Sample records for bwr stability operating

  1. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less

  2. SiC Composite for Fuel Structure Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yueh, Ken

    Extensive evaluation was performed to determine the suitability of using SiC composite as a boiling water reactor (BWR) fuel channel material. A thin walled SiC composite box, 10 cm in dimension by approximately 1.5 mm wall thickness was fabricated using chemical vapor deposition (CVD) for testing. Mechanical test results and performance evaluations indicate the material could meet BWR channel mechanical design requirement. However, large mass loss of up to 21% was measured in in-pile corrosion test under BWR-like conditions in under 3 months of irradiation. A fresh sister sample irradiated in a follow-up cycle under PWR conditions showed no measureablemore » weight loss and thus supports the hypothesis that the oxidizing condition of the BWR-like coolant chemistry was responsible for the high corrosion rate. A thermodynamic evaluation showed SiC is not stable and the material may oxidize to form SiO 2 and CO 2. Silica has demonstrated stability in high temperature steam environment and form a protective oxide layer under severe accident conditions. However, it does not form a protective layer in water under normal BWR operational conditions due to its high solubility. Corrosion product stabilization by modifying the SiC CVD surface is an approach evaluated in this study to mitigate the high corrosion rate. Titanium and zirconium have been selected as stabilizing elements since both TiSiO 4 and ZrSiO 4 are insoluble in water. Corrosion test results in oxygenated water autoclave indicate TiSiO4 does not form a protective layer. However, zirconium doped test samples appear to form a stable continuous layer of ZrSiO 4 during the corrosion process. Additional process development is needed to produce a good ZrSiC coating to verify functionality of the mitigation concept.« less

  3. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  4. Coupled field effects in BWR stability simulations using SIMULATE-3K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, J.; Smith, K.; Hagrman, D.

    1996-12-31

    The SIMULATE-3K code is the transient analysis version of the Studsvik advanced nodal reactor analysis code, SIMULATE-3. Recent developments have focused on further broadening the range of transient applications by refinement of core thermal-hydraulic models and on comparison with boiling water reactor (BWR) stability measurements performed at Ringhals unit 1, during the startups of cycles 14 through 17.

  5. The startup of the Dodewaard natural circulation boiling water reactor -- Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, W.H.M.; Van Der Voet, J.; Karuza, J.

    1994-07-01

    Because of its similarity to the simplified boiling water reactor (SBWR), the Dodewaard natural circulation boiling water reactor (BWR) is of special interest to further development of the SBWR design. It has become especially important to gain more insight into the Dodewaard BWR behavior during startup, paying special attention to its stability. Therefore, special instrumentation was used by means of which a series of measurements were taken during the two startups in February and June 1992. The results obtained from these measurements are used to deepen insight into the recirculation flow and the stability of the reactor during startup undermore » conditions with a normal pressure/power trajectory. They have already shown a very early recirculation flow onset during low-power operation and no indication of reactor instability. Furthermore, they will be used as a basis for the research program investigating the reactor behavior under different pressure/power conditions, which is scheduled for next year.« less

  6. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tightmore » concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.« less

  7. TRACE/PARCS analysis of the OECD/NEA Oskarshamn-2 BWR stability benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, T.; Downar, T.; Xu, Y.

    2012-07-01

    On February 25, 1999, the Oskarshamn-2 NPP experienced a stability event which culminated in diverging power oscillations with a decay ratio of about 1.4. The event was successfully modeled by the TRACE/PARCS coupled code system, and further analysis of the event is described in this paper. The results show very good agreement with the plant data, capturing the entire behavior of the transient including the onset of instability, growth of the oscillations (decay ratio) and oscillation frequency. This provides confidence in the prediction of other parameters which are not available from the plant records. The event provides coupled code validationmore » for a challenging BWR stability event, which involves the accurate simulation of neutron kinetics (NK), thermal-hydraulics (TH), and TH/NK. coupling. The success of this work has demonstrated the ability of the 3-D coupled systems code TRACE/PARCS to capture the complex behavior of BWR stability events. The problem was released as an international OECD/NEA benchmark, and it is the first benchmark based on measured plant data for a stability event with a DR greater than one. Interested participants are invited to contact authors for more information. (authors)« less

  8. Recent GE BWR fuel experience and design evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, J.E.; Potts, G.A.; Proebstle, R.A.

    1992-01-01

    Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less

  9. High Fidelity BWR Fuel Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su Jong

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fractionmore » and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.« less

  10. Recent developments in BWR fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, S.P.; Noble, L.D.; Wood, J.E.

    1991-11-01

    Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less

  11. (Boiling water reactor (BWR) CORA experiments)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, L.J.

    To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of themore » BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.« less

  12. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Markmore » I plant for those instrumentation systems considered most important for accident management purposes.« less

  13. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less

  14. Report on the BWR owners group radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, L.R.

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements inmore » relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.« less

  15. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blademore » histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.« less

  16. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  17. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Yoshitake

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolantmore » system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.« less

  18. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  19. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    NASA Astrophysics Data System (ADS)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.

  20. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercialmore » spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.« less

  1. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational datamore » available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.« less

  2. Water chemistry control and decontamination experience with TEPCO BWR`s and the measures planned for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, N.; Miyamaru, K.

    1995-03-01

    The new TEPCO BWR`s are capable of having the occupational radiation exposure controlled successfully at a low level by selecting low cobalt steel, using corrosion-resistant steel, employing dual condensate polishing systems, and controlling Ni/Fe ratio during operation. The occupational radiation exposure of the old BWR`s, on the other hand, remains high though reduced substantially through the use of low cobalt replacement steel and the partial addition of a filter in the condensate polishing system. Currently under review is the overall decontamination procedure for the old BWR`s to find out to measures needed to reduce the amount of crud that ismore » and has been carried over into the nuclear reactor. The current status of decontamination is reported below.« less

  3. TRACE/PARCS Analysis of ATWS with Instability for a MELLLA+BWR/5

    DOE PAGES

    L. Y. Cheng; Baek, J. S.; Cuadra, A.; ...

    2016-06-06

    A TRACE/PARCS model has been developed to analyze anticipated transient without SCRAM (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands allowable operation in the power/flow map of a BWR to low flow rates at high power conditions. Such operation exacerbates the likelihood of large amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural circulation flow in the reactor pressure vessel (RPV) after the trip of the recirculationmore » pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heat-up that could result in localized fuel damage. TRACE predicts the heat-up to occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet; and the fuel becomes “locked” into a film boiling regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.« less

  4. Boiling-Water Reactor internals aging degradation study. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor drymore » tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.« less

  5. Radiation field control at the latest BWR plants -- design principle, operational experience and future subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Shunsuke; Ohsumi, Katsumi; Takashima, Yoshie

    1995-03-01

    Improvements of operational procedures to control water chemistry, e.g., nickel/iron control, as well as application of hardware improvements for reducing radioactive corrosion products resulted in an extremely low occupational exposure of less than 0.5 man.Sv/yr without any serious impact on the radwaste system, for BWR plants involved in the Japanese Improvement and Standardization Program. Recently, {sup 60}C radioactively in the reactor water has been increasing due to less crud fixation on the two smooth surfaces of new type high performance fuels and to the pH drop caused by chromium oxide anions released from stainless steel structures and pipings. This increasemore » must be limited by changes in water chemistry, e.g., applications of modified nickel/iron ratio control and weak alkali control. Controlled water chemistry to optimize three points, the plant radiation level and integrities of fuel and structural materials, is the primary future subject for BWR water chemistry.« less

  6. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2003-08-15

    A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, E.O.; Kuklin, A.N.; Mityaev, Yu.I.

    The nuclear power plants with boiling water reactors of improved safety are being developed. There is 26 years of operating experience with the plant VK-50 in Dimitrovgrad. The design and operation of the BWR reactors are described.

  8. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditionalmore » Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.« less

  9. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized intomore » six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.« less

  10. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-10-15

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies suchmore » as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  11. Rapid depressurization event analysis in BWR/6 using RELAP5 and contain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueftueoglu, A.K.; Feltus, M.A.

    1995-09-01

    Noncondensable gases may become dissolved in Boiling Water Reactor (BWR) water level instrumentation during normal operations. Any dissolved noncondensable gases inside these water columns may come out of solution during rapid depressurization events, and displace water from the reference leg piping resulting in a false high level. These water level errors may cause a delay or failure in actuation, or premature shutdown of the Emergency Core Cooling System. (ECCS). If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response and othermore » signals for automatic actuation such as high drywell pressure. It is also important to determine the effect of the level signal on ECCS operation after it is being actuated. The objective of this study is to determine the detailed coupled containment/NSSS response during this rapid depressurization events in BWR/6. The selected scenarios involve: (a) inadvertent opening of all ADS valves, (b) design basis (DB) large break loss of coolant accident (LOCA), and (c) main steam line break (MSLB). The transient behaviors are evaluated in terms of: (a) vessel pressure and collapsed water level response, (b) specific transient boundary conditions, (e.g., scram, MSIV closure timing, feedwater flow, and break blowdown rates), (c) ECCS initiation timing, (d) impact of operator actions, (e) whether indications besides low-low water level were available. The results of the analysis had shown that there would be signals to actuate ECCS other than low reactor level, such as high drywell pressure, low vessel pressure, high suppression pool temperature, and that the plant operators would have significant indications to actuate ECCS.« less

  12. BWR Servicing and Refueling Improvement Program: Phase I summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was tomore » identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.« less

  13. Numerical Simulation of the Emergency Condenser of the SWR-1000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krepper, Eckhard; Schaffrath, Andreas; Aszodi, Attila

    The SWR-1000 is a new innovative boiling water reactor (BWR) concept, which was developed by Siemens AG. This concept is characterized in particular by passive safety systems (e.g., four emergency condensers, four building condensers, eight passive pressure pulse transmitters, and six gravity-driven core-flooding lines). In the framework of the BWR Physics and Thermohydraulic Complementary Action to the European Union BWR Research and Development Cluster, emergency condenser tests were performed by Forschungszentrum Juelich at the NOKO test facility. Posttest calculations with ATHLET are presented, which aim at the determination of the removable power of the emergency condenser and its operation mode.more » The one-dimensional thermal-hydraulic code ATHLET was extended by the module KONWAR for the calculation of the heat transfer coefficient during condensation in horizontal tubes. In addition, results of conventional finite difference calculations using the code CFX-4 are presented, which investigate the natural convection during the heatup process at the secondary side of the NOKO test facility.« less

  14. TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng L. Y.; Baek J.; Cuadra,A.

    2013-11-10

    A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic tomore » initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.« less

  15. Severe Accident Sequence Analysis Program: Anticipated transient without scram simulations for Browns Ferry Nuclear Plant Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallman, R J; Gottula, R C; Holcomb, E E

    1987-05-01

    An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.

  16. BWR Anticipated Transients Without Scram Leading to Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng L. Y.; Baek J.; Cuadra, A.

    2013-11-10

    Anticipated transients without scram (ATWS) in aboiling water reactor (BWR) were simulated in order to understand reactor response and determine the effectiveness of automatic and operator actions to mitigate this beyond-design-basis accident. The events of interest herein are initiated by a turbine trip when the reactor is operating in the expanded operating domainMELLLA+ [maximum extended load line limit plus]. In these events the reactor may initially be at up to 120% of the original licensed thermal power (OLTP) and at flow rates as low as 80% of rated.For these (and similar) ATWS events the concern isthat when the reactor powermore » decreases in response to a dual recirculation pump trip, the core will become unstable and large amplitude oscillations will begin. The occurrence of these power oscillations, if left unmitigated, may result in fuel damage, and the amplitude of the poweroscillations may hamper the effectiveness of the injection of dissolved neutron absorber through the standby liquid control system (SLCS).« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro

    This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less

  18. Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.

    2002-07-01

    Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained frommore » operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces by injecting water through a set of perforations at the bottom ends of the rods, ensuring that the flow upstream of the bottom-most spacer grid is predominantly annular. The flow conditions were regulated such that they represent typical BWR operating conditions. Photographs taken during experiments show that the film entrainment increases significantly at the spacer grids, since the points of contact between the rods and the grids result in a peeling off of large portions of the liquid film from the rod surfaces. Decreasing the water flow resulted in eventual drying out, beginning at positions immediately upstream of the spacer grids. (authors)« less

  19. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE PAGES

    Ilas, Germina; Liljenfeldt, Henrik

    2017-05-19

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  20. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Liljenfeldt, Henrik

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  1. Logistics Modeling of Emplacement Rate and Duration of Operations for Generic Geologic Repository Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Hardin, Ernest

    This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assumemore » that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.« less

  2. The effect of rider weight and additional weight in Icelandic horses in tölt: part II. Stride parameters responses.

    PubMed

    Gunnarsson, V; Stefánsdóttir, G J; Jansson, A; Roepstorff, L

    2017-09-01

    This study investigated the effects of rider weight in the BW ratio (BWR) range common for Icelandic horses (20% to 35%), on stride parameters in tölt in Icelandic horses. The kinematics of eight experienced Icelandic school horses were measured during an incremental exercise test using a high-speed camera (300 frames/s). Each horse performed five phases (642 m each) in tölt at a BWR between rider (including saddle) and horse starting at 20% (BWR20) and increasing to 25% (BWR25), 30% (BWR30), 35% (BWR35) and finally 20% (BWR20b) was repeated. One professional rider rode all horses and weight (lead) was added to saddle and rider as needed. For each phase, eight strides at speed of 5.5 m/s were analyzed for stride duration, stride frequency, stride length, duty factor (DF), lateral advanced placement, lateral advanced liftoff, unipedal support (UPS), bipedal support (BPS) and height of front leg action. Stride length became shorter (Y=2.73-0.004x; P0.05). In conclusion, increased BWR decreased stride length and increased DF proportionally to the same extent in all limbs, whereas BPS increased at the expense of decreased UPS. These changes can be expected to decrease tölt quality when subjectively evaluated according to the breeding goals for the Icelandic horse. However, beat, symmetry and height of front leg lifting were not affected by BWR.

  3. Preliminary Analysis of SiC BWR Channel Box Performance under Normal Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian; Singh, Gyanender P.; Gorton, Jacob

    SiC-SiC composites are being considered for applications in the core components, including BWR channel box and fuel rod cladding, of light water reactors to improve accident tolerance. In the extreme nuclear reactor environment, core components like the BWR channel box will be exposed to neutron damage and a corrosive environment. To ensure reliable and safe operation of a SiC channel box, it is important to assess its deformation behavior under in-reactor conditions including the expected neutron flux and temperature distributions. In particular, this work has evaluated the effect of non-uniform dimensional changes caused by spatially varying neutron flux and temperaturesmore » on the deformation behavior of the channel box over the course of one cycle of irradiation. These analyses have been performed using the fuel performance modeling code BISON and the commercial finite element analysis code Abaqus, based on fast flux and temperature boundary conditions have been calculated using the neutronics and thermal-hydraulics codes Serpent2 and COBRA-TF, respectively. The dependence of dimensions and thermophysical properties on fast flux and temperature has been incorporated into the material models. These initial results indicate significant bowing of the channel box with a lateral displacement greater than 6.5mm. The channel box bowing behavior is time dependent, and driven by the temperature dependence of the SiC irradiation-induced swelling and the neutron flux/fluence gradients. The bowing behavior gradually recovers during the course of the operating cycle as the swelling of the SiC-SiC material saturates. However, the bending relaxation due to temperature gradients does not fully recover and residual bending remains after the swelling saturates in the entire channel box.« less

  4. Nuclear fuel performance: Trends, remedies and challenges

    NASA Astrophysics Data System (ADS)

    Rusch, C. A.

    2008-12-01

    It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.

  5. ALARA Council: Sharing our resources and experiences to reduce doses at Commonwealth Edison Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rescek, F.

    1995-03-01

    Commonwealth Edison Company is an investor-owned utility company supplying electricity to over three million customers (eight million people) in Chicago and northern Illinois, USA. The company operates 16 generating stations which have the capacity to produce 22,522 megawatts of electricity. Six of these generating stations, containing 12 nuclear units, supply 51% of this capacity. The 12 nuclear units are comprised of four General Electric boiling water (BWR-3) reactors, two General Electric BWR-5 reactors, and six Westinghouse four-loop pressurized water reactors (PWR). In August 1993, Commonwealth Edison created an ALARA Council with the responsibility to provide leadership and guidance that resultsmore » in an effective ALARA Culture within the Nuclear Operations Division. Unlike its predecessor, the Corporate ALARA Committee, the ALARA Council is designed to bring together senior managers from the six nuclear stations and corporate to create a collaborative effort to reduce occupational doses at Commonwealth Edison`s stations.« less

  6. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  7. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding ofmore » the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.« less

  8. The effect of rider weight and additional weight in Icelandic horses in tölt: part I. Physiological responses.

    PubMed

    Stefánsdóttir, G J; Gunnarsson, V; Roepstorff, L; Ragnarsson, S; Jansson, A

    2017-09-01

    This study examined the effect of increasing BW ratio (BWR) between rider and horse, in the BWR range common for Icelandic horses (20% to 35%), on heart rate (HR), plasma lactate concentration (Lac), BWR at Lac 4 mmol/l (W4), breathing frequency (BF), rectal temperature (RT) and hematocrit (Hct) in Icelandic horses. In total, eight experienced school-horses were used in an incremental exercise test performed outdoors on an oval riding track and one rider rode all horses. The exercise test consisted of five phases (each 642 m) in tölt, a four-beat symmetrical gait, at a speed of 5.4±0.1 m/s (mean±SD), where BWR between rider (including saddle) and horse started at 20% (BWR20), was increased to 25% (BWR25), 30% (BWR30), and 35% (BWR35) and finally decreased to 20% (BWR20b). Between phases, the horses were stopped (~5.5 min) to add lead weights to specially adjusted saddle bags and a vest on the rider. Heart rate was measured during warm-up, the exercise test and after 5, 15 and 30 min of recovery and blood samples were taken and BF recorded at rest, and at end of each of these aforementioned occasions. Rectal temperature was measured at rest, at end of the exercise test and after a 30-min recovery period. Body size and body condition score (BCS) were registered and a clinical examination performed on the day before the test and for 2 days after. Heart rate and BF increased linearly (P0.05), but negative correlations (P<0.05) existed between body size measurements and Hct. While HR, Hct and BF recovered to values at rest within 30 min, Lac and RT did not. All horses had no clinical remarks on palpation and at walk 1 and 2 days after the test. In conclusion, increasing BWR from 20% to 35% resulted in increased HR, Lac, RT and BF responses in the test group of experienced adult Icelandic riding horses. The horses mainly worked aerobically until BWR reached 22.7%, but considerable individual differences (17.0% to 27.5%) existed that were not linked to horse size, but to back BCS.

  9. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGES

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  10. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    NASA Astrophysics Data System (ADS)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  11. BWR Steam Dryer Alternating Stress Assessment Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morante, R. J.; Hambric, S. A.; Ziada, S.

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  12. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  13. Development of Optimized Core Design and Analysis Methods for High Power Density BWRs

    NASA Astrophysics Data System (ADS)

    Shirvan, Koroush

    Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR capital cost. Generally, the core power density in BWRs is limited by the thermal Critical Power of its assemblies, below which heat removal can be accomplished with low fuel and cladding temperatures. The present study investigates both increases in the heat transfer area between ~he fuel and coolant and changes in operating parameters to achieve higher power levels while meeting the appropriate thermal as well as materials and neutronic constraints. A scoping study is conducted under the constraints of using fuel with cylindrical geometry, traditional materials and enrichments below 5% to enhance its licensability. The reactor vessel diameter is limited to the largest proposed thus far. The BWR with High power Density (BWR-HD) is found to have a power level of 5000 MWth, equivalent to 26% uprated ABWR, resulting into 20% cheaper O&M and Capital costs. This is achieved by utilizing the same number of assemblies, but with wider 16x16 assemblies and 50% shorter active fuel than that of the ABWR. The fuel rod diameter and pitch are reduced to just over 45% of the ABWR values. Traditional cruciform form control rods are used, which restricts the assembly span to less than 1.2 times the current GE14 design due to limitation on shutdown margin. Thus, it is possible to increase the power density and specific power by 65%, while maintaining the nominal ABWR Minimum Critical Power Ratio (MCPR) margin. The plant systems outside the vessel are assumed to be the same as the ABWR-Il design, utilizing a combination of active and passive safety systems. Safety analyses applied a void reactivity coefficient calculated by SIMULA TE-3 for an equilibrium cycle core that showed a 15% less negative coefficient for the BWR-HD compared to the ABWR. The feedwater temperature was kept the same for the BWR-HD and ABWR which resulted in 4 °K cooler core inlet temperature for the BWR-HD given that its feedwater makes up a larger fraction of total core flow. The stability analysis using the STAB and S3K codes showed satisfactory results for the hot channel, coupled regional out-of-phase and coupled core-wide in-phase modes. A RELAPS model of the ABWR system was constructed and applied to six transients for the BWR-HD and ABWR. The 6MCPRs during all the transients were found to be equal or less for the new design and the core remained covered for both. The lower void coefficient along with smaller core volume proved to be advantages for the simulated transients. Helical Cruciform Fuel (HCF) rods were proposed in prior MIT studies to enhance the fuel surface to volume ratio. In this work, higher fidelity models (e.g. CFD instead of subchannel methods for the hydraulic behaviour) are used to investigate the resolution needed for accurate assessment of the HCF design. For neutronics, conserving the fuel area of cylindrical rods results in a different reactivity level with a lower void coefficient for the HCF design. In single-phase flow, for which experimental results existed, the friction factor is found to be sensitive to HCF geometry and cannot be calculated using current empirical models. A new approach for analysis of flow crisis conditions for HCF rods in the context of Departure from Nucleate Boiling (DNB) and dryout using the two phase interface tracking method was proposed and initial results are presented. It is shown that the twist of the HCF rods promotes detachment of a vapour bubble along the elbows which indicates no possibility for an early DNB for the HCF rods and in fact a potential for a higher DNB heat flux. Under annular flow conditions, it was found that the twist suppressed the liquid film thickness on the HCF rods, at the locations of the highest heat flux, which increases the possibility of reaching early dryout. It was also shown that modeling the 3D heat and stress distribution in the HCF rods is necessary for accurate steady state and transient analyses. (Abstract shortened by UMI.) (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  14. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river

    USGS Publications Warehouse

    Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.

    2010-01-01

    Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks. ?? Published 2009.

  15. Computational Analysis of Splash Occurring in the Deposition Process in Annular-Mist Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Heng; Koshizuka, Seiichi; Oka, Yoshiaki

    2004-07-01

    The deposition process of a single droplet on the film is numerically simulated by the Moving Particle Semi-implicit (MPS) method to analyze the possibility and effect of splash occurring in the deposition process in BWR condition. The model accounts for the presence of inertial, gravitation, viscous and surface tension and is validated by comparison with experiment results. A simple one-dimensional mixture model is developed to calculate the necessary parameters for the simulation of deposition in BWR condition. The deposition process of a single droplet in BWR condition is simulated. The effect of impact angle of droplet and the velocity ofmore » liquid film are analyzed. A film buffer model is developed to fit the simulation results of critical value for splash. A correlation of critical Weber number for splash in BWR condition is obtained and used to analyze the effect of splash. It is found that the splash play important role in the deposition and re-entrainment process in high quality condition in BWR. The mass fraction of re-entrainment caused by splash in different quality condition is also calculated. (authors)« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable ofmore » propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P.

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as thesemore » installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.« less

  18. 78 FR 18375 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Pike, Rockville, Maryland. Thursday, April 11, 2013, Conference Room T2-B1, 11545 Rockville Pike..., ``Westinghouse BWR ECCS Evaluation Model: Supplement 5--Application to the ABWR,'' Revision 0 (Open/Closed)--The...-17116-P, ``Westinghouse BWR Emergency Core Coolant System (ECCS) Evaluation Model: Supplement 5,'' and...

  19. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE PAGES

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-01-17

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  20. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  1. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi

    2016-06-01

    We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV) of a Boiling Water Reactor (BWR) by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au) and Nickel (Ni) at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  2. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  3. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  4. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGES

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  5. Disposition of feedwater nozzle UT indications in a BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshnoff, S.D.; Orski, M.A.

    A technical logic is developed, which justifies the disposition of feedwater nozzle ultrasonic testing (UT) indications in order to return to operation without visual inspection of the vessel inside surface. Present regulatory guidance is to inspect the inside surface from the inside if a reportable indication is found. A highly sensitive, tomographic UT technique, developed by Kraftwerk Union, is used to detect and size machined notches in the blend radius and bore regions of a full-sized feedwater nozzle mock-up.

  6. A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Frances, N.; Timm, W.; Rossbach, D.

    2012-07-01

    Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main designmore » criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)« less

  7. Investigation of two and three parameter equations of state for cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Jenkins, Susan L.; Majumdar, Alok K.; Hendricks, Robert C.

    1990-01-01

    Two-phase flows are a common occurrence in cryogenic engines and an accurate evaluation of the heat-transfer coefficient in two-phase flow is of significant importance in their analysis and design. The thermodynamic equation of state plays a key role in calculating the heat transfer coefficient which is a function of thermodynamic and thermophysical properties. An investigation has been performed to study the performance of two- and three-parameter equations of state to calculate the compressibility factor of cryogenic fluids along the saturation loci. The two-parameter equations considered here are van der Waals and Redlich-Kwong equations of state. The three-parameter equation represented here is the generalized Benedict-Webb-Rubin (BWR) equation of Lee and Kesler. Results have been compared with the modified BWR equation of Bender and the extended BWR equations of Stewart. Seven cryogenic fluids have been tested; oxygen, hydrogen, helium, nitrogen, argon, neon, and air. The performance of the generalized BWR equation is poor for hydrogen and helium. The van der Waals equation is found to be inaccurate for air near the critical point. For helium, all three equations of state become inaccurate near the critical point.

  8. Reactor shutdown experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cletcher, J.W.

    1995-10-01

    This is a regular report of summary statistics relating to recent reactor shutdown experience. The information includes both number of events and rates of occurence. It was compiled from data about operating events that were entered into the SCSS data system by the Nuclear Operations Analysis Center at the Oak ridge National Laboratory and covers the six mont period of July 1 to December 31, 1994. Cumulative information, starting from May 1, 1994, is also reported. Updates on shutdown events included in earlier reports is excluded. Information on shutdowns as a function of reactor power at the time of themore » shutdown for both BWR and PWR reactors is given. Data is also discerned by shutdown type and reactor age.« less

  9. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less

  10. Systematic void fraction studies with RELAP5, FRANCESCA and HECHAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stosic, Z.; Preusche, G.

    1996-08-01

    In enhancing the scope of standard thermal-hydraulic codes applications beyond its capabilities, i.e. coupling with a one and/or three-dimensional kinetics core model, the void fraction, transferred from thermal-hydraulics to the core model, plays a determining role in normal operating range and high core flow, as the generated heat and axial power profiles are direct functions of void distribution in the core. Hence, it is very important to know if the void quality models in the programs which have to be coupled are compatible to allow the interactive exchange of data which are based on these constitutive void-quality relations. The presentedmore » void fraction study is performed in order to give the basis for the conclusion whether a transient core simulation using the RELAP5 void fractions can calculate the axial power shapes adequately. Because of that, the void fractions calculated with RELAP5 are compared with those calculated by BWR safety code for licensing--FRANCESCA and the best estimate model for pre- and post-dryout calculation in BWR heated channel--HECHAN. In addition, a comparison with standard experimental void-quality benchmark tube data is performed for the HECHAN code.« less

  11. The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, T.H.J.J. van der; Stekelenburg, A.J.C.

    1995-09-01

    The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.

  12. Application Of The Iberdrola Licensing Methodology To The Cofrentes BWR-6 110% Extended Power Up-rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mata, Pedro; Fuente, Rafael de la; Iglesias, Javier

    Iberdrola (spanish utility) and Iberdrola Ingenieria (engineering branch) have been developing during the last two years the 110% Extended Power Up-rate Project (EPU 110%) for Cofrentes BWR-6. IBERDROLA has available an in-house design and licensing reload methodology that has been approved by the Spanish Nuclear Regulatory Authority. This methodology has been already used to perform the nuclear design and the reload licensing analysis for Cofrentes cycles 12 to 14. The methodology has been also applied to develop a significant number of safety analysis of the Cofrentes Extended Power Up-rate including: Reactor Heat Balance, Core and Fuel performance, Thermal Hydraulic Stability,more » ECCS LOCA Evaluation, Transient Analysis, Anticipated Transient Without Scram (ATWS) and Station Blackout (SBO) Since the scope of the licensing process of the Cofrentes Extended Power Up-rate exceeds the range of analysis included in the Cofrentes generic reload licensing process, it has been required to extend the applicability of the Cofrentes licensing methodology to the analysis of new transients. This is the case of the TLFW transient. The content of this paper shows the benefits of having an in-house design and licensing methodology, and describes the process to extend the applicability of the methodology to the analysis of new transients. The case of analysis of Total Loss of Feedwater with the Cofrentes Retran Model is included as an example of this process. (authors)« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernander, O.; Haga, I.; Segerberg, F.

    BS>From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Although the present status of the boiling water reactor is one of proven technology, design refinements and technical innovations are still being made to further improve reliability, economy and safety. The new standard ASEA- ATOM BWR features a number of such refinements and design improvements involving main circulation punips, containment design, refuelling system and off-gas treatment plant. In some respects the nuclear and hydraulic design of the ASEA- ATOM BWR differs from that adopted by other BWR manufacturers. Since the Oskarshamn I plant was the first nuclear power station havingmore » these features an extensive physics and hydraulics test program was made during the reactor start- up. The results of these tests have fully confirmed the ability of calculation methods to predict the behavior of the reactor. (auth)« less

  14. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramicmore » microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, FeCrAl would tend to generate heat and hydrogen from oxidation at a slower rate compared to the zirconium-based alloys in use today. The previous study, [2], of the FeCrAl ATF concept during station blackout (SBO) severe accident scenarios in BWRs was based on simulating short term SBO (STSBO), long term SBO (LTSBO), and modified SBO scenarios occurring in a BWR-4 reactor with MARK-I containment. The analysis indicated that FeCrAl had the potential to delay the onset of fuel failure by a few hours depending on the scenario, and it could delay lower head failure by several hours. The analysis demonstrated reduced in-vessel hydrogen production. However, the work was preliminary and was based on limited knowledge of material properties for FeCrAl. Limitations of the MELCOR code were identified for direct use in modeling ATF concepts. This effort used an older version of MELCOR (1.8.5). Since these analyses, the BWR model has been updated for use in MELCOR 1.8.6 [10], and more representative material properties for FeCrAl have been modeled. Sections 2 4 present updated analyses for the FeCrAl ATF concept response during severe accidents in a BWR. The purpose of the study is to estimate the potential gains afforded by the FeCrAl ATF concept during BWR SBO scenarios.« less

  15. BWR zero pressure containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillmann, C.W.; Townsend, H.E.; Nesbitt, L.B.

    1992-02-25

    This patent describes the operation of a nuclear reactor system, the system including a containment defining a drywall space wherein a nuclear reactor is disposed, there being a suppression pool in the containment with the suppression pool having a wetwell space above a level of the pool to which an non-condensable gases entering the suppression pool can vent. It comprises: continuously exhausting the wetwell space to remove gas mixture therefrom while admitting inflow of air from an atmospheric source thereof to the wetwell during normal operation by blocking off the inflow during a loss-of-coolant-accident whenever a pressure in the wetwellmore » space is above a predetermined value, and subjecting the gas subsequent to its removal from the wetwell to a treatment operation to separate any particulate material entrained therein from the gas mixture.« less

  16. Condensate polisher prefiltration study for Laguna Verde Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A.; Oyen, L.C.; Nelson, R.A.

    1995-05-01

    This paper describes an analysis of the iron and copper in the condensate and the technical and economic assessment of the installation of condensate polisher prefilters in Comision Federal de Electricidad`s Laguna Verde Nuclear Generating Station (LVNGS) north of Veracruz, Mexico. LVNGS is a 654 MWe General Electric BWR plant; Unit 1 has been in commercial operation since July, 1990, and Unit 2 is scheduled to become operational in June, 1995. The primary purpose of this study was to (1) analyze the high iron and copper concentrations in the condensate and feedwater, (2) identify, assess, and evaluate techniques to reducemore » the iron and copper concentrations, and (3) perform a cost-benefit analysis of the installation of implementing the appropriate techniques.« less

  17. Real time monitoring of environmental crack growth in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, D.; Diehl, C.G.

    1988-01-01

    A comprehensive field test program was recently completed at several Boiling Water Reactors (BWR) to quantify the effect of coolant impurities on the initiation and growth of stress corrosion cracks. A new technology was utilized which allows for real time monitoring of stress corrosion crack growth rates. The BWR environments were characterized using Ion Chromatography and Electro Chemical Potential (ECP) measurements. The effects of typical water chemistry transients and startups were quantified.

  18. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    DOE PAGES

    Maljovec, D.; Liu, S.; Wang, B.; ...

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less

  19. Advanced Neutronics Tools for BWR Design Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Hfaiedh, N.; Letellier, R.

    2006-07-01

    This paper summarizes the developments implemented in the new APOLLO2.8 neutronics tool to meet the required target accuracy in LWR applications, particularly void effects and pin-by-pin power map in BWRs. The Method Of Characteristics was developed to allow efficient LWR assembly calculations in 2D-exact heterogeneous geometry; resonant reaction calculation was improved by the optimized SHEM-281 group mesh, which avoids resonance self-shielding approximation below 23 eV, and the new space-dependent method for resonant mixture that accounts for resonance overlapping. Furthermore, a new library CEA2005, processed from JEFF3.1 evaluations involving feedback from Critical Experiments and LWR P.I.E, is used. The specific '2005-2007more » BWR Plan' settled to demonstrate the validation/qualification of this neutronics tool is described. Some results from the validation process are presented: the comparison of APOLLO2.8 results to reference Monte Carlo TRIPOLI4 results on specific BWR benchmarks emphasizes the ability of the deterministic tool to calculate BWR assembly multiplication factor within 200 pcm accuracy for void fraction varying from 0 to 100%. The qualification process against the BASALA mock-up experiment stresses APOLLO2.8/CEA2005 performances: pin-by-pin power is always predicted within 2% accuracy, reactivity worth of B4C or Hf cruciform control blade, as well as Gd pins, is predicted within 1.2% accuracy. (authors)« less

  20. Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors

    NASA Astrophysics Data System (ADS)

    Karve, Atul A.

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR < 0.75-0.8 is not rigorously satisfied in the low-flow/high-power region and hence these points should be avoided during normal startup and shutdown operations. The frequency of oscillation is shown to decrease as the flow rate is reduced and the frequency of 0.5Hz observed in the low-flow/high-power region is consistent with those observed during actual instability incidents. Additional numerical simulations show that in the low-flow/high-power region, for the same initial conditions, the use of point kinetics leads to damped oscillations, whereas the model that includes the modal kinetics equations results in growing nonlinear oscillations. Thus, we show that side-by-side out-of-phase growing power oscillations result due to the very important first harmonic mode effect and that the use of point kinetics, which fails to predict these growing oscillations, leads to dramatically nonconservative results. Finally, the effect of a simple recirculation loop model that we develop is studied by carrying out additional stability analyses and additional numerical simulations. It is shown that the loop has a stabilizing effect on certain points on the 100% rod line for time delays equal to integer multiples of the natural period of oscillation, whereas it has a destabilizing effect for half-integer multiples. However, for more practical time delays, it is determined that the overall effect generally is destabilizing.

  1. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-12-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operationalmore » changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem.« less

  2. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  3. Best-estimate coupled RELAP/CONTAIN analysis of inadvertent BWR ADS valve opening transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Muftuoglu, A.K.

    1993-01-01

    Noncondensible gases may become dissolved in boiling water reactor (BWR) water-level instrumentation during normal operations. Any dissolved noncondensible gases inside these water columns may come out of solution during rapid depressurization events and displace water from the reference leg piping, resulting in a false high level. Significant errors in water-level indication are not expected to occur until the reactor pressure vessel (RPV) pressure has dropped below [approximately]450 psig. These water level errors may cause a delay or failure in emergency core cooling system (ECCS) actuation. The RPV water level is monitored using the pressure of a water column having amore » varying height (reactor water level) that is compared to the pressure of a water column maintained at a constant height (reference level). The reference legs have small-diameter pipes with varying lengths that provide a constant head of water and are located outside the drywell. The amount of noncondensible gases dissolved in each reference leg is very dependent on the amount of leakage from the reference leg and its geometry and interaction of the reactor coolant system with the containment, i.e., torus or suppression pool, and reactor building. If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response. In the postulated inadvertent opening of all seven automatic depressurization system (ADS) valves, the ECCS signal on high drywell pressure would be circumvented because the ADS valves discharge directly into the suppression pool. A best-estimate analysis of such an inadvertent opening of all ADS valves would have to consider the thermal-hydraulic coupling between the pool, drywell, reactor building, and RPV.« less

  4. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k eff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of latticemore » design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup credit at peak reactivity requires a different set of experiments than for pressurized-water reactor burnup credit analysis because of differences in actinide compositions, presence of residual gadolinium absorber, and lower fission product concentrations. A survey of available critical experiments is presented along with a sample criticality code validation and determination of undercoverage penalties for some nuclides. The validation of depleted fuel compositions at peak reactivity presents many challenges which largely result from a lack of radiochemical assay data applicable to BWR fuel in this burnup range. In addition, none of the existing low burnup measurement data include residual gadolinium measurements. An example bias and uncertainty associated with validation of actinide-only fuel compositions is presented.« less

  5. Impact of nonabsorbing control rod tips on kinetics feedback for BWR turbine trip without bypass RETRAN-03 analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Knerr, R.; Shoop, U.

    1993-01-01

    RETRAN-03 studies were performed for the boiling water reactor (BWR) turbine trip without bypass (TTWOB) event to investigate how the non-neutron-absorbing material on control rod tips affect scram delay timing and reactivity feedback. Scram delay, Doppler temperature, and moderator void (density) feedback were varied to assess their relative impact on kinetics behavior. Although a generic point-kinetics RETRAN-03 TTWOB model 2 was employed, actual plant information was used to develop the basic and parametric cases.

  6. QUAD+ BWR Fuel Assembly demonstration program at Browns Ferry plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doshi, P.K.; Mayhue, L.T.; Robert, J.T.

    1984-04-01

    The QUAD+ fuel assembly is an improved BWR fuel assembly designed and manufactured by Westinghouse Electric Corporation. The design features a water cross separating four fuel minibundles in an integral channel. A demonstration program for this fuel design is planned for late 1984 in cycle 6 of Browns Ferry 2, a TVA plant. Objectives for the design of the QUAD+ demonstration assemblies are compatibility in performance and transparency in safety analysis with the feed fuel. These objectives are met. Inspections of the QUAD+ demonstration assemblies are planned at each refueling outage.

  7. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J.; Marshall, William B. J.; Ilas, Germina

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less

  8. Qualification of APOLLO2 BWR calculation scheme on the BASALA mock-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaglio-Gaudard, C.; Santamarina, A.; Sargeni, A.

    2006-07-01

    A new neutronic APOLLO2/MOC/SHEM/CEA2005 calculation scheme for BWR applications has been developed by the French 'Commissariat a l'Energie Atomique'. This scheme is based on the latest calculation methodology (accurate mutual and self-shielding formalism, MOC treatment of the transport equation) and the recent JEFF3.1 nuclear data library. This paper presents the experimental validation of this new calculation scheme on the BASALA BWR mock-up The BASALA programme is devoted to the measurements of the physical parameters of high moderation 100% MOX BWR cores, in hot and cold conditions. The experimental validation of the calculation scheme deals with core reactivity, fission rate maps,more » reactivity worth of void and absorbers (cruciform control blades and Gd pins), as well as temperature coefficient. Results of the analysis using APOLLO2/MOC/SHEM/CEA2005 show an overestimation of the core reactivity by 600 pcm for BASALA-Hot and 750 pcm for BASALA-Cold. Reactivity worth of gadolinium poison pins and hafnium or B{sub 4}C control blades are predicted by APOLLO2 calculation within 2% accuracy. Furthermore, the radial power map is well predicted for every core configuration, including Void configuration and Hf / B{sub 4}C configurations: fission rates in the central assembly are calculated within the {+-}2% experimental uncertainty for the reference cores. The C/E bias on the isothermal Moderator Temperature Coefficient, using the CEA2005 library based on JEFF3.1 file, amounts to -1.7{+-}03 pcm/ deg. C on the range 10 deg. C-80 deg. C. (authors)« less

  9. Load Variation Influences on Joint Work During Squat Exercise in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.; Guilliams, Mark E.; Ploutz-Snyder, Lori L.

    2011-01-01

    Resistance exercises that load the axial skeleton, such as the parallel squat, are incorporated as a critical component of a space exercise program designed to maximize the stimuli for bone remodeling and muscle loading. Astronauts on the International Space Station perform regular resistance exercise using the Advanced Resistive Exercise Device (ARED). Squat exercises on Earth entail moving a portion of the body weight plus the added bar load, whereas in microgravity the body weight is 0, so all load must be applied via the bar. Crewmembers exercising in microgravity currently add approx.70% of their body weight to the bar load as compensation for the absence of the body weight. This level of body weight replacement (BWR) was determined by crewmember feedback and personal experience without any quantitative data. The purpose of this evaluation was to utilize computational simulation to determine the appropriate level of BWR in microgravity necessary to replicate lower extremity joint work during squat exercise in normal gravity based on joint work. We hypothesized that joint work would be positively related to BWR load.

  10. Phenomenology of BWR fuel assembly degradation

    NASA Astrophysics Data System (ADS)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  11. Verification of BWR Turbine Skyshine Dose with the MCNP5 Code Based on an Experiment Made at SHIMANE Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Tayama, Ryuichi; Wakasugi, Kenichi; Kawanaka, Ikunori; Kadota, Yoshinobu; Murakami, Yasuhiro

    We measured the skyshine dose from turbine buildings at Shimane Nuclear Power Station Unit 1 (NS-1) and Unit 2 (NS-2), and then compared it with the dose calculated with the Monte Carlo transport code MCNP5. The skyshine dose values calculated with the MCNP5 code agreed with the experimental data within a factor of 2.8, when the roof of the turbine building was precisely modeled. We concluded that our MCNP5 calculation was valid for BWR turbine skyshine dose evaluation.

  12. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    PubMed

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool. 2010 Elsevier Ltd. All rights reserved.

  13. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Larry J.; Howell, Michael; Robb, Kevin R.

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristicsmore » are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate constant (3 times and 10 times that of the rate constant for APMT) had a negligible impact on the early stages of the accident and minor impacts on the accident progression after the first relocation of the fuel. At temperatures below 1,500°C, increasing the rate constant for APMT by a factor of 10 still resulted in only minor FeCrAl oxidation. In general, the gains afforded by the FeCrAl enhanced ATF concept with respect to accident sequence timing and combustible gas generation are consistent with previous efforts. Compared with the traditional Zircaloy-based cladding and channel box system, the FeCrAl concept could provide a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. For example, a station blackout was simulated in which cooling water injection was lost 36 hours after shutdown. The timing to first fuel relocation was delayed by approximately 5 h for the FeCrAl ATF concept compared with that of the traditional Zircaloy-based cladding and channel box system.« less

  14. Interpretation of the results of the CORA-33 dry core BWR test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, L.J.; Hagen, S.

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ``wet`` core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ``dry`` core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ``dry`` core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions ofmore » a ``dry`` BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ``dry`` core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed.« less

  15. Aging of electronics with application to nuclear power plant instrumentation. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jr, R T; Thome, F V; Craft, C M

    1983-01-01

    A survey to identify areas of needed research to understand aging mechanisms for electronics in nuclear power plant instrumentation has been completed. The emphasis was on electronic components such as semiconductors, capacitors, and resistors used in safety-related instrumentation in the reactor containment area. The environmental and operational stress factors which may produce degradation during long-term operation were identified. Some attention was also given to humidity effects as related to seals and encapsulants, and failures in printed circuit boards and bonds and solder joints. Results suggest that neutron as well as gamma irradiations should be considered in simulating the aging environmentmore » for electronic components. Radiation dose-rate effects in semiconductor devices and organic capacitors need to be further investigated, as well as radiation-voltage bias synergistic effects in semiconductor devices and leakage and permeation of moisture through seals in electronics packages.« less

  16. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Timothy A.; Liao, Huafei

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constitutedmore » a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.« less

  17. Analysis of loss of decay-heat-removal sequences at Browns Ferry Unit One

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, R.M.

    1983-01-01

    This paper summarizes the Oak Ridge National Laboratory (ORNL) report Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA). The purpose of the SASA studies is to predetermine the probable course of postulated severe accidents so as to establish the timing andmore » the sequence of events. The SASA studies also produce recommendations concerning the implementation of better system design and better emergency operating instructions and operator training. The ORNL studies also include a detailed, best-estimate calculation of the release and transport of radioactive fission products following postulated severe accidents.« less

  18. Fission product transport analysis in a loss of decay heat removal accident at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Hodge, S.A.

    1984-01-01

    This paper summarizes an analysis of the movement of noble gases, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal (DHR) capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris ontomore » the drywell floor.« less

  19. Parametric Analysis of a Turbine Trip Event in a BWR Using a 3D Nodal Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorzel, A.

    2006-07-01

    Two essential thermal hydraulics safety criteria concerning the reactor core are that even during operational transients there is no fuel melting and not-permissible cladding temperatures are avoided. A common concept for boiling water reactors is to establish a minimum critical power ratio (MCPR) for steady state operation. For this MCPR it is shown that only a very small number of fuel rods suffers a short-term dryout during the transient. It is known from experience that the limiting transient for the determination of the MCPR is the turbine trip with blocked bypass system. This fast transient was simulated for a Germanmore » BWR by use of the three-dimensional reactor analysis transient code SIMULATE-3K. The transient behaviour of the hot channels was used as input for the dryout calculation with the transient thermal hydraulics code FRANCESCA. By this way the maximum reduction of the CPR during the transient could be calculated. The fast increase in reactor power due to the pressure increase and to an increased core inlet flow is limited mainly by the Doppler effect, but automatically triggered operational measures also can contribute to the mitigation of the turbine trip. One very important method is the short-term fast reduction of the recirculation pump speed which is initiated e. g. by a pressure increase in front of the turbine. The large impacts of the starting time and of the rate of the pump speed reduction on the power progression and hence on the deterioration of CPR is presented. Another important procedure to limit the effects of the transient is the fast shutdown of the reactor that is caused when the reactor power reaches the limit value. It is shown that the SCRAM is not fast enough to reduce the first power maximum, but is able to prevent the appearance of a second - much smaller - maximum that would occur around one second after the first one in the absence of a SCRAM. (author)« less

  20. Radiation chemistry related to nuclear power technology

    NASA Astrophysics Data System (ADS)

    Ishigure, Kenkichi

    A brief review is given to the radiation chemical problems, especially with the emphasis on water radiolysis, in the nuclear power technology. Radiation chemistry in aqueous system is pointed out to be closely related to the problems such as corrosion of Zircaloy, the formation of insoluble corrosion products or crud, stress corrosion cracking of stainless steel in BWR and the radioactive waste managements. The results of the constant extention rate tests on sensitized 304 stainless steel under irradiation are shown, and the computer calculations were carried out to simulate the model experiments on the release of crud from the corroding surface under irradiation and also the water radiolysis in core of BWR.

  1. The Japanese utilities` expectations for subchannel analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toba, Akio; Omoto, Akira

    1995-12-01

    Boiling water reactor (BWR) utilities in Japan began to consider the development of a mechanistic model to describe the critical heat transfer conditions in the BWR fuel subchannel. Such a mechanistic model will not only decrease the necessity of tests, but will also help by removing some overly conservative safety margins in thermal hydraulics. With the use of a postdryout heat transfer correlation, new acceptance criteria may be applicable to evaluate the fuel integrity. Mechanistic subchannel analysis models will certainly back up this approach. This model will also be applicable to the analysis of large-size fuel bundles and examination ofmore » corrosion behavior.« less

  2. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  3. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    NASA Astrophysics Data System (ADS)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  4. Estimation of carbon 14 inventory in hull and end-piece wastes from Japanese commercial reprocessing operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomofumi Sakuragi; Hiromi Tanabe; Emiko Hirose

    2013-07-01

    Hull and end-piece wastes generated from reprocessing plant operations are expected to be disposed of in a deep underground repository as Group 2 TRU wastes under the Japanese classification system. The activated metals that compose the spent fuel assemblies such as Zircaloy claddings and stainless steel nozzles are mixed and compressed after fuel dissolution, and then stuffed into stainless steel canisters. Carbon 14 is a typical activated product in the hulls and end-pieces and is mainly generated by the {sup 14}N(n,p){sup 14}C reaction. In the previous safety assessment of the TRU waste in Japan, the radionuclides inventory was calculated bymore » ORIGEN-2 code. Some conservative assumptions and preliminary estimates were used in this calculation. For example, total radionuclides generated from a single type of fuel assembly (45 GWd/tU for a PWR unit), and the thickness of the Zircaloy oxide film on the hulls (80 μm) were both overestimated. The second assumption in particular has a large effect on exposure dose evaluation. Therefore, it is essential to have a realistic source term evaluation regarding such items as the C-14 inventory and its distribution to waste parts. In the present study, a C-14 inventory of the hull and end-piece wastes from the operation of a commercial reprocessing plant in Japan corresponding to 32,000 tU (16,000 tU in each BWR and PWR) was calculated. Analysis using individual irradiation conditions and fuel characteristics was conducted on 6 types of fuel assemblies for BWRs and 12 types for PWRs (4 pile types x 3 burnup limits). The oxide film thickness data for each fuel type cladding were obtained from the published literature. Activation calculations were performed by using ORIGEN-2 code. For the amount of spent assembly and other waste characteristics, representative values were assumed based on the published literature. As a preliminary experiment, C-14 in irradiated BWR claddings was measured and found to be consistent with the calculated activation. The total C-14 inventory was estimated as 4.46x10{sup 14} Bq, consisting of 2.58x10{sup 14} Bq for BWRs and 1.87x10{sup 14} Bq for PWRs, and is consistent with the safety assessment of 4.4x10{sup 14} Bq. However, the distribution of the C-14 inventory to hull oxide, which was estimated under the assumption of instantaneous radionuclide release in the safety assessment, decreased from 5.72x10{sup 13} Bq (13% of the total) in the previous assessment to 1.30x10{sup 13} Bq (2.9% of the total; consisting of 1.48x10{sup 12} for BWRs and 1.15x10{sup 13} for PWRs). In other words, the exposure dose peak is reduced to approximate 25% of its previous value due to the use of detailed oxide film data that the BWR cladding has a thin oxide film. Other instantaneous release components for C-14 such as the fuel residual were negligible. (authors)« less

  5. Application of reliability-centered-maintenance to BWR ECCS motor operator valve performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Choi, Y.A.

    1993-01-01

    This paper describes the application of reliability-centered maintenance (RCM) methods to plant probabilistic risk assessment (PRA) and safety analyses for four boiling water reactor emergency core cooling systems (ECCSs): (1) high-pressure coolant injection (HPCI); (2) reactor core isolation cooling (RCIC); (3) residual heat removal (RHR); and (4) core spray systems. Reliability-centered maintenance is a system function-based technique for improving a preventive maintenance program that is applied on a component basis. Those components that truly affect plant function are identified, and maintenance tasks are focused on preventing their failures. The RCM evaluation establishes the relevant criteria that preserve system function somore » that an RCM-focused approach can be flexible and dynamic.« less

  6. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  7. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARCmore » and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.« less

  8. A Pumping Algorithm for Ergodic Stochastic Mean Payoff Games with Perfect Information

    NASA Astrophysics Data System (ADS)

    Boros, Endre; Elbassioni, Khaled; Gurvich, Vladimir; Makino, Kazuhisa

    In this paper, we consider two-person zero-sum stochastic mean payoff games with perfect information, or BWR-games, given by a digraph G = (V = V B ∪ V W ∪ V R , E), with local rewards r: E to { R}, and three types of vertices: black V B , white V W , and random V R . The game is played by two players, White and Black: When the play is at a white (black) vertex v, White (Black) selects an outgoing arc (v,u). When the play is at a random vertex v, a vertex u is picked with the given probability p(v,u). In all cases, Black pays White the value r(v,u). The play continues forever, and White aims to maximize (Black aims to minimize) the limiting mean (that is, average) payoff. It was recently shown in [7] that BWR-games are polynomially equivalent with the classical Gillette games, which include many well-known subclasses, such as cyclic games, simple stochastic games (SSG's), stochastic parity games, and Markov decision processes. In this paper, we give a new algorithm for solving BWR-games in the ergodic case, that is when the optimal values do not depend on the initial position. Our algorithm solves a BWR-game by reducing it, using a potential transformation, to a canonical form in which the optimal strategies of both players and the value for every initial position are obvious, since a locally optimal move in it is optimal in the whole game. We show that this algorithm is pseudo-polynomial when the number of random nodes is constant. We also provide an almost matching lower bound on its running time, and show that this bound holds for a wider class of algorithms. Let us add that the general (non-ergodic) case is at least as hard as SSG's, for which no pseudo-polynomial algorithm is known.

  9. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of tributaries.

  10. Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.; Emanuelson, R.H.

    1986-01-01

    During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hznnera, K.; Hetzler, F.; Hyden, L.

    From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Some features of ASEA-ATOM's BWR fuel design and fabrication processes are given. The in pile fuel performance experience to date is reviewed. (auth)

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, S; Rowland, M; Campbell, K

    It is difficult to track to the location of a melted core in a GE BWR with Mark I containment during a beyond-design-basis accident. The Cooper Nuclear Station provided a baseline of normal material distributions and shielding configurations for the GE BWR with Mark I containment. Starting with source terms for a design-basis accident, methods and remote observation points were investigated to allow tracking of a melted core during a beyond-design-basis accident. The design of the GE BWR with Mark-I containment highlights an amazing poverty of expectations regarding a common mode failure of all reactor core cooling systems resulting inmore » a beyond-design-basis accident from the simple loss of electric power. This design is shown in Figure 1. The station blackout accident scenario has been consistently identified as the leading contributor to calculated probabilities for core damage. While NRC-approved models and calculations provide guidance for indirect methods to assess core damage during a beyond-design-basis loss-of-coolant accident (LOCA), there appears to be no established method to track the location of the core directly should the LOCA include a degree of fuel melt. We came to the conclusion that - starting with detailed calculations which estimate the release and movement of gaseous and soluble fission products from the fuel - selected dose readings in specific rooms of the reactor building should allow the location of the core to be verified.« less

  14. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toman, G.; Gazdzinski, R.; O`Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specificmore » aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.« less

  15. Spent fuel burnup estimation by Cerenkov glow intensity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki

    1994-10-01

    The Cerenkov glow images from irradiated fuel assemblies of boiling-water reactors (BWR) and pressurized-water reactors (PWR) are generally used for inspections. For this purpose, a new UV-I.I. CVD (ultra-violet light image intensifier Cerenkov viewing device), has been developed. This new device can measure the intensity of the Cerenkov glow from a spent fuel assembly, thus making it possible to estimate the burnup of the fuel assembly by comparing the Cerenkov glow intensity to the reference intensity. The experiment was carried out on BWR spent fuel assemblies and the results show that burnups are estimated within 20% accuracy compared to themore » declared burnups for the tested spent fuel assemblies for cooling times ranging from 900--2.000 d.« less

  16. In-Pile Tests for IASCC Growth Behavior of Irradiated 316L Stainless Steel under Simulated BWR Condition in JMTR

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.

  17. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  18. Investigation of Containment Flooding Strategy for Mark-III Nuclear Power Plant with MAAP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Weinian; Wang, S.-J.; Chiang, S.-C

    2005-06-15

    Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The purpose of this work is to investigate the containment flooding strategy of the Mark-III system after a reactor pressure vessel (RPV) breach. The Kuosheng Power Plant is a typical BWR-6 nuclear power plant (NPP) with Mark-III containment. The Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners Group (BWROG) Emergency Procedure and Severe Accident Guidelines, Rev. 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code ismore » chosen as the tool for analysis. A postulated specific station blackout sequence for the Kuosheng NPP is cited as a reference case for this analysis. Because of the design features of Mark-III containment, the debris in the reactor cavity may not be submerged after an RPV breach when one follows the containment flooding strategy as suggested in the BWROG generic guideline, and the containment integrity could be challenged eventually. A more specific containment flooding strategy with drywell venting after an RPV breach is investigated, and a more stable plant condition is achieved with this strategy. Accordingly, the containment flooding strategy after an RPV breach will be modified for the Kuosheng SAMG, and these results are applicable to typical Mark-III plants with drywell vent path.« less

  19. Experience using individually supplied heater rods in critical power testing of advanced BWR fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majed, M.; Morback, G.; Wiman, P.

    1995-09-01

    The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give largemore » advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.« less

  20. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  1. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  2. Fatigue crack growth in SA508-CL2 steel in a high temperature, high purity water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, T.L.; Heald, J.D.; Kiss, E.

    1974-10-01

    Fatigue crack growth tests were conducted with 1 in. plate specimens of SA508-CL 2 steel in room temperature air, 550$sup 0$F air and in a 550$sup 0$F, high purity, water environment. Zero-tension load controlled tests were run at cyclic frequencies as low as 0.037 CPM. Results show that growth rates in the simulated Boiling Water Reactor (BWR) water environment are faster than growth rates observed in 550$sup 0$F air and these rates are faster than the room temperature rate. In the BWR water environment, lowering the cyclic frequency from 0.37 to 0.037 CPM caused only a slight increase in themore » fatigue crack growth rate. All growth rates measured in these tests were below the upper bound design curve presented in Section XI of the ASME Code. (auth)« less

  3. Impulsivity-based thrifty eating phenotype and the protective role of n-3 PUFAs intake in adolescents.

    PubMed

    Reis, R S; Dalle Molle, R; Machado, T D; Mucellini, A B; Rodrigues, D M; Bortoluzzi, A; Bigonha, S M; Toazza, R; Salum, G A; Minuzzi, L; Buchweitz, A; Franco, A R; Pelúzio, M C G; Manfro, G G; Silveira, P P

    2016-03-15

    The goal of the present study was to investigate whether intrauterine growth restriction (IUGR) affects brain responses to palatable foods and whether docosahexaenoic acid (DHA, an omega-3 fatty acid that is a primary structural component of the human brain) serum levels moderate the association between IUGR and brain and behavioral responses to palatable foods. Brain responses to palatable foods were investigated using a functional magnetic resonance imaging task in which participants were shown palatable foods, neutral foods and non-food items. Serum DHA was quantified in blood samples, and birth weight ratio (BWR) was used as a proxy for IUGR. The Dutch Eating Behavior Questionnaire (DEBQ) was used to evaluate eating behaviors. In the contrast palatable food > neutral items, we found an activation in the right superior frontal gyrus with BWR as the most important predictor; the lower the BWR (indicative of IUGR), the greater the activation of this region involved in impulse control/decision making facing the viewing of palatable food pictures versus neutral items. At the behavioral level, a general linear model predicting external eating using the DEBQ showed a significant interaction between DHA and IUGR status; in IUGR individuals, the higher the serum DHA, the lower is external eating. In conclusion, we suggest that IUGR moderates brain responses when facing stimuli related to palatable foods, activating an area related to impulse control. Moreover, higher intake of n-3 PUFAs can protect IUGR individuals from developing inappropriate eating behaviors, the putative mechanism of protection would involve decreasing intake in response to external food cues in adolescents/young adults.

  4. Impulsivity-based thrifty eating phenotype and the protective role of n-3 PUFAs intake in adolescents

    PubMed Central

    Reis, R S; Dalle Molle, R; Machado, T D; Mucellini, A B; Rodrigues, D M; Bortoluzzi, A; Bigonha, S M; Toazza, R; Salum, G A; Minuzzi, L; Buchweitz, A; Franco, A R; Pelúzio, M C G; Manfro, G G; Silveira, P P

    2016-01-01

    The goal of the present study was to investigate whether intrauterine growth restriction (IUGR) affects brain responses to palatable foods and whether docosahexaenoic acid (DHA, an omega-3 fatty acid that is a primary structural component of the human brain) serum levels moderate the association between IUGR and brain and behavioral responses to palatable foods. Brain responses to palatable foods were investigated using a functional magnetic resonance imaging task in which participants were shown palatable foods, neutral foods and non-food items. Serum DHA was quantified in blood samples, and birth weight ratio (BWR) was used as a proxy for IUGR. The Dutch Eating Behavior Questionnaire (DEBQ) was used to evaluate eating behaviors. In the contrast palatable food > neutral items, we found an activation in the right superior frontal gyrus with BWR as the most important predictor; the lower the BWR (indicative of IUGR), the greater the activation of this region involved in impulse control/decision making facing the viewing of palatable food pictures versus neutral items. At the behavioral level, a general linear model predicting external eating using the DEBQ showed a significant interaction between DHA and IUGR status; in IUGR individuals, the higher the serum DHA, the lower is external eating. In conclusion, we suggest that IUGR moderates brain responses when facing stimuli related to palatable foods, activating an area related to impulse control. Moreover, higher intake of n-3 PUFAs can protect IUGR individuals from developing inappropriate eating behaviors, the putative mechanism of protection would involve decreasing intake in response to external food cues in adolescents/young adults. PMID:26978737

  5. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoidmore » overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety system components such as the safety relief valve (SRV), the RCIC system, the wet well, and the dry well. The results show reasonable system behaviors while exhibiting rich dynamics such as variable flow rates through RCIC turbine and pump during the SBO transient. The model has the potential to resolve the Fukushima RCIC mystery after adding the off-design two-phase turbine operation model and other additional improvements.« less

  6. Benefits of barrier fuel on fuel cycle economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect ofmore » fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs.« less

  7. The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.

    1998-12-31

    The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less

  8. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  9. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  10. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  11. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  12. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  13. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  14. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  15. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  16. 75 FR 21046 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the... on Reactor Safeguards (ACRS) will hold a meeting on May 6-8, 2010, 11545 Rockville Pike, Rockville....: Boiling Water Reactor (BWR) Owners Group (BWROG) Topical Report NEDC-33347P, ``Containment Overpressure...

  17. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... power-operated systems. 25.672 Section 25.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  18. The doctrinal basis for medical stability operations.

    PubMed

    Baker, Jay B

    2010-01-01

    This article describes possible roles for the military in the health sector during stability operations, which exist primarily when security conditions do not permit the free movement of civilian actors. This article reviews the new U.S. Army Field Manuals (FMs) 3-24, Counterinsurgency and FM 3-07, Stability Operations, in the context of the health sector. Essential tasks in medical stability operations are identified for various logical lines of operation including information operations, civil security, civil control, support to governance, support to economic development, and restoration of essential services. Restoring essential services is addressed in detail including coordination, assessment, actions, and metrics in the health sector. Coordination by the military with other actors in the health sector including host nation medical officials, other United States governmental agencies, international governmental organizations (IGOs), and nongovernment organizations (NGOs) is key to success in medical stability operations.

  19. Characterization of carbon-14 generated by the nuclear power industry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eabry, S.; Vance, J.N.; Cline, J.E.

    1995-11-01

    This report describes an evaluation of C-14 production rates in light-water reactors (LWRs) and characterization of its chemical speciation and environmental behavior. The study estimated the total production rate of the nuclide in operating PWRs and BWRs along with the assessment of the C-14 content of solid radwaste. The major source of production of C-14 in both PWR`s and BWRs was the activation of 0-17 in the water molecule and of N-14 dissolved in reactor coolant. The production of C-14 was estimated to range from 7 Ci/GW(e)-year to 11 Ci/GW(e)-year. The estimated range of the quantity of C-14 in LLWmore » was 1-2 Ci/ reactor-year which compares favorably with data obtained from shipping manifests. The environmental behavior of C-14 associated with low-level waste (LLW) disposal is greatly dependent upon its chemical speciation. This scoping study was performed to help identify the occurrence of inorganic and organic forms of C-14 in reactor coolant water and in primary coolant demineralization resins. These represent the major source for C-14 in LLW from nuclear power stations. Also, the behavior of inorganic and two of the organic forms of C-14 on soil uptake was determined by measuring distribution coefficients (Kd`s) on two soil types and a cement, using two different groundwater types. This study confirms that C-14 concentrations are significantly higher in the primary coolant from PWR stations compared to BWR stations. The C-14 followed trends of Co-60 generation during primary coolant demineralization at all but one of the stations examined. However, the C-14/Co-60 activity ratios measured by this study in resin samples through which samples of coolant were drawn were about 8 to 42 times higher than those reported for waste samples in the industry data base for PWR stations, and 15 to 730 times lower for the BWR stations.« less

  20. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Afshari, Shahab; Tavakoly, Ahmad A.; Rajib, Mohammad Adnan; Zheng, Xing; Follum, Michael L.; Omranian, Ehsan; Fekete, Balázs M.

    2018-01-01

    The objective of this study is to compare two new generation low-complexity tools, AutoRoute and Height Above the Nearest Drainage (HAND), with a two-dimensional hydrodynamic model (Hydrologic Engineering Center-River Analysis System, HEC-RAS 2D). The assessment was conducted on two hydrologically different and geographically distant test-cases in the United States, including the 16,900 km2 Cedar River (CR) watershed in Iowa and a 62 km2 domain along the Black Warrior River (BWR) in Alabama. For BWR, twelve different configurations were set up for each of the models, including four different terrain setups (e.g. with and without channel bathymetry and a levee), and three flooding conditions representing moderate to extreme hazards at 10-, 100-, and 500-year return periods. For the CR watershed, models were compared with a simplistic terrain setup (without bathymetry and any form of hydraulic controls) and one flooding condition (100-year return period). Input streamflow forcing data representing these hypothetical events were constructed by applying a new fusion approach on National Water Model outputs. Simulated inundation extent and depth from AutoRoute, HAND, and HEC-RAS 2D were compared with one another and with the corresponding FEMA reference estimates. Irrespective of the configurations, the low-complexity models were able to produce inundation extents similar to HEC-RAS 2D, with AutoRoute showing slightly higher accuracy than the HAND model. Among four terrain setups, the one including both levee and channel bathymetry showed lowest fitness score on the spatial agreement of inundation extent, due to the weak physical representation of low-complexity models compared to a hydrodynamic model. For inundation depth, the low-complexity models showed an overestimating tendency, especially in the deeper segments of the channel. Based on such reasonably good prediction skills, low-complexity flood models can be considered as a suitable alternative for fast predictions in large-scale hyper-resolution operational frameworks, without completely overriding hydrodynamic models' efficacy.

  1. Removal of Sb-125 and Tc-99 from Liquid Radwaste by Novel Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harjula, R.O.; Koivula, R.; Paajanen, A.

    2006-07-01

    Novel proprietary metal oxide materials (MOM) have been tested for the removal of Sb-125 from simulated Floor Drain Waters of BWR. Antimony was present in the solutions as oxidized anionic form. Long term column experiment with simulated liquid that showed high Sb-125 removal at least up to 8000 bed volumes. One column experiments was carried out using nonradioactive Sb to exhaust the column. Leaching tests with 1000 ppm boric acid showed that 100 % of absorbed Sb remains in the sorbent material. Column experiments with real Fuel Pond Water from Olkiluoto NPP (BWR) showed reduction of Sb-125 (feed level 400more » Bq/L, 1.10{sup -5} {mu}Ci/mL) below detection limit (MDA = 1.7 Bq/L, 5.10{sup -8},{mu}Ci/mL). Additional experiments have also been carried out with pertechnetate (Tc-99) ions. Results indicate that MOM materials are efficient also for the removal of Tc-99 from concentrated NaNO{sub 3} solution. (authors)« less

  2. RAMONA-3B application to Browns Ferry ATWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovik, G.C.; Neymotin, L.Y.; Saha, P.

    1985-01-01

    The Anticipated Transient Without Scram (ATWS) is known to be a dominant accident sequence for possible core melt in a Boiling Water Reactor (BWR). A recent Probabilistic Risk Assessment (PRA) analysis for the Browns Ferry nuclear power plant indicates that ATWS is the second most dominant transient for core melt in BWR/4 with Mark I containment. The most dominant sequence being the failure of long term decay heat removal function of the Residual Heat Removal (RHR) system. Of all the various ATWS scenarios, the Main Steam Isolation Valve (MSIV) closure ATWS sequence was chosen for present analysis because of itsmore » relatively high frequency of occurrence and its challenge to the residual heat removal system and containment integrity. The objective of this paper is to discuss four MSIV closure ATWS calculations using the RAMONA-3B code. The paper is a summary of a report being prepared for the USNRC Severe Accident Sequence Analysis (SASA) program which should be referred to for details. 10 refs., 20 figs., 3 tabs.« less

  3. Effects of experimental floods on riparian and aquatic ecosystems: Bill Williams River, Arizona

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; Andersen, D. C.; Wilcox, A. C.; Kui, L.; Stella, J. C.

    2013-12-01

    Development of flow prescriptions for environmental purposes along rivers is relatively common, but implementation of these 'environmental flows' occurs infrequently. Implementation is critical for testing hypotheses relating flow regime to biotic response, which ultimately can inform adaptive flow management. We describe the development of flow prescriptions and evaluate responses of riparian vegetation, beaver dams, and associated aquatic habitat to experimental floods and intervening base flows associated with an environmental flow program on the Bill Williams River (BWR), in semiarid Arizona. First, we assessed effects of flow releases between 1993 and 2009 designed to favor the establishment and maintenance of native riparian trees (Populus and Salix) and disfavor an invasive, nonnative shrub (Tamarix spp.) downstream of Alamo Dam on the BWR. Our data are multi-scaled and include a several-decade assessment of changes to major vegetation types based on a time series of aerial photography, an assessment of species composition and abundance sampled in permanent vegetation quadrats, and targeted seedling surveys following experimental floods. Between 1993 and 2009, we observed significant increases in Populus and Salix forests and essentially no change in Tamarix. Experimental floods in 2006 and 2007 resulted in higher mortality of Tamarix seedlings than Salix. These results illustrate the potential for managing streamflow to influence riparian vegetation dynamics, including management of nonnative species. Second, we examined the role of beaver as ecosystem engineers in the BWR and linkages to flow releases between 2004 and 2013. Beaver convert lotic stream habitat to lentic through dam construction and maintenance during low flow periods, and the process is reversed when a flood or other event causes dam failure. We estimated the extent of lotic and beaver-created lentic (beaver pond) habitat along the BWR and related the likelihood of damage or destruction of beaver dams to the magnitude and duration of experimental floods. We obtained counts of beaver dams at various times from aerial photographs, aerial videography, and ground surveys. The ratio of lotic to lentic stream length was approximately 6 times greater following a large flood versus a 7 year period with no significant flood releases. Floods of different magnitudes and durations resulted in notably different levels of damage or removal of beaver dams. Finally, we sampled woody vegetation adjacent to the channel to estimate the effect of beaver herbivory, and noted high levels of mature tree mortality in one of our study reaches. Results of our previous and ongoing investigations are reported to land and water managers as part of an adaptive streamflow management process.

  4. Optimization of power systems with voltage security constraints

    NASA Astrophysics Data System (ADS)

    Rosehart, William Daniel

    As open access market principles are applied to power systems, significant changes in their operation and control are occurring. In the new marketplace, power systems are operating under higher loading conditions as market influences demand greater attention to operating cost versus stability margins. Since stability continues to be a basic requirement in the operation of any power system, new tools are being considered to analyze the effect of stability on the operating cost of the system, so that system stability can be incorporated into the costs of operating the system. In this thesis, new optimal power flow (OPF) formulations are proposed based on multi-objective methodologies to optimize active and reactive power dispatch while maximizing voltage security in power systems. The effects of minimizing operating costs, minimizing reactive power generation and/or maximizing voltage stability margins are analyzed. Results obtained using the proposed Voltage Stability Constrained OPF formulations are compared and analyzed to suggest possible ways of costing voltage security in power systems. When considering voltage stability margins the importance of system modeling becomes critical, since it has been demonstrated, based on bifurcation analysis, that modeling can have a significant effect of the behavior of power systems, especially at high loading levels. Therefore, this thesis also examines the effects of detailed generator models and several exponential load models. Furthermore, because of its influence on voltage stability, a Static Var Compensator model is also incorporated into the optimization problems.

  5. Economic Assessment: Stability, Security, Transition and Reconstruction Operations

    DTIC Science & Technology

    2007-03-13

    strategy has incorporated economic stability as a central part of post-combat operations and nation building. A viable, growing economy has also been a...and prosperity. Economic stability served as a tool for reconstruction as well as the catalyst for integration as outlined in the Marshall Plan...for future SSTR operations as it relates to economic stability is “Privatization can be a prerequisite for economic growth, especially where

  6. Two-phase pressure drop reduction BWR assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, G.E.; Crowther, R.L.; Colby, M.J.

    1991-05-21

    This patent describes an improved fuel assembly for a boiling water reactor. It comprises: a fuel channel; a lower tie plate; an upper tie plate; the lower tie plate and the upper tie plate defining a two-dimensional matrix; at least one water rod the fuel rods being partial length rods.

  7. Recent developments in chemical decontamination technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.J.

    1995-03-01

    Chemical decontamination of parts of reactor coolant systems is a mature technology, used routinely in many BWR plants, but less frequently in PWRs. This paper reviews recent developments in the technology - corrosion minimization, waste processing and full system decontamination, including the fuel. Earlier work was described in an extensive review published in 1990.

  8. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  9. KERENA safety concept in the context of the Fukushima accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharias, T.; Novotny, C.; Bielor, E.

    Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less

  10. Risk-informed regulation and safety management of nuclear power plants--on the prevention of severe accidents.

    PubMed

    Himanen, Risto; Julin, Ari; Jänkälä, Kalle; Holmberg, Jan-Erik; Virolainen, Reino

    2012-11-01

    There are four operating nuclear power plant (NPP) units in Finland. The Teollisuuden Voima (TVO) power company has two 840 MWe BWR units supplied by Asea-Atom at the Olkiluoto site. The Fortum corporation (formerly IVO) has two 500 MWe VVER 440/213 units at the Loviisa site. In addition, a 1600 MWe European Pressurized Water Reactor supplied by AREVA NP (formerly the Framatome ANP--Siemens AG Consortium) is under construction at the Olkiluoto site. Recently, the Finnish Parliament ratified the government Decision in Principle that the utilities' applications to build two new NPP units are in line with the total good of the society. The Finnish utilities, Fenno power company, and TVO company are in progress of qualifying the type of the new nuclear builds. In Finland, risk-informed applications are formally integrated in the regulatory process of NPPs that are already in the early design phase and these are to run through the construction and operation phases all through the entire plant service time. A plant-specific full-scope probabilistic risk assessment (PRA) is required for each NPP. PRAs shall cover internal events, area events (fires, floods), and external events such as harsh weather conditions and seismic events in all operating modes. Special attention is devoted to the use of various risk-informed PRA applications in the licensing of Olkiluoto 3 NPP. © 2012 Society for Risk Analysis.

  11. Reframing Stability Operations: using Social Science to Identify Pillars of Stability Operations to Bridge the Gap Between the Principles of Joint Operations and Stability Operations Framework

    DTIC Science & Technology

    2009-12-11

    demographics, and instability. Many of the essays contained within Too Poor detail issues related to Military Aged Males (MAMs) and the effects of youth......cohorts who come of working age with more education than previous generations are particularly vulnerable when they are unable to find “appropriate

  12. Corrosion fatigue characterization of reactor pressure vessel steels. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.

    1982-12-01

    During routine operation, light water reactor (LWR) pressure vessels are subjected to a variety of transients that result in time-varying stresses. Consequently, fatigue and environmentally-assisted fatigue are mechanisms of growth relevant to flaws in these pressure vessels. To provide a better understanding of the resistance of nuclear pressure vessel steels to these flaw growth processes, fracture mechanics data were generated on the rates of fatigue crack growth for SA508-2 and SA533B-1 steels in both room temperature air and 288/sup 0/C water. Areas investigated were: the relationship of crack growth rate to prior loading history; the effects of loading frequency andmore » R ratio (K/sub min//K/sub max/) on crack growth rate as a function of the stress intensity factor range (..delta..K); transient aspects of the fatigue crack growth behavior; the effect of material chemistry (sulphur content) on fatigue crack; and growth rate; water chemistry effects (high-purity water versus simulated pressurized water reactotr (PWR) primary coolant).« less

  13. 77 FR 69507 - Proposed Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ..., ``Revise Shutdown Margin Definition To Address Advanced Fuel Designs'' AGENCY: Nuclear Regulatory... Shutdown Margin Definition to Address Advanced Fuel Designs.'' DATES: Comment period expires on December 19... address newer BWR fuel designs, which may be more reactive at shutdown temperatures above 68[emsp14][deg]F...

  14. CIRFT Data Update and Data Analyses for Spent Nuclear Fuel Vibration Reliability Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong

    The objective of this research is to collect experimental data on spent nuclear fuel (SNF) from pressurized water reactors (PWRs), including the H. B. Robinson Nuclear Power Station (HBR), Catawba Nuclear Station, North Anna Nuclear Power Station (NA), and the Limerick Nuclear Power Station (LMK) boiling water reactor (BWR).

  15. On the Solidification and Structure Formation during Casting of Large Inserts in Ferritic Nodular Cast Iron

    NASA Astrophysics Data System (ADS)

    Tadesse, Abel; Fredriksson, Hasse

    2018-06-01

    The graphite nodule count and size distributions for boiling water reactor (BWR) and pressurized water reactor (PWR) inserts were investigated by taking samples at heights of 2160 and 1150 mm, respectively. In each cross section, two locations were taken into consideration for both the microstructural and solidification modeling. The numerical solidification modeling was performed in a two-dimensional model by considering the nucleation and growth in eutectic ductile cast iron. The microstructural results reveal that the nodule size and count distribution along the cross sections are different in each location for both inserts. Finer graphite nodules appear in the thinner sections and close to the mold walls. The coarser nodules are distributed mostly in the last solidified location. The simulation result indicates that the finer nodules are related to a higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to a lower cooling rate and a higher degree of microsegregation. The solidification time interval and the last solidifying locations in the BWR and PWR are also different.

  16. Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2012-10-01

    The dynamics, operability limits, and tuning of a proportional-integral feedback controller to stabilize detached vertical Bridgman crystal growth are analyzed using a capillary model of shape stability. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. Open and closed loop dynamics of step changes in these state variables are analyzed under both shape stable and shape unstable growth conditions. Effects of step changes in static contact angle and growth angle are also studied. Proportional and proportional-integral control can stabilize unstable growth, but only within tight operability limits imposed by the narrow range of allowed meniscus shapes. These limits are used to establish safe operating ranges of controller gain. Strong nonlinearity of the capillary model restricts the range of perturbations that can be stabilized, and under some circumstances, stabilizes a spurious operating state far from the set point. Stabilizing detachment at low growth angle proves difficult and becomes impossible at zero growth angle.

  17. The operator's emotional stability

    NASA Technical Reports Server (NTRS)

    Zilberman, P. B.

    1975-01-01

    An attempt is made to provide a psychological interpretation of the concept of emotional stability in connection with other psychics qualities of an operator's personality. Emotional stability is understood as a person's capacity to control his emotional state for the purpose of maintaining the necessary level of work performance under extreme stress conditions. By modeling the operator's sensorimotor activity and by comparing the productivity indicators under ordinary conditions with those obtained during work involving an emotional load, the level of emotional stability can be determined.

  18. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    NASA Astrophysics Data System (ADS)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  19. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safetymore » analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.« less

  20. In-Containment Signal Conditioning and Transmission via Power Lines within High Dose Rate Areas of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Steffen; Weigel, Robert; Koelpin, Alexander

    2015-07-01

    Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installationmore » of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)« less

  1. CPR methodology with new steady-state criterion and more accurate statistical treatment of channel bow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, S.; Bieli, R.; Bergmann, U. C.

    2012-07-01

    An overview is given of existing CPR design criteria and the methods used in BWR reload analysis to evaluate the impact of channel bow on CPR margins. Potential weaknesses in today's methodologies are discussed. Westinghouse in collaboration with KKL and Axpo - operator and owner of the Leibstadt NPP - has developed an optimized CPR methodology based on a new criterion to protect against dryout during normal operation and with a more rigorous treatment of channel bow. The new steady-state criterion is expressed in terms of an upper limit of 0.01 for the dryout failure probability per year. This ismore » considered a meaningful and appropriate criterion that can be directly related to the probabilistic criteria set-up for the analyses of Anticipated Operation Occurrences (AOOs) and accidents. In the Monte Carlo approach a statistical modeling of channel bow and an accurate evaluation of CPR response functions allow the associated CPR penalties to be included directly in the plant SLMCPR and OLMCPR in a best-estimate manner. In this way, the treatment of channel bow is equivalent to all other uncertainties affecting CPR. Emphasis is put on quantifying the statistical distribution of channel bow throughout the core using measurement data. The optimized CPR methodology has been implemented in the Westinghouse Monte Carlo code, McSLAP. The methodology improves the quality of dryout safety assessments by supplying more valuable information and better control of conservatisms in establishing operational limits for CPR. The methodology is demonstrated with application examples from the introduction at KKL. (authors)« less

  2. Neutron Collar Evolution and Fresh PWR Assembly Measurements with a New Fast Neutron Passive Collar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Geist, William H.; Root, Margaret A.

    The passive neutron collar approach removes the effect of poison rods when using a 1mm Gd liner. This project sets out to solve the following challenges: BWR fuel assemblies have less mass and less neutron multiplication than PWR; and effective removal of cosmic ray spallation neutron bursts needed via QC tests.

  3. Military personnel with self-reported ankle injuries do not demonstrate deficits in dynamic postural stability or landing kinematics.

    PubMed

    Bansbach, Heather M; Lovalekar, Mita T; Abt, John P; Rafferty, Deirdre; Yount, Darcie; Sell, Timothy C

    2017-08-01

    The odds of sustaining non-contact musculoskeletal injuries are higher in Special Operations Forces operators than in infantry soldiers. The ankle is one of the most commonly injured joints, and once injured can put individuals at risk for reinjury. The purpose of this study was to determine if any differences in postural stability and landing kinematics exist between operators with a self-reported ankle injury in the past one year and uninjured controls. A total of 55 Special Operations Forces operators were included in this analysis. Comparisons were made between operators with a self-reported ankle injury within one-year of their test date (n=11) and healthy matched controls (n=44). Comparisons were also made between injured and uninjured limbs within the injured group. Dynamic postural stability and landing kinematics at the ankle, knee, and hip were assessed during a single-leg jump-landing task. Comparisons were made between groups with independent t-tests and within the injured group between limbs using paired t-tests. There were no significant differences in dynamic postural stability index or landing kinematics between the injured and uninjured groups. Anterior-posterior stability index was significantly higher on the uninjured limb compared to the injured limb within the injured group (P=0.02). Single ankle injuries sustained by operators may not lead to deficits in dynamic postural stability. Dynamic postural stability index and landing kinematics within one year after injury were either not affected by the injuries reported, or injured operators were trained back to baseline measures through rehabilitation and daily activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Leveraging Venture Capital and Commercial Business: Enhancing Stability Operations

    DTIC Science & Technology

    2011-03-24

    Economic Stability Operations have emerged as a new element of United States national strategic power. The creation of jobs, through commercial...examine the key strategic factors influencing long-term economic stability following the withdrawal of combat forces. This paper provides a model for

  5. Stability Operations in East Timor 1999-2000: A Case Study

    DTIC Science & Technology

    2016-04-11

    Institute April 11, 2016 Raymond A. Millen Senior Editor The views expressed in this report are those of the authors and do not necessarily reflect...Stability Operations Institute (PKSOI) publications enjoy full academic freedom, pro- vided they do not disclose classified information, jeopardize...to this report are invited and should be forwarded to: Director, Peacekeeping and Stability Operations Institute , U.S. Army War College, 22 Ashburn

  6. Hole of Government: Sealing the Gap in U.S. Stability Operations

    DTIC Science & Technology

    2010-06-15

    including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215... Gap in U.S. Stability Operations” 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) Commander Patrick J...THE GAP IN U.S. STABILITY OPERATIONS by Patrick J. Hannifin CDR, USN A paper submitted to the Faculty of the Joint Advanced

  7. Littoral Combat Ships. Relating Performance to Mission Package Inventories, Homeports, and Installation Sites

    DTIC Science & Technology

    2007-01-01

    determine specific asset counts for each scenario. For example, we calculated that a specific stability operation in South America might require an...Stability Operations We considered stability operations that may occur in three geographic regions: West Africa, South America , and Southeast Asia. These...earthquake or tsunami disaster in South Asia and South- east Asia, providing aid following landslides in South America , and responding to similar

  8. The Doctrinal Basis for Medical Stability Operations

    DTIC Science & Technology

    2010-01-01

    lead actor, preferably a HN agency, but sometimes the military must take the lead in medical stability operations when overwhelming violence prevents...34 Assessment Tasks Administration of hospital Communications Obstetrics , Pediatrics, Emergency room. Operating room Nursing procedures Medical supply

  9. Stability Operations: Policy and Doctrine Awaiting Implementation

    DTIC Science & Technology

    2013-03-01

    periods move through offense and defense (or reverse ) sequentially while stability is presented throughout the rotation. This causes stability to...The author’s personal experience in Afghanistan and having studied the complex nature of stability operations suggests the reverse is true. June...climate change, Euro/EU collapse, a democratic or collapsed China, a reformed Iran, nuclear war or WMD/cyber-attack, solar geomagnetic storms, U.S

  10. A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.

    PubMed

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2017-01-01

    This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Quadrupole mass filter: design and performance for operation in stability zone 3.

    PubMed

    Syed, Sarfaraz U A H; Hogan, Thomas J; Antony Joseph, Mariya J; Maher, Simon; Taylor, Stephen

    2013-10-01

    The predicted performance of a quadrupole mass filter (QMF) operating in Mathieu stability zone 3 is described in detail using computer simulations. The investigation considers the factors that limit the ultimate maximum resolution (Rmax) and percentage transmission (%Tx), which can be obtained for a given QMF for a particular scan line of operation. The performance curve (i.e., the resolution (R) versus number (N) of radio frequency (rf) cycles experienced by the ions in the mass filter) has been modeled for the upper and lower tip of stability zone 3. The saturation behavior of the performance curve observed in practice for zone 3 is explained. Furthermore, new design equations are presented by examining the intersection of the scan line with stability zone 3. Resolution versus transmission characteristics of stability zones 1 and 3 are compared and the dependence of performance for zones 1 and 3 is related to particular instrument operating parameters.

  12. Stability of one-stage adjustable suture for the correction of horizontal strabismus.

    PubMed Central

    Chow, P C

    1989-01-01

    One-stage adjustable suture for strabismus correction, with the whole operation done under topical anaesthesia and adjustment done on the table, was performed on 45 consecutive patients. The stability of the post-adjustment result was studied by comparing the post-adjustment deviation on the operating table to that at six weeks and three months after operation. The stability was comparable to that following the usual two-stage adjustable suture. The original angle of deviation and the fusion status were found to have no bearing on the stability of the procedure. PMID:2667637

  13. The Fatal Five? Five Factors That Enhance Effectiveness of Stability Operations

    DTIC Science & Technology

    2014-05-22

    Conflict METL Mission Essential Task List MSG Military Support Group NSS National Security Strategy OOTW Operations Other Than War PDF...Revolutionary War. However, despite the propensity for the military to conduct this type of operation, the U.S. Army has a mixed record of executing stability...the U.S. Army has a mixed record of executing stability tasks. This monograph identifies five factors that contribute to the effectiveness of

  14. 14 CFR 91.527 - Operating in icing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine..., windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate... each rotor blade, propeller, windshield, wing, stabilizing or control surface, and each airspeed...

  15. Stable and verifiable state estimation methods and systems with spacecraft applications

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor)

    2001-01-01

    The stability of a recursive estimator process (e.g., a Kalman filter is assured for long time periods by periodically resetting an error covariance P(t.sub.n) of the system to a predetermined reset value P.sub.r. The recursive process is thus repetitively forced to start from a selected covariance and continue for a time period that is short compared to the system's total operational time period. The time period in which the process must maintain its numerical stability is significantly reduced as is the demand on the system's numerical stability. The process stability for an extended operational time period T.sub.o is verified by performing the resetting step at the end of at least one reset time period T.sub.r whose duration is less than the operational time period T.sub.o and then confirming stability of the process over the reset time period T.sub.r. Because the recursive process starts from a selected covariance at the beginning of each reset time period T.sub.r, confirming stability of the process over at least one reset time period substantially confirms stability over the longer operational time period T.sub.o.

  16. Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation

    DTIC Science & Technology

    2006-09-01

    risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level

  17. Posttest data analysis of FIST experimental TRAC-BD1/MOD1 power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting in only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena: (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  18. Silicon carbide composite for light water reactor fuel assembly applications

    NASA Astrophysics Data System (ADS)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  19. Development of new UV-I. I. Cerenkov Viewing Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki; Nemoto, Koshichi

    1994-02-01

    The Cerenkov glow images from boiling-water reactors (BWR) and pressurized-water reactors (PWR) irradiated fuel assemblies are generally used for inspections. However, sometimes it is difficult or impossible to identify the image by the conventional Cerenkov Viewing Device (CVD), because of the long cooling time and/or low burnup. Now a new UV-I.I. (Ultra-Violet light Image Intensifier) CVD has been developed, which can detect the very weak Cerenkov glow from spent fuel assemblies. As this new device uses the newly developed proximity focused type UV-I.I., Cerenkov photons are used efficiently, producing better quality Cerenkov glow images. Moreover, since the image is convertedmore » to a video signal, it is easy to improve the signal to noise ratio (S/N) by an image processor. The new CVD was tested at BWR and PWR power plants in Japan, with fuel burnups ranging from 6,200--33,000 MWD/MTU (megawatt days per metric ton of uranium) and cooling times ranging from 370 to 6,200 d. The tests showed that the new CVD is superior to the conventional STA/CRIEPI CVD, and could detect very feeble Cerenkov glow images using an image processor.« less

  20. Application of the IBERDROLA RETRAN Licensing Methodology to the Confrentes BWR-6 110% Extended Power Uprate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuente, Rafael de la; Iglesias, Javier; Sedano, Pablo G.

    IBERDROLA (Spanish utility) and IBERDROLA INGENIERIA (engineering branch) have been developing during the last 2 yr the 110% Extended Power Uprate Project for Cofrentes BWR-6. IBERDROLA has available an in-house design and licensing reload methodology that has been approved in advance by the Spanish Nuclear Regulatory Authority. This methodology has been applied to perform the nuclear design and the reload licensing analysis for Cofrentes cycles 12 and 13 and to develop a significant number of safety analyses of the Cofrentes Extended Power.Because the scope of the licensing process of the Cofrentes Extended Power Uprate exceeds the range of analysis includedmore » in the Cofrentes generic reload licensing process, it has been required to extend the applicability of the Cofrentes RETRAN model to the analysis of new transients. This is the case of the total loss of feedwater (TLFW) transient.The content of this paper shows the benefits of having an in-house design and licensing methodology and describes the process to extend the applicability of the Cofrentes RETRAN model to the analysis of new transients, particularly in this paper the TLFW transient.« less

  1. Post-test analysis of PIPER-ONE PO-IC-2 experiment by RELAP5/MOD3 codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovalini, R.; D`Auria, F.; Galassi, G.M.

    1996-11-01

    RELAP5/MOD3.1 was applied to the PO-IC-2 experiment performed in PIPER-ONE facility, which has been modified to reproduce typical isolation condenser thermal-hydraulic conditions. RELAP5 is a well known code widely used at the University of Pisa during the past seven years. RELAP5/MOD3.1 was the latest version of the code made available by the Idaho National Engineering Laboratory at the time of the reported study. PIPER-ONE is an experimental facility simulating a General Electric BWR-6 with volume and height scaling ratios of 1/2,200 and 1./1, respectively. In the frame of the present activity a once-through heat exchanger immersed in a pool ofmore » ambient temperature water, installed approximately 10 m above the core, was utilized to reproduce qualitatively the phenomenologies expected for the Isolation Condenser in the simplified BWR (SBWR). The PO-IC-2 experiment is the flood up of the PO-SD-8 and has been designed to solve some of the problems encountered in the analysis of the PO-SD-8 experiment. A very wide analysis is presented hereafter including the use of different code versions.« less

  2. Core design of a direct-cycle, supercritical-water-cooled fast breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jevremovic, T.; Oka, Yoshiaki; Koshizuka, Seiichi

    1994-10-01

    The conceptual design of a direct-cycle fast breeder reactor (FBR) core cooled by supercritical water is carried out as a step toward a low-cost FBR plant. The supercritical water does not exhibit change of phase. The turbines are directly driven by the core outlet coolant. In comparison with a boiling water reactor (BWR), the recirculation systems, steam separators, and dryers are eliminated. The reactor system is much simpler than the conventional steam-cooled FBRs, which adopted Loeffler boilers and complicated coolant loops for generating steam and separating it from water. Negative complete and partial coolant void reactivity are provided without muchmore » deterioration in the breeding performances by inserting thin zirconium-hydride layers between the seeds and blankets in a radially heterogeneous core. The net electric power is 1245 MW (electric). The estimated compound system doubling time is 25 yr. The discharge burnup is 77.7 GWd/t, and the refueling period is 15 months with a 73% load factor. The thermal efficiency is high (41.5%), an improvement of 24% relative to a BWR's. The pressure vessel is not thick at 30.3 cm.« less

  3. Annual progress report on the NSRR experiments, (21)

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).

  4. The US Military’s Experience in Stability Operations, 1789-2005

    DTIC Science & Technology

    2006-01-01

    better trained in IO technical procedures than they were in how to produce a persuasive message . In the Dominican Republic in 1965, for example, the ...Yates, provides his thoughts and analysis of the US Army’s participation in stability operations (SO) since 1789. Dr. Yates, a member of the CSI Team...experience in the conduct of stability operations prior to the Global War on Terrorism can be divided chronologically into four periods: the country’s

  5. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  6. The Secret of Future Defeat: The Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations

    DTIC Science & Technology

    2007-05-24

    The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations A...4. TITLE AND SUBTITLE The Secret of Future Defeat: the Evolution of US Joint and 5a. CONTRACT NUMBER Army Doctrine 1993-2006 and the Flawed... The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations Approved by

  7. Factors influencing the QMF resolution for operation in stability zones 1 and 3.

    PubMed

    Syed, Sarfaraz U A H; Hogan, Thomas; Gibson, John; Taylor, Stephen

    2012-05-01

    This study uses a computer model to simulate a quadrupole mass filter (QMF) instrument under different operating conditions for Mathieu stability zones 1 and 3. The investigation considers the factors that limit the maximum resolution (R(max)), which can be obtained for a given QMF for a particular value of scan line. Previously, QMF resolution (R) has been found to be dependent on number (N) of radio frequency (rf) cycles experienced by the ions in the mass filter, according to R = N(n)/K, where n and K are the constants. However, this expression does not predict the limit to QMF resolution observed in practice and is true only for the linear regions of the performance curve for QMF operation in zone 1 and zone 3 of the stability diagram. Here we model the saturated regions of the performance curve for QMF operation in zone 1 according to R = q(1 - 2c(N))/∆q, where c is a constant and ∆q is the width of the intersection of the operating scan line with the stability zone 1, measured at q-axis of the Mathieu stability diagram. Also by careful calculations of the detail of the stability tip of zone 1, the following relationship was established between R(max) and percentage U/V ratio: R(max) = q/(0.9330-0.00933U/V). For QMF operation in zone 3 the expression R = a - bc(N) simulates well the linear and saturated regions of the performance curve for a range of operational conditions, where a, b, and c are constants.

  8. Modal Analysis for Grid Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signalmore » stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less

  9. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    DOE PAGES

    Mandelli, D.; Smith, C.; Riley, T.; ...

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less

  10. Optimum Water Chemistry in radiation field buildup control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chien, C.

    1995-03-01

    Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of lowmore » exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.« less

  11. 10 CFR 50.75 - Reporting and recordkeeping for decommissioning planning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... investing or otherwise, that a prudent investor would use in the same circumstances. The term “prudent... than or equal to 3400 MWt $105 between 1200 MWt and 3400 MWt (For a PWR of less than 1200 MWt, use P... 3400 MWt (For a BWR of less than 1200 MWt, use P=1200 MWt) $(104+0.009P) (2) An adjustment factor at...

  12. Status update of the BWR cask simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric R.; Durbin, Samuel G.

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximummore » thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on heat load and the effect of simulated wind on a simplified below ground vent configuration.« less

  13. Vacuum Stability in Split SUSY and Little Higgs Models

    NASA Astrophysics Data System (ADS)

    Datta, Alakabha; Zhang, Xinmin

    We study the stability of the effective Higgs potential in the split supersymmetry and Little Higgs models. In particular, we study the effects of higher dimensional operators in the effective potential on the Higgs mass predictions. We find that the size and sign of the higher dimensional operators can significantly change the Higgs mass required to maintain vacuum stability in Split SUSY models. In the Little Higgs models the effects of higher dimensional operators can be large because of a relatively lower cutoff scale. Working with a specific model we find that a contribution from the higher dimensional operator with coefficient of O(1) can destabilize the vacuum.

  14. Quantum circuits for qubit fusion

    DOE PAGES

    Moussa, Jonathan Edward

    2015-12-01

    In this article, we consider four-dimensional qudits as qubit pairs and their qudit Pauli operators as qubit Cli ord operators. This introduces a nesting, C 2 1 C C 4 2 C C 2 3, where C m n is the n th level of the m-dimensional qudit Cli ord hierarchy. If we can convert between logical qubits and qudits, then qudit Cli ord operators are qubit non-Cli ord operators. Conversion is achieved by qubit fusion and qudit fission using stabilizer circuits that consume a resource state. This resource is a fused qubit stabilizer state with a fault-tolerant state preparationmore » using stabilizer circuits.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moussa, Jonathan Edward

    In this article, we consider four-dimensional qudits as qubit pairs and their qudit Pauli operators as qubit Cli ord operators. This introduces a nesting, C 2 1 C C 4 2 C C 2 3, where C m n is the n th level of the m-dimensional qudit Cli ord hierarchy. If we can convert between logical qubits and qudits, then qudit Cli ord operators are qubit non-Cli ord operators. Conversion is achieved by qubit fusion and qudit fission using stabilizer circuits that consume a resource state. This resource is a fused qubit stabilizer state with a fault-tolerant state preparationmore » using stabilizer circuits.« less

  16. Laser frequency stabilization using a commercial wavelength meter

    NASA Astrophysics Data System (ADS)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  17. Stabilization Operations Through Military Capacity Building-Integration Between Danish Conventional Forces and Special Operations Forces

    DTIC Science & Technology

    2016-12-01

    Svendsen 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT...operations forces should be fully integrated across doctrine, organization , and technology, and predominantly advise, mentor, and train local forces. With...stability operations. This capstone makes additional recommendations related to doctrine, organization , and technology, as well as education and

  18. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  19. Qualification of data obtained during a severe accident. Illustrative examples from TMI-2 evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, Joy L.; Knudson, Darrell L.

    2015-02-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken bymore » these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.« less

  20. 46 CFR 170.270 - Door design, operation, installation, and testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Door design, operation, installation, and testing. 170.270 Section 170.270 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Watertight Bulkhead Doors § 170.270 Door design, operation, installation, and testing. (a...

  1. 46 CFR 170.270 - Door design, operation, installation, and testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Door design, operation, installation, and testing. 170.270 Section 170.270 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Watertight Bulkhead Doors § 170.270 Door design, operation, installation, and testing. (a...

  2. 46 CFR 170.270 - Door design, operation, installation, and testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Door design, operation, installation, and testing. 170.270 Section 170.270 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Watertight Bulkhead Doors § 170.270 Door design, operation, installation, and testing. (a...

  3. Stabilization and reconstruction operations: the role of the US Army Veterinary Corps.

    PubMed

    Smith, John C

    2007-01-01

    Stabilization and reconstruction operations in failed or failing states are vital to US security interests. These operations require a bottom-up approach, focusing on the population as the strategic center of gravity. This bottom-up approach must address the population's basic needs, as defined by Dr Abraham Maslow's hierarchy of needs, and provide a long-term means of self-sufficiency, rather than creating an "aid dependent economy." Focusing operations on agricultural projects provides relief from donor dependency, stimulates economic growth, and thwarts the power of spoilers. US Army Veterinary Corps personnel provide essential services ensuring the procurement of safe and wholesome subsistence and provision of medical care to government-owned animals. Veterinary Corps officers are also uniquely qualified to design and implement agricultural stabilization and reconstruction programs in conjunction with host-state ministries and agencies across the full range of military operations. Early, sustained engagement by veterinarians stimulates agricultural productivity, improves animal and human health, directly supports the population's hierarchy of needs on all levels, and accelerates stabilization operations by reducing the population's susceptibility to spoilers.

  4. SNAP 10A ESTIMATED ELECTRICAL CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, J.C.

    1961-06-01

    The electrical power characteristics of a SNAP 10A converter are estimated for given fractions of power degradation. Graphs are included showing the power characteristics for instantaneous transients from stabilized operation at the maximum efficiency point, and after system temperature stabilization at the operating point. Open-circuit emf's of the converter are estimated for instantaneous and temperature-stabilized cases. (D.L.C.)

  5. Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation

    DOE PAGES

    Zhou, Lan; Yan, Qimin; Yu, Jie; ...

    2016-03-14

    We discuss how deployment of solar fuels technology requires photoanodes and that long term stability, can be accomplished using light absorbers that self-passivate under operational conditions. We recently reported that several copper vanadates are promising photoanode materials, and their stability and self-passivation is demonstrated through a combination of Pourbaix calculations and combinatorial experimentation.

  6. Space shuttle pogo studies. [systems stability

    NASA Technical Reports Server (NTRS)

    Coppolino, R. N.; Lock, M. H.; Rubin, S.

    1977-01-01

    Topics covered include: (1) pogo suppression for main propulsion subsystem operation; (2) application of quarter-scale low pressure oxidizer turbopump transfer functions; (3) pogo stability during orbital maneuvering subsystem operation; and (4) errors in frequency response measurements.

  7. Relative operational performance of geosynthetics used as subgrade stabilization.

    DOT National Transportation Integrated Search

    2014-05-01

    Full-scale test sections were constructed, trafficked and monitored to compare the relative operational : performance of geosynthetics used as subgrade stabilization as well as determine which material properties are : most related to performance. Se...

  8. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  9. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    PubMed

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  10. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-10-25

    Testing Slated for New BWR Fuel Assemblies [GENSHIRYOKU SANGYO SHIMBUN, 25 May 89] .... 37 Nuclear Fuel Planning System Developed [GENSHIRYOKU... Development (Debt) 13,272 ((Debt) 3,839) 7,995 (3,610) In addition, the budget has guaranteed that the following programs will proceed according... develop a combined cycle engine that will be capable of attaining high reliability and good fuel consumption at a wide range of speeds from low speed to

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, V.K.; Hessheimer, M.F.; Matsumoto, T.

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11--12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.

  12. Statistical evaluation of the metallurgical test data in the ORR-PSF-PVS irradiation experiment. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallmann, F.W.

    1984-08-01

    A statistical analysis of Charpy test results of the two-year Pressure Vessel Simulation metallurgical irradiation experiment was performed. Determination of transition temperature and upper shelf energy derived from computer fits compare well with eyeball fits. Uncertainties for all results can be obtained with computer fits. The results were compared with predictions in Regulatory Guide 1.99 and other irradiation damage models.

  13. Posttest data analysis and assessment of TRAC-BD1/MOD1 with data from a Full Integral Simulation Test (FIST) power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting on only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena; (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  14. TRIGA MARK-II source term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Hamzah, N. S., E-mail: mark-dennis@nuclearmalaysia.gov.my; Abi, M. J. B., E-mail: mark-dennis@nuclearmalaysia.gov.my

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences ofmore » results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel.« less

  15. Development of a reliable estimation procedure of radioactivity inventory in a BWR plant due to neutron irradiation for decommissioning

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi; Ueno, Jun

    2017-09-01

    Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.

  16. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Ghadiali, N.; Paul, D.

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crackmore » size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.« less

  17. LWR pressure vessel surveillance dosimetry improvement program: LWR power reactor surveillance physics-dosimetry data base compendium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.

    1985-08-01

    This NRC physics-dosimetry compendium is a collation of information and data developed from available research and commercial light water reactor vessel surveillance program (RVSP) documents and related surveillance capsule reports. The data represents the results of the HEDL least-squares FERRET-SAND II Code re-evaluation of exposure units and values for 47 PWR and BWR surveillance capsules for W, B and W, CE, and GE power plants. Using a consistent set of auxiliary data and dosimetry-adjusted reactor physics results, the revised fluence values for E > 1 MeV averaged 25% higher than the originally reported values. The range of fluence values (new/old)more » was from a low of 0.80 to a high of 2.38. These HEDL-derived FERRET-SAND II exposure parameter values are being used for NRC-supported HEDL and other PWR and BWR trend curve data development and testing studies. These studies are providing results to support Revision 2 of Regulatory Guide 1.99. As stated by Randall (Ra84), the Guide is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence.« less

  18. Power System Transient Stability Based on Data Mining Theory

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Shi, Jia; Wu, Runsheng; Lu, Dan; Cui, Mingde

    2018-01-01

    In order to study the stability of power system, a power system transient stability based on data mining theory is designed. By introducing association rules analysis in data mining theory, an association classification method for transient stability assessment is presented. A mathematical model of transient stability assessment based on data mining technology is established. Meanwhile, combining rule reasoning with classification prediction, the method of association classification is proposed to perform transient stability assessment. The transient stability index is used to identify the samples that cannot be correctly classified in association classification. Then, according to the critical stability of each sample, the time domain simulation method is used to determine the state, so as to ensure the accuracy of the final results. The results show that this stability assessment system can improve the speed of operation under the premise that the analysis result is completely correct, and the improved algorithm can find out the inherent relation between the change of power system operation mode and the change of transient stability degree.

  19. Long-term Stabilization of Disturbed Slopes Resulting from Construction Operations

    DOT National Transportation Integrated Search

    2018-01-01

    Highway construction disturbs soil, which must be stabilized to prevent migration of soil particles into water bodies. Stabilization is enforced by law, regulation, and a permit system. Stabilization is most efficiently attained by reestablishment of...

  20. Stability tests at Browns Ferry Unit 1 under single-loop operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, J.; Wood, R.T.; Otaduy, P.J.

    1986-07-01

    The results of neutronic stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operation (SLO) conditions are documented. The main conclusions of the tests are presented.

  1. Defining Command, Leadership, and Management Success Factors Within Stability Operations

    DTIC Science & Technology

    2011-06-01

    concepts are identified, and strengths, weaknesses, opportunities, and threats ( SWOT ) analysis is conducted. The enti- ties of the EU, NATO, and the...ICRC all receive a simi- lar treatment identifying their mandates and methods and having SWOT applied. The NATO discussions are continued in the...essence describes the prevention-interven- tion-stabilization curve in the current environment. The essential concepts from a stability operation con - text

  2. 46 CFR 178.215 - Weight of passengers and crew.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., for which stability information is based on the results of a simplified stability proof test. (b... simplified stability proof test and the number of passengers and crew included in the total test weight... TONS) INTACT STABILITY AND SEAWORTHINESS Stability Instructions for Operating Personnel § 178.215...

  3. 46 CFR 178.215 - Weight of passengers and crew.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., for which stability information is based on the results of a simplified stability proof test. (b... simplified stability proof test and the number of passengers and crew included in the total test weight... TONS) INTACT STABILITY AND SEAWORTHINESS Stability Instructions for Operating Personnel § 178.215...

  4. 46 CFR 178.215 - Weight of passengers and crew.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., for which stability information is based on the results of a simplified stability proof test. (b... simplified stability proof test and the number of passengers and crew included in the total test weight... TONS) INTACT STABILITY AND SEAWORTHINESS Stability Instructions for Operating Personnel § 178.215...

  5. 46 CFR 178.215 - Weight of passengers and crew.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., for which stability information is based on the results of a simplified stability proof test. (b... simplified stability proof test and the number of passengers and crew included in the total test weight... TONS) INTACT STABILITY AND SEAWORTHINESS Stability Instructions for Operating Personnel § 178.215...

  6. Improving Small Signal Stability through Operating Point Adjustment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.

    2010-09-30

    ModeMeter techniques for real-time small signal stability monitoring continue to mature, and more and more phasor measurements are available in power systems. It has come to the stage to bring modal information into real-time power system operation. This paper proposes to establish a procedure for Modal Analysis for Grid Operations (MANGO). Complementary to PSS’s and other traditional modulation-based control, MANGO aims to provide suggestions such as increasing generation or decreasing load for operators to mitigate low-frequency oscillations. Different from modulation-based control, the MANGO procedure proactively maintains adequate damping for all time, instead of reacting to disturbances when they occur. Effectmore » of operating points on small signal stability is presented in this paper. Implementation with existing operating procedures is discussed. Several approaches for modal sensitivity estimation are investigated to associate modal damping and operating parameters. The effectiveness of the MANGO procedure is confirmed through simulation studies of several test systems.« less

  7. Stabilization of multiple rib fractures in a canine model.

    PubMed

    Huang, Ke-Nan; Xu, Zhi-Fei; Sun, Ju-Xian; Ding, Xin-Yu; Wu, Bin; Li, Wei; Qin, Xiong; Tang, Hua

    2014-12-01

    Operative stabilization is frequently used in the clinical treatment of multiple rib fractures (MRF); however, no ideal material exists for use in this fixation. This study investigates a newly developed biodegradable plate system for the stabilization of MRF. Silk fiber-reinforced polycaprolactone (SF/PCL) plates were developed for rib fracture stabilization and studied using a canine flail chest model. Adult mongrel dogs were divided into three groups: one group received the SF/PCL plates, one group received standard clinical steel plates, and the final group did not undergo operative fracture stabilization (n = 6 for each group). Radiographic, mechanical, and histologic examination was performed to evaluate the effectiveness of the biodegradable material for the stabilization of the rib fractures. No nonunion and no infections were found when using SF-PCL plates. The fracture sites collapsed in the untreated control group, leading to obvious chest wall deformity not encountered in the two groups that underwent operative stabilization. Our experimental study shows that the SF/PCL plate has the biocompatibility and mechanical strength suitable for fixation of MRF and is potentially ideal for the treatment of these injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  9. Power and stability limitations of resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Kidner, C.; Mehdi, I.; East, J. R.; Haddad, G. I.

    1990-01-01

    Stability criteria for resonant tunneling diodes are investigated. Details of how extrinsic elements, such as series inductance and parallel capacitance, affect the stability are presented. A GaAs/AlAs/InGaAs/AlAs/GaAs double-barrier diode is investigated, showing the effect of different modes of low-frequency oscillation and the extrinsic circuit required for stabilization. The effect of device stabilization on high-frequency power generation is described. The main conclusions of the paper are: (1) stable resonant tunneling diode operation is difficult to obtain, and (2) the circuit and device conditions required for stable operation greatly reduce the amount of power that can be produced by these devices.

  10. Taking Stock: Interagency Integration in Stability Operations

    DTIC Science & Technology

    2012-03-01

    implementation of 3000.05. In May 2009, a report to Congress highlighted the biggest challenge to integration as the lack of civilian department and agency...ORHA) and later subsumed by the Coalition Provisional Authority (CPA). On May 11, 2004, NSPD 36, United States Government Operations in Iraq...military audience, although introductory presentations have been given at the U.S. Army Peacekeeping and Stability Operations Institute and Marine

  11. Incorporating voltage security into the planning, operation and monitoring of restructured electric energy markets

    NASA Astrophysics Data System (ADS)

    Nair, Nirmal-Kumar

    As open access market principles are applied to power systems, significant changes are happening in their planning, operation and control. In the emerging marketplace, systems are operating under higher loading conditions as markets focus greater attention to operating costs than stability and security margins. Since operating stability is a basic requirement for any power system, there is need for newer tools to ensure stability and security margins being strictly enforced in the competitive marketplace. This dissertation investigates issues associated with incorporating voltage security into the unbundled operating environment of electricity markets. It includes addressing voltage security in the monitoring, operational and planning horizons of restructured power system. This dissertation presents a new decomposition procedure to estimate voltage security usage by transactions. The procedure follows physical law and uses an index that can be monitored knowing the state of the system. The expression derived is based on composite market coordination models that have both PoolCo and OpCo transactions, in a shared stressed transmission grid. Our procedure is able to equitably distinguish the impacts of individual transactions on voltage stability, at load buses, in a simple and fast manner. This dissertation formulates a new voltage stability constrained optimal power flow (VSCOPF) using a simple voltage security index. In modern planning, composite power system reliability analysis that encompasses both adequacy and security issues is being developed. We have illustrated the applicability of our VSCOPF into composite reliability analysis. This dissertation also delves into the various applications of voltage security index. Increasingly, FACT devices are being used in restructured markets to mitigate a variety of operational problems. Their control effects on voltage security would be demonstrated using our VSCOPF procedure. Further, this dissertation investigates the application of steady state voltage stability index to detect potential dynamic voltage collapse. Finally, this dissertation examines developments in representation, standardization, communication and exchange of power system data. Power system data is the key input to all analytical engines for system operation, monitoring and control. Data exchange and dissemination could impact voltage security evaluation and therefore needs to be critically examined.

  12. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandiamore » National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The cases with two-phase flow at the turbine inlet will be pursued in future work.« less

  13. Main steam-line break core shroud loading calculations for BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoop, U.; Feltus, M.A.; Baratta, A.J.

    1995-12-31

    In July 1994, the U.S. Nuclear regulatory Commission sent out Generic Letter 94-03 to all boiling water reactors in the United States, informing them of intergranular stress corrosion cracking of core shrouds found in 2 reactors. The letter directed all to perform safety analysis of the BWR units. Penn State performed scoping calculations to determine the forces experienced by the core shroud during a main-stream line break transient.

  14. Instability risk analysis and risk assessment system establishment of underground storage caverns in bedded salt rock

    NASA Astrophysics Data System (ADS)

    Jing, Wenjun; Zhao, Yan

    2018-02-01

    Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.

  15. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  16. Transient-Free Operations With Physics-Based Real-time Analysis and Control

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen; Burrell, Keith; Eggert, William; Eldon, David; Ferron, John; Glasser, Alex; Humphreys, David

    2016-10-01

    In order to understand and predict disruptions, the two most common methods currently employed in tokamak analysis are the time-consuming ``kinetic EFITs,'' which are done offline with significant human involvement, and the search for correlations with global precursors using various parameterization techniques. We are developing automated ``kinetic EFITs'' at DIII-D to enable calculation of the stability as the plasma evolves close to the disruption. This allows us to quantify the probabilistic nature of the stability calculations and provides a stability metric for all possible linear perturbations to the plasma. This study also provides insight into how the control system can avoid the unstable operating space, which is critical for high-performance operations close to stability thresholds at ITER. A novel, efficient ideal stability calculation method and new real-time CER acquisition system are being developed, and a new 77-core server has been installed on the DIII-D PCS to enable experimental use. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  17. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the control...

  18. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the control...

  19. Study of VLCC tanker ship damage stability during off-shore operation

    NASA Astrophysics Data System (ADS)

    Hanzu-Pazara, R.; Arsenie, P.; Duse, A.; Varsami, C.

    2016-08-01

    Today, for the carriage of crude oil on sea are used larger tanker ships, especially from VLCC class. The operation of this type of ships requires in many cases special conditions, mainly related to water depth in the terminal area and enough maneuvering space for entrance and departure. Because, many ports from all over the world don't have capacity to operate this type of ships inside, in designed oil terminal, have chosen for development of outside terminals, off-shore oil terminals. In case of this type of terminals, the problems of water depth and manoeuvring space are fixed, but other kind of situations appears, regarding the safety in operation and environment factors impact on ship during mooring at oil transfer buoy. In the present paper we intend to show a study made using simulation techniques about VLCC class tanker ship in case of a damage condition resulted after a possible collision with another ship during loading operation at an off-shore terminal. From the beginning, we take in consideration that the ship intact stability, during all loading possible situations, has to be high enough, so that in case of some damage with flooding of different compartments due to hypothetical dimension water hole, the ship stability in the final stage of flooding to correspond to the requirements for damage stability and, also, to complementary requirements for damage ship stability.

  20. War Comes to Bala Morghab: A Tragedy of Policy and Action in Three Acts

    DTIC Science & Technology

    2011-12-01

    real shower in December—a full 5 months after operations had commenced. The North Atlantic Treaty Organization (NATO) side of the FOB improved...Security Assistance Force (ISAF), Stability Operations Integration Cell ( SOIC ), “Murghab District, Badghis District Narrative Assessment, 5 May 2010...available at <http://publicintelligence. net/ufouo-stability-operations-information-center- soic -murghab-district-assessment/>. 3 Ibid. 4 Most facts

  1. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the... the pilot were not aware of the failure. Warning systems must not activate the control systems. (b...

  2. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the... the pilot were not aware of the failure. Warning systems must not activate the control systems. (b...

  3. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the... the pilot were not aware of the failure. Warning systems must not activate the control systems. (b...

  4. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the... the pilot were not aware of the failure. Warning systems must not activate the control systems. (b...

  5. Field operational test of the Freightliner/Meritor WABCO roll stability advisor and control at Praxair

    DOT National Transportation Integrated Search

    2003-08-01

    This document reports on the conduct and findings of a naturalistic field operational test (FOT) of the Freightliner/Meritor WABCO Roll Stability Advisor and Control (RA&C). The broad intent of RA&C is to reduce the risk of rollover by improving driv...

  6. Evans function computation for the stability of travelling waves

    NASA Astrophysics Data System (ADS)

    Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.

    2018-04-01

    In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Xiaotong; Van den Nest, Maarten; Buerschaper, Oliver

    We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group 〈αI, X, S〉, where α = e{sup iπ/4} and S = diag(1, i). We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians, etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examplesmore » of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons.« less

  8. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall... battery operated equipment, the equipment tests shall be performed using a new battery without any further...

  9. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall... battery operated equipment, the equipment tests shall be performed using a new battery without any further...

  10. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall... battery operated equipment, the equipment tests shall be performed using a new battery without any further...

  11. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall... battery operated equipment, the equipment tests shall be performed using a new battery without any further...

  12. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall... battery operated equipment, the equipment tests shall be performed using a new battery without any further...

  13. Prediction of the effects of propeller operation on the static longitudinal stability of single-engine tractor monoplanes with flaps retracted

    NASA Technical Reports Server (NTRS)

    Weil, Joseph; Sleeman, William C , Jr

    1949-01-01

    The effects of propeller operation on the static longitudinal stability of single-engine tractor monoplanes are analyzed, and a simple method is presented for computing power-on pitching-moment curves for flap-retracted flight conditions. The methods evolved are based on the results of powered-model wind-tunnel investigations of 28 model configurations. Correlation curves are presented from which the effects of power on the downwash over the tail and the stabilizer effectiveness can be rapidly predicted. The procedures developed enable prediction of power-on longitudinal stability characteristics that are generally in very good agreement with experiment.

  14. Relative operational performance of geosynthetics used as subgrade stabilization : [project summary].

    DOT National Transportation Integrated Search

    2014-06-01

    State departments of : transportation (DOTs) : routinely use geogrids and : geotextiles for subgrade : stabilization applications. : This construction practice : involves placing a : geosynthetic on top of a weak : subgrade to help stabilize the : gr...

  15. TRAC-BF1 thermal-hydraulic, ANSYS stress analysis for core shroud cracking phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoop, U.; Feltus, M.A.; Baratta, A.J.

    1996-12-31

    The U.S. Nuclear Regulatory Commission sent Generic Letter 94-03 informing all licensees about the intergranular stress corrosion cracking (IGSCC) of core shrouds found in both Dresden unit I and Quad Cities unit 1. The letter directed all licensees to perform safety analysis of their boiling water reactor (BWR) units. Two transients of special concern for the core shroud safety analysis include the main steam line break (MSLB) and recirculation line break transient.

  16. Interim reliability evaluation program, Browns Ferry 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.

    1981-01-01

    Probabilistic risk analysis techniques, i.e., event tree and fault tree analysis, were utilized to provide a risk assessment of the Browns Ferry Nuclear Plant Unit 1. Browns Ferry 1 is a General Electric boiling water reactor of the BWR 4 product line with a Mark 1 (drywell and torus) containment. Within the guidelines of the IREP Procedure and Schedule Guide, dominant accident sequences that contribute to public health and safety risks were identified and grouped according to release categories.

  17. Developing an Army Strategy for Building Partner Capacity for Stability Operations

    DTIC Science & Technology

    2010-01-01

    and redistribute essen- tial supplies, food, and medicine within an affected region, or deliver essential items that are not available locally or...2006, p. 5-15. 46 Developing an Army Strategy for BPC for Stability Operations • Build, restore, maintain, and operate water purification plants ...and potable water distribution systems.73 The primary objective of this ability is to ensure that water treatment plants and the dis- tribution systems

  18. Intelligence by mechanics.

    PubMed

    Blickhan, Reinhard; Seyfarth, Andre; Geyer, Hartmut; Grimmer, Sten; Wagner, Heiko; Günther, Michael

    2007-01-15

    Research on the biomechanics of animal and human locomotion provides insight into basic principles of locomotion and respective implications for construction and control. Nearly elastic operation of the leg is necessary to reproduce the basic dynamics in walking and running. Elastic leg operation can be modelled with a spring-mass model. This model can be used as a template with respect to both gaits in the construction and control of legged machines. With respect to the segmented leg, the humanoid arrangement saves energy and ensures structural stability. With the quasi-elastic operation the leg inherits the property of self-stability, i.e. the ability to stabilize a system in the presence of disturbances without sensing the disturbance or its direct effects. Self-stability can be conserved in the presence of musculature with its crucial damping property. To ensure secure foothold visco-elastic suspended muscles serve as shock absorbers. Experiments with technically implemented leg models, which explore some of these principles, are promising.

  19. 46 CFR 28.510 - Definition of stability terms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Definition of stability terms. 28.510 Section 28.510... FISHING INDUSTRY VESSELS Stability § 28.510 Definition of stability terms. Downflooding means the entry of... the forward side of the vessel's stem and the vessel's waterline at the vessel's deepest operating...

  20. 46 CFR 28.510 - Definition of stability terms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Definition of stability terms. 28.510 Section 28.510... FISHING INDUSTRY VESSELS Stability § 28.510 Definition of stability terms. Downflooding means the entry of... the forward side of the vessel's stem and the vessel's waterline at the vessel's deepest operating...

  1. 46 CFR 28.510 - Definition of stability terms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Definition of stability terms. 28.510 Section 28.510... FISHING INDUSTRY VESSELS Stability § 28.510 Definition of stability terms. Downflooding means the entry of... the forward side of the vessel's stem and the vessel's waterline at the vessel's deepest operating...

  2. 46 CFR 28.510 - Definition of stability terms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Definition of stability terms. 28.510 Section 28.510... FISHING INDUSTRY VESSELS Stability § 28.510 Definition of stability terms. Downflooding means the entry of... the forward side of the vessel's stem and the vessel's waterline at the vessel's deepest operating...

  3. 46 CFR 28.510 - Definition of stability terms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Definition of stability terms. 28.510 Section 28.510... FISHING INDUSTRY VESSELS Stability § 28.510 Definition of stability terms. Downflooding means the entry of... the forward side of the vessel's stem and the vessel's waterline at the vessel's deepest operating...

  4. [The rotationally stable screw-anchor with trochanteric stabilizing plate (RoSA/TSP) : First results in unstable trochanteric femur fractures].

    PubMed

    Maier, K-J; Bücking, B; Horst, K; Andruszkow, H; Hildebrand, F; Knobe, M

    2017-12-01

    In unstable trochanteric fractures, the extramedullary rotationally stable screw-anchor (RoSA) combines the benefits of the load and rotational stability of the blade with the advantages of the screw (pull-out resistance, compression capability) in a single load carrier, and was designed to prevent femoral neck shortening by using an additional locked trochanteric stabilizing plate (TSP). The aim of the current prospective cohort study was the clinical evaluation of the RoSA/TSP system regarding the mechanical re-operation rate and the amount of postoperative femoral neck shortening. From September 2011 to January 2014 80 patients with unstable trochanteric fractures underwent internal extramedullary fixation with the RoSA/TSP (Königsee Implantate GmbH, Allendorf, Germany). Due to fracture stability and after induction of compression, additional long locked antitelescoping screws (AT, n = 1-4) were placed reaching the femoral head. Radiological (femoral neck shortening) and clinical re-examination of patients (n = 61) was performed 6-10 weeks and 6-10 months later. In the 61 re-examined patients (76 %) femoral neck shortening was very low with 2 mm 6-10 months after operation. Re-operations occurred in 8 % (n = 6) and in 4 % (n = 3) as prophylactic surgical intervention. Whereas one-third (4 %) of re-operations occurred due to iatrogenic surgical problems from the first operation two-thirds of patients (8 %) had a re-operation due to delay of bone union (3× nonunion, 3 planned removals of AT-screws to improve healing). The in-hospital mortality was 3 % (n = 2). The fixation of unstable trochanteric femur fractures using the RoSA/TSP in a first clinical setting led to a great primary stability, with significant advantages with regard to limited femoral neck shortening. However, the rigidity of the construct with its consequences regarding bone healing can be challenging for the surgeon. Nevertheless, in some cases of revision it could be beneficial for stability.

  5. Statistical process control as a tool for controlling operating room performance: retrospective analysis and benchmarking.

    PubMed

    Chen, Tsung-Tai; Chang, Yun-Jau; Ku, Shei-Ling; Chung, Kuo-Piao

    2010-10-01

    There is much research using statistical process control (SPC) to monitor surgical performance, including comparisons among groups to detect small process shifts, but few of these studies have included a stabilization process. This study aimed to analyse the performance of surgeons in operating room (OR) and set a benchmark by SPC after stabilized process. The OR profile of 499 patients who underwent laparoscopic cholecystectomy performed by 16 surgeons at a tertiary hospital in Taiwan during 2005 and 2006 were recorded. SPC was applied to analyse operative and non-operative times using the following five steps: first, the times were divided into two segments; second, they were normalized; third, they were evaluated as individual processes; fourth, the ARL(0) was calculated;, and fifth, the different groups (surgeons) were compared. Outliers were excluded to ensure stability for each group and to facilitate inter-group comparison. The results showed that in the stabilized process, only one surgeon exhibited a significantly shorter total process time (including operative time and non-operative time). In this study, we use five steps to demonstrate how to control surgical and non-surgical time in phase I. There are some measures that can be taken to prevent skew and instability in the process. Also, using SPC, one surgeon can be shown to be a real benchmark. © 2010 Blackwell Publishing Ltd.

  6. 46 CFR 178.320 - Intact stability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stability proof test in accordance with § 178.330 of this part in the presence of a Coast Guard marine inspector. (b) A pontoon vessel operating on protected waters must undergo a simplified stability proof test... cognizant OCMI may dispense with the simplified stability proof test in § 178.330 for a vessel carrying not...

  7. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki; Anshari, Rio

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less

  8. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  9. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  10. Numerical Bifurcation Analysis of Delayed Recycle Stream in a Continuously Stirred Tank Reactor

    NASA Astrophysics Data System (ADS)

    Gangadhar, Nalwala Rohitbabu; Balasubramanian, Periyasamy

    2010-10-01

    In this paper, we present the stability analysis of delay differential equations which arise as a result of transportation lag in the CSTR-mechanical separator recycle system. A first order irreversible elementary reaction is considered to model the system and is governed by the delay differential equations. The DDE-BIFTOOL software package is used to analyze the stability of the delay system. The present analysis reveals that the system exhibits delay independent stability for isothermal operation of the CSTR. In the absence of delay, the system is dynamically unstable for non-isothermal operation of the CSTR, and as a result of delay, the system exhibits delay dependent stability.

  11. Simulation of car movement along circular path

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.

    2017-10-01

    Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.

  12. Operational frequency stability of rubidium and cesium frequency standards

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1973-01-01

    The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.

  13. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  14. Stability of the Markov operator and synchronization of Markovian random products

    NASA Astrophysics Data System (ADS)

    Díaz, Lorenzo J.; Matias, Edgar

    2018-05-01

    We study Markovian random products on a large class of ‘m-dimensional’ connected compact metric spaces (including products of closed intervals and trees). We introduce a splitting condition, generalizing the classical one by Dubins and Freedman, and prove that this condition implies the asymptotic stability of the corresponding Markov operator and (exponentially fast) synchronization.

  15. Development of small-size tubular-flow continuous reactors for the analysis of operational stability of enzymes in low-water systems.

    PubMed

    Pirozzi, D; Halling, P J

    2001-01-20

    A very small-scale continuous flow reactor has been designed for use with enzymes in organic media, particularly for operational stability studies. It is constructed from fairly inexpensive components, and typically uses 5 mg of catalyst and flow rates of 1 to 5 mL/h, so only small quantities of feedstock need to be handled. The design allows control of the thermodynamic water activity of the feed, and works with temperatures up to at least 80 degrees C. The reactor has been operated with both nonpolar (octane) and polar (4-methyl-pentan-2-one) solvents, and with the more viscous solvent-free reactant mixture. It has been applied to studies of the operational stability of lipases from Chromobacterium viscosum (lyophilized powder or polypropylene-adsorbed) and Rhizomucor miehei (Lipozyme) in different experimental conditions. Transesterification of geraniol and ethylcaproate has been adopted as a model transformation.

  16. BNL severe-accident sequence experiments and analysis program. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, G.A.; Ginsberg, T.; Tutu, N.K.

    1983-01-01

    In the analysis of degraded core accidents, the two major sources of pressure loading on light water reactor containments are: steam generation from core debris-water thermal interactions; and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described.

  17. Application of the TEMPEST computer code for simulating hydrogen distribution in model containment structures. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.

    In this study several aspects of simulating hydrogen distribution in geometric configurations relevant to reactor containment structures were investigated using the TEMPEST computer code. Of particular interest was the performance of the TEMPEST turbulence model in a density-stratified environment. Computed results illustrated that the TEMPEST numerical procedures predicted the measured phenomena with good accuracy under a variety of conditions and that the turbulence model used is a viable approach in complex turbulent flow simulation.

  18. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  19. Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling

    NASA Technical Reports Server (NTRS)

    Hodges, D. H., Roberta.

    1976-01-01

    The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.

  20. MHD stability analysis and global mode identification preparing for high beta operation in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.

    2017-10-01

    H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.

  1. Interfacial material for solid oxide fuel cell

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  2. 14 CFR 25.171 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.171 General. The airplane must be.... In addition, suitable stability and control feel (static stability) is required in any condition normally encountered in service, if flight tests show it is necessary for safe operation. [Doc. No. 5066...

  3. 14 CFR 25.171 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.171 General. The airplane must be.... In addition, suitable stability and control feel (static stability) is required in any condition normally encountered in service, if flight tests show it is necessary for safe operation. [Doc. No. 5066...

  4. 14 CFR 23.171 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stability § 23.171 General....181. In addition, the airplane must show suitable stability and control “feel” (static stability) in any condition normally encountered in service, if flight tests show it is necessary for safe operation. ...

  5. 14 CFR 23.171 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stability § 23.171 General....181. In addition, the airplane must show suitable stability and control “feel” (static stability) in any condition normally encountered in service, if flight tests show it is necessary for safe operation. ...

  6. 14 CFR 25.171 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.171 General. The airplane must be.... In addition, suitable stability and control feel (static stability) is required in any condition normally encountered in service, if flight tests show it is necessary for safe operation. [Doc. No. 5066...

  7. 14 CFR 23.171 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stability § 23.171 General....181. In addition, the airplane must show suitable stability and control “feel” (static stability) in any condition normally encountered in service, if flight tests show it is necessary for safe operation. ...

  8. Operative stabilization of open long bone fractures: A tropical tertiary hospital experience

    PubMed Central

    Ifesanya, Adeleke O.; Alonge, Temitope O.

    2012-01-01

    Background: Operative treatment of open fractures in our environment is fraught with problems of availability of theater space, appropriate hardware, and instrumentation such that high complication rates may be expected. Materials and Methods: We evaluated all open long bone fractures operatively stabilized at our center to determine the outcome of the various treatment modalities as well as the determinant factors. Result: A total of 160 patients with 171 fractures treated between December 1995 and December 2008 were studied. There were twice as many males; mean age was 35.0 years. About half were open tibia fractures. Gustilo IIIa and IIIb fractures each accounted for 56 cases (45.2%). Fifty-three percent were stabilized within the first week of injury. Interval between injury and operative fixation averaged 11.1 days. Anderson-Hutchin's technique was employed in 27 cases (21.8%), external fixation in 21 (16.9%), plate osteosynthesis in 50 (40.3%), and intramedullary nail 15 cases (12.1%). Mean time to union was 24.7 weeks. Fifty-two complications occurred in 50 fractures (40.3%) with joint stiffness and chronic osteomyelitis each accounting for a quarter of the complications. Union was delayed in grade IIIb open fractures and those fractures treated with external fixation. Conclusion: A significant proportion of open long bone fractures we operatively treated were severe. Severe open fractures (type IIIb) with concomitant stabilization using external fixation delayed fracture union. While we recommend intramedullary devices for open fractures, in our setting where locking nails are not readily available, external fixation remains the safest choice of skeletal stabilization particularly when contamination is high. PMID:23271839

  9. Normative Data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces

    PubMed Central

    Pletcher, Erin R.; Williams, Valerie J.; Abt, John P.; Morgan, Paul M.; Parr, Jeffrey J.; Wohleber, Meleesa F.; Lovalekar, Mita; Sell, Timothy C.

    2017-01-01

    Context: Postural stability is the ability to control the center of mass in relation to a person's base of support and can be affected by both musculoskeletal injury and traumatic brain injury. The NeuroCom Sensory Organization Test (SOT) can be used to objectively quantify impairments to postural stability. The ability of postural stability to predict injury and be used as an acute injury-evaluation tool makes it essential to the screening and rehabilitation process. To our knowledge, no published normative data for the SOT from a healthy, highly active population are available for use as a reference for clinical decision making. Objective: To present a normative database of SOT scores from a US Military Special Operations population that can be used for future comparison. Design: Cross-sectional study. Setting: Human performance research laboratory. Patients or Other Participants: A total of 542 active military operators from Naval Special Warfare Combatant-Craft Crewmen (n = 149), Naval Special Warfare Command, Sea, Air, and Land (n = 101), US Army Special Operations Command (n = 171), and Air Force Special Operations Command (n = 121). Main Outcome Measure(s): Participants performed each of the 6 SOT conditions 3 times. Scores for each condition, total equilibrium composite score, and ratio scores for the somatosensory, visual, and vestibular systems were recorded. Results: Differences were present across all groups for SOT conditions 1 (P < .001), 2 (P = .001), 4 (P > .001), 5 (P > .001), and 6 (P = .001) and total equilibrium composite (P = .000), visual (P > .001), vestibular (P = .002), and preference (P > .001) NeuroCom scores. Conclusions: Statistical differences were evident in the distribution of postural stability across US Special Operations Forces personnel. This normative database for postural stability, as assessed by the NeuroCom SOT, can provide context when clinicians assess a Special Operations Forces population or any other groups that maintain a high level of conditioning and training. PMID:28140624

  10. Normative Data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces.

    PubMed

    Pletcher, Erin R; Williams, Valerie J; Abt, John P; Morgan, Paul M; Parr, Jeffrey J; Wohleber, Meleesa F; Lovalekar, Mita; Sell, Timothy C

    2017-02-01

    Postural stability is the ability to control the center of mass in relation to a person's base of support and can be affected by both musculoskeletal injury and traumatic brain injury. The NeuroCom Sensory Organization Test (SOT) can be used to objectively quantify impairments to postural stability. The ability of postural stability to predict injury and be used as an acute injury-evaluation tool makes it essential to the screening and rehabilitation process. To our knowledge, no published normative data for the SOT from a healthy, highly active population are available for use as a reference for clinical decision making. To present a normative database of SOT scores from a US Military Special Operations population that can be used for future comparison. Cross-sectional study. Human performance research laboratory. A total of 542 active military operators from Naval Special Warfare Combatant-Craft Crewmen (n = 149), Naval Special Warfare Command, Sea, Air, and Land (n = 101), US Army Special Operations Command (n = 171), and Air Force Special Operations Command (n = 121). Participants performed each of the 6 SOT conditions 3 times. Scores for each condition, total equilibrium composite score, and ratio scores for the somatosensory, visual, and vestibular systems were recorded. Differences were present across all groups for SOT conditions 1 (P < .001), 2 (P = .001), 4 (P > .001), 5 (P > .001), and 6 (P = .001) and total equilibrium composite (P = .000), visual (P > .001), vestibular (P = .002), and preference (P > .001) NeuroCom scores. Statistical differences were evident in the distribution of postural stability across US Special Operations Forces personnel. This normative database for postural stability, as assessed by the NeuroCom SOT, can provide context when clinicians assess a Special Operations Forces population or any other groups that maintain a high level of conditioning and training.

  11. Evaluating U.S. Military Engineering Efforts In East Africa

    DTIC Science & Technology

    2013-03-01

    Michael J. Neumann, Cathryn Quantic Thurston, Developing an Army Strategy for Building Partner Capacity for Stability Operations (Santa Monica, CA...Building Partnership Capacity, Master of Military Art and Science Thesis (Fort Leavenworth, KS: U.S. Army Command and General Staff College, June...Lynch, Michael J. Neumann, Cathryn Quantic Thurston, Developing an Army Strategy for Building Partner Capacity for Stability Operations, (Santa Monica

  12. Social Capital and Stability Operations

    DTIC Science & Technology

    2008-03-26

    defined as an instantiated set of informal values or norms that permit cooperation between two or more individuals, is the sine qua non of stable... multi -dimensional research, and editorial opinions, relate to the means (resources) by which to accomplish stability operations: unified action...development phase requires weaning indigenous institutions from reliance on external assistance. Fukuyama asserts that this is hard for three reasons

  13. Winning the Peace: How Can the Military More Effectively and Efficiently Integrate Civilians in Post-Conflict Operations to Achieve Stability

    DTIC Science & Technology

    withdraw a large majority of troops months into the operation, but a stable environment required almost a decade to achieve. Stabilization in such a...scenario requires Political, Social , Justice, Economic and Security needs to be met. The military has not been equipped to meet these needs by themselves

  14. Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices

    DOEpatents

    Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa

    2013-06-11

    Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.

  15. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  16. Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates

    NASA Astrophysics Data System (ADS)

    Jochym-O'Connor, Tomas; Kubica, Aleksander; Yoder, Theodore J.

    2018-04-01

    Stabilizer codes are among the most successful quantum error-correcting codes, yet they have important limitations on their ability to fault tolerantly compute. Here, we introduce a new quantity, the disjointness of the stabilizer code, which, roughly speaking, is the number of mostly nonoverlapping representations of any given nontrivial logical Pauli operator. The notion of disjointness proves useful in limiting transversal gates on any error-detecting stabilizer code to a finite level of the Clifford hierarchy. For code families, we can similarly restrict logical operators implemented by constant-depth circuits. For instance, we show that it is impossible, with a constant-depth but possibly geometrically nonlocal circuit, to implement a logical non-Clifford gate on the standard two-dimensional surface code.

  17. A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo

    A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less

  18. Effect of Flame Stabilizer Design on Performance and Exhaust Pollutants of a Two-Row Swirl-Can Combustor Operated to Near-Stoichiometric Conditions

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Trout, Arthur M.

    1977-01-01

    Emissions and performance characteristics were determined for two full annulus modular combustors operated to near stoichiometric fuel air ratios. The tests were conducted to obtain stoichiometric data at inlet air temperatures from 756 to 894 K and to determine the effects of a flat plate circular flame stabilizer with upstream fuel injection and a contraswirl flame stabilizer with downstream fuel injection. Levels of unburned hydrocarbons were below 0.50 gram per kilogram of fuel for both combustors and thus there was no detectable difference in the two methods of fuel injection. The contraswirl flame stabilizer did not produce the level of mixing obtained with a flat plate circular flame stabilizer. It did produce higher levels of oxides of nitrogen, which peaked at a fuel air ratio of 0.037. For the flat plate circular flame stabilizer, oxides of nitrogen emission levels were still increasing with fuel air ratio to the maximum tested value of 0.045.

  19. Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2012-12-01

    The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.

  20. Field Tests of a Tractor Rollover Detection and Emergency Notification System.

    PubMed

    Liu, B; Koc, A B

    2015-04-01

    The objective of this research was to assess the feasibility of a rollover detection and emergency notification system for farm tractors using field tests. The emergency notification system was developed based on a tractor stability model and implemented on a mobile electronic device with the iOS operating system. A complementary filter was implemented to combine the data from the accelerometer and gyroscope sensors to improve their accuracies in calculating the roll and pitch angles and the roll and pitch rates. The system estimates a stability index value during tractor operation, displays feedback messages when the stability index is lower than a preset threshold value, and transmits emergency notification messages when an overturn happens. Ten tractor rollover tests were conducted on a field track. The developed system successfully monitored the stability of the tractor during all of the tests. The iOS application was able to detect rollover accidents and transmit emergency notifications in the form of a phone call and email when an accident was detected. The system can be a useful tool for training and education in safe tractor operation. The system also has potential for stability monitoring and emergency notification of other on-road and off-road motorized vehicles.

  1. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    NASA Astrophysics Data System (ADS)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  2. Stability analysis for acoustic wave propagation in tilted TI media by finite differences

    NASA Astrophysics Data System (ADS)

    Bakker, Peter M.; Duveneck, Eric

    2011-05-01

    Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.

  3. Dynamic remedial action scheme using online transient stability analysis

    NASA Astrophysics Data System (ADS)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system configuration and operating state. The generation-shedding cost is calculated using pre-RAS and post-RAS OPF costs. The criteria for selecting generators to trip is based on the minimum cost rather than minimum amount of generation to shed. For an unstable Category C contingency, the RAS control action that results in stable system with minimum generation shedding cost is selected among possible candidate solutions. The RAS control actions update whenever there is a change in operating condition, system configuration, or cost functions. The effectiveness of the proposed technique is demonstrated by simulations on the IEEE 9-bus system, the IEEE 39-bus system, and IEEE 145-bus system. This dissertation also proposes an improved, yet relatively simple, technique for solving Transient Stability-Constrained Optimal Power Flow (TSC-OPF) problem. Using the SIME method, the sets of dynamic and transient stability constraints are reduced to a single stability constraint, decreasing the overall size of the optimization problem. The transient stability constraint is formulated using the critical machines' power at the initial time step, rather than using the machine rotor angles. This avoids the addition of machine steady state stator algebraic equations in the conventional OPF algorithm. A systematic approach to reach an optimal solution is developed by exploring the quasi-linear behavior of critical machine power and stability margin. The proposed method shifts critical machines active power based on generator costs using an OPF algorithm. Moreover, the transient stability limit is based on stability margin, and not on a heuristically set limit on OMIB rotor angle. As a result, the proposed TSC-OPF solution is more economical and transparent. The proposed technique enables the use of fast and robust commercial OPF tool and time-domain simulation software for solving large scale TSC-OPF problem, which makes the proposed method also suitable for real-time application.

  4. Higher derivative extensions of 3 d Chern-Simons models: conservation laws and stability

    NASA Astrophysics Data System (ADS)

    Kaparulin, D. S.; Karataeva, I. Yu.; Lyakhovich, S. L.

    2015-11-01

    We consider the class of higher derivative 3 d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability.

  5. LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions.

    PubMed

    Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles

    2011-06-01

    Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.

  6. Vascularity as assessed by Doppler intraoral ultrasound around the invasion front of tongue cancer is a predictor of pathological grade of malignancy and cervical lymph node metastasis.

    PubMed

    Yamamoto, Chika; Yuasa, Kenji; Okamura, Kazuhiko; Shiraishi, Tomoko; Miwa, Kunihiro

    2016-01-01

    To quantitatively evaluate the relationship of vascularity of tongue cancer as demonstrated on intraoral ultrasonography images and tumour thickness with pathological grade of malignancy and the presence of cervical lymph node metastases. 18 patients with tongue cancer were enrolled in this retrospective study. Using Doppler ultrasonography images of the invasion front of the cancers along the length of their tumour boundaries, three vascular indexes were analysed quantitatively, namely ratio of blood flow signal area within the cancer to whole tumour area (BAR), blood flow signal number ratio (BNR) and blood flow signal width ratio (BWR). The associations between these three indexes and occurrence of cervical lymph node metastasis and pathological grade of malignancy [Yamamoto-Kohama (YK) classification] were assessed. Furthermore, the relationship between tumour thickness and occurrence of cervical lymph node metastasis was evaluated on B-mode intraoral ultrasonography images. There was no significant association between BAR and tumour thickness or occurrence of cervical lymph node metastasis. The BNRs and BWRs of patients with cervical lymph node metastasis were significantly higher than those of patients without nodal involvement. The BWRs of patients with high-grade malignancy (YK-4C) were significantly higher than those of patients with low-grade malignancy (YK-2 or 3). BNR and BWR on the invasion front of the tongue cancer are predictors of pathological grade of malignancy and cervical lymph node metastasis.

  7. Measurement of liver function using hepatobiliary scintigraphy improves risk assessment in patients undergoing major liver resection.

    PubMed

    Cieslak, Kasia P; Bennink, Roelof J; de Graaf, Wilmar; van Lienden, Krijn P; Besselink, Marc G; Busch, Olivier R C; Gouma, Dirk J; van Gulik, Thomas M

    2016-09-01

    (99m)Tc-mebrofenin-hepatobiliary-scintigraphy (HBS) enables measurement of future remnant liver (FRL)-function and was implemented in our preoperative routine after calculation of the cut-off value for prediction of postoperative liver failure (LF). This study evaluates our results since the implementation of HBS. Additionally, CT-volumetric methods of FRL-assessment, standardized liver volumetry and FRL/body-weight ratio (FRL-BWR), were evaluated. 163 patients who underwent major liver resection were included. Insufficient FRL-volume and/or FRL-function <2.7%/min/m(2) were indications for portal vein embolization (PVE). Non-PVE patients were compared with a historical cohort (n = 55). Primary endpoints were postoperative LF and LF related mortality. Secondary endpoint was preoperative identification of patients at risk for LF using the CT-volumetric methods. 29/163 patients underwent PVE; 8/29 patients because of insufficient FRL-function despite sufficient FRL-volume. According to FRL-BWR and standardized liver volumetry, 16/29 and 11/29 patients, respectively, would not have undergone PVE. LF and LF related mortality were significantly reduced compared to the historical cohort. HBS appeared superior in the identification of patients with increased surgical risk compared to the CT-volumetric methods. Implementation of HBS in the preoperative work-up led to a function oriented use of PVE and was associated with a significant decrease in postoperative LF and LF related mortality. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  8. 46 CFR 169.840 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stability requirements. 169.840 Section 169.840 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations Tests, Drills, and Inspections § 169.840 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to...

  9. 46 CFR 169.840 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stability requirements. 169.840 Section 169.840 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations Tests, Drills, and Inspections § 169.840 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to...

  10. 46 CFR 169.840 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stability requirements. 169.840 Section 169.840 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations Tests, Drills, and Inspections § 169.840 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to...

  11. Diagnostics and control of wavenumber stability and purity of tunable diode lasers relevant to their use as local oscillators in heterodyne systems

    NASA Technical Reports Server (NTRS)

    Poultney, S.; Chen, D.; Steinberg, G.; Wu, F.; Pires, A.; Miller, M. D.; Mcnally, M.

    1980-01-01

    Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability.

  12. Stability of a Crystal Oscillator, Type Si530, Inside and Beyond its Specified Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Data acquisition and control systems depend on timing signals for proper operation and required accuracy. These clocked signals are typically provided by some form of an oscillator set to produce a repetitive, defined signal at a given frequency. Crystal oscillators are commonly used because they are less expensive, smaller, and more reliable than other types of oscillators. Because of the inherent characteristics of the crystal, the oscillators exhibit excellent frequency stability within the specified range of operational temperature. In some cases, however, some compensation techniques are adopted to further improve the thermal stability of a crystal oscillator. Very limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) crystal oscillators at temperatures beyond the manufacturer's specified operating temperature range. This information is very crucial if any of these parts were to be used in circuits designed for use in space exploration missions where extreme temperature swings and thermal cycling are encountered. This report presents the results of the work obtained on the operation of Silicon Laboratories crystal oscillator, type Si530, under specified and extreme ambient temperatures.

  13. Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site

    NASA Astrophysics Data System (ADS)

    Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.

    1990-12-01

    Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.

  14. 2007 Stability, Security, Transition and Reconstruction Operations Conference

    DTIC Science & Technology

    2007-11-28

    narcotics Foster sustainable economy U.S.PRT tasks Jalalabad June 2007 Who can respond to which challeges ? 2. Battlespace or Humanitarian Space...Education Integrated Interagency Stabilization and Reconstruction Training Plug and Play System Lessons Learned from the Field USAID NGOs World Bank ...World Bank , IMF? Expanding the Focus… At the US and NATO Strategic/Operational Level Enhanced/new structures and procedures to improve: Interaction

  15. Real time simulation application to monitor the stability limit of power system

    NASA Astrophysics Data System (ADS)

    Hartono, Kuo, Ming-Tse

    2017-06-01

    If the power system falls into an unsteady state, there will be voltage collapse in which the power system will be separated into small systems. Identifying the stability reserve in conformity with a certain practical operation condition is very important for the system management and operation. In fact, the global power system issue has caused serious outages due to voltage collapse such as in the United States-Canada in August 14, 2003; South London in August 28, 2003; southern Sweden and eastern Denmark in September 23, 2003; and Italy on September 28, 2003, and in Vietnam where power system problem led to power loss on 17 May 2005, 27 December 2006, 20 July 2007, and 10 September 2007. The analysis shows that the phenomenon is related to the loss of system stability. Thus, the operational system as well as the power system designs should be studied related to the issue of the system stability. To study the static stability of the power system, different approximate standards, called pragmatic criteria, were examined. Markovits has investigated the application of the standard of dP/dd to test the stability of the power button and dq/dU to check the voltage stability of the load button [1]. However, the storage stability when calculating standard dP/d d is usually much larger than the reserves when calculating standard dq/dU [1]. This paper presents a method to build a possible operation region in the power plane of load bus which works in comply with the stability limit to evaluate the stability reserve of the power system. This method is used to build a program to monitor the stability reserve of IEEE 39 Bus Power System in real time. To monitor the stability reserve of IEEE 39 nodes power system, articles based on the standard dq/dU was used to calculate the assessment. When using standard dq/dU to check for voltage stability load button, the amount of storage stability can be calculated by the following steps: first, transformed replacement scheme Masonry on the schematic rays of the source and node load stability was examined by using Gaussian elimination algorithm [1, 2, 3], then on the basis of ray diagrams the construction work, allowed domain of spare capacity load capacity in space and storage stability for the load button were determined. The GS-ODT program was built on the basis of Gaussian elimination algorithm and stable domain construction work algorithm for Masonic load button by dQ/dU pragmatic criteria. The GS-ODT program has a simple interface and easy to use with the main function is to identify the allowed domain for the load button and thus can assess visually stable reserve still according to the load capacity of the nodes of the IEEE 39 nodes power system in real-time.

  16. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and operating conditions used are based off the Peach Bottom BWR and design consideration was given to minimize the neutronic penalty of the FeCrAl cladding by changing fuel enrichment and cladding thickness. As this study progressed, systematic parametric analysis of the fuel and cladding creep responses were also performed.« less

  17. Development and Testing of Neutron Cross Section Covariance Data for SCALE 6.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J; Williams, Mark L; Wiarda, Dorothea

    2015-01-01

    Neutron cross-section covariance data are essential for many sensitivity/uncertainty and uncertainty quantification assessments performed both within the TSUNAMI suite and more broadly throughout the SCALE code system. The release of ENDF/B-VII.1 included a more complete set of neutron cross-section covariance data: these data form the basis for a new cross-section covariance library to be released in SCALE 6.2. A range of testing is conducted to investigate the properties of these covariance data and ensure that the data are reasonable. These tests include examination of the uncertainty in critical experiment benchmark model k eff values due to nuclear data uncertainties, asmore » well as similarity assessments of irradiated pressurized water reactor (PWR) and boiling water reactor (BWR) fuel with suites of critical experiments. The contents of the new covariance library, the testing performed, and the behavior of the new covariance data are described in this paper. The neutron cross-section covariances can be combined with a sensitivity data file generated using the TSUNAMI suite of codes within SCALE to determine the uncertainty in system k eff caused by nuclear data uncertainties. The Verified, Archived Library of Inputs and Data (VALID) maintained at Oak Ridge National Laboratory (ORNL) contains over 400 critical experiment benchmark models, and sensitivity data are generated for each of these models. The nuclear data uncertainty in k eff is generated for each experiment, and the resulting uncertainties are tabulated and compared to the differences in measured and calculated results. The magnitude of the uncertainty for categories of nuclides (such as actinides, fission products, and structural materials) is calculated for irradiated PWR and BWR fuel to quantify the effect of covariance library changes between the SCALE 6.1 and 6.2 libraries. One of the primary applications of sensitivity/uncertainty methods within SCALE is the assessment of similarities between benchmark experiments and safety applications. This is described by a c k value for each experiment with each application. Several studies have analyzed typical c k values for a range of critical experiments compared with hypothetical irradiated fuel applications. The c k value is sensitive to the cross-section covariance data because the contribution of each nuclide is influenced by its uncertainty; large uncertainties indicate more likely bias sources and are thus given more weight. Changes in c k values resulting from different covariance data can be used to examine and assess underlying data changes. These comparisons are performed for PWR and BWR fuel in storage and transportation systems.« less

  18. Parallel multiphase microflows: fundamental physics, stabilization methods and applications.

    PubMed

    Aota, Arata; Mawatari, Kazuma; Kitamori, Takehiko

    2009-09-07

    Parallel multiphase microflows, which can integrate unit operations in a microchip under continuous flow conditions, are discussed. Fundamental physics, stabilization methods and some applications are shown.

  19. Performance limitations of bilateral force reflection imposed by operator dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.

    1989-01-01

    A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.

  20. Locality-preserving logical operators in topological stabilizer codes

    NASA Astrophysics Data System (ADS)

    Webster, Paul; Bartlett, Stephen D.

    2018-01-01

    Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.

  1. 47 CFR 90.539 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... base station signal. (b) The frequency stability of base transmitters operating in the narrowband... is locked to the base station. When AFC is not locked to the base station, the frequency stability... base station, and 5 parts per million or better when AFC is not locked. [63 FR 58651, Nov. 2, 1998, as...

  2. Do Crisis Response Operations Affect Political and Economic Stability?

    DTIC Science & Technology

    2003-05-01

    military presence itself actually affects overall levels of political and economic stability is still an open question. We look at the following two...relationship between military actions and political and economic stability . In this paper, we focus only on the crisis response piece of the overseas presence issue.

  3. 46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...

  4. 46 CFR 196.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stability requirements. 196.15-7 Section 196.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-7 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure...

  5. 46 CFR 131.513 - Verification of compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...

  6. 46 CFR 131.513 - Verification of compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...

  7. 46 CFR 131.513 - Verification of compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...

  8. 46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...

  9. 46 CFR 196.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stability requirements. 196.15-7 Section 196.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-7 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure...

  10. 46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...

  11. 46 CFR 196.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stability requirements. 196.15-7 Section 196.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-7 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure...

  12. Residential Stability and Academic Sense of Control

    ERIC Educational Resources Information Center

    Gigliotti, Richard J.

    1976-01-01

    Suggests that stability level of an individual and the community in which he operates is directly related to a child's sense of control and consequently his achievement in school. Findings indicate that for whites, community stability is positively and significantly related to sense of control, with the inverse for blacks. (Author/AM)

  13. 14 CFR 29.177 - Static directional stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 29.177... Static directional stability. (a) The directional controls must operate in such a manner that the sense... versus directional control position curve may have a negative slope within a small range of angles around...

  14. 14 CFR 27.177 - Static directional stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 27.177... directional stability. (a) The directional controls must operate in such a manner that the sense and direction... sideslip angle versus directional control position curve may have a negative slope within a small range of...

  15. Stability effects of singularities in force-controlled robotic assist devices

    NASA Astrophysics Data System (ADS)

    Luecke, Greg R.

    2002-02-01

    Force feedback is being used as an interface between humans and material handling equipment to provide an intuitive method to control large and bulky payloads. Powered actuation in the lift assist device compensates for the inertial characteristics of the manipulator and the payload to provide effortless control and handling of manufacturing parts, components, and assemblies. The use of these Intelligent Assist Devices (IAD) is being explored to prevent worker injury, enhance material handling performance, and increase productivity in the workplace. The IAD also provides the capability to shape and control motion in the workspace during routine operations. Virtual barriers can be developed to protect fixed objects in the workspace, and regions can be programmed that attract the work piece to a certain position and orientation. However, the robot is still under complete control of the human operator, with the trajectory being determined and commanded using the judgment of the operator to complete a given task. In many cases, the IAD is built in a configuration that may have singular points inside the workspace. These singularities can cause problems when the unstructured trajectory commands from the human cause interaction between the IAD and the virtual walls and fixtures at positions close to these singularities. The research presented here explores the stability effects of the interactions between the powered manipulator and the virtual surfaces when controlled by the operator. Because of the flexible nature of the human decisions determining the real time work piece paths, manipulator singularities that occur in conjunction with the virtual surfaces raise stability issues in the performance around these singularities. We examine these stability issues in the context of a particular IAD configuration, and present analytic results for the performance and stability of these systems in response to the real-time trajectory modification of the human operator.

  16. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  17. Feedback-assisted extension of the tokamak operating space to low safety factor

    DOE PAGES

    Hanson, Jeremy M.; Bialek, James M.; Baruzzo, M.; ...

    2014-07-07

    Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q( a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q( a) = 2 (limiter plasmas) and q 95 = 2 (divertor plasmas). However, passively stable operation can be attained for q( a) and q 95 values as low as 2.2. RWM damping in the q( a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of themore » damped response does not increase significantly as the q( a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q 95 values reaching as low as 1.9 in DIII-D and q( a) reaching 1.55 in RFX-mod. In addition to being consistent with the q( a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. As a result, the experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.« less

  18. Reduced Kalman Filters for Clock Ensembles

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  19. Non-operative management is superior to surgical stabilization in spine injury patients with complete neurological deficits: A perspective study from a developing world country, Pakistan

    PubMed Central

    Shamim, Muhammad Shahzad; Ali, Syed Faizan; Enam, Syed Ather

    2011-01-01

    Background: Surgical stabilization of injured spine in patients with complete spinal cord injury is a common practice despite the lack of strong evidence supporting it. The aim of this study is to compare clinical outcomes and cost-effectiveness of surgical stabilization versus conservative management of spinal injury in patients with complete deficits, essentially from a developing country's point of view. Methods: A detailed analysis of patients with traumatic spine injury and complete deficits admitted at the Aga Khan University Hospital, Pakistan, from January 2004 till January 2010 was carried out. All patients presenting within 14 days of injury were divided in two groups, those who underwent stabilization procedures and those who were managed non-operatively. The two groups were compared with the endpoints being time to rehabilitation, length of hospital stay, 30 day morbidity/mortality, cost of treatment, and status at follow up. Results: Fifty-four patients fulfilled the inclusion criteria and half of these were operated. On comparing endpoints, patients in the operative group took longer time to rehabilitation (P-value = 0.002); had longer hospital stay (P-value = 0.006) which included longer length of stay in special care unit (P-value = 0.002) as well as intensive care unit (P-value = 0.004); and were associated with more complications, especially those related to infections (P-value = 0.002). The mean cost of treatment was also significantly higher in the operative group (USD 6,500) as compared to non-operative group (USD 1490) (P-value < 0.001). Conclusion: We recommend that patients with complete SCI should be managed non-operatively with a provision of surgery only if their rehabilitation is impeded due to pain or deformity. PMID:22145085

  20. Non-operative management is superior to surgical stabilization in spine injury patients with complete neurological deficits: A perspective study from a developing world country, Pakistan.

    PubMed

    Shamim, Muhammad Shahzad; Ali, Syed Faizan; Enam, Syed Ather

    2011-01-01

    Surgical stabilization of injured spine in patients with complete spinal cord injury is a common practice despite the lack of strong evidence supporting it. The aim of this study is to compare clinical outcomes and cost-effectiveness of surgical stabilization versus conservative management of spinal injury in patients with complete deficits, essentially from a developing country's point of view. A detailed analysis of patients with traumatic spine injury and complete deficits admitted at the Aga Khan University Hospital, Pakistan, from January 2004 till January 2010 was carried out. All patients presenting within 14 days of injury were divided in two groups, those who underwent stabilization procedures and those who were managed non-operatively. The two groups were compared with the endpoints being time to rehabilitation, length of hospital stay, 30 day morbidity/mortality, cost of treatment, and status at follow up. Fifty-four patients fulfilled the inclusion criteria and half of these were operated. On comparing endpoints, patients in the operative group took longer time to rehabilitation (P-value = 0.002); had longer hospital stay (P-value = 0.006) which included longer length of stay in special care unit (P-value = 0.002) as well as intensive care unit (P-value = 0.004); and were associated with more complications, especially those related to infections (P-value = 0.002). The mean cost of treatment was also significantly higher in the operative group (USD 6,500) as compared to non-operative group (USD 1490) (P-value < 0.001). We recommend that patients with complete SCI should be managed non-operatively with a provision of surgery only if their rehabilitation is impeded due to pain or deformity.

  1. [The pathogenetic approach to the development of tools and methods for the improvement of statokinetic stability in the operators of aerospace systems].

    PubMed

    Glaznikov, L A; Buĭnov, L G; Govorun, M I; Sorokina, L A; Nigmedzianov, R A; Golovanov, A E

    2012-01-01

    The objective of the present study was to estimate the efficacy of the tools and methods for the optimization of the activity of the central nervous system (CNS) and analyzers involved in the maintenance of the statokinetic (SK) stability in man. To this effect, we evaluated the outcome of bemitil treatment during 10 days with and without A.I. Yarotsky test and the influence of these procedures on the pathophysiological characteristics of selected elements of the work of operators of aerospace systems. Based on the data obtained in the study, the tools and methods have been developed that allow the efficacy and quality of certain aspects of the operators' activity to be improved, viz. general working capacity under conditions requiring enhanced statokinetic stability, self-confidence, emotional and somatic comfort.

  2. Frequency stabilization for mobile satellite terminals via LORAN

    NASA Technical Reports Server (NTRS)

    Ernst, Gregory J.; Kee, Steven M.; Marquart, Robert C.

    1990-01-01

    Digital satellite communication systems require careful management of frequency stability. Historically, frequency stability has been accomplished by continuously powered, high cost, high performance reference oscillators. Today's low cost mobile satellite communication equipment must operate under wide ranging environmental conditions, stabilize quickly after application of power, and provide adequate performance margin to overcome RF link impairments unique to the land mobile environment. Methods for frequency stabilization in land mobile applications must meet these objectives without incurring excessive performance degradation. A frequency stabilization scheme utilizing the LORAN (Long Range Navigation) system is presented.

  3. Avoiding Praetorian Societies: Focusing U.S. Strategy on Political Development

    DTIC Science & Technology

    2014-03-01

    the centrality of political development, understand the critical role of input institutions in political stability , and make efforts to foster these institutions in stability and reconstruction operations.

  4. Guide to Rebuilding Public Sector Services in Stability Operations: A Role for the Military

    DTIC Science & Technology

    2009-10-01

    economic growth. Each topic discussion focuses on the key issues, trade-offs faced in addressing those issues in stability operations, and recommended...top-down versus bottom-up planning. As discussed above, countries have a long-term development framework that expresses broad national strategy for...SERVICES This section discusses a relatively narrow range of issues and potential actions in rebuilding government, focusing on government’s provision

  5. Kosovo’s Support of NATO Stability and Humanitarian Operations

    DTIC Science & Technology

    2013-12-13

    America. In this aspect, non-recognition of Kosovo’s independence from Spain, Greece, Slovakia and Romania (all NATO member countries) is affecting...including: General Staff Publication, and publication of The War College, and Army Command and General Staff College. However, some sources (mostly...countries faced during the first phase of deployment, during deployment and after deployment in stability operations. 3. Kosovo’s national interest to be

  6. Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data

    NASA Astrophysics Data System (ADS)

    Rochman, Dimitri A.; Vasiliev, Alexander; Dokhane, Abdelhamid; Ferroukhi, Hakim

    2018-05-01

    This paper presents a study of the impact of the nuclear data (cross sections, neutron emission and spectra) on different quantities for spent nuclear fuels (SNF) from Swiss power plants: activities, decay heat, neutron and gamma sources and isotopic vectors. Realistic irradiation histories are considered using validated core follow-up models based on CASMO and SIMULATE. Two Pressurized and one Boiling Water Reactors (PWR and BWR) are considered over a large number of operated cycles. All the assemblies at the end of the cycles are studied, being reloaded or finally discharged, allowing spanning over a large range of exposure (from 4 to 60 MWd/kgU for ≃9200 assembly-cycles). Both UO2 and MOX fuels were used during the reactor cycles, with enrichments from 1.9 to 4.7% for the UO2 and 2.2 to 5.8% Pu for the MOX. The SNF characteristics presented in this paper are calculated with the SNF code. The calculated uncertainties, based on the ENDF/B-VII.1 library are obtained using a simple Monte Carlo sampling method. It is demonstrated that the impact of nuclear data is relatively important (e.g. up to 17% for the decay heat), showing the necessity to consider them for safety analysis of the SNF handling and disposal.

  7. Testing plasmid stability of Escherichia coli using the Continuously Operated Shaken BIOreactor System.

    PubMed

    Sieben, Michaela; Steinhorn, Gregor; Müller, Carsten; Fuchs, Simone; Ann Chin, Laura; Regestein, Lars; Büchs, Jochen

    2016-11-01

    Plasmids are common vectors to genetically manipulate Escherichia coli or other microorganisms. They are easy to use and considerable experience has accumulated on their application in heterologous protein production. However, plasmids can be lost during cell growth, if no selection pressure like, e.g., antibiotics is used, hampering the production of the desired protein and endangering the economic success of a biotechnological production process. Thus, in this study the Continuously Operated Shaken BIOreactor System (COSBIOS) is applied as a tool for fast parallel testing of strain stability and operation conditions and to evaluate measures to counter such plasmid loss. In specific, by applying various ampicillin concentrations, the lowest effective ampicillin dosage is investigated to secure plasmid stability while lowering adverse ecological effects. A significant difference was found in the growth rates of plasmid-bearing and plasmid-free cells. The undesired plasmid-free cells grew 30% faster than the desired plasmid-bearing cells. During the testing of plasmid stability without antibiotics, the population fraction of plasmid-bearing cells rapidly decreased in continuous culture to zero within the first 48 h. An initial single dosage of ampicillin did not prevent plasmid loss. By contrast, a continuous application of a low dosage of 10 µg/mL ampicillin in the feed medium maintained plasmid stability in the culture. Consequently, the COSBIOS is an apt reactor system for measuring plasmid stability and evaluating methods to enhance this stability. Hence, decreased production of heterologous protein can be prevented. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1418-1425, 2016. © 2016 American Institute of Chemical Engineers.

  8. Seismic margin assessment of the Edwin I. Hatch Nuclear Plant, Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, W.T.; Moore, D.P.; Smith, J.E.

    1991-06-01

    This summary presents the results and lessons learned from the seismic margin assessment (SMA) of Unit 1 of the Hatch Nuclear Plant. The primary purpose of this SMA was to assess the practicality of the EPRI SMA methodology on a BWR on a soil site such as Hatch. The major findings from the Hatch SMA are briefly described along with the lessons learned during the project implementation. The experience gained on the Hatch SMA is expected to benefit others in the performance of future SMAs. 12 refs.

  9. Pool-site fuel inspection and examination techniques applied by the Kraftwerk Union Aktiengesellschaft Fuel Service. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knaab, H.; Knecht, K.

    The need for pool-site inspection and examination of fuel assemblies was recognized by Kraftwerk Union Aktiengesellschaft with the commissioning of the first nuclear power stations. A wet sipping method has demonstrated high reliability in detection of leaking fuel assemblies. The visual inspection system is a versatile tool. It can be supplemented by attaching devices for oxide thickness measurement or surface replication. Repair of leaking pressurized water reactor fuel assemblies has improved fuel utilization. Applied methods and typical results are described.

  10. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  11. Co-evaporation of fluoropolymer additives for improved thermal stability of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Price, Jared S.; Wang, Baomin; Grede, Alex J.; Shen, Yufei; Giebink, Noel C.

    2017-08-01

    Reliability remains an ongoing challenge for organic light emitting diodes (OLEDs) as they expand in the marketplace. The ability to withstand operation and storage at elevated temperature is particularly important in this context, not only because of the inverse dependence of OLED lifetime on temperature, but also because high thermal stability is fundamentally important for high power/brightness operation as well as applications such as automotive lighting, where interior car temperatures often exceed the ambient by 50 °C or more. Here, we present a strategy to significantly increase the thermal stability of small molecule OLEDs by co-depositing an amorphous fluoropolymer, Teflon AF, to prevent catastrophic failure at elevated temperatures. Using this approach, we demonstrate that the thermal breakdown limit of common hole transport materials can be increased from typical temperatures of ˜100 °C to more than 200 °C while simultaneously improving their electrical transport properties. Similar thermal stability enhancements are demonstrated in simple bilayer OLEDs. These results point toward a general approach to engineer morphologically-stable organic electronic devices that are capable of operating or being stored in extreme thermal environments.

  12. Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines.

    PubMed

    Yue, Liang; Wang, Shan; Cecconello, Alessandro; Lehn, Jean-Marie; Willner, Itamar

    2017-12-26

    Overexpression or down-regulation of cellular processes are often controlled by dynamic chemical networks. Bioinspired by nature, we introduce constitutional dynamic networks (CDNs) as systems that emulate the principle of the nature processes. The CDNs comprise dynamically interconvertible equilibrated constituents that respond to external triggers by adapting the composition of the dynamic mixture to the energetic stabilization of the constituents. We introduce a nucleic acid-based CDN that includes four interconvertible and mechanically triggered tweezers, AA', BB', AB' and BA', existing in closed, closed, open, and open configurations, respectively. By subjecting the CDN to auxiliary triggers, the guided stabilization of one of the network constituents dictates the dynamic reconfiguration of the structures of the tweezers constituents. The orthogonal and reversible operations of the CDN DNA tweezers are demonstrated, using T-A·T triplex or K + -stabilized G-quadruplex as structural motifs that control the stabilities of the constituents. The implications of the study rest on the possible applications of input-guided CDN assemblies for sensing, logic gate operations, and programmed activation of molecular machines.

  13. Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.

    1982-01-01

    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.

  14. The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks.

    PubMed

    Di Stefano, Danilo Alessio; Arosio, Paolo; Gastaldi, Giorgio; Gherlone, Enrico

    2017-07-08

    Recent research has shown that dynamic parameters correlate with insertion energy-that is, the total work needed to place an implant into its site-might convey more reliable information concerning immediate implant primary stability at insertion than the commonly used insertion torque (IT), the reverse torque (RT), or the implant stability quotient (ISQ). Yet knowledge on these dynamic parameters is still limited. The purpose of this in vitro study was to evaluate whether an energy-related parameter, the torque-depth curve integral (I), could be a reliable measure of primary stability. This was done by assessing if (I) measurement was operator-independent, by investigating its correlation with other known primary stability parameters (IT, RT, or ISQ) by quantifying the (I) average error and correlating (I), IT, RT, and ISQ variations with bone density. Five operators placed 200 implants in polyurethane foam blocks of different densities using a micromotor that calculated the (I) during implant placement. Primary implant stability was assessed by measuring the ISQ, IT, and RT. ANOVA tests were used to evaluate whether measurements were operator independent (P>.05 in all cases). A correlation analysis was performed between (I) and IT, ISQ, and RT. The (I) average error was calculated and compared with that of the other parameters by ANOVA. (I)-density, IT-density, ISQ-density, and RT-density plots were drawn, and their slopes were compared by ANCOVA. The (I) measurements were operator independent and correlated with IT, ISQ, and RT. The average error of these parameters was not significantly different (P>.05 in all cases). The (I)-density, IT-density, ISQ-density, and RT-density curves were linear in the 0.16 to 0.49 g/cm³ range, with the (I)-density curves having a significantly greater slope than those regarding the other parameters (P≤.001 in all cases). The torque-depth curve integral (I) provides a reliable assessment of primary stability and shows a greater sensitivity to density variations than other known primary stability parameters. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Impact of Selected LiPF6 Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cells.

    PubMed

    Wagner, Ralf; Korth, Martin; Streipert, Benjamin; Kasnatscheew, Johannes; Gallus, Dennis R; Brox, Sebastian; Amereller, Marius; Cekic-Laskovic, Isidora; Winter, Martin

    2016-11-16

    Diverse LiPF 6 hydrolysis products evolve during lithium-ion battery cell operation at elevated operation temperatures and high operation voltages. However, their impact on the formation and stability of the electrode/electrolyte interfaces is not yet investigated and understood. In this work, literature-known hydrolysis products of LiPF 6 dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were synthesized and characterized. The use of DMFP and DEFP as electrolyte additive in 1 M LiPF 6 in EC:EMC (1:1, by wt) was investigated in LiNi 1/3 Mn 1/3 Co 1/3 O 2 /Li half cells. When charged to a cutoff potential of 4.6 V vs Li/Li + , the additive containing cells showed improved cycling stability, increased Coulombic efficiencies, and prolonged shelf life. Furthermore, low amounts (1 wt % in this study) of the aforementioned additives did not show any negative effect on the cycling stability of graphite/Li half cells. DMFP and DEFP are susceptible to oxidation and contribute to the formation of an effective cathode/electrolyte interphase as confirmed by means of electrochemical stability window determination, and X-ray photoelectron spectroscopy characterization of pristine and cycled electrodes, and they are supported by computational calculations.

  16. 46 CFR 78.17-22 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stability requirements. 78.17-22 Section 78.17-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Tests, Drills, and Inspections § 78.17-22 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure and at all other...

  17. 46 CFR 78.17-22 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stability requirements. 78.17-22 Section 78.17-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Tests, Drills, and Inspections § 78.17-22 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure and at all other...

  18. 46 CFR 78.17-22 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stability requirements. 78.17-22 Section 78.17-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Tests, Drills, and Inspections § 78.17-22 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure and at all other...

  19. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...

  20. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...

  1. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...

  2. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...

  3. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It must...

  4. Field stabilization studies for a radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Gaur, R.; Kumar, V.

    2014-07-01

    The Radio Frequency Quadrupole (RFQ) linear accelerator is an accelerator that efficiently focuses, bunches and accelerates a high intensity DC beam from an ion source, for various applications. Unlike other conventional RF linear accelerators, the electromagnetic mode used for its operation is not the lowest frequency mode supported by the structure. In a four vane type RFQ, there are several undesired electromagnetic modes having frequency close to that of the operating mode. While designing an RFQ accelerator, care must be taken to ensure that the frequencies of these nearby modes are sufficiently separated from the operating mode. If the undesired nearby modes have frequencies close to the operating mode, the electromagnetic field pattern in the presence of geometrical errors will not be stabilized to the desired field profile, and will be perturbed by the nearby modes. This will affect the beam dynamics and reduce the beam transmission. In this paper, we present a detailed study of the electromagnetic modes supported, which is followed by calculations for implementation of suitable techniques to make the desired operating mode stable against mixing with unwanted modes for an RFQ being designed for the proposed Indian Spallation Neutron Source (ISNS) project at Raja Ramanna Centre for Advanced Technology, Indore. Resonant coupling scheme, along with dipole stabilization rods has been proposed to increase the mode separation. The paper discusses the details of a generalized optimization procedure that has been used for the design of mode stabilization scheme.

  5. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  6. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  7. Analysis of self-oscillating dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burger, P.

    1974-01-01

    The basic operational characteristics of dc-to-dc converters are analyzed along with the basic physical characteristics of power converters. A simple class of dc-to-dc power converters are chosen which could satisfy any set of operating requirements, and three different controlling methods in this class are described in detail. Necessary conditions for the stability of these converters are measured through analog computer simulation whose curves are related to other operational characteristics, such as ripple and regulation. Further research is suggested for the solution of absolute stability and efficient physical design of this class of power converters.

  8. Sensitivity analysis of hydrodynamic stability operators

    NASA Technical Reports Server (NTRS)

    Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.

    1992-01-01

    The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.

  9. Modeling synchronous voltage source converters in transmission system planning studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosterev, D.N.

    1997-04-01

    A Voltage Source Converter (VSC) can be beneficial to power utilities in many ways. To evaluate the VSC performance in potential applications, the device has to be represented appropriately in planning studies. This paper addresses VSC modeling for EMTP, powerflow, and transient stability studies. First, the VSC operating principles are overviewed, and the device model for EMTP studies is presented. The ratings of VSC components are discussed, and the device operating characteristics are derived based on these ratings. A powerflow model is presented and various control modes are proposed. A detailed stability model is developed, and its step-by-step initialization proceduremore » is described. A simplified stability model is also derived under stated assumptions. Finally, validation studies are performed to demonstrate performance of developed stability models and to compare it with EMTP simulations.« less

  10. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  11. Stability Operations: Ill-Structured Problems, Stakeholders, and Gaining Consensus

    DTIC Science & Technology

    2011-05-19

    these properties in each unique social context. Bryan Lawson, in How Designers Think, reinforces the preliminary 14Peter Checkland and John Poulter...39 Rittel and Weber, “Dilemmas in a General Theory of Planning,” 160. 40 Peter Checkland and John Poulter, Learning For Action: A Short...long-term issues such as developing education systems, past abuses and 87 FM 3-07, Stability Operations, 4-1. 88 Checkland and Poulter, Learning for

  12. The Freedmen’s Bureau, Politics, and Stability Operations during Reconstruction in the South

    DTIC Science & Technology

    2009-06-12

    Movement in the 1960s. 15. SUBJECT TERMS Freedmen‘s Bureau, Stability Operations, Andrew Johnson, Reconstruction 16. SECURITY CLASSIFICATION OF...Mercer Langston (1829-1897) [on-line]; available from http://www. oberlin.edu /external/ EOG /OYTT-images/JMLangston.html; Internet; accessed 26 March...by sentiment more in line with the South‘s old ruling class view of labor, society, and governance. 53 Democratic victories of 1874 signaled a

  13. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  14. Finite element computation of compressible flows with the SUPG formulation

    NASA Technical Reports Server (NTRS)

    Le Beau, G. J.; Tezduyar, T. E.

    1991-01-01

    Finite element computation of compressible Euler equations is presented in the context of the streamline-upwind/Petrov-Galerkin (SUPG) formulation. The SUPG formulation, which is based on adding stabilizing terms to the Galerkin formulation, is further supplemented with a shock capturing operator which addresses the difficulty in maintaining a satisfactory solution near discontinuities in the solution field. The shock capturing operator, which has been derived from work done in entropy variables for a similar operator, is shown to lead to an appropriate level of additional stabilization near shocks, without resulting in excessive numerical diffusion. An implicit treatment of the impermeable wall boundary condition is also presented. This treatment of the no-penetration condition offers increased stability for large Courant numbers, and accelerated convergence of the computations for both implicit and explicit applications. Several examples are presented to demonstrate the ability of this method to solve the equations governing compressible fluid flow.

  15. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  16. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  17. Roles for international military medical services in stability operations (security sector reform).

    PubMed

    Bricknell, M C M; Thompson, D

    2007-06-01

    This is the second in a series of three papers that examine the role of international military medical services in stability operations in unstable countries. The paper discusses security sector reform in general terms and highlights the interdependency of the armed forces, police, judiciary and penal systems in creating a 'secure environment'. The paper then looks at components of a local military medical system for a counter-insurgency campaign operating on interior lines and the contribution and challenges faced by the international military medical community in supporting the development of this system. Finally the paper highlights the importance of planning the medical support of the international military personnel who will be supporting wider aspects of security sector reform. The paper is based on background research and my personal experience as Medical Director in the Headquarters of the NATO International Stability Assistance Force in Afghanistan in 2006.

  18. Development and flight evaluation of an augmented stability active controls concept with a small horizontal tail

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.

    1982-01-01

    A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.

  19. Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang

    2018-02-01

    The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.

  20. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    NASA Astrophysics Data System (ADS)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  1. Study of Geometric Stability and Structural Integrity of Self-Healing Glass Seal System Used in Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    A self-healing glass seal has the potential of restoring its mechanical properties upon being reheated to SOFC stack operating temperature, even when it has experienced some cooling induced damage/cracking at room temperature. Such a self-healing feature is desirable for achieving high seal reliability during thermal cycling. On the other hand, self-healing glass is also characterized by its low mechanical stiffness and high creep rate at the typical operating temperature of SOFCs. Therefore, geometry stability and structural integrity of the glass seal system becomes critical to its successful application in SOFCs. In this paper, the geometry stability of the self-healing glassmore » and the influence of various interfacial conditions of ceramic stoppers with the PEN, IC, and glass seal on the structural integrity of the glass seal during the operating and cooling down processes are studied using finite element analyses. For this purpose, the test cell used in the leakage tests for compliant glass seals conducted at PNNL is taken as the initial modeling geometry. The effect of the ceramic stopper on the geometry stability of the self-healing glass sealants is studied first. Two interfacial conditions of the ceramic stopper and glass seals, i.e., bonded (strong) or un-bonded (weak), are considered. Then the influences of interfacial strengths at various interfaces, i.e., stopper/glass, stopper/PEN, as well as stopper/IC plate, on the geometry stability and reliability of glass during the operating and cooling processes are examined.« less

  2. Analysis of Laparoscopic Sleeve Gastrectomy Learning Curve and Its Influence on Procedure Safety and Perioperative Complications.

    PubMed

    Major, Piotr; Wysocki, Michał; Dworak, Jadwiga; Pędziwiatr, Michał; Pisarska, Magdalena; Wierdak, Mateusz; Zub-Pokrowiecka, Anna; Natkaniec, Michał; Małczak, Piotr; Nowakowski, Michał; Budzyński, Andrzej

    2018-06-01

    Laparoscopic sleeve gastrectomy (LSG) has become an attractive bariatric procedure with promising treatment effects yet amount of data regarding institutional learning process is limited. Retrospective study included patients submitted to LSG at academic teaching hospital. Patients were divided into groups every 100 consecutive patients. LSG introduction was structured along with Enhanced Recovery after Surgery (ERAS) treatment protocol. Primary endpoint was determining the LSG learning curve's stabilization point, using operative time, intraoperative difficulties, intraoperative adverse events (IAE), and number of stapler firings. Secondary endpoints: influence on perioperative complications and reoperations. Five hundred patients were included (330 females, median age of 40 (33-49) years). Operative time in G1-G2 differed significantly from G3-G5. Stabilization point was the 200th procedure using operative time. Intraoperative difficulties of G1 differed significantly from G2-G5, with stabilization after the 100th procedure. IAE and number of stapler firings could not be used as predictor. Based on perioperative morbidity, the learning curve was stabilized at the 100th procedure. The morbidity rates in the groups were G1, 13%; G2, 4%; G3, 5%; G4, 5%; and G5, 2%. The reoperation rate in G1 was 3%; G2, 2%; G3, 2%; G4, 1%; and G5, 0%. The institutional learning process stabilization point for LSG in a newly established bariatric center is between the 100th and 200th operation. Initially, the morbidity rate is high, which should concern surgeons who are willing to perform bariatric surgery.

  3. A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters: A Stability Margin

    NASA Astrophysics Data System (ADS)

    Kolokolov, Yury; Monovskaya, Anna

    The popularity of systems of pulse energy conversion (PEC-systems) for practical applications is due to the heightened efficiency of energy conversion processes with comparatively simple realizations. Nevertheless, a PEC-system represents a nonlinear object with a variable structure, and the bifurcation analysis remains the basic tool to describe PEC dynamics evolution. The paper is devoted to the discussion on whether the scientific viewpoint on the natural nonlinear dynamics evolution can be involved in practical applications. We focus on the problems connected with stability boundaries of an operating regime. The results of both small-signal analysis and computational bifurcation analysis are considered in the parametrical space in comparison with the results of the experimental identification of the zonal heterogeneity of the operating process. This allows to propose an adapted stability margin as a sufficiently safe distance before the point after which the operating process begins to lose the stability. Such stability margin can extend the permissible operating domain in the parametrical space at the expense of using cause-and-effect relations in the context of natural regularities of nonlinear dynamics. Reasoning and discussion are based on the experimental and computational results for a synchronous buck converter with a pulse-width modulation. The presented results can be useful, first of all, for PEC-systems with significant variation of equivalent inductance and/or capacity. We believe that the discussion supports a viewpoint by which the contemporary methods of the computational and experimental bifurcation analyses possess both analytical abilities and experimental techniques for promising solutions which could be practice-oriented for PEC-systems.

  4. Making the Spoon: Analyzing and Employing Stability Power in Counterinsurgency Operations

    DTIC Science & Technology

    2007-05-11

    Economic Effects of 9/11:A Retrospective Assessment. Report to Congress: Specialist in Economic Policy, 2002. Maslow , Abraham H., and Robert Frager...elements of national power in proportion to the scale of the intervention, to stabilize a failing state. As the theory of stability power requires a...sustainment and support capabilities to provide the military a counterinsurgency “spoon,” through the theory of stability power. This thesis determines if

  5. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are keptmore » open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).« less

  6. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement formore » extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).« less

  7. The effect of zinc injection on the increasing of Inconel 600 TT corrosion resistances

    NASA Astrophysics Data System (ADS)

    Febrianto; Sriyono; Widodo, Surip; Sunaryo, Geni Rina

    2018-02-01

    Many failures were found in reactor pressure vessel head penetration (RPV) head material. Those failures caused by boric acid corrosion, and from visual examination were found a big hole and white deposit crystal of boric acid during shutdown maintenance at David Besse reactor. Zinc Oxide addition in BWR reactor known as Zinc Injection that has purposed to reduce radiation exposure cause of Hydrogen addition. Beside reducing the radiation exposure, Zinc injection also has an effect in reducing material corrosion. The purpose of study is to determine the effect of zinc addition, boric acid, temperature also the effects of Cobalt Nitrate and Zinc Oxide addition to Inconel 600 TT as RPV head penetration material. The result in the BWR reactor experience will be implementated at PWR reactor, weather zinc oxide addition also has an effect in reducing the corrosion of Inconel 600. The method that used in this research is to observe the corrosion rates for Inconel 600 material using Potentiostat. Examination were conducted in 30, 40, 60, 70, 80 and 80 °C using 1000, 1500, 2000, 2500 and 3000 ppm boric acid concentration. The results showed that the corrosion rate for the material were very small, but the highest corrosion rate occurred in 3000 ppm boric acid concentration at 90 °C with Cobalt Nitrate addition, around 5.210 x 10-1 mpy. In the same condition at 3000 ppm boric acid concentration for temperature at 90 °C, Inconel 600 TT corrosion rate is smaller with Zinc oxide addition, around 4.631 x 10-1 mpy.

  8. Optical Injection Locking of a VCSEL in an OEO

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute

    2009-01-01

    Optical injection locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface- emitting laser (VCSEL) that is an active element in the frequency-control loop of an opto-electronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency resonance. This particular optical-injection- locking scheme is expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. Inasmuch as the microwave power circulating in the frequency-control loop is a dynamic frequency-control variable (and, hence, cannot be stabilized), there arises a need for another means of stabilizing the wavelength. The present optical-injection-locking scheme satisfies the need for a means to stabilize the wavelength against microwave- power fluctuations. It is also expected to afford stabilization against temperature and current fluctuations. In an experiment performed to demonstrate this scheme, wavelength locking was observed when about 200 W of the output power of a commercial tunable diode laser was injected into a commercial VCSEL, designed to operate in the wavelength range of 795+/-3 nm, that was generating about 200 microW of optical power. (The use of relatively high injection power levels is a usual practice in injection locking of VCSELs.)

  9. Operational stability of electrophosphorescent devices containing p and n doped transport layers

    NASA Astrophysics Data System (ADS)

    D'Andrade, Brian W.; Forrest, Stephen R.; Chwang, Anna B.

    2003-11-01

    The operational stability of low-operating voltage p-i-n electrophosphorescent devices containing fac-tris(2-phenylpyridine) iridium as the emissive dopant is investigated. In these devices, Li-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) served as an n-type electron transport layer, or as an undoped hole blocking layer (HBL), and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane doped 4,4',4″-tris(3-methylphenylphenylamino) triphenylamine served as a p-type hole transport layer. The glass transition temperature of BPhen can be increased by the addition of aluminum(III)bis(2-methyl-8-quinolinato)4-phenylphenolate (BAlq), resulting in improved morphological stability, thereby reducing device degradation. When thermally stable BAlq was used as a HBL in both p-i-n and undoped devices, the extrapolated operational lifetime (normalized to an initial luminance of 100 cd/m2) of the p-i-n and undoped devices are 18 000 and 60 000 h, respectively, indicating that the presence of p and n dopants can accelerate device degradation.

  10. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, S., E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the biasmore » magnetic field without compromising on its sensitivity.« less

  11. Stability of the matrix model in operator interpretation

    NASA Astrophysics Data System (ADS)

    Sakai, Katsuta

    2017-12-01

    The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.

  12. The U.S. Army Corps of Engineers (USACE) in Stability Operations

    DTIC Science & Technology

    2008-12-12

    advance (FEST-A) or forward engineer support team-main (FEST- M ) is another vital asset that USACE can provide in stability operations. The FEST- M ...engineer units and if deployed with a FEST- M will fall under that element. FEST are small teams with specialized expertise based on where they are...in Afghanistan and set the conditions for the creation of an Afghan political system ( Donini et al., 46). Major reconstruction projects were not

  13. Stability and Support Operations, Intervening Armed Forces and the Population They Serve: Defining a Doctrine

    DTIC Science & Technology

    2002-05-24

    Chauvancy, Le moral du soldat occidental dans les nouveaux contextes d’intervention » (The Western Soldier Moral In The New Intervention Environment). MARS...Lawrence A. “Military Stability and Support Operations: Analogies, Patterns And Recurring Themes”. Military Review 4 (July-august 1997): 51. WEB SITES...And General Staff College, Fort Leavenworth, Kansas, 1967. BOOKS IN FRENCH Corvisier, André. Histoire militaire de la France, 4. de 1940 à nos jours

  14. Optimum working fluids for solar powered Rankine cycle cooling of buildings

    NASA Astrophysics Data System (ADS)

    Wali, E.

    1980-01-01

    A number of fluids were screened for their operational reliability and thermal stability as working fluids for domestic solar Rankine cycle cooling. The results indicate that the halogenated compound R-113, followed by the fluorinated compound FC-88, is best suited for safe Rankine cycle operation. Further dynamic investigations are, however, needed to study the thermal stability of these fluids in the presence and absence of lubricants in copper, steel, and alloy conduits

  15. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.

  16. Stability of a rigid rotor supported on oil-film journal bearings under dynamic load

    NASA Technical Reports Server (NTRS)

    Majumdar, B. C.; Brewe, D. E.

    1987-01-01

    Most published work relating to dynamically loaded journal bearings are directed to determining the minimum film thickness from the predicted journal trajectories. These do not give any information about the subsynchronous whirl stability of journal bearing systems since they do not consider the equations of motion. It is, however, necessary to know whether the bearing system operation is stable or not under such an operating condition. The stability characteristics of the system are analyzed. A linearized perturbation theory about the equilibrium point can predict the threshold of stability; however it does not indicate postwhirl orbit detail. The linearized method may indicate that a bearing is unstable for a given operating condition whereas the nonlinear analysis may indicate that it forms a stable limit cycle. For this reason, a nonlinear transient analysis of a rigid rotor supported on oil journal bearings under: (1) a unidirectional constant load, (2) a unidirectional periodic load, and (3) variable rotating load are performed. The hydrodynamic forces are calculated after solving the time-dependent Reynolds equation by a finite difference method with a successive overrelaxation scheme. Using these forces, equations of motion are solved by the fourth-order Runge-Kutta method to predict the transient behavior of the rotor. With the aid of a high-speed digital computer and graphics, the journal trajectories are obtained for several different operating conditions.

  17. A qualitative content analysis of global health engagements in Peacekeeping and Stability Operations Institute's stability operations lessons learned and information management system.

    PubMed

    Nang, Roberto N; Monahan, Felicia; Diehl, Glendon B; French, Daniel

    2015-04-01

    Many institutions collect reports in databases to make important lessons-learned available to their members. The Uniformed Services University of the Health Sciences collaborated with the Peacekeeping and Stability Operations Institute to conduct a descriptive and qualitative analysis of global health engagements (GHEs) contained in the Stability Operations Lessons Learned and Information Management System (SOLLIMS). This study used a summative qualitative content analysis approach involving six steps: (1) a comprehensive search; (2) two-stage reading and screening process to identify first-hand, health-related records; (3) qualitative and quantitative data analysis using MAXQDA, a software program; (4) a word cloud to illustrate word frequencies and interrelationships; (5) coding of individual themes and validation of the coding scheme; and (6) identification of relationships in the data and overarching lessons-learned. The individual codes with the most number of text segments coded included: planning, personnel, interorganizational coordination, communication/information sharing, and resources/supplies. When compared to the Department of Defense's (DoD's) evolving GHE principles and capabilities, the SOLLIMS coding scheme appeared to align well with the list of GHE capabilities developed by the Department of Defense Global Health Working Group. The results of this study will inform practitioners of global health and encourage additional qualitative analysis of other lessons-learned databases. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  18. Towards highly stable polymer electronics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nikolka, Mark; Nasrallah, Iyad; Broch, Katharina; Sadhanala, Aditya; Hurhangee, Michael; McCulloch, Iain; Sirringhaus, Henning

    2016-11-01

    Due to their ease of processing, organic semiconductors are promising candidates for applications in high performance flexible displays and fast organic electronic circuitry. Recently, a lot of advances have been made on organic semiconductors exhibiting surprisingly high performance and carrier mobilities exceeding those of amorphous silicon. However, there remain significant concerns about their operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode (OLED) displays. Here, we report a novel technique for dramatically improving the operational stress stability, performance and uniformity of high mobility polymer field-effect transistors by the addition of specific small molecule additives to the polymer semiconductor film. We demonstrate for the first time polymer FETs that exhibit stable threshold voltages with threshold voltage shifts of less than 1V when subjected to a constant current operational stress for 1 day under conditions that are representative for applications in OLED active matrix displays. The approach constitutes in our view a technological breakthrough; it also makes the device characteristics independent of the atmosphere in which it is operated, causes a significant reduction in contact resistance and significantly improves device uniformity. We will discuss in detail the microscopic mechanism by which the molecular additives lead to this significant improvement in device performance and stability.

  19. The influence of ship's stability on safety of navigation

    NASA Astrophysics Data System (ADS)

    Hanzu-Pazara, R.; Duse; Varsami, C.; Andrei, C.; Dumitrache, R.

    2016-08-01

    Ship's stability is one of the most important and complex concept about safety of ship and safety of navigation and it is governed by maritime law as well as maritime codes. The paper presents the importance of ship's intact stability as part of the general concept of ship's seaworthiness. There is always a correlation between ship’ stability and safety of ship and safety of navigation. Loss of ship's stability is presented as a threat to safety of navigation. We are going to present the causes that lead to ship stability failure and their impact on safety of navigation. A study of various ship stability casualties in heavy weather conditions are going to be presented, the causes are going to be analyzed and the possible ways of stability failures are assessed. Vessel's intact stability is a fundamental component of seaworthiness so it is in the interest of all owners/operators to learn about this topic and ensure that their vessel possesses a satisfactory level of stability in order to ensure its safety as well as that of the people on board the ship. Understanding ship's stability, trim, stress, and the basics of ship's construction is a key to keeping a ship seaworthy. The findings of this study can be beneficial to the maritime safety administrations to adopt decision-making on maritime safety management, but it is also important to carry out statistics and analysis of marine casualties to help to adopt proper safety management measures. Moreover, the study can be a useful guidance for masters and officers on board vessel in order to understand the factors that contribute to ship stability failure during the voyage not only in port during loading operations and to take preventive measures to avoid to put the ship in such a dangerous situations.

  20. Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.

    PubMed

    Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan

    2014-07-28

    Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.

  1. The Stability of Chandra Telescope Pointing and Spacial Resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Ping

    2018-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond spacial resolution. Chandra is comprised of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM), which is where the X-ray detectors mounted and is connected to the HRMA by a 10-meter long Optical Bench Assembly. To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements to stay rigid and stable for the entire life time of the Chandra operation. I will review the issues of telescope pointing stability, optical Axis, aimpoint and their impacts to the Chandra operation, and evaluate the integrity and stability of the telescope. I will show images taken from all four detectors since launch to demonstrate the quality and stability of the Chandra spacial resolution.

  2. The Quality and Stability of Chandra Telescope Spacial Resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Ping

    2017-08-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond spacial resolution. Chandra is comprised of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM), which is where the X-ray detectors mounted and is connected to the HRMA by a 10-meter long Optical Bench Assembly. To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements to stay rigid and stable for the entire life time of the Chandra operation. I will review the issues of telescope pointing stability, optical Axis, aimpoint and their impacts to the Chandra operation, and evaluate the integrity and stability of the telescope. I will show images taken from all four detectors since launch to demonstrate the quality and stability of the Chandra spacial resolution.

  3. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  4. Robust frequency stabilization of multiple spectroscopy lasers with large and tunable offset frequencies.

    PubMed

    Nevsky, A; Alighanbari, S; Chen, Q-F; Ernsting, I; Vasilyev, S; Schiller, S; Barwood, G; Gill, P; Poli, N; Tino, G M

    2013-11-15

    We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.

  5. Review of the frequency stabilization of TEA CO2 laser oscillators

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1987-01-01

    Most applications of TEA CO2 lasers in heterodyne radar systems require that the transmitter has a high degree of frequency stability. This ensures good Doppler resolution and maximizes receiver sensitivity. However, the environment within the device is far from benign with fast acoustic and electrical transients being present. Consequently the phenomena which govern the frequency stability of pulsed lasers are quite different from those operative in their CW counterparts. This review concentrates on the mechanisms of chirping within the output pulse; pulse to pulse frequency drift may be eliminated by frequency measurement and correction on successive pulses. It emerges that good stability hinges on correct cavity design. The energy-dependent laser-induced frequency sweep falls dramatically as mode diameter is increased. Thus, it is necessary to construct resonators with good selectivity for single mode operation while having a large spot size.

  6. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Domanski, Konrad; Alharbi, Essa A.; Hagfeldt, Anders; Grätzel, Michael; Tress, Wolfgang

    2018-01-01

    Perovskite solar cells have achieved power-conversion efficiency values approaching those of established photovoltaic technologies, making the reliable assessment of their operational stability the next essential step towards commercialization. Although studies increasingly often involve a form of stability characterization, they are conducted in non-standardized ways, which yields data that are effectively incomparable. Furthermore, stability assessment of a novel material system with its own peculiarities might require an adjustment of common standards. Here, we investigate the effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells. On this basis, we comment on our perceived relevance of the different ways these are currently aged. We also demonstrate how the results of the experiments can be distorted and how to avoid the common pitfalls. We hope this work will initiate discussion on how to age perovskite solar cells and facilitate the development of consensus stability measurement protocols.

  7. Humid site stabilization and closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutshall, N.H.

    1981-01-01

    The purpose of the work described here is to identify and evaluate the importance of factors that are expected to dictate the nature of site stabilization and closure requirements. Subsequent efforts will plan for implementation of such requirements. Two principal areas of site stabilization and closure effort will be pursued initially - geological management and vegetation management. The geological effort will focus on chemical weathering and surficial erosion. Such catastrophic geologic events as landslides, flooding, earthquakes, volcanos, etc. are already considered in site selection and operation and these factors will not be emphasized initially. Vegetation management will be designed tomore » control erosion, to minimize nuclide mobilization by roots and to be compatible with natural successional pressures. It is anticipated that the results of this work will be important both to site selection and operation as well as the actual stabilization and closure procedure.« less

  8. The design of delay-dependent wide-area DOFC with prescribed degree of stability α for damping inter-area low-frequency oscillations in power system.

    PubMed

    Sun, Miaoping; Nian, Xiaohong; Dai, Liqiong; Guo, Hua

    2017-05-01

    In this paper, the delay-dependent wide-area dynamic output feedback controller (DOFC) with prescribed degree of stability is proposed for interconnected power system to damp inter-area low-frequency oscillations. Here, the prescribed degree of stability α is used to maintain all the poles on the left of s=-α in the s-plane. Firstly, residue approach is adopted to select input-output control signals and the schur balanced truncation model reduction method is utilized to obtain the reduced power system model. Secondly, based on Lyapunov stability theory and transformation operation in complex plane, the sufficient condition of asymptotic stability for closed-loop power system with prescribed degree of stability α is derived. Then, a novel method based on linear matrix inequalities (LMIs) is presented to obtain the parameters of DOFC and calculate delay margin of the closed-loop system considering the prescribed degree of stability α. Finally, case studies are carried out on the two-area four-machine system, which is controlled by classical wide-area power system stabilizer (WAPSS) in reported reference and our proposed DOFC respectively. The effectiveness and advantages of the proposed method are verified by the simulation results under different operating conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Isolated syndesmosis ankle injury.

    PubMed

    Valkering, Kars P; Vergroesen, Diederik A; Nolte, Peter A

    2012-12-01

    Isolated syndesmosis injuries often go unrecognized and are diagnosed as lateral ankle sprains; however, they are more disabling than lateral ankle sprains. The reported incidence of isolated syndesmosis injuries in acute ankle sprains ranges between 1% and 16%. When ankle disability lasts for more than 2 months after an ankle sprain, the incidence increases to 23.6%. Diagnostic workup may include stress radiographs, magnetic resonance imaging, or diagnostic arthroscopy. A simple stress test radiograph may reveal an unstable grade III syndesmosis sprain that may go unrecognized on plain anteroposterior and mortise or lateral radiographs of the ankle. The duration of symptoms in isolated syndesmosis injury is longer and more severe, often leading to chronic symptoms or ankle instability requiring operative stabilization.This article describes the clinical presentation, injury classification, and operative stabilization techniques of isolated syndesmosis injuries. The authors performed their preferred operative stabilization technique for isolated syndesmosis injury-arthroscopic debridement of the ankle with syndesmotic stabilization with a syndesmotic screw-in 4 patients. All patients were evaluated 1 year postoperatively with subjective and objective assessment scales. Three of 4 patients showed good improvement of general subjective ankle symptoms and subjective ankle instability rating and a high Sports Ankle Rating System score after 1 year. Copyright 2012, SLACK Incorporated.

  10. Intra- and interobserver agreement in the classification and treatment of distal third clavicle fractures.

    PubMed

    Bishop, Julie Y; Jones, Grant L; Lewis, Brian; Pedroza, Angela

    2015-04-01

    In treatment of distal third clavicle fractures, the Neer classification system, based on the location of the fracture in relation to the coracoclavicular ligaments, has traditionally been used to determine fracture pattern stability. To determine the intra- and interobserver reliability in the classification of distal third clavicle fractures via standard plain radiographs and the intra- and interobserver agreement in the preferred treatment of these fractures. Cohort study (Diagnosis); Level of evidence, 3. Thirty radiographs of distal clavicle fractures were randomly selected from patients treated for distal clavicle fractures between 2006 and 2011. The radiographs were distributed to 22 shoulder/sports medicine fellowship-trained orthopaedic surgeons. Fourteen surgeons responded and took part in the study. The evaluators were asked to measure the size of the distal fragment, classify the fracture pattern as stable or unstable, assign the Neer classification, and recommend operative versus nonoperative treatment. The radiographs were reordered and redistributed 3 months later. Inter- and intrarater agreement was determined for the distal fragment size, stability of the fracture, Neer classification, and decision to operate. Single variable logistic regression was performed to determine what factors could most accurately predict the decision for surgery. Interrater agreement was fair for distal fragment size, moderate for stability, fair for Neer classification, slight for type IIB and III fractures, and moderate for treatment approach. Intrarater agreement was moderate for distal fragment size categories (κ = 0.50, P < .001) and Neer classification (κ = 0.42, P < .001) and substantial for stable fracture (κ = 0.65, P < .001) and decision to operate (κ = 0.65, P < .001). Fracture stability was the best predictor of treatment, with 89% accuracy (P < .001). Fracture stability determination and the decision to operate had the highest interobserver agreement. Fracture stability was the key determinant of treatment, rather than the Neer classification system or the size of the distal fragment. © 2015 The Author(s).

  11. Stabilization of flux during dead-end ultra-low pressure ultrafiltration.

    PubMed

    Peter-Varbanets, Maryna; Hammes, Frederik; Vital, Marius; Pronk, Wouter

    2010-06-01

    Gravity driven ultrafiltration was operated in dead-end mode without any flushing or cleaning. In contrary to general expectations, the flux value stabilized after about one week of operation and remained constant during an extended period of time (several months). Different surface water types and diluted wastewater were used as feed water and, depending on the feed water composition, stable flux values were in the range of 4-10 L h(-1) m(-2). When sodium azide was added to the feed water to diminish the biological activity, no stabilization of flux occurred, indicating that biological processes play an important role in the flux stabilization process. Confocal laser scanning microscopy revealed the presence of a biofouling layer, of which the structure changed over time, leading to relatively heterogeneous structures. It is assumed that the stabilization of flux is related to the development of heterogeneous structures in the fouling layer, due to biological processes in the layer. The phenomenon of flux stabilization opens interesting possibilities for application, for instance in simple and low-cost ultrafiltration systems for decentralized drinking water treatment in developing and transition countries, independent of energy supply, chemicals, or complex process control. 2010 Elsevier Ltd. All rights reserved.

  12. A Study of Strong Stability of Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cataltepe, Tayfun

    1989-01-01

    The strong stability of distributed systems is studied and the problem of characterizing strongly stable semigroups of operators associated with distributed systems is addressed. Main emphasis is on contractive systems. Three different approaches to characterization of strongly stable contractive semigroups are developed. The first one is an operator theoretical approach. Using the theory of dilations, it is shown that every strongly stable contractive semigroup is related to the left shift semigroup on an L(exp 2) space. Then, a decomposition for the state space which identifies strongly stable and unstable states is introduced. Based on this decomposition, conditions for a contractive semigroup to be strongly stable are obtained. Finally, extensions of Lyapunov's equation for distributed parameter systems are investigated. Sufficient conditions for weak and strong stabilities of uniformly bounded semigroups are obtained by relaxing the equivalent norm condition on the right hand side of the Lyanupov equation. These characterizations are then applied to the problem of feedback stabilization. First, it is shown via the state space decomposition that under certain conditions a contractive system (A,B) can be strongly stabilized by the feedback -B(*). Then, application of the extensions of the Lyapunov equation results in sufficient conditions for weak, strong, and exponential stabilizations of contractive systems by the feedback -B(*). Finally, it is shown that for a contractive system, the first derivative of x with respect to time = Ax + Bu (where B is any linear bounded operator), there is a related linear quadratic regulator problem and a corresponding steady state Riccati equation which always has a bounded nonnegative solution.

  13. Noble gas, iodine, and cesium transport in a postulated loss of decay heat removal accident at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Hodge, S.A.; Weber, C.F.

    1984-08-01

    This report presents an analysis of the movement of noble gas, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris onto themore » drywell floor. The analysis of fission product transport presented in this report is based on the no-operator-action sequence and provides an estimate of fission product inventories, as a function of time, within 14 control volumes outside the core, with the atmosphere considered as the final control volume in the transport sequence. As in the case of accident sequences previously studied, we find small barrier for noble gas ejection to air, these gases being effectively purged from the drywell and reactor building by steam and concrete degradation gases. However, significant decay of krypton isotopes occurs during the long delay times involved in this sequence. In contrast, large degrees of holdup for iodine and cesium are projected due to the chemical reactivity of these elements. Only about 2 x 10/sup -4/% of the initial iodine and cesium activity are predicted to be released to the atmosphere. Principal barriers for release are deposition on reactor vessel and containment walls. A significant amount of iodine is captured in the water pool formed in the reactor building basement after actuation of the fire protection system.« less

  14. Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi T.

    1998-01-01

    A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K, and Q of 7.4 x 10 (exp 8). These values compare to a turn-over of 8.821 K and Q of 1.0 x 10 (exp 9) for the first resonator. Operation of this second unit provides a capability to directly verify for the first time the short-term (1 second less than or equal to tau less than or equal to 200 seconds) stability and the phase noise of the CSO units. The RF receiver used in earlier tests was sufficient to meet Cassini requirements for tau greater than or equal to 10 seconds but had short-term stability limited to 2-4 x 10 (exp -14) at tau = 1 second, a value 10 times too high to meet our requirements. A new low-noise receiver has been designed to provide approximately equal to 10-15 performance at 1 second, and one receiver is now operational, demonstrating again short-term CSO performance with H maser-limited stability. Short-term performance was degraded in the old receiver due to insufficient tuning bandwidth in a 100MHZ quartz VCO that was frequency-locked to the cryogenic sapphire resonator. The new receivers are designed for sufficient bandwidth, loop gain and low noise to achieve the required performance.

  15. Technical Suitability and Static Stability of Sungkur Fishing Boats for Fish and Shrimp Catching

    NASA Astrophysics Data System (ADS)

    Rusmilyansari; Rosadi, E.; Iriansyah

    2017-10-01

    Sungkur fishing gear is operated actively on one the side of fishing boat, which requires technical suitability and fishing gear stability to ensure success in fish catching. This is a case study which aimed to analyze some technical issues related to the boat, boat’s hydrostatic parameters, and the boat’s stability. The data were collected though observation, measuring the boat to obtain the offset table. The data were analyzed numerically and descriptively. The data were processed with technical formula, Microsoft Office’s Excel software, graphic display, minitab, statistical data processing, and maxsurf program. The research results showed that: (1) the sungkur fishing boat dimensional ratio L/B (6.47 - 7.00); L/D (10.90 - 11.20) and B/D (1.60 - 1.668) is within the range value of Indonesian fishing boats suitable to operate the fishing gear by towing or dragging. However, during fish catching operation, there have been problems in a hydrodynamic force due to the fishing gear movement, which affect the fish catching efficiency. (2) The boat’s coefficient of fineness is in the fine type shape; the displacement on each waterline has increased; the loads of the boat are getting larger following the increase of waterline from one to five; this is also shown from the increasing midship area value. Ton per centimeter immersion to change wl 1 by 1 cm needs 0.04 tons of weight. (3) Sungkur fishing boat have a good static stability, which is proven by the positive value of angle of maximum GZ by 79.1 - 83.6. In other words, the boat has the ability to return to its original position after tilting; however, stability dynamics happens because fishing gear operation are located on just one side of boat.

  16. A review of atomic clock technology, the performance capability of present spaceborne and terrestrial atomic clocks, and a look toward the future

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.

    1989-01-01

    Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.

  17. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  18. The Effect of Piracy on Somalia as a Failed State

    DTIC Science & Technology

    2011-02-01

    economic stability and security for Somalia needed to eradicate piracy. If the U.S. were involved in another operation in Somalia to eradicate pirate bases, the international community must provide security and economic stability via a land-based approach. Problem: If the U.S. were involved in another operation in Somalia to eradicate pirate bases, Somalia’s geography, transportation, and political conditions present challenges. The country suffered from drought in the 1990’s, which made peacekeeping forces depend ’on organic supplies.

  19. An Analysis of the Influence of some External Disturbances on the Aerodynamic Stability of Turbine Engine Axial Flow Fans and Compressors

    DTIC Science & Technology

    1977-08-01

    237 265 X A E DC-T R-77-80 CHAPTER I INTRODUCTION Stable aerodynamic operation of the compression system of an aircraft gas turbine engine is...of an aircraft gas turbine engine consists of one or more compressors arranged in configurations such as those illustrated in Fig. 1 (Appendix A). 1...difficulties in the operation of several aircraft gas turbine engines which have been experienced because of compressor stability problems. Montgomery’s

  20. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  1. Studies in Thermocapillary Convection of the Marangoni-Benard Type

    NASA Technical Reports Server (NTRS)

    Kelly, Robert E.; Or, Arthur C.

    1996-01-01

    The effects of imposed nonlinear oscillatory shear upon the onset of Marangoni-Bernard convection, as predicted by linear theory, in a layer of liquid with a deformable free surface were reported upon by Or and Kelly for small amplitude oscillations. Depending on the operating conditions, either stabilization or destabilization might occur. The aim of the current paper is to report the results for finite amplitude imposed oscillations so that the actual amount of stabilization or destabilization can be determined for prescribed operating conditions.

  2. Synthesis of a correcting filter with phase stabilization of the angular velocity of a synchronous motor by the feedback system method

    NASA Technical Reports Server (NTRS)

    Kazlauskas, K. A.; Kurlavichus, A. I.

    1973-01-01

    The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.

  3. Stability Operations: From the Post-Vietnam War Era to Today

    DTIC Science & Technology

    2011-12-01

    Peacekeeping Doctrine, and Practice after the Cold War (Westport, CT: Praeger, 2004), 88. 14 John D. Waghelstein, “What’s Wrong in Iraq? Or Ruminations of a...stability operations. “I don’t think our troops ought to be used for what’s called nation-building,” Bush contended during the 2000 presidential...Waghelstein John D. “What’s Wrong in Iraq? Or Ruminations of a Pachyderm.” Military Review 86, no. 1 (January-February 2006). Warner, Volney J., and James H

  4. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  5. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkana, Itzhak, E-mail: ibarkana@gmail.com

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measuremore » of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.« less

  6. Stability assessment and operating parameter optimization on experimental results in very small plasma focus, using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2018-04-01

    Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.

  7. Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary

    This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.

  8. Divers muscle Fitzpatrick`s mussels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, B.; Kahabka, J.

    1996-01-01

    This article describes how an effective manual cleaning technique has helped rid submerged intake structures of this passive-aggressive pest. The New York Power Authority`s (NYPA) James A. Fitzpatrick (JAF) Nuclear Power Plant is located in Lycoming, NY, on the southeast shore of Lake Ontario. An 850-MWe, GE-design boiling water reactor (BWR), the unit has been in service since 1975. Water drawn from the Lake supplies cooling to plant loads via the circulating water system and three service water systems. These share a common intake system consisting of an offshore cap (crib), horizontal intake tunnel, two vertical risers and forebay/screenwell area.

  9. Approach to numerical safety guidelines based on a core melt criterion. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarm, M.A.; Hall, R.E.

    1982-01-01

    A plausible approach is proposed for translating a single level criterion to a set of numerical guidelines. The criterion for core melt probability is used to set numerical guidelines for various core melt sequences, systems and component unavailabilities. These guidelines can be used as a means for making decisions regarding the necessity for replacing a component or improving part of a safety system. This approach is applied to estimate a set of numerical guidelines for various sequences of core melts that are analyzed in Reactor Safety Study for the Peach Bottom Nuclear Power Plant.

  10. Spent fuel data base: commercial light water reactors. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  11. Use of eddy current mixes to solve a weld examination application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.C.; LaBoissonniere, A.

    1995-12-31

    The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis.

  12. The Viking Orbiter 1975 beryllium INTEREGEN rocket engine assembly.

    NASA Technical Reports Server (NTRS)

    Martinez, R. S.; Mcfarland, B. L.; Fischler, S.

    1972-01-01

    Description of the conversion of the Mariner 9 rocket engine for Viking Orbiter use. Engine conversion consists of replacing the 40:1 expansion area ratio nozzle with a 60:1 nozzle of the internal regeneratively (INTEREGEN) cooled rocket engine. Five converted engines using nitrogen tetroxide and monomethylhydrazine demonstrated thermal stability during the nominal 2730-sec burn, but experienced difficulty at operating extremes. The thermal stability characteristic was treated in two ways. The first treatment consisted of mapping the operating regime of the engine to determine its safest operating boundaries as regards thermal equilibrium. Six engines were used for this purpose. Two of the six engines were then modified to effect the second approach - i.e., extend the operating regime. The engines were modified by permitting fuel injection into the acoustic cavity.

  13. Method and apparatus for transfer function simulator for testing complex systems

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1985-01-01

    A method and apparatus for testing the operation of a complex stabilization circuit in a closed loop system is presented. The method is comprised of a programmed analog or digital computing system for implementing the transfer function of a load thereby providing a predictable load. The digital computing system employs a table stored in a microprocessor in which precomputed values of the load transfer function are stored for values of input signal from the stabilization circuit over the range of interest. This technique may be used not only for isolating faults in the stabilization circuit, but also for analyzing a fault in a faulty load by so varying parameters of the computing system as to simulate operation of the actual load with the fault.

  14. Operating characteristics of HTS power supply for and improving temporal stability of coated conductor magnet in liquid helium

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Kim, Y. J.; Yang, S. E.; Kwon, N. Y.; Lee, H. G.; Ko, T. K.

    2009-10-01

    High temperature superconducting (HTS) magnets have been studied for insert coils of high field nuclear magnetic resonance (NMR) magnets but the temporal stability required for NMR is hard to achieve due to low index value and high joint resistance. In this research, the HTS power supply with magnets using coated conductor (CC) was investigated and tested in helium cryogenic system. All joints were conducted by soldering after etching stabilizer of the CC to minimize joint resistance. The pumping rate was determined by current amplitude and timing sequential control of heaters and the electromagnet. Operating characteristics were analyzed to enhance charging efficiency and the feasibility of temporally stable CC magnet during persistent mode was studied.

  15. Laser safety and hazard analysis for the temperature stabilized BSLT ARES laser system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. As a result of temperature stabilization of the BSLT laser the operating parameters of the laser had changed requiring a hazard analysis based on the new operating conditions. The ARES laser system is a Van/Truck based mobile platform, which is used to performmore » laser interaction experiments and tests at various national test sites.« less

  16. Stochastic stability assessment of a semi-free piston engine generator concept

    NASA Astrophysics Data System (ADS)

    Kigezi, T. N.; Gonzalez Anaya, J. A.; Dunne, J. F.

    2016-09-01

    Small engines, as power generators with low-noise and vibration characteristics, are needed in two niche application areas: as electric vehicle range extenders and as domestic micro Combined Heat and Power systems. A recent semi-free piston design known as the AMOCATIC generator fully meets this requirement. The engine potentially allows for high energy conversion efficiencies at resonance derived from having a mass and spring assembly. As with free-piston engines in general, stability and control of piston motion has been cited as the prime challenge limiting the technology's widespread application. Using physical principles, we derive in this paper two important results: an energy balance criterion and a related general stability criterion for a semi-free piston engine. Control is achieved by systematically designing a Proportional Integral (PI) controller using a control-oriented engine model for which a specific stability condition is stated. All results are presented in closed form throughout the paper. Simulation results under stochastic pressure conditions show that the proposed energy balance, stability criterion, and PI controller, operate as predicted to yield stable engine operation at fixed compression ratio.

  17. Slope stability radar for monitoring mine walls

    NASA Astrophysics Data System (ADS)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  18. Reversing Optical Damage In LiNbO3 Switches

    NASA Technical Reports Server (NTRS)

    Gee, C. M.; Thurmond, G. D.

    1985-01-01

    One symptom of optical damage in Ti-diffused LiNbO3 directional-coupler switch reversed by temporarily raising input illumination to higher-thannormal power level. Healing phenomenon used to restore normal operation, increase operating-power rating, and stabilize operating characteristics at lower powers. Higher operating power is tolerated after treatment.

  19. Rapid stabilization of thawing soils For enhanced vehicle mobility: a field demonstration project

    DOT National Transportation Integrated Search

    1999-02-01

    Thawing soil presents a formidable challenge for vehicle operations cross-country and on unsurfaced roads. To mitigate the problem, a variety of stabilization techniques were evaluated for their suitability for rapid employment to enhance military ve...

  20. A multiloop generalization of the circle criterion for stability margin analysis

    NASA Technical Reports Server (NTRS)

    Safonov, M. G.; Athans, M.

    1979-01-01

    In order to provide a theoretical tool suited for characterizing the stability margins of multiloop feedback systems, multiloop input-output stability results generalizing the circle stability criterion are considered. Generalized conic sectors with 'centers' and 'radii' determined by linear dynamical operators are employed to specify the stability margins as a frequency dependent convex set of modeling errors (including nonlinearities, gain variations and phase variations) which the system must be able to tolerate in each feedback loop without instability. The resulting stability criterion gives sufficient conditions for closed loop stability in the presence of frequency dependent modeling errors, even when the modeling errors occur simultaneously in all loops. The stability conditions yield an easily interpreted scalar measure of the amount by which a multiloop system exceeds, or falls short of, its stability margin specifications.

  1. PSYOP in Stabilization and Reconstruction Operations: Preparing for Korean Reunification

    DTIC Science & Technology

    2005-03-01

    Belmakki ( Morocco Navy), Gerald Butera (Rwanda Army), Ariel Caculitan (Philippines Army), Murat Celik (Turkey Army), Rene Espino (Philippines Army...established Center for Stabilization and Reconstruction Studies ( CSRS ) at the U.S. Naval Postgraduate School. Information on this center can be found...Center for Stabilization and Reconstruction Studies ( CSRS ) at the U.S. Naval Postgraduate School. Information on this center can be found at URL: http

  2. Mali and Islamic Extremism: Applying Lessons Learned from Afghanistan

    DTIC Science & Technology

    2016-11-21

    Stability operations use the pop- ulation as the center of gravity.40 U.S. military doctrine directs us to review political, military, economic ...military success or lasting stability . This article addresses the similar contexts between the two countries and how lessons from Afghanistan can be...applied to Mali to improve chances for lasting stability . Keywords: Africa, Mali, Azawad, asymmetric warfare, belligerent forces, jihad, Islamic

  3. 14 CFR 25.21 - Proof of compliance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... characteristics requirements is dependent upon a stability augmentation system or upon any other automatic or power-operated system, compliance must be shown with §§ 25.671 and 25.672. (f) In meeting the... ice protection system in accordance with the operating limitations and operating procedures...

  4. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply.

    PubMed

    Tang, Xiaobin; Ding, An; Qu, Fangshu; Jia, Ruibao; Chang, Haiqing; Cheng, Xiaoxiang; Liu, Bin; Li, Guibai; Liang, Heng

    2016-08-01

    A pilot-scale gravity-driven membrane (GDM) filtration system under low gravitational pressure without any pre-treatment, backwash, flushing, or chemical cleaning was carried out to investigate the effect of operation parameters (including operation pressure, aeration mode, and intermittent filtration) on the effluent quality and permeability development. The results revealed that GDM system exhibited an efficient performance for the removal of suspended substances and organic compounds. The stabilization of flux occurred and the average values of stable flux were 6.6, 8.1, and 8.6 Lm(-2) h(-1) for pressures of 65, 120, and 200 mbar, respectively. In contrast, flux stabilization was not observed under continuous and intermittent aeration conditions. However, aeration (especially continuous aeration) was effective to improve flux and alleviate membrane fouling during 1-month operation. Moreover, intermittent filtration would influence the stabilization of permeate flux, resulting in a higher stable flux (ranging from 6 to 13 Lm(-2) h(-1)). The stable flux significantly improved with the increase of intermittent period. Additionally, GDM systems exhibited an efficient recovery of flux after simple physical cleaning and the analyses of resistance reversibility demonstrated that most of the total resistance was hydraulic reversible resistance (50-75 %). Therefore, it is expected that the results of this study can develop strategies to increase membrane permeability and reduce energy consumption in GDM systems for decentralized water supply.

  5. Stability improvement of an operational two-way satellite time and frequency transfer system

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jiun; Fujieda, Miho; Takiguchi, Hiroshi; Tseng, Wen-Hung; Tsao, Hen-Wai

    2016-04-01

    To keep national time accurately coherent with coordinated universal time, many national metrology institutes (NMIs) use two-way satellite time and frequency transfer (TWSTFT) to continuously measure the time difference with other NMIs over an international baseline. Some NMIs have ultra-stable clocks with stability better than 10-16. However, current operational TWSTFT can only provide frequency uncertainty of 10-15 and time uncertainty of 1 ns, which is inadequate. The uncertainty is dominated by the short-term stability and the diurnals, i.e. the measurement variation with a period of one day. The aim of this work is to improve the stability of operational TWSTFT systems without additional transmission, bandwidth or increase in signal power. A software-defined receiver (SDR) comprising a high-resolution correlator and successive interference cancellation associated with open-loop configuration as the TWSTFT receiver reduces the time deviation from 140 ps to 73 ps at averaging time of 1 h, and occasionally suppresses diurnals. To study the source of the diurnals, TWSTFT is performed using a 2  ×  2 earth station (ES) array. Consequently, some ESs sensitive to temperature variation are identified, and the diurnals are significantly reduced by employing insensitive ESs. Hence, the operational TWSTFT using the proposed SDR with insensitive ESs achieves time deviation to 41 ps at 1 h, and 80 ps for averaging times from 1 h to 20 h.

  6. Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction.

    PubMed

    Brunetti, O; Filippi, G M; Lorenzini, M; Liti, A; Panichi, R; Roscini, M; Pettorossi, V E; Cerulli, G

    2006-11-01

    Surgical reconstruction of the anterior cruciate ligament (ACL) may reduce, but it does not always eliminate, knee and body instability because of a persisting proprioceptive deficit. In order to enhance body stability, a new protocol of treatment has been proposed consisting of mechanical vibration (100 Hz frequency and < 20 microm amplitude) of the quadriceps muscle in the leg that has undergone ACL reconstruction. In our trials, stimulation was performed when the quadriceps muscle was kept isometrically contracted. Treatment was started one month after surgery. Vibration was applied for short periods over three consecutive days. Nine months after treatment, postural stability was re-evaluated with the subjects standing on one leg with open and with closed eyes. The postural stability of the subjects having undergone vibration treatment, standing on the operated leg was significantly improved one day after treatment when evaluated as mean of speed and elliptic area of the center of pressure. The improvement persisted and increased during the following weeks. Peak torques of the operated leg extensor muscles also increased and reached values close to that of the leg, which had not been operated. Conversely, the balance of the untreated subjects standing on the operated leg did not improve and the restoration of the extensor muscle peak torque was poor. It is concluded that short lasting proprioceptive activation by vibration may lead to a faster and more complete equilibrium recovery probably by permanently changing the network controlling knee posture.

  7. Generalised summation-by-parts operators and variable coefficients

    NASA Astrophysics Data System (ADS)

    Ranocha, Hendrik

    2018-06-01

    High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework. However, if generalised SBP operators are used, the treatment of the boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely - interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain. Here, new formulations are proposed, allowing the creation of discretisations using general SBP operators that are both conservative and stable. Thus, several shortcomings that might be attributed to generalised SBP operators are overcome (cf. Nordström and Ruggiu (2017) [38] and Manzanero et al. (2017) [39]).

  8. 46 CFR 174.045 - Intact stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... righting moments calculated for each of its normal operating conditions and severe storm conditions, when... to a severe storm condition within a minimum period of time consistent with the operating manual...

  9. 46 CFR 174.045 - Intact stability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... righting moments calculated for each of its normal operating conditions and severe storm conditions, when... to a severe storm condition within a minimum period of time consistent with the operating manual...

  10. 46 CFR 174.045 - Intact stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... righting moments calculated for each of its normal operating conditions and severe storm conditions, when... to a severe storm condition within a minimum period of time consistent with the operating manual...

  11. Measurements of the STS orbiter's angular stability during in-orbit operations

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.; Epstein, Gabriel L.; Houston, James; Zarechnak, Andrew

    1995-01-01

    We report on measurements of the angular stability, commonly called 'jitter', of the STS Orbiter during normal operations in space. Measurements were carried out by measuring optically the Orbiter's roll and pitch orientation relative to the solar vector as the orbiter was held in a -Z(sub 0) solar inertial orientation (orbiter bay oriented toward the Sun). We also report observations of an interesting perturbation to the orbiter's orientation noted by the crew during the STS-60 mission. These data may be useful in analyzing the in-orbit response of the Orbiter to thruster firings and other applied torques, and may aid in the planning of future experiments that require fine-pointed operations by the orbiter.

  12. Outcomes of Complete Versus Partial Surgical Stabilization of Flail Chest.

    PubMed

    Nickerson, Terry P; Thiels, Cornelius A; Kim, Brian D; Zielinski, Martin D; Jenkins, Donald H; Schiller, Henry J

    2016-01-01

    Rib fractures are common after chest wall trauma. For patients with flail chest, surgical stabilization is a promising technique for reducing morbidity. Anatomical difficulties often lead to an inability to completely repair the flail chest; thus, the result is partial flail chest stabilization (PFS). We hypothesized that patients with PFS have outcomes similar to those undergoing complete flail chest stabilization (CFS). A prospectively collected database of all patients who underwent rib fracture stabilization procedures from August 2009 until February 2013 was reviewed. Abstracted data included procedural and complication data, extent of stabilization, and pulmonary function test results. Of 43 patients who underwent operative stabilization of flail chest, 23 (53%) had CFS and 20 (47%) underwent PFS. Anterior location of the fracture was the most common reason for PFS (45%). Age, sex, operative time, pneumonia, intensive care unit and hospital length of stay, and narcotic use were the same in both groups. Total lung capacity was significantly improved in the CFS group at 3 months. No chest wall deformity was appreciated on follow-up, and no patients underwent additional stabilization procedures following PFS. Despite advances in surgical technique, not all fractures are amenable to repair. There was no difference in chest wall deformity, narcotic use, or clinically significant impairment in pulmonary function tests among patients who underwent PFS compared with CFS. Our data suggest that PFS is an acceptable strategy and that extending or creating additional incisions for CFS is unnecessary.

  13. Flow Range of Centrifugal Compressor Being Extended

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  14. Trapped particle stability for the kinetic stabilizer

    NASA Astrophysics Data System (ADS)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  15. STORAGE STABILITY OF PESTICIDES IN EXTRACT SOLVENTS AND SAMPLING MEDIA

    EPA Science Inventory

    Demonstrating that pesticides are stable in field media and their extracts over extended storage periods allows operational flexibility and cost efficiency. Stability of the 31 neutral pesticides and 2 acid herbicides of the Agricultural Health Study exposure pilot was evaluate...

  16. Design techniques for a stable operation of cryogenic field-programmable gate arrays.

    PubMed

    Homulle, Harald; Visser, Stefan; Patra, Bishnu; Charbon, Edoardo

    2018-01-01

    In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance of various printed circuit board components commonly employed at room temperature. Extensive characterization of these components shows that the majority of decoupling capacitor types and voltage regulators are not well behaved at cryogenic temperatures, asking for an ad hoc solution to stabilize the FPGA supply voltage, especially for sensitive applications. Therefore, we have designed a firmware that enforces a constant power consumption, so as to stabilize the supply voltage in the interior of the FPGA. The FPGA is powered with a supply at several meters distance, causing significant resistive voltage drop and thus fluctuations on the local supply voltage. To achieve the stabilization, the variation in digital logic speed, which directly corresponds to changes in supply voltage, is constantly measured and corrected for through a tunable oscillator farm, implemented on the FPGA. The impact of the stabilization technique is demonstrated together with a reconfigurable analog-to-digital converter (ADC), completely implemented in the FPGA fabric and operating at 15 K. The ADC performance can be improved by at most 1.5 bits (effective number of bits) thanks to the more stable supply voltage. The method is versatile and robust, enabling seamless porting to other FPGA families and configurations.

  17. Design techniques for a stable operation of cryogenic field-programmable gate arrays

    NASA Astrophysics Data System (ADS)

    Homulle, Harald; Visser, Stefan; Patra, Bishnu; Charbon, Edoardo

    2018-01-01

    In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance of various printed circuit board components commonly employed at room temperature. Extensive characterization of these components shows that the majority of decoupling capacitor types and voltage regulators are not well behaved at cryogenic temperatures, asking for an ad hoc solution to stabilize the FPGA supply voltage, especially for sensitive applications. Therefore, we have designed a firmware that enforces a constant power consumption, so as to stabilize the supply voltage in the interior of the FPGA. The FPGA is powered with a supply at several meters distance, causing significant resistive voltage drop and thus fluctuations on the local supply voltage. To achieve the stabilization, the variation in digital logic speed, which directly corresponds to changes in supply voltage, is constantly measured and corrected for through a tunable oscillator farm, implemented on the FPGA. The impact of the stabilization technique is demonstrated together with a reconfigurable analog-to-digital converter (ADC), completely implemented in the FPGA fabric and operating at 15 K. The ADC performance can be improved by at most 1.5 bits (effective number of bits) thanks to the more stable supply voltage. The method is versatile and robust, enabling seamless porting to other FPGA families and configurations.

  18. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    NASA Astrophysics Data System (ADS)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  19. Noise properties of an optical frequency comb from a SESAM-mode-locked 1.5-μm solid-state laser stabilized to the 10-13 level

    NASA Astrophysics Data System (ADS)

    Schilt, S.; Dolgovskiy, V.; Bucalovic, N.; Schori, C.; Stumpf, M. C.; Di Domenico, G.; Pekarek, S.; Oehler, A. E. H.; Südmeyer, T.; Keller, U.; Thomann, P.

    2012-11-01

    We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×10-13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×10-14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.

  20. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show highmore » decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.« less

  1. Immobilization of Candida antarctica lipase B by adsorption to green coconut fiber.

    PubMed

    Brígida, Ana I S; Pinheiro, Alvaro D T; Ferreira, Andrea L O; Gonçalves, Luciana R B

    2008-03-01

    An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 degrees C, as half-lives (t (1/2)) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.

  2. Self-stabilized discharge filament in plane-parallel barrier discharge configuration: formation, breakdown mechanism, and memory effects

    NASA Astrophysics Data System (ADS)

    Tschiersch, R.; Nemschokmichal, S.; Bogaczyk, M.; Meichsner, J.

    2017-10-01

    Single self-stabilized discharge filaments were investigated in the plane-parallel electrode configuration. The barrier discharge was operated inside a gap of 3 mm shielded by glass plates to both electrodes, using helium-nitrogen mixtures and a square-wave feeding voltage at a frequency of 2 kHz. The combined application of electrical measurements, ICCD camera imaging, optical emission spectroscopy and surface charge diagnostics via the electro-optic Pockels effect allowed the correlation of the discharge development in the volume and on the dielectric surfaces. The formation criteria and existence regimes were found by systematic variation of the nitrogen admixture to helium, the total pressure and the feeding voltage amplitude. Single self-stabilized discharge filaments can be operated over a wide parameter range, foremost, by significant reduction of the voltage amplitude after the operation in the microdischarge regime. Here, the outstanding importance of the surface charge memory effect on the long-term stability was pointed out by the recalculated spatio-temporally resolved gap voltage. The optical emission revealed discharge characteristics that are partially reminiscent of both the glow-like barrier discharge and the microdischarge regime, such as a Townsend pre-phase, a fast cathode-directed ionization front during the breakdown and radially propagating surface discharges during the afterglow.

  3. Immobilization of Candida antarctica Lipase B by Adsorption to Green Coconut Fiber

    NASA Astrophysics Data System (ADS)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Gonçalves, Luciana R. B.

    An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.

  4. Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum.

    PubMed

    Fdéz-Güelfo, L A; Alvarez-Gallego, C; Sales Márquez, D; Romero García, L I

    2010-12-01

    The work presented here concerns the start-up and stabilization stages of a Continuous Stirred Tank Reactor (CSTR) semicontinuously fed for the treatment of the Organic Fraction of Municipal Solid Waste (OFMSW) through anaerobic digestion at thermophilic temperature range (55 degrees C) and dry conditions (30% Total Solids). The procedure reported involves two novel aspects with respect to other start-up and stabilization protocols reported in the literature. The novel aspects concern the adaptation of the inoculum to both the operating conditions (thermophilic and dry) and to the type of waste by employing a modified SEBAC (Sequential Batch Anaerobic Composting) system and, secondly, the direct start-up of the process in a thermophilic temperature regime and feeding of the system from the first day of operation. In this way a significant reduction in the start-up time and stabilization is achieved i.e. 110 days in comparison to 250 days for the processes reported by other authors for the same type of waste and digester. The system presents suitable operational conditions to stabilize the reactor at SRT of 35 days, with a maximum biogas production of 1.944 LR/L.d with a CH(4) and CO(2) percentage of 25.27% and 68.15%, respectively. 2010 Elsevier Ltd. All rights reserved.

  5. A prospective single center study to assess the impact of surgical stabilization in patients with rib fracture.

    PubMed

    Khandelwal, Gaurav; Mathur, R K; Shukla, Sumit; Maheshwari, Ankur

    2011-01-01

    To compare the intensity of pain and duration of return to normal activity in patients with rib fractures treated with surgical stabilization with plating versus conventional treatment modalities. This study was conducted over a 12 month period. Patients with rib fractures were assessed by numerical pain scale. Patients having pain scale less than 5 were excluded from study. Patients having pain scale of 5 or more than 5 were treated with conventional treatment for next 10 days. On 11th day patients were again assessed by numerical pain scale and patients having score less than 5 were excluded from study. Patients having pain scale of 5, 6, and 7 were treated with conventional treatment and patients having pain scale of 8, 9, and 10 were selected for operative management. Operative and control group were compared on basis of intensity of pain and duration of return to normal activity. Follow up was done on 5, 15, and 30 post operative day. There was less pain in operative group as compared to control group. Mean rib fracture pain in operative group was 9.15, 2.31, 1.12 as compared to 6.25, 5.96, 4.50 in control group on 5, 15 and 30 post operative days. Also there was early return to normal activity in operative group. Surgical stabilization of rib fracture, an underutilized intervention is better than conventional conservative management in terms of both, decrease in intensity of pain and early return to normal activity. Copyright © 2011 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  7. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less

  8. Characterization of 14C in Swedish light water reactors.

    PubMed

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.

  9. Dynamic interaction between fetal adversity and a genetic score reflecting dopamine function on developmental outcomes at 36 months.

    PubMed

    Bischoff, Adrianne R; Pokhvisneva, Irina; Léger, Étienne; Gaudreau, Hélène; Steiner, Meir; Kennedy, James L; O'Donnell, Kieran J; Diorio, Josie; Meaney, Michael J; Silveira, Patrícia P

    2017-01-01

    Fetal adversity, evidenced by poor fetal growth for instance, is associated with increased risk for several diseases later in life. Classical cut-offs to characterize small (SGA) and large for gestational age (LGA) newborns are used to define long term vulnerability. We aimed at exploring the possible dynamism of different birth weight cut-offs in defining vulnerability in developmental outcomes (through the Bayley Scales of Infant and Toddler Development), using the example of a gene vs. fetal adversity interaction considering gene choices based on functional relevance to the studied outcome. 36-month-old children from an established prospective birth cohort (Maternal Adversity, Vulnerability, and Neurodevelopment) were classified according to birth weight ratio (BWR) (SGA ≤0.85, LGA >1.15, exploring a wide range of other cut-offs) and genotyped for polymorphisms associated with dopamine signaling (TaqIA-A1 allele, DRD2-141C Ins/Ins, DRD4 7-repeat, DAT1-10- repeat, Met/Met-COMT), composing a score based on the described function, in which hypofunctional variants received lower scores. There were 251 children (123 girls and 128 boys). Using the classic cut-offs (0.85 and 1.15), there were no statistically significant interactions between the neonatal groups and the dopamine genetic score. However, when changing the cut-offs, it is possible to see ranges of BWR that could be associated with vulnerability to poorer development according to the variation in the dopamine function. The classic birth weight cut-offs to define SGA and LGA newborns should be seen with caution, as depending on the outcome in question, the protocols for long-term follow up could be either too inclusive-therefore most costly, or unable to screen true vulnerabilities-and therefore ineffective to establish early interventions and primary prevention.

  10. Development and Assessment of CTF for Pin-resolved BWR Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salko, Robert K; Wysocki, Aaron J; Collins, Benjamin S

    2017-01-01

    CTF is the modernized and improved version of the subchannel code, COBRA-TF. It has been adopted by the Consortium for Advanced Simulation for Light Water Reactors (CASL) for subchannel analysis applications and thermal hydraulic feedback calculations in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). CTF is now jointly developed by Oak Ridge National Laboratory and North Carolina State University. Until now, CTF has been used for pressurized water reactor modeling and simulation in CASL, but in the future it will be extended to boiling water reactor designs. This required development activities to integrate the code into the VERA-CSmore » workflow and to make it more ecient for full-core, pin resolved simulations. Additionally, there is a significant emphasis on producing high quality tools that follow a regimented software quality assurance plan in CASL. Part of this plan involves performing validation and verification assessments on the code that are easily repeatable and tied to specific code versions. This work has resulted in the CTF validation and verification matrix being expanded to include several two-phase flow experiments, including the General Electric 3 3 facility and the BWR Full-Size Fine Mesh Bundle Tests (BFBT). Comparisons with both experimental databases is reasonable, but the BFBT analysis reveals a tendency of CTF to overpredict void, especially in the slug flow regime. The execution of these tests is fully automated, analysis is documented in the CTF Validation and Verification manual, and the tests have become part of CASL continuous regression testing system. This paper will summarize these recent developments and some of the two-phase assessments that have been performed on CTF.« less

  11. Passive gamma analysis of the boiling-water-reactor assemblies

    NASA Astrophysics Data System (ADS)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  12. Effects of materials and design on the criticality and shielding assessment of canister concepts for the disposal of spent nuclear fuel.

    PubMed

    Gutiérrez, Miguel Morales; Caruso, Stefano; Diomidis, Nikitas

    2018-05-19

    According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier system, aiming to provide containment of the SNF for thousands of years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfilment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms. The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations were carried out. The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. Therefore, the application of a burnup credit methodology for the PWR case is required, being currently under development. Relevant is also the influence of canister material and internal geometry on criticality, enabling the identification of safer fuel arrangements. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the threshold of 1 Gy/h defined to limit radiation-induced corrosion of the canister in all cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Passive gamma analysis of the boiling-water-reactor assemblies

    DOE PAGES

    Vo, D.; Favalli, A.; Grogan, B.; ...

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden’s Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in themore » past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.« less

  14. Efficient Red-Emitting Platinum Complex with Long Operational Stability.

    PubMed

    Fleetham, Tyler; Li, Guijie; Li, Jian

    2015-08-05

    A tetradentate cyclometalated Pt(II) complex, PtN3N-ptb, was developed as an emissive dopant for stable and efficient red phosphorescent OLEDs. Devices employing PtN3N-ptb in electrochemically stable device architectures achieved long operational lifetimes with estimated LT97, of over 600 h at luminances of 1000 cd/m(2). Such long operational lifetimes were achieved utilizing only literature reported host, transporting and blocking materials with known molecular structures. Additionally, a thorough study of the effects of various host and transport materials on the efficiency, turn on voltage, and stability of the devices was carried out. Ultimately, maximum forward viewing EQEs as high as 21.5% were achieved, demonstrating that Pt(II) complexes can act as stable and efficient dopants with operational lifetimes comparable or superior to those of the best literature-reported Ir(III) complexes.

  15. NATO In Africa: Ready for Action?

    DTIC Science & Technology

    2007-04-01

    options for NATO planners who might be called upon to prepare NATO forces for the gamut of operations on the continent of Africa. vi Chapter 1...in a number of military operations running the gamut from peacekeeping/presence operations to combat operations and stability/reconstruction efforts...which run the gamut from 25 peacekeeping/humanitarian intervention to peacemaking operations.13 Some have criticized the EU for establishing its

  16. CSER 01-008 Canning of Thermally Stabilized Plutonium Oxide Powder in PFP Glovebox HC-21A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERICKSON, D.G.

    This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-18M and HA-20MB, and is documented in HNF-2707 Rev I a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. The plutonium stabilization program at the Plutonium Finishing Plant (PFP) uses heat to convert plutonium-bearing materials into dry powder that is chemically stable for long term storage. The stabilized plutonium is transferred into one of several gloveboxes for the canning process, Gloveboxes HC-18M in Room 228'2, HA-20MB in Roommore » 235B, and HC-21A in Room 230B are to be used for this process. This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-I8M and HA-20MB, and is documented in HNF-2707 Rev l a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. Evaluation of this operation included normal, base cases, and contingencies. The base cases took the normal operations for each type of feed material and added the likely off-normal events. Each contingency is evaluated assuming the unlikely event happens to the conservative base case. Each contingency was shown to meet the double contingency requirement. That is, at least two unlikely, independent, and concurrent changes in process conditions are required before a criticality is possible.« less

  17. Operation of a New COTS Crystal Oscillator - CXOMHT over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    Crystal oscillators are extensively used in electronic circuits to provide timing or clocking signals in data acquisition, communications links, and control systems, to name a few. They are affordable, small in size, and reliable. Because of the inherent characteristics of the crystal, the oscillator usually exhibits extreme accuracy in its output frequency within the intrinsic crystal stability. Stability of the frequency could be affected under varying load levels or other operational conditions. Temperature is one of those important factors that influence the frequency stability of an oscillator; as it does to the functionality of other electronic components. Electronics designed for use in NASA deep space and planetary exploration missions are expected to be exposed to extreme temperatures and thermal cycling over a wide range. Thus, it is important to design and develop circuits that are able to operate efficiently and reliably under in these harsh temperature environments. Most of the commercial-off-the-shelf (COTS) devices are very limited in terms of their specified operational temperature while very few custom-made commercial and military-grade parts have the ability to operate in a slightly wider range of temperature than those of the COTS parts. These parts are usually designed for operation under one temperature extreme, i.e. hot or cold, and do not address the wide swing in the operational temperature, which is typical of the space environment. For safe and successful space missions, electronic systems must therefore be designed not only to withstand the extreme temperature exposure but also to operate efficiently and reliably. This report presents the results obtained on the evaluation of a new COTS crystal oscillator under extreme temperatures.

  18. 14 CFR 91.527 - Operating in icing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, or flight attitude instrument system or wing, except that takeoffs may be made with frost... each rotor blade, propeller, windshield, wing, stabilizing or control surface, and each airspeed...

  19. 14 CFR 91.527 - Operating in icing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, or flight attitude instrument system or wing, except that takeoffs may be made with frost... each rotor blade, propeller, windshield, wing, stabilizing or control surface, and each airspeed...

  20. 14 CFR 91.527 - Operating in icing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, or flight attitude instrument system or wing, except that takeoffs may be made with frost... each rotor blade, propeller, windshield, wing, stabilizing or control surface, and each airspeed...

  1. 14 CFR 25.177 - Static lateral-directional stability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static lateral-directional stability. 25.177 Section 25.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... operation of the airplane, the aileron and rudder control movements and forces must be substantially...

  2. 77 FR 32595 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... strategic location of this political and economic power contributes significantly to ensuring peace and economic stability in the region. Australia's efforts in peacekeeping and humanitarian operations have made a significant impact to regional political and economic stability and have served U.S. national...

  3. Nondestructive evaluation of mechanically stabilized earth walls with frequency-modulated continuous wave (FM-CW) radar.

    DOT National Transportation Integrated Search

    2014-06-01

    Effective techniques for a nondestructive evaluation of mechanically stabilized earth (MSE) walls during normal operation : or immediately after an earthquake event are yet to be developed. MSE walls often have a rough surface finishing for the : pur...

  4. 46 CFR 153.1004 - Inhibited and stabilized cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...

  5. 46 CFR 153.1004 - Inhibited and stabilized cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...

  6. 46 CFR 153.1004 - Inhibited and stabilized cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...

  7. 46 CFR 153.1004 - Inhibited and stabilized cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...

  8. 46 CFR 153.1004 - Inhibited and stabilized cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...

  9. Stabilized tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)

    2008-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  10. Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, Wim van; Howard, Mark; Department of Physics, University of California, Santa Barbara, California 93106

    2011-07-15

    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships withmore » known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.« less

  11. Optimal line drop compensation parameters under multi-operating conditions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe

    2017-01-01

    Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.

  12. Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    NASA Astrophysics Data System (ADS)

    van Dam, Wim; Howard, Mark

    2011-07-01

    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiołkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.

  13. Design of a robust fuzzy controller for the arc stability of CO(2) welding process using the Taguchi method.

    PubMed

    Kim, Dongcheol; Rhee, Sehun

    2002-01-01

    CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.

  14. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less

  15. Stability and UV completion of the Standard Model

    NASA Astrophysics Data System (ADS)

    Branchina, Vincenzo; Messina, Emanuele

    2017-03-01

    The knowledge of the electroweak vacuum stability condition is of the greatest importance for our understanding of beyond Standard Model physics. It is widely believed that new physics that lives at very high-energy scales should have no impact on the stability analysis. This expectation has been recently challenged, but the results were controversial as new physics was given in terms of non-renormalizable higher-order operators. Here we consider for the first time new physics at extremely high-energy scales (say close to the Planck scale) in terms of renormalizable operators, in other words we consider a sort of toy UV completion of the Standard Model, and definitely show that its presence can be crucial in determining the vacuum stability condition. This result has important phenomenological consequences, as it provides useful guidance in studying beyond Standard Model theories. Moreover, it suggests that very popular speculations based on the so-called “criticality” of the Standard Model do not appear to be well founded.

  16. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    DOE PAGES

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; ...

    2017-11-28

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less

  17. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    NASA Astrophysics Data System (ADS)

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; Schloemer, Tracy H.; Harvey, Steven P.; Tremolet de Villers, Bertrand J.; Sellinger, Alan; Berry, Joseph J.; Luther, Joseph M.

    2018-01-01

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.

  18. Dynamic Characteristics and Stability Analysis of Space Shuttle Main Engine Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Gunter, Edgar J.; Branagan, Lyle

    1991-01-01

    The dynamic characteristics of the Space Shuttle high pressure oxygen pump are presented. Experimental data is presented to show the vibration spectrum and response under actual engine operation and also in spin pit testing for balancing. The oxygen pump appears to be operating near a second critical speed and is sensitive to self excited aerodynamic cross coupling forces in the turbine and pump. An analysis is presented to show the improvement in pump stability by the application of turbulent flow seals, preburner seals, and pump shaft cross sectional modifications.

  19. A Study of Al-Mn Transition Edge Sensor Engineering for Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, E. M.; et al.

    2013-11-10

    The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.

  20. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

Top