate, or 110 mg/kg d...

  4. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium sp. strain RPT-4213

    USDA-ARS?s Scientific Manuscript database

    A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...

  5. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.

    PubMed

    Lee, Kyung Min; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Sang, Byoung-In; Um, Youngsoon

    2015-09-01

    To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.

  6. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213

    USDA-ARS?s Scientific Manuscript database

    A newly isolated Clostridium sp. strain RPT-4213 was found to produce butyrate under anaerobic conditions. Fermentations using Lactobacilli MRS Broth produced 9.47 g L-1 butyric acid from glucose (0.48 g/g glucose). However, the strain was not capable of utilizing five carbon sugars. To assess the a...

  7. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.

    PubMed

    Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon

    2016-10-01

    The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid.

  8. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate.

    PubMed

    Sato, Shunsuke; Maruyama, Hiroyuki; Fujiki, Tetsuya; Matsumoto, Keiji

    2015-09-01

    A (R)-3-hydroxyhexanoate (3HH) composition-regulating technology for poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) production was developed using recombinant Cupriavidus necator H16 with butyrate as a co-substrate. A new (R)-3-hydroxyhexanoyl-CoA ((R)-3HH-CoA) synthesis pathway was designed and enhanced by replacing the PHA synthase gene (phaC1) of C. necator by the phaCAcNSDG (encoding the N149S and D171G mutant of PHA synthase from Aeromonas caviae) and deactivation of the phaA gene (encoding (β-ketothiolase) from C. necator H16 chromosome). The effect of butyrate as co-substrate was assessed in high-cell-density fed-batch cultures of several C. necator mutants, and the 3HH fraction was successfully increased by adding butyrate to the culture. Moreover, overexpression of BktB (encoding the second β-ketothiolase with broad substrate specificity) enhanced the (R)-3HH-CoA synthesis pathway in the phaA deactivated mutant of C. necator by promoting the condensation of acetyl-CoA and butyryl-CoA into 3-ketohexanoyl-CoA. Consequently, PHBH containing 4.2-13.0 mol% 3HH was produced from butyrate and palm kernel oil by the genetically modified C. necator H16 strains. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B12 Production by Intestinal Symbionts.

    PubMed

    Belzer, Clara; Chia, Loo Wee; Aalvink, Steven; Chamlagain, Bhawani; Piironen, Vieno; Knol, Jan; de Vos, Willem M

    2017-09-19

    Akkermansia muciniphila has evolved to specialize in the degradation and utilization of host mucus, which it may use as the sole source of carbon and nitrogen. Mucus degradation and fermentation by A. muciniphila are known to result in the liberation of oligosaccharides and subsequent production of acetate, which becomes directly available to microorganisms in the vicinity of the intestinal mucosa. Coculturing experiments of Amuciniphila with non-mucus-degrading butyrate-producing bacteria Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium prausnitzii resulted in syntrophic growth and production of butyrate. In addition, we demonstrate that the production of pseudovitamin B12 by E. hallii results in production of propionate by A. muciniphila, which suggests that this syntrophy is indeed bidirectional. These data are proof of concept for syntrophic and other symbiotic microbe-microbe interactions at the intestinal mucosal interface. The observed metabolic interactions between Amuciniphila and butyrogenic bacterial taxa support the existence of colonic vitamin and butyrate production pathways that are dependent on host glycan production and independent of dietary carbohydrates. We infer that the intestinal symbiont A. muciniphila can indirectly stimulate intestinal butyrate levels in the vicinity of the intestinal epithelial cells with potential health benefits to the host.IMPORTANCE The intestinal microbiota is said to be a stable ecosystem where many networks between microorganisms are formed. Here we present a proof of principle study of microbial interaction at the intestinal mucus layer. We show that indigestible oligosaccharide chains within mucus become available for a broad range of intestinal microbes after degradation and liberation of sugars by the species Akkermansia muciniphila This leads to the microbial synthesis of vitamin B12, 1,2-propanediol, propionate, and butyrate, which are beneficial to the microbial ecosystem and host epithelial

  10. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?

    PubMed

    Brahe, L K; Astrup, A; Larsen, L H

    2013-12-01

    It is increasingly recognized that there is a connection between diet, intestinal microbiota, intestinal barrier function and the low-grade inflammation that characterizes the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment relevant. In this context, the ability of some Gram-positive anaerobic bacteria to produce the short-chain fatty acid butyrate is interesting. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans, and recent studies suggest that butyrate might have an anti-inflammatory potential that can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Here, we review and discuss the potential of butyrate as an anti-inflammatory mediator in metabolic diseases, and the potential for dietary interventions increasing the intestinal availability of butyrate.

  11. Induced stem cells as a novel multiple sclerosis therapy

    PubMed Central

    Xie, Chong; Liu, Yan-qun; Guan, Yang-tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS. PMID:25732737

  12. Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    PubMed

    Xie, Chong; Liu, Yan-Qun; Guan, Yang-Tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS.

  13. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells.

    PubMed

    Monfared, Mahdieh Hajian; Minaee, Bagher; Rastegar, Tayebeh; Khrazinejad, Ebrahim; Barbarestani, Mohammad

    2016-11-01

    Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. BMMSCs were collected from the bone marrow of 6-8-week old NMRI mice and their mesenchymal entities were proven using superficial markers (expression of CD44 and CD73 and non-expresion of CD45 and CD11b) by fow cytometry. Their multi-potential entities were proved with differentiation to osteogenic and adipogenic cells for 21 days. Also isolated Sertoli cells were enriched using lectin coated plates and Sertoli cell condition medium (SCCM) was collected. Sertoli cells were identified by immunocytochemistry and Vimentin marker. The cells were then differentiated into germ cells with SCCM for 2 weeks. Finally induced cells were evaluated by RT-PCR and immunocytochemistry. Differentiation of mesenchymal stem cells to osteoblast and adipocyte showed their multi-potential property. Expression of CD44 and CD73 and non-expression of CD45 and CD11b confirmed mesenchyme cells. Immunocytochemistry and RT-PCR results showed expression of germ cells specific marker (Mvh). This study confirmed the effect of SCCM as a motivational factor that can used for differentiation of germ cells from BMMSCs.

  14. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells