Science.gov

Sample records for butyrate induces cell

  1. Transcriptome characterization by deep-RNA-sequencing underlies the mechanisms of butyrate-induced epigenomic regulation in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile short-chain fatty acids (SCFAs, acetate, propionate, and butyrate), especially butyrate, alter cell differentiation, proliferation, motility, and in particular, induce cell cycle arrest and apoptosis through its histone deacetylase (HDAC) inhibition activity. Butyrate is a great inducer of ...

  2. Sodium butyrate-induced DAPK-mediated apoptosis in human gastric cancer cells.

    PubMed

    Shin, Hyunsoo; Lee, Yeo Song; Lee, Yong Chan

    2012-04-01

    Epigenetic mechanisms of histone acetylation/deacetylation play an important role in the regulation of gene expression associated with the cell cycle and apoptosis. Recently, sodium butyrate, a histone deacetylase (HDAC) inhibitor, has been shown to exhibit anticancer effects via differentiation and apoptosis of cancer cells. Sodium butyrate may be a potential anticancer chemotherapeutic drug; however, the precise mechanism underlying the anticancer effects of sodium butyrate has not been clearly elucidated. In the present study, we investigated the role of death-associated protein kinase (DAPK) on the apoptosis of human gastric cancer cells induced by sodium butyrate. We observed that sodium butyrate induced apoptosis in human gastric cancer cells. Treatment with the HDAC inhibitor sodium butyrate increased the expression of caspase-3 and DAPK1/2 genes but decreased the expression of Bcl-2 in human gastric cancer cells. The expression of DAPK3, p53 and p21 were not altered by sodium butyrate treatment. Analysis of the general expression patterns revealed that sodium butyrate increased the expression of DAPK1/2 but decreased the expression of FAK and induced changes in the proliferation of apoptosis-related genes in human gastric cancer cells. These data suggest that DAPK expression prompts apoptosis by reducing the FAK protein level in sodium butyrate-induced apoptosis of human gastric cancer cells.

  3. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  4. Activation of PPAR{gamma} is not involved in butyrate-induced epithelial cell differentiation

    SciTech Connect

    Ulrich, S.; Waechtershaeuser, A.; Loitsch, S.; Knethen, A. von; Bruene, B.; Stein, J. . E-mail: j.stein@em.uni-frankfurt.de

    2005-10-15

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPAR{gamma} in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPAR{gamma} in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPAR{gamma} ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPAR{gamma} ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPAR{gamma} mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPAR{gamma} is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation.

  5. [Cell senescence induced by histone deacetylase inhibitor sodium butyrate in rodent transformed cells resistant to apoptosis].

    PubMed

    Shitikova, Zh V; Aksenov, N D; Pospelov, V A; Pospelov, T V

    2011-01-01

    The capacity of HDAC inhibitor sodium butyrate to induce senescence in cells derived from rat embryonic fibroblasts transformed by E1A+E1B19 kDa oncogenes has been studied. These transformants are resistant to apoptosis in response to gamma-irradiation and growth factor deprivation. The process of cell senescence was investigated by the analysis of cell growth curves, G1/S and G2/M cell cycle arrest, and senescent associated beta-galactosidase expression. The irreversibility of sodium butyrate antiproliferative activity was analyzed by clonogenic assay. We show that sodium butyrate suppresses proliferation and induces senescence in the E1A+E1B19 kDa transformed cells. Interestingly, NaB induces growth arrest due to accumulation of cells in G2/M phase, these cells are not tetraploid but mainly binuclear. Thus, in case of NaB induced senescence in E1A+E1B19 kDa transformed fibroblasts, the observed suppression of cell proliferation may be the result of cytokinesis failure leading to formation of binuclear and multinuclear cells incapable to proliferate.

  6. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    PubMed

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  7. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

    PubMed

    Furusawa, Yukihiro; Obata, Yuuki; Fukuda, Shinji; Endo, Takaho A; Nakato, Gaku; Takahashi, Daisuke; Nakanishi, Yumiko; Uetake, Chikako; Kato, Keiko; Kato, Tamotsu; Takahashi, Masumi; Fukuda, Noriko N; Murakami, Shinnosuke; Miyauchi, Eiji; Hino, Shingo; Atarashi, Koji; Onawa, Satoshi; Fujimura, Yumiko; Lockett, Trevor; Clarke, Julie M; Topping, David L; Tomita, Masaru; Hori, Shohei; Ohara, Osamu; Morita, Tatsuya; Koseki, Haruhiko; Kikuchi, Jun; Honda, Kenya; Hase, Koji; Ohno, Hiroshi

    2013-12-19

    Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.

  8. Sodium butyrate induces retinoblastoma protein dephosphorylation, p16 expression and growth arrest of colon cancer cells.

    PubMed

    Schwartz, B; Avivi-Green, C; Polak-Charcon, S

    1998-11-01

    Sodium butyrate causes alteration of colon cancer cell morphology and biology towards that of a more differentiated phenotype. The retinoblastoma gene encodes a nuclear phosphoprotein (pRb) present in a wide range of human cancer cell lines including colon cancer cell lines. pRB is synthesized throughout the cell cycle and phosphorylated in a phase specific manner: the predominant proteins in G0/G1 are the unphosphorylated species (110 kD) whereas phosphorylated pRb (112-114 kD) are in S and G2. 110 kD pRb binds transcription factors and prevents transcription of responsive genes such as the gene for thymidine kinase, which are expressed in late G1. The precise mechanisms controlling cell arrest are unknown, but recent data suggest that cyclin-dependent kinase inhibitors such as p16 may play a role. The aim of the present study was to assess the effect of sodium butyrate on cell cycle staging, thymidine kinase activity, phosphorylation of the pRb protein and expression of p16. We show that sodium butyrate treatment induces differentiation of LS174T colon cancer cells, inhibits thymidine kinase activity concomitantly with induction of pRb dephosphorylation, p16 transcription and cell cycle arrest at G0/G1. Initial dephosphorylation was observed 24 h after treatment of LS174T cells with sodium butyrate, whereas complete shift to the dephosphorylated form was observed 3 days after treatment. Induction of pRb dephosphorylation by sodium butyrate preceded inhibition of growth and the specific cell cycle arrest. RNase protection assay with a p16 specific riboprobe showed undetectable levels in proliferating cells to several fold increase in differentiated colonocytes. In conclusion, the results provide evidence for a specific cellular mechanism of butyrate induced growth arrest and differentiation of a colon cancer cell line.

  9. Depletion of glutamine enhances sodium butyrate-induced erythroid differentiation of K562 cells.

    PubMed

    Canh Hiep, Nguyen; Kinohira, Seiko; Furuyama, Kazumichi; Taketani, Shigeru

    2012-12-01

    Human erytholeukemia K562 cells are induced to differentiate along the erythroid lineage by a variety of chemical compounds, including hemin, sodium butyrate and 1-β-d-arabinofuranosylcytosine. We have investigated the induction of erythroid differentiation of K562 cells by glutamine depletion. When K562 cells were cultured in glutamine-minus medium, the induction of hemoglobin synthesis, accompanied by those of heme-biosynthetic enzymes and erythroid transcriptional factors, was observed. This induction was dependent on the temporally marked decrease of intracellular level of glutathione, followed by the marked activation of p38MAPK and SAPK/JNK, but not ERK. Under glutamine-deficient conditions, the treatment of K562 cells with sodium butyrate resulted in the marked enhancement of the induction of heme biosynthesis. Glutamine depletion also accelerated the expressions of erythroid-related factors including α-globin and heme-biosynthetic enzymes, GATA-1 and NF-E2, in sodium butyrate-induced K562 cells. The transcriptional activity of β-globin gene promoter-reporter was markedly enhanced by these treatments, indicating that glutamine deficiency in combination with sodium butyrate treatment gives high efficiency of chemical-induced differentiation in the hematopoiesis process.

  10. Transcriptome characterization by RNA-seq unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells.

    PubMed

    Wu, Sitao; Li, Robert W; Li, Weizhong; Li, Cong-Jun

    2012-01-01

    Short-chain fatty acids (SCFAs), especially butyrate, affect cell differentiation, proliferation, and motility. Butyrate also induces cell cycle arrest and apoptosis through its inhibition of histone deacetylases (HDACs). In addition, butyrate is a potent inducer of histone hyper-acetylation in cells. Therefore, this SCFA provides an excellent in vitro model for studying the epigenomic regulation of gene expression induced by histone acetylation. In this study, we analyzed the differential in vitro expression of genes induced by butyrate in bovine epithelial cells by using deep RNA-sequencing technology (RNA-seq). The number of sequences read, ranging from 57,303,693 to 78,933,744, were generated per sample. Approximately 11,408 genes were significantly impacted by butyrate, with a false discovery rate (FDR) <0.05. The predominant cellular processes affected by butyrate included cell morphological changes, cell cycle arrest, and apoptosis. Our results provided insight into the transcriptome alterations induced by butyrate, which will undoubtedly facilitate our understanding of the molecular mechanisms underlying butyrate-induced epigenomic regulation in bovine cells.

  11. Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes.

    PubMed

    Ochoa-Zarzosa, Alejandra; Villarreal-Fernández, Edith; Cano-Camacho, Horacio; López-Meza, Joel E

    2009-07-01

    A distinctive feature of bovine milk fat is the presence of butyrate, molecule with recognized antimicrobial and antiinflammatory properties. Bovine mastitis is a pathology characterized by inflammatory and infectious processes; however, the role of sodium butyrate on Staphylococcus aureus infection in mammary epithelium has not been studied. In this work we assess the role of sodium butyrate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus responsible of mastitis and on the expression of antimicrobial peptide genes. Our data show that sodium butyrate (0.25-0.5mM) reduces approximately 50% the internalization of S. aureus (ATCC 27543) into bMEC. By RT-PCR analysis, we showed that sodium butyrate is able to up-regulate the expression of tracheal antimicrobial peptide (TAP), beta-defensin and inducible nitric oxide synthase (iNOS) mRNAs, as well as nitric oxide production. Also, sodium butyrate and infection increased acetylation of histone H3 in bMEC. These results indicate that sodium butyrate could be effective to modulate innate immune gene expression in mammary gland that leads to a better defense against bacterial infection. To our knowledge, this is the first report that shows a role of sodium butyrate during the internalization of S. aureus into bMEC. PMID:19393738

  12. Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes.

    PubMed

    Ochoa-Zarzosa, Alejandra; Villarreal-Fernández, Edith; Cano-Camacho, Horacio; López-Meza, Joel E

    2009-07-01

    A distinctive feature of bovine milk fat is the presence of butyrate, molecule with recognized antimicrobial and antiinflammatory properties. Bovine mastitis is a pathology characterized by inflammatory and infectious processes; however, the role of sodium butyrate on Staphylococcus aureus infection in mammary epithelium has not been studied. In this work we assess the role of sodium butyrate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus responsible of mastitis and on the expression of antimicrobial peptide genes. Our data show that sodium butyrate (0.25-0.5mM) reduces approximately 50% the internalization of S. aureus (ATCC 27543) into bMEC. By RT-PCR analysis, we showed that sodium butyrate is able to up-regulate the expression of tracheal antimicrobial peptide (TAP), beta-defensin and inducible nitric oxide synthase (iNOS) mRNAs, as well as nitric oxide production. Also, sodium butyrate and infection increased acetylation of histone H3 in bMEC. These results indicate that sodium butyrate could be effective to modulate innate immune gene expression in mammary gland that leads to a better defense against bacterial infection. To our knowledge, this is the first report that shows a role of sodium butyrate during the internalization of S. aureus into bMEC.

  13. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells.

    PubMed

    Wang, Ying; Hu, Peng-Chao; Ma, Yan-Bin; Fan, Rong; Gao, Fang-Fang; Zhang, Jing-Wei; Wei, Lei

    2016-01-01

    This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.

  14. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells.

    PubMed

    Kumar, Anoop; Alrefai, Waddah A; Borthakur, Alip; Dudeja, Pradeep K

    2015-10-01

    Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorption. Previous studies (Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv Immunol 121: 91-119, 2014.) showed decreased MCT1 expression and function in intestinal inflammation. We have previously shown (Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Am J Physiol Gastrointest Liver Physiol 290: G30-G35, 2006.) impaired butyrate absorption in human intestinal epithelial Caco-2 cells due to decreased MCT1 level at the apical cell surface following enteropathogenic E. coli (EPEC) infection. Current studies, therefore, examined the potential role of probiotic Lactobacilli in stimulating MCT1-mediated butyrate uptake and counteracting EPEC inhibition of MCT1 function. Of the five species of Lactobacilli, short-term (3 h) treatment with L. acidophilus (LA) significantly increased MCT1-mediated butyrate uptake in Caco-2 cells. Heat-killed LA was ineffective, whereas the conditioned culture supernatant of LA (LA-CS) was equally effective in stimulating MCT1 function, indicating that the effects are mediated by LA-secreted soluble factor(s). Furthermore, LA-CS increased apical membrane levels of MCT1 protein via decreasing its basal endocytosis, suggesting that LA-CS stimulation of butyrate uptake could be secondary to increased levels of MCT1 on the apical cell surface. LA-CS also attenuated EPEC inhibition of butyrate uptake and EPEC-mediated endocytosis of MCT1. Our studies highlight distinct role of specific LA-secreted molecules in modulating colonic butyrate absorption. PMID:26272259

  15. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    PubMed

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs) produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells.

  16. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways.

    PubMed

    Korecka, Agata; de Wouters, Tomas; Cultrone, Antonietta; Lapaque, Nicolas; Pettersson, Sven; Doré, Joël; Blottière, Hervé M; Arulampalam, Velmurugesan

    2013-06-01

    Short-chain fatty acids (SCFAs), such as butyrate and propionate, are metabolic products of carbohydrate fermentation by the microbiota and constitute the main source of energy for host colonocytes. SCFAs are also important for gastrointestinal health, immunity, and host metabolism. Intestinally produced angiopoietin-like protein 4 (ANGPTL4) is a secreted protein with metabolism-altering properties and may offer a route by which microbiota can regulate host metabolism. Peroxisome proliferator-activated receptor (PPAR)-γ has previously been shown to be involved in microbiota-induced expression of intestinal ANGPTL4, but the role of bacterial metabolites in this process has remained elusive. Here, we show that the SCFA butyrate regulates intestinal ANGPTL4 expression in a PPAR-γ-independent manner. Although PPAR-γ is not required for butyrate-driven intestinal ANGPTL4 expression, costimulating with PPAR-γ ligands and SCFAs leads to additive increases in ANGPTL4 levels. We suggest that PPAR-γ and butyrate rely on two separate regulatory sites, a PPAR-responsive element downstream the transcription start site and a butyrate-responsive element(s) within the promoter region, 0.5 kb upstream of the transcription start site. Furthermore, butyrate gavage and colonization with Clostridium tyrobutyricum, a SCFA producer, can independently induce expression of intestinal ANGPTL4 in germ-free mice. Thus, oral administration of SCFA or use of SCFA-producing bacteria may be additional routes to maintain intestinal ANGPTL4 levels for preventive nutrition or therapeutic purposes.

  17. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells.

    PubMed

    Rosignoli, P; Fabiani, R; De Bartolomeo, A; Spinozzi, F; Agea, E; Pelli, M A; Morozzi, G

    2001-10-01

    Epidemiological studies support the involvement of short-chain fatty acids (SCFA) in colon physiology and the protective role of butyrate on colon carcinogenesis. Among the possible mechanisms by which butyrate may exert its anti-carcinogenicity an antioxidant activity has been recently suggested. We investigated the effects of butyrate and mixtures of SCFA (butyrate, propionate and acetate) on DNA damage induced by H(2)O(2) in isolated human colonocytes and in two human colon tumour cell lines (HT29 and HT29 19A). Human colonocytes were isolated from endoscopically obtained samples and the DNA damage was assessed by the comet assay. H(2)O(2) induced DNA damage in normal colonocytes in a dose-dependent manner which was statistically significant at concentrations over 10 microM. At 15 microM H(2)O(2) DNA damage in HT29 and HT29 19A cells was significantly lower than that observed in normal colonocytes (P < 0.01). Pre-incubation of the cells with physiological concentrations of butyrate (6.25 and 12.5 mM) reduced H(2)O(2) (15 microM) induced damage by 33 and 51% in human colonocytes, 45 and 75% in HT29 and 30 and 80% in HT29 19A, respectively. Treatment of cells with a mixture of 25 mM acetate + 10.4 mM propionate + 6.25 mM butyrate did not induce DNA damage, while a mixture of 50 mM acetate + 20.8 mM propionate + 12.5 mM butyrate was weakly genotoxic only towards normal colonocytes. However, both mixtures were able to reduce the H(2)O(2)-induced DNA damage by about 50% in all cell types. The reported protective effect of butyrate might be important in pathogenetic mechanisms mediated by reactive oxygen species, and aids understanding of the apparent protection toward colorectal cancer exerted by dietary fibres, which enhance the butyrate bioavailability in the colonic mucosa. PMID:11577008

  18. Leptin counteracts sodium butyrate-induced apoptosis in human colon cancer HT-29 cells via NF-kappaB signaling.

    PubMed

    Rouet-Benzineb, Patricia; Aparicio, Thomas; Guilmeau, Sandra; Pouzet, Cécile; Descatoire, Véronique; Buyse, Marion; Bado, André

    2004-04-16

    This study shows that leptin induced a rapid phosphorylation of p42/44 mitogen-activated protein kinase, an enhancement of both NF-kappaB DNA binding and transcriptional activities, and a concentration-dependent increase of HT-29 cell proliferation. These effects are consistent with the presence of leptin receptors on cell membranes. The leptin induction of cell growth was associated with an increase of cell population in S and G2/M phase compared with control cells found in G0/G1 phase of the cell cycle. Moreover, cyclin D1 immunoreactivity was enhanced in leptin-treated HT-29 cells and this increase was essentially associated with cell population in G0/G1 phase. On the other hand, we observed that sodium butyrate inhibited cell proliferation by blocking HT-29 cells in G0/G1 phase of the cell cycle. Interestingly, at physiological concentration, leptin prevented sodium butyrate-induced morphological nucleus changes, DNA laddering and suppressed butyrate-induced cell cycle arrest. This anti-apoptotic effect of leptin was associated with HT-29 cell proliferation and activation NF-kappaB pathways. However, the phosphorylation of p42/44 MAP kinase in response to leptin was reduced in butyrate-treated cells. These data demonstrated that leptin is a potent mitogenic factor for intestinal epithelial cells through the MAP kinase and NF-kappaB pathways. They also showed, for the first time, that leptin promotes colon cancer HT-29 cell survival upon butyrate challenge by counteracting the apoptotic programs initiated by this short chain fatty acid probably through the NF-kappaB pathways. Although further studies are required to unravel the precise mechanism, these data may have significance in the pathogenesis of colorectal cancer and ulcerative colitis diseases.

  19. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  20. [Involvement of MAP-kinase cascades into the regulation of sodium butyrate induced premature cell senescence].

    PubMed

    Kochetkova, E Iu; Bykova, T V; Zubova, S G; Pospelova, T V

    2012-01-01

    We studied the role of p38 kinase and JNK1,2 in the activation of the complex mTORC1 and the program of senescence induced by histone deacetylase inhibitor, sodium butyrate (NaBut), in mouse embryonic fibroblasts transformed by E1A+cHa-Ras oncogenes. It was found that transformants from knockouts for the genes p38, were able to implement the program of NaBut-induced senescence, according to the data of the cell cycle arrest, inhibition of proliferation, hypertrophic changes associated with the activation of mTORC1 and SA-beta-galactosidase activity. According to the behavior of these markers, cell knockouts for the genes jnk1,2 were unable to implement NaBut-induced senescence. Induction of senescence closely correlates with the activation of the complex mTORC1, as it was shown by inhibiting mTORC1 with rapamycin. We believe that JNK 1,2 kinases are required for mTORC1 activation and acquiring the markers of premature senescence, induced by NaBut in the E1A+cHa-Ras transformants.

  1. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax.

    PubMed

    Barrasa, Juan I; Santiago-Gómez, Angélica; Olmo, Nieves; Lizarbe, María Antonia; Turnay, Javier

    2012-12-01

    A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels.

  2. Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway.

    PubMed

    Bai, Zhigang; Zhang, Zhongtao; Ye, Yingjiang; Wang, Shan

    2010-12-01

    NaB (sodium butyrate) inhibits cell proliferation and induces differentiation in a variety of tumour cells. In this study, we aimed to determine whether NaB induced differentiation and regulated the expression of the mucosal factor MUC2 through the PTEN/PI3K (phosphoinositide 3-kinase) pathway. BGC823 cells treated with NaB for 24-72 h showed marked inhibition of cell proliferation and alteration in cellular morphology. NaB treatment markedly increased the expression of PTEN and MUC2, but it decreased the expression of PI3K. These effects were enhanced by intervention with PI3K inhibitors and were reduced by intervention with PTEN siRNA. Hence, we conclude that NaB increased PTEN expression, promoted the expression of MUC2 and induced the differentiation of gastric cancer cells through the PTEN/PI3K signalling pathway.

  3. Requirement for store-operated calcium entry in sodium butyrate-induced apoptosis in human colon cancer cells.

    PubMed

    Sun, Suxia; Li, Wenjun; Zhang, He; Zha, Longying; Xue, Yong; Wu, Xianbo; Zou, Fei

    2012-02-01

    The SOCE (store-operated Ca2+ entry) pathway plays a key role in both normal cells and cancerous cells. However, its molecular mechanism remains a long-lasting puzzle of Ca2+ signalling. In this paper, we provide evidence that butyric acid, a dietary fibre-derived short-chain fatty acid, induces apoptosis of colon cancer cells via SOCE signalling networks. We found that sodium butyrate (NaB) induces Ca2+ release from endoplasmic reticulum, which in turn causes extracellular Ca2+ influx in HCT-116 cells. The Ca2+ release and influx are important, because the addition of chelators, EGTA or BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)] respectively blocked NaB-induced apoptosis. Furthermore, down-regulation of STIM1 (stromal interaction molecule 1) by RNA interference or pharmacological blockade of the SOCC (store-operated Ca2+ channel) by 2-APB (2-aminoethoxydiphenyl borate) or SKF-96365 inhibited NaB-induced extracellular Ca2+ influx and apoptosis in HCT-116 cells. Thus we conclude that NaB triggers colon cancer cell apoptosis in an SOCE-dependent manner. This finding provides new insights into how butyric acid suppresses colon carcinogenesis.

  4. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  5. Specific cell cycle synchronization with butyrate and cell cycle analysis.

    PubMed

    Li, Congjun

    2011-01-01

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in Madin Darby Bovine Kidney (MDBK) cells. We explore the possibility of using butyrate-blocked cells to obtain synchronized cells and we characterize the properties of butyrate-induced cell cycle arrest. The site of growth inhibition and cell cycle arrest was analyzed using 5-bromo-2'-deoxyuridine (BrdU) incorporation and flow cytometry analyses. Exposure of MDBK cells to 10 mM butyrate caused growth inhibition and cell cycle arrest in a reversible manner. Butyrate affected the cell cycle at a specific point both immediately after mitosis and at a very early stage of the G1 phase. After release from butyrate arrest, MDBK cells underwent synchronous cycles of DNA synthesis and transited through the S phase. It takes at least 8 h for butyrate-induced G1-synchronized cells to begin the progression into the S phase. One cycle of cell division for MDBK cells is about 20 h. By combining BrdU incorporation and DNA content analysis, not only can the overlapping of different cell populations be eliminated, but the frequency and nature of individual cells that have synthesized DNA can also be determined.

  6. Sodium butyrate induced structural changes in HeLa cell chromatin

    SciTech Connect

    Reczek, P.R.; Weissman, D.; Huvos, P.E.; Fasman, G.D.

    1982-01-01

    Postsynthetic modifications of core histones by treatment of HeLa S3 cells with 5 mM sodium butyrate lead to alterations in the structure of high molecular weight chromatin. Whole chromatin from butyrate-treated cells, which results in highly acetylated core histones, has an ellipticity (theta)/sub 282.5/ of 3700 deg cm/sup 2/ dmol/sup -1/ (0.2 mM EDTA, pH 7.4) that is 1200 deg cm/sup 2/ dmol/sup -1/ less than chromatin from untreated HeLa cells, suggesting a more condensed structure. No difference in the circular dichroism spectra was observed in Hl-stripped, high molecular weight chromatin obtained from control and butyrate-treated cells at low (0.2 mM EDTA, pH 7.4) ionic strength.Thermal denaturation profiles of high molecular weight chromatin were resolved into three transitions and exhibited a shifting of hyperchromicity from transition I to transition III, at a higher T/sub m/, with butyrate treatment of HeLa cells, further indicating a more compact structure. Thermal denaturation profiles of Hl-stripped chromatin were not affected by butyrate treatment. Ionic strength studies in the range of 0-5 mM NaH/sub 2/PO/sub 4/, 0.2 mM EDTA, pH 7.4, of high molecular weight chromatin exhibited a decrease in (theta)/sub 282.5/ and a shifting of hyperchromicity from transition I to transition III with increasing ionic strength. Control high molecular weight chromatin was more sensitive to changes in ionic strength than its highly acetylated counterpart. These results suggest that acetylation of histones alone does not result in a change in histone-DNA interaction but other changes associated with butyrate treatment most probably cause a more condensed structure, of the fraction studied herein, which is mediated by Hl or other materials removed during stripping in 0.35 M NaCl.

  7. Sodium butyrate induced structural changes in HeLa cell chromatin

    SciTech Connect

    Reczek, P.R.; Weissman, D.; Huvos, P.E.; Fasman, G.D.

    1982-03-02

    Postsynthetic modifications of core histones by treatment of HeLa S3 cells with 5 mM sodium butyrate lead to alterations in the structure of high molecular weight chromatin. Whole chromatin from butyrate-treated cells, which results in highly acetylated core histones, has an ellipticity (THETA)/sub 282.5/ of 3700 deg cm/sup 2/ dmol/sup -1/ (0.2 mM EDTA, pH 7.4) that is 1200 deg cm/sup 2/ dmol/sup -1/ less than chromatin from untreated HeLa cells, suggesting a more condensed structure. No difference in the circular dichroism spectra was observed in Hl-stripped, high molecular weight chromatin obtained from control and butyrate-treated cells at low (0.2 mM EDTA, pH 7.4) ionic strength. Thermal denaturation profiles of high molecular weight chromatin were resolved into three transitions and exhibited a shifting of hyperchromicity from transition I to transition III, at a higher T/sub m/, with butyrate treatment of HeLa cells, further indicating a more compact structure. Thermal denaturation profiles of Hl-stripped chromatin were not affected by butyrate treatment. Ionic strength studies in the range of 0-5 mM NaH/sub 2/PO/sub 4/, 0.2 mM EDTA, pH 7.4, of high molecular weight chromatin exhibited a decrease in (THETA)/sub 282.5/ and shifting of hyperchromicity from transition I to transition III with increasing ionic strength. Control high molecular weight chromatin was more sensitive to changes in ionic strength than its highly acetylated counterpart. These results suggest that acetylation of histones alone does not result in a change in histone-DNA interaction but other changes associated with butyrate treatment most probably cause a more condensed structure, of the fraction studied herein, which is mediated by Hl or other materials removed during stripping in 0.35 M NaCl.

  8. Bile acids reduce the apoptosis-inducing effects of sodium butyrate on human colon adenoma (AA/C1) cells: implications for colon carcinogenesis.

    PubMed

    McMillan, L; Butcher, S; Wallis, Y; Neoptolemos, J P; Lord, J M

    2000-06-24

    Butyrate is produced in the colon by fermentation of dietary fibre and induces apoptosis in colon adenoma and cancer cell lines, which may contribute to the protective effect of a high fibre diet against colorectal cancer (CRC). However, butyrate is present in the colon together with unconjugated bile acids, which are tumour promoters in the colon. We show here that bile acids deoxycholate (DCA) and chenodeoxycholate (CDCA), at levels present in the colon, gave a modest increase in cell proliferation and decreased spontaneous apoptosis in AA/C1 adenoma cells. Bile acids significantly inhibited the induction of apoptosis by butyrate in AA/C1 cells. However, the survival-inducing effects of bile acids on AA/C1 cells could be overcome by increasing the concentration of sodium butyrate. These results suggest that dysregulation of apoptosis in colonic epithelial cells by dietary factors is a key factor in the pathophysiology of CRC.

  9. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    SciTech Connect

    Belakavadi, Madesh . E-mail: belakama@umdnj.edu; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-10-07

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells.

  10. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    PubMed

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming. PMID:20201064

  11. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    PubMed

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.

  12. Alternative splicing regulated by butyrate in bovine epithelial cells.

    PubMed

    Wu, Sitao; Li, Congjun; Huang, Wen; Li, Weizhong; Li, Robert W

    2012-01-01

    As a signaling molecule and an inhibitor of histone deacetylases (HDACs), butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT) and control (CT) groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG) while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001) at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor) and Exon#11 (Acceptor) in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC inhibitors.

  13. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    PubMed Central

    Li, Robert W; Li, CongJun

    2006-01-01

    Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR) = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867) with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens. PMID:16972989

  14. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  15. Butyrate increases IL-23 production by stimulated dendritic cells.

    PubMed

    Berndt, Bradford E; Zhang, Min; Owyang, Stephanie Y; Cole, Tyler S; Wang, Teresa W; Luther, Jay; Veniaminova, Natalia A; Merchant, Juanita L; Chen, Chun-Chia; Huffnagle, Gary B; Kao, John Y

    2012-12-15

    The gut microbiota is essential for the maintenance of intestinal immune homeostasis and is responsible for breaking down dietary fiber into short-chain fatty acids (SCFAs). Butyrate, the most abundant bioactive SCFA in the gut, is a histone deacetylase inhibitor (HDACi), a class of drug that has potent immunomodulatory properties. This characteristic of butyrate, along with our previous discovery that conventional dendritic cells (DCs) are required for the development of experimental colitis, led us to speculate that butyrate may modulate DC function to regulate gut mucosal homeostasis. We found that butyrate, in addition to suppressing LPS-induced bone marrow-derived DC maturation and inhibiting DC IL-12 production, significantly induced IL-23 expression. The upregulation of mRNA subunit IL-23p19 at the pretranslational level was consistent with the role of HDACi on the epigenetic modification of gene expression. Furthermore, the mechanism of IL-23p19 upregulation was independent of Stat3 and ZBP89. Coculture of splenocytes with LPS-stimulated DCs pretreated with or without butyrate was performed and showed a significant induction of IL-17 and IL-10. We demonstrated further the effect of butyrate in vivo using dextran sulfate sodium (DSS)-induced colitis and found that the addition of butyrate in the drinking water of mice worsened DSS-colitis. This is in contrast to the daily intraperitoneal butyrate injection of DSS-treated mice, which mildly improved disease severity. Our study highlights a novel effect of butyrate in upregulating IL-23 production of activated DCs and demonstrates a difference in the host response to the oral vs. systemic route of butyrate administration.

  16. Transcriptional attenuation in colon carcinoma cells in response to butyrate.

    PubMed

    Daroqui, Maria C; Augenlicht, Leonard H

    2010-10-01

    The short-chain fatty acid sodium butyrate (NaB), produced in the colonic lumen, induces cell cycle arrest, differentiation, and/or apoptosis in colorectal carcinoma cells in vitro, establishing a potential role for NaB in colon cancer prevention. We have previously shown that butyrate decreases cyclin D1 and c-myc expression, each essential for intestinal tumor development, by transcriptional attenuation. Here, we determined that butyrate-induced transcriptional attenuation of the cyclin D1 and c-myc genes in SW837 human colorectal adenocarcinoma cells occurs at ∼100 nucleotides downstream of the transcription start site, with a similar positioning in Caco-2 cells. A concomitant decrease in RNA polymerase II occupancy at the 5' end of each gene was observed. Because transcriptional regulation is associated with chromatin remodeling, we investigated by chromatin immunoprecipitation whether the histone deacetylase inhibitory activity of butyrate altered chromatin structure at the attenuated loci. Although the distributions of histone H3 trimethylated on K4 and K36 along the cyclin D1 and c-myc genes were consistent with current models, butyrate induced only modest decreases in these modifications, with a similar effect on acetylated H3 and a modest increase in histone H3 trimethylated on K27. Finally, transcriptome analysis using novel microarrays showed that butyrate-induced attenuation is widespread throughout the genome, likely independent of transcriptional initiation. We identified 42 loci potentially paused by butyrate and showed that the transcription patterns are gene specific. The biological functions of these loci encompass a number of effects of butyrate on the physiology of intestinal epithelial cells.

  17. Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1.

    PubMed

    Sánchez-Tena, S; Vizán, P; Dudeja, P K; Centelles, J J; Cascante, M

    2013-12-01

    Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (-)-epicatechin (EC) and (-)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer.

  18. Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1

    PubMed Central

    Sánchez-Tena, S.; Vizán, P.; Dudeja, P.K.; Centelles, J.J.; Cascante, M.

    2016-01-01

    Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (−)-epicatechin (EC) and (−)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer. PMID:23994611

  19. In vitro and in vivo study of transcriptome alternation induced by butyrate in cattle using deep RNA-seq

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short-chain fatty acids (SCFAs,), especially butyrate, affect cell differentiation, proliferation, and motility. Furthermore, butyrate induces cell cycle arrest and apoptosis through its inhibition on histone deacetylases (HDACs). Butyrate is a potent inducer of histone hyper-acetylation in cells a...

  20. Inflammation-Induced Downregulation of Butyrate Uptake and Oxidation Is Not Caused by a Reduced Gene Expression.

    PubMed

    Boesmans, Leen; Ramakers, Meine; Arijs, Ingrid; Windey, Karen; Vanhove, Wiebe; Schuit, Frans; Rutgeerts, Paul; Verbeke, Kristin; De Preter, Vicky

    2015-02-01

    In ulcerative colitis (UC) the butyrate metabolism is impaired, leading to energy-deficiency in the colonic cells. The effect of inflammation on the butyrate metabolism was investigated. HT-29 cells were incubated with pro-inflammatory cytokines (TNF-α and/or IFN-γ) for 1 and 24 h. Cells were additionally stimulated with butyrate to investigate its anti-inflammatory potential. Butyrate uptake and oxidation were measured using (14)C-labeled butyrate. Gene expression of the butyrate metabolism enzymes, interleukin 8 (IL-8; inflammatory marker) and villin-1 (VIL-1; epithelial cell damage marker) was measured via quantitative RT-PCR. Significantly increased IL-8 expression and decreased VIL-1 expression after 24 h incubation with TNF-α and/or IFN-γ confirmed the presence of inflammation. These conditions induced a decrease of both butyrate uptake and oxidation, whereas the gene expression was not reduced. Simultaneous incubation with butyrate counteracted the reduced butyrate oxidation. In contrast, 1 h incubation with TNF-α induced a significant increased IL-8 expression and decreased butyrate uptake. Incubation with TNF-α and/or IFN-γ for 1 h did not induce cell damage nor influence butyrate oxidation. The inflammation-induced downregulation of the butyrate metabolism was not caused by a reduced gene expression, but appeared consequential to a decreased butyrate uptake. Increasing the luminal butyrate levels might have therapeutic potential in UC.

  1. Sodium butyrate regulates androgen receptor expression and cell cycle arrest in human prostate cancer cells.

    PubMed

    Kim, Jeonga; Park, Hyeyoung; Im, Ji Young; Choi, Wahn Soo; Kim, Hyung Sik

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have been shown to modify the expression of a variety of genes related to cell cycle regulation and apoptosis in several cancer cells. However, the precise mode of action of HDAC inhibitors in prostate cancer cells is not completely understood. This study examined whether an HDAC inhibitor affects cell death in human prostate cancer cells through the epigenetic regulation of androgen receptor (AR) expression. The molecular mechanism of the HDAC inhibitor, sodium butyrate, on the epigenetic alterations of cell cycle regulators was evaluated in androgen-dependent human prostate cancer LNCaP cells. The expression levels of acetylated histone H3 and H4 increased significantly after 48 h treatment with sodium butyrate. Sodium butyrate induced the expression of AR after 48 h treatment. In addition, immunofluorescence assay revealed the nuclear localization of the AR after sodium butyrate treatment. Sodium butyrate also significantly decreased the expression of the cell cycle regulatory proteins (cyclin D1/cyclin dependent kinase (CDK)4, CDK6, and cyclin E/CDK2) in the LNCaP cells after 48 h treatment. Furthermore, p21Waf1/Cip1 and p27Kip1 were upregulated as a result of the sodium butyrate treatment. These results suggest that sodium butyrate effectively inhibited cell proliferation and induced apoptosis of human prostate cancer cells by altering the expression of cell cycle regulators and AR. This study indicated that sodium butyrate may be a potential agent in prostate cancer treatment.

  2. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation

    SciTech Connect

    Birren, B.W.; Taplitz, S.J.; Herschman, H.R.

    1987-11-01

    The authors examined in the H4IIE rat heptoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequence to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation.

  3. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification.

    PubMed

    Li, Cong-Jun; Li, Robert W; Baldwin, Ransom L; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  4. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification

    PubMed Central

    Li, Cong-Jun; Li, Robert W.; Baldwin, Ransom L.; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  5. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  6. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  7. Identification of potential target genes of butyrate in dimethylhydrazine-induced colorectal cancer in mice.

    PubMed

    Chen, Hui-Min; Lin, Yan-Wei; Wang, Ji-Lin; Kong, Xuan; Hong, Jie; Fang, Jing-Yuan

    2013-01-01

    The mechanism by which butyrate prevents colorectal cancer (CRC) is unclear. The objective of this study was to identify potential target genes of butyrate in 1,2-dimethylhydrazine (DMH)-induced CRC in mice. Nontumor colorectal tissues of mice from DMH + butyrate, DMH, and control groups were hybridized on Agilent Mouse Whole Genome 44K Oligo Microarrays. Selected genes were validated by qRT-PCR. Data was further analyzed by KEGG, gene ontology (GO), and pathway studio software. The tumor incidence in the DMH + butyrate and DMH groups was 30% and 90%, respectively (P < 0.05). There were 355 genes downregulated due to DMH treatment while upregulated by butyrate, and 475 genes upregulated by DMH while downregulated by butyrate. The results revealed that most of the tumor-related signaling pathways (e.g., MAPK pathway, Wnt pathway, insulin pathway, and VEGF pathway) were downregulated by butyrate. The GO terms related to cell differentiation, cell cycle, cell proliferation, cell death, cell adhesion, and cell migration were significantly affected. The chemopreventive effects of butyrate were confirmed in the DMH-induced CRC mice model. And mechanisms encompassing multiple pathways and GO terms are involved in the regulation of gene expression.

  8. Augmentation of Sodium Butyrate-induced Apoptosis by Phosphatidylinositol 3-kinase Inhibition in the Human Cervical Cancer Cell-line

    PubMed Central

    Park, Jung Kyu; Cho, Chi Heum; Ramachandran, Sabarish; Shin, So Jin; Kwon, Sang Hoon; Kwon, Sun Young

    2006-01-01

    Purpose Sodium butyrate (NaBT) is principally a histone deacetylase (HDAC) inhibitor, and it has the potential to arrest HPV-positive carcinoma cells at the G1 to S phase transition of the cell cycle. The aim of study was to determine whether phosphatidylinositol 3-kinase (PI3K) inhibition can enhance the inhibitory effect of NaBT on a human cervical cancer cell line (HeLa). Materials and Methods Cervical cancer cells (HeLa) were treated with NaBT alone or in combination with the PI3K inhibitors wortmannin or LY294002. Cell viability analysis and FACS analysis were carried out. The expressions of the cell cycle related proteins were evaluated by Western-blot analysis. Results Inhibition of PI3K enhanced NaBT-mediated apoptosis and this decreased the HeLa cell viability. Either wortmannin or LY294002, combined with NaBT, enhanced the activation of caspase 3 and caspase 9, and this enhanced the subsequent cleavage of poly (ADP-ribose) polymerase (PARP). Cervical cancer cells were arrested in the subG1 and G2/M phase, as was detected by FACS analysis. NaBT treatment in combination with PI3K inhibitors showed the increased expression of the CDK inhibitors p21Cip1/Waf1 and p27Kip1, in a p53 dependent manner, and also the increased dephosphorylation of Rb whereas there was a reduction in the expression levels of cyclin A, cyclin D1 and cyclin B1. Conclusion The results demonstrate that inhibition of PI3K enhances NaBT-mediated cervical cancer cell apoptosis through the activation of the caspase pathway. Moreover, these findings will support future investigation using the PI3K inhibitors in combination with adjuvant treatment for treating carcinoma of the cervix. PMID:19771269

  9. Acetylcarnitine potentiates the anticarcinogenic effects of butyrate on SW480 colon cancer cells.

    PubMed

    Elimrani, Ihsan; Dionne, Serge; Saragosti, Dan; Qureshi, Ijaz; Levy, Emile; Delvin, Edgar; Seidman, Ernest G

    2015-08-01

    Butyrate is a potent anticarcinogenic compound against colon cancer cells in vitro. However, its rapid metabolism is hypothesized to limit its anticancer benefits in colonic epithelial cells. Carnitine, a potent antioxidant, is essential to fatty acid oxidation. The aims of this study were to identify a colon cancer cell line capable of transporting carnitine. We evaluated the effect of carnitine and acetylcarnitine (ALCAR) on the response of colon carcinoma cells to butyrate. We explored the mechanisms underlying the anticarcinogenic benefit. SW480 cells were incubated with butyrate ± carnitine or ALCAR. Carnitine uptake was assessed using [3H]-carnitine. Apoptosis and cell viability were assessed using an ELISA kit and flow cytometry, respectively. Modulation of proteins implicated in carnitine transport, cell death and proliferation were assessed by western blotting. SW480 cells were found to transport carnitine primarily via the OCTN2 transporter. Butyrate induced SW480 cell death occurred at concentrations of 2 mM and higher. Cells treated with the combination of butyrate (3 mM) with ALCAR exhibited increased mortality. The addition of carnitine or ALCAR also increased butyrate-induced apoptosis. Butyrate increased levels of cyclin D1, p21 and PARP p86, but decreased Bcl-XL and survivin levels. Butyrate also downregulated dephospho-β-catenin and increased acetylated histone H4 levels. Butyrate and carnitine decreased survivin levels by ≥25%. ALCAR independently induced a 20% decrease in p21. These results demonstrate that butyrate and ALCAR are potentially beneficial anticarcinogenic nutrients that inhibit colon cancer cell survival in vitro. The combination of both agents may have superior anticarcinogenic properties than butyrate alone.

  10. Targeting cyclooxygenase-2 with sodium butyrate and NSAIDs on colorectal adenoma/carcinoma cells

    PubMed Central

    Zhang, Zhi-Hong; Ouyang, Qin; Gan, Hua-Tian

    2004-01-01

    AIM: The protective effects of sodium butyrate and NSAIDs (especially the highly selective COX-2 inhibitors) have attracted considerable interest recently. In this study, primary adenoma cells and HT-29 were used to investigate whether the above drugs would be effective for reducing proliferation and inducing apoptosis. Additionally, it was investigated whether NSAIDs would strengthen the effects of sodium butyrate and its possible mechanisms. METHODS: In vitro primary cell culture of colorectal adenomas and HT-29 were used for this investigation. PGE2 isolated from HT-29 cell culture supernatants was investigated by ELISA. MTT was employed to detect the anti-proliferative effects on both adenoma and HT-29 culture cells. FCM was used for apoptosis rate and cell cycle analysis. The morphology of apoptotic cells was investigated by means of electromicroscopy. RESULTS: Sodium butyrate could stimulate the secretion of PGE2, while NSAIDs inhibited it to below 30 pg/106 cells. Both butyrate and NSAIDs could inhibit cell proliferation and induce apoptosis. The effects were time- and dose-dependent (P < 0.05). Aspirin and NS-398 could enhance the effects of sodium butyrate. The effects were stronger while sodium butyrate was used in combination with NS-398 than it was used in combination with Aspirin. CONCLUSION: Butyrate and NSAIDs could inhibit cell proliferation and induce apoptosis respectively. NSAIDs could enhance the effects of sodium butyrate by down-regulating COX-2 expression. Selective COX-2 inhibitor is better than traditional NSAIDs. PMID:15378772

  11. Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells.

    PubMed

    Chen, Tain-Hsiung; Chen, Wei-Ming; Hsu, Ke-Hsun; Kuo, Cheng-Deng; Hung, Shih-Chieh

    2007-04-20

    Histone deacetylase inhibitors such as sodium butyrate are known to regulate the differentiation of a variety of cells. Mesenchymal stem cells (MSCs) differentiate into osteoblasts and adipocytes under transcriptional control of Runx2 and PPARgamma2, respectively. How these two transcription factors are regulated by sodium butyrate in order to specify the alternate cell fates remains a pivotal question. Sodium butyrate stimulated osteogenic differentiation and increased expression of Runx2 and genes regulated by Runx2 when cells were induced to undergo osteogenic differentiation. Sodium butyrate suppressed the adipogenic differentiation and decreased the expression of PPARgamma2 and LPL when MSCs were treated under conditions that promote adipogenic differentiation. Sodium butyrate also decreased the ratio of RANKL/OPG gene expression by MSCs. Analysis of MSCs induced in the presence of sodium butyrate revealed an immediate increase in ERK phosphorylation by sodium butyrate. The MEK-specific inhibitor, PD98059 but not p38- or JNK-specific inhibitor and the transfection with dominant negative ERK expressing plasmids blocked the sodium butyrate-induced regulation of MSC differentiation and increase in the RANKL/OPG ratio. Our results suggest that sodium butyrate modulates MSC differentiation and the RANKL/OPG ratio via activating ERK, and could be applied for in vivo bone growth using MSCs.

  12. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors.

    PubMed

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-08-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy.

  13. Neutrophilic differentiation modulates the apoptotic response of HL-60 cells to sodium butyrate and sodium valproate.

    PubMed

    Vrba, J; Dolezel, P; Ulrichova, J

    2010-01-01

    Differentiation of myeloid leukemic cells may result in less sensitivity to various apoptotic stimuli. We examined whether human leukemia HL-60 cells differentiating by all-trans retinoic acid (ATRA) acquired resistance to the apoptogenic activity of two histone deacetylase (HDAC) inhibitors, butyrate and valproate. In undifferentiated cells, the cytotoxicity of both butyrate and valproate was associated with activation of the intrinsic apoptotic pathway since we observed dissipation of mitochondrial membrane potential, induction of caspase-9 and caspase-3 activities, appearance of sub-G1 DNA and loss of plasma membrane asymmetry and/or integrity. Both HDAC inhibitors were also able to induce accumulation of undifferentiated cells in the G0/G1 phase of the cell cycle. ATRA was found to enhance the apoptotic effect of both butyrate and valproate in undifferentiated cells. This aside, ATRA appeared to synergize with butyrate in the induction of the G0/G1 cell cycle arrest. In cells pretreated for 72 h with ATRA, butyrate and valproate in combination with ATRA induced lower dissipation of mitochondrial membrane potential and weaker apoptotic and/or necrotic changes in plasma membrane, whereas DNA fragmentation was not diminished compared to undifferentiated cells. Similar results were also obtained when butyrate or valproate were combined with another neutrophilic differentiation inducer, dimethyl sulfoxide. We conclude that neutrophilic differentiation modulates but does not abrogate the apoptotic response of HL-60 cells to butyrate and valproate, and nuclei are preferentially affected during apoptosis in differentiated cells.

  14. Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changes.

    PubMed

    Jeng, Jiiang-Huei; Kuo, Mark Yen-Ping; Lee, Po-Hsuen; Wang, Ying-Jan; Lee, Mon-Ying; Lee, Jang-Jaer; Lin, Bor-Ru; Tai, Tseng-Fang; Chang, Mei-Chi

    2006-06-15

    Butyrate is a metabolite produced by oral and colonic microorganism. Butyrate has been shown to reduce colon cancer, whereas its role in oral carcinogenesis is not clear. Butyrate concentration in dental plaque and saliva ranged from 0.2 to 16 mM. In this study, we found that sodium butyrate inhibited the growth of SAS tongue cancer cells by 32% and 53% at concentrations of 1 and 2mM, respectively. Low concentrations of sodium butyrate (1-8mM) induced G0/G1 cell cycle arrest of SAS cells, whereas concentrations of 4-16 mM elicited G2/M arrest and a slight increase in apoptotic cell populations. These events were concomitant with induction of intracellular reactive oxygen species (ROS) production. An elevation in p21 mRNA and protein level was noted in SAS cells by sodium butyrate. On the contrary, a decline of cyclin Bl, cdc2 and cdc25C mRNA and protein expression in SAS cells was found after exposure to sodium butyrate. In addition, no evident increase in cdc2 inhibitory phosphorylation was found in sodium butyrate-treated SAS cancer cells. Inclusion of N-acetyl-l-cysteine (NAC) (3mM), catalase (1000 U/ml) and dimethylthiourea (DMT, 5mM), and also SOD (500 U/ml) attenuated the sodium butyrate-induced ROS production in SAS cells. However, they were not able to prevent the cell cycle arrest, apoptosis and growth inhibition in SAS cells induced by 1, 2 and 16 mM of sodium butyrate. These results indicate that sodium butyrate is toxic and inhibits the tongue cancer cell growth via induction of cell cycle arrest and apoptosis. Sodium butyrate mediates these events by mechanisms additional to ROS production.

  15. p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate.

    PubMed

    Romanov, V S; Abramova, M V; Svetlikova, S B; Bykova, T V; Zubova, S G; Aksenov, N D; Fornace, A J; Pospelova, T V; Pospelov, V A

    2010-10-01

    Cell senescence is characterized by senescent morphology and permanent loss of proliferative potential. HDAC inhibitors (HDACI) induce senescence and/or apoptosis in many types of tumor cells. Here, we studied the role of cyclin-kinase inhibitor p21(waf1) (Cdkn1n gene) in cell cycle arrest, senescence markers (cell hypertrophy, SA-βGal staining and accumulation of γH2AX foci) in p21(Waf1+/+) versus p21(Waf1-/-) mouse embryonic fibroblast cells transformed with E1A and cHa-Ras oncogenes (mERas). While short treatment with the HDACI sodium butyrate (NaB) induced a reversible G(1) cell cycle arrest in both parental and p21(Waf1-/-) cells, long-term treatment led to dramatic changes in p21(Waf1+/+) cells only: cell cycle arrest became irreversible and cells become hypertrophic, SA-βGal-positive and accumulated γH2AX foci associated with mTORC1 activation. The p21(Waf1+/+) cells lost their ability to migrate into the wound and through a porous membrane. Suppression of migration was accompanied by accumulation of vinculin-staining focal adhesions and Ser3-phosphorylation of cofilin, incapable for F-actin depolymerization. In contrast, the knockout of the p21(Waf1) abolished most of the features of NaB-induced senescence, including irreversibility of cell cycle arrest, hypertrophy, additional focal adhesions and block of migration, γH2AX foci accumulation and SA-βGal staining. Rapamycin, a specific inhibitor of mTORC1 kinase, decreased cellular hypertrophy, canceled coffilin phosphorylation and partially restored cell migration in p21(Waf1+/+) cells. Taken together, our data indicate a new role of p21(Waf1) in cell senescence, which may be connected not only with execution of cell cycle arrest, but also with the development of mTOR-dependent markers of cellular senescence.

  16. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    PubMed

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis.

  17. The important role of caspase-10 in sodium butyrate-induced apoptosis.

    PubMed

    Nohara, Kazunari; Yokoyama, Yoshiko; Kano, Kazutaka

    2007-01-01

    Butyrate, a short chain fatty acid, exhibits a wide variety of biological effects including the inhibition of cell growth, change of cellular morphology and the induction of apoptosis. Sodium butyrate-induced apoptosis has been reported to associate with the up-regulation of pro-apoptotic Bax expression, and the down-regulation of anti-apoptotic Bcl-2 and Bcl-XL expressions. However, in some cases, butyrate has also been shown to cause apoptosis without change in Bcl-2, Bcl-XL and/or Bax. This study investigates the detailed mechanisms of sodium butyrate-induced apoptosis. The effect of sodium butyrate was analyzed in the induction of caspase activities, formation of caspase active forms and mRNA levels in human breast cancer cell line MRK-nu-1. Induction of activities of caspase-3, -10 and, to some extent, -8 and formation of DNA fragmentation were observed with sodium butyrate in a dose- and/or time-dependent manner. The levels of caspase-10 mRNA expression markedly increased in a time-dependent manner by the treatment of sodium butyrate, whereas caspase-8 mRNA expression was not changed. Inhibitors of caspase-8 and caspase-10 reduced caspase-3 activity and subsequent DNA fragmentation induced by sodium butyrate. These caspase inhibitors also inhibited the cleavage of pro-caspase-3 to the active forms indicated by Western blotting analysis. Pyrrolidine dithiocarbamate also inhibited the induction of caspase-10 mRNA expression and caspase-3 activation. Contrary to other reports, levels of Bcl-2, Bcl-XL and Bax mRNA expressions were not distinctly changed by even 5 mM sodium butyrate treatment. Our results suggest that sodium butyrate may trigger apoptosis via the induction of the caspase-10 expression.

  18. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    SciTech Connect

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: Black-Right-Pointing-Pointer In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. Black-Right-Pointing-Pointer The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). Black-Right-Pointing-Pointer Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. Black-Right-Pointing-Pointer Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  19. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation.

    PubMed

    Cho, Youngmi; Turner, Nancy D; Davidson, Laurie A; Chapkin, Robert S; Carroll, Raymond J; Lupton, Joanne R

    2014-03-01

    DNA methylation and histone acetylation contribute to the transcriptional regulation of genes involved in apoptosis. We have demonstrated that docosahexaenoic acid (DHA, 22:6 n-3) and butyrate enhance colonocyte apoptosis. To determine if DHA and/or butyrate elevate apoptosis through epigenetic mechanisms thereby restoring the transcription of apoptosis-related genes, we examined global methylation; gene-specific promoter methylation of 24 apoptosis-related genes; transcription levels of Cideb, Dapk1, and Tnfrsf25; and global histone acetylation in the HCT-116 colon cancer cell line. Cells were treated with combinations of (50 µM) DHA or linoleic acid (18:2 n-6), (5 mM) butyrate or an inhibitor of DNA methyltransferases, and 5-aza-2'-deoxycytidine (5-Aza-dC, 2 µM). Among highly methylated genes, the combination of DHA and butyrate significantly reduced methylation of the proapoptotic Bcl2l11, Cideb, Dapk1, Ltbr, and Tnfrsf25 genes compared to untreated control cells. DHA treatment reduced the methylation of Cideb, Dapk1, and Tnfrsf25. These data suggest that the induction of apoptosis by DHA and butyrate is mediated, in part, through changes in the methylation state of apoptosis-related genes.

  20. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    PubMed

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways.

  1. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells.

    PubMed

    Cueno, Marni E; Kamio, Noriaki; Seki, Keisuke; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2015-07-01

    Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.

  2. Butyrate supplementation to gestating sows and piglets induces muscle and adipose tissue oxidative genes and improves growth performance.

    PubMed

    Lu, H; Su, S; Ajuwon, K M

    2012-12-01

    Weaned pigs often experience growth reduction immediately after weaning due to multiple stress factors associated with weaning. We tested the effect of prenatal and postnatal butyrate supplementation on growth performance of piglets. In study 1, piglets were orally gavaged with 0.3% butyrate from day 4 after birth to weaning (day 21). Butyrate increased ADG by 13% compared to saline treated control. Expression of peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α) was higher in muscle, adipose tissue, and ileum of butyrate-supplemented animals. Also, peroxisome proliferator activated receptor alpha (PPARα) was induced (P < 0.05) in the subcutaneous adipose tissue (SCAT) and muscle (longissimus dorsi [LD]) of butyrate-supplemented piglets. In vitro, butyrate increased (P < 0.05) fatty acid oxidation in primary adipocytes and suppressed basal lipolysis by 62% compared to untreated cells. Butyrate suppressed (P < 0.05) lipogenesis ((14)C-glucose incorporation into lipids) in adipocytes. This was accompanied by an approximately 30% reduction in the mRNA expression of fatty acid synthase (P < 0.05) in butyrate-treated cells vs. controls. Piglets born to sows that were supplemented with 0.3% butyrate during the last trimester of gestation had a 15% higher (P < 0.05) body weight at 12 wk than controls. In summary, butyrate supplementation to gestating sows and piglets enhanced postweaning growth performance, which may be mediated by increased substrate oxidation in butyrate treated animals.

  3. Effects of sodium butyrate on the differentiation of pancreatic and hepatic progenitor cells from mouse embryonic stem cells.

    PubMed

    Ren, Meng; Yan, Li; Shang, Chang-Zhen; Cao, Jun; Lu, Li-Hong; Min, Jun; Cheng, Hua

    2010-01-01

    Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C-peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver-associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell-replacement therapies.

  4. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer.

    PubMed

    Hague, A; Manning, A M; Hanlon, K A; Huschtscha, L I; Hart, D; Paraskeva, C

    1993-09-30

    The purpose of this study was to determine whether cultured colonic adenoma and carcinoma cells undergo apoptosis (programmed cell death) in vitro and whether specific growth and dietary factors, thought to be involved in the control of growth and differentiation of human colonic cells, could induce cell death through apoptosis. In cell lines originating from 6 colorectal adenomas and 7 carcinomas, spontaneous apoptosis was observed. Sodium butyrate, a naturally occurring fatty acid, is present in the human large bowel in millimolar amounts as a result of bacterial fermentation of dietary fibre. Sodium butyrate, at physiological concentrations, induced apoptosis in 2 adenoma cell lines, RG/C2 and AA/Cl, and in the carcinoma cell line PC/JW/FI. In contrast, transforming growth factor beta 1, which is thought to have an important role in the control of growth in colonic epithelium, did not induce apoptosis. Neither RG/C2 nor PC/JW/FI contain wild-type p53, therefore this tumour-suppressor gene is not required to mediate signals for the induction of apoptosis in colonic tumour cells. Our studies report the induction of apoptosis in colonic tumour cells by the naturally occurring fatty acid sodium butyrate. Since sodium butyrate is produced by bacterial fermentation of dietary fibre, the observation that this fatty acid can induce apoptosis could, in part, explain why a high-fibre diet appears to be protective against colon cancer. Escape from the induction of programmed cell death may be an important event in colorectal carcinogenesis.

  5. Apoptosis of U937 human leukemic cells by sodium butyrate is associated with inhibition of telomerase activity.

    PubMed

    Choi, Yung Hyun

    2006-11-01

    Sodium butyrate as a histone deacetylase inhibitor is known to exhibit anti-cancer effects via the differentiation and apoptosis of various carcinoma cells. However, the mechanism by which sodium butyrate induces apoptosis and the involvement of telomerase activity during apoptosis is not completely understood. To investigate the underlying pathways, sodium butyrate's potential to induce apoptosis in human leukemic U937 cells and its effects on telomerase activity were investigated. Exposure of U937 cells to sodium butyrate resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as measured by hemocytometer counts, fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. The increase in apoptosis was associated with the up-regulation in pro-apoptotic Bax expression, and down-regulation of anti-apoptotic Bcl-2 and Bcl-XL. Sodium butyrate treatment also inhibited the levels of cIAP family members and induced the activation of caspase-3. Furthermore, sodium butyrate markedly inhibited the activity of telomerase and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by sodium butyrate. Taken together, it is suggested that sodium butyrate can be a promising chemopreventive agent for leukemic cells and changes in Bcl-2 family expressions, as well as telomerase activity may, play critical roles in sodium butyrate-induced apoptosis in U937 cells.

  6. Butyrate-mediated acquisition of chemoresistance by human colon cancer cells.

    PubMed

    Kang, Hyang Ri; Choi, Hyeon Gyeom; Jeon, Chae Kyung; Lim, Soo-Jeong; Kim, So Hee

    2016-08-01

    Butyrate is a short-chain fatty acid produced by the intestinal microflora and it not only induces apoptosis but also inhibits the proliferation of cancer cells. Recently, it has been reported that butyrate may cause resistance in colon cancer cells. Therefore, we investigated the effects of increased resistance to butyrate in HCT116 colon cancer cells. We established HCT116 cells resistant to butyrate (HCT116/BR) by treating HCT116 parental cells (HCT116/PT) with increasing concentrations of butyrate to a maximum of 1.6 mM for 3 months. The butyrate concentrations that inhibited cell growth by 50% (IC50) were 0.508 and 5.50 mM in HCT116/PT and HCT116/BR cells. The values after treatment with paclitaxel, 5-fluorouracil (5-FU), doxorubicin and trichostatin A (TSA) were 2.42, 2.36, 4.31 and 11.3-fold higher, respectively, in HCT116/BR cells compared with HCT116/PT cells. The protein expression of drug efflux pumps, such as P-glycoprotein (P-gp), breast cancer-resistant protein (BCRP) and the multidrug resistance associated protein 1 (MRP1), did not differ between HCT116/PT and HCT116/BR cells. The expression level of the anti-apoptotic Bcl-xL protein was increased while those of pro-apoptotic Bax and Bim proteins were reduced in HCT116/BR cells. There were no significant differences in cell motility and invasion. This study suggests that exposure of colon cancer cells to butyrate results in development of resistance to butyrate, which may play a role in the acquisition of chemoresistance in colon cancer. PMID:27277338

  7. Effect of butyrate on immune response of a chicken macrophage cell line.

    PubMed

    Zhou, Z Y; Packialakshmi, B; Makkar, S K; Dridi, S; Rath, N C

    2014-11-15

    Butyric acid is a major short chain fatty acid (SCFA), produced in the gastrointestinal tract by anaerobic bacterial fermentation, that has beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on avian macrophage, we treated a naturally transformed line of chicken macrophage cells named HTC with Na-butyrate in the absence or presence of Salmonella typhimurium lipopolysaccharide (LPS) or phorbol-12-myristate-13-acetate (PMA), a metabolic activator, evaluating its various functional parameters. The results demonstrate that, butyrate by itself had no significant effect on variables such as nitric oxide (NO) production and the expression of genes associated with various inflammatory cytokines but it inhibited NO production, and reduced the expression of cytokines such as IL-1β, IL-6, IFN-γ, and IL-10 in LPS-stimulated cells. Butyrate decreased the expression of TGF-β3 in the presence or absence of LPS, while it had no effect on IL-4, Tβ4, and MMP2 gene expression. In addition, butyrate augmented PMA induced oxidative burst indicated by DCF-DA oxidation and restored LPS induced attenuation of tartrate resistant acid phosphatase (TRAP) activity. Although butyrate had no significant effect on phagocytosis or matrix metalloproteinase (MMP) activities of resting macrophages, it significantly suppressed the effects induced by their respective stimulants such as LPS induced phagocytosis and PMA induced MMP expression. These results suggest that butyrate has immunomodulatory property in the presence of agents that incite the cells thus, has potential to control inflammation and restore immune homeostasis.

  8. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages

    PubMed Central

    Millard, A L; Mertes, P M; Ittelet, D; Villard, F; Jeannesson, P; Bernard, J

    2002-01-01

    We studied the in vitro effects of butyric acid on differentiation, maturation and function of dendritic cells (DC) and macrophages (MΦ) generated from human monocytes. A non-toxic dose of butyrate was shown to alter the phenotypic differentiation process of DC as assessed by a persistence of CD14, and a decreased CD54, CD86 and HLA class II expression. The more immature differentiation stage of treated cells was confirmed further by their increased phagocytic capability, their altered capacity to produce IL-10 and IL-12, and their weak allostimulatory abilities. Butyrate also altered DC terminal maturation, regardless of the maturation inducer, as demonstrated by a strong down-regulation of CD83, a decreased expression of CD40, CD86 and HLA class II. Similarly, butyrate altered MΦ differentiation, down-regulating the expression of the restricted membrane antigens and reducing the phagocytic capacity of treated cells. To investigate further the mechanism by which butyrate hampers the monocyte dual differentiation pathway, we studied the effects of 1,25(OH)2D3 alone or in combination with butyrate on the phenotypic features of DC. Unlike 1,25(OH)2D3, butyrate inhibited DC differentiation without redirecting it towards MΦ. Combined treatment gave rise to a new cell subset (CD14high, CD86 and HLA-DRlow) phenotypically distinct from monocytes. These results reveal an alternative mechanism of inhibition of DC and MΦ differentiation. Altogether, our data demonstrate a novel immune suppression property of butyrate that may modulate both inflammatory and immune responses and support further the interest for butyrate and its derivatives as new immunotherapeutic agents. PMID:12390312

  9. Sodium butyrate modulates pRb phosphorylation and induces cell death in human vestibular schwannomas in vitro.

    PubMed

    Mitra, Rohan; Devi, B Indira; Gope, Mohan L; Subbakrishna, D K; Gope, Rajalakshmi

    2012-01-01

    In the present study, effect of Na-Bu on the pRb phosphorylation was analysed in the primary cultures of 12 VS tumors. Primary cultures of VS tumors were established from the fresh tumor tissues removed surgically and were treated with Na-Bu. Na-Bu treatment for 48 h led to morphological changes and apoptotic cell death in VS tumor cells. Na-Bu treatment decreased level of total pRb and phosphorylated form of pRb and caused specific dephosphorylation at Ser 249/Thr 252 and Ser 567. In the untreated and Na-Bu treated cells (when present), pRb was localised in the nucleus. Moreover, in Na-Bu treated cells the nucleus appeared highly condensed as compared to untreated cells. Results of the present study indicated that Na-Bu treatment modulated pRb phosphorylation status and caused apoptotic cell death in VS tumors.

  10. Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase.

    PubMed

    Zhang, Hanying; Du, Min; Yang, Qiyuan; Zhu, Mei-Jun

    2016-01-01

    Beyond their nutritional impact to colonic epithelial cells, the intestinal microbiota metabolite butyrate has pleotropic effects to host cells and is known for its beneficial effects on intestinal homeostasis and metabolism. However, it remains unclear how it modulates mast cell function. Here, we demonstrate that butyrate profoundly inhibited proliferation of mouse mastocytoma P815 cells through inducing cell cycle arrest and apoptosis, as well as decreasing c-Kit activation. In addition, butyrate increased early- and late-stage apoptotic P815 cells. In murine bone marrow-derived mast cells (BMMC), butyrate-suppressed FcεRI-dependent tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) release without affecting β-Hexosaminidase, but that was associated with decreased mitogen-activated protein kinase extracellular signal-regulated kinase 1/2, p38 and c-Jun N-terminal kinases activation. Butyrate treatment substantially enhanced histone 3 acetylation in both P815 and BMMC and decreased FcεRI-dependent mRNA expression of tnf-α and il-6 in BMMC, mimicking the effect of Trichostatin A, a known histone deacetylase inhibitor. Chromatin immunoprecipitation revealed that butyrate enhanced acetylation of the tnf-α and il-6 promoter regions but blocked RNA polymerase II binding to the promoters of tnf-α and il-6 genes, indicating suppressed transcription initiation. These phenotypes mimicked those of Trichostatin A treatment. In conclusion, butyrate inhibits cell proliferation and increases cell apoptosis in mastocytoma P815 cells and suppresses FcεRI-dependent cytokine production in murine primary BMMC, which are likely mediated by HDAC inhibition.

  11. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    SciTech Connect

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or

  12. The induction of vimentin gene expression by sodium butyrate in human promonocytic leukemia U937 cells

    SciTech Connect

    Rius, C.; Aller, P. ); Cabanas, C. Universidad Complutense, Madrid )

    1990-05-01

    The administration of 1 mM sodium butyrate induced the phenotypic differentiation of human promonocytic leukemia U937 cells, as judged by the expression of cD11b and cD11c antigens, two differentiation-specific surface markers. At the same time, butyrate greatly induced the expression at the mRNA level of the vimentin gene. The increase in the level of this RNA started at 6 hours of treatment and reached the maximum at Hour 24. Such an increase was caused at least in part by a stimulation in the rate of gene transcription, as suggested by transcription assays in isolated nuclei. Experiments in the presence of cycloheximide suggested that vimentin induction is probably a direct response to the action of butyrate, not mediated by the prior induction of other gene products. Unlike the case the vimentin, the levels of other RNAs, namely {beta}-actin ornithine decarboxylase, and c-myc, were not enhanced, but they decreased at different times of treatment with butyrate. Finally, the authors observed that butyrate induced also the differentiation of HL60 cells, another human myeloid cell type. Nevertheless, the drug failed to stimulate the expression of vimentin in this cell line.

  13. Upregulation of activin A gene by butyrate in human colon cancer cell lines.

    PubMed

    Sonoyama, Kei; Pholnukulkit, Pimara; Toyoda, Masahiko; Rutatip, Suriya; Kasai, Takanori

    2003-06-01

    Activin A has been reported to play a role in the progression of colorectal cancer. Because dietary fiber protects against colorectal cancer, we hypothesized that butyrate, a fermentation product of dietary fiber, may affect the expression of activin A in colon cancer cells. Semiquantitative RT-PCR demonstrated that the activin A gene was upregulated by sodium butyrate in the human colon cancer cell lines HT-29 and Caco-2 in a concentration- and time-dependent manner. However, the activin A gene did not respond to sodium butyrate in the human normal colonic cell line FHC, rat normal intestinal epithelial cell (IEC) line IEC-6, and the explant of rat colon. Flow cytometry and agarose gel electrophoresis of genomic DNA revealed that cell cycle arrest and apoptosis were induced by sodium butyrate but not exogenous activin A in HT-29 cells, indicating that activin A could not act as an autocrine factor in colon cancer cells. By assuming that activin A promotes colorectal cancer spread as a paracrine factor, our findings suggest that butyrate could act as a tumor promoter in some circumstances.

  14. Butyrate suppresses proliferation and migration of RKO colon cancer cells though regulating endocan expression by MAPK signaling pathway.

    PubMed

    Zuo, Li; Lu, Man; Zhou, Qing; Wei, Wei; Wang, Yuan

    2013-12-01

    Butyrate is a short-chain fatty acid produced by colonic bacterial fermentation. In colon cancer cells butyrate is able to suppress cell growth, induce apoptosis. It also inhibits tumor growth in vivo. However, the underlying mechanism is still not fully understood. We hypothesize that butyrate regulates the growth and migration of colon cancer cells by altering endocan expression. To test this hypothesis, we performed quantitative real time RT–PCR and Western blots, and found that butyrate increased endocan expression of colon cancer cell RKO. Moreover, endocan over-expression inhibited RKO proliferation, migration and colony formation. Functionally, butyrate significantly suppressed RKO proliferation, migration, and colony formation, as well as induced apoptosis. Knocking down endogenous endocan was able to attenuate the inhibitory role of butyrate in RKO migration and proliferation. Since our results showed that butyrate inhibited MAPK/ERK2 phosphorylation. To determine whether ERK2 signaling is associated with endocan expression, we knocked down endogenous ERK2 expression. Our results showed that knocking down ERK2 expression up-regulated endocan expression. Taken together, these results suggested that butyrate suppressed RKO proliferation, colony formation, migration through up-regulating endocan expression via ERK2/MAPK signaling pathway.

  15. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells.

    PubMed

    Chiaro, Christopher; Lazarova, Darina L; Bordonaro, Michael

    2012-11-01

    Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G(1) to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  16. Alternate splicing regulated by butyrate in the bovine epithelial cell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a signaling molecule and a potent inhibitor of histone deacetylases (HADCs), butyrate exerts its impacts on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. In this study, we examined the effect of...

  17. Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG108-15 and NCB-20 cells

    SciTech Connect

    Zhu, X.Z.; Chuang, D.M.

    1987-08-31

    The authors previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha/sub 2/-adrenergic receptors. In the present study the authors investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of /sup 3/H-clonidine. A comparable increase in the number of binding sites was detected when /sup 3/H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha/sub 2/-adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids. 22 references, 2 figures, 2 tables.

  18. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells.

    PubMed

    Zimmerman, Mary A; Singh, Nagendra; Martin, Pamela M; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L; Shi, Huidong; Robertson, Keith D; Munn, David H; Liu, Kebin

    2012-06-15

    Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated colorectal cancer. Recent studies have shown that chronic IFN-γ signaling plays an essential role in inflammation-mediated colorectal cancer development in vivo, whereas genome-wide association studies have linked human UC risk loci to IFNG, the gene that encodes IFN-γ. However, the molecular mechanisms underlying the butyrate-IFN-γ-colonic inflammation axis are not well defined. Here we showed that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration. Butyrate treatment-induced apoptosis of wild-type T cells but not Fas-deficient (Fas(lpr)) or FasL-deficient (Fas(gld)) T cells, revealing a potential role of Fas-mediated apoptosis of T cells as a mechanism of butyrate function. Histone deacetylase 1 (HDAC1) was found to bind to the Fas promoter in T cells, and butyrate inhibits HDAC1 activity to induce Fas promoter hyperacetylation and Fas upregulation in T cells. Knocking down gpr109a or slc5a8, the genes that encode for receptor and transporter of butyrate, respectively, resulted in altered expression of genes related to multiple inflammatory signaling pathways, including inducible nitric oxide synthase (iNOS), in mouse colonic epithelial cells in vivo. Butyrate effectively inhibited IFN-γ-induced STAT1 activation, resulting in inhibition of iNOS upregulation in human colon epithelial and carcinoma cells in vitro. Our data thus suggest that butyrate delivers a double-hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation.

  19. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells

    PubMed Central

    Zimmerman, Mary A.; Singh, Nagendra; Martin, Pamela M.; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L.; Shi, Huidong; Robertson, Keith D.; Munn, David H.

    2012-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated colorectal cancer. Recent studies have shown that chronic IFN-γ signaling plays an essential role in inflammation-mediated colorectal cancer development in vivo, whereas genome-wide association studies have linked human UC risk loci to IFNG, the gene that encodes IFN-γ. However, the molecular mechanisms underlying the butyrate-IFN-γ-colonic inflammation axis are not well defined. Here we showed that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration. Butyrate treatment-induced apoptosis of wild-type T cells but not Fas-deficient (Faslpr) or FasL-deficient (Fasgld) T cells, revealing a potential role of Fas-mediated apoptosis of T cells as a mechanism of butyrate function. Histone deacetylase 1 (HDAC1) was found to bind to the Fas promoter in T cells, and butyrate inhibits HDAC1 activity to induce Fas promoter hyperacetylation and Fas upregulation in T cells. Knocking down gpr109a or slc5a8, the genes that encode for receptor and transporter of butyrate, respectively, resulted in altered expression of genes related to multiple inflammatory signaling pathways, including inducible nitric oxide synthase (iNOS), in mouse colonic epithelial cells in vivo. Butyrate effectively inhibited IFN-γ-induced STAT1 activation, resulting in inhibition of iNOS upregulation in human colon epithelial and carcinoma cells in vitro. Our data thus suggest that butyrate delivers a double-hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation. PMID:22517765

  20. Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1.

    PubMed

    Kida, Yutaka; Shimizu, Takashi; Kuwano, Koichi

    2006-05-01

    The antimicrobial protein cathelicidin is considered to play an important role in the defense mechanisms against bacterial infection. Recent studies show that sodium butyrate induces cathelicidin gene expression in human colonic, gastric and hepatic cells. However, little is known about the precise regulatory mechanisms underlying sodium butyrate-induced cathelicidin gene expression. In this study, we examined the regulatory mechanisms involved in sodium butyrate-induced cathelicidin gene expression using a human lung epithelial cell line, EBC-1. Our results indicate that sodium butyrate induces both cathelicidin mRNA and protein expression. Moreover, deletion or mutation of a putative activator protein-1 (AP-1) binding site in the cathelicidin gene promoter abrogated the response to sodium butyrate stimulation. Three different mitogen-activated protein (MAP) kinase inhibitors suppressed sodium butyrate-induced transactivation of the cathelicidin promoter. Electrophoretic mobility shift assays (EMSA) showed that nuclear extracts prepared from sodium butyrate-stimulated EBC-1 cells generated specific binding to probe including a putative AP-1 binding site in the cathelicidin gene promoter. Furthermore, chromatin immunoprecipitation (ChIP) assays demonstrated that sodium butyrate augmented histone acetylation of the cathelicidin promoter in EBC-1 cells. Therefore, these results indicate that AP-1 and histone acetylation of the cathelicidin promoter play a critical role in the regulation of inducible cathelicidin gene expression in EBC-1 cells stimulated with sodium butyrate.

  1. Novel protein pp3501 mediates the inhibitory effect of sodium butyrate on SH-SY5Y cell proliferation.

    PubMed

    Wang, Yajun; Ma, Chao; Zhang, Haitao; Wu, Jun

    2012-08-01

    Sodium butyrate, a new potential therapeutic drug, improves the efficacy of chemo- and immunotherapy of cancer under unknown mechanisms. A novel gene pp3501 is significantly induced in SH-SY5Y neuroblastoma cells upon sodium butyrate treatment. Therefore, this study has cloned pp3501 cDNA by RT-PCR and generated its recombinant fusion protein and anti-serum subsequently. The pp3501 protein localized mainly in the nucleus, as detected by immunocytochemistry and the expression of pp3501-EGFP fusion protein. pp3501 inhibited the proliferation of SH-SY5Y cells, arrested the cell cycle at G1 phase, and sensitized the SH-SY5Y cells to sodium butyrate treatment. These results provide a new mechanism of sodium butyrate inhibiting cancer cell proliferation as well as a new avenue for the future research on the functions of pp3501.

  2. Cancer cell sensitization and improved treatment efficacy by combined sodium butyrate and paclitaxel formulations is cancer-type specific.

    PubMed

    Rivkin, Ilia; Cohen, Keren; Bod, Tal; Argov, Mirit; Margalit, Rimona

    2014-01-30

    We queried whether cancer treatment by combinations of paclitaxel and butyrate - free or formulated in drug delivery systems - can improve therapeutic responses compared to each drug alone. Combination treatments were conducted with HT-29 and HeLa cells, as representatives of differentiation-induced and cell-death-induced cancer lines, respectively. Pre-treatment of the HT-29 cells with butyrate (at doses inducing differentiation), followed by butyrate+paclitaxel generated changes in cell cycle profile, increased the level of dead cells beyond that of each drug alone, and allowed reduction in paclitaxel doses. A similar combination treatment of HeLa cells was detrimental, indicating that whether the combination is beneficial or not is cancer-type specific. We hypothesize that while butyrate-treated HT-29 cells became sensitive to paclitaxel-induced Fas-mediated apoptosis, butyrate-adapted HeLa cells became apoptosis-resistant. We next tested the same drug combination on HT-29 cells, but each drug in a specific tumor-targeted carrier. The combination of drug carriers outperformed an equidose combination of the free drugs, showing potential to achieve high therapeutic responses (even in drug-resistant cells) at significantly lower and detergent-free paclitaxel doses, which should allow for reduction in adverse effects and risks of toxicity.

  3. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    PubMed

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs.

  4. Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells.

    PubMed

    Wang, Aihua; Si, Hongwei; Liu, Dongmin; Jiang, Honglin

    2012-01-01

    Butyrate is a major SCFA produced by microbial fermentation of dietary fiber in the gastrointestinal tract. Butyrate is widely thought to mediate the benefits of fiber and resistant starch consumption to colon health in humans. Besides serving as a substrate for energy production, butyrate has many regulatory effects in animals. Little is known about the signaling mechanisms underlying the regulatory effects of butyrate and other SCFA. In this study, we determined whether butyrate can activate cAMP-protein kinase A (PKA)- cAMP response element (CRE)-binding protein (CREB) signaling in Caco-2 cells, a model of intestinal epithelial cells. Butyrate promoted luciferase expression from a CRE-reporter construct, induced phosphorylation of CREB, increased the activity of PKA, and elevated the levels of cAMP in Caco-2 cells. These data suggest that butyrate activates cAMP-PKA-CREB signaling in Caco-2 cells. Butyrate, however, had no effect on the activities of adenylyl cyclase (AC) and phosphodiesterase (PDE), two enzymes that determine the production and degradation of intracellular cAMP, respectively. Because the activities of AC and PDE are primarily regulated by G protein-coupled receptor (GPR)-mediated intracellular signaling, lack of an effect of butyrate on these two enzymes suggests that butyrate does not activate cAMP-PKA-CREB signaling through GPR. Butyrate-treated Caco-2 cells had greater concentrations of ATP than untreated cells. Because ATP is the substrate for cAMP production, this difference suggests that butyrate may activate cAMP-PKA-CREB signaling in Caco-2 cells through increased ATP production. Overall, this study raises the possibility that some of the regulatory effects of butyrate in animals, including those on the colonocytes, may be mediated by the cAMP-PKA-CREB signaling pathway at the cellular level.

  5. Sodium butyrate enhances complement-mediated cell injury via down-regulation of decay-accelerating factor expression in colonic cancer cells.

    PubMed

    Andoh, Akira; Shimada, Mitsue; Araki, Yoshio; Fujiyama, Yoshihide; Bamba, Tadao

    2002-02-01

    Decay-accelerating factor (DAF) expressed on the surface of colonic cancer cells presents a barrier to complement-mediated clearance by contributing to the ineffectiveness of the humoral immune response. In this study, to investigate the mechanisms responsible for the anti-tumor effects of butyrate, we evaluated how butyrate modulates DAF expression in colonic cancer cells. Three colonic cancer cell lines (HT-29, Caco-2, and T84 cells) were studied. DAF protein expression was assessed by western blot, and DAF mRNA expression was evaluated by northern blot. Complement C3 deposition on the surface of colonic cancer cells was determined by enzyme-linked immunosorbent assay (ELISA). The promoter activity of the DAF gene was assessed by a reporter gene-luciferase assay. Butyrate reduced the basal and interleukin-4 (IL-4)- and tumor necrosis factor-alpha (TNF-alpha)-induced expression of DAF protein and mRNA in HT-29 cells. It increased the susceptibility to complement attack and enhanced C3 deposition on HT-29 cells. The inhibitory effect of butyrate on DAF mRNA expression was also observed in T84 and Caco-2 cells. Butyrate decreased basal DAF expression at both transcriptional and post-transcriptional levels. The inhibitory effect of butyrate on IL-4-induced DAF expression was closely associated with a blockade of IL-4-induced DAF mRNA stability. TNF-alpha-induced transcriptional activation and the increased stability of the DAF gene were also blocked by butyrate. Similar but weak effects were induced by trichostatin A, a potent histone deacetylase inhibitor, suggesting that histone acetylation might participate in butyrate activity. These observations indicate that both a down-regulation of DAF expression and the induction of susceptibility to complement attack contribute to the anti-tumor effects of butyrate in colonic cancer.

  6. The synergistic effect of 1'-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells.

    PubMed

    Kato, Rie; Matsui-Yuasa, Isao; Azuma, Hideki; Kojima-Yuasa, Akiko

    2014-04-01

    It has been suggested that the combined effect of natural products may improve the effect of treatment against the proliferation of cancer cells. In this study, we evaluated the combination of 1'-acetoxychavicol acetate (ACA), obtained from Alpinia galangal, and sodium butyrate, a major short chain fatty acid, on the growth of HepG2 human hepatocellular carcinoma cells and found that treatment had a synergistic inhibitory effect. The number of HepG2 cells was synergistically decreased via apoptosis induction when cells were treated with both ACA and sodium butyrate. In ACA- and sodium butyrate-treated cells, intracellular reactive oxygen species (ROS) levels and NADPH oxidase activities were increased significantly. The decrease in cell number after combined treatment of ACA and sodium butyrate was diminished when cells were pretreated with catalase. These results suggest that an increase in intracellular ROS levels is involved in cancer cell death. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays an essential role in controlling processes related to tumor development. In ACA- and sodium butyrate-treated cells, AMPK phosphorylation was induced significantly, and this induction improved when cells were pretreated with catalase. These results suggest that the increase in intracellular ROS is involved in the increase of AMPK phosphorylation. In normal hepatocyte cells, treatment with ACA and sodium butyrate did not decrease cell numbers or increase ROS levels. In conclusion, combined treatment with ACA and sodium butyrate synergistically induced apoptotic cell death via an increase in intracellular ROS and phosphorylation of AMPK. Our findings may provide new insight into the development of novel combination therapies against hepatocellular carcinoma.

  7. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Mathew, Omana P.; Ranganna, Kasturi; Milton, Shirlette G.

    2014-01-01

    Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKβ, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases. PMID:25390157

  8. Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer.

    PubMed

    Kuefer, R; Hofer, M D; Altug, V; Zorn, C; Genze, F; Kunzi-Rapp, K; Hautmann, R E; Gschwend, J E

    2004-01-26

    Histone deacetylase inhibitors (HDACs) are known to exhibit antiproliferative effects on various carcinoma cells. In this study, the in vivo efficiency of two HDACs, sodium butyrate and tributyrin, on prostate cancer growth inhibition were investigated. To gain an insight into the possible underlying pathways, cell culture experiments were performed focusing on the expression of p21, Rb and c-myc. For in vivo testing, prostate cancer cell lines (PC3 and TSU-Pr1) were seeded on the chorioallantois membrane (CAM) and implanted in a xenograft model using nude mice. Standard Western blot analysis was performed for protein expression of p21, Rb and c-myc in HDAC-treated vs untreated prostate cancer cells. Both sodium butyrate and tributyrin had a considerable treatment effect on microtumours on the chicken egg at already very low concentrations of 0.1 mM. Tributyrin-treated tumours showed the strongest effect with 38% apoptotic nuclei in the prostate cancer cell line PC3. In the mouse model, there was almost no difference between sodium butyrate and tributyrin. In untreated animals the tumours were almost double the size 4 weeks after implantation. Tumours of the treatment groups had a significantly lower percentage of Ki-67-positive-stained nuclei. As demonstrated by Western blot analysis, these effects seem to be independent of p53 status and a pathway via p21-Rb-c-myc is possibly involved. In this study we have demonstrated a substantial in vivo treatment effect, which can be induced by the application of sodium butyrate or the orally applicable tributyrin in human prostate cancer. The given results may provide the rationale to apply these drugs in well-controlled clinical trials in patients being at high risk of recurrence after specific therapy or in patients with locally or distant advanced prostate cancer. PMID:14735205

  9. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  10. Effects of butyrate on the expression of insulin-like growth factor binding proteins in bovine kidney epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium butyrate induces cell cycle arrest and apoptosis in bovine kidney epithelial cells primarily via down-regulating cell cycle-related gene expression and enhancing expression of pro-apoptotic genes. The insulin-like growth factor (IGF) system plays an essential role in these processes as well a...

  11. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount. PMID:26994613

  12. Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus.

    PubMed

    Yoo, Dae Young; Kim, Woosuk; Nam, Sung Min; Kim, Dae Won; Chung, Jin Young; Choi, Soo Young; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo

    2011-10-01

    We previously observed that pyridoxine (vitamin B(6)) significantly increased cell proliferation and neuroblast differentiation without any neuronal damage in the hippocampus. In this study, we investigated the effects of sodium butyrate, a histone deacetylase (HDAC) inhibitor which serves as an epigenetic regulator of gene expression, on pyridoxine-induced neural proliferation and neurogenesis induced by the increase of neural proliferation in the mouse dentate gyrus. Sodium butyrate (300 mg/kg, subcutaneously), pyridoxine (350 mg/kg, intraperitoneally), or combination with sodium butyrate were administered to 8-week-old mice twice a day and once a day, respectively, for 14 days. The administration of sodium butyrate significantly increased acetyl-histone H3 levels in the dentate gyrus. Sodium butyrate alone did not show the significant increase of cell proliferation in the dentate gyrus. But, pyridoxine alone significantly increased cell proliferation. Sodium butyrate in combination with pyridoxine robustly enhanced cell proliferation and neurogenesis induced by the increase of neural proliferation in the dentate gyrus, showing that sodium butyrate treatment distinctively enhanced development of neuroblast dendrites. These results indicate that an inhibition of HDAC synergistically promotes neurogenesis induced by a pyridoxine and increase of neural proliferation.

  13. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid

    SciTech Connect

    Kawasaki, S.; Diamond, L.; Baserga, R.

    1981-11-01

    Sodium butyrate (3mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G/sub 1/ and S-phase 3T3 cells. Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in G/sub 1/ nuclei when G/sub 1/ cells are fused with S-phase cells. However, when G/sub 1/ 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G/sub 1/ phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. The author's interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G/sub o/ ..-->.. G/sub 1/ ..-->.. S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.

  14. Identification of potential pathways involved in induction of apoptosis by butyrate and 4-benzoylbutyrate in HT29 colorectal cancer cells.

    PubMed

    Fung, Kim Y C; Ooi, Cheng Cheng; Lewanowitsch, Tanya; Tan, Sandra; Tan, Hwee Tong; Lim, Teck Kwang; Lin, Qingsong; Williams, Desmond B; Lockett, Trevor J; Cosgrove, Leah J; Chung, Maxey C M; Head, Richard J

    2012-12-01

    Butyrate and its analogues have long been investigated as potential chemotherapeutic agents. Our previous structure-activity relationship studies of butyrate analogues revealed that 4-benzoylbutyrate had comparable in vitro effects to butyrate when used to treat HT29 and HCT116 colorectal cancer cell lines. The aim of this study was to identify potential mechanisms associated with the antitumorigenic effects of 4-benzoylbutyrate. In this study, butyrate, 3-hydroxybutyrate and 4-benzoylbutyrate were also investigated for their effects on histone deacetylase (HDAC) activity and histone H4 acetylation in HT29 and HCT116 cells. The biological effects of these analogues on HT29 cells were further investigated using quantitative proteomics to determine the proteins potentially involved in their apoptotic and antiproliferative effects. Because 3-hydroxybutyrate had minimal to no effect on apoptosis, proliferation or HDAC activity, this analogue was used to identify differentially expressed proteins that were potentially specific to the apoptotic effects of butyrate and/or 4-benzoylbutyrate. Butyrate treatment inhibited HDAC activity and induced H4 acetylation. 4-Benzoylbutyrate inhibited HDAC activity but failed to enhance H4 acetylation. Proteomic analysis revealed 20 proteins whose levels were similarly altered by both butyrate and 4-benzoylbutyrate. Proteins that showed common patterns of differential regulation in the presence of either butyrate or 4-benzoylbutyrate included c-Myc transcriptional targets, proteins involved in ER homeostasis, signal transduction pathways and cell energy metabolism. Although an additional 23 proteins were altered by 4-benzoylbutyrate uniquely, further work is required to understand the mechanisms involved in its apoptotic effects.

  15. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells

    PubMed Central

    2015-01-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity. PMID:26770185

  16. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells.

    PubMed

    Jung, YunJae

    2015-12-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity.

  17. Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility.

    PubMed

    Jiang, Zhou; Sharfstein, Susan T

    2008-05-01

    Sodium butyrate treatment can increase the specific productivity of recombinant proteins in mammalian cells; however, it dramatically decreases cell growth and frequently leads to apoptosis. We have studied the responses of several Chinese hamster ovary (CHO) cells lines with different specific productivities (qP) to sodium butyrate treatment. Cell clones with lower productivities exhibited greater enhancement from butyrate treatment than cells with higher productivities. As we observed previously in cell clone characterization (Jiang et al., 2006. Biotechnol Prog 22: 313-318), heavy chain (HC) mRNA levels correlate very well with specific productivity and are amplified by butyrate treatment, indicating that sodium butyrate regulates the HC transcription. Sodium butyrate is an inhibitor of histone deacetylation, and possibly, increases gene transcription by enhancing gene accessibility to transcription factors. In this study, we applied DNase I footprinting to probe the HC and LC gene accessibility. We determined that more HC and LC gene copies are accessible by DNase I in sodium butyrate-treated CHO cells than in untreated controls, demonstrating that sodium butyrate regulates gene transcription by improving gene accessibility. However, the increase in accessibility did not correlate with the increase in transcript abundance, suggesting that butyrate enhances transcription by other mechanisms as well.

  18. Cholesterol level determines viability and mitogenicity, but it does not affect sodium butyrate-dependent sensitization of Colo 205 cells to TNF-α-induced apoptosis.

    PubMed

    Orzechowska, S; Pajak, B; Gajkowska, B; Orzechowski, A

    2011-02-01

    Transient treatment of human adenocarcinoma COLO 205 cells with lipit raft (LR) modulators (MßCD, NY, IMP) was followed by the challenge with metabolic inhibitors and selected anti-cancer drugs. To overturn cholesterol chelation, the MßCD, NY treatment was followed by cholesterol conjugates (CHOL-MßCD or CHOL-PEG). The TNF-α- and P(Ser473)-PKB/Akt1/2-mediated effects initiated at LR were evaluated with regard to cell viability and mitogenicity. Cholesterol chelators reversibly reduced cell survival, whereas some of the tested compounds had weak effects (CIS, CLA), stimulated (EGCG) or reduced (NaB) cell survival. Cellular localizations of LR-associated molecules (ceramides, Gαi-2 heterotrimeric protein, and TNF-R1) in different cellular compartments including the plasma membrane were observed in the respective photographs from TEM and SEM. Evidence from SEM also showed that TNF-R1 is clustered on the surface of COLO 205 cells without presence of cognate ligand but clustering is promoted by TNF-α, while it vanished after IMP treatment. COLO 205 cells remained immune to TNF-α-induced apoptosis unless NaB was added, in which case NaB-induced cell death was further potentiated by TNF-α. Combined NaB and TNF-α treatment was associated with marked changes in the expression of pro- and antiapoptotic proteins. In this study, we demonstrated that initial excess of prosurvival signals could be diminished by cholesterol chelators, whereas LR-independent cell survival could be targeted by NaB. Apparently, lipid rafts do not participate in NaB-dependent cell death.

  19. Supplemental sodium butyrate stimulates different gastric cells in weaned pigs.

    PubMed

    Mazzoni, Maurizio; Le Gall, Maud; De Filippi, Sara; Minieri, Laura; Trevisi, Paolo; Wolinski, Jaroslaw; Lalatta-Costerbosa, Giovanna; Lallès, Jean-Paul; Guilloteau, Paul; Bosi, Paolo

    2008-08-01

    Sodium butyrate (SB) is used as an acidifier in animal feed. We hypothesized that supplemental SB impacts gastric morphology and function, depending on the period of SB provision. The effect of SB on the oxyntic and pyloric mucosa was studied in 4 groups of 8 pigs, each supplemented with SB either during the suckling period (d 4-28 of age), after weaning (d 29 to 39-40 of age) or both, or never. We assessed the number of parietal cells immunostained for H+/K+-ATPase, gastric endocrine cells immunostained for chromogranin A and somatostatin (SST) in the oxyntic mucosa, and gastrin-secreting cells in the pyloric mucosa. Gastric muscularis and mucosa thickness were measured. Expressions of the H+/K+-ATPase and SST type 2 receptor (SSTR2) genes in the oxyntic mucosa and of the gastrin gene in the pyloric mucosa were evaluated by real-time RT-PCR. SB increased the number of parietal cells per gland regardless of the period of administration (P < 0.05). SB addition after, but not before, weaning increased the number of enteroendocrine and SST-positive cells (P < 0.01) and tended to increase gastrin mRNA (P = 0.09). There was an interaction between the 2 periods of SB treatment for the expression of H/K-ATPase and SSTR2 genes (P < 0.05). Butyrate intake after weaning increased gastric mucosa thickness (P < 0.05) but not muscularis. SB used orally at a low dose affected gastric morphology and function, presumably in relationship with its action on mucosal maturation and differentiation.

  20. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells

    PubMed Central

    Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C

    2012-01-01

    BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973

  1. TGF-alpha and TGF-beta expression during sodium-N-butyrate-induced differentiation of human keratinocytes: evidence for subpopulation-specific up-regulation of TGF-beta mRNA in suprabasal cells.

    PubMed

    Staiano-Coico, L; Khandke, L; Krane, J F; Sharif, S; Gottlieb, A B; Krueger, J G; Heim, L; Rigas, B; Higgins, P J

    1990-12-01

    Sodium-N-butyrate (NaB) induces terminal differentiation and cornified envelope formation in cultured human keratinocytes. In the present study we explored the question of whether NaB-induced maturation could be mediated through changes in TGF-alpha and TGF-beta expression in normal keratinocytes. NaB induced a four-fold increase in TGF-beta mRNA transcript levels. This increase in TGF-beta mRNA abundance occurred only within the nonbasal keratinocyte subpopulation which maximally responds to NaB treatment by progression to cornified envelopes. Basal keratinocytes, which are relatively refractive to cornified envelope formation, did not show any increase in TGF-beta mRNA abundance after NaB treatment. By comparison, TGF-alpha mRNA transcript and extracellular TGF-alpha protein levels were unaffected by NaB treatment. A 50% decrease in EGF receptor binding was observed in NaB-treated keratinocyte cultures, rendering the cells less responsive to proliferation induction.

  2. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    SciTech Connect

    Jacobsson, K.G.; Riesenfeld, J.; Lindahl, U.

    1985-10-05

    Murine mastocytoma cells were incubated in vitro with inorganic (TVS)sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with (TH) glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-(TH)glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell.

  3. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate.

    PubMed

    Schmidt, Angelika; Eriksson, Matilda; Shang, Ming-Mei; Weyd, Heiko; Tegnér, Jesper

    2016-01-01

    Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-β in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases. PMID:26886923

  4. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate

    PubMed Central

    Schmidt, Angelika; Eriksson, Matilda; Shang, Ming-Mei; Weyd, Heiko; Tegnér, Jesper

    2016-01-01

    Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-β in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases. PMID:26886923

  5. Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells.

    PubMed

    Pajak, B; Orzechowski, A; Gajkowska, B

    2007-01-01

    This review outlines the molecular events that accompany the antitumor action of sodium butyrate (NaBt). Butyrate, a low-molecular weight four-carbon chain volatile fatty acid (VFA) has been previously shown to withdraw cells from cell cycle or to promote cell differentiation, and finally to induce programmed cell death. Recent advances in molecular biology indicate, that this product of large bowel microbial fermentation of dietary fiber, might evoke the above-mentioned effects by indirect action on genes. NaBt was shown to inhibit histone deacetylase activity, allowing DNA binding of several transcription factors. Higher genomic activity leads to the higher expression of proapoptotic genes, higher level of their protein products and elevated sensitivity to death ligand-induced apoptosis. Cancer cells might be arrested in G1 phase of cell cycle in a p21-dependent manner. Proapoptotic activity of NaBt includes higher expression of membrane death receptors (DR4/5), higher level and activation of Smad3 protein in TGF-beta-dependent apoptotic pathway, lower level of antiapoptotic proteins (cFLIP, XIAP) and activation ofproapoptotic tBid protein. Thus, both intrinsic and extrinsic apoptotic pathways are stimulated to ampify the apoptotic signals. These effects are specific for tumor but not for regular cells. Unique properties of NaBt make this agent a promising metabolic inhibitor to retard tumorigenesis to suppress tumor growth.

  6. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs.

    PubMed

    Hofmanová, Jirina; Vaculová, Alena; Koubková, Zuzana; Hýzd'alová, Martina; Kozubík, Alois

    2009-05-01

    We verified the hypothesis suggesting modulation of the effects of sodium butyrate (NaBt) by omega-3 or omega-6 PUFAs. Comparing the response of human colon epithelial cell lines of fetal (FHC) and adenocarcinoma (HT-29, HCT-116) origin, we detected significant differences in proliferation, differentiation and apoptotic response to the treatment of NaBt, arachidonic or docosahexaenoic acids and their combination. While in FHC and HT-29 cells NaBt induced G0/G1 arrest, differentiation and low level of apoptosis, in HCT-116 cells G2/M arrest, no differentiation and high degree of apoptosis were detected. Moreover, in FHC cells significant potentiation of apoptosis accompanied by increased arrest in the cell cycle, cell detachment and decrease in differentiation were detected after combined treatment with NaBt and both PUFAs. Changes in cytokinetics induced by fatty acids were accompanied by membrane lipid unpacking, reactive oxygen species (ROS) production, and decrease in mitochondrial membrane potential (MMP). Detection of caspase-3 activation and dynamic modulation of Mcl-1 protein expression imply their possible role in both cell differentiation and apoptotic response. Our results support the concept of modulation of NaBt effects by PUFAs, especially of omega-3 type, in colonic cells in vitro with diverse impact in cell lines derived from normal or neoplastic epithelium.

  7. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  8. Presence of insulin receptors in cultured glial C6 cells. Regulation by butyrate.

    PubMed Central

    Montiel, F; Ortiz-Caro, J; Villa, A; Pascual, A; Aranda, A

    1989-01-01

    The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells. PMID:2930502

  9. Induction of B-lymphocyte antigens on the chronic myeloid leukemic cell line K562 using sodium butyrate.

    PubMed

    Fraser, J K; Berridge, M V

    1987-05-01

    Chronic myeloid leukemia (CML) is a disorder arising from a defect in the hemopoietic stem cell. Consequently, the malignant clone can involve all cells within the stem cell's capacity for differentiation, including erythrocytes, granulocytes, monocytes, megakaryocytes, and lymphocytes. Similarly, the K562 cell line, which was derived from a patient with CML, has been shown to be capable of differentiation towards erythrocytes, granulocytes, monocytes, and megakaryocytes, and in this respect may represent a model of the hemopoietic stem cell. However, although K562 shows properties of a myeloid stem cell, no lymphocyte-specific features or differentiation have yet been described. In the present study, K562 cells have been induced to differentiate by culture in the presence of sodium butyrate. The direction and extent of induced differentiation over 12 days were determined with a panel of monoclonal antibodies and with cytochemical stains. This treatment consistently induced expression of pre-B-cell markers, including B-lymphocyte-specific B4 and B1, and of the common acute lymphoblastic leukemia antigen (CALLA), recognized by J5. In addition to the increased expression of B-lymphocyte markers, butyrate induction of K562 resulted in a decrease in granulocyte markers, increases in certain monocyte and platelet markers, and an increase in beta 2 microglobulin expression. Butyrate-induced expression of B-lymphocyte markers was not observed with the myelomonocytic cell line U937. The expression of B-lymphocyte-specific antigens on butyrate-induced K562 may result from the relaxed control of gene expression, but alternatively these observations may indicate the lymphoid-myeloid stem cell nature of K562.

  10. Kinetic analysis of butyrate transport in human colon adenocarcinoma cells reveals two different carrier-mediated mechanisms.

    PubMed

    Lecona, Emilio; Olmo, Nieves; Turnay, Javier; Santiago-Gómez, Angélica; López de Silanes, Isabel; Gorospe, Myriam; Lizarbe, M Antonia

    2008-01-01

    Butyrate has antitumorigenic effects on colon cancer cells, inhibits cell growth and promotes differentiation and apoptosis. These effects depend on its intracellular concentration, which is regulated by its transport. We have analysed butyrate uptake kinetics in human colon adenocarcinoma cells sensitive to the apoptotic effects of butyrate (BCS-TC2, Caco-2 and HT-29), in butyrate-resistant cells (BCS-TC2.BR2) and in normal colonic cells (FHC). The properties of transport were analysed with structural analogues, specific inhibitors and different bicarbonate and sodium concentrations. Two carrier-mediated mechanisms were detected: a low-affinity/high-capacity (K(m)=109+/-16 mM in BCS-TC2 cells) anion exchanger and a high-affinity/low-capacity (K(m)=17.9+/-4.0 microM in BCS-TC2 cells) proton-monocarboxylate co-transporter that was energy-dependent and activated via PKCdelta (protein kinase Cdelta). All adenocarcinoma cells analysed express MCT (monocarboxylate transporter) 1, MCT4, ancillary protein CD147 and AE2 (anion exchanger 2). Silencing experiments show that MCT1, whose expression increases with butyrate treatment in butyrate-sensitive cells, plays a key role in high-affinity transport. Low-affinity uptake was mediated by a butyrate/bicarbonate antiporter along with a possible contribution of AE2 and MCT4. Butyrate treatment increased uptake in a time- and dose-dependent manner in butyrate-sensitive but not in butyrate-resistant cells. The two butyrate-uptake activities in human colon adenocarcinoma cells enable butyrate transport at different physiological conditions to maintain cell functionality. The high-affinity/low-capacity transport functions under low butyrate concentrations and may be relevant for the survival of carcinoma cells in tumour regions with low glucose and butyrate availability as well as for the normal physiology of colonocytes.

  11. Butyrate plays differential roles in cellular signaling in cancerous HCT116 and noncancerous NCM460 colon cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects in colon. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate plays differential roles in cancerous and non-cancerous cells through si...

  12. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    SciTech Connect

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J. . E-mail: gerhard.zlabinger@meduniwien.ac.at

    2006-10-20

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-{alpha} transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling.

  13. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc.

  14. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.

    PubMed

    Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa

    2014-10-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways.

  15. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    PubMed Central

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  16. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    PubMed

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis.

  17. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  18. Histone deacetylase inhibitor, sodium butyrate, attenuates gentamicin-induced nephrotoxicity by increasing prohibitin protein expression in rats.

    PubMed

    Sun, Xuefeng; Zhang, Baimin; Hong, Xin; Zhang, Xiuhe; Kong, Xiangbo

    2013-05-01

    The major purpose in our study was to investigate the effects of sodium butyrate (NaBu) on nephrotoxicity induced by gentamicin in rats and determine further whether the protective effect is mediated by modulation of prohibitin protein expression. Gentamicin was injected intraperitoneally (100 mg/kg body weight) once daily for 8 days to induce nephrotoxicity. The effect of acute and chronic treatment of sodium butyrate on nephrotoxicity induced by gentamicin was assessed. Various doses of sodium butyrate (50, 100, 200 mg/kg, i.p.) was administered 30 min prior to the daily gentamicin injection. Histological analysis was used to evaluate the lesions in kidney after gentamicin administration. Expression of prohibitin was evaluated with immunohistochemical and western blot analysis. The present study demonstrated that gentamicin treatment for 8 consecutive days significantly increased in the levels of blood urea nitrogen, creatinine, kidney injury molecule (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) which indicated nephrotoxicity induced by gentamicin. In addition, chronic treatment with NaBu significantly attenuated gentamicin-induced nephrotoxicity by increasing activities of superoxide dismutase, catalase and reduced glutathione. Immunohistochemical studies in gentamicin-induced rats also demonstrated an increase in the levels of inducible prohibitin after treatment with sodium butyrate. Our results indicated that sodium butyrate, a histone deacetylase inhibitor, decreased gentamicin-induced nephrotoxicity by enhancing renal antioxidant enzymes activity and the expression of prohibitin protein.

  19. Sodium butyrate promotes the differentiation of rat bone marrow mesenchymal stem cells to smooth muscle cells through histone acetylation.

    PubMed

    Liu, Jingxia; Wang, Yanzhou; Wu, Yuzhang; Ni, Bing; Liang, Zhiqing

    2014-01-01

    Establishing an effective method to improve stem cell differentiation is crucial in stem cell transplantation. Here we aimed to explore whether and how sodium butyrate (NaB) induces rat bone marrow mesenchymal stem cells (MSCs) to differentiate into bladder smooth muscle cells (SMCs). We found that NaB significantly suppressed MSC proliferation and promoted MSCs differentiation into SMCs, as evidenced by the enhanced expression of SMC specific genes in the MSCs. Co-culturing the MSCs with SMCs in a transwell system promoted the differentiation of MSCs into SMCs. NaB again promoted MSC differentiation in this system. Furthermore, NaB enhanced the acetylation of SMC gene-associated H3K9 and H4, and decreased the expression of HDAC2 and down-regulated the recruitment of HDAC2 to the promoter regions of SMC specific genes. Finally, we found that NaB significantly promoted MSC depolarization and increased the intracellular calcium level of MSCs upon carbachol stimulation. These results demonstrated that NaB effectively promotes MSC differentiation into SMCs, possibly by the marked inhibition of HDAC2 expression and disassociation of HDAC2 recruitment to SMC specific genes in MSCs, which further induces high levels of H3K9ace and H4ace and the enhanced expression of target genes, and this strategy could potentially be applied in clinical tissue engineering and cell transplantation. PMID:25548915

  20. Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity.

    PubMed

    Li, Hua-Ping; Chen, Xuan; Li, Ming-Qing

    2013-01-01

    The relative or absolute deficiency of pancreatic β-cell mass function underlies the pathogenesis of diabetes. It is necessary to alleviate the metabolic stress and reduce the demand for insulin to decrease the effects of mutations affecting β-cell expansion. Butyrate is a natural nutrient existed in food and can also be produced physiologically through the intestinal fermentation of fiber. Pregnancy and obesity model would be helpful for understanding how β-cell adapt to insulin resistance and how butyrate alleviate the metabolic impairment and protect pancreatic β cell function in pregnant mice with obesity. C57BL/6J female mice were divided into three groups and fed with high fat food (HF group, 40% energy from fat), high fat with sodium butyrate food (HSF group, 95% HF with 5% butyrate), or control food (CF group, 14% energy from fat), respectively. The feeding would last for 14 weeks before mating and throughout the gestation period. A subset of dams were sacrificed at gestational day (GD) 14.5 to evaluate the changes of metabolism and β-cell function, mass, proliferation and apoptosis, inflammatory reaction of islet from different diet. Pancreases were double immuno-labeled to assess the islet morphology, insulin expression, expression of proliferation gene PCNA and anti-apoptosis gene bcl-2. Moreover, we detected the expression of NF-κB, phosphorylated NF-κB (pNF-κB) to evaluate the islet inflammatory response with immunohistochemistry. Mice fed with HSF showed obviously changes including the decreased values of weight gain, glucose, insulin, triglyceride and total cholesterol level of blood compared with high fat diet group, and the reduced circulating maternal pro-inflammation factors at GD14.5. Mice fed with HF displayed β-cell hyperplasia with a greater β-cell size and β-cell area in pancreas. Furthermore, the higher ratio of apoptosis and inflammatory response were found in HF group compared with HSF and CF group, while the proliferation

  1. Extent of histone modifications and H1/sup 0/ content during cell cycle progression in the presence of butyrate

    SciTech Connect

    D'Anna, J.A.; Gurley, L.R.; Tobey, R.A.

    1983-01-01

    The effects of butyrate upon the extents of phosphorylation of histones H1 and H1/sup 0/ during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain >98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1/sup 0/, H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1/sup 0/ phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1/sup 0/ in chromatin during the S or G2 phases of the cell cycle. 38 references, 4 figures, 1 table.

  2. LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli.

    PubMed

    Takao, Miyuki; Yen, Hilo; Tobe, Toru

    2014-09-01

    Enterohaemorrhagic Escherichia coli (EHEC) causes bloody diarrhoea and other severe symptoms such as haemorrhagic uraemic syndrome. The expression of virulence genes on the locus for enterocyte effacement (LEE) and associated genes is regulated by a variety of factors, including transcriptional regulators and environmental signals. Butyrate, one of the major short-chain fatty acids present in the intestine, enhances expression of LEE genes and flagella biosynthesis genes in EHEC O157:H7, resulting in increased bacterial adherence and motility. Here, we show that expression of the leuO gene, which encodes a LysR-type transcriptional regulator, is enhanced by butyrate via Lrp, which is also necessary for butyrate-induced responses of LEE genes. LeuO expression induces prolonged activation of the promoter of LEE1 operon, including the ler gene, as well as virulence mechanisms such as microcolony formation. Activation of the LEE1 promoter by LeuO depends on another regulator, called Pch. The response of the leuO promoter to butyrate requires two virulence regulators, Pch and Ler, in addition to Lrp. Pch, Ler and Lrp bind the upstream region of the leuO promoter. Thus, leuO is involved in butyrate-enhanced expression of LEE genes through a positive feedback mechanism, but its expression and action on the LEE1 promoter are dependent on the virulence regulators Pch and Ler.

  3. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    PubMed

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-06-06

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates.

  4. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium

    PubMed Central

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn’t induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  5. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.

    PubMed

    Lin, Hua V; Frassetto, Andrea; Kowalik, Edward J; Nawrocki, Andrea R; Lu, Mofei M; Kosinski, Jennifer R; Hubert, James A; Szeto, Daphne; Yao, Xiaorui; Forrest, Gail; Marsh, Donald J

    2012-01-01

    Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional mediators are required for these beneficial effects.

  6. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  7. Secretion of phospholipid transfer protein by human hepatoma cell line, Hep G2, is enhanced by sodium butyrate.

    PubMed

    Guo, Z; Yuan, C; Wei-Lavery, T; Fang, Y; Garvin, R A; Nishida, H I; Nishida, T

    1999-11-01

    Hep G2 cells were used to study the synthesis and secretion of phospholipid transfer protein (PLTP). Upon incubation of the cells at confluence with serum-free Dulbecco's modified Eagle's medium (DMEM), phosphatidylcholine (PC) transfer activity was found to accumulate in the culture media. The PC transfer activity in the media was effectively inhibited by rabbit anti-human PLTP immunoglobulin (Ig)G, thus indicating that the PC transfer activity was due to secreted PLTP. The molecular weight of Hep G2 PLTP was approximately 78 kDa by Western blot analysis, in agreement with the molecular weight obtained for purified human plasma PLTP. The PLTP secreted by Hep G2 also possessed an HDL conversion activity similar to that of human plasma PLTP. The addition of butyrate to the cell culture media resulted in a marked increase in the secretion of PLTP. After 24 h incubation with 4 mmol/L sodium butyrate, a more than twofold increase (P < 0.01) of PC transfer activity in the cell-conditioned media was obtained. The dose-dependent increase in the PC transfer activity in the media upon butyrate treatment was well correlated (r = 0.80, P < 0.01) with that of PLTP mass as determined by immuno-slot blot analysis of cell-conditioned media. The increased secretion of PLTP by Hep G2 treated with sodium butyrate was accompanied by a greater increase in the level of PLTP mRNA in the cells as determined by ribonuclease protection assay. In the presence of 4 mmol/L sodium butyrate, a fourfold increase (P < 0. 01) in mRNA level was obtained at 24 h. No stabilizing effect of butyrate on PLTP mRNA was apparent upon treatment of the cultured cells with the RNA synthesis inhibitor, actinomycin D. Thus, the up-regulatory effect of butyrate on PLTP gene expression seemed to have occurred at the transcriptional level.

  8. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms.

    PubMed

    Liu, Jiaming; Wang, Fangyan; Luo, Haihua; Liu, Aihua; Li, Kangxin; Li, Cui; Jiang, Yong

    2016-01-01

    Gastric ulcers (GUs) are a common type of peptic ulcer. Alcohol overdose is one of the main causes of GU, which is difficult to prevent. Although the protective effect of butyrate on inflammation-related diseases is well understood, its effect on GUs has not been reported. We investigated the protective effects of butyrate against ethanol-induced lesions to the gastric mucosa in mice and the underlying mechanisms. BALB/c mice were orally pretreated with butyrate for 30min prior to the establishment of the GU model by challenge with absolute ethanol. Ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas butyrate pretreatment reduced the gastric mucosal injuries in a dose-dependent manner. Butyrate pretreatment also significantly ameliorated contents of malondialdehyde (MDA) and carbonyl proteins, and decreased levels of IL-1β, TNF-α and IL-6. The Western blot results consistently demonstrated that butyrate pretreatment attenuated the phosphorylation of NF-κB p65, p38 MAPK and ERKs in the gastric tissues. Additionally, gastric wall mucus (GWM), a parameter reflecting mucosal defense, was clearly increased by butyrate pretreatment. Butyrate pretreatment protects the gastric mucosa against ethanol-induced lesions by strengthening the mucosal defense and anti-oxidant and anti-inflammatory activities. As a necessary substance for the body, butyrate may be applied to the prevention and treatment of GUs.

  9. Effects of sodium butyrate on expression of members of the IGF-binding protein superfamily in human mammary epithelial cells.

    PubMed

    Tsubaki, J; Choi, W K; Ingermann, A R; Twigg, S M; Kim, H S; Rosenfeld, R G; Oh, Y

    2001-04-01

    Dietary factors play an important role in both the development and prevention of human cancers, including breast carcinoma. One dietary micronutrient, sodium butyrate (NaB), is a major end product of dietary starch and fiber, produced naturally during digestion by anaerobic bacteria in the cecum and colon. NaB is a potent growth inhibitor and initiates cell differentiation for many cell types in vitro. In this study, we investigated the effects of NaB on three human mammary epithelial cells and regulation of the IGF axis, specifically, IGF-binding protein-3 (IGFBP-3), a known growth regulator in human mammary cells, and IGFBP-related protein 2 (IGFBP-rP2)/connective tissue growth factor. NaB inhibited DNA synthesis, as measured by [3H]thymidine incorporation, in estrogen-responsive (MCF-7) and estrogen-non-responsive (Hs578T) breast cancer cells, and normal human mammary epithelial cells (HMEC) to a similar degree (up to 90% inhibition at 1-10 mM concentrations). Treatment of cells with NaB induced histone hyperacetylation, suggesting that NaB exerts its biological effects, at least in part, as a histone deacetylase inhibitor in mammary epithelial cells. Treatment of Hs578T cells with NaB caused an induction of apoptotic cell death. NaB treatment resulted in increased levels of p21(Waf1/Cip1) mRNA and protein in Hs578T cells and distinct upregulation of p27(Kip1) in HMEC, suggesting that NaB activates different genes involved in cell cycle arrest, depending upon the cell type. In the same context, among the IGFBP superfamily members tested, NaB specifically upregulated the expression of IGFBP-3 and IGFBP-rP2. These two proteins are known to be involved in inhibition of mammary epithelial cell replication. Northern blot analysis showed that NaB treatment at 1-10 mM concentrations caused a dose-dependent stimulation of IGFBP-3 mRNA expression in cancerous cells and IGFBP-rP2 mRNA expression in both cancerous and non-cancerous cells. Protein data from Western ligand

  10. Discoloration of poly(vinyl butyral) in cells exposed to real and simulated solar environments

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.

    1984-01-01

    The discoloration of poly(vinl butyral) (PVB) films used in solar cell modules is described. Transmission absorption, Fourier transformation IR absorption and atomic absorption spectroscopy as well as scanning electron microscopy were used for this study. The discoloration of the PVB has been found to be affected by oxygen, moisture, temperature and light. However, the most severe discoloration observed is clearly associated with the migration of positive silver ions, which can be accelerated in the presence of electric fields. The metallization is the source of the silver, and the data are consistent with an interfacial reaction between the silver and PVB followed by transport into the polymer.

  11. Sodium butyrate suppresses the transforming activity of an activated N-ras oncogene in human colon carcinoma cells

    SciTech Connect

    Stoddart, J.H.; Niles, R.M. ); Lane, M.A. )

    1989-09-01

    The transforming activity of DNA from a newly established undifferentiated human colon carcinoma cell line (MIP-101) was tested in the NIH-3T3 transfection assay. Southern blot analysis of the transfectant DNA revealed the presence of a human N-ras oncogene. Here the authors report that there is a significant reduction in the transforming efficiency of the DNA from butyrate-treated MIP-101 cells. A nonspecific reduction in total DNA uptake as an explanation for these findings was eliminated by showing that there was similar uptake and expression of the thymidine kinase gene from the DNA of butyrate-treated and control MIP cells. An NIH-3T3 transformant carrying the human N-ras gene was evaluated for phenotypic reversion and DNA transforming ability after treatment with sodium butyrate. Although butyrate suppressed several transformed properties similar to MIP-101 cells, DNA from control and treated cultures had an identical level of transforming activity. The results suggest that the environment of the MIP cells may contain additional elements not present in the NIH-3T3 transformants which are required to observe the effect of butyrate on reduction of transforming activity.

  12. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis.

    PubMed

    Vieira, Erica L M; Leonel, Alda J; Sad, Alexandre P; Beltrão, Nathália R M; Costa, Thaís F; Ferreira, Talita M R; Gomes-Santos, Ana C; Faria, Ana M C; Peluzio, Maria C G; Cara, Denise C; Alvarez-Leite, Jacqueline I

    2012-05-01

    Butyrate is a four-carbon short-chain fatty acid that improves colonic trophism. Although several studies have shown the benefits of butyrate enemas in ulcerative colitis (UC), studies using the oral route are rare in the literature. In the present study, we evaluated the effect of butyrate intake in the immune response associated to UC. For that, mice were fed control or butyrate (0.5% sodium butyrate) diets for 14 days. Acute UC was induced by dextran sulphate sodium (DSS, 2.5%), replacing drinking water. The results showed that, in UC animals, oral butyrate significantly improved trophism and reduced leukocyte (eosinophil and neutrophil) infiltration in the colon mucosa and improved the inflammatory profile (activated macrophage, B and T lymphocytes) in cecal lymph nodes. In the small intestine, although mucosa histology was similar among groups, DSS treatment reduced duodenal transforming growth factor-β, increased interleukin-10 concentrations and increased memory T lymphocytes and dendritic cells in Peyer's patches. Butyrate supplementation was able to revert these alterations. When cecal butyrate concentration was analyzed in cecal content, it was still higher in the healthy animals receiving butyrate than in the UC+butyrate and control groups. In conclusion, our results show that oral administration of sodium butyrate improves mucosa lesion and attenuates the inflammatory profile of intestinal mucosa, local draining lymph nodes and Peyer's patches of DSS-induced UC. Our results also highlight the potential use of butyrate supplements as adjuvant in UC treatment.

  13. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    PubMed

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  14. Effects of X-irradiation and sodium butyrate on cell-cycle traverse on normal and radiosensitive lymphoblastoid cells

    SciTech Connect

    Smith, P.J.; Anderson, C.O.; Watson, J.V.

    1985-10-01

    We have used a multi-parameter flow-cytometric technique to analyse changes in cell-cycle phase distribution (early and late G1, S and G2+M phases) for normal and X-ray-sensitive (ataxia-telangiectasia, A-T) lymphoblastoid cells exposed to X-irradiation and sodium butyrate (either alone or in combination). Sodium butyrate, an inhibitor of histone deacetylase, is a useful pharmacological tool for determining the proposed role of a histone acetylation-based chromatin surveillance system in controlling cell-cycle responses to DNA damage. We report that X-irradiated A-T cells (acute doses up to 1.5 Gy) demonstrate deficiencies in the capacity to traverse G1 and G2+M phases, although we can find no evidence of the specific involvement of a sodium butyrate-sensitive process in normal cells or abnormalities in the responses of A-T cells to the drug. We conclude that abnormal cellular control of G1 transition in A-T may be the basis of disturbed cellular differentiation in vivo, particularly in non-proliferating tissues under conditions of accumulated environmental or spontaneous DNA damage.

  15. Effects of sodium butyrate and 3-aminobenzamide on survival of Chinese hamster HA-1 cells after X irradiation

    SciTech Connect

    Leith, J.T.

    1988-04-01

    HA-1 cells were grown in medium containing 2 mM sodium butyrate and then exposed to graded doses of 250 kVp X rays. After irradiation, some of the butyrate-treated cultures were treated with either 10 or 20 mM 3-aminobenzamide for 2 h at 37 degrees C. The butyrate treatment produced a small degree of radiation sensitization as indicated by an increase in the alpha parameter using a linear-quadratic description of survival responses. The dose-modifying factor at the 10% survival level (DMF10) was 1.15. Similarly, both 10 and 20 mM 3-aminobenzamide treatments produced concentration-dependent increases in radiosensitization, again as indicated by an increase in the value of the alpha constant, with DMF10 values of 1.22 and 1.40, respectively. However, the combination of the 2 mM sodium butyrate + 10 mM 3-aminobenzamide treatments produced a supraadditive response in terms of increased cell killing (DMF10 = 1.76). We interpret this to mean that 3-aminobenzamide inhibits a sodium butyrate associated increase in poly(ADP-ribose) which then predisposes hyperacetylated chromatin to attack by endogenous nucleases leading to increased cytotoxicity.

  16. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate.

    PubMed

    Saldanha, Sabita N; Kala, Rishabh; Tollefsbol, Trygve O

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells.

  17. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).

    PubMed

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties.

  18. Transcriptome Analysis of Indole-3-Butyric Acid-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis (L.)

    PubMed Central

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties. PMID:25216187

  19. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).

    PubMed

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties. PMID:25216187

  20. Effect of butyrate on immune response of a chicken macrophage cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyric acid is a major short chain fatty acid (SCFA) produced in the gastrointestinal tract by anaerobic bacterial fermentation which has been demonstrated to have beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on chicken macropha...

  1. Sodium butyrate-induced histone acetylation strengthens the expression of cocaine-associated contextual memory

    PubMed Central

    Itzhak, Yossef; Liddie, Shervin; Anderson, Karen L.

    2013-01-01

    The conditioned place preference (CPP) paradigm entails Pavlovian conditioning and allows evaluating the acquisition and extinction of drug-associated memory. Epigenetic regulation of chromatin structure by acetylation and deacetylation of histone proteins is critical for formation of long-term memory (LTM). We have recently shown that a single administration of the histone deacetylase (HDAC) inhibitor sodium butyrate (NaB) facilitated extinction of fear-associated memory in mice. Using the CPP paradigm, the present study investigated the effect of NaB on cocaine-associated memory. C57B/6 mice were conditioned by either fixed daily doses of cocaine (5mg/kg × 4 and 15mg/kg × 4 days) or an escalating schedule (3,6,12 and 24mg/kg). Acute administration of NaB (1.2g/kg) prior to conditioning by fixed doses of cocaine increased the expression and impaired the extinction of place preference compared to control subjects. Subjects that were conditioned by 15mg/kg × 4 cocaine and received a single injection of NaB following the first or the second CPP test showed impaired extinction compared to control mice that received saline instead of NaB. Subjects that were conditioned by escalating schedule of cocaine and subsequently received repeated injections of NaB during daily reexposure to nonreinforced context showed either enhancement or no effect on place preference. Acute administration of NaB (1.2g/kg) to naïve mice resulted in marked increase in acetylation of histone H3 lysine 14 (H3K14) and histone H4 lysine 8 (H4K8) in hippocampus but not amygdala. Results suggest that regardless of the scheduling of either cocaine or NaB administration, NaB-induced histone hyperacetylation in the hippocampus may strengthen cocaine-associated contextual memory. PMID:23567105

  2. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T

    SciTech Connect

    Hatayama, Hajime; Iwashita, Jun; Kuwajima, Akiko; Abe, Tatsuya . E-mail: abetats@akita-pu.ac.jp

    2007-05-11

    The short fatty acid, butyrate, which is produced by intestinal anaerobic bacteria in the colon, has inhibitory activity on histone deacetylases (HDACs). Treatment of the human colon cancer cell line, LS174T, with 1-2 mM sodium butyrate stimulated MUC2 mucin production, as determined by histological PAS staining of carbohydrate chains of mucin, and confirmed at the protein and mRNA levels by immunoblotting with anti-MUC2 antibody and real-time RT-PCR, respectively. Increases in acetylated histone H3 in the LS174T cells treated with butyrate suggest inhibition of HDACs in these cells. Butyrate-stimulated MUC2 production in the LS174T cells was inhibited by the MEK inhibitor, U0126, implicating the involvement of extracellular signal-regulated kinase (ERK) cascades in this process. Proliferation of the LS174T cells was inhibited by butyrate treatment. Although apoptotic nuclear DNA fragmentation could not be detected, cell-cycle arrest at the G0/G1 phase in the butyrate-treated cells was demonstrated by flow cytometry. Thus butyrate, an HDAC inhibitor, inhibits proliferation of LS174T cells but stimulates MUC2 production in individual cells.

  3. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    SciTech Connect

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  4. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis.

    PubMed

    Rajendran, Vazhaikkurichi M; Nanda Kumar, Navalpur S; Tse, Chung M; Binder, Henry J

    2015-10-16

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na(+) fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3 (-)-dependent Na(+) absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3 (-)-dependent) Na(+) absorption. In in vivo loop studies HCO3 (-)-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3 (-)-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na(+) absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.

  5. Epigenetically Reprogramming of Human Embryonic Stem Cells by 3-Deazaneplanocin A and Sodium Butyrate

    PubMed Central

    Azghadi, Soheila; Clark, Amander T.

    2011-01-01

    Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit). Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state), and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs). Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep) is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu) shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction). Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively. PMID:21603011

  6. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon.

    PubMed

    Ramsay, Alan G; Scott, Karen P; Martin, Jenny C; Rincon, Marco T; Flint, Harry J

    2006-11-01

    Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria.

  7. Sodium butyrate stimulates NHE8 expression via its role on activating NHE8 basal promoter activity.

    PubMed

    Xu, Hua; McCoy, Anthony; Li, Jing; Zhao, Yang; Ghishan, Fayez K

    2015-09-15

    Butyrate is a major metabolite in colonic lumen. It is produced from bacterial fermentation of dietary fiber. Butyrate has been shown to stimulate electroneutral sodium absorption through its regulation on sodium/hydrogen exchanger 3 (NHE3). Although NHE8, the newest addition of intestinal NHE family, is involved in sodium absorption in the intestinal tract, whether butyrate modulates NHE8 expression in the intestinal epithelial cells is not known. In the current study, we showed that butyrate treatment strongly induced NHE8 protein and NHE8 mRNA expression in human intestinal epithelial cells. Transfection with the human NHE8 promoter reporter constructs showed that butyrate treatment stimulated reporter gene expression at an amount comparable with its stimulation of NHE8 mRNA expression. Interestingly, a similar result was also observed in human NHE8 promoter transfected cells after trichostatin (TSA) treatment. Gel mobility shift assay identified an enhanced Sp3 protein binding on the human NHE8 basal promoter region upon butyrate stimulation. Furthermore, Sp3 acetylation modification is involved in butyrate-mediated NHE8 activation in Caco-2 cells. Our findings suggest that the mechanism of butyrate action on NHE8 expression involves enhanced Sp3 interaction at the basal promoter region of the human NHE8 gene promoter to activate NHE8 gene transcription. Thus butyrate is involved in intestinal regulation of NHE8 resulting enhanced sodium absorption.

  8. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson's disease.

    PubMed

    St Laurent, R; O'Brien, L M; Ahmad, S T

    2013-08-29

    Parkinson's disease (PD) is a neurodegenerative disorder primarily affecting the dopaminergic neurons in the nigrastriatal pathway resulting in debilitating motor impairment in both familial and sporadic cases. Histone deacetylase (HDAC) inhibitors have been recently implicated as a therapeutic candidate because of their ability to correct the disrupted HDAC activity in PD and other neurodegenerative diseases. Sodium butyrate (SB), an HDAC inhibitor, reduces degeneration of dopaminergic neurons in a mutant alpha-synuclein Drosophila transgenic model of familial PD. Chronic exposure to the pesticide rotenone also causes selective degeneration of dopaminergic neurons and causes locomotor impairment and early mortality in a Drosophila model of chemically induced PD. This study investigated the effects of sodium butyrate on locomotor impairment and early mortality in a rotenone-induced PD model. We show that treatment with 10mM SB-supplemented food rescued the rotenone-induced locomotor impairment and early mortality in flies. Additionally, flies with the genetic knockdown of HDAC activity through Sin3A loss-of-function mutation (Sin3A(lof)) were resistant to rotenone-induced locomotor impairment and early mortality. Furthermore, SB-supplemented Sin3A(lof) flies had a modest additive effect for improving locomotor impairment. We also show SB-mediated improvement of rotenone-induced locomotor impairment was associated with elevated dopamine levels in the brain. However, the possibility of SB-mediated protective role through mechanisms independent from dopamine system is also discussed. These findings demonstrate that HDAC inhibitors like SB can ameliorate locomotor impairment in a rotenone-induced PD model.

  9. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions.

    PubMed

    Ma, X; Fan, P X; Li, L S; Qiao, S Y; Zhang, G L; Li, D F

    2012-12-01

    Postweaning diarrhea is one of the most common causes of morbidity and mortality in weanling piglets. Feeding sodium butyrate to weanling piglets decreased the incidence of diarrhea, but the mechanism has not been fully elucidated. The present study was to evaluate the effect of sodium butyrate on diarrhea in relation to wound healing of intestinal barrier using IPEC-J2 cell model. Cultured cells were scratched to induce wound and then were treated with 4 mM sodium butyrate. The results showed that supplementation of the cells with sodium butyrate significantly promoted the process of wound healing, indicating the protective effects of butyrate on the intestinal mucosa. Butyrate treatment enhanced mRNA expression of the intestinal mucosal tight junction proteins occludin and zonula occluden protein-1 (P < 0.05), which suggested that the promotion of wound healing by butyrate is related to the maintenance of the function of the intestinal barrier. In addition, in the butyrate-treated group, intestinal total superoxide dismutase and glutathione peroxidase (P < 0.05), two of the main antioxidant enzymes, as well as glutathione (P < 0.05), one of the nonenzymatic antioxidant components, were enhanced whereas the malondialdehyde level, a marker of free radical mediated lipid peroxidation injury, was decreased (P < 0.05) compared with the control group. Collectively, these results indicate that dietary sodium butyrate might, at least partly, play an important role in recovering the intestinal tight junctions having a positive effect on maintaining the gut integrity.

  10. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells.

    PubMed

    Andrade, F O; Nagamine, M K; Conti, A De; Chaible, L M; Fontelles, C C; Jordão Junior, A A; Vannucchi, H; Dagli, M L Z; Bassoli, B K; Moreno, F S; Ong, T P

    2012-09-01

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4) cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  11. Interleukin 8 secretion by colonic crypt cells in vitro: response to injury suppressed by butyrate and enhanced in inflammatory bowel disease.

    PubMed Central

    Gibson, P; Rosella, O

    1995-01-01

    Epithelia from several sites exhibit inducible secretion of interleukin 8 (IL-8). This study aimed to characterise secretion of IL-8 by colonic epithelial cells in vitro. Colonic crypt cells were isolated enzymatically from resected colon and the IL-8 content of culture supernates was measured by ELISA. The rate of secretion of IL-8 accelerated and levels of IL-8 transcripts increased appreciably during culture. Exposure to tumour necrosis factor alpha (TNF alpha) failed to increase secretion further. Secretion was not induced by the enzymatic digestion or by serum used in the culture medium but was significantly inhibited by butyrate, by a mean of 23%. Control experiments indicated that colonic crypt cells were the likely source. The secretion of IL-8 over 24 hours by cells from uninflamed mucosa of patients with ulcerative colitis or Crohn's disease was more than twofold that from normal cells, while that from cancer bearing colons was normal. TNF alpha (10 mM) significantly suppressed IL-8 secretion only in the ulcerative colitis group and the change was different to those in the normal (p = 0.007) and Crohn's disease groups (p = 0.012). Cells from inflamed areas secreted more IL-8 than those from autologous uninflamed areas (p = 0.009) but responses to modulating factors were no different. The induction of IL-8 secretion by colonic crypt cells in vitro is probably a response to injury associated with isolation and culture. It is suppressed by butyrate and increased in inflammatory bowel disease independently of the presence of mucosal inflammation. Whether epithelial derived IL-8 plays a part in the pathogenesis of inflammatory bowel disease is not yet clear. Images Figure 2 Figure 5 PMID:7489942

  12. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53.

    PubMed

    Yaku, Keisuke; Enami, Yuka; Kurajyo, Chika; Matsui-Yuasa, Isao; Konishi, Yotaro; Kojima-Yuasa, Akiko

    2012-11-01

    Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner(;) however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.

  13. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    PubMed

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  14. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  15. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of D...

  16. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet

    PubMed Central

    Mattace Raso, Giuseppina; Simeoli, Raffaele; Russo, Roberto; Iacono, Anna; Santoro, Anna; Paciello, Orlando; Ferrante, Maria Carmela; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2013-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Insulin resistance (IR) appears to be critical in its pathogenesis. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD). Methods After weaning, young male Sprague-Dawley rats were divided into 4 groups receiving different diets for 6 weeks: 1. control group (standard diet); 2. HFD; 3. HFD plus butyrate (20 mg/kg/die) and 4. HFD plus FBA (42.5 mg/Kg/die, the equimolecular dose of butyrate). Liver tissues of the rats were analyzed by Western blot and real-time PCR. Insulin resistance, liver inflammation and Toll-like pattern modifications were determined. Results Evaluation of these two preparations of butyrate showed a reduction of liver steatosis and inflammation in HFD fed animals. The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Finally, FBA showed a higher potency in reducing pro-inflammatory parameters in the liver, via suppression of Toll-like receptors and NF-κB activation. Conclusions Our results demonstrated a protective effect of butyrate in limiting molecular events underlying the onset of IR and NAFLD, suggesting a potential clinical relevance for this substance. In particular, its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance. PMID:23861927

  17. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    SciTech Connect

    Smith, P.J.

    1986-03-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells.

  18. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats

    PubMed Central

    Malago, Joshua J.; Sangu, Catherine L.

    2015-01-01

    Intrarectal infusion of butyrate improves colorectal disorders including ulcerative colitis (UC). However, it is not established whether systemically administered butyrate benefits such patients. The current study aimed at exploring and comparing the potential of intraperitoneally, intrarectally, and orally administered butyrate against acetic acid (AA)-induced UC in rats. Intrarectal administration of 2 ml of 50% AA was done after or without prior treatment of rats for 7 consecutive days with 100 mg/kg sodium butyrate (SB) intraperitoneally, intrarectally, or orally. Rats were sacrificed after 48 h of AA-treatment. Subsequently, colon sections were processed routinely for histopathological examination. We clinically observed diarrhea, loose stools, and hemoccult-positive stools, and histologically, epithelial loss and ulceration, crypt damage, goblet cell depletion, hemorrhage, and mucosal infiltration of inflammatory cells. The changes were significantly reduced by intraperitoneal, intrarectal, or oral butyrate, with intraperitoneal butyrate exhibiting the highest potency. It is concluded that intraperitoneal administration of butyrate abrogates the lesions of AA-induced UC and its potency surpasses that of intrarectal or oral butyrate. PMID:25743124

  19. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  20. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2–p53 signaling

    PubMed Central

    Xie, Chuhai; Wu, Boyi; Chen, Binwei; Shi, Qunwei; Guo, Jianhong; Fan, Ziwen; Huang, Yan

    2016-01-01

    Histone deacetylase inhibitors have been reported to induce tumor cell growth arrest, differentiation, and apoptosis. This study aimed to investigate the effects of one histone deacetylase inhibitor – sodium butyrate (SB) – on osteosarcoma (OS) cell proliferation and apoptosis and also the molecular mechanisms by which SB exerts regulatory effects on OS cells. U2OS and MG63 cells were treated with SB at various concentrations. Then, cell proliferation and apoptosis were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry assays, respectively; the expression of Ki67, Bax, Bcl-2, MDM2, and p53 proteins was determined by using Western blot assay. The results showed that SB suppressed proliferation in a concentration-dependent manner and promoted apoptosis of OS cells. In addition, SB enhanced p53 expression and decreased MDM2 expression, indicating that SB can regulate MDM2–p53 feedback loop. p53 inhibited proliferation and promoted apoptosis, whereas MDM2 promoted proliferation and suppressed apoptosis, which indicated that functional effect of SB on OS cell lines at least in part depended on the MDM2–p53 signaling. We also explored the effect of SB on OS cells in vivo and found that SB suppressed the growth of OS cells with no noticeable effect on activity and body weight of mice in vivo. These findings will offer new clues for OS development and progression and offer SB as a potent targeted agent for OS treatment. PMID:27445491

  1. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling.

    PubMed

    Xie, Chuhai; Wu, Boyi; Chen, Binwei; Shi, Qunwei; Guo, Jianhong; Fan, Ziwen; Huang, Yan

    2016-01-01

    Histone deacetylase inhibitors have been reported to induce tumor cell growth arrest, differentiation, and apoptosis. This study aimed to investigate the effects of one histone deacetylase inhibitor - sodium butyrate (SB) - on osteosarcoma (OS) cell proliferation and apoptosis and also the molecular mechanisms by which SB exerts regulatory effects on OS cells. U2OS and MG63 cells were treated with SB at various concentrations. Then, cell proliferation and apoptosis were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry assays, respectively; the expression of Ki67, Bax, Bcl-2, MDM2, and p53 proteins was determined by using Western blot assay. The results showed that SB suppressed proliferation in a concentration-dependent manner and promoted apoptosis of OS cells. In addition, SB enhanced p53 expression and decreased MDM2 expression, indicating that SB can regulate MDM2-p53 feedback loop. p53 inhibited proliferation and promoted apoptosis, whereas MDM2 promoted proliferation and suppressed apoptosis, which indicated that functional effect of SB on OS cell lines at least in part depended on the MDM2-p53 signaling. We also explored the effect of SB on OS cells in vivo and found that SB suppressed the growth of OS cells with no noticeable effect on activity and body weight of mice in vivo. These findings will offer new clues for OS development and progression and offer SB as a potent targeted agent for OS treatment. PMID:27445491

  2. Effect of butyrate on aromatase cytochrome P450 levels in HT29, DLD-1 and LoVo colon cancer cells.

    PubMed

    Rawłuszko, Agnieszka Anna; Sławek, Sylwia; Gollogly, Armin; Szkudelska, Katarzyna; Jagodziński, Paweł Piotr

    2012-03-01

    Epidemiological studies suggest that colonic production of butyrate and estrogen may be involved in human susceptibility to colorectal cancer (CRC). Estrone (E1) can be produced by the aromatase pathway during the conversion of androstenedione (A) to E1. Therefore, we studied the effect of sodium butyrate (NaBu) on the CYP19A1 transcript and protein levels and on the conversion of A to E1 in HT29, DLD-1 and LoVo CRC cells. We found that NaBu significantly downregulated CYP19A1 transcript and protein levels, a phenomenon that was associated with reduced conversion of A to E1 in HT29, DLD-1 and LoVo cells. Our studies demonstrated that, although butyrate exhibited a protective role in CRC development, this compound may reduce aromatase activity and the production of E1 in colon cancer cells.

  3. Genetic differences in the modulation of accumbal glutamate and γ-amino butyric acid levels after cocaine-induced reinstatement.

    PubMed

    Miguéns, Miguel; Botreau, Fanny; Olías, Oscar; Del Olmo, Nuria; Coria, Santiago M; Higuera-Matas, Alejandro; Ambrosio, Emilio

    2013-07-01

    The Lewis (LEW) and Fischer 344 (F344) inbred rat strains are frequently used to study the role of genetic factors in vulnerability to drug addiction and relapse. Glutamate and γ-amino butyric acid (GABA) transmission are significantly altered after cocaine-induced reinstatement, although whether LEW and F344 rats differ in their accumbal glutamate and GABA responsiveness to cocaine-induced reinstatement remains unknown. To investigate this, we measured by in vivo microdialysis extracellular glutamate and GABA levels in the core division of the nucleus accumbens after extinction of cocaine self-administration and during cocaine-induced reinstatement (7.5mg/kg, i.p.) in these two strains of rats. No strain differences were evident in cocaine self-administration or extinction behavior, although cocaine priming did induce a higher rate of lever pressing in LEW compared with F344 rats. After extinction, F344 rats that self-administered cocaine had less GABA than the saline controls, while the glutamate levels remained constant in both strains. There was more accumbal glutamate after cocaine priming in LEW rats that self-administered cocaine, while GABA levels were unaffected. By contrast, GABA increased transiently in F344 rats that self-administered cocaine, while glutamate levels were unaltered. In F344 saline controls, cocaine priming provoked contrasting effects in glutamate and GABA levels, inducing a delayed increase in glutamate and a delayed decrease in GABA levels. These amino acids were unaffected by cocaine priming in LEW saline rats. Together, these results suggest that genetic differences in cocaine-induced reinstatement reflect different responses of the accumbal GABA and glutamate systems to cocaine priming.

  4. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  5. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells

    PubMed Central

    Boyle, Jennifer; Pielen, Amelie; Lagrèze, Wolf Alexander

    2011-01-01

    Purpose Histone deacetylase inhibitors (HDACi) have neuroprotective effects under various neurodegenerative conditions, e.g., after optic nerve crush (ONC). HDACi-mediated protection of central neurons by increased histone acetylation has not previously been demonstrated in rat retinal ganglion cells (RGCs), although epigenetic changes were shown to be associated with cell death after ONC. We investigated whether HDACi can delay spontaneous cell death in purified rat RGCs and analyzed concomitant histone acetylation levels. Methods RGCs were purified from newborn (postnatal day [P] 0–P2) rat retinas by immunopanning with antibodies against Thy-1.1 and culturing in serum-free medium for 2 days. RGCs were treated with HDACi, each at several different concentrations: 0.1–10 mM sodium butyrate (SB), 0.1–2 mM valproic acid (VPA), or 0.5–10 nM trichostatin A (TSA). Negative controls were incubated in media alone, while positive controls were incubated in 0.05–0.4 IU/µl erythropoietin. Survival was quantified by counting viable cells using phase-contrast microscopy. The expression of acetylated histone proteins (AcH) 3 and 4 was analyzed in RGCs by immunohistochemistry. Results SB and VPA enhanced RGC survival in culture, with both showing a maximum effect at 0.1 mM (increase in survival to 188% and 163%, respectively). Their neuroprotective effect was comparable to that of erythropoietin at 0.05 IU/µl. TSA 0.5–1.0 nM showed no effect on RGC survival, and concentrations ≥5 nM increased RGC death. AcH3 and AcH4 levels were only significantly increased in RGCs treated with 0.1 mM SB. VPA 0.1 mM produced only a slight effect on histone acetylation. Conclusions Millimolar concentrations of SB and VPA delayed spontaneous cell death in purified RGCs; however, significantly increased histone acetylation levels were only detectable in RGCs after SB treatment. As the potent HDACi TSA was not neuroprotective, mechanisms other than histone acetylation may be the

  6. Antagonistic effects of sodium butyrate and N-(4-hydroxyphenyl)-retinamide on prostate cancer.

    PubMed

    Kuefer, Rainer; Genze, Felicitas; Zugmaier, Waltraud; Hautmann, Richard E; Rinnab, Ludwig; Gschwend, Juergen E; Angelmeier, Marina; Estrada, Aidee; Buechele, Berthold

    2007-03-01

    Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl)-retinamide (4-HPR) on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin) was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-kappaB. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  7. Biochemical and morphological effects of sodium butyrate on Dictyostelium discoideum development.

    PubMed

    Boto, L; Cano, A; Pestaña, A

    1987-04-01

    Pretreatment of proliferating D. discoideum amoebae with 10 mM butyrate for at least 8 h (one duplicating time) induced a reversible and dose dependent premature expression of several developmental parameters when the cells were starved in the absence of the fatty acid. The aggregative phase of the morphogenetic cycle was reduced in 2 h and the appearance of mature fruiting bodies and spores took place 4 h earlier as a result of butyrate pretreatment. Some developmentally regulated proteins, such as contact-sites A, cell surface lectins and cyclic AMP phosphodiesterase were also expressed 2 h earlier in butyrate pretreated cells than in controls. The level of extracellular cyclic AMP was reduced in butyrate pretreated cells, while other parameters of cyclic AMP metabolism were not affected. Butyrate also caused a partial inhibition of growth and the hyperacetylation of histone H4 in growing amoeba. These results suggest that butyrate acts as an inducer of differentiation in D. discoideum and can therefore be used as an experimental tool in order to explore regulatory mechanisms operating in slime mold differentiation. PMID:3037305

  8. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    PubMed

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  9. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    PubMed Central

    Nankova, Bistra B.; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as

  10. Searching for Synbiotics to increase Colonic Butyrate Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is produced by microbial fermentation of plant fiber in the gut and a preferred substrate for gut epithelial cells. In ruminants, butyrate contributes to 70% of energy metabolism. In monogastric species, butyrate also plays an important role in energy metabolism in the hindgut. Moreover, bu...

  11. Sodium butyrate down-regulates tristetraprolin-mediated cyclin B1 expression independent of the formation of processing bodies.

    PubMed

    Zheng, Xiang-Tao; Xiao, Xiao-Qiang; Dai, Ju-Ji

    2015-12-01

    Butyrate regulates multiple host cellular events including the cell cycle; however, little is known about the molecular mechanism by which butyrate induces a global down-regulation of the expression of genes associated with the cell cycle. Here, we demonstrate that treating HEK293T cells and the non-small-cell lung cancer cell line A549 with a high concentration of sodium butyrate reduces cyclin B1 expression. The underlying mechanism is related to the destabilization of its mRNA by tristetraprolin, which is up-regulated in response to sodium butyrate. Specifically, the sodium butyrate stimulation reduces the mRNA and protein expression of cyclin B1 and, conversely, upregulates tristetraprolin expression. Importantly, the overexpression of tristetraprolin in HEK293T decreases the mRNA and protein expression of cyclin B1; in contrast, knockdown of tristetraprolin mediated by small interfering RNA increases its expression in response to sodium butyrate treatment for both HEK293T and A549 cells. Furthermore, results from luciferase reporter assays and RNA immunoprecipitation indicate that sodium butyrate accelerates 3' UTR-dependent cyclin B1 decay by enhancing the binding of tristetraprolin to the 3' untranslated region of cyclin B1. Surprisingly, the overexpression of tristetraprolin prevents the formation of processing bodies, and the siRNA-mediated silencing of EDC4 does not restore the sodium butyrate-induced reduction of cyclin B1 expression. Thus, we confirm that NaBu regulates ZFP36-mediated cyclin B1 expression in a manner that is independent of the formation of P-bodies. The above findings disclose a novel mechanism of sodium butyrate-mediated gene expression regulation and might benefit its application in tumor treatment.

  12. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB.

    PubMed

    Joseph, Jeena; Mudduluru, Giridhar; Antony, Sini; Vashistha, Surabhi; Ajitkumar, Parthasarathi; Somasundaram, Kumaravel

    2004-08-19

    Histone deacetylase (HDAC) inhibitors induce growth arrest and apoptosis in a variety of human cancer cells. Sodium butyrate (NaB), a short chain fatty acid, is a HDAC inhibitor and is produced in the colonic lumen as a consequence of microbial degradation of dietary fibers. In order to dissect out the mechanism of NaB-induced growth inhibition of cancer cells, we carried out expression profiling of a human lung carcinoma cell line (H460) treated with NaB using a cDNA microarray. Of the total 1728 genes analysed, there were 32 genes with a mean expression value of 2.0-fold and higher and 66 genes with a mean expression value 3.0-fold and lower in NaB-treated cells. For a few selected genes, we demonstrate that their expression pattern by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis is matching with the results obtained by microarray analysis. Closer view at the expression profile of NaB-treated cells revealed the downregulation of a total of 16 genes associated with cytokine signaling, in particular, interferon gamma (IFNgamma) pathway. In good correlation, NaB-pretreated cells failed to induce interferon regulatory factor 1, an INFgamma target gene, efficiently upon IFNgamma addition. These results suggest that NaB inhibits proinflammatory cytokine signaling pathway, thus providing proof of mechanism for its anti-inflammatory activity. We also found that NaB induced three genes, which are known metastatic suppressors, and downregulated 11 genes, which have been shown to promote metastasis. Upregulation of metastatic suppressor Kangai 1 (KAI1) by NaB in a time-dependent manner was confirmed by RT-PCR analysis. The differential regulation of metastasis-associated genes by NaB provides explanation for the anti-invasive properties of NaB. Therefore, our study presents new evidence for pathways regulated by NaB, thus providing evidence for the mechanism behind anti-inflammatory and antimetastatic activities of NaB.

  13. Increasing histone acetylation of cloned embryos, but not donor cells, by sodium butyrate improves their in vitro development in pigs.

    PubMed

    Das, Ziban Chandra; Gupta, Mukesh Kumar; Uhm, Sang Jun; Lee, Hoon Taek

    2010-02-01

    Previous studies have demonstrated that increased histone acetylation in donor cells or cloned embryos, by applying a histone deacetylase inhibitor (HDACi) such as trichostatin A (TSA), significantly enhances their developmental competence. However, its effect may vary with the type of HDACi and the target species, with some research showing nonsignificant or detrimental effects of TSA on in vitro and in vivo development of embryos. In this study, we show that sodium salt of butyric acid, a short-chain fatty acid produced naturally in the body by bacterial degradation of dietary fibers in the colon and rectum, increases histone acetylation in pig fibroblast and embryos at a concentration of 1.0 and 5.0 mM, respectively. However, treatment of donor cells with NaBu did not affect the rate of blastocyst formation or embryo quality in terms of histone acetylation and total nuclei per blastocyst (p > 0.05). On the contrary, treatment of cloned pig embryos with NaBu for 4 h significantly enhanced (p < 0.01) the rate of blastocyst formation (18.3 +/- 2.1 vs. 11.2 +/- 3.0%), although the total nuclei number per blastocyst did not differ. More importantly, blastocysts generated from NaBu-treated cloned embryos had increased levels of histone acetylation that was comparable to those of in vitro fertilized (IVF) embryos (36.7 +/- 3.6 vs. 45.9 +/- 2.5). In conclusion, our data suggest that histone hyperacetylation by NaBu treatment of cloned embryos, but not donor cell, enhances their in vitro development up to blastocyst stage.

  14. 3,3′-Diindolylmethane Enhances the Efficacy of Butyrate in Colon Cancer Prevention through Down-regulation of Survivin

    PubMed Central

    Bhatnagar, Namrata; Li, Xia; Chen, Yue; Zhou, Xudong; Garrett, Scott H.; Guo, Bin

    2010-01-01

    Butyrate is an inhibitor of histone deacetylase (HDAC) and has been extensively evaluated as a chemoprevention agent for colon cancer. We recently demonstrated that mutations in the adenomatous polyposis coli (APC) gene confer resistance to HDAC inhibitor-induced apoptosis in colon cancers (Huang and Guo, Cancer Research, 66(18), 9245-9251, 2006). Here we show that APC mutation rendered colon cancer cells resistant to butyrate-induced apoptosis due to the failure of butyrate to down-regulate survivin in these cells. Another cancer preventive agent, 3,3′-Diindolylmethane (DIM), was identified to be able to down-regulate survivin in colon cancers expressing mutant APC. DIM inhibited survivin mRNA expression and promoted survivin protein degradation through inhibition of p34cdc2-cyclin B1-mediated survivin Thr34 phosphorylation. Pre-treatment with DIM enhanced butyrate-induced apoptosis in colon cancer cells expressing mutant APC. DIM/butyrate combination treatment induced the expression of pro-apoptotic Bax and Bak proteins, triggered Bax dimerization/activation, and caused release of cytochrome c and Smac proteins from mitochondria. While overexpression of survivin blocked DIM/butyrate-induced apoptosis, knocking-down of survivin by siRNA increased butyrate-induced apoptosis in colon cancer cells. We further demonstrated that DIM was able to down-regulate survivin and enhance the effects of butyrate in apoptosis induction and prevention of familial adenomatous polyposis in APCmin/+ mice. Thus, the combination of DIM and butyrate is potentially an effective strategy for the prevention of colon cancer. PMID:19470789

  15. Clostridium butyricum reduce lipogenesis through bacterial wall components and butyrate.

    PubMed

    Zhao, Xu; Guo, Yuming; Liu, Hongbin; Gao, Jing; Nie, Wei

    2014-09-01

    Intervention strategies for obesity are global issues that require immediate attention. The objective of this study was to assess the possibility that Clostridium butyricum and its potential components could reduce lipogenesis. Co-culture experiments of Caco-2 cells and 1 × 10(6), 1 × 10(7), and 1 × 10(8) CFU/ml of C. butyricum were set up to monitor the cytotoxicity of C. butyricum and the changes of angiopoietin-like protein 4 (ANGPTL4) mRNA expression. It was found that cell viability was not affected by C. butyricum, and ANGPTL4 mRNA expression in Caco-2 cells was highly induced by 1 × 10(7) CFU/ml of C. butyricum. Co-culture experiment of Caco-2 cells and potential components of C. butyricum were set up to monitor any ensuing alteration in ANGPTL4. It was observed that bacterial wall components and potentially secreted factors from C. butyricum could induce ANGPTL4 mRNA expression and protein secretion. To determine whether butyrate could affect the ANGPTL4 production in Caco-2 cells, the role of monocarboxylate transporter 1 (MCT1) in mediating potentially secreted factors from C. butyricum-induced ANGPTL4 production in Caco-2 cells and the effect of 0.1 mM of butyrate on ANGPTL4 production in Caco-2 cells were investigated. It is confirmed that butyrate was the factor secreted by C. butyricum to stimulate ANGPTL4 production. Besides, the soluble factors secreted by live C. butyricum-Caco-2 cells interaction, bacterial wall components-Caco-2 cells interaction, and the main metabolites butyrate-Caco-2 cells interaction reduced lipogenic gene expression in HepG2 cells. In conclusion, 1 × 10(7) CFU/ml of C. butyricum could reduce lipogenesis through the bacterial wall components and the metabolites such as butyrate.

  16. The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization.

    PubMed

    Alva-Murillo, Nayeli; Medina-Estrada, Ivan; Báez-Magaña, Marisol; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2015-12-01

    Staphylococcus aureus is an etiological agent of human and animal diseases, and it is able to internalize into non-professional phagocytic cells (i.e. bovine mammary epithelial cells, bMECs), which is an event that is related to chronic and recurrent infections. bMECs contribute to host innate immune responses (IIR) through TLR pathogen recognition, whereby TLR2 is the most relevant for S. aureus. In a previous report, we showed that sodium butyrate (NaB, 0.5mM), which is a short chain fatty acid (SCFA), reduced S. aureus internalization into bMECs by modulating their IIR. However, the molecular mechanism of this process has not been described, which was the aim of this study. The results showed that the TLR2 membrane abundance (MA) and mRNA expression were induced by 0.5mM NaB ∼1.6-fold and ∼1.7-fold, respectively. Additionally, 0.5mM NaB induced p38 phosphorylation, but not JNK1/2 or ERK1/2 phosphorylation in bMECs, which reached the baseline when the bMECs were S. aureus-challenged. Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged. Additionally, 0.5mM NaB (24h) up-regulated mRNA expression of the antimicrobial peptides, TAP (∼4.8-fold), BNBD5 (∼3.2-fold) and BNBD10 (∼2.6-fold). Notably, NaB-treated and S. aureus-challenged bMECs increased the mRNA expression of all of the antimicrobial peptides that were evaluated, and this was evident for LAP and BNBD5. In the NaB-treated bMECs, we did not detect significant expression changes for IL-1β and IL-6 and only TNF-α, IL-10 and IL-8 were induced. Interestingly, the NaB-treated and S. aureus-challenged bMECs maintained the anti-inflammatory response that was induced by this SCFA. In conclusion, our results suggest that 0.5mM NaB activates bMECs via TLR2/p38, which leads to improved antimicrobial defense before/after pathogen

  17. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention.

    PubMed

    Bultman, Scott J

    2014-02-15

    Gene-environment interactions are so numerous and biologically complicated that it can be challenging to understand their role in cancer. However, dietary fiber and colorectal cancer prevention may represent a tractable model system. Fiber is fermented by colonic bacteria into short-chain fatty acids such as butyrate. One molecular pathway that has emerged involves butyrate having differential effects depending on its concentration and the metabolic state of the cell. Low-moderate concentrations, which are present near the base of colonic crypts, are readily metabolized in the mitochondria to stimulate cell proliferation via energetics. Higher concentrations, which are present near the lumen, exceed the metabolic capacity of the colonocyte. Unmetabolized butyrate enters the nucleus and functions as a histone deacetylase (HDAC) inhibitor that epigenetically regulates gene expression to inhibit cell proliferation and induce apoptosis as the colonocytes exfoliate into the lumen. Butyrate may therefore play a role in normal homeostasis by promoting turnover of the colonic epithelium. Because cancerous colonocytes undergo the Warburg effect, their preferred energy source is glucose instead of butyrate. Consequently, even moderate concentrations of butyrate accumulate in cancerous colonocytes and function as HDAC inhibitors to inhibit cell proliferation and induce apoptosis. These findings implicate a bacterial metabolite with metaboloepigenetic properties in tumor suppression.

  18. Sodium Butyrate: a Chemical Inducer of In Vivo Reactivation of Herpes Simplex Virus Type 1 in the Ocular Mouse Model▿

    PubMed Central

    Neumann, Donna M.; Bhattacharjee, Partha S.; Hill, James M.

    2007-01-01

    Recent studies have explored the chromatin structures associated with the herpes simplex virus type 1 (HSV-1) genome during latency, particularly with regard to specific histone tail modifications such as acetylation and dimethylation. The objective of our present study was to develop a rapid systemic method of in vivo HSV-1 reactivation to further explore the changes that occur in the chromatin structures associated with HSV-1 at early time points after the initiation of HSV reactivation. We present a uniform, rapid, and reliable method of in vivo HSV-1 reactivation in mice that yields high reactivation frequencies (75 to 100%) by using sodium butyrate, a histone deacetylase inhibitor, and demonstrate that the reactivating virus can be detected at the original site of infection. PMID:17360760

  19. Both butyrate incubation and hypoxia upregulate genes involved in the ruminal transport of SCFA and their metabolites.

    PubMed

    Dengler, F; Rackwitz, R; Benesch, F; Pfannkuche, H; Gäbel, G

    2015-04-01

    Butyrate modulates the differentiation, proliferation and gene expression profiles of various cell types. Ruminal epithelium is exposed to a high intraluminal concentration and inflow of n-butyrate. We aimed to investigate the influence of n-butyrate on the mRNA expression of proteins involved in the transmembranal transfer of n-butyrate metabolites and short-chain fatty acids in ruminal epithelium. N-butyrate-induced changes were compared with the effects of hypoxia because metabolite accumulation after O2 depletion is at least partly comparable to the accumulation of metabolites after n-butyrate exposure. Furthermore, in various tissues, O2 depletion modulates the expression of transport proteins that are also involved in the extrusion of metabolites derived from n-butyrate breakdown in ruminal epithelium. Sheep ruminal epithelia mounted in Ussing chambers were exposed to 50 mM n-butyrate or incubated under hypoxic conditions for 6 h. Electrophysiological measurements showed hypoxia-induced damage in the epithelia. The mRNA expression levels of monocarboxylate transporters (MCT) 1 and 4, anion exchanger (AE) 2, downregulated in adenoma (DRA), putative anion transporter (PAT) 1 and glucose transporter (GLUT) 1 were assessed by RT-qPCR. We also examined the mRNA expression of nuclear factor (NF) κB, cyclooxygenase (COX) 2, hypoxia-inducible factor (HIF) 1α and acyl-CoA oxidase (ACO) to elucidate the possible signalling pathways involved in the modulation of gene expression. The mRNA expression levels of MCT 1, MCT 4, GLUT 1, HIF 1α and COX 2 were upregulated after both n-butyrate exposure and hypoxia. ACO and PAT 1 were upregulated only after n-butyrate incubation. Upregulation of both MCT isoforms and NFκB after n-butyrate incubation could be detected on protein level as well. Our study suggests key roles for MCT 1 and 4 in the adaptation to an increased intracellular load of metabolites, whereas an involvement of PAT 1 in the transport of n-butyrate also

  20. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  1. Butyrate production in engineered Escherichia coli with synthetic scaffolds.

    PubMed

    Baek, Jang-Mi; Mazumdar, Suman; Lee, Sang-Woo; Jung, Moo-Young; Lim, Jae-Hyung; Seo, Sang-Woo; Jung, Gyoo-Yeol; Oh, Min-Kyu

    2013-10-01

    Butyrate pathway was constructed in recombinant Escherichia coli using the genes from Clostridium acetobutylicum and Treponema denticola. However, the pathway constructed from exogenous enzymes did not efficiently convert carbon flux to butyrate. Three steps of the productivity enhancement were attempted in this study. First, pathway engineering to delete metabolic pathways to by-products successfully improved the butyrate production. Second, synthetic scaffold protein that spatially co-localizes enzymes was introduced to improve the efficiency of the heterologous pathway enzymes, resulting in threefold improvement in butyrate production. Finally, further optimizations of inducer concentrations and pH adjustment were tried. The final titer of butyrate was 4.3 and 7.2 g/L under batch and fed-batch cultivation, respectively. This study demonstrated the importance of synthetic scaffold protein as a useful tool for optimization of heterologous butyrate pathway in E. coli.

  2. Apoptosis cascade proteins are regulated in vivo by high intracolonic butyrate concentration: correlation with colon cancer inhibition.

    PubMed

    Avivi-Green, C; Polak-Charcon, S; Madar, Z; Schwartz, B

    2000-01-01

    The present study was aimed at evaluating the effect of high intracolonic butyrate concentrations, either through fermentation of a soluble fiber-enriched diet or via intracolonic butyrate instillation, on colon cancer in a chemically induced (dimethylhydrazine) rat model. The effects were tested in four groups of dimethylhydrazine-treated rats: (i) rats fed a standard diet, (ii) rats fed a diet enriched with 15% citrus pectin, a soluble fiber that ferments and produces a high concentration of intracolonic butyrate, (iii) rats fed a standard diet and intrarectally instilled with a sodium butyrate solution (50 mM), (iv) rats fed a standard diet and intrarectally instilled with sodium butyrate vehicle solution (100 mM NaCl). The apoptotic index in the distal colon of rats fed pectin was higher than in colonic tissue from rats fed a standard diet. The expression of caspase-1, a cysteine protease implicated in the regulation of programmed cell death, as detected by both Northern and Western analysis, showed the highest mRNA and protein levels in colonic tissue from rats intrarectally instilled with butyrate. Immunohistology confirmed the Western blot findings. Expression of the cleaved poly(ADP-ribose) polymerase product, a downstream nuclear substrate for caspase-3 in the apoptotic pathway, was elevated in both the pectin-fed and butyrate-instilled groups. Expression of the antiapoptotic protein Bcl-2 was significantly reduced following pectin feeding as well as butyrate instillation. The highest expression of Bcl-2 was observed in tumor tissue. A marked reduction in aberrant crypt number was observed in colonic tissue obtained from both the pectin-fed and butyrate-instilled groups relative to rats from the standard diet group. The average tumor volume per rat in both the pectin-fed and butyrate-instilled groups was significantly lower than in rats from the standard diet and the sodium butyrate vehicle-instilled groups. We conclude that high butyrate levels, either

  3. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens.

    PubMed

    Zhang, W H; Gao, F; Zhu, Q F; Li, C; Jiang, Y; Dai, S F; Zhou, G H

    2011-11-01

    The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P < 0.001), whereas it was alleviated by the dietary microencapsulated SB (P < 0.05). Meanwhile, the catalase activity was decreased and malondialdehyde level was increased by the stress (P < 0.05), and the microencapsulated-SB diet significantly inhibited this effect (P < 0.05). Lower pH values and higher yellowness values were also observed in CORT-challenged chickens (P < 0.05), and the microencapsulated-SB diet treatment partially exerted a preventive effect. Microencapsulated SB significantly decreased the contents of saturated fatty acids and C18:0 (P < 0.01 and P < 0.001), and increased C20:0 and C20:4 contents. However, the effect of the stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.

  4. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C71 butyric acid methyl ester polymer solar cells

    NASA Astrophysics Data System (ADS)

    Chauhan, A. K.; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-01

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C71 butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ˜2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  5. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development.

  6. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development. PMID:25478867

  7. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    PubMed

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  8. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

    PubMed Central

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-01-01

    Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882

  9. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers.

    PubMed

    Jerzsele, A; Szeker, K; Csizinszky, R; Gere, E; Jakab, C; Mallo, J J; Galfi, P

    2012-04-01

    Necrotic enteritis caused by Clostridium perfringens leads to serious economical losses to the poultry industry. There is a growing need to find effective, nontoxic, antibiotic alternatives to prevent and cure the disease. In our study, the efficacy of protected sodium butyrate at 1.5 g/kg (BP70), a Bacillus amyloliquefaciens spore suspension with 10(9) cfu/g (BAL; Ecobiol), a protected blend of essential oils (1%) at 1.5 g/kg (EO), and a combination of sodium butyrate with essential oils (1%) protected with vegetable fat at 1.5 g/kg (BP70+EO; Natesse) was investigated in an artifical C. perfringens-infection model. Body weight gain, gross pathological and histopathological lesion scores, villus lengths, and villus length:crypt depth ratio was determined and compared with the control group. Broilers infected with C. perfringens and treated with essential oils or the combination of sodium butyrate and essential oils showed significantly better BW gain (P < 0.05), increased villus length and villus length:crypt depth ratio (P < 0.001), and decreased gross pathological and histopathological lesion scores (P < 0.05) compared with the control. Sodium butyrate alone and B. amyloliquefaciens spore suspension had no beneficial effects on the course of the disease in this study. According to our results, the protected combination of sodium butyrate and essential oils, as well as the protected essential oils, can be potential candidates for the prevention and treatment of necrotic enteritis in broiler chickens. PMID:22399722

  10. Short-chain fatty acid modulation of apoptosis in the Kato III human gastric carcinoma cell line.

    PubMed

    Matthews, Geoffrey M; Howarth, Gordon S; Butler, Ross N

    2007-07-01

    The short-chain fatty acid (SCFA) butyrate is known to induce apoptosis in colon cancer cells in vitro and in vivo, however, its mode of action is poorly defined, whilst less is known regarding the effects of the SCFA propionate. This study investigated the potential for butyrate and propionate to alter cell viability, cell cycle regulation and intracellular protective mechanisms in a human gastric cancer cell line (Kato III). Kato III cells were incubated with butyrate or propionate for 24, 48 and 72 hr. At each time point, cells were assessed for the induction of apoptosis and cell cycle alterations using flow cytometry. Oxidative pentose pathway (OPP) activity and glutathione (GSH) availability were also measured as an index of intracellular protection. Butyrate and propionate differentially induced apoptosis and necrosis in Kato III cells and arrested cells in the G2-M phase. OPP activity was significantly increased by both SCFAs although butyrate induced a 10-fold greater increase than propionate. GSH availability was significantly decreased in Kato III cells by butyrate and propionate. These findings demonstrate that butyrate and propionate induce apoptosis and cell cycle alterations in Kato III gastric cancer cells. Moreover, the effects of butyrate were significantly greater than propionate. We propose that alterations to intracellular redox state and GSH availability play an important role in SCFA-mediated cell death in this cell type. The inclusion of butyrate and propionate as adjunctive cancer therapies has the potential to enhance the efficacy of current chemotherapeutics in the treatment of gastric cancer. PMID:17611404

  11. Dietary sodium gluconate protects rats from large bowel cancer by stimulating butyrate production.

    PubMed

    Kameue, Chiyoko; Tsukahara, Takamitsu; Yamada, Kouji; Koyama, Hironari; Iwasaki, Yoshie; Nakayama, Keizo; Ushida, Kazunari

    2004-04-01

    Butyrate has an antitumorigenic effect on colorectal cancer cell lines. Dietary sodium gluconate (GNA) promotes butyrate production in the large intestine. Accordingly, we examined the effect of dietary GNA on tumorigenesis in the large intestine in rats. Male Fisher-344 rats (n = 32) were divided into 4 groups: 2 diets (with or without 50 g GNA/kg basal diet) x 2 treatments (with or without carcinogen administration). Colonic tumors were induced by 3 intraperitoneal injections of azoxymethane (15 mg/kg body wt, 1 time/wk) and dietary deoxycholic acid (2 g/kg basal diet). The experiment was conducted for 33 wk except for a few rats. Ingestion of GNA increased cecal butyrate concentration at the end of experiment (P < 0.01). No tumor development occurred in the untreated groups. Ingestion of GNA decreased the incidence of tumors in rats administered the carcinogen (37.5 vs. 100%, P < 0.05). Ingestion of GNA also decreased the mean number of tumors per rat (0.5 +/- 0.8 vs. 2.8 +/- 1.5, P < 0.01). beta-Catenin accumulation and TdT-mediated dUTP nick end labeling (TUNEL) positive cells in tumors were histochemically examined. The results of this study suggested that the antitumorigenic effect of GNA may involve the stimulation of apoptosis through enhanced butyrate production in the large intestine.

  12. Enzymology of butyrate formation by Butyrivibrio fibrisolvens.

    PubMed

    Miller, T L; Jenesel, S E

    1979-04-01

    Butyrivibrio fibrisolvens is a major butyrate-forming species in the bovine and ovine rumen. The enzymology of butyrate formation from pyruvate was investigated in cell-free extracts of B. fibrisolvens D1. Pyruvate owas oxidized to acetylcoenzyme A (CoA) in the presence of CoA.SH and benzyl viologen or flavin nucleotides. The bacterium uses thiolase, beta-hydroxybutyryl-CoA dehydrogenase, crotonase, and crotonyl-CoA reductase to form butyryl-CoA from acetyl-CoA. Reduction of acetoacetyl-CoA to beta-hydroxybutyryl-CoA was faster with NADH than with NADPH. Crotonyl-CoA was reduced to butyryl-CoA by NADH, but not by NADPH, only in the presence of flavin nucleotides. Reduction of flavin nucleotides by NADH was much slower than the flavin-dependent reduction of crotonyl-CoA. This indicates that flavoproteins rather than free flavin participated in the reduction of crotonyl-CoA. Butyryl-CoA was converted to butyrate by phosphate butyryl transferase and butyrate kinase.

  13. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers.

    PubMed

    Schlau, N; Guan, L L; Oba, M

    2012-10-01

    Past research has focused on the prevention and management of subacute rumen acidosis by manipulating the ration; however, the severity of acidosis varies even among animals fed a common high-grain diet. The objectives of this study were to compare the ruminal volatile fatty acid (VFA) profile and expression of genes involved in the metabolism of butyrate, the VFA most extensively metabolized by the ruminal epithelium, and intracellular pH regulation in ruminal epithelial cells between acidosis-resistant (AR) and acidosis-susceptible (AS) steers. Acidosis indexes (area per day under pH 5.8 divided by dry matter intake) were measured for 17 steers fed a common high-grain diet, and the 3 steers with the lowest (1.4 ± 1.2 pH∙min/kg) and the 3 with the highest values (23.9 ± 7.4 pH∙min/kg) were classified as AR and AS, respectively, and used in the subsequent study. The steers were force-fed a diet containing 85% grain at 60% of the expected daily intake (5.8 ± 0.8 and 5.6 ± 0.6 kg for AR and AS, respectively) within 30 min. Mean ruminal pH over the postprandial 6-h period was higher for AR compared with AS (6.02 vs. 5.55), and mean total VFA concentration was 74% for AR compared with AS (122 vs. 164 mM). Molar proportion of butyrate in the ruminal fluid was 139% higher for AR compared with AS (17.5 vs. 7.33 mol/100 mol of VFA). Expression of monocarboxylate cotransporter isoform 1, sodium hydrogen exchanger isoforms 1 and 2, and anion exchangers (downregulated in adenoma and putative anion exchanger, isoform 1) did not differ between AR and AS steers. However, expression of sodium hydrogen exchanger isoform 3, which imports Na(+) to the epithelial cell and exports H(+) to the rumen, was 176% higher in AR steers than in AS steers. Higher ruminal pH for AR might be partly due to a faster rate of VFA absorption, lower VFA production, or both.

  14. Down-regulation of protein kinase CKII activity by sodium butyrate.

    PubMed

    Russo, G L; Della Pietra, V; Mercurio, C; Della Ragione, F; Marshak, D R; Oliva, A; Zappia, V

    1997-04-28

    Butyrate, a dietary fiber derivative, is a well-known differentiating agent in cultured cell lines. In addition, its antineoplastic activity toward colon-rectum cancers has been documented both in vivo and in vitro. Despite the large amount of information on the potential clinical efficacy of butyrate, its mechanism of action at the molecular level has only been partially investigated. Here, we show that serine/threonine protein kinase CKII is a target of butyrate activity. In the human adenocarcinoma cell line, HT29, treated with 2 mM sodium butyrate, CKII activity decreases 50% at 24 and 48 hours after drug addition. The enzyme down-regulation is not due to changes in protein amount since the levels of the different CKII subunits remain constant during butyrate treatment. The data reported provide the first evidence that CKII down-regulation is involved in the signal transduction pathway started by butyrate.

  15. [Induction of premature senescence program by an inhibitor of histone deacetylase sodium butyrate in normal and transformed rat fibroblasts].

    PubMed

    Zubova, Iu G; Bykova, T V; Zubova, S G; Abramova, M V; Aksenov, N D; Pospelov, V A; Pospelova, T V

    2005-01-01

    We investigated a possibility to induce the premature cell senescence in rat embryo fibroblasts and E1A + cHa-ras transformants. We found that after the treatment with sodium butyrate, an inhibitor of histone deacetylases, both normal and transformed cells completely stopped to proliferate and accumulated at G1/S and G2/M phases of the cell cycle. The cloning efficiency data show that the cell cycle arrest induced by sodium butyrate is irreversible and correlates with the accumulation of active phosphorylated form of stress kinase p38, and with the expression of marker of senescence--beta-galactosidase activity (SA beta-Gal). The program resembling the premature senescence after sodium butyrate treatment is supposed to develop both in normal and transformed cells. The irreversible block of proliferation in E1A + cHa-ras transformants may be regarded as an example of activation of anticancer program like that of premature senescence in the tumor rodent cells. PMID:16706193

  16. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  17. Carboplatin and sodium butyrate, separate--yes, but combined--never.

    PubMed

    Gurtowska, Natalia; Kloskowski, Tomasz; Olkowska, Joanna; Bajek, Anna; Debski, Robert; Zielaskowska, Jowita; Drewa, Tomasz

    2013-01-01

    With the object of improving the effectiveness of a malignant melanoma's treatment and a patients' quality of life, there is a serious need to identify new anticancer compounds, for example, among naturally derived compounds such as sodium butyrate. The aim of this study was to assess the combined impact of carboplatin (C) and sodium butyrate on the B16 melanoma viability by in vitro. B16 cell line was exposed to various concentrations of carboplatin (0.001-10 micromol/L) and sodium butyrate (1 to 100 mmol/L) for 24 h. LC10, LC50 and LC90 values were calculated. The influence of carboplatin and sodium butyrate on the cell cycle and apoptosis was assessed. Additionally, magnetic stem cell sorting was performed, positive melanoma CD133 cells were isolated and the effects of carboplatin and sodium butyrate on cell viability with heterogeneous population of melanoma cells (CD133+/CD133-) was compared. For carboplatin LC50 and LC90 were 1.2 micromol/L and 4.58 pmol/L, respectively. For sodium butyrate LC50 and LC90 were 65.73 mmol/L and 275.06 mmol/L. The value for LC10 could not be determined. Sodium butyrate at the highest concentration (100.0 mmol/L) resulted in only 57.36% mortality of cells. A synergistic effect of both compounds was observed in low concentrations of sodium butyrate and carboplatin. That synergism disappeared at concentrations corresponding to LC50. At the concentration corresponding to LC50 C and high concentration of sodium butyrate, a decrease of cell numbers in phase G2/M was observed (r = -0.97). Cells were arrested in phase G1/G0 and S. The presented results exclude the possibility of the combined application of sodium butyrate and carboplatin in cancer therapy.

  18. Local uptake of (14)C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression.

    PubMed

    Dienel, G A; Liu, K; Cruz, N F

    2001-12-01

    Spreading depression severely disrupts ion homeostasis, causes sensory neglect and motor impairment, and is associated with stroke and migraine. Glucose utilization (CMR(glc)) and lactate production rise during spreading depression, but the metabolic changes in different brain cell types are unknown. Uptake of (14)C-labeled compounds known to be preferentially metabolized by the glial tricarboxylic acid cycle was, therefore, examined during unilateral KCl-induced spreading cortical depression in conscious, normoxic rats. [(14)C]Metabolites derived from [(14)C]butyrate in K+ -treated tissue rose 21% compared to that of untreated contralateral control cortex, whereas incorporation of H(14)CO(3) into metabolites in K+ -treated tissue was reduced to 86% of control. Autoradiographic analysis showed that laminar labeling of cerebral cortex by both (14)C-labeled acetate and butyrate was elevated heterogeneously throughout cortex by an average of 23%; the increase was greatest (approximately 40%) in tissue adjacent to the K+ application site. Local uptake of acetate, butyrate, and deoxyglucose showed similar patterns, and monocarboxylic acid uptake was highest in the structures in which apparent loss of labeled metabolites of [6-(14)C]glucose was greatest. Enhancement of net uptake of acetate and butyrate in cerebral cortex during spreading depression is tentatively ascribed to increased astrocyte metabolism.

  19. T cell tolerance induced by histone deacetylase inhibitor is mediated by P21cip1.

    PubMed

    Gilbert, Kathleen M; Boger, Susan R; Price, Peter; Fifer, E Kim

    2005-01-01

    MEB [n-butyrate 2-(4-morpholinyl) ethyl butyrate hydrochloride], a histone deacetylase inhibitor and G1 blocker, has been shown to induce unresponsiveness in antigen-activated Th1 cells. MEB was tested for here for its ability to inactivate naive alloantigen-specific T cells from DBA/2 and C57BL/10 mice. Since T cells from these two strains of mice have been shown to differ in their cell cycle regulation, it we hoped that this comparison would provide information concerning the role of cycle regulatory proteins in mediating MEB-induced T cell unresponsiveness. MEB inhibited proliferation in a one-way mixed lymphocyte reaction (MLR) in which spleen cells from DBA/2 mice (H-2d) or C57BL/10 mice (H-2b) were stimulated with spleen cells from C57BL/10 or DBA/2 mice, respectively. C57BL/10 responder T cells isolated from the MEB-treated primary MLR remained unresponsive to alloantigen following restimulation in a secondary MLR that did not contain MEB. T cells from DBA/2 mice were less sensitive to MEB-induced unresponsiveness and required a longer exposure or pretreatment with IL-2 to become tolerant. In all cases responsiveness to MEB-induced tolerance in the alloantigen-stimulated T cells corresponded with the levels of the cyclin-dependent kinase inhibitor p21cip1. Additional experiments showed that T cells from p21cip1-deficient mice, unlike T cells from p21cip1 wild-type littermates, were resistant to MEB-induced tolerance. These results underscore the role of p21cip1 in mediating T cell tolerance induced by the histone deacetylase inhibitor MEB.

  20. Butyrate and propionate: important components of toxic dental plaque extracts.

    PubMed Central

    Singer, R E; Buckner, B A

    1981-01-01

    Extracts of in vitro-cultured human dental plaque contain factors toxic to mammalian cells. Previous studies demonstrated that those toxic factors most readily released from cultured plaque had very low molecular weights and were heat stable. Studies reported here demonstrate that metabolic end products including short-chain fatty acids were present in fractions containing the low-molecular-weight, heat-stable factors. The salts of two of these acids, butyrate and propionate, inhibited proliferation of both mouse L929 cells and human gingival fibroblasts. Furthermore, when tested at concentrations present in plaque extracts, the inhibitory effects of butyrate and propionate accounted for essentially all the inhibitory potential of the extracts. These findings, taken together with those of other groups, suggest that butyrate and propionate, end products of dental plaque metabolism, may have an etiological role in periodontal disease. PMID:7251132

  1. Thalidomide is more efficient than sodium butyrate in enhancing GATA-1 and EKLF gene expression in erythroid progenitors derived from HSCs with β-globin gene mutation

    PubMed Central

    Jalali Far, Mohammad Ali; Dehghani Fard, Ali; Hajizamani, Saiedeh; Mossahebi-Mohammadi, Majid; Yaghooti, Hamid; Saki, Najmaldin

    2016-01-01

    Background: Efficient induction of fetal hemoglobin (HbF) is considered as an effective therapeutic approach in beta thalassemia. HbF inducer agents can induce the expression of γ-globin gene and produce high levels of HbF via different epigenetic and molecular mechanisms. Thalidomide and sodium butyrate are known as HbF inducer drugs. Material and methods: CD133+ stem cells were isolated from umbilical cord blood of a newborn with minor β-thalassemia in order to evaluate the effects of these two drugs on the in vitro expression of GATA-1 and EKLF genes as erythroid transcription factors. CD133+ stem cells were expanded and differentiated into erythroid lineage and then treated with thalidomide and sodium butyrate and finally analyzed by quantitative real-time PCR. Statistical analysis was performed using student’s t-test by SPSS software. Results: Thalidomide and sodium butyrate increased GATA-1 and EKLF gene expression, compared to the non-treated control (P<0.05). Conclusion: Thalidomide was more efficient than sodium butyrate in augmenting expression of GATA-1 and EKLF genes. It seems that GATA-1 and EKLF have crucial roles in the efficient induction of HbF by thalidomide. PMID:27047649

  2. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.

    PubMed

    Chang, Pamela V; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-02-11

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors.

  3. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.

    PubMed

    Chang, Pamela V; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-02-11

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  4. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3.

    PubMed

    Li, Huating; Gao, Zhanguo; Zhang, Jin; Ye, Xin; Xu, Aimin; Ye, Jianping; Jia, Weiping

    2012-04-01

    Fibroblast growth factor 21 (FGF21) stimulates fatty acid oxidation and ketone body production in animals. In this study, we investigated the role of FGF21 in the metabolic activity of sodium butyrate, a dietary histone deacetylase (HDAC) inhibitor. FGF21 expression was examined in serum and liver after injection of sodium butyrate into dietary obese C57BL/6J mice. The role of FGF21 was determined using antibody neutralization or knockout mice. FGF21 transcription was investigated in liver and HepG2 hepatocytes. Trichostatin A (TSA) was used in the control as an HDAC inhibitor. Butyrate was compared with bezafibrate and fenofibrate in the induction of FGF21 expression. Butyrate induced FGF21 in the serum, enhanced fatty acid oxidation in mice, and stimulated ketone body production in liver. The butyrate activity was significantly reduced by the FGF21 antibody or gene knockout. Butyrate induced FGF21 gene expression in liver and hepatocytes by inhibiting HDAC3, which suppresses peroxisome proliferator-activated receptor-α function. Butyrate enhanced bezafibrate activity in the induction of FGF21. TSA exhibited a similar set of activities to butyrate. FGF21 mediates the butyrate activity to increase fatty acid use and ketogenesis. Butyrate induces FGF21 transcription by inhibition of HDAC3.

  5. Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells.

    PubMed

    Zhao, Dewei; Tang, Weihua; Ke, Lin; Tan, Swee Tiam; Sun, Xiao Wei

    2010-03-01

    We present herein efficient bulk heterojunction (BHJ) solar cells via mixing poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] (F6T2) and 6,6-phenyl C61 butyric acid methyl ester (PCBM) with variable weight ratios. The photo-physics and morphology of F6T2:PCBM blend films and the electrical characteristics of their corresponding single cells were studied in details by changing PCBM concentration. The complete photoluminescence quenching of F6T2 emission occurs with only a small fraction of PCBM blended, demonstrating effective photoinduced charge transfer between F6T2 and PCBM. Morphology images from atomic force microscopy and scanning electron microscopy (SEM) reveal that the phase separation in F6T2:PCBM blend films becomes pronounced with the increase of PCBM concentration, resulting in the increased fill factor from 25.2% (1:1) to 56.9% (1:6). A SEM image also shows the phase separation is within the range of 10 - 20 nm. With the optimized F6T2:PCBM weight ratio (1:2), the single cell exhibits a highest power conversion efficiency of 2.46% due to the balance of light absorption and charge transport. Finally, the polymer-small molecule tandem cells are constructed using F6T2:PCBM BHJ as the bottom cell and copper phthalocyanine (CuPc):fullerene (C(60)) as the top cell. The open-circuit voltage (V(oc)) of tandem cell (1.27 V) is equal to the summation of the V(oc) values of the bottom cell (0.86 V) and the top cell (0.43 V). PMID:20356288

  6. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.

  7. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism. PMID:23201417

  8. Butyrate as preferred substrate for polyhydroxybutyrate production.

    PubMed

    Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2013-08-01

    In this study, the suitability of butyrate as substrate for polyhydroxyalkanoate (PHA) production by microbial enrichment cultures was assessed. Two sequencing batch reactors were operated under feast-famine conditions: one fed with butyrate, and another with mixed acetate and butyrate. The obtained results were compared to previous results with acetate as sole substrate. In all three reactors Plasticicumulans acidivorans dominated the enrichment culture. The carbon uptake rate and PHA yield were significantly higher on butyrate than on acetate, resulting in a higher PHA production rate. When both substrates were available the bacteria strongly preferred the uptake of butyrate. Only after butyrate depletion acetate was taken up at a high rate. The molar substrate uptake rate remained the same, suggesting that substrate uptake is the rate-limiting step. The results show that for optimized waste-based PHA production the pre-fermentation process should be directed towards butyrate production.

  9. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect

    Chauhan, A. K. E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  10. Induction of peroxisomes by butyrate-producing probiotics.

    PubMed

    Weng, Huachun; Endo, Kosuke; Li, Jiawei; Kito, Naoko; Iwai, Naoharu

    2015-01-01

    We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.

  11. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats.

    PubMed

    Khan, Sabbir; Jena, Gopabandhu

    2014-11-01

    Recent reports highlighted the role of histone deacetylases (HDACs) in the pathogenesis of diabetic nephropathy (DN), but the exact molecular mechanisms by which HDAC inhibitors ameliorate DN still remain unclear. The present study was aimed to investigate the renoprotective effects of sodium butyrate (NaB) in diabetes-induced renal damages, apoptosis and fibrosis in juvenile rats. Diabetes was induced by single injection of STZ (60mg/kg), whereas NaB (500mg/kg/day) was administrated for 21days by i.p. route in a pre- and post-treatment schedule. End-points of evaluation included biochemical estimation, histology, protein expression as well as apoptosis and DNA damage examinations. Post-treatment with NaB significantly decreased plasma glucose, creatinine, urea, histological alterations including the fibrosis and collagen deposition as well as decreased the HDACs activity, expression of eNOS, iNOS, α-SMA, collagen I, fibronectin, TGFβ-1, NFκB, apoptosis and DNA damage in the diabetic kidney. These results showed that NaB treatment improved the renal function and ameliorated the histological alterations, fibrosis, apoptosis and DNA damage in the kidney of juvenile rats.

  12. p21(Cip1) up-regulated during histone deacetylase inhibitor-induced CD4(+) T-cell anergy selectively associates with mitogen-activated protein kinases.

    PubMed

    Selma Dagtas, Ayse; Gilbert, Kathleen M

    2010-04-01

    Histone deacetylase inhibitor n-butyrate induced proliferative unresponsiveness in antigen-stimulated murine CD4(+) T cells. T cells anergized by n-butyrate demonstrated reduced interleukin-2 (IL-2) secretion and decreased activating protein 1 (AP-1) activity upon restimulation. Mechanistic studies determined that the cyclin-dependent kinase (cdk) inhibitor p21(Cip1) was up-regulated in the anergic CD4(+) T cells. p21(Cip1) is known to inhibit the cell cycle through its interaction with cdk, proliferating cell nuclear antigen (PCNA) or c-Jun N-terminal kinase (JNK). p21(Cip1) did not preferentially associate with PCNA or cdk in anergic T helper type 1 (Th1) cells. Instead, among the three interaction partners, p21(Cip1) was found to interact with phospho-JNK and phospho-c-jun selectively in the anergic CD4(+) T cells. The activity of c-jun and downstream transcription factor AP-1 were suppressed in the anergic Th1 cells. In contrast, p21(Cip1) and the two phospho-proteins were never detected concurrently in the control CD4(+) T cells. The n-butyrate-induced p21(Cip1)-mediated inhibition of JNK and c-jun represents a novel potential mechanism by which proliferative unresponsiveness was maintained in CD4(+) T cells.

  13. Effects of Lactobacillus plantarum 2142 and sodium n-butyrate in lipopolysaccharide-triggered inflammation: comparison of a porcine intestinal epithelial cell line and primary hepatocyte monocultures with a porcine enterohepatic co-culture system.

    PubMed

    Farkas, O; Mátis, G; Pászti-Gere, E; Palócz, O; Kulcsár, A; Petrilla, J; Csikó, Gy; Neogrády, Zs; Gálfi, P

    2014-09-01

    This study was based on our previously developed double-layered enterohepatic co-culture system, composed of nontumorigenic porcine intestinal epithelial cell line (IPEC-J2) and primary culture of porcine hepatocytes. The anti-inflammatory effect of spent culture supernatant of Lactobacillus plantarum 2142 (Lp2142; 13.3%) and sodium n-butyrate (2 mM) was tested on IPEC-J2 and hepatocyte monocultures as well as on the gut-liver co-culture. To mimic inflammation, lipopolysaccharide (LPS; 1 and 10 μg/mL) was applied. Production of IL-8 and IL-6 was measured as a marker of inflammatory responses. The paracellular permeability of the intestinal epithelium was also monitored by fluoresceinisothiocyanate-labeled dextran 4 assay. Significant increase of IL-8 concentration was observed in the IPEC-J2 monoculture (P < 0.01) while the level of IL-6 was not changed following LPS treatment. Concentration of IL-8 and IL-6 was grown significantly in hepatocyte monocultures (P < 0.05 and P < 0.001) as well as in the co-culture after 10 μg/mL LPS treatment (P < 0.001 and P < 0.001). One microgram per milliliter LPS caused elevated IL-8 level in the co-culture (P < 0.001) and in the hepatocyte monoculture (P < 0.01), while it caused increased IL-6 level only in the hepatocytes (P < 0.001). Production of IL-8 was significantly decreased by butyrate in case of 1 μg/mL as well as 10 μg/mL LPS exposure in the co-culture (P < 0.001). Application of butyrate also reduced IL-6 level in the co-culture after 10 μg/mL LPS treatment (P < 0.01). Lactobacillus plantarum 2142 decreased IL-8 level after incubation with 1 μg/mL LPS (P < 0.001), while in case of 10 μg/mL LPS treatment only a marginal lowering in IL-8 (P = 0.064) release was measured. The IL-6 concentration was significantly reduced (P < 0.01 in case of 1 μg/mL LPS treatment) by Lp2142 in the co-culture. Contrarily, the elevated IL-8 and IL-6 level of hepatocytes has not been reduced in case of either butyrate or Lp2142

  14. Activation of the receptor (Gpr109a) for niacin and the commensal metabolite butyrate suppresses colonic inflammation and carcinogenesis

    PubMed Central

    Singh, Nagendra; Gurav, Ashish; Sivaprakasam, Sathish; Brady, Evan; Padia, Ravi; Shi, Huidong; Thangaraju, Muthusamy; Prasad, Puttur D.; Manicassamy, Santhakumar; Munn, David H.; Lee, Jeffrey R.; Offermanns, Stefan; Ganapathy, Vadivel

    2015-01-01

    SUMMARY Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1−/− mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon. PMID:24412617

  15. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis.

    PubMed

    Singh, Nagendra; Gurav, Ashish; Sivaprakasam, Sathish; Brady, Evan; Padia, Ravi; Shi, Huidong; Thangaraju, Muthusamy; Prasad, Puttur D; Manicassamy, Santhakumar; Munn, David H; Lee, Jeffrey R; Offermanns, Stefan; Ganapathy, Vadivel

    2014-01-16

    Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.

  16. Nutrient-induced modulation of gene expression and cellular functions: modeling epigenetic regulation in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acids (VFA), especially butyrate, participate in metabolism both as nutrients and as regulators of histone deacetylation. The major biochemical change that occurs in cells treated with butyrate is the global hyperacetylation of histones. One paradigmatic example of the nutrient-epige...

  17. CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer.

    PubMed

    Bordonaro, Michael; Lazarova, Darina L

    2015-07-21

    This paper reviews the distinctive roles played by the transcriptional coactivators CREB-binding protein (CBP) and p300 in Wnt/β-catenin signaling and cell physiology in colorectal cancer (CRC). Specifically, we focus on the effects of CBP- and p300-mediated Wnt activity on (1) neoplastic progression; (2) the activities of butyrate, a breakdown product of dietary fiber, on cell signaling and colonic cell physiology; (3) the development of resistance to histone deacetylase inhibitors (HDACis), including butyrate and synthetic HDACis, in colonic cells; and (4) the physiology and number of cancer stem cells. Mutations of the Wnt/β-catenin signaling pathway initiate the majority of CRC cases, and we have shown that hyperactivation of this pathway by butyrate and other HDACis promotes CRC cell apoptosis. This activity by butyrate may in part explain the preventive action of fiber against CRC. However, individuals with a high-fiber diet may still develop neoplasia; therefore, resistance to the chemopreventive action of butyrate likely contributes to CRC. CBP or p300 may modify the ability of butyrate to influence colonic cell physiology since the two transcriptional coactivators affect Wnt signaling, and likely, its hyperactivation by butyrate. Also, CBP and p300 likely affect colonic tumorigenesis, as well as stem cell pluripotency. Improvement of CRC prevention and therapy requires a better understanding of the alterations in Wnt signaling and gene expression that underlie neoplastic progression, stem cell fate, and the development of resistance to butyrate and clinically relevant HDACis. Detailed knowledge of how CBP- and p300 modulate colonic cell physiology may lead to new approaches for anti-CRC prevention and therapeutics, particularly with respect to combinatorial therapy of CBP/p300 inhibitors with HDACis.

  18. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system.

  19. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.

  20. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management. PMID:26655363

  1. Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon.

    PubMed

    Suply, Etienne; de Vries, Philine; Soret, Rodolphe; Cossais, François; Neunlist, Michel

    2012-06-15

    Postnatal changes in the enteric nervous system (ENS) are involved in the establishment of colonic motility. In adult rats, butyrate induced neuroplastic changes in the ENS, leading to enhanced colonic motility. Whether butyrate can induce similar changes during the postnatal period remains unknown. Enemas (Na-butyrate) were performed daily in rat pups between postnatal day (PND) 7 and PND 17. Effects of butyrate were evaluated on morphological and histological parameters in the distal colon at PND 21. The neurochemical phenotype of colonic submucosal and myenteric neurons was analyzed using antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS). Colonic motility and neuromuscular transmission was assessed in vivo and ex vivo. Butyrate (2.5 mM) enemas had no impact on pup growth and histological parameters compared with control. Butyrate did not modify the number of Hu-immunoreactive (IR) neurons per ganglia. A significant increase in the proportion (per Hu-IR neurons) of nNOS-IR myenteric and submucosal neurons and ChAT-IR myenteric neurons was observed in the distal colon after butyrate enemas compared with control. In addition, butyrate induced a significant increase in both nitrergic and cholinergic components of the neuromuscular transmission compared with control. Finally, butyrate increased distal colonic transit time compared with control. We concluded that butyrate enemas induced neuroplastic changes in myenteric and submucosal neurons, leading to changes in gastrointestinal functions. Our results support exploration of butyrate as potential therapy for motility disorders in preterm infants with delayed maturation of the ENS.

  2. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development.

    PubMed

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  3. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    PubMed Central

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  4. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition.

  5. The Future of Butyric Acid in Industry

    PubMed Central

    Dwidar, Mohammed; Park, Jae-Yeon; Mitchell, Robert J.; Sang, Byoung-In

    2012-01-01

    In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches. PMID:22593687

  6. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  7. In vitro dissolution and in vivo absorption of calcium [1-(14)c]butyrate in free or protected forms.

    PubMed

    Smith, David J; Barri, Adriana; Herges, Grant; Hahn, Joe; Yersin, Andrew G; Jourdan, Alissa

    2012-03-28

    Butyrate is a byproduct of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for epithelial cell development, mucosal integrity, and animal growth, an encapsulation technique has been developed that allows for the slow release of butyrate into the small and large intestines. The purpose of this study was to describe the in vitro release of calcium [1-(14)C]butyrate, formulated into a slow-release (protected) bead, into water and simulated intestinal fluids and to compare the in vivo absorption and disposition of unprotected versus protected calcium [1-(14)C]butyrate in broiler chicks. Formulation of calcium [1-(14)C]butyrate into protected beads allowed release of 5.8 ± 0.2 and 3.4 ± 0.2% of the formulated radiocarbon into water and gastric fluid, respectively, after 2 h of incubation. Beads incubated in gastric fluid for 2 h and subsequently incubated in simulated intestinal fluid released a total of 17.4 ± 0.8% of the formulated radioactivity. Release of respiratory [(14)C]CO(2) after oral dosing of aqueous calcium [1-(14)C]butyrate in broiler chicks peaked at 15.2 ± 5.2% per hour 1.5 h after dosing; in contrast, maximal rates of release in chicks dosed with protected calcium [1-(14)C]butyrate occurred 4 h after dosing at 9.0 ± 3.1% per hour. The data suggested an improved efficacy of protected butyrate delivery to intestinal tissues over nonprotected butyrate. This study confirmed that encapsulation strategies designed to enhance delivery of ingredients to improve intestinal health are effective at prolonging intestinal exposure to butyrate. Encapsulation of such ingredients might benefit the food and feed industries.

  8. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    SciTech Connect

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahya, Muhammad

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured by current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.

  9. Cyclic AMP synergizes with butyrate in promoting β-defensin 9 expression in chickens.

    PubMed

    Sunkara, Lakshmi T; Zeng, Xiangfang; Curtis, Amanda R; Zhang, Guolong

    2014-02-01

    Host defense peptides (HDP) have both microbicidal and immunomodulatory properties. Specific induction of endogenous HDP synthesis has emerged as a novel approach to antimicrobial therapy. Cyclic adenosine monophosphate (cAMP) and butyrate have been implicated in HDP induction in humans. However, the role of cAMP signaling and the possible interactions between cAMP and butyrate in regulating HDP expression in other species remain unknown. Here we report that activation of cAMP signaling induces HDP gene expression in chickens as exemplified by β-defensin 9 (AvBD9). We further showed that, albeit being weak inducers, cAMP agonists synergize strongly with butyrate or butyrate analogs in AvBD9 induction in macrophages and primary jejunal explants. Additionally, oral supplementation of forskolin, an adenylyl cyclase agonist in the form of a Coleus forskohlii extract, was found to induce AvBD9 expression in the crop of chickens. Furthermore, feeding with both forskolin and butyrate showed an obvious synergy in triggering AvBD9 expression in the crop and jejunum of chickens. Surprisingly, inhibition of the MEK-ERK mitogen-activated protein kinase (MAPK) pathway augmented the butyrate-FSK synergy, whereas blocking JNK or p38 MAPK pathway significantly diminished AvBD9 induction in chicken macrophages and jejunal explants in response to butyrate and FSK individually or in combination. Collectively, these results suggest the potential for concomitant use of butyrate and cAMP signaling activators in enhancing HDP expression, innate immunity, and disease resistance in both animals and humans.

  10. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention.

    PubMed

    Khan, Sabbir; Jena, Gopabandhu

    2015-01-01

    The contribution of epigenetic mechanisms in diabetes mellitus (DM), β-cell reprogramming and its complications is an emerging concept. Recent evidence suggests that there is a link between DM and histone deacetylases (HDACs), because HDAC inhibitors promote β-cell differentiation, proliferation, function and improve insulin resistance. Moreover, gut microbes and diet-derived products can alter the host epigenome. Furthermore, butyrate and butyrate-producing microbes are decreased in DM. Butyrate is a short-chain fatty acid produced from the fermentation of dietary fibers by microbiota and has been proven as an HDAC inhibitor. The present review provides a pragmatic interpretation of chromatin-dependent and independent complex signaling/mechanisms of butyrate for the treatment of Type 1 and Type 2 DM, with an emphasis on the promising strategies for its drugability and therapeutic implication.

  11. Repression of HIP/RPL29 expression induces differentiation in colon cancer cells.

    PubMed

    Liu, Jian-Jun; Huang, Bao Hua; Zhang, Jinqiu; Carson, Daniel D; Hooi, Shing Chuan

    2006-05-01

    We had previously shown that the expression of heparin/heparan sulfate interacting protein/ribosomal protein L29 (HIP/RPL29) was upregulated in colon cancer tissues. The present study investigated the role of HIP/RPL29 in differentiation in colon cancer cells. Inducing cellular differentiation in HT-29 cells by both sodium butyrate and glucose deprivation resulted in a significant downregulation of HIP/RPL29 expression. The beta-catenin/Tcf-4 pathway is the most important pathway controlling the switch between cellular differentiation and proliferation in intestinal epithelial cells. Inducing differentiation by dominant-negative inhibition of the beta-catenin/Tcf-4 complexes in LS174T cells also resulted in downregulation of HIP/RPL29. To determine whether a lower expression of HIP/RPL29 could induce differentiation in cancer cells, small interfering RNA (siRNA) targeting HIP/RPL29 was transfected into LS174T cells. The resultant knockdown of HIP/RPL29 expression induced cellular differentiation, as shown by the increased expression of two known markers of differentiation in LS174T cells, galectin-4 and mucin-2. In addition, the differentiation process induced by repression of HIP/RPL29 expression was accompanied by the upregulation of p21 and p53. In conclusion, HIP/RPL29 plays a role in the cellular differentiation process in colon cancer cells. The differentiation process is at least partially mediated by the upregulation of p21 and p53 pathways. PMID:16475173

  12. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    PubMed

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication.

  13. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    PubMed

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication. PMID:27346602

  14. The Bacterial Fermentation Product Butyrate Influences Epithelial Signaling via Reactive Oxygen Species-Mediated Changes in Cullin-1 Neddylation1

    PubMed Central

    Kumar, Amrita; Wu, Huixia; Collier-Hyams, Lauren S.; Kwon, Young-Man; Hanson, Jason M.; Neish, Andrew S.

    2010-01-01

    The human enteric flora plays a significant role in intestinal health and disease. Populations of enteric bacteria can inhibit the NF-κB pathway by blockade of IκB-α ubiquitination, a process catalyzed by the E3-SCFβ-TrCP ubiquitin ligase. The activity of this ubiquitin ligase is regulated via covalent modification of the Cullin-1 subunit by the ubiquitin-like protein NEDD8. We previously reported that interaction of viable commensal bacteria with mammalian intestinal epithelial cells resulted in a rapid and reversible generation of reactive oxygen species (ROS) that modulated neddylation of Cullin-1 and resulted in suppressive effects on the NF-κB pathway. Herein, we demonstrate that butyrate and other short chain fatty acids supplemented to model human intestinal epithelia in vitro and human tissue ex vivo results in loss of neddylated Cul-1 and show that physiological concentrations of butyrate modulate the ubiquitination and degradation of a target of the E3-SCFβ-TrCP ubiquitin ligase, the NF-κB inhibitor IκB-α. Mechanistically, we show that physiological concentrations of butyrate induces reactive oxygen species that transiently alters the intracellular redox balance and results in inactivation of the NEDD8-conjugating enzyme Ubc12 in a manner similar to effects mediated by viable bacteria. Because the normal flora produces significant amounts of butyrate and other short chain fatty acids, these data provide a functional link between a natural product of the intestinal normal flora and important epithelial inflammatory and proliferative signaling pathways. PMID:19109186

  15. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.

    PubMed

    Chen, Wen-Hsing; Jian, Zih-Ce

    2013-10-01

    Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g(-1) of dry cell was projected for 31.9 g L(-1) sucrose and 1.3 g L(-1) butyrate, and the maximum specific butanol production rate of 0.87 g d(-1) g(-1) of dry cell was predicted for 25.0 g L(-1) sucrose and 2.6 g L(-1) butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol(-1) was projected for 25.0 g L(-1) sucrose and 2.3 g L(-1) butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol(-1) when butyrate addition increased from 0 to 1 g L(-1) under low sugar concentration (3.8 g L(-1) sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone-butanol-ethanol fermentation.

  16. Fragrance material review on phenethyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl butyrate when used as a fragrance ingredient is presented. Phenethyl butyrate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  17. Fragrance material review on benzyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl butyrate when used as a fragrance ingredient is presented. Benzyl butyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, toxicokinetics, and repeated dose data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  18. Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production.

    PubMed

    Choi, Shin Sik; Rhee, Won Jong; Park, Tai Hyun

    2005-09-30

    To produce erythropoietin (EPO), Chinese hamster ovary (CHO) cells were first cultured in a medium containing FBS (growth medium) and then in a serum-free medium containing sodium butyrate (production medium). Sodium butyrate increases recombinant protein production, but also induces apoptosis, which reduces cell viability and productivity. In a previous study, we found that silkworm hemolymph (SH), an insect serum, inhibits the apoptosis of insect and mammalian cells. To overcome sodium butyrate-induced apoptosis, we added SH to growth medium. This pretreatment with SH inhibited the sodium butyrate-induced apoptosis of CHO cells and consequently increased their longevity and their ability to produce EPO. As a result, the volumetric productivity of EPO was increased five-fold. SH was found to inhibit cytochrome c release from mitochondria into the cytosol, and prevented the activation of caspase-3 and other subsequent caspase reactions.

  19. Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-Fluorouracil administration.

    PubMed

    Ferreira, Talita Mayra; Leonel, Alda Jusceline; Melo, Marco Antônio; Santos, Rosana R G; Cara, Denise Carmona; Cardoso, Valbert N; Correia, Maria I T D; Alvarez-Leite, Jacqueline I

    2012-07-01

    Mucositis affects about 40 % of patients undergoing chemotherapy. Short chain fatty acids (SCFA), mainly butyrate, are claimed to improve mucosal integrity, reduce intestinal permeability and act as anti-inflammatory agents for the colon mucosa. We evaluated the effects of oral administration of SCFA or butyrate in the 5FU-induced mucositis. Mice received water, SCFA or butyrate during all experiment (10 days) and a single dose of 5FU (200 mg/kg) 3 days before euthanasia. We evaluated inflammatory and histological score by morphometry, and by activity of enzymes specific to neutrophil, eosinophil and macrophage and TLR-4, TNF-alpha and IL6 expressions. Intestinal permeability and tight junction protein ZO-1 expression were evaluated. Mice from the 5FU (5-Fluorouracil) group presented weight loss, ulcerations and inflammatory infiltration of neutrophils and eosinophils, increased expression of IL6 and TNF-alpha and increased intestinal permeability. SCFA minimized intestinal damage, reduced ulcerations without affecting intestinal permeability. Butyrate alone was more efficient at improving those parameters than in SCFA solution and also reduced intestinal permeability. The expression of pro-inflammatory cytokines and ZO-1 tended to be higher in the SCFA supplemented but not in the butyrate supplemented group. We showed the beneficial effects of butyrate on intestinal mucositis and its promising function as an adjuvant in the treatment of diseases not only of the colon, but also of the small intestine.

  20. Acarbose enhances human colonic butyrate production.

    PubMed

    Weaver, G A; Tangel, C T; Krause, J A; Parfitt, M M; Jenkins, P L; Rader, J M; Lewis, B A; Miller, T L; Wolin, M J

    1997-05-01

    Earlier studies suggest that butyrate has colonic differentiating and nutritional effects and that acarbose increases butyrate production. To determine the effects of acarbose on colonic fermentation, subjects were given 50-200 mg acarbose or placebo (cornstarch), three times per day, with meals in a double-blind crossover study. Fecal concentrations of starch and starch-fermenting bacteria were measured and fecal fermentation products determined after incubation of fecal suspensions with and without added substrate for 6 and 24 h. Substrate additions were cornstarch, cornstarch plus acarbose and potato starch. Dietary starch consumption was similar during acarbose and placebo treatment periods, but fecal starch concentrations were found to be significantly greater with acarbose treatment. Ratios of starch-fermenting to total anaerobic bacteria were also significantly greater with acarbose treatment. Butyrate in feces, measured either as concentration or as percentage of total short-chain fatty acids, was significantly greater with acarbose treatment than with placebo treatment. Butyrate ranged from 22.3 to 27.5 mol/100 mol for the 50-200 mg, three times per day doses of acarbose compared with 18.3-19.3 mol/100 mol for the comparable placebo periods. The propionate in fecal total short-chain fatty acids was significantly less with acarbose treatment (10.7-12.1 mol/100 mol) than with placebo treatment (13.7-14.2 mol/100 mol). Butyrate production was significantly greater in fermentations in samples collected during acarbose treatment, whereas production of acetate and propionate was significantly less. Fermentation decreased when acarbose was added directly to cornstarch fermentations. Acarbose effectively augmented colonic butyrate production by several mechanisms; it reduced starch absorption, expanded concentrations of starch-fermenting and butyrate-producing bacteria and inhibited starch use by acetate- and propionate-producing bacteria.

  1. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria.

    PubMed

    Tsukahara, Takamitsu; Koyama, Hironari; Okada, Masaaki; Ushida, Kazunari

    2002-08-01

    Gluconic acid reaches the large intestine to stimulate lactic acid bacteria. However, the fermentation pattern of gluconic acid has yet to be elucidated. Accordingly, we examined the fermentation properties induced by gluconic acid in the pig cecal digesta in vitro. We also tested sorbitol and glucose, substrates for which the fermentation rate and patterns are known. The gluconic acid-utilizing bacteria were further isolated from pig cecal digesta and identified to examine the effect of gluconic acid on hind gut fermentation. Gluconic acid was fermented more slowly than were the other two substrates. Gluconic acid stimulated butyrate production; the butyrate molar percentage reached 26%, which is considered a high butyrate production. The majority of gluconic acid fermenters were identified as lactic acid bacteria, such as Lactobacillus reuteri and L. mucosae, and acid-utilizing bacteria, such as Megasphaera elsdenii and Mitsuokella multiacida. The gluconic acid fermented by lactic acid bacteria, and the lactate and acetate that were produced were used to form butyrate by acid-utilizing bacteria, such as M. elsdenii. Gluconic acid may be useful as a prebiotic to stimulate butyrate production in the large intestine.

  2. Sodium-butyrate as a growth promoter in milk replacer formula for young calves.

    PubMed

    Guilloteau, P; Zabielski, R; David, J C; Blum, J W; Morisset, J A; Biernat, M; Wolinski, J; Laubitz, D; Hamon, Y

    2009-03-01

    In milk-fed calves, the effects of sodium-butyrate (Na-butyrate) to replace flavomycin on growth performance and some mechanisms involved were studied. Pancreatic and intestinal morphology, digestive enzyme activities, plasma gut regulatory peptide concentrations, and expression of their receptors in the gastrointestinal tract were measured. Gastrointestinal tract defense systems were examined by measuring protein levels of 2 heat-shock proteins (HSP27 and HSP70). The calves were randomly allocated into 2 groups fed the same basic diet with flavomycin as an antimicrobial growth promoter or with Na-butyrate (3 g/kg of dry matter). Sodium-butyrate disappeared quickly in the upper gut and was not found in circulating blood. Supplementation with Na-butyrate enhanced growth rate and improved feed conversion into body weight gain compared with the flavomycin group. Supplementation with Na-butyrate was likely associated with an improvement in efficacy of the gastrointestinal tract digestive capacities expressed by enhanced production of digestive enzymes and increased absorptive capacities in the upper small intestine. The effects could have been controlled by insulin-like growth factor-1 but probably not by any of the cholecystokinin/gastrin peptide family. Concentrations of HSP27 and HSP70 were increased in stomach and colon of calves receiving Na-butyrate, thereby assuring protection of cells with intensive metabolism (chaperone function). In conclusion, beneficial effects of Na-butyrate on maturation of gastrointestinal functions were shown in milk-fed calves and may be applied to young mammals of other species.

  3. Fermented wheat aleurone inhibits growth and induces apoptosis in human HT29 colon adenocarcinoma cells.

    PubMed

    Borowicki, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Brenner-Weiss, Gerald; Obst, Ursula; Hollmann, Jürgen; Lindhauer, Meinolf; Wachter, Norbert; Glei, Michael

    2010-02-01

    Fermentation of dietary fibre by the gut microflora may enhance levels of SCFA, which are potentially chemoprotective against colon cancer. Functional food containing wheat aleurone may prevent cancer by influencing cell cycle and cell death. We investigated effects of fermented wheat aleurone on growth and apoptosis of HT29 cells. Wheat aleurone, flour and bran were digested and fermented in vitro. The resulting fermentation supernatants (fs) were analysed for their major metabolites (SCFA, bile acids and ammonia). HT29 cells were treated for 24-72 h with the fs or synthetic mixtures mimicking the fs in SCFA, butyrate or deoxycholic acid (DCA) contents, and the influence on cell growth was determined. Fs aleurone was used to investigate the modulation of apoptosis and cell cycle. The fermented wheat samples contained two- to threefold higher amounts of SCFA than the faeces control (blank), but reduced levels of bile acids and increased concentrations of ammonia. Fs aleurone and flour equally reduced cell growth of HT29 more effectively than the corresponding blank and the SCFA mixtures. The EC(50) (48 h) ranged from 10 % (flour) to 19 % (blank). Markedly after 48 h, fs aleurone (10 %) significantly induced apoptosis and inhibited cell proliferation by arresting the cell cycle in the G0/G1 phase. In conclusion, fermentation of wheat aleurone results in a reduced level of tumour-promoting DCA, but higher levels of potentially chemopreventive SCFA. Fermented wheat aleurone is able to induce apoptosis and to block cell cycle - two essential markers of secondary chemoprevention.

  4. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  5. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells.

    PubMed

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  6. Eicosanoid modulation by the short-chain fatty acid n-butyrate in human monocytes.

    PubMed

    Kovarik, Johannes J; Hölzl, Markus A; Hofer, Johannes; Waidhofer-Söllner, Petra; Sobanov, Yury; Koeffel, René; Saemann, Marcus D; Mechtcheriakova, Diana; Zlabinger, Gerhard J

    2013-07-01

    n-Butyrate deriving from bacterial fermentation in the mammalian intestine is a key determinant in gastrointestinal homeostasis. We examined the effects of this short-chain fatty acid and Toll-like receptor 2 (TLR) and TLR4 engagement on inflammatory/immunity-associated genes, cyclo-oxygenases (COXs), prostaglandins (PGs) and leukotrienes (LTs) in human monocytes. Before RNA isolation, freshly isolated human monocytes were co-incubated for different time-points with 1 mm n-butyrate alone or in combination with bacterial stimuli. Based on a knowledge-driven approach, a signature of 180 immunity/inflammation-associated genes was picked and real-time PCR analysis was performed. Pathway analysis was carried out using a web-based database analysing program. Based on these gene expression studies the findings were evaluated at the protein/mediator level by Western blot analysis, FACS and ELISA. Following co-incubation with n-butyrate and lipopolysaccharide, key enzymes of the eicosanoid pathway, like PTGS2 (COX-2), TXS, ALOX5, LTA4H and LTC4S, were significantly up-regulated compared with stimulation with lipopolysaccharide alone. Furthermore, release of the lipid mediators PGE(2), 15d-PGJ(2), LTB(4) and thromboxane B(2) was increased by n-butyrate. Regarding signalling, n-butyrate had no additional effect on mitogen-activated protein kinase and interfered differently with early and late phases of nuclear factor-κB signalling. Our results suggest that among many other mediators of eicosanoid signalling n-butyrate massively induces PGE(2) production by increasing the expression of PTGS2 (COX-2) in monocytes following TLR4 and TLR2 activation and induces secretion of LTB(4) and thromboxane B(2). This underscores the role of n-butyrate as a crucial mediator of gut-specific immunity.

  7. Gamma-amino butyric acid inhibits the nicotine-imposed stimulatory challenge in xenograft models of non-small cell lung carcinoma.

    PubMed

    Al-Wadei, H A N; Al-Wadei, M H; Ullah, M F; Schuller, H M

    2012-02-01

    Non-small cell lung carcinoma (NSCLC) is the leading type of lung cancer; smoking is a documented risk factor. Nicotinic acetylcholine receptor (nAChR)-mediated intracellular signaling in response to nicotine has recently been implicated in the growth regulation of NSCLC. In the current study nude mice carrying xenografts of the human lung NSCLC cell lines NCI-H322 or NCI-H441 were used as animal models. Nicotine administration and gamma aminobutyric acid (GABA) treatment lasted for 30 days. Catecholamines, cortisol, GABA, and cAMP were analyzed in blood and tumor tissues by immunoassays. Expression of nicotinic receptors and effector proteins in the xenografts was assessed by Western blotting. Our data indicate that nicotine stimulated the growth of NSCLC xenografts via modulation of nAChR upregulation and activation of cAMP signaling. The nicotine-treated group showed an enhanced level of stress neurotransmitters and second messenger cAMP in serum, blood cellular fraction, and xenograft tissues. Activation of critical proteins in the oncogenic pathway, including CREB, ERK, Akt, and Src, and upregulation of α-4 and α-7 subunits of nAChR provided mechanistic insight for the observed stimulatory effect of nicotine. Interestingly, GABA, being an antagonist to cAMP signaling, showed a promising intervention by reversing the stimulatory effect of nicotine on cancer growth and all signaling pathways. GABA has potential to lower the risk of NSCLC among smokers and could be used to enhance the clinical outcome of standard cancer intervention strategies.

  8. Short communication: Interrelationship between butyrate and glucose supply on butyrate and glucose oxidation by ruminal epithelial preparations.

    PubMed

    Wiese, B I; Górka, P; Mutsvangwa, T; Okine, E; Penner, G B

    2013-09-01

    The aim of this study was to determine whether dietary Na-butyrate supplementation affects butyrate and glucose oxidation by ruminal epithelial preparations and whether this effect can be acutely modulated by substrate (glucose and butyrate) supply. Eighteen Suffolk wether lambs (6 lambs/treatment) were blocked by body weight and, within block, randomly assigned to the control treatment (CON) or to diets containing differing Na-butyrate inclusion rates (1.58 or 3.16%) equating to 1.25 (B1.25), and 2.50% (B2.50) butyrate on a dry matter basis, respectively. All lambs received their diet for a period of 14 d. After dietary adaptation, lambs were killed and the ruminal epithelium was harvested from the ventral sac, minced finely, and used for in vitro incubations. Incubation medium contained either a constant concentration of glucose (4 mM) with increasing butyrate concentrations (0, 5, 15, 25, or 40 mM) or a constant butyrate concentration (15 mM) with increasing glucose concentrations (0, 1, 2, 4, or 8 mM) to allow for the evaluation of whether acute changes in the concentration of metabolic substrates affect the oxidation of glucose and butyrate. We observed no interactions between the in vivo and in vitro treatments. Increasing dietary butyrate supplementation linearly decreased glucose oxidation by ruminal epithelial preparations, but had no effect on butyrate oxidation. Increasing butyrate concentration in vitro decreased (cubic effect) glucose oxidation when butyrate concentration ranged between 5 and 15 mM; however, glucose oxidation was increased with a butyrate concentration of 40 mM. Butyrate oxidation decreased (cubic effect) as glucose concentration increased from 1 to 4 mM; however, butyrate oxidation increased when glucose was included at 8mM. The results of this study demonstrate that dietary butyrate supplementation can decrease glucose oxidation by the ruminal epithelium, but the relative supply of glucose and butyrate has a pronounced effect on

  9. Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats.

    PubMed

    Clarke, Julie M; Young, Graeme P; Topping, David L; Bird, Anthony R; Cobiac, Lynne; Scherer, Benjamin L; Winkler, Jessica G; Lockett, Trevor J

    2012-01-01

    Animal studies show that increasing large bowel butyrate concentration through ingestion of butyrylated or resistant starches opposes carcinogen-induced tumorigenesis, which is consistent with population data linking greater fiber consumption with lowered colorectal cancer (CRC) risk. Butyrate has been shown to regulate the apoptotic response to DNA damage. This study examined the impact of increasing large bowel butyrate concentration by dietary butyrylated starch on the colonic epithelium of rats treated with the genotoxic carcinogen azoxymethane (AOM). Four groups of 10 male rats were fed AIN-93G based-diets containing either low amylose maize starch (LAMS), LAMS with 3% tributyrin, 10% high amylose maize starch (HAMS) or 10% butyrylated HAMS (HAMSB). HAMS and HAMSB starches were cooked by heating in water. After 4 weeks, rats were injected once with AOM and killed 6 h later. Rates of apoptosis and proliferation were measured in colonic epithelium. Short-chain fatty acid concentrations in large bowel digesta and hepatic portal venous plasma were higher in HAMSB than all other groups. Apoptotic rates in the distal colon were increased by HAMSB and correlated with luminal butyrate concentrations but cellular proliferation rates were unaffected by diet. The increase in apoptosis was most marked in the base and proliferative zone of the crypt. Regulation of luminal butyrate using HAMSB increases the rates of apoptotic deletion of DNA-damaged colonocytes. We propose this pro-apoptotic function of butyrate plays a major role reducing tumour formation in the AOM-treated rat and that these data support a potential protective role of butyrate in CRC.

  10. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  11. Multi-scale Modeling Study of poly(3-hexylthiophene) and [6 6]-phenyl-C61-butyric acid methyl ester Towards Organic Photovoltaic Cell Application

    NASA Astrophysics Data System (ADS)

    Yoo, Hanjong; Kim, Ki Chul; Jang, Seung Soon

    2015-03-01

    To date, organic photovoltaic cells have gained attention due to their promising potential in the industry. Its efficiency needs to be improved through constructing better morphologies. There are three morphological quantities that affect the efficiency. The domain size of the electron donor phase has to be small and the interface-to-volume ratio of the blend must be large. The percolation ratio has to be high. To investigate the morphological properties of the active layer systems, the state-of-the-art multi-scale modeling is employed. In this study, P3HT and PCBM blends have used as our active layer candidates. We have developed our own force field parameters to accurately describe potential energy surfaces in the layer systems. Subsequently, coarse-grained force field for P3HT and PCBM have been developed based on the improved atomistic force field parameters in order to simulate larger systems. The results from coarse-grained models are validated through the comparison with those from the full atomistic models. Using the molecular dynamics simulations, the newly developed coarse-grained models will be further used to study how the crystallinity of P3HT affects the morphological properties in the active layers.

  12. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth.

  13. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  14. Inhibition of histone deacetylase by butyrate protects rat liver from ischemic reperfusion injury.

    PubMed

    Sun, Jie; Wu, Qiujv; Sun, Huiling; Qiao, Yingli

    2014-11-14

    We showed previously that pretreatment of butyrate, which is an endogenous histone deacetylase (HDAC) inhibitor normally fermented from undigested fiber by intestinal microflora, seriously alleviated ischemia reperfusion (I/R)-induced liver injury by inhibiting the nuclear factor κB (NF-κB) pathway. The goal of this study was to investigate the effect of butyrate administrated at the onset of ischemia for HDAC inhibition in hepatic I/R injury. Sprague Dawley rats were subjected to warm ischemia for 60 min followed by 6 and 24 h of reperfusion. Butyrate was administrated at the onset of ischemia. Liver injury was evaluated by serum levels of aminotransferase, inflammatory factors, and histopathology. The levels of acetylated histone H3 and expression of heat shock protein (Hsp) 70 were measured by Western blot. After reperfusion, the levels of acetylated histone H3 significantly decreased. Butyrate treatment markedly prevented the reduction of acetylated histone H3 and upregulated the expression of Hsp70, thereby reducing liver injury. Our study demonstrated that I/R resulted in marked reduction of histone acetylation; butyrate exerted a great hepatoprotective effect through HDAC inhibition and Hsp70 induction.

  15. Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata).

    PubMed

    Robles, R; Lozano, A B; Sevilla, A; Márquez, L; Nuez-Ortín, W; Moyano, F J

    2013-12-01

    Butyrate is a short-chain fatty acid extensively used in animal nutrition since it promotes increases in body weight and other multiple beneficial effects on the intestinal tract. Although such effects have been demonstrated in several species, very few studies have assessed them in fish. On the other hand, little is known about the metabolic processes underlying these effects. In the present work, growth parameters and changes in more than 80 intestinal metabolites (nucleotides, amino acids and derivatives, glycolytic intermediates, redox coenzymes and lipid metabolism coenzymes) have been quantified in juvenile sea bream fed a butyrate-supplemented diet. Results showed a significant increase in the weight of fish receiving butyrate, while metabolomics provided some clues on the suggested effects of this feed additive. It seems that butyrate increased the availability of several essential amino acids and nucleotide derivatives. Also, the energy provision for enteric cells might have been enhanced by a decrease in glucose and amino acid oxidation related to the use of butyrate as fuel. Additionally, butyrate might have increased transmethylation activity. This work represents an advance in the knowledge of the metabolic consequences of using butyrate as an additive in fish diets.

  16. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2

    PubMed Central

    Miao, Wei; Wu, Xiujuan; Wang, Kang; Wang, Wenjing; Wang, Yumei; Li, Zhigang; Liu, Jingjing; Li, Li; Peng, Luying

    2016-01-01

    As a physiological small molecular product from the microbial fermentation of dietary fibers, butyrate plays an important role in maintaining intestinal health. Our previous works have proved that the effect of sodium butyrate (NaB) on the intestinal barrier function is mediated by activation of AMP-activated protein kinase (AMPK). However, the detailed pathway involved remains unknown. Using the calcium switch assay in the Caco-2 cell monolayer model, we found here that NaB activated AMPK mainly by increasing the calcium level, but not the ATP concentration, via promoting store-operated calcium entry (SOCE). Upon the activation of AMPK, NaB promoted the reassembly of tight junctions (TJs) based on reducing the phosphorylation of myosin II regulatory light chain (MLC2) at Ser19 and increasing phosphorylation of protein kinase C β2 (PKCβ2) at Ser660. Inhibiting (protein kinase C β) PKCβ blocked the reassembly of TJs induced by NaB in the barrier monolayer model. These results indicated that NaB could activate the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) pathway to mediate AMPK phosphorylating, which then inhibited the phosphorylation of MLC2 and promoted the phosphorylation of PKCβ2, respectively, so that the downstream molecules of AMPK coordinately contributed to the reassembly of TJs in the Caco-2 barrier model. These results suggested a potential mechanism of butyrate for intestine homeostasis and protection. PMID:27735862

  17. Nanoimprinting-induced nanomorphological transition in polymer solar cells: enhanced electrical and optical performance.

    PubMed

    Jeong, Seonju; Cho, Changsoon; Kang, Hyunbum; Kim, Ki-Hyun; Yuk, Youngji; Park, Jeong Young; Kim, Bumjoon J; Lee, Jung-Yong

    2015-03-24

    We have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons. Consequently, the power conversion efficiency with a periodic nanostructure was enhanced from 7.40% to 8.50% and 7.17% to 9.15% in PTB7 and PTB7-Th based i-PSCs, respectively. PMID:25688838

  18. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells.

    PubMed

    Stein, Katrin; Borowicki, Anke; Scharlau, Daniel; Glei, Michael

    2010-10-01

    Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1.4- to 3.7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.

  19. Change in gene expression profiles of secreted frizzled-related proteins (SFRPs) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling.

    PubMed

    Shin, Hyunsoo; Kim, Jie-Hyun; Lee, Yeo Song; Lee, Yong Chan

    2012-05-01

    Activation of Wnt signaling without mutation of β-catenin or APC occurs frequently in human gastric cancers. Secreted frizzled-related protein (SFRP), a negative modulator of the Wnt signaling pathway, are frequently inactivated in human gastric cancers. Inhibition of SFRP gene expression may account for the Wnt/β-catenin activation in human gastric cancer. However, the molecular mechanisms of silencing of SFRP genes are not fully understood. Sodium butyrate, a histone deacetylase (HDAC) inhibitor, is known to exhibit anti-cancer effects partly through the differentiation of various cancer cells. In the present study, we investigated: i) the relationship between the silencing of SFRP genes and Wnt signaling; ii) the mechanism of sodium butyrate mediated epigenetic regulation of SFRPs expression in human gastric cancer. We observed that nuclear β-catenin was significantly increased in gastric cancer tissues as compared to adjacent non-cancerous tissues. Nuclear β-catenin accumulation and SFRP promoter methylation in human gastric cancer cells were noted. Treatment with the DNA methyltransferase inhibitor, 5'-Aza-2-deoxycytidine (5'-Aza-dC) rapidly restored SFRPs expression. Sodium butyrate (NaB) induced demethylation and histone modification at the promoter region of SFRP1/2 restoring the SFRP expression in human gastric cancer cells. Analysis of general expression revealed that overexpression of SFRPs repressed Wnt target gene expression and induced changes in the proliferation and apoptosis related genes in human gastric cancer cells. These data suggest that aberrant epigenetic modification of SFRP genes is one of the major mechanisms by which Wnt signaling is activated in human gastric cancer cells and sodium butyrate may modulate the SFRP1/2 expression through histone modification and promoter demethylation causing anti-tumor effects.

  20. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  1. Epigenetic effects of dietary butyrate on hepatic histone acetylation and enzymes of biotransformation in chicken.

    PubMed

    Mátis, Gábor; Neogrády, Zsuzsanna; Csikó, György; Gálfi, Péter; Fébel, Hedvig; Jemnitz, Katalin; Veres, Zsuzsanna; Kulcsár, Anna; Kenéz, Akos; Huber, Korinna

    2013-12-01

    The aim of the study was to investigate the in vivo epigenetic influences of dietary butyrate supplementation on the acetylation state of core histones and the activity of drug-metabolising microsomal cytochrome P450 (CYP) enzymes in the liver of broiler chickens in the starter period. One-day-old Ross 308 broilers were fed a starter diet without or with sodium butyrate (1.5 g/kg feed) for 21 days. After slaughtering, nucleus and microsome fractions were isolated from the exsanguinated liver by multi-step differential centrifugation. Histone acetylation level was detected from hepatocyte nuclei by Western blotting, while microsomal CYP activity was examined by specific enzyme assays. Hyperacetylation of hepatic histone H2A at lysine 5 was observed after butyrate supplementation, providing modifications in the epigenetic regulation of cell function. No significant changes could be found in the acetylation state of the other core histones at the acetylation sites examined. Furthermore, butyrate did not cause any changes in the drugmetabolising activity of hepatic microsomal CYP2H and CYP3A37 enzymes, which are mainly involved in the biotransformation of most xenobiotics in chicken. These data indicate that supplementation of the diet with butyrate probably does not have any pharmacokinetic interactions with simultaneously applied xenobiotics.

  2. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  3. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  4. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model

    PubMed Central

    Van den Abbeele, Pieter; Belzer, Clara; Goossens, Margot; Kleerebezem, Michiel; De Vos, Willem M; Thas, Olivier; De Weirdt, Rosemarie; Kerckhof, Frederiek-Maarten; Van de Wiele, Tom

    2013-01-01

    The human gut is colonized by a complex microbiota with multiple benefits. Although the surface-attached, mucosal microbiota has a unique composition and potential to influence human health, it remains difficult to study in vivo. Therefore, we performed an in-depth microbial characterization (human intestinal tract chip (HITChip)) of a recently developed dynamic in vitro gut model, which simulates both luminal and mucosal gut microbes (mucosal-simulator of human intestinal microbial ecosystem (M-SHIME)). Inter-individual differences among human subjects were confirmed and microbial patterns unique for each individual were preserved in vitro. Furthermore, in correspondence with in vivo studies, Bacteroidetes and Proteobacteria were enriched in the luminal content while Firmicutes rather colonized the mucin layer, with Clostridium cluster XIVa accounting for almost 60% of the mucin-adhered microbiota. Of the many acetate and/or lactate-converting butyrate producers within this cluster, Roseburia intestinalis and Eubacterium rectale most specifically colonized mucins. These 16S rRNA gene-based results were confirmed at a functional level as butyryl-CoA:acetate-CoA transferase gene sequences belonged to different species in the luminal as opposed to the mucin-adhered microbiota, with Roseburia species governing the mucosal butyrate production. Correspondingly, the simulated mucosal environment induced a shift from acetate towards butyrate. As not only inter-individual differences were preserved but also because compared with conventional models, washout of relevant mucin-adhered microbes was avoided, simulating the mucosal gut microbiota represents a breakthrough in modeling and mechanistically studying the human intestinal microbiome in health and disease. Finally, as mucosal butyrate producers produce butyrate close to the epithelium, they may enhance butyrate bioavailability, which could be useful in treating diseases, such as inflammatory bowel disease. PMID

  5. Kinetics of syntrophic cultures: a theoretical treatise on butyrate fermentation.

    PubMed

    Kleerebezem, R; Stams, A J

    2000-03-01

    Numerous microbial conversions in methanogenic environments proceed at (Gibbs) free energy changes close to thermodynamic equilibrium. In this paper we attempt to describe the consequences of this thermodynamic boundary condition on the kinetics of anaerobic conversions in methanogenic environments. The anaerobic fermentation of butyrate is used as an example. Based on a simple metabolic network stoichiometry, the free energy change based balances in the cell, and the flux of substrates and products in the catabolic and anabolic reactions are coupled. In butyrate oxidation, a mechanism of ATP-dependent reversed electron transfer has been proposed to drive the unfavorable oxidation of butyryl-CoA to crotonyl-CoA. A major assumption in our model is that ATP-consumption and electron translocation across the cytoplasmic membrane do not proceed according to a fixed stoichiometry, but depend on the cellular concentration ratio of ATP and ADP. The energetic and kinetic impact of product inhibition by acetate and hydrogen are described. A major consequence of the derived model is that Monod-based kinetic description of this type of conversions is not feasible, because substrate conversion and biomass growth are proposed to be uncoupled. It furthermore suggests that the specific substrate conversion rate cannot be described as a single function of the driving force of the catabolic reaction but depends on the actual substrate and product concentrations. By using nonfixed stoichiometries for the membrane associated processes, the required flexibility of anaerobic bacteria to adapt to varying environmental conditions can be described.

  6. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  7. Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells

    PubMed Central

    Patel, Minal; Yang, Shuying

    2010-01-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells. PMID:20336395

  8. Histone deacetylase inhibitor sodium butyrate enhances cellular radiosensitivity by inhibiting both DNA nonhomologous end joining and homologous recombination.

    PubMed

    Koprinarova, Miglena; Botev, Peter; Russev, George

    2011-09-01

    HDAC inhibitors have been proposed as radiosensitizers in cancer therapy. Their application would permit the use of lower radiation doses and would reduce the adverse effects of the treatment. However, the molecular mechanisms of their action remain unclear. In the present article, we have studied the radiosensitizing effect of sodium butyrate on HeLa cells. FACS analysis showed that it did not abrogate the γ-radiation imposed G2 cell cycle arrest. The dynamics of γ-H2AX foci disappearance in the presence and in the absence of butyrate, however, demonstrated that butyrate inhibited DSB repair. In an attempt to clarify which one of the two major DSBs repair pathways was affected, we synchronized HeLa cells in G1 phase and after γ-irradiation followed the repair of the DSBs by agarose gel electrophoresis. Since HR is not operational during G1 phase, by this approach we determined the rates of NHEJ only. The results showed that NHEJ decreased in the presence of butyrate. In another set of experiments, we followed the dynamics of disappearance of RAD51 foci in the presence and in the absence of butyrate after γ-radiation of HeLa cells. Since RAD51 takes part in HR only, this experiment allows the effect of butyrate on DSB repair by homologous recombination to be assessed. It showed that HR was also obstructed by butyrate. These results were confirmed by host cell reactivation assays in which the repair of plasmids containing a single DSB by NHEJ or HR was monitored. We suggest that after a DSB is formed, HDACs deacetylated core histones in the vicinity of the breaks in order to compact the chromatin structure and prevent the broken DNA ends from moving apart from each other, thus ensuring effective repair.

  9. Isobaric vapor liquid equilibria data for the binary system (glycidyl butyrate + acetone, glycidyl butyrate + carbon tetrachloride, glycidyl butyrate + chloroform) at atmospheric pressure 101 kPa

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Meng, Qingyi; Ban, Chunlan; Zhang, Rui; Gao, Yingyu

    2016-09-01

    Isobaric vapor liquid equilibria (VLE) for the binary mixtures of glycidyl butyrate(1) + acetone(2), glycidyl butyrate(1) + carbon tetrachloride(2) and glycidyl butyrate(1) + chloroform(2) at 101 kPa were studied. The experimental data were satisfactorily correlated with the models of Wilson, NRTL and UNIQUAC activity coefficients. The activity coefficients for the equilibrium data were obtained by the nonlinear least square method. The average relative deviations between experimental temperatures and calculated temperatures by the Wilson, NRTL and UNIQUAC models were 0.16, 0.16, 0.23% for glycidyl butyrate(1) + chloroform( 2), 0.38, 0.12, 0.27% for glycidylbutyrate(1) + carbon tetrachloride(2), and 0.67, 0.13, 0.54% for glycidyl butyrate(1) + acetone(2). Azeotrope behavior was not found for these systems. The thermodynamic consistency of the correlations was checked by the Herrington's area test.

  10. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin-Mei; Panozzo, J.; Libertin, C.R.

    1993-11-01

    In this report, we demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evident in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture.

  11. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  12. Simultaneous Clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate.

    PubMed

    van den Berg, Corjan; Heeres, Arjan S; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-01-01

    The recovery of 1-butanol from fermentation broth is energy-intensive since typical concentrations in fermentation broth are below 20 g L(-1). To prevent butanol inhibition and high downstream processing costs, we aimed at producing butyl esters instead of 1-butanol. It is shown that it is possible to perform simultaneously clostridial fermentation, esterification of the formed butanol to butyl butyrate, and extraction of this ester by hexadecane. The very high partition coefficient of butyl butyrate pulls the esterification towards the product side even at fermentation pH and relatively low butanol concentrations. The hexadecane extractant is a model diesel compound and is nontoxic to the cells. If butyl butyrate enriched diesel can directly be used as car fuel, no product recovery is required. A proof-of-principle experiment for the one-pot bio-ester production from glucose led to 5 g L(-1) butyl butyrate in the hexadecane phase. The principle may be extended to a wide range of esters, especially to longer chain ones.

  13. Simultaneous Clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate.

    PubMed

    van den Berg, Corjan; Heeres, Arjan S; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-01-01

    The recovery of 1-butanol from fermentation broth is energy-intensive since typical concentrations in fermentation broth are below 20 g L(-1). To prevent butanol inhibition and high downstream processing costs, we aimed at producing butyl esters instead of 1-butanol. It is shown that it is possible to perform simultaneously clostridial fermentation, esterification of the formed butanol to butyl butyrate, and extraction of this ester by hexadecane. The very high partition coefficient of butyl butyrate pulls the esterification towards the product side even at fermentation pH and relatively low butanol concentrations. The hexadecane extractant is a model diesel compound and is nontoxic to the cells. If butyl butyrate enriched diesel can directly be used as car fuel, no product recovery is required. A proof-of-principle experiment for the one-pot bio-ester production from glucose led to 5 g L(-1) butyl butyrate in the hexadecane phase. The principle may be extended to a wide range of esters, especially to longer chain ones. PMID:22833369

  14. Enhancement of the Power Conversion Efficiency in the Inverted Organic Solar Cells Fabricated Utilizing a CeO2 Interlayer Between the Poly(3-hexylthiophene) (P3HT):[6,6]-Phenyl C6 Butyric Acid Methyl Ester and the Cathode.

    PubMed

    Arul, N Sabari; Lee, Yong Hun; Lee, Dea Uk; Kim, Tae Whan

    2015-01-01

    CeO2 nanoparticles were synthesized by using a precipitation method. High-resolution transmission electron microscopy images, X-ray diffraction patterns, energy dispersive X-ray spectroscopy spectra, and UV-Visible absorption spectroscopy spectra showed that the formed samples were CeO2 polycrystalline nanoparticles. Inverted organic solar cells with a structure of indium-tin-oxide/CeO2/poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM)/MoO3/Ag were fabricated. Current density-voltage results showed that the power conversion efficiency of the device of the fabricated inverted OPV cells with a CeO2 interlayer between the P3HT:PCBM and the cathode was 0.39% larger than that without a CeO2 interlayer.

  15. Fuel cells: Hydrogen induced insulation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  16. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  17. Isolation of unique butyrate-producing bacteria from swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate-producing bacteria in humans contribute to a healthy gastrointestinal tract and are known to be species from clostridial clusters IV, IX, XIVa, and XVI - with the community dominated by clusters XIVa and IV. However, the composition of the butyrate-producing bacterial community in swine is...

  18. Drosophila grim induces apoptosis in mammalian cells.

    PubMed Central

    Clavería, C; Albar, J P; Serrano, A; Buesa, J M; Barbero, J L; Martínez-A, C; Torres, M

    1998-01-01

    Genetic studies have shown that grim is a central genetic switch of programmed cell death in Drosophila; however, homologous genes have not been described in other species, nor has its mechanism of action been defined. We show here that grim expression induces apoptosis in mouse fibroblasts. Cell death induced by grim in mammalian cells involves membrane blebbing, cytoplasmic loss and nuclear DNA fragmentation. Grim-induced apoptosis is blocked by both natural and synthetic caspase inhibitors. We found that grim itself shows caspase-dependent proteolytic processing of its C-terminus in vitro. Grim-induced death is antagonized by bcl-2 in a dose-dependent manner, and neither Fas signalling nor p53 are required for grim pro-apoptotic activity. Grim protein localizes both in the cytosol and in the mitochondria of mouse fibroblasts, the latter location becoming predominant as apoptosis progresses. These results show that Drosophila grim induces death in mammalian cells by specifically acting on mitochondrial apoptotic pathways executed by endogenous caspases. These findings advance our knowledge of the mechanism by which grim induces apoptosis and show the conservation through evolution of this crucial programmed cell death pathway. PMID:9857177

  19. Tributyrin inhibits human gastric cancer SGC-7901 cell growth by inducing apoptosis and DNA synthesis arrest

    PubMed Central

    Yan, Jun; Xu, Yong-Hua

    2003-01-01

    AIM: To evaluate the effects of tributyrin, a pro-drug of natural butyrate and a neutral short-chain fatty acid triglyceride, on the growth inhibition of human gastric cancer SGC-7901 cell. METHODS: Human gastric cancer SGC-7901 cells were exposed to tributyrin at 0.5, 1, 2, 5, 10 and 50 mmol·L-1 for 24-72 h. MTT assay was applied to detect the cell proliferation. [3H]-TdR uptake was measured to determine DNA synthesis. Apoptotic morphology was observed by electron microscopy and Hoechst-33258 staining. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were performed to detect tributyrin-triggered apoptosis. The expressions of PARP, Bcl-2 and Bax were examined by Western blot assay. RESULTS: Tributyrin could initiate growth inhibition of SGC-7901 cell in a dose- and time-dependent manner. [3H]-TdR uptake by SGC-7901 cells was reduced to 33.6% after 48 h treatment with 2 mmol·L-1 tributyrin, compared with the control (P < 0.05). Apoptotic morphology was detected by TUNEL assay. Flow cytometry revealed that tributyrin could induce apoptosis of SGC-7901 cells in dose-dependent manner. After 48 hours incubation with tributyrin at 2 mmol·L-1, the level of Bcl-2 protein was lowered, and the level of Bax protein was increased in SGC-7901, accompanied by PARP cleavage. CONCLUSION: Tributyrin could inhibit the growth of gastric cancer cells effectively in vitro by inhibiting DNA synthesis and inducing apoptosis, which was associated with the down-regulated Bcl-2 expression and the up-regulated Bax expression. Therefore, tributyrin might be a promising chemopreventive and chemotherapeutic agent against human gastric carcinogenesis. PMID:12679905

  20. Induced Pluripotent Stem Cells from Nonhuman Primates.

    PubMed

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  1. Synergistic effects of dimethyloxalylglycine and butyrate incorporated into α-calcium sulfate on bone regeneration.

    PubMed

    Woo, Kyung Mi; Jung, Hong-Moon; Oh, Joung-Hwan; Rahman, Saeed Ur; Kim, Soung Min; Baek, Jeong-Hwa; Ryoo, Hyun-Mo

    2015-01-01

    Osteogenesis is closely related to angiogenesis, and the combined delivery of angiogenic and osteogenic factors has been suggested to enhance bone regeneration. Small molecules have been explored as alternatives to growth factors for tissue regeneration applications. In this study, we examined the effects of the combined application of angiogenic and osteogenic small molecules on bone regeneration using a prolyl hydroxylase, dimethyloxalylglycine (DMOG), and a histone deacetylase inhibitor, butyrate. In a critical size bone defect model in rats, DMOG and butyrate, which were incorporated into α calcium sulfate (αCS), resulted in synergistic enhancements in bone and blood vessel formation, eventually leading to bone healing, as confirmed by micro-CT and histological analyses. In MC4 pre-osteoblast cultures, DMOG and butyrate enhanced the pro-angiogenic responses and osteoblast differentiation, respectively, which were evaluated based on the levels of hypoxia inducible factor (HIF)-1α protein and the expression of pro-angiogenic molecules (VEGF, home oxidase-1, glucose transporter-1) and by alkaline phosphatase (ALP) activity and the expression of osteoblast phenotype marker molecules (ALP, α1(I)col, osteocalcin, and bone sialoprotein). DMOG combined with butyrate synergistically improved osteoblast differentiation and pro-angiogenic responses, the levels of which were drastically increased in the cultures on αCS disks. Furthermore, it was demonstrated that αCS increased the level of HIF-1α and as a consequence VEGF expression, and supported osteoblast differentiation through the release of calcium ions from the αCS. Altogether, the results of this study provide evidence that a combination treatment with the small molecules DMOG and butyrate can expedite the process of bone regeneration and that αCS can be an efficient delivery vehicle for the small molecules for bone regeneration.

  2. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    PubMed

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women. PMID:27528065

  3. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    PubMed

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.

  4. Nonviral methods for inducing pluripotency to cells.

    PubMed

    O'Doherty, Ryan; Greiser, Udo; Wang, Wenxin

    2013-01-01

    The concept of inducing pluripotency to adult somatic cells by introducing reprogramming factors to them is one that has recently emerged, gained widespread acclaim and garnered much attention among the scientific community. The idea that cells can be reprogrammed, and are not unidirectionally defined opens many avenues for study. With their clear potential for use in the clinic, these reprogrammed cells stand to have a huge impact in regenerative medicine. This realization did not occur overnight but is, however, the product of many decades worth of advancements in researching this area. It was a combination of such research that led to the development of induced pluripotent stem cells as we know it today. This review delivers a brief insight in to the roots of iPS research and focuses on succinctly describing current nonviral methods of inducing pluripotency using plasmid vectors, small molecules and chemicals, and RNAs. PMID:23841088

  5. Sulfur dioxide induced programmed cell death in Vicia guard cells.

    PubMed

    Yi, Huilan; Yin, Jingjing; Liu, Xin; Jing, Xiuqing; Fan, Sanhong; Zhang, Hufang

    2012-04-01

    Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.

  6. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model.

    PubMed

    Kratsman, Neta; Getselter, Dmitriy; Elliott, Evan

    2016-03-01

    The core behavioral symptoms of Autism Spectrum Disorders (ASD) include dysregulation of social communication and the presence of repetitive behaviors. However, there is no pharmacological agent that is currently used to target these core symptoms. Epigenetic dysregulation has been implicated in the etiology of ASD, and may present a pharmacological target. The effect of sodium butyrate, a histone deacetylase inhibitor, on social behavior and repetitive behavior, and the frontal cortex transcriptome, was examined in the BTBR autism mouse model. A 100 mg/kg dose, but not a 1200 mg/kg dose, of sodium butyrate attenuated social deficits in the BTBR mouse model. In addition, both doses decreased marble burying, an indication of repetitive behavior, but had no significant effect on self-grooming. Using RNA-seq, we determined that the 100 mg/kg dose of sodium butyrate induced changes in many behavior-related genes in the prefrontal cortex, and particularly affected genes involved in neuronal excitation or inhibition. The decrease in several excitatory neurotransmitter and neuronal activation marker genes, including cFos Grin2b, and Adra1, together with the increase in inhibitory neurotransmitter genes Drd2 and Gabrg1, suggests that sodium butyrate promotes the transcription of inhibitory pathway transcripts. Finally, DMCM, a GABA reverse agonist, decreased social behaviors in sodium-butyrate treated BTBR mice, suggesting that sodium butyrate increases social behaviors through modulation of the excitatory/inhibitory balance. Therefore, transcriptional modulation by sodium butyrate may have beneficial effects on autism related behaviors.

  7. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    PubMed

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  8. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  9. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  10. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin Mei; Panozzo, J.; Libertin, C.R.

    1994-01-01

    Previous work has shown that HeLa cells stably transfected with an HIV-LTR-CAT construct are induced to express chloramphenicol acetyl transferase (CAT) following exposure to DNA-damaging agents such as ultraviolet radiation, {gamma} rays, neutrons, and others. In this report, the authors demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evidence in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture. Other agents which caused no cell killing (such as heat-shock for up to 2 h, treatment with metronidazole, exposure to sunlight, vitamin C treatment, and others) had no effect on HIV-LTR induction. These results suggest that HIV transcription is induced as a consequence of the turn on of a cellular death or apoptotic pathway.

  11. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    PubMed

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  12. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  13. Umbelliprenin Induces Apoptosis in CLL Cell Lines.

    PubMed

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V-FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate.

  14. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  15. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  16. Schwann cells induce cancer cell dispersion and invasion.

    PubMed

    Deborde, Sylvie; Omelchenko, Tatiana; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J

    2016-04-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

  17. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells

    PubMed Central

    Parenti, Anthony; Halbisen, Michael A.; Wang, Kai; Latham, Keith; Ralston, Amy

    2016-01-01

    Summary The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming. PMID:26947975

  18. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  19. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    PubMed Central

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-01-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells. PMID:26912054

  20. Induced Pluripotent Stem Cells for Regenerative Medicine

    PubMed Central

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine. PMID:24905879

  1. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  2. Induced pluripotent stem cells and neurodegenerative diseases.

    PubMed

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  3. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid (MFG) and fat protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS) induced in...

  4. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  5. Topical betamethasone butyrate propionate exacerbates pressure ulcers after cutaneous ischemia-reperfusion injury.

    PubMed

    Uchiyama, Akihiko; Yamada, Kazuya; Perera, Buddhini; Ogino, Sachiko; Yokoyama, Yoko; Takeuchi, Yuko; Ishikawa, Osamu; Motegi, Sei-Ichiro

    2016-09-01

    Ischaemia-reperfusion (I/R) is involved in the development of various organ diseases. There has been increasing evidence that cutaneous I/R injury is associated with the pathogenesis of pressure ulcers (PUs), especially at the early stage presenting as non-blanchable erythema. However, there is no evidence-based treatment for early-stage PUs. Our objective was to assess the effects of topical steroid on the development of PUs after cutaneous I/R injury in mice. Cutaneous I/R was performed by trapping the dorsal skin between two magnetic plates for 12 h, followed by plate removal. Topical application of betamethasone butyrate propionate (BBP) in I/R areas significantly increased the size of PUs after I/R. The number of thromboses was increased, and CD31(+) vessels were decreased in the I/R area treated with topical BBP. The number of oxidative stress-associated DNA-damaged cells and apoptotic cells in the I/R area was increased by topical BBP treatment. In addition, the mRNA level of NADPH oxidase 4 (Nox4), the essential enzyme that produces reactive oxygen species, was significantly increased and that of NF-E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidant proteins, was inhibited in the I/R area treated by BBP. The number of CD68(+) macrophages and the level of transforming growth factor-beta in lesional skin were also decreased by BBP. These results suggest that a topical steroid might accelerate the formation of PUs induced by cutaneous I/R injury by aggravating oxidative stress-induced tissue damage. Topical steroids might not be recommended for the treatment of acute-phase decubitus ulcers. PMID:27094458

  6. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  7. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  8. Induced pluripotent stem cells in cartilage repair.

    PubMed

    Lietman, Steven A

    2016-03-18

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  9. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  10. Effects of seasonal changes in food quality and food intake on the transport of sodium and butyrate across ruminal epithelium of reindeer.

    PubMed

    Storeheier, P V; Sehested, J; Diernaes, L; Sundset, M A; Mathiesen, S D

    2003-07-01

    Transport of 22Na and 14C-butyrate across the ruminal epithelium of captive reindeer fed a concentrate diet in summer (n=5) and in winter (n=5) and from free-ranging reindeer taken from summer (n=3) and winter pasture (n=5) was measured in vitro in Ussing chambers. Significant amounts of both Na+ and butyrate were transported across the isolated epithelium without any external driving force. The ruminal transport of Na+ and butyrate were interacting, as evidenced by both the observed amiloride-induced reduction of net butyrate-transport and by the positive correlation between net transport of butyrate and Na+. Amiloride also reduced the net transport of Na+ without significantly affecting the short-circuit current, indicating the presence of an apical Na+/H+ exchanger in the ruminal epithelium of reindeer. The captive reindeer increased the dry matter intake of a constant quality concentrate from winter to summer, but this neither affected their ruminal transport capacity nor their ruminal surface enlargement factor (SEF). Free-ranging reindeer increased their ruminal transport capacity for Na+ and butyrate from summer to winter but simultaneously reduced their ruminal SEF. The present data indicate that this food-induced increase in transport capacity was attributed to changes in the nutrient composition of the diet.

  11. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  12. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  13. Liquid Crystals and Glasses in Binary Systems from Sodium and Alkali-Earth Metal Butyrates

    NASA Astrophysics Data System (ADS)

    Mirnaya, T. A.; Bereznitski, Y. V.; Volkov, S. V.

    1996-07-01

    The temperature and composition ranges of liquid crystal and glass formation have been established for the binary mixtures of mesogenic sodium butyrate with non-mesogenic magnesium, calcium and strontium butyrates by means of differential thermal analysis and hot stage polarization microscopy. The formation of a vitreous optically anisotropic mesophase has been found for binaries of sodium butyrate with calcium and strontium butyrates.

  14. PAI-1 Expression Is Required for HDACi-Induced Proliferative Arrest in ras-Transformed Renal Epithelial Cells

    PubMed Central

    Higgins, Stephen P.; Higgins, Craig E.; Higgins, Paul J.

    2011-01-01

    Malignant transformation of mammalian cells with ras family oncogenes results in dramatic changes in cellular architecture and growth traits. The generation of flat revertants of v-K-ras-transformed renal cells by exposure to the histone deacetylase inhibitor sodium butyrate (NaB) was previously found to be dependent on transcriptional activation of the PAI-1 (SERPINE1) gene (encoding the type-1 inhibitor of urokinase and tissue-type plasminogen activators). NaB-initiated PAI-1 expression preceded induced cell spreading and entry into G1 arrest. To assess the relevance of PAI-1 induction to growth arrest in this cell system more critically, two complementary approaches were used. The addition of a stable, long half-life, recombinant PAI-1 mutant to PAI-1-deficient v-K-ras-/c-Ha-ras-transformants or to PAI-1 functionally null, NaB-resistant, 4HH cells (engineered by antisense knockdown of PAI-1 mRNA transcripts) resulted in marked cytostasis in the absence of NaB. The transfection of ras-transformed cells with the Rc/CMVPAI expression construct, moreover, significantly elevated constitutive PAI-1 synthesis (10- to 20-fold) with a concomitant reduction in proliferative rate. These data suggest that high-level PAI-1 expression suppresses growth of chronic ras-oncogene transformed cells and is likely a major cytostatic effector of NaB exposure. PMID:21912547

  15. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells.

    PubMed

    Kunisada, Yuya; Tsubooka-Yamazoe, Noriko; Shoji, Masanobu; Hosoya, Masaki

    2012-03-01

    Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy, including generation of pancreatic β-cells for diabetes research and treatment. In this study, we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3β inhibitor enhanced efficient endodermal differentiation, and then combined treatment with retinoic acid, a bone morphogenic protein inhibitor, and a transforming growth factor-β (TGF-β) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover, several compounds, including forskolin, dexamethasone, and a TGF-β inhibitor, were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds, more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition, all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol.

  16. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes

    PubMed Central

    Rada-Iglesias, Alvaro; Enroth, Stefan; Ameur, Adam; Koch, Christoph M.; Clelland, Gayle K.; Respuela-Alonso, Patricia; Wilcox, Sarah; Dovey, Oliver M.; Ellis, Peter D.; Langford, Cordelia F.; Dunham, Ian; Komorowski, Jan; Wadelius, Claes

    2007-01-01

    Butyrate is a histone deacetylase inhibitor (HDACi) with anti-neoplastic properties, which theoretically reactivates epigenetically silenced genes by increasing global histone acetylation. However, recent studies indicate that a similar number or even more genes are down-regulated than up-regulated by this drug. We treated hepatocarcinoma HepG2 cells with butyrate and characterized the levels of acetylation at DNA-bound histones H3 and H4 by ChIP-chip along the ENCODE regions. In contrast to the global increases of histone acetylation, many genomic regions close to transcription start sites were deacetylated after butyrate exposure. In order to validate these findings, we found that both butyrate and trichostatin A treatment resulted in histone deacetylation at selected regions, while nucleosome loss or changes in histone H3 lysine 4 trimethylation (H3K4me3) did not occur in such locations. Furthermore, similar histone deacetylation events were observed when colon adenocarcinoma HT-29 cells were treated with butyrate. In addition, genes with deacetylated promoters were down-regulated by butyrate, and this was mediated at the transcriptional level by affecting RNA polymerase II (POLR2A) initiation/elongation. Finally, the global increase in acetylated histones was preferentially localized to the nuclear periphery, indicating that it might not be associated to euchromatin. Our results are significant for the evaluation of HDACi as anti-tumourogenic drugs, suggesting that previous models of action might need to be revised, and provides an explanation for the frequently observed repression of many genes during HDACi treatment. PMID:17567991

  17. Anticarcinogenic actions of tributyrin, a butyric acid prodrug.

    PubMed

    Heidor, Renato; Ortega, Juliana Festa; de Conti, Aline; Ong, Thomas Prates; Moreno, Fernando Salvador

    2012-12-01

    Bioactive food compounds (BFCs) exhibit potential anticarcinogenic effects that deserve to be explored. Butyric acid (BA) is considered a promising BFC and has been used in clinical trials; however, its short half-life considerably restricts its therapeutic application. Tributyrin (TB), a BA prodrug present in milk fat and honey, has more favorable pharmacokinetic properties than BA, and its oral administration is also better tolerated. In vitro and in vivo studies have shown that TB acts on multiple anticancer cellular and molecular targets without affecting non-cancerous cells. Among the TB mechanisms of action, the induction of apoptosis and cell differentiation and the modulation of epigenetic mechanisms are notable. Due to its anticarcinogenic potential, strategies as lipid emulsions, nanoparticles, or structured lipids containing TB are currently being developed to improve its organoleptic characteristics and bioavailability. In addition, TB has minimal toxicity, making it an excellent candidate for combination therapy with other agents for the control of cancer. Despite the lack of data available in the literature, TB is a promising molecule for anticancer strategies. Therefore, additional preclinical and clinical studies should be performed using TB to elucidate its molecular targets and anticarcinogenic potential.

  18. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    PubMed Central

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology. PMID:26489085

  19. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis. PMID:7890244

  20. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  1. Sodium butyrate protects the intestinal barrier function in peritonitic mice

    PubMed Central

    Han, Xiaofeng; Song, Huimin; Wang, Yunlei; Sheng, Yingmo; Chen, Jie

    2015-01-01

    Objective: Peritonitis is a commonly seen disease with high morbidity and mortality. It is prevalently considered that the impaired intestinal barrier during peritonitis is the access point of gut microbes into the blood system, and acts as the engine of the following systemic infection. In our previous study, we found that Sodium Butyrate (NaB) was protective on intestinal barrier function. In this study, we aim to evaluate the effects of NaB on overwhelming infection animal models of peritonitis. Methods: Mouse cecal ligation and puncture (CLP) model was used to study the effects of NaB on the intestinal barrier. Experimental animals were fed of NaB by gavage. Post-CLP mortality, gut permeability and intestinal histological alterations were studied. Results: Gastrointestinal NaB pharmacodynamics profiles after medication were studied. Measurements of NaB concentration in chyme showed significantly higher intestinal concentration of NaB in the NaB treated group than that of the control group. CLP-induced mortality was significantly decreased by oral NaB treatments. Gut permeability was largely increased after CLP, which was partially prevented by NaB feeding. Histological study showed that intestinal, especially ileal injury following peritonitis was substantially alleviated by NaB treatments. Moreover, tissue regeneration was also prompted by NaB. Conclusion: NaB has a potential protective effect on intestinal barrier function in peritonitis. PMID:26064302

  2. Effects of sodium butyrate on methamphetamine-sensitized locomotor activity.

    PubMed

    Harkness, John H; Hitzemann, Robert J; Edmunds, Stephanie; Phillips, Tamara J

    2013-02-15

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, mice were treated repeatedly with MA (10 days of 2mg/kg MA) or saline (10 days), and then vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge and locomotor response was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, increased striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior.

  3. Effects of butyrate on ouabain-sensitive respiration of hamster brown adipocytes.

    PubMed

    O'Donnell, M E; Horwitz, B A

    1982-01-01

    Brown adipose tissue is an important site of cold-induced nonshivering thermogenesis in many mammals. The plasma membrane-bound Na+-K+-ATPase has been shown to be significantly involved in this thermogenesis although its exact role is unknown at present. Evidence that coupling of oxidative phosphorylation to electron transport may become loosened during thermogenesis has prompted an investigation of potential roles of the Na+-K+ pump that would be compatible with altered respiratory coupling. One such role is that of modulating norepinephrine (NE)-induced lipolysis and hence provision of free fatty acids to the mitochondria. Under such conditions, inhibition of the pump would reduce NE-induced respiration by limiting substrate availability. If, in fact, the primary role of the pump in NE-induced thermogenesis is to facilitate substrate availability, provision of exogenous substrate should bypass this involvement and ameliorate the ouabain inhibition of respiration. In the present study, this possibility was examined by determining the effect of an exogenous substrate, butyrate, on the contribution of the Na+-K+ pump to NE-stimulated respiration of isolated hamster brown adipocytes. Although exogenous butyrate was able to serve as a substrate for brown adipocyte respiration, its presence had no significant effect on the ouabain sensitivity of NE-induced rates of oxygen consumption. That is, ouabain (1 mM) inhibited the NE-evoked thermogenesis of the adipocytes by 77.7 +/- 6.5% in the absence of butyrate (2 mM) and by 73.4 +/- 9.9% in its presence. It appears, therefore, that the contribution of the Na+-K+ membrane pump to brown fat thermogenesis does not simply reflect modulation of NE-evoked lipolysis.

  4. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of highly conserved, small non-coding RNAs (~22 nucleotides) that regulate gene expression post-transcriptionally. MicroRNAs are encoded by specific genes in the genome, which are transcribed as primary transcripts called primary miRNA. MicroRNAs (miRNAs) bind to compl...

  5. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  6. Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-01

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success. PMID:27152442

  7. The photoirradiation induced p-n junction in naphthylamine-based organic photovoltaic cells.

    PubMed

    Bai, Linyi; Gao, Qiang; Xia, Youyi; Ang, Chung Yen; Bose, Purnandhu; Tan, Si Yu; Zhao, Yanli

    2015-09-21

    The bulk heterojunction (BHJ) plays an indispensable role in organic photovoltaics, and thus has been investigated extensively in recent years. While a p-n heterojunction is usually fabricated using two different donor and acceptor materials such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), it is really rare that such a BHJ is constructed by a single entity. Here, we presented a photoirradiation-induced p-n heterojunction in naphthylamine-based organic photovoltaic cells, where naphthylamine as a typical p-type semiconductor could be oxidized under photoirradiation and transformed into a new semiconductor with the n-type character. The p-n heterojunction was realized using both the remaining naphthylamine and its oxidative product, giving rise to the performance improvement in organic photovoltaic devices. The experimental results show that the power conversion efficiency (PCE) of the devices could be achieved up to 1.79% and 0.43% in solution and thin film processes, respectively. Importantly, this technology using naphthylamine does not require classic P3HT and PCBM to realize the p-n heterojunction, thereby simplifying the device fabrication process. The present approach opens up a promising route for the development of novel materials applicable to the p-n heterojunction.

  8. Microlens array induced light absorption enhancement in polymer solar cells

    SciTech Connect

    Chen, Yuqing; Elshobaki, Moneim; Ye, Zhuo; Park, Joong-Mok; Noack, Max A.; Ho, Kai-Ming; Chaudhary, Sumit

    2013-01-24

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure – the microlens array (MLA) – to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems – poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) – were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by [similar]4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for [similar]40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate.

  9. Microlens array induced light absorption enhancement in polymer solar cells.

    PubMed

    Chen, Yuqing; Elshobaki, Moneim; Ye, Zhuo; Park, Joong-Mok; Noack, Max A; Ho, Kai-Ming; Chaudhary, Sumit

    2013-03-28

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure - the microlens array (MLA) - to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems - poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) - were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by ∼4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for ∼40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate. PMID:23407762

  10. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed Central

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon

    2016-01-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  11. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  12. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10.

  13. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    PubMed Central

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, < 0.03 U mg−1 protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24–7.64 U mg−1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  14. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.

    PubMed

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-09-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23-0.99 U mg(-1) protein), butyrate kinase (Buk, < 0.03 U mg(-1) protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24-7.64 U mg(-1) protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH₃ and NH₄(+)-N), and a negative dependency can be postulated. Thus, high concentrations of NH₃ and NH₄(+)-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities.

  15. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  16. Generation of induced pluripotent stem cells.

    PubMed

    Deyle, David R

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are generated from somatic cells that have been reprogrammed by the ectopic expression of defined embryonic transcription factors. This technology has provided investigators with a powerful tool for modelling disease and developing treatments for human disorders. This chapter provides the researcher with some background on iPSCs and details on how to produce MEF-conditioned medium, prepare mitotically arrested mouse embryonic fibroblasts (MEFs), create iPSCs using viral vectors, passage iPSCs, and cryopreserve iPSCs. The methods offered here have been used in many laboratories around the world and the reader can initially follow these methods. However, not all cell types are easily transduced using viral vectors and other methods of delivering the reprogramming transcription factors may need to be tested. PMID:25331042

  17. Radiation-Induced Autophagy Contributes to Cell Death and Induces Apoptosis Partly in Malignant Glioma Cells

    PubMed Central

    Jo, Guk Heui; Bögler, Oliver; Chwae, Yong-Joon; Yoo, Heon; Lee, Seung Hoon; Park, Jong Bae; Kim, Youn-Jae; Kim, Jong Heon; Gwak, Ho-Shin

    2015-01-01

    Purpose Radiation-induced autophagy has been shown to play two different roles, in malignant glioma (MG) cells, cytocidal or cytoprotective. However, neither the role of radiation-induced autophagy for cell death nor the existence of autophagy-induced apoptosis, a well-known cell-death pathway after irradiation, has been verified yet. Materials and Methods We observed both temporal and dose-dependent response patterns of autophagy and apoptosis to radiation in MG cell lines. Additionally, we investigated the role of autophagy in apoptosis through knockdown of autophagy-related proteins. Results Autophagic activity measured by staining of acidic vesicle organelles and Western blotting of LC-3 protein increased in proportion to radiation dose from day 1 to 5 after irradiation. Apoptosis measured by annexin-V staining and Western blotting of cleaved poly(ADP-ribose) polymerase demonstrated relatively late appearance 3 days after irradiation that increased for up to 7 days. Blocking of pan-caspase (Z-VAD-FMK) did not affect apoptosis after irradiation, but silencing of Atg5 effectively reduced radiation-induced autophagy, which decreased apoptosis significantly. Inhibition of autophagy in Atg5 knockdown cells was shown to be beneficial for cell survival. Stable transfection of GFP-LC3 cells was observed after irradiation. Annexin-V was localized in cells bearing GFP-LC3 punctuated spots, indicating autophagy in immunofluorescence. Some of these punctuated GFP-LC3 bearing cells formed conglomerated spots and died in final phase. Conclusion These findings suggest that autophagy appears earlier than apoptosis after irradiation and that a portion of the apoptotic population that appears later is autophagy-dependent. Thus, autophagy is a pathway to cell death after irradiation of MG cells. PMID:25410762

  18. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    SciTech Connect

    Saleem, M.; Cutler, A.J.

    1986-04-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of /sup 14/C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37/sup 0/C. The heat shocked protoplasts incorporated 33% more /sup 14/C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids.

  19. Diet and carcinogen alter luminal butyrate concentration and intracellular pH in isolated rat colonocytes.

    PubMed

    Zoran, D L; Barhoumi, R; Burghardt, R C; Chapkin, R S; Lupton, J R

    1997-01-01

    A 2 x 2 factorial experiment was conducted to examine the effects of two different dietary fibers and carcinogen treatment on colonic luminal short-chain fatty acid (SCFA) concentrations and intracellular pH (pHi) in rats. Twenty-four male Sprague-Dawley rats were divided into four groups, injected with a carcinogen [azoxymethane (AOM)] or normal saline (Sal), and fed one of two diets differing only in the type of dietary fiber [cellulose (Cell) or pectin (Pect)]. After 38 weeks of consuming these diets, the rats were euthanized, luminal contents were collected for analysis of SCFA concentrations, and colonocytes were isolated from the proximal and distal colon for subsequent determination of pHi. Changes in pHi after the addition of exogenous sodium butyrate to the culture medium were also tested. The highest concentrations of SCFAs were produced by the control rats (saline injected) consuming the pectin diet. Luminal butyrate concentrations were reduced in three of four colonic segments of carcinogen-injected groups [proximal and distal cellulose (Prox Cell and Dist Cell) and distal pectin (Dist Pect)] compared with saline controls. The pHi was consistently higher in colonocytes isolated from carcinogen-injected rats (Prox Cell/AOM = 6.95 vs. Prox Cell/Sal = 6.65, Prox Pect/AOM = 6.75 vs. Prox Pect/Sal = 6.65, Dist Cell/AOM = 6.94 vs. Dist Cell/AOM = 6.85, Dist Pect/AOM = 6.92 vs. Dist Pect/Sal = 6.79) than in cells from saline-injected rats. Furthermore, in the majority of rats, pHi was lower in the proximal than in the distal colon. Addition of butyrate to cultured colonocytes consistently lowered pHi, but the effect was more pronounced in the carcinogen-injected animals. These data identify changes that occur intraluminally and intracellularly in colons of rats injected with AOM and suggest that, during tumorigenesis, alterations in butyrate production and basic colonocyte physiology may play an important role in the process.

  20. A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei

    PubMed Central

    Schmidt, Alexander; Müller, Nicolai; Schink, Bernhard; Schleheck, David

    2013-01-01

    In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a

  1. Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis.

    PubMed

    Ramoino, P; Milanese, M; Candiani, S; Diaspro, A; Fato, M; Usai, C; Bonanno, G

    2010-04-01

    Paramecium primaurelia expresses a significant amount of gamma-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca(2+) but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.

  2. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production.

    PubMed

    Säemann, M D; Böhmig, G A; Osterreicher, C H; Burtscher, H; Parolini, O; Diakos, C; Stöckl, J; Hörl, W H; Zlabinger, G J

    2000-12-01

    Cytokines are critical in regulating unresponsiveness versus immunity towards enteric antigens derived from the intestinal flora and ingested food. There is increasing evidence that butyrate, a major metabolite of intestinal bacteria and crucial energy source for gut epithelial cells, also possesses anti-inflammatory properties. Its influence on cytokine production, however, is not established. Here, we report that butyrate strongly inhibits interleukin-12 (IL-12) production by suppression of both IL-12p35 and IL-12p40 mRNA accumulation, but massively enhances IL-10 secretion in Staphylococcus aureus cell-stimulated human monocytes. The effect of butyrate on IL-12 production was irreversible upon the addition of neutralizing antibodies to IL-10 or transforming growth factor b1 and of indomethacin. In anti-CD3-stimulated peripheral blood mononuclear cells, butyrate enhanced IL-10 and IL-4 secretion but reduced the release of IL-2 and interferon-g. The latter effect was in part a result of suppressed IL-12 production but also a result of inhibition of IL-12 receptor expression on T cells. These data demonstrate a novel anti-inflammatory property of butyrate that may have broad implications for the regulation of immune responses in vivo and could be exploited as new therapeutic approach in inflammatory conditions.

  3. T cell tolerance induced by therapeutic antibodies.

    PubMed

    Cobbold, Stephen P

    2005-09-29

    Ever since the discovery of Medawar, over 50 years ago, that immunological tolerance was an acquired phenomenon that could be manipulated in neonatal mice, the ability to induce therapeutic tolerance against autoantigens, allergens and organ grafts has been a major driving force in immunology. Within the last 20 years we have found that a brief treatment with monoclonal antibodies that block certain functional molecules on the surface of the T cell is able to reprogramme the established immune repertoire of the adult mouse, allowing indefinite acceptance of allografts or effective curing of autoimmune diseases. We are only now just beginning to define many of the regulatory mechanisms that induce and maintain the tolerant state with the aim of being able to safely and reliably apply these technologies to human clinical situations. PMID:16147534

  4. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    PubMed Central

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2016-01-01

    Background Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance. Design Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis. PMID:26842399

  5. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  6. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Wang, Hanning; Xiang, Jinzhu; Zhang, Wei; Li, Junhong; Wei, Qingqing; Zhong, Liang; Ouyang, Hongsheng; Han, Jianyong

    2016-01-01

    The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms. PMID:27264660

  7. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response.

    PubMed

    Ilinskaya, Olga N; Zelenikhin, Pavel V; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Prassolov, Vladimir S; Makarov, Alexander A

    2007-10-01

    Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-gamma in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit.

  8. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  9. Generation of Avian Induced Pluripotent Stem Cells.

    PubMed

    Lu, Yangqing; West, Franklin D; Jordan, Brian J; Beckstead, Robert B; Jordan, Erin T; Stice, Steven L

    2015-01-01

    Avian species are among the most diverse vertebrates on our planet and significantly contribute to the balance of the ecology. They are also important food source and serve as a central animal model to decipher developmental biology and disease principles. Derivation of induced pluripotent stem cells (iPSCs) from avian species would enable conservation of genetic diversity as well as offer a valuable cell source that facilitates the use of avian models in many areas of basic and applied research. In this chapter, we describe methods used to successfully reprogram quail fibroblasts into iPSCs by using human transcription factors and the techniques critical to the characterization of their pluripotency. PMID:26621592

  10. Transport of butyrate across the isolated bovine rumen epithelium--interaction with sodium, chloride and bicarbonate.

    PubMed

    Sehested, J; Diernaes, L; Møller, P D; Skadhauge, E

    1999-08-01

    The Ussing chamber technique was used for studying unidirectional fluxes of 14C-butyrate across the bovine rumen epithelium in vitro. Significant amounts of butyrate were absorbed across the bovine rumen epithelium in vitro, without any external driving force. The paracellular pathway was quantitatively insignificant. The transcellular pathway was predominately voltage-insensitive. The serosal to mucosal (SM) pathway was regulated by mass action, whereas the mucosal to serosal (MS) pathway further includes a saturable process, which accounted for 30 to 55% of the MS flux. The studied transport process for 14C-butyrate across the epithelium could include metabolic processes and transport of 14C-labelled butyrate metabolites. The transport of butyrate interacted with Na+, Cl- and HCO3-, and there was a linear relationship between butyrate and sodium net transport. Lowering the sodium concentration from 140 to 10 mmol l-1 decreased the butyrate MS flux significantly. Amiloride (1 mmol l-1) did, however, not reduce the butyrate flux significantly. Chloride concentration in itself did not seem to influence the transport of butyrate, but chloride-free conditions tended to increase the MS and SM flux of butyrate by a DIDS-sensitive pathway. DIDS (bilateral 0.5 mmol l-1) did further decrease the butyrate SM flux significantly at all chloride concentrations. Removing bicarbonate from the experimental solutions decreased the MS and increased the SM flux of butyrate significantly, and abolished net butyrate flux. There were no significant effects of the carbonic anhydrase inhibitor Acetazolamide (bilateral 1.0 mmol l-1). The results can be explained by a model where butyrate and butyrate metabolites are transported both by passive diffusion and by an electroneutral anion-exchange with bicarbonate. The model couples sodium and butyrate via CO2 from metabolism of butyrate, and intracellular pH.

  11. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition

    PubMed Central

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-01-01

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment. PMID:25853502

  12. The effect of IFN-gamma and TNF-alpha on the eosinophilic differentiation and NADPH oxidase activation of human HL-60 clone 15 cells.

    PubMed

    Lopez, Juan A; Newburger, Peter E; Condino-Neto, Antonio

    2003-12-01

    The aim of this study was to investigate the effect of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) on NADPH oxidase activity and gp91-phox gene expression in HL-60 clone 15 cells as they differentiate along the eosinophilic lineage. The results were compared to the eosoniphilic inducers interleukin-5 (IL-5) and butyric acid. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) or IL-5 (200 pM) caused a significant increase in the expression of the eosinophil peroxidase (EPO) and the major basic protein (MBP) genes. Similar results were observed when the cells were cultured with 0.5 mM butyric acid for 5 days. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) also caused a significant increase in superoxide release by HL-60 clone 15 cells after 2 days compared with control or with butyric acid-induced cells. After 5 days, these cytokines and butyric acid induced an even stronger release of superoxide. HL-60 clone 15 cells cultured with IFN-gamma and TNF-alpha for 2 days showed a significant increase in gp91-phox gene expression. We conclude that IFN-gamma and TNF-alpha are sufficient to induce the differentiation of HL-60 clone 15 cells to the eosinophilic lineage and to upregulate gp91-phox gene expression and activity of the NADPH oxidase system.

  13. Escape from negative regulation of growth by transforming growth factor beta and from the induction of apoptosis by the dietary agent sodium butyrate may be important in colorectal carcinogenesis.

    PubMed

    Hague, A; Manning, A M; van der Stappen, J W; Paraskeva, C

    1993-09-01

    induces apoptosis (programmed cell death) in colonic tumour cell lines. Since sodium butyrate occurs naturally in the colorectum, being produced by bacterial fermentation of dietary fibre, it may be involved in the control of cell death in human colorectal epithelium. This could, in part, explain the apparent protective effects of dietary fibre. Clonal evolution and tumour progression in colorectal carcinogenesis could therefore involve loss of response to endogenous growth factors such as TGF beta and an escape from the induction of programmed cell death by dietary factors.

  14. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro

    PubMed Central

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection. PMID:26904517

  15. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1.

    PubMed

    Bouyer, Patrice G; Tang, Xu; Weber, Christopher R; Shen, Le; Turner, Jerrold R; Matthews, Jeffrey B

    2013-01-15

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-I(sc)). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-I(sc) by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-I(sc). Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca(2+)](i)) in T84 cells and AMG-9810 blocked the rise in [Ca(2+)](i) induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  16. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. PMID:24123501

  17. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo.

  18. Development of a specific radioimmunoassay for cortisol 17-butyrate

    SciTech Connect

    Smith, G.N.; Lee, Y.F.; Bu'Lock, D.E.; August, P.; Anderson, D.C.

    1983-07-01

    We describe the development and validation of an assay for cortisol 17-butyrate in blood in which there is no significant cross reaction with endogenous corticosteroids at levels encountered normally in man. Preliminary data on blood levels of the drug in absorption studies are presented.

  19. Optimized butyl butyrate synthesis catalyzed by Thermomyces lanuginosus lipase.

    PubMed

    Martins, Andréa B; Friedrich, John L R; Rodrigues, Rafael C; Garcia-Galan, Cristina; Fernandez-Lafuente, Roberto; Ayub, Marco A Z

    2013-01-01

    Butyl butyrate is an ester present in pineapple flavor, which is very important for the food and beverages industries. In this work, the optimization of the reaction of butyl butyrate synthesis catalyzed by the immobilized lipase Lipozyme TL-IM was performed. n-Hexane was selected as the most appropriate solvent. Other reaction parameters such as temperature, substrate molar ratio, biocatalyst content and added water, and their responses measured as yield, were evaluated using a fractional factorial design, followed by a central composite design (CCD) and response surface methodology. In the fractional design 2(4-1) , the four variables were tested and temperature and biocatalyst content were statistically significant and then used for optimization on CCD. The optimal conditions for butyl butyrate synthesis were found to be 48°C; substrate molar ratio 3:1 (butanol:butyric acid); biocatalyst content of 40% of acid mass. Under these conditions, over 90% of yield was obtained in 2 h. Enzyme reuse was tested by washing the biocatalyst with n-hexane or by direct reuse. The direct reuse produced a rapid decrease on enzyme activity, while washing with n-hexane allowed reusing the enzyme for five reactions cycles keeping approximately 85% of its activity.

  20. 4-(2-Methyl-4-chlorophenoxy) butyric acid (MCPB)

    Integrated Risk Information System (IRIS)

    4 - ( 2 - Methyl - 4 - chlorophenoxy ) butyric acid ( MCPB ) ; CASRN 94 - 81 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Hea

  1. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  2. PDGF upregulates CLEC-2 to induce T regulatory cells

    PubMed Central

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Hajian, Pega; Cao, Jia-Ning; Agrawal, Anshu

    2015-01-01

    The effect of platelet derived growth factor (PDGF) on immune cells is not elucidated. Here, we demonstrate PDGF inhibited the maturation of human DCs and induced IL-10 secretion. Culture of PDGF-DCs with T cells induced the polarization of T cells towards FoxP3 expressing T regulatory cells that secreted IL-10. Gene expression studies revealed that PDGF induced the expression of C-type lectin like receptor member 2, (CLEC-2) receptor on DCs. Furthermore, DCs transfected with CLEC-2 induced T regulatory cells in DC-T cell co-culture. CLEC-2 is naturally expressed on platelets. Therefore, to confirm whether CLEC-2 is responsible for inducing the T regulatory cells, T cells were cultured with either CLEC-2 expressing platelets or soluble CLEC-2. Both conditions resulted in the induction of regulatory T cells. The generation of T regulatory cells was probably due to the binding of CLEC-2 with its ligand podoplanin on T cells, since crosslinking of podoplanin on the T cells also resulted in the induction of T regulatory cells. These data demonstrate that PDGF upregulates the expression of CLEC-2 on cells to induce T regulatory cells. PMID:26416420

  3. PDGF upregulates CLEC-2 to induce T regulatory cells.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Hajian, Pega; Cao, Jia-Ning; Agrawal, Anshu

    2015-10-01

    The effect of platelet derived growth factor (PDGF) on immune cells is not elucidated. Here, we demonstrate PDGF inhibited the maturation of human DCs and induced IL-10 secretion. Culture of PDGF-DCs with T cells induced the polarization of T cells towards FoxP3 expressing T regulatory cells that secreted IL-10. Gene expression studies revealed that PDGF induced the expression of C-type lectin like receptor member 2, (CLEC-2) receptor on DCs. Furthermore, DCs transfected with CLEC-2 induced T regulatory cells in DC-T cell co-culture. CLEC-2 is naturally expressed on platelets. Therefore, to confirm whether CLEC-2 is responsible for inducing the T regulatory cells, T cells were cultured with either CLEC-2 expressing platelets or soluble CLEC-2. Both conditions resulted in the induction of regulatory T cells. The generation of T regulatory cells was probably due to the binding of CLEC-2 with its ligand podoplanin on T cells, since crosslinking of podoplanin on the T cells also resulted in the induction of T regulatory cells. These data demonstrate that PDGF upregulates the expression of CLEC-2 on cells to induce T regulatory cells.

  4. Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate-producing microbes promote gastrointestinal health in the human gut, and similar benefits are likely derived from butyrate-producing microbes in other animal hosts. Consequently, there is considerable potential for butyrate-producing microbes to be utilized in health-promoting application...

  5. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  6. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling based on increased expression of urea transporter (UT-B) in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concent...

  7. Phase Diagrams of Binary Systems of Some Alkali Iso-Butyrates with One Mesogenic Component

    NASA Astrophysics Data System (ADS)

    Mirnaya, T. A.; Yaremchuk, G. G.; Volkov, S. V.

    1995-09-01

    The phase diagrams of the binary mixtures of mesogenic potassium iso-butyrate with non-mesogenic lithium-, sodium-, and caesium iso-butyrate have been investigated by differential thermal analysis and hot stage polarization microscopy. The temperature and concentration ranges of liquid crystal formation have been established. Sodium and caesium iso-butyrate have been found to possess latent mesogenic properties.

  8. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

    PubMed

    Li, Huijuan; Chang, Jiali; Liu, Pengfei; Fu, Li; Ding, Dewen; Lu, Yahai

    2015-05-01

    Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3 O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3 O4 concentration but was dismissed when Fe3 O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3 O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA-based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3 O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3 O4 amendment. Collectively, our study demonstrated that the nanoFe3 O4 -facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.

  9. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    PubMed Central

    Liu, Jiaming; Sun, Jing; Wang, Fangyan; Yu, Xichong; Ling, Zongxin; Li, Haixiao; Zhang, Huiqing; Jin, Jiangtao; Chen, Wenqian; Pang, Mengqi; Yu, Junjie; He, Yiwen; Xu, Jiru

    2015-01-01

    Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD) remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO) to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E) staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt) and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD. PMID:26523278

  10. Inducing articular cartilage phenotype in costochondral cells

    PubMed Central

    2013-01-01

    Introduction Costochondral cells may be isolated with minimal donor site morbidity and are unaffected by pathologies of the diarthrodial joints. Identification of optimal exogenous stimuli will allow abundant and robust hyaline articular cartilage to be formed from this cell source. Methods In a three factor, two level full factorial design, the effects of hydrostatic pressure (HP), transforming growth factor β1 (TGF-β1), and chondroitinase ABC (C-ABC), and all resulting combinations, were assessed in third passage expanded, redifferentiated costochondral cells. After 4 wks, the new cartilage was assessed for matrix content, superficial zone protein (SZP), and mechanical properties. Results Hyaline articular cartilage was generated, demonstrating the presence of type II collagen and SZP, and the absence of type I collagen. TGF-β1 upregulated collagen synthesis by 175% and glycosaminoglycan synthesis by 75%, resulting in a nearly 200% increase in tensile and compressive moduli. C-ABC significantly increased collagen content, and fibril density and diameter, leading to a 125% increase in tensile modulus. Hydrostatic pressure increased fibril diameter by 30% and tensile modulus by 45%. Combining TGF-β1 with C-ABC synergistically increased collagen content by 300% and tensile strength by 320%, over control. No significant differences were observed between C-ABC/TGF-β1 dual treatment and HP/C-ABC/TGF-β1. Conclusions Employing biochemical, biophysical, and mechanical stimuli generated robust hyaline articular cartilage with a tensile modulus of 2 MPa and a compressive instantaneous modulus of 650 kPa. Using expanded, redifferentiated costochondral cells in the self-assembling process allows for recapitulation of robust mechanical properties, and induced SZP expression, key characteristics of functional articular cartilage. PMID:24330640

  11. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  12. [Dementia study using induced pluripotent stem cells].

    PubMed

    Matsuzono, Kosuke; Abe, Koji; Inoue, Haruhisa

    2016-03-01

    Recent developments in induced pluripotent stem cell (iPSC) technology have facilitated, and have contributed to overcome the difficulty of modeling dementia caused by Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD), etc. The following models using iPSCs were reported: the pathophysiology caused by gene mutations such as presenilin or amyloid β precursor protein in AD, α-synuclein in DLB, and microtubule-associated protein tau, fused in sarcoma, progranulin, or chromosome 9 open reading frame 72 in FTLD, anti-AD drug screening, sortilin-related receptor L 1 haplotype influence in sporadic AD, and amyloid β secretion in Down syndrome. Patient-specific iPSC could be expected to reveal the disease pathology and lead to drug discoveries for dementia patients.

  13. Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

    PubMed

    Wada, Haruka; Kojo, Satoshi; Kusama, Chie; Okamoto, Naoki; Sato, Yorino; Ishizuka, Bunpei; Seino, Ken-ichiro

    2011-01-01

    Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). B-iPS cells were identical to embryonic stem (ES) cells and mouse embryonic fibroblast (MEF)-derived iPS cells in morphology, ES cell marker expression as well as teratoma and chimera mouse formation. Both B-iPS and MEF-derived iPS cells differentiated into lymphocytes in OP9 co-culture systems. Both efficiently differentiated into T-cell lineage that produced IFN-γ on T-cell receptor stimulation. However, iPS cells including B-iPS cells were relatively resistant to B-cell lineage differentiation. One of the reasons of the failure of B-cell lineage differentiation seemed due to a defect of Pax5 expression in the differentiated cells. Therefore, current in vitro differentiation systems using iPS cells are sufficient for inducing T-cell but not B-cell lineage. PMID:21135032

  14. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.

    PubMed

    Takuma, Kazuhiro; Hara, Yuta; Kataoka, Shunsuke; Kawanai, Takuya; Maeda, Yuko; Watanabe, Ryo; Takano, Erika; Hayata-Takano, Atsuko; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2014-11-01

    We recently showed that prenatal exposure to valproic acid (VPA) in mice causes autism-like behavioral abnormalities, including social interaction deficits, anxiety-like behavior and spatial learning disability, in male offspring. In the present study, we examined the effect of prenatal VPA on cognitive function and whether the effect is improved by chronic treatment with VPA and sodium butyrate, histone deacetylase inhibitors. In addition, we examined whether the cognitive dysfunction is associated with hippocampal dendritic morphological changes. Mice given prenatal exposure to VPA exhibited novel object recognition deficits at 9 weeks of age, and that the impairment was blocked by chronic (5-week) treatment with VPA (30 mg/kg/d, i.p.) or sodium butyrate (1.2g/kg/d, i.p.) starting at 4 weeks of age. In agreement with the behavioral findings, the mice prenatally exposed to VPA showed a decrease in dendritic spine density in the hippocampal CA1 region, and the spine loss was attenuated by chronic treatment with sodium butyrate or VPA. Furthermore, acute treatment with sodium butyrate, but not VPA, significantly increased acetylation of histone H3 in the hippocampus at 30 min, suggesting the difference in the mechanism for the effects of chronic VPA and sodium butyrate. These findings suggest that prenatal VPA-induced cognitive dysfunction is associated with changes in hippocampal dendritic spine morphology.

  15. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  16. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    PubMed Central

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J.; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F.; Psathaki, Olympia E.; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R.; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34+ hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34+ hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34+ cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. PMID:25326431

  17. Analysis of charge transfer and recombination for the poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester organic solar cells with iron oxide nanoparticles in various layers

    NASA Astrophysics Data System (ADS)

    Park, Eung-Kyu; Kim, Ji-Hwan; Cho, Hyeong Jun; Lee, Dong-Hoon; Kim, Yong-Sang

    2015-10-01

    An improved organic solar cell's performance was obtained by focusing on the effects of iron oxide (Fe2O3) nanoparticles (NPs) within the different layers of P3HT:PCBM solar cells. We investigated the recombination mechanism in organic solar cells using the current density-voltage (J-V) characteristics at various light intensities and also analyzed the electrochemical impedance. Shockley-Read-Hall (SRH) recombination, which is dependent on the trap states, surface roughness, resistance and charge transport, controls the cell efficiency. The device performance was compared by adding iron oxide nanoparticles in the active layer and Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer, respectively. Also the iron oxide nanoparticle layer was inserted as an interface layer between active and PEDOT:PSS layers. The solar cell without NPs showed a 2.68% power conversion efficiency while that with Fe2O3 NPs as an interface layer showed a higher power conversion efficiency of 3.83% under air mass (AM) 1.5G illumination. The device with NPs as an interface layer showed a smooth surface roughness (1.16 nm), lower charge recombination (1.06(kT/e)), and lower parasitic resistance (254 Ω cm2).

  18. Long-Term Culture of Porcine Induced Pluripotent Stem-Like Cells Under Feeder-Free Conditions in the Presence of Histone Deacetylase Inhibitors.

    PubMed

    Petkov, Stoyan; Glage, Silke; Nowak-Imialek, Monika; Niemann, Heiner

    2016-03-01

    The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation. PMID:26691930

  19. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  20. Somatic Cell-Induced Hyperacetylation, But Not Hypomethylation, Positively and Reversibly Affects the Efficiency of In Vitro Cloned Blastocyst Production in Cattle

    PubMed Central

    Jafarpour, Farnoosh; Hosseini, Sayed Morteza; Hajian, Mehdi; Forouzanfar, Mohsen; Ostadhosseini, Somayyeh; Abedi, Parvaneh; Gholami, Soghra; Ghaedi, Kamran; Gourabi, Hamid; Shahverdi, Abdol Hossein; Vosough, Ahmad Dizaj Taghi

    2011-01-01

    Abstract 5-Aza-2′-deoxycytidine (AzC), trichostatin A (TSA), and its natural mimetic, sodium butyrate (NaB), are antineoplastic drugs that can modify the epigenetic status of donor cells prior to somatic cell nuclear transfer (SCNT). In this study, we used fibroblast cells treated with these drugs to investigate the direct and indirect effects of induced changes in DNA methylation and acetylation of the lysine 9 residue of histone H3 (H3K9). Additionally, we assayed cellular characteristics (cell growth, cell proliferation, cell cycle progression, and apoptosis) and SCNT efficiency in response to these drugs as well as monitoring these effects 24 h after removing the drugs. We observed the following: (1) AzC, TSA, and NaB all showed dose-dependent effects on different cellular characteristics; (2) TSA and NaB induced H3K9 hyperacetylation accompanied by DNA hypermethylation, whereas AzC induced DNA hypomethylation with no effect on H3K9 hyperacetylation; (3) TSA and NaB improved cloning efficiency, whereas AzC reduced it; and (4) unlike AzC, the effects of TSA and NaB on cellular characteristics and SCNT efficiency were reversed following drug removal. Our results indicate that somatic cells treated with TSA and NaB show better survival and recovery rates following the removal of these drugs. Moreover, H3K9 hyperacetylation (induced with TSA and NaB), but not DNA hypomethylation (induced with AzC), favors cloning efficiency. PMID:21919704

  1. An optically induced cell lysis device using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Heng; Lee, Gwo-Bin

    2009-01-01

    This letter reports an optically induced cell lysis device that can selectively lyse a single cell within a group of cells, a function which cannot be performed using traditional tools. This chip-scale device was made of a photoconductive material, which can induce a nonuniform electric field at a specific position under illumination of a beam spot generating a transmembrane potential in the cell. With this approach, cell lysis can be performed using the optically induced electric field. Fibroblast cells and oral cancer cells were used to demonstrate the capability of the developed chip. In addition to lysing the whole cell, the developed method also allowed one to selectively disrupt the cell membrane without damaging the nucleus. Operating parameters such as illumination power density and beam spot diameter for cell lysis were systematically investigated.

  2. HIV transcription is induced with some forms of cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Panozzo, J.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-11-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct`, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {Gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture.

  3. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  4. c-myc regulation during retinoic acid-induced differentiation of F9 cells is posttranscriptional and associated with growth arrest.

    PubMed Central

    Dean, M; Levine, R A; Campisi, J

    1986-01-01

    We have shown that c-myc mRNA levels decrease more than 20-fold when F9 teratocarcinoma stem cells are induced to arrest growth and terminally differentiate to parietal endoderm after exposure to retinoic acid and cyclic AMP (Campisi et al., Cell 36:241-247, 1984). Here, we demonstrate that although growth arrest and full expression of the differentiated phenotype required about 3 days, c-myc mRNA declined abruptly between 8 and 16 h after the addition of retinoic acid and cyclic AMP. The decline was independent of cyclic AMP. We found little or no change in the level of c-myc transcription during differentiation, although two other genes showed marked transcriptional regulation. Thus, decreased c-myc mRNA is a consequence of very early posttranscriptional regulation directed by retinoic acid. Differentiation was not fundamental to this regulation. We have shown that sodium butyrate blocks expression of the differentiated phenotype if added within 8 h of retinoic acid and cyclic AMP (Levine et al., Dev. Biol. 105:443-450, 1984). However, butyrate did not inhibit the decrease in c-myc mRNA. Furthermore, F9 cells partially arrested growth without differentiating when grown in isoleucine-deficient medium. Under these conditions, c-myc mRNA levels also declined. Our results suggest that induction of differentiation-specific genes may be under retinoic acid-mediated control dissimilar from that responsible for the decay of c-myc mRNA. In addition, they raise the possibility that growth arrest may be initiated by reduced c-myc expression. Images PMID:3785153

  5. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  6. Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate.

    PubMed

    Biagi, G; Piva, A; Moschini, M; Vezzali, E; Roth, F X

    2007-05-01

    Adding organic acids to piglet diets is known to be helpful in overcoming postweaning syndrome, and butyric acid is known to be the main energy source for the epithelial cells of the large intestine and the terminal ileum. This study investigated the effect of sodium butyrate (SB) on in vitro and in vivo swine microflora, piglet growth performance, and intestinal wall morphology. During a 24-h in vitro cecal fermentation, total gas production and maximal rate of gas production were reduced linearly by SB (P < 0.001). Ammonia in cecal liquor was increased linearly by SB after 4, 8, and 24 h of fermentation (P < 0.001). In the in vivo study, 48 piglets housed in individual crates were allotted to 4 treatment groups (12 animals per treatment) for 6 wk. Piglets received a basal diet with a) no addition (control), or with SB at b) 1,000 ppm, c) 2,000 ppm, or d) 4,000 ppm. After 6 wk, 6 animals per treatment were killed, and samples of intestinal content and mucosa were collected. Sodium butyrate did not improve the animal growth performance. In the cecum, SB increased pH and isobutyric acid concentration (linear, P < 0.05) and tended to increase ammonia concentration (P = 0.056). Intestinal counts of clostridia, enterobacteriaceae, and lactic acid bacteria as well as intestinal mucosal morphology were not affected by feeding SB. This study showed that SB influenced the cecal microflora in an in vitro system, reducing the total gas production but increasing ammonia concentrations. When fed to piglets, SB did not improve the animal growth performance, increased cecal pH, and tended to increase cecal ammonia concentrations. Further studies will be needed to better understand the mechanisms underlying the effects observed when SB is fed to piglets.

  7. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  8. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  9. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    PubMed Central

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G.H.

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer. PMID:27141211

  10. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  11. HIV-induced kidney cell injury: role of ROS-induced downregulated vitamin D receptor

    PubMed Central

    Salhan, Divya; Husain, Mohammad; Subrati, Ashaan; Goyal, Rohan; Singh, Tejinder; Rai, Partab; Malhotra, Ashwani

    2012-01-01

    Reactive oxygen species (ROS) have been demonstrated to contribute to HIV-induced tubular cell injury. We hypothesized that HIV-induced ROS generation may be causing tubular cell injury through downregulation of vitamin D receptor (VDR) and associated downstream effects. In the present study, HIV not only downregulated tubular cell VDR expression but also inflicted DNA injury. On the other hand, EB-1089, a VDR agonist (VD), inhibited both downregulation of VDR and tubular cell DNA injury in the HIV milieu. H2O2 (an O− donor) directly downregulated tubular cell VDR, whereas catalase, a free radical scavenger, inhibited HIV-induced downregulation of tubular cell VDR expression. HIV also stimulated the tubular cell renin-angiotensin system (RAS) through downregulation of VDR. Because losartan (an ANG II blolcker) partially inhibited HIV-induced tubular cell ROS generation while ANG II directly stimulated tubular cell ROS generation, it appears that HIV-induced ROS production was partly contributed by the RAS activation. VD not only inhibited HIV-induced RAS activation but also attenuated tubular cell ROS generation. Tubular cells displayed double jeopardy in the HIV milieu induction of double-strand breaks and attenuated DNA repair; additionally, in the HIV milieu, tubular cells exhibited enhanced expression of phospho-p53 and associated downstream signaling. A VDR agonist and an ANG II blocker not only preserved expression of tubular cell DNA repair proteins but also inhibited induction of double-strand breaks. In in vivo studies, renal cortical sections of Tg26 mice displayed attenuated expression of VDR both in podocytes and tubular cells. In addition, renal cortical sections of Tg26 mice displayed enhanced oxidative stress-induced kidney cell DNA damage. These findings indicated that HIV-induced tubular cell downregulation of VDR contributed to the RAS activation and associated tubular cell DNA damage. However, both VD and RAS blockade provided protection

  12. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  13. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  14. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor.

    PubMed

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 10(6) hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems

  15. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field

    PubMed Central

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue.

  16. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field.

    PubMed

    Wu, Nan; Doorenbos, Marianne; Chen, Dong Feng

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue. PMID:27594887

  17. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field

    PubMed Central

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue. PMID:27594887

  18. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    PubMed

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  19. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH).

    PubMed

    Jin, Cheng Jun; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Bergheim, Ina

    2015-12-14

    Overnutrition, insulin resistance and an impaired intestinal barrier function are discussed as critical factors in the development of non-alcoholic fatty liver disease. Not only butyrate-producing probiotics as well as supplementation of sodium butyrate (SoB) have been suggested to bear protective effects on liver damage of various aetiologies. However, whether an oral consumption of SoB has a protective effect on Western-style diet (WSD)-induced non-alcoholic steatohepatitis (NASH) and if so molecular mechanism involved has not yet been determined. Eight-week-old C57BL/6J mice were pair-fed either a liquid control or WSD±0·6 g/kg body weight SoB. After 6 weeks, markers of liver damage, inflammation, toll-like receptor (TLR)-4 signalling, lipid peroxidation and glucose as well as lipid metabolism were determined in the liver tissue. Tight junction protein levels were determined in the duodenal tissue. SoB supplementation had no effects on the body weight gain or liver weight of WSD-fed mice, whereas liver steatosis and hepatic inflammation were significantly decreased (e.g. less inflammatory foci and neutrophils) when compared with mice fed only a WSD. Tight junction protein levels in duodenum, hepatic mRNA expression of TLR-4 and sterol regulatory element-binding protein 1c were altered similarly in both WSD groups when compared with controls, whereas protein levels of myeloid differentiation primary response gene 88, inducible nitric oxide synthase, 4-hydroxynonenal protein adducts and F4/80 macrophages were only significantly induced in livers of mice fed only the WSD. In summary, these data suggest that an oral supplementation of SoB protects mice from inflammation in the liver and thus from the development of WSD-induced NASH.

  20. Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells

    PubMed Central

    Choi, Joon-Seok

    2016-01-01

    Background: Chrysophanic acid, also known as chrysophanol, has a number of biological activities. It enhances memory and learning abilities, raises superoxide dismutase activity, and has anti-cancer effects in several model systems. According to previous reports, chrysophanic acid-induced cell death shares features of necrotic cell death. However, the molecular and cellular processes underlying chrysophanic acid-induced cell death remain poorly understood. Methods: Chrysophanic acid-induced cell death was monitored by cell viability assay and Annexin V-propidium iodide (PI) staining of renal cell carcinoma Caki-2 cells. The induction of intracellular reactive oxygen species (ROS) by chrysophanic acid and the suppression of ROS by anti-oxidants were evaluated by 2′,7′-dichlorofluorescin diacetate staining. The expression and phosphorylation of proteins that are involved in apoptosis and necroptosis were detected by immunoblotting. Results: The extent of chrysophanic acid-induced cell death was concentration and time dependent, and dead cells mainly appeared in the PI-positive population, which is a major feature of necrosis, upon fluorescence-activated cell sorting analysis. Chrysophanic acid-induced cell death was associated with the generation of intracellular ROS, and this effect was reversed by pretreatment with N-acetyl cysteine. Chrysophanic acid-induced cell death was not associated with changes in apoptotic or necroptotic marker proteins. Conclusions: The cell death induced by chrysophanic acid resembled neither apoptotic nor necroptotic cell death in human renal cell carcinoma Caki-2 cells. PMID:27390736

  1. Low Concentration of Sodium Butyrate from Ultrabraid+NaBu suture, Promotes Angiogenesis and Tissue Remodelling in Tendon-bones Injury

    PubMed Central

    Liu, Donghui; Andrade, Silvia Passos; Castro, Pollyana Ribeiro; Treacy, John; Ashworth, Jason; Slevin, Mark

    2016-01-01

    Sodium butyrate (NaBu), a form of short-chain fatty acid (SCFA), acts classically as a potent anti-angiogenic agent in tumour angiogenesis models, some authors demonstrated that low concentrations of NaBu may contribute to healing of tendon-bone injury in part at least through promotion of tissue remodelling. Here, we investigated the effects of low-range concentrations of NaBu using in vitro and in vivo assays using angiogenesis as the primary outcome measure and the mechanisms through which it acts. We demonstrated that NaBu, alone or perfused from the UltraBraid+NaBu suture was pro-angiogenic at very low-range doses promoting migration, tube formation and cell invasion in bovine aortic endothelial cells (BAECs). Furthermore, cell exposure to low NaBu concentrations increased expression of proteins involved in angiogenic cell signalling, including p-PKCβ1, p-FAK, p-ERK1/2, p-NFκβ, p-PLCγ1 and p-VEGFR2. In addition, inhibitors of both VEGFR2 and PKCβ1 blocked the angiogenic response. In in vivo assays, low concentrations of NaBu induced neovascularization in sponge implants in mice, evidenced by increased numbers of vessels and haemoglobin content in these implants. The findings in this study indicate that low concentrations of NaBu could be an important compound to stimulate angiogenesis at a site where vasculature is deficient and healing is compromised. PMID:27694930

  2. Unusual aggregation of bis(2-quinuclidinium-butyrate) hydrobromides

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2010-12-01

    The molecular structure of di-[bis(2-quinuclidinium-butyrate) hydrobromide], [(QNBu) 2HBr] 2 ( 1), has been characterized by single-crystal X-ray diffraction, infrared spectroscopy and DFT calculations. The crystals ( 1) are monoclinic, space group P2 1/c with [(QNBu) 2HBr] 2 symmetry-independent units. The complex 1 consists of two independent homoconjugated cations, in which two ( S) QNBu semications, and ( S) and ( R) QNBu semications are joined by short, symmetrical O⋯H⋯O hydrogen bonds of 2.418(12) and 2.411(13) Å, respectively. The bromide anions interact electrostatically with the one positively charged nitrogen atom of each cation. The presence of short OHO hydrogen bonds is confirmed by the broad absorption in the 1500-400 cm -1 region, with the center of gravity, νH, at ca. 900 cm -1, in the solid-state FTIR spectrum. In the structure of [(QNBu) 2HBr] 2 ( 2) optimized at the B3LYP/6-31G(d,p) level of theory, the 2-quinuclidinium-butyrate units are non-equivalent. In each homoconjugated cation the 2-quinuclidinium-butyric acid interacts with the QNBu inner salt by the short, asymmetric O-H···O hydrogen bonds of 2.440 and 2.446 Å, respectively. Each bromide anion interacts electrostatically with the positively charged nitrogen atoms from both homoconjugated cations, which fold into a globular supramolecular aggregate.

  3. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    PubMed Central

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation.

  4. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    PubMed Central

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  5. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments.

    PubMed

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  6. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-stage process was described for continuous bioconversion of n-butyrate into n-butanol with planktonic cells of Clostridium saccharoperbutylacetonicum N1-4. Online product removal via gas stripping was integrated within the system. Our work focused on a continuous fermentation system specifically...

  7. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid. PMID:26854723

  8. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    SciTech Connect

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  9. Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells

    PubMed Central

    Ma, Hong-Bing; Huang, Shan; Yin, Xiao-Ran; Zhang, Yang; Di, Zheng-Li

    2014-01-01

    AIM: To investigate the effects of diallyl trisulfide (DATS), a garlic-derived organosulfur compound, in pancreatic cancer cells. METHODS: Human pancreatic cancer cells with wild-type p53 gene (Capan-2) and normal pancreatic epithelial cells (H6C7) were cultured in RPMI1640. DATS was prepared at a concentration of 100 μmol/L. Cell viability was determined via the methyl thiazolyl tetrazolium assay. Apoptotic cells were detected by TUNEL assay. Cell cycle analysis was performed using flow cytometry. Protein expression was determined by Western blot. Bax and Bcl-2 expression was detected by immunofluorescence. Apoptosis genes and cell cycle were assessed by quantitative real-time polymerase chain reaction. RESULTS: DATS suppressed the viability of cultured human pancreatic cancer cells (Capan-2) by increasing the proportion of cells in the G2/M phase and induced apoptotic cell death. Western blot analysis indicated that DATS enhanced the expression of Fas, p21, p53 and cyclin B1, but downregulated the expression of Akt, cyclin D1, MDM2 and Bcl-2. DATS induced cell cycle inhibition which was correlated with elevated levels of cyclin B1 and p21, and reduced levels of cyclin D1 in Capan-2 cells and H6C7 cells. DATS-induced apoptosis was markedly elevated in Capan-2 cells compared with H6C7 cells, and this was correlated with elevated levels of cyclin B1 and p53, and reduced levels of Bcl-2. DATS-induced apoptosis was correlated with down-regulation of Bcl-2, Akt and cyclin D1 protein levels, and up-regulation of Bax, Fas, p53 and cyclin B protein levels in Capan-2 cells. CONCLUSION: DATS induces apoptosis of pancreatic cancer cells (Capan-2) and non-tumorigenic pancreatic ductal epithelial cells (H6C7). PMID:24415872

  10. Mathematical Modeling of the Induced Mutation Process in Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Belov, Oleg V.; Krasavin, Evgeny A.; Parkhomenko, Alexander Yu.

    2010-01-01

    A mathematical model of the ultraviolet (UV) irradiation-induced mutation process in bacterial cells Escherichia coli is developed. Using mathematical approaches, the whole chain of events is tracked from a cell exposure to the damaging factor to mutation formation in the DNA chain. An account of the key special features of the regulation of this genetic network allows predicting the effects induced by the cell exposure to certain UV energy fluence.

  11. N-acyldithieno[3,2-b:2',3'-d]pyrrole-based low-band-gap conjugated polymer solar cells with amine-modified [6,6]-phenyl-C61-butyric acid ester cathode interlayers.

    PubMed

    Hong, Deng; Lv, Menglan; Lei, Ming; Chen, Yu; Lu, Ping; Wang, Yanguang; Zhu, Jin; Wang, Haiqiao; Gao, Mei; Watkins, Scott E; Chen, Xiwen

    2013-11-13

    Efficient low-band-gap polymers are one key component for constructing tandem solar cells with other higher-band-gap materials to harvest wide absorption of the solar spectrum. The N-acyldithieno[3,2-b:2',3'-d]pyrrole (DTP) building block is used for making low-band-gap polymers. It is attractive because of its strong donating ability and relatively low highest-occupied-molecular-orbital level in comparison with the N-alkyl DTP building block. However, additional solubilizing groups on the accepting units are needed for soluble donor-acceptor polymers based on the N-alkanoyl DTP building block. Combining N-benzoyl DTP with a 4,7-dithieno-2,1,3-benzothiadiazole building block, a polymer with a low band gap of 1.44 eV, delivers a high short-circuit current of 17.1 mA/cm(2) and a power conversion efficiency of 3.95%, which are the highest for the devices with DTP-containing materials. Herein, an alcohol-soluble diamine-modified fullerene cathode interfacial layer improved the device efficiency significantly more than the mono-amine analogue. PMID:24127828

  12. Proliferation of human colonic mucosa as an intermediate biomarker of carcinogenesis: effects of butyrate, deoxycholate, calcium, ammonia, and pH.

    PubMed

    Bartram, H P; Scheppach, W; Schmid, H; Hofmann, A; Dusel, G; Richter, F; Richter, A; Kasper, H

    1993-07-15

    A high-fat/high-protein diet has been reported to promote colon cancer by increasing luminal bile acid and ammonia concentrations, whereas butyrate, calcium, and low colonic pH may have protective effects. In this study, bromodeoxyuridine labeling of colonic epithelium was investigated after incubating biopsies from the ascending colon of 70 patients with HCl (20 mM, pH 6.0), butyric acid (H-BUT, 20 mM, pH 6.0), sodium butyrate (Na-BUT, 10 mM, pH 8.0), CaCl2 (10 mM), calcium butyrate (Ca-BUT, 10 mM), ammonium butyrate (NH4-BUT, 10 mM), deoxycholic acid (DCA, 5 microM), and a combination of DCA and Na-BUT (DCA/Na-BUT, 5 microM/10 mM). Compared to NaCl, H-BUT and Na-BUT increased the whole crypt-labeling index significantly, whereas HCl and CaCl2 had no effect. Reduced labeling, however, occurred with Ca-BUT in comparison to equimolar Na-BUT. No differences in the labeling indexes were found for NH4-BUT compared to Na-BUT, but increased labeling with expansion of the proliferative zone to the upper 40% of the crypt was seen with DCA compared to NaCl. DCA-induced hyperproliferation was abolished by coincubation with DCA/Na-BUT. These data suggest that butyrate, calcium, and DCA have complex influences on mucosal proliferation. Since luminal concentrations of these compounds are influenced by dietary interventions, the findings of this study may be of particular interest with regard to colon cancer development and prevention.

  13. Oxidative Stress Induces Senescence in Cultured RPE Cells

    PubMed Central

    Aryan, Nona; Betts-Obregon, Brandi S.; Perry, George; Tsin, Andrew T.

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence. PMID:27651846

  14. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    PubMed

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence. PMID:27651846

  15. Oxidative Stress Induces Senescence in Cultured RPE Cells

    PubMed Central

    Aryan, Nona; Betts-Obregon, Brandi S.; Perry, George; Tsin, Andrew T.

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  16. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  17. Interferon induces natural killer cell blastogenesis in vivo

    NASA Technical Reports Server (NTRS)

    Biron, C. A.; Sonnenfeld, G.; Welsh, R. M.

    1984-01-01

    Interferon (IFN), types beta and gamma, and IFN inducers polyinosinic-polycytidylic acid and lymphocytic choriomeningitis virus, all stimulated the generation of blast-natural killer (NK) cells in mouse spleens, Blast-NK cells were characterized on the basis of size, 3H-thymidine uptake, and NK cell markers These data indicate that in addition to augmenting NK cell-mediated lysis, IFN may regulate NK cell proliferation in vivo.

  18. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells.

    PubMed

    Fan, Chuandong; Wang, Weiwei; Zhao, Baoxiang; Zhang, Shangli; Miao, Junying

    2006-05-01

    To investigate the effects of chloroquine diphosphate (CQ) on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with the drug at various concentrations (0.25-128 microM) for 24-72 h. The results showed that, at lower concentrations (from 0.25 to 32 microM), CQ inhibited the growth of A549 cells and, at the same time, it induced vacuolation with increased volume of acidic compartments (VAC). On the other hand, at higher concentrations (64-128 microM), CQ induced apoptosis at 24 h, while its effect of inducing vacuolation declined. The lactate dehydrogenase (LDH) assay showed that with the treatment of CQ 32-64 microM for 72 h or 128 microM for 48 h, CQ induced necrosis of A549 cells. To understand the possible mechanism by which CQ acts in A549 cells, we further incubated the cells with this drug at the concentrations of 32 or 128 microM in the presence of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). The results showed that D609 (50 microM) could inhibit the effects of CQ 32 microM on the viability and VAC, but it could not change the effects of CQ 128 microM on the same. Our data suggested that CQ inhibited A549 lung cancer cell growth at lower concentrations by increasing the volume of lysosomes and that PC-PLC might be involved in this process. The data also indicated that, at higher concentrations, CQ induced apoptosis and necrosis, but at this time its ability to increase the volume of lysosome gradually declined, and PC-PLC might not be implicated in the process. PMID:16413786

  19. Postnatal development of the myenteric glial network and its modulation by butyrate.

    PubMed

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  20. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    PubMed

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface.

  1. RACK-1 overexpression protects against goniothalamin-induced cell death

    PubMed Central

    Inayat-Hussain, S.H.; Wong, L.T.; Chan, K.M.; Rajab, N.F.; Din, L.B.; Harun, R.; Kizilors, A.; Saxena, N.; Mourtada-Maarabouni, M.; Farzaneh, F.; Williams, G.T.

    2009-01-01

    Goniothalamin, a styryllactone, has been shown to induce cytotoxicity via apoptosis in several tumor cell lines. In this study, we have examined the potential role of several genes, which were stably transfected into T-cell lines and which regulate apoptosis in different ways, on goniothalamin-induced cell death. Overexpression of full-length receptor for activated protein C-kinase 1 (RACK-1) and pc3n3, which up-regulates endogenous RACK-1, in both Jurkat and W7.2 T cells resulted in inhibition of goniothalamin-induced cell death as assessed by MTT and clonogenic assays. However, overexpression of rFau (antisense sequence to Finkel–Biskis–Reilly murine sarcoma virus-associated ubiquitously expressed gene) in W7.2 cells did not confer resistance to goniothalamin-induced cell death. Etoposide, a clinically used cytotoxic agent, was equipotent in causing cytotoxicity in all the stable transfectants. Assessment of DNA damage by Comet assay revealed goniothalamin-induced DNA strand breaks as early as 1 h in vector control but this effect was inhibited in RACK-1 and pc3n3 stably transfected W7.2 cells. This data demonstrate that RACK-1 plays a crucial role in regulating cell death signalling pathways induced by goniothalamin. PMID:19698770

  2. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    PubMed

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases. PMID:26972417

  3. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop.

    PubMed

    Li, Xin; Shi, Zhongping; Li, Zhigang

    2014-08-01

    In this study, we attempted to increase butanol/acetone ratio and total solvent productivity in ABE fermentations with corn- and cassava-based media, by consecutively feeding a small amount of butyrate/acetate during solventogenic phase to weaken the metabolic strengths in butyrate/acetate closed-loops. Consecutively feeding a small amount of butyrate (a total of 3.0 g/L-broth) is most effective in improving performance of corn-based ABE fermentations, as it simultaneously increased average butanol/acetone ratio by 23 % (1.92-2.36) and total solvent productivity by 16 % (0.355-0.410 g/L/h) as compared with those of control. However, the butyrate feeding strategy could not improve butanol/acetone ratio and total solvent productivity in cassava-based ABE fermentations, where the metabolic strength of butyrate closed-loop had already been very low.

  4. Study of a synthetic human olfactory receptor 17-4: expression and purification from an inducible mammalian cell line.

    PubMed

    Cook, Brian L; Ernberg, Karin E; Chung, Hyeyoun; Zhang, Shuguang

    2008-01-01

    In order to begin to study the structural and functional mechanisms of olfactory receptors, methods for milligram-scale purification are required. Here we demonstrate the production and expression of a synthetically engineered human olfactory receptor hOR17-4 gene in a stable tetracycline-inducible mammalian cell line (HEK293S). The olfactory receptor gene was fabricated from scratch using PCR-based gene-assembly, which facilitated codon optimization and attachment of a 9-residue bovine rhodopsin affinity tag for detection and purification. Induction of adherent cultures with tetracycline together with sodium butyrate led to hOR17-4 expression levels of approximately 30 microg per 150 mm tissue culture plate. Fos-choline-based detergents proved highly capable of extracting the receptors, and fos-choline-14 (N-tetradecylphosphocholine) was selected for optimal solubilization and subsequent purification. Analysis by SDS-PAGE revealed both monomeric and dimeric receptor forms, as well as higher MW oligomeric species. A two-step purification method of immunoaffinity and size exclusion chromatography was optimized which enabled 0.13 milligrams of hOR17-4 monomer to be obtained at >90% purity. This high purity of hOR17-4 is not only suitable for secondary structural and functional analyses but also for subsequent crystallization trials. Thus, this system demonstrates the feasibility of purifying milligram quantities of the GPCR membrane protein hOR17-4 for fabrication of olfactory receptor-based bionic sensing device.

  5. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  6. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  7. Hexavalent chromium induces chromosome instability in human urothelial cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. PMID:26908176

  8. Hexavalent chromium induces chromosome instability in human urothelial cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general.

  9. Sorafenib-induced defective autophagy promotes cell death by necroptosis.

    PubMed

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-11-10

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis. PMID:26416459

  10. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    PubMed Central

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5−/− cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis. PMID:26416459

  11. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis.

    PubMed

    Clayton, Z E; Sadeghipour, S; Patel, S

    2015-10-15

    Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells.

  12. Induced neural stem cells (iNSCs) in neurodegenerative diseases.

    PubMed

    Hermann, Andreas; Storch, Alexander

    2013-09-01

    Recent advances in somatic cell reprogramming is one of the most important developments in neuroscience in the last decades since it offers for the first time the opportunity to work with disease/patient-specific neurons or other neural cell types. Induced pluripotent stem cells (iPSCs) can be differentiated into all cell types of the body enabling investigations not only on neurons but also on muscle or endothelial cells which are cell types often also of great interest in neurodegenerative diseases. The novel technology of direct lineage conversion of somatic cells into neurons (induced neurons; iNs) or into expandable multipotent neural stem cells (induced neural stem cells; iNSCs) provides interesting alternatives to the iPSC technology. These techniques have the advantage of easier cell culture, but only neurons (iNs) or neuroectodermal cells (iNSCs) can be generated. Although there are several open questions coming along with these new neural cell types, they hold great promises for both cell replacement and cell modelling of neurodegenerative diseases.

  13. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    PubMed Central

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells. PMID:27340507

  14. VHL Induces Renal Cell Differentiation and Growth Arrest through Integration of Cell-Cell and Cell-Extracellular Matrix Signaling

    PubMed Central

    Davidowitz, Eliot J.; Schoenfeld, Alan R.; Burk, Robert D.

    2001-01-01

    Mutations in the von Hippel-Lindau (VHL) gene are involved in the family cancer syndrome for which it is named and the development of sporadic renal cell cancer (RCC). Reintroduction of VHL into RCC cells lacking functional VHL [VHL(−)] can suppress their growth in nude mice, but not under standard tissue culture conditions. To examine the hypothesis that the tumor suppressor function of VHL requires signaling through contact with extracellular matrix (ECM), 786-O VHL(−) RCC cells and isogenic sublines stably expressing VHL gene products [VHL(+)] were grown on ECMs. Cell-cell and cell-ECM signalings were required to elicit VHL-dependent differences in growth and differentiation. VHL(+) cells differentiated into organized epithelial sheets, whereas VHL(−) cells were branched and disorganized. VHL(+) cells grown to high density on collagen I underwent growth arrest, whereas VHL(−) cells continued to proliferate. Integrin levels were up-regulated in VHL(−) cells, and cell adhesion was down-regulated in VHL(+) cells during growth at high cell density. Hepatocyte nuclear factor 1α, a transcription factor and global activator of proximal tubule-specific genes in the nephron, was markedly up-regulated in VHL(+) cells grown at high cell density. These data indicate that VHL can induce renal cell differentiation and mediate growth arrest through integration of cell-cell and cell-ECM signals. PMID:11154273

  15. [A new butyric acid-producing bacteroides species: B. splanchnicus n. sp. (author's transl)].

    PubMed

    Werner, H; Rintelen, G; Kunstek-Santos, H

    1975-01-01

    Three butyric acid-producing saccharolytic Bacteroides cultures (1651/6, BM 158, and IPP 3751) were described by WERNER and REICHERTZ in 1971 (Zbl.Bakt.Hyg., I. Abt. Orig. A 217,206-216). Since then, 6 strains closely resembling 1651/6 were isolated from stool specimens and surgically removed appendices. In the present communication, strains 1651/6, S2/34, S3/38, S4/28, S6/6, A5/2 are described as members of a new species, Bacteroides splanchnicus n.sp. The strains were morphologically very similar (Gram negative non-sporing non-motile rods, 1-2.5 mu in length and 0.7 mu in width) and fermented glucose, fructose, galactose, mannose, lactose, and arabinose (pH values of 4.6-5.4, moderate gas formation). Negative reactions (pH values of 5.8-7.2) were observed with 20 other carbohydrates. The strains were positive in the glutamic acid decarboxylase test and formed indole and H2S. In peptone-yeast extract broth and peptone-yeast extract-glucose broth acetic, propionic, isobutyric, butyric, and isovaleric acids were produced. Washed cells of strains 1651/6 and S4/28 incubated anaerobically in sterile solutions of single amino acids produced butyrate from lysine only. Abundant butyric acid was also produced from glucose. The in vitro activity of 15 antibiotics on 5 strains was studied by broth dilution tests. Uniformly, the strains showed resistance to aminoglycosides and polymyxins (MIC values, 60-500 mug/ml) and susceptibility to tetracyclines, lincomycin, clindamycin, rifampicin, and erythromycin (MIC values, 0.05-0.5 mug/ml). Chloramphenicol, penicillins, and cephalosporins showed bacteriostatic activity at concentrations of 5-40 mug/ml. The serological behaviour of 5 strains was studied in cross-agglutination and gel-diffusion experiments. Cross-reactivity was pronounced in gel-diffusion tests using rabbit antisera and autoclaved extracts and extracts prepared by repeated deep-freezing and thawing of whole cell suspensions as antigens. However, antisera against the

  16. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  17. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 i