Science.gov

Sample records for bwr type reactors

  1. Standard- and extended-burnup PWR (pressurized-water reactor) and BWR (boiling-water reactor) reactor models for the ORIGEN2 computer code

    SciTech Connect

    Ludwig, S.B.; Renier, J.P.

    1989-12-01

    The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs.

  2. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    NASA Astrophysics Data System (ADS)

    Trianti, Nuri; Su'ud, Zaki; Arif, Idam; Riyana, EkaSapta

    2014-09-01

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  3. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    SciTech Connect

    Trianti, Nuri E-mail: szaki@fi.itba.c.id; Su'ud, Zaki E-mail: szaki@fi.itba.c.id; Arif, Idam E-mail: szaki@fi.itba.c.id; Riyana, EkaSapta

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  4. BWR reactor pressure vessel license renewal industry report; revision 1. Final report

    SciTech Connect

    Braden, D.; Stancavage, P.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). The scope of the IR provides the technical basis for license renewal for U.S. Boiling Water Reactor (BWR) Reactor Pressure Vessels (RPVs). The report includes the following RPV components: attachment welds, closure studs, nozzles and safe ends, penetrations, vessel shell and flanges, top and bottom heads and vessel support skirt. The scope is limited to domestic BWRs designated by GE Nuclear Energy as BWR/2 through BWR/6.

  5. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  6. Generic aging management programs for license renewal of BWR reactor coolant systems components.

    SciTech Connect

    Shah, V.N.; Liu, Y.Y.

    2002-02-15

    The paper reviews the existing generic aging management programs (AMPs) for the reactor coolant system (RCS) components in boiling water reactors (BWRs), including the reactor pressure vessel and internals, the reactor recirculation system, and the connected piping. These programs have been evaluated in the U.S. Nuclear Regulatory Commission (NRC) report, Generic Aging Lessons Learned (GALL), NUREG-1801, for their use in the license renewal process to manage several aging effects, including loss of material, crack initiation and growth, loss of fracture toughness, loss of preload, wall thinning, and cumulative fatigue damage. The program evaluation includes a review of ten attributes (scope of program, preventive actions, parameters monitored/inspected, detection of aging effects, monitoring and trending, acceptance criteria, corrective actions, confirmative process, administrative control, and operating experience) for their effectiveness in managing a specific aging effect in a given component(s). The generic programs are based on the ASME Section XI inservice inspection requirements; industry guidelines for inspection and evaluation of aging effects in BWR reactor vessel, internals, and recirculation piping; monitoring and control of BWR water chemistry; and operating experience as reported in the USNRC generic communications and industry reports. The review concludes that all generic AMPs are acceptable for managing aging effects in BWR RCS components during an extended period of operation and do not need further evaluation. However, the plant-specific programs for managing aging in certain RCS components during an extended period of operation do require further evaluation. For some plant-specific AMPs, the GALL report recommends an aging management activity to verify their effectiveness. An example of such an activity is a one-time inspection of Class 1 small-bore piping to ensure that service-induced weld cracking is not occurring in the piping. Several of

  7. Generic Aging Management Programs for License Renewal of BWR Reactor Coolant System Components

    SciTech Connect

    Shah, V.N.; Liu, Y.Y.

    2002-07-01

    The paper reviews the existing generic aging management programs (AMPs) for the reactor coolant system (RCS) components in boiling water reactors (BWRs), including the reactor pressure vessel and internals, the reactor recirculation system, and the connected piping. These programs have been evaluated in the U.S. Nuclear Regulatory Commission (NRC) report, Generic Aging Lessons Learned (GALL), NUREG-1801, for their use in the license renewal process to manage several aging effects, including loss of material, crack initiation and growth, loss of fracture toughness, loss of preload, wall thinning, and cumulative fatigue damage. The program evaluation includes a review of ten attributes (scope of program, preventive actions, parameters monitored/inspected, detection of aging effects, monitoring and trending, acceptance criteria, corrective actions, confirmative process, administrative control, and operating experience) for their effectiveness in managing a specific aging effect in a given component(s). The generic programs are based on the ASME Section XI inservice inspection requirements; industry guidelines for inspection and evaluation of aging effects in BWR reactor vessel, internals, and recirculation piping; monitoring and control of BWR water chemistry; and operating experience as reported in the USNRC generic communications and industry reports. The review concludes that all generic AMPs are acceptable for managing aging effects in BWR RCS components during an extended period of operation and do not need further evaluation. However, the plant-specific programs for managing aging in certain RCS components during an extended period of operation do require further evaluation. For some plant-specific AMPs, the GALL report recommends an aging management activity to verify their effectiveness. An example of such an activity is a one-time inspection of Class 1 small-bore piping to ensure that service-induced weld cracking is not occurring in the piping. Several of

  8. Evaluation of a passive containment cooling system for a simplified BWR (boiling water reactor)

    SciTech Connect

    Otonari, J.; Arai, K. ); Oikawa, H.; Nagasaka, H. )

    1989-11-01

    Simplified boiling water reactors (BWRs) are characterized for the adoption of a passive containment cooling system (PCCS) and a passive emergency core cooling system (ECCS). TOSPAC, which had been developed as the preliminary design code for several PCCS concepts, was compared with TRAC for verification. TOSPAC analyses were also performed to show the effectiveness of the isolation condenser (IC) as a PCCS over a wide range of break spectra. The selected reference plant for the analysis is a natural circulation BWR plant with 1,800-MW(thermal) power. The ECCS consists of a gravity-driven cooling system (GDCS) and depressurization valves. The IC and drywell cooler are considered for the PCCS. The IC units and drywell coolers are placed in the IC pool and GDCS pool, respectively.

  9. Analysis of fission product revaporization in a BWR Reactor Coolant System during a station blackout accident

    SciTech Connect

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This paper presents an analysis of fission product revaporization from the Reactor Coolant System (RCS) following the Reactor Pressure Vessel (RPV) failure. The station blackout accident in a BWR Mark I Power Plant was considered. The TRAPMELT3 models for vaporization, chemisorption, and the decay heating of RCS structures and gases were used and extended beyond the RPV failure in the analysis. The RCS flow models based on the density-difference or pressure-difference between the RCS and containment pedestal region were developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP was developed for the analysis. The REVAP code was incorporated with the MARCH, TRAPMELT3 and NAUA codes from the Source Term Code Package (STCP) to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors in determining the magnitude of revaporization and subsequent release of the volatile fission product into the environment. 6 refs., 8 figs.

  10. Analysis of fission product revaporization in a BWR reactor cooling system during a station blackout accident

    SciTech Connect

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This report presents a preliminary analysis of fission product revaporization in the Reactor Cooling System (RCS) after the vessel failure. The station blackout transient for BWR Mark I Power Plant is considered. The TRAPMELT3 models of evaporization, chemisorption, and the decay heating of RCS structures and gases are adopted in the analysis. The RCS flow models based on the density-difference between the RCS and containment pedestal region are developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP is developed for the analysis. The REVAP is incorporated with the MARCH, TRAPMELT3 and NAUA codes of the Source Term Code Pack Package (STCP). The NAUA code is used to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors determining the magnitude of revaporization and subsequent release of the volatile fission product. 8 figs., 1 tab.

  11. Physical characteristics of GE (General Electric) BWR (boiling-water reactor) fuel assemblies

    SciTech Connect

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs.

  12. An assessment of BWR (boiling water reactor) Mark-II containment challenges, failure modes, and potential improvements in performance

    SciTech Connect

    Kelly, D.L.; Jones, K.R.; Dallman, R.J. ); Wagner, K.C. )

    1990-07-01

    This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs.

  13. BWR internal cracking issues

    SciTech Connect

    Carpenter, C.E. Jr.; Lund, A.L.

    1999-07-01

    The regulatory issues associated with cracking of boiling water reactor (BWR) internals is being addressed by the Nuclear Regulatory Commission (NRC) staff and is the subject of a voluntary industry initiative. The lessons learned from this effort will be applied to pressurized water reactor (PWR) internals cracking issues.

  14. Assessment of severe accident prevention and mitigation features: BWR (boiling water reactor), Mark I containment design

    SciTech Connect

    Pratt, W.T.; Eltawila, F.; Perkins, K.R.; Fitzpatrick, R.G.; Luckas, W.J.; Lehner, J.R.; Davis, P.

    1988-07-01

    Plant features and operator actions, which have been found to be important in either preventing or mitigating severe accidents in BWRs with Mark I containments (BWR Mark I's) have been identified. These features and actions were developed from insights derived from reviews of in-depth risk assessments performed specifically for the Peach Bottom plant and from assessment of other relevant studies. Accident sequences that dominate the core-damage frequency and those accident sequences that are of potentially high consequence were identified. Vulnerabilities of the BWR Mark I to severe accident containment loads were also identified. In addition, those features of a BWR Mark I, which are important for preventing core damage and are available for mitigating fission-product release to the environment were also identified. This report is issued to provide focus to an analyst examining an individual plant. This report calls attention to plant features and operator actions and provides a list of deterministic attributes for assessing those features and actions found to be helpful in reducing the overall risk for Peach Bottom and other Mark I plants. Thus, the guidance is offered as a resource in examining the subject plant to determine if the same, or similar, plant features and operator actions will be of value in reducing overall plant risk. This report is intended to serve solely as guidance.

  15. Preliminary study on direct recycling of spent BWR fuel in BWR system

    NASA Astrophysics Data System (ADS)

    Waris, A.; Sumbono, Prayudhatama, Dythia; Novitrian, Su'ud, Zaki

    2012-06-01

    Spent fuel management is considered to be one of the main problems in energy nuclear utilization. Recycling after reprocessing is one of the options for dealing with nuclear reactor spent fuel. Reprocessing is very costly and needs remote handling since spent fuel is very hazard high level waste. On top of that, only a small number of countries can manage a reprocessing plant. If country likes Indonesia decide to "go nuclear", it should find another way to deal with the nuclear spent fuel. Korea has proposed the DUPIC (Direct Utilization of Spent PWR fuel In CANDU) concept. Nevertheless, DUPIC concept requires two types of nuclear power plants, i.e., pressurized water reactor (PWR) and CANadian Deuterium Uranium reactor (CANDU). In this study, we evaluate a scheme of direct recycling of spent BWR fuel in BWR system, under the concept that we have called as a SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario. Several spent BWR fuel compositions in loaded BWR fuel has been evaluated to achieve the criticality of reactor.

  16. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    SciTech Connect

    Gauld, I.C.

    2000-03-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k{sub eff} values within about 1% {Delta}k/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models.

  17. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configuration

    SciTech Connect

    Gauld, I.C.

    2000-03-16

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the United States, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k{sub eff} values within about 1% {Delta}k/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models.

  18. Aging assessment of the boiling-water reactor (BWR) standby liquid control system. Phase 1

    SciTech Connect

    Orton, R.D.; Johnson, A.B.; Buckley, G.D.; Larson, L.L.

    1992-10-01

    Pacific Northwest Laboratory conducted a Phase I aging assessment of the standby liquid control (SLC) system used in boiling-water reactors. The study was based on detailed reviews of SLC system component and operating experience information obtained from the Nuclear Plant Reliability Database System, the Nuclear Document System, Licensee Event Reports, and other databases. Sources dealing with sodium pentaborate, borates, boric acid, and the effects of environment and corrosion in the SLC system were reviewed to characterize chemical properties and corrosion characteristics of borated solutions. The leading aging degradation concern to date appears to be setpoint drift in relief valves, which has been discovered during routine surveillance and is thought to be caused by mechanical wear. Degradation was also observed in pump seals and internal valves. In general, however, the results of the Phase I study suggest that age-related degradation of SLC systems has not been serious.

  19. Aging assessment of the boiling-water reactor (BWR) standby liquid control system

    SciTech Connect

    Orton, R.D.; Johnson, A.B.; Buckley, G.D.; Larson, L.L.

    1992-10-01

    Pacific Northwest Laboratory conducted a Phase I aging assessment of the standby liquid control (SLC) system used in boiling-water reactors. The study was based on detailed reviews of SLC system component and operating experience information obtained from the Nuclear Plant Reliability Database System, the Nuclear Document System, Licensee Event Reports, and other databases. Sources dealing with sodium pentaborate, borates, boric acid, and the effects of environment and corrosion in the SLC system were reviewed to characterize chemical properties and corrosion characteristics of borated solutions. The leading aging degradation concern to date appears to be setpoint drift in relief valves, which has been discovered during routine surveillance and is thought to be caused by mechanical wear. Degradation was also observed in pump seals and internal valves. In general, however, the results of the Phase I study suggest that age-related degradation of SLC systems has not been serious.

  20. Extended Burnup Demonstration Reactor Fuels Program. Annual progress report, April 1983-March 1984. [BWR

    SciTech Connect

    Exarhos, C.A.

    1985-06-20

    The US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities Nuclear Corporation have participated since 1979 in a cooperative Extended Burnup Demonstration Program. Under the program, standard ENC-fabricated reload fuel in the Big Rock Point and Oyster Creek reactor cores has been irradiated to discharge burnups at or beyond 35,000 MWD/MTU, one to two cycles beyond its originally projected exposure life. The program provides for examination of the fuel at poolside before and after each extended burnup cycle as well as for limited destructive hot cell examination. The 1984 progress report covers work performed under the EBD program between April 1983 and March 1984. Major milestones reached during the period include completion of a hot cell examination on four high burnup rods from Big Rock Point and of a poolside on the Oyster Creek EBD fuel at discharge. The hot cell examination of four rods at burnups to 37.2 GWD/MTU confirmed poolside measurements on the same fuel, showing the urania and gadolinia-bearing fuel rods to be in excellent condition. No major cladding degradation, pellet restructuring, or pellet-clad interaction was found in any of the samples examined. The Oyster Creek fuel, examined at an assembly average exposure of 34.5 GWD/MTU, showed good performance with regard to both diametral creepdown and clad oxide accumulation.

  1. Development of the Medium Small BWR 'DMS' (Double MS: Modular Simplified and Medium Small Reactor)

    SciTech Connect

    Tetsushi, Hino; Masao, Chaki; Kenji, Tominaga; Masayoshi, Matsuura

    2006-07-01

    A new concept of the small and medium sized light water reactor, named the DMS has been developed by Hitachi, supported by the Japan Atomic Power Company. The DMS features significantly simplified plant systems realized by adoption of a natural circulation system of coolant and a free surface separation system (FSS). The DMS employs short length fuel assemblies and this enables natural circulation with a compact RPV. By adopting the natural circulation system, recirculation pumps and their driving power sources can be eliminated. The FSS uses the concept of steam and liquid separation by gravity, which is possible because of the low steam velocity due to the natural circulation and low power density of the DMS. By adopting the FSS, steam separation equipment needed in current BWRs can be eliminated. In addition, system components are rationalized and their layouts are modularized and standardized to attain a compact PCV; these result in a construction cost per unit power output almost comparable to that of current BWRs. In this study, the core design was improved taking plant cost and fuel efficiency into consideration. It was found that the number of fuel assemblies can be reduced about 11 % while maintaining the same thermal output as before, by extending the active fuel length. This makes it possible to reduce the number of control rod drive systems by about 12 % and to cut construction cost. (authors)

  2. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  3. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  4. On reactor type comparisons for the next generation of reactors

    SciTech Connect

    Alesso, H.P.; Majumdar, K.C.

    1991-08-22

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs.

  5. Application of the gamma thermometer to BWR core monitoring

    SciTech Connect

    Martin, C.L.

    1996-12-31

    Boiling water reactor (BWR) core monitoring systems rely on in-core instrumentation to help determine the precise axial and radial power distribution of the core. Recently, it has been proposed to replace the existing traversing in-core probe (TIP) system with a system based on fixed in-core gamma thermometers. In this paper, the author describes the type of gamma thermometer (GT) that could be used in the proposed system and provides results from an ongoing implant test program.

  6. Estimating boiling water reactor decommissioning costs: A user`s manual for the BWR Cost Estimating Computer Program (CECP) software. Final report

    SciTech Connect

    Bierschbach, M.C.

    1996-06-01

    Nuclear power plant licensees are required to submit to the US Nuclear Regulatory Commission (NRC) for review their decommissioning cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning boiling water reactor (BWR) power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  7. BWR AXIAL PROFILE

    SciTech Connect

    J. Huffer

    2004-09-28

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.

  8. Simplified compact containment BWR plant

    SciTech Connect

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-07-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  9. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  10. Proceedings: 2001 PWR/BWR Plant Chemistry Meeting

    SciTech Connect

    2001-05-01

    This report presents proceedings of EPRI's 2001 Plant Chemistry Conference, which brought together approximately 100 industry representatives to discuss experiences and issues regarding nuclear plant chemistry at both pressurized water reactor (PWR) and boiling water reactor (BWR) plants.

  11. 44 BWR Waste Package Loading Curve Evaluation

    SciTech Connect

    J.M. Scaglione

    2001-11-05

    The objective of this calculation is to evaluate the required minimum burnup as a function of average initial boiling water reactor (BWR) assembly enrichment that would permit loading of fuel into a potential 44 BWR waste package (WP). The potential WP design is illustrated in Attachment I. The scope of this calculation covers a range of initial enrichments from 1.5 through 5.0 weight percent U-235, and a burnup range of 0 through 50 GWd/mtU.

  12. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    SciTech Connect

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  13. Synergistic Failure of BWR Internals

    SciTech Connect

    Ware, Arthur Gates; Chang, T-Y

    1999-10-01

    Boiling Water Reactor (BWR) core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. An initial phase has been completed in which background material was gathered and evaluated, and potential accident sequences were identified. A second phase is underway to perform a simplified, quantitative probabilistic risk assessment on a representative high-power BWR/4. Results of the initial study conducted on the jet pumps show that any cascading failures would not result in a significant increase in the core damage frequency. The methodology is currently being extended to other major reactor internals components.

  14. VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling. [PWR; BWR

    SciTech Connect

    Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail.

  15. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 3. Programmer's manual. Final report. [PWR; BWR

    SciTech Connect

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1983-05-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces.

  16. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual. [PWR; BWR

    SciTech Connect

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code.

  17. Decontamination of BWR fuel bundles

    SciTech Connect

    Ocken, H.

    1988-01-01

    Decontamination of individual systems in operating reactors, such as recirculation piping in boiling water reactors (BWRs) and steam generators in pressurized water reactors, is becoming an accepted technique to reduce radiation fields and occupational radiation exposure. Because a significant inventory of radioactivity resides on the reactor core, a longer term goal is to effect full plant decontamination with the fuel in place. Full plant decontamination has proved effective in CANDU and steam-generating heavy water reactor plants, but only recently have US plants begun to consider seriously the merits of such an approach. Clearly, a first step is to show that exposure to commercial decontamination solvents of highly irradiated core components will not induce any adverse effects. This paper describes a study of the application of the LOMI and CANDECON solvents to three-cycle discharged fuel bundles from the Quad Cities-2 BWR. Highly irradiated stainless steel specimens cut from a section of a LaCrosse BWR control blade also were decontaminated at the same time as the fuel bundles. CANDECON was selected as being representative of dilute chelant process and LOMI as representative of more strongly reducing processes. Both processes were preceded by the application of an oxidizing alkaline permanganate (AP) oxidizing step to help dissolve chromium.

  18. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  19. RELAP5-3D Analysis of Pressure Perturbation at the Peach Bottom BWR During Low-Flow Stability Tests

    SciTech Connect

    Lombardi Costa, Antonella; Petruzzi, Alessandro; D'Auria, Francesco

    2006-07-01

    Experimental and theoretical studies about the BWR (Boiling Water Reactor) stability have been performed to design a stable core configuration. BWR instabilities can be caused by inter-dependencies between thermal-hydraulic and reactivity feedback parameters such as the void-coefficient, for example, during a pressure perturbation event. In the present work, the pressure perturbation is considered in order to study in detail this type of transient. To simulate this event, including the strong feedback effects between core neutronic and reactor thermal-hydraulics, and to verify core behavior and evaluate parameters related to safety, RELAP5-3D code has been used in the analyses. The simulation was performed making use of Peach Bottom-2 BWR data to predict the dynamics of a real reactor during this type of event. Stability tests were conducted in the Peach Bottom 2 BWR, in 1977, and were done along the low-flow end of the rated power-flow line, and along the power-flow line corresponding to minimum recirculation pump speed. The calculated results are herein compared against the available experimental data. (authors)

  20. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  1. BWR Refill-Reflood Program. Final report

    SciTech Connect

    Myers, L L

    1983-09-01

    The BWR Refill-Reflood Program is part of the continuing Loss of Coolant Accident (LOCA) research in the United States which is jointly sponsored by the Nuclear Regulatory Commission, the Electric Power Research Institute, and the General Electric Company. The current program expanded the focus of this research to include full scale experimental evaluations of multidimensional and multichannel effects during system refill. The program has also made major contributions to the BWR version of the Transient Reactor Analysis Code (TRAC) which has been developed cooperatively with the Idaho National Engineering Laboratory (INEL) for application to BWR transients. A summary description of the complete program is provided including the principal findings and main conclusions of the program. The results of the program have shown that multidimensional and parallel channel effects have the potential to significantly improve the system response over that observed in single channel tests.

  2. Advanced Construction of Compact Containment BWR

    SciTech Connect

    Takahashi, M.; Maruyama, T.; Mori, H.; Hoshino, K.; Hijioka, Y.; Heki, H.; Nakamaru, M.; Hoshi, T.

    2006-07-01

    The reactor concept considered in this paper has a mid/small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. Compact Containment BWR (CCR) is being developed with matured BWR technologies together with innovative systems/components, will provide attractiveness for the energy market in the world due to its flexibility in energy demands as well as in site conditions, its high potential in reducing investment risk and its safety feature facilitating public acceptance. The flexibility is achieved by CCR's mid/small power output of 400 MWe class and capability of long operating cycle (refueling intervals). The high investment potential is expected from CCR's simplification/innovation in design such as natural circulation core cooling with the bottom located short core, top mounted upper entry control rod drives (CRDs) with ring-type dryers and simplified safety system with high pressure resistible primary containment vessel (PCV) concept. The natural circulation core eliminates recirculation pumps as well as needs for maintenance of such pumps. The top mounted upper entry CRDs enable the bottom located short core in RPV. The safety feature mainly consists of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), high pressure resistible PCV and in-vessel retention (IVR) capability. The large inventory increases the system response time in case of design base accidents including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. CCR's specific self-standing steel high pressure resistible PCV is designed to contain minimum piping and valves inside with reactor pressure vessel (RPV), only 13 m in diameter and 24 m in height. This compact PCV makes it possible to

  3. Mathematical modeling of maltose hydrolysis in different types of reactor.

    PubMed

    Findrik, Zvjezdana; Presecki, Ana Vrsalović; Vasić-Racki, Durda

    2010-03-01

    A commercial enzyme Dextrozyme was tested as catalyst for maltose hydrolysis at two different temperatures: 40 and 65 degrees C at pH 5.5. Its operational stability was studied in different reactor types: batch, repetitive batch, fed-batch and continuously operated enzyme membrane reactor. Dextrozyme was more active at 65 degrees C, but operational stability decay was observed during the prolonged use in the reactor at this temperature. The reactor efficiencies were compared according to the volumetric productivity, biocatalyst productivity and enzyme consumption. The best reactor type according to the volumetric productivity for maltose hydrolysis is batch and the best reactor type according to the biocatalyst productivity and enzyme consumption is continuously operated enzyme membrane reactor. The mathematical model developed for the maltose hydrolysis in the different reactors was validated by the experiments at both temperatures. The Michaelis-Menten kinetics describing maltose hydrolysis was used.

  4. BWR control-rod cobalt-alloy replacement. Final report

    SciTech Connect

    Aldred, P.

    1982-03-01

    Cobalt base pin and roller alloys in BWR Control Rods are a source for the Co-60 isotope which contributes to radiation buildup in the BWR core, the recirculation piping system and the spent fuel pool. It thereby influences personnel radiation exposure during BWR plant maintenance. The program objectives were (a) to identify non-cobalt alloys which could potentially replace the cobalt alloys, (b) evaluate the alloys by testing to qualify them for in-reactor surveillance testing, and (c) to initiate reactor tests at 2 BWRs. Wear resistance, an important requirement for pins and rollers, was measured in a simulated BWR environment (excluding irradiation). Prototypic wear tests were emphasized and a prototype control rod drive test facility was used to evaluate several pin and roller alloy combinations during prototype control rod operations.

  5. BWR stability analysis at Brookhaven National Laboratory

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-12-31

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  6. Decontamination as a precursor to decommissioning. Status report Task 2: process evaluation. [PWR; BWR

    SciTech Connect

    Divine, J.R.; Woodruff, E.M.; McPartland, S.A.; Zima, G.E.

    1983-05-01

    As part of the US Nuclear Regulatory Commission's program to reduce occupational exposure and waste volumes, the Pacific Northwest Laboratory is studying decontamination as a precursor to decommissioning. Eleven processes or solvents were examined for their behavior in decontaminating BWR carbon steel samples. The solvents included NS-1, a proprietary solvent of Dow Chemical Corporation, designed for BWR use, and AP-Citrox, a well-known, two-step process designed for PWR stainless steel; it was used to provide a reference for later comparison to other systems and processes. The decontamination factors observed in the tests performed in a small laboratory scale recirculating loop ranged from about 1 (no effect) to 222 (about 99.6% of the initial activity removed. Coordinated corrosion measurements were made using twelve chemical solvents and eight metal alloys found in a range of reactor types.

  7. A Computer Code for TRIGA Type Reactors.

    SciTech Connect

    1992-04-09

    Version 00 TRIGAP was developed for reactor physics calculations of the 250 kW TRIGA reactor. The program can be used for criticality predictions, power peaking predictions, fuel element burn-up calculations and data logging, and in-core fuel management and fuel utilization improvement.

  8. Assessment of two BWR accident management strategies

    SciTech Connect

    Hodge, S.A.; Petek, M.

    1991-01-01

    Candidate mitigative strategies for management of in-vessel events during the late phase (after core degradation has occurred) of postulated BWR severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for additional assessment. The first is a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertains to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose is to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies have been performed during 1991 under the auspices of the Detailed Assessment of BWR In-Vessel Strategies Program. This paper provides a discussion of the motivation for and purpose of these strategies and the potential for their success. 33 refs., 9 figs.

  9. 44-BWR WASTE PACKAGE LOADING CURVE EVALUATION

    SciTech Connect

    J.M. Scaglione

    2004-08-25

    The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing BWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results of 100 percent of the current BWR projected waste stream being able to be disposed of in the 44-BWR waste package with Ni-Gd Alloy absorber plates is contingent upon the referenced waste stream being sufficiently similar to the waste stream received for disposal. (3) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials.

  10. Estimating boiling water reactor decommissioning costs. A user`s manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment

    SciTech Connect

    Bierschbach, M.C.

    1994-12-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  11. Experience in PWR and BWR mixed-oxide fuel management

    SciTech Connect

    Schlosser, G.J.; Krebs, W.; Urban, P. )

    1993-04-01

    Germany has adopted the strategy of a closed fuel cycle using reprocessing and recycling. The central issue today is plutonium recycling by the use of U-Pu mixed oxide (MOX) in pressurized water reactors (PWRs) and boiling water reactors (BWRs). The design of MOX fuel assemblies and fuel management in MOX-containing cores are strongly influenced by the nuclear properties of the plutonium isotopes. Optimized MOX fuel assembly designs for PWRs currently use up to three types of MOX fuel rods having different plutonium contents with natural uranium or uranium tailings as carrier material but without burnable absorbers. The MOX fuel assembly designs for BWRs use four to six rod types with different plutonium contents and Gd[sub 2]O[sub 3]/UO[sub 2] burnable absorber rods. Both the PWR and the BWR designs attain good burnup equivalence and compatibility with uranium fuel assemblies. High flexibility exists in the loading schemes relative to the position and number of MOX fuel assemblies in the reloads and in the core as a whole. The Siemens experience with MOX fuel assemblies is based on the insertion of 318 MOX fuel assemblies in eight PWRs and 168 in BWRs and pressurized heavy water reactors so far. The primary operating results include information on the cycle length, power distribution, reactivity coefficients, and control rod worth of cores containing MOX fuel assemblies.

  12. Calculation of a BWR partial ATWS using RAMONA-3B

    SciTech Connect

    Garber, D.I.; Diamond, D.J.; Cheng, H.S.

    1982-01-01

    The RAMONA-3B code has been used to simulate a boiling water reactor (BWR) transient initiated by the closure of the main steam line isolation valves in which all the control rods in one-half the core fail to scram after reactor trip. The modeling of the nuclear steam supply system included three-dimensional neutron kinetics and parallel hydraulic channels (including a bypass channel). The transient is characterized by an initial pressure spike and then by oscillations in the pressure due to the opening and closing of relief valves. These oscillations in turn affect all thermohydraulic properties in the vessel. The simulation was continued for 7 minutes of reactor time at which point boron began to accumulate in the core. The calculation demonstrates the importance of using three-dimensional neutron kinetics in conjunction with the modeling of the nuclear steam supply system for this type of transient. RAMONA-3B is unique in its ability to do this type of calculation.

  13. Pin-Type Gas Cooled Reactor for Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Lipinski, Ronald J.

    2003-01-01

    This paper describes a point design for a pin-type Gas-Cooled Reactor concept that uses a fuel pin design similar to the SP100 fuel pin. The Gas-Cooled Reactor is designed to operate at 100 kWe for 7 years plus have a reduced power mode of 20% power for a duration of 5 years. The power system uses a gas-cooled, UN-fueled, pin-type reactor to heat He/Xe gas that flows directly into a recuperated Brayton system to produce electricity. Heat is rejected to space via a thermal radiator that unfolds in space. The reactor contains approximately 154 kg of 93.15 % enriched UN in 313 fuel pins. The fuel is clad with rhenium-lined Nb-1Zr. The pressures vessel and ducting are cooled by the 900 K He/Xe gas inlet flow or by thermal radiation. This permits all pressure boundaries to be made of superalloy metals rather than refractory metals, which greatly reduces the cost and development schedule required by the project. The reactor contains sufficient rhenium (a neutron poison) to make the reactor subcritical under water immersion accidents without the use of internal shutdown rods. The mass of the reactor and reflectors is about 750 kg.

  14. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  15. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGESBeta

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; et al

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  16. BWR refill-reflood program: core spray distribution experimental task plan

    SciTech Connect

    Eckert, T.

    1981-02-01

    An experimental task plan for the BWR/4 core spray task of the Refill-Reflood Test Program is presented. The test program will provide core spray distribution data for a 30 degree sector of the BWR/4 and 5-218 design. This design uses different nozzle types and different sparger elevations than the BWR/6-218 design which was tested previously. Test parameter ranges are specified; individual tests are defined; and measurement and data utilization plans are defined.

  17. Design study of Thorium-232 and Protactinium-231 based fuel for long life BWR

    SciTech Connect

    Trianti, N.; Su'ud, Z.; Riyana, E. S.

    2012-06-06

    A preliminary design study for the utilization of thorium added with {sup 231}Pa based fuel on BWR type reactor has been performed. In the previous research utilization of fuel based Thorium-232 and Uranium-233 show 10 years operation time with maximum excess-reactivity about 4.075% dk/k. To increase reactor operation time and reduce excess-reactivity below 1% dk/k, Protactinium (Pa-231) is used as Burnable Poison. Protactinium-231 has very interesting neutronic properties, which enable the core to reduce initial excess-reactivity and simultaneously increase production of {sup 233}U to {sup 231}Pa in burn-up process. Optimizations of the content of {sup 231}Pa in the core enables the BWR core to sustain long period of operation time with reasonable burn-up reactivity swing. Based on the optimization of fuel element composition (Th and Pa) in various moderation ratio we can get reactor core with longer operation time, 20 {approx} 30 years operation without fuel shuffling or refuelling, with average power densities maximum of about 35 watt/cc, and maximum excess-reactivity 0.56% dk/k.

  18. Design study of Thorium-232 and Protactinium-231 based fuel for long life BWR

    NASA Astrophysics Data System (ADS)

    Trianti, N.; Su'ud, Z.; Riyana, E. S.

    2012-06-01

    A preliminary design study for the utilization of thorium added with 231Pa based fuel on BWR type reactor has been performed. In the previous research utilization of fuel based Thorium-232 and Uranium-233 show 10 years operation time with maximum excess-reactivity about 4.075% dk/k. To increase reactor operation time and reduce excess-reactivity below 1% dk/k, Protactinium (Pa-231) is used as Burnable Poison. Protactinium-231 has very interesting neutronic properties, which enable the core to reduce initial excess-reactivity and simultaneously increase production of 233U to 231Pa in burn-up process. Optimizations of the content of 231Pa in the core enables the BWR core to sustain long period of operation time with reasonable burn-up reactivity swing. Based on the optimization of fuel element composition (Th and Pa) in various moderation ratio we can get reactor core with longer operation time, 20 ˜ 30 years operation without fuel shuffling or refuelling, with average power densities maximum of about 35 watt/cc, and maximum excess-reactivity 0.56% dk/k.

  19. Conditioning of BWR Control - Elements Using the New MOSAIK 80T/SWR-SE Cask - Concept

    SciTech Connect

    Oldiges, O.; Blenski, H.-J.; Engelage, H.; Behrens, W.; Majunke, J.; Schwarz, W.; Hallfarth, Dr.

    2002-02-27

    During the operation of Boiling Water Reactors, Control - Elements are used to control the neutron flux inside the reactor vessel. After the end of the lifetime, the Control - Elements are usually stored in the fuel - elements - pool of the reactor. Up to now, in Germany no conditioning of Control - Elements has been done in a BWR under operation.

  20. A simplified spatial model for BWR stability

    SciTech Connect

    Berman, Y.; Lederer, Y.; Meron, E.

    2012-07-01

    A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)

  1. Measurement methods for surface oxides on SUS 316L in simulated light water reactor coolant environments using synchrotron XRD and XRF

    NASA Astrophysics Data System (ADS)

    Watanabe, Masashi; Yonezawa, Toshio; Shobu, Takahisa; Shoji, Tetsuo

    2013-03-01

    Synchrotron X-ray diffraction (XRD) and X-ray fluorescent (XRF) measurement techniques have been used for non-destructive characterization of surface oxide films on Type 316L austenitic stainless steels that were exposed to simulated primary water environments of pressurized water reactors (PWR) and boiling water reactors (BWR). The layer structures of the surface spinel oxides were revealed ex situ after oxidation by measurements made as a function of depth. The layer structure of spinel oxides formed in simulated PWR primary water should normally be different from that formed in simulated BWR water. After oxidation in the simulated BWR environment, the spinel oxide was observed to contain NiFe2O4 at shallow depths, and FeCr2O4 and Fe3O4 at deeper depths. By contrast, after oxidation in the simulated PWR primary water environment, a Fe3O4 type spinel was observed near the surface and FeCr2O4 type spinel near the interface with the metal substrate. Furthermore, by in situ measurements during oxidation in the simulated BWR environment, it was also demonstrated that the ratio between spinel and hematite Fe2O3 can be changed depending on the water condition such as BWR normal water chemistry or BWR hydrogen water chemistry.

  2. Code System for PWR & BWR Multicompartment Containment Analysis, Versions MOD5

    1999-06-02

    CONTEMPT4/MOD6 describes the response of multicompartment containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program can accommodate both pressurized water reactor (PWR) and boiling water reactor (BWR) containment systems. Also, both design basis accident (DBA) and degraded core type LOCA conditions can be analyzed. The program calculates the time variation of compartment pressures, temperatures, and mass and energy inventories due to inter-compartment mass and energy exchange taking into account user-supplied descriptions of compartments,more » inter-compartment junction flow areas, LOCA source terms, and user-selected problem features. Analytical models available to describe containment systems include models for containment fans and pumps, cooling sprays, heat conducting structures, sump drains, PWR ice condensers, and BWR pressure suppression systems. CONTEMPT4/MOD6 also provides analytical models for hydrogen and carbon monoxide combustion within compartments and energy transfer due to gas radiation to accommodate degraded core type accidents.« less

  3. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    SciTech Connect

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O/sub 2/ fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO/sub 2/ fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O/sub 2/-fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O/sub 2/-fueled BWR should perform similar to a UO/sub 2/-fueled BWR under all operating conditions. A (Pu/Th)O/sub 2/-fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO/sub 2/-fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths.

  4. LBB application in Swedish BWR design

    SciTech Connect

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P.

    1997-04-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.

  5. Evaluation of BWR emergency procedure guidelines for BWR ATWS using RAMONA-3B code

    SciTech Connect

    Neymotin, L.; Slovik, G.; Cazzoli, E.; Saha, P.

    1985-01-01

    An MSIV Closure ATWS calculation for a typical BWR/4 (Browns Ferry, Unit 1) was performed using the RAMONA-3B code which is a BWR systems transient code combining three-dimensional neutronic core representation with multi-channel one-dimensional thermal hydraulics. The main objective of the study was to perform a best-estimate evaluation of the recently proposed Emergency Procedure Guidelines for Anticipated Transients Without Scram (ATWS). Emphasis was placed on evaluating the effects of lowering the downcomer water level to the Top of Active Fuel (TAF) and vessel depressurization. The calculation was run up to approximately 1200 seconds. Both actions, namely, lowering the water level and vessel depressurization, lowered the reactor power to some extent. However, the pressure suppression pool water temperature still reached approximately 90/sup 0/C (potential High Pressure Coolant Injection (HPCI) pump seal failure temperature) in twenty minutes. Thus, other actions such as boron injection and/or manual control rod insertion are necessary to mitigate a BWR/4 Main Steam Isolation Valve (MSIV) closure ATWS. 19 refs., 14 figs., 3 tabs.

  6. An innovative reactor-type biosensor for BOD rapid measurement.

    PubMed

    Wang, Jianlong; Zhang, Yixin; Wang, Yeyao; Xu, Runhua; Sun, Zhonghua; Jie, Zhou

    2010-03-15

    Biochemical oxygen demand (BOD) is one of the most important and widely used parameters for characterizing the organic pollution of water and wastewater. In this paper, a novel reactor-type biosensor for rapid measurement of BOD was developed, based on using immobilized microbial cell (IMC) beads as recognition bio-element in a completely mixed reactor which was used as determining chamber, replacing the traditionally used membrane as recognition bio-element. The IMC beads were freely suspended in the aqueous solution, so the mass transfer resistance for dissolved oxygen and organic compounds significantly reduced, and the quantity of the microbial cells used as recognition element can be easily adjusted, in comparison with the traditional membrane-type BOD biosensor, in which exists a unadjustable contradiction between the quantity of biomass and the thickness of the bio-membrane, thus limiting the stability and the detection limit. This novel kind of BOD biosensor significantly increased the sensitivity of the response, the detecting precision and prolonged the life time of the recognition element. The experimental data showed that the most appropriate temperature for biochemical reaction in the reactor was 30 degrees C, and the IMC beads could keep the bioactivity for about 70d at the detecting frequency of 8 times every day. The standard deviation of repeatability and the reproducibility of responses were within +/-6.4% and +/-5.0%, respectively, which are within acceptable bias limits, and meet the requirement of BOD rapid measurement.

  7. Scale Effects on Magnet Systems of Heliotron-Type Reactors

    NASA Astrophysics Data System (ADS)

    S, Imagawa; A, Sagara

    2005-02-01

    For power plants heliotron-type reactors have attractive advantages, such as no current-disruptions, no current-drive, and wide space between helical coils for the maintenance of in-vessel components. However, one disadvantage is that a major radius has to be large enough to obtain large Q-value or to produce sufficient space for blankets. Although the larger radius is considered to increase the construction cost, the influence has not been understood clearly, yet. Scale effects on superconducting magnet systems have been estimated under the conditions of a constant energy confinement time and similar geometrical parameters. Since the necessary magnetic field with a larger radius becomes lower, the increase rate of the weight of the coil support to the major radius is less than the square root. The necessary major radius will be determined mainly by the blanket space. The appropriate major radius will be around 13 m for a reactor similar to the Large Helical Device (LHD).

  8. BWR pipe crack remedies evaluation

    SciTech Connect

    Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.E.

    1986-10-01

    This paper presents results on: (a) the influence of simulated BWR environments on the stress-corrosion-craking (SCC) susceptibility of Types 304, 316NG, and 347 stainless (SS); (b) fracture-mechanics crack-growth-rate measurements on these materials and weld overlay specimens in different environments; and (c) residual stress measurements and metallographic evaluations of conventional pipe weldments treated by a mechanical-stress-improvement process (MSIP) as well as those produced by a narrow-gap welding procedure. Crack initiation studies on Types 304 and 316NG SS under crevice and non-crevice conditions in 289/sup 0/C water containing 0.25 ppM dissolved oxygen with low sulfate concentrations indicate that SCC initiates at very low strains (<3%) in the nuclear grade material. Crack growth measurements on fracture-mechanics-type specimens, under low-frequency cyclic loading, show that the Type 316NG steel cracks at a somewhat lower rate (approx.40%) than sensitized Type 304 SS in an impurity environment with 0.25 ppM dissolved-oxygen; however, the latter material stops cracking when sulfate is removed from the water. Crack growth in both materials ceases under simulated hydrogen-water chemistry conditions (<5 ppB oxygen) even with 100 ppB sulfate present in the water. An unexpected result was obtained in the test on a weld overlay specimen in the impurity environment, viz., the crack grew to the overlay interface at a nominal rate, branched at 90/sup 0/ in both directions, and then grew at high rate (parallel to the nominal applied load). Residual stress measurements on MSIP-treated weldments and those produced by a narrow-gap welding procedure indicate that these techniques produce compressive stresses over most of the inner surface near the weld and heat-affected zones.

  9. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  10. BWR full integral simulation test (FIST) program. TRAC-BWR model development. Volume 3. Developmental assessment for plant application

    SciTech Connect

    Cheung, Y.K.; Andersen, J.G.M.; Chu, K.H.; Shaug, J.C.

    1985-11-01

    The TRACB04 computer code has been developed under the model development tasks in the FIST Program. This report describes two developmental assessment calculations performed on BWR plants with TRACB04. A BWR/2 Design Basis Accident (DBA) including the containment response and a BWR/4 DBA with Low Pressure Coolant Injection (LPCI) water injected into the lower plenum were calculated and results of these cases were documented. These cases serve to test some of the new features of the TRACB04 (air field, containment model, ''water packing'' fixes and faster numerics in the three dimensional vessel component) and to demonstrate that the code has been assembled properly. They also provide best estimate LOCA results for the two plant types.

  11. Conceptual Reactor Design Study of Very High Temperature Reactor (VHTR) with Prismatic-Type Core

    NASA Astrophysics Data System (ADS)

    Nakano, Masaaki; Tsuji, Nobumasa; Tazawa, Yujiro

    The preliminary conceptual design study of prismatic-type Very High Temperature Reactor (VHTR) has been performed with 950°C outlet coolant temperature for higher efficient hydrogen and electricity production. First, the core internals that enable higher outlet temperature are considered in the viewpoint of reduction of core bypass flow. Three-dimensional thermal and hydraulic analyses are carried out and show that the 950°C outlet temperature requires approximately 90% fuel flow fraction and it can be achieved with the installation of the seals in bottom blocks, the coolant tubes in the permanent side reflectors and the core restraint devices. Next, the core and fission product (FP) release analyses are performed. The analysis methods that have been developed for the pin-in-block fuel, one type of prismatic VHTR cores, can be applied to multi-hole fuel, another type of the cores, with some adjustments of the analytical models.

  12. Development of long operating cycle simplified BWR

    SciTech Connect

    Heki, H.; Nakamaru, M.; Maruya, T.; Hiraiwa, K.; Arai, K.; Narabayash, T.; Aritomi, M.

    2002-07-01

    This paper describes an innovative plant concept for long operating cycle simplified BWR (LSBWR) In this plant concept, 1) Long operating cycle ( 3 to 15 years), 2) Simplified systems and building, 3) Factory fabrication in module are discussed. Designing long operating core is based on medium enriched U-235 with burnable poison. Simplified systems and building are realized by using natural circulation with bottom located core, internal CRD and PCV with passive system and an integrated reactor and turbine building. This LSBWR concept will have make high degree of safety by IVR (In Vessel Retention) capability, large water inventory above the core region and no PCV vent to the environment due to PCCS (Passive Containment Cooling System) and internal vent tank. Integrated building concept could realize highly modular arrangement in hull structure (ship frame structure), ease of seismic isolation capability and high applicability of standardization and factory fabrication. (authors)

  13. BWR Core Heat Transfer Code System.

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  14. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  15. BWR Full Integral Simulation Test (FIST) Program. TRAC-BWR model development. Volume 2. Models

    SciTech Connect

    Chu, K.H.; Andersen, J.G.M.; Cheung, Y.K.; Shaug, J.C.

    1985-11-01

    TRAC-BWR (Transient Reactor Analysis Code) is a computer code for best estimate analysis of the thermal hydraulic conditions in a Boiling Water Reactor system. In this report, the development of new models and the implementation of the balance of plant models leading to the creation of the TRACB04 version of the code, is described. The new models include an improved model for boron transport which accounts for non-uniform mixing and stratification, and a model for the interfacial heat transfer at two-phase levels. The balance of plant models (turbine, containment and heat exchanger) developed at INEL were evaluated, adapted, and implemented into TRACB04 to provide complete transient analysis capability. In addition, a model for air or a noncondensible gas as an additional field in the system of equations was adapted to the two step numerical method and incorporated into TRACB04.

  16. Thermal Response of the 44-BWR Waste Package to a Hypothetical Fire Accident

    SciTech Connect

    J.R. Smotrel; H. Marr; M.J. Anderson

    2001-04-05

    The purpose of this calculation is to determine the thermal response of the 44-boiling water reactor (BWR) waste package (WP) to the hypothetical regulatory fire accident. The objective is to calculate the temperature response of the waste package materials to the hypothetical short-term fire defined in 10 CFR 7 1, Section 73(c)(4), Reference 1. The scope of the calculation includes evaluation of the accident with the waste package above ground, at the Yucca Mountain surface facility. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation is that for the potential design of the type of WP considered in this calculation. In addition to the nominal design configuration thermal load case, the effects of varying the BWR thermal load are determined. The associated activity is the development of engineering evaluations to support the Licensing Application (LA) design activities.

  17. The BWR advanced fuel design experience using Studsvik CMS

    SciTech Connect

    DiGiovine, A.S.; Gibbon, S.H.; Wiksell, G.

    1996-12-31

    The current trend within the nuclear industry is to maximize generation by extending cycle lengths and taking outages as infrequently as possible. As a result, many utilities have begun to use fuel designed to meet these more demanding requirements. These fuel designs are significantly more heterogeneous in mechanical and neutronic detail than prior designs. The question arises as to how existing in-core fuel management codes, such as Studsvik CMS perform in modeling cores containing these designs. While this issue pertains to both pressurized water reactors (PWRs) and boiling water reactors (BWRs), this summary focuses on BWR applications.

  18. Design study status of compact containment BWR

    SciTech Connect

    Heki, H.; Nakamaru, M.; Kuroki, M.; Kojima, Y.; Arai, K.; Tahara, M.; Hoshi, T.

    2006-07-01

    The reactor concept considered in this paper has a relatively mid/small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Japan Atomic Power Company has been taking initiative in developing the concept of the Compact Containment Boiling Water Reactor (CCR). The CCR., which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's relatively mid/small power output of 400 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, upper entry control rod drives (CRDs) and simplified safety system with high pressure resistible containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The upper entry CRDs enable a simplified safety system followed by in-vessel retention (IVR) capability with the compact primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration of RPV below the top of the core height, passive cooling system by isolation condenser (IC). The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. Further core design study has been carried out taking into account compact reactor size and reduction of fuel

  19. A Program for Risk Assessment Associated with IGSCC of BWR Vessel Internals

    SciTech Connect

    A. G. Ware; D. K. Morton; J. D. Page; M. E. Nitzel; S. A. Eide; T. -Y. Chang

    1999-08-01

    A program is being carried out for the US Nuclear Regulatory Commission (NRC) by the Idaho National Engineering and Environmental Laboratory (INEEL), to conduct an independent risk assessment of the consequences of failures initiated by intergranular stress corrosion cracking (IGSCC) of the reactor vessel internals of boiling water reactor (BWR) plants. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, both singly and in combination with the failures of others, with specific consideration given to potential cascading and common mode effects on system performance. This paper presents a description of the overall program that is underway to modify an existing probabilistic risk assessment (PRA) of the BWR/4 plant to include IGSCC-initiated failures, subsequently to complete a quantitative PRA.

  20. The IRIS Spool-Type Reactor Coolant Pump

    SciTech Connect

    Kujawski, J.M.; Kitch, D.M.; Conway, L.E.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a light water cooled, 335 MWe power reactor which is being designed by an international consortium as part of the US DOE NERI Program. IRIS features an integral reactor vessel that contains all the major reactor coolant system components including the reactor core, the coolant pumps, the steam generators and the pressurizer. This integral design approach eliminates the large coolant loop piping, and thus eliminates large loss-of-coolant accidents (LOCAs) as well as the individual component pressure vessels and supports. In addition, IRIS is being designed with a long life core and enhanced safety to address the requirements defined by the US DOE for Generation IV reactors. One of the innovative features of the IRIS design is the adoption of a reactor coolant pump (called 'spool' pump) which is completely contained inside the reactor vessel. Background, status and future developments of the IRIS spool pump are presented in this paper. (authors)

  1. Bioreaction engineering. Vol. 1: Fundamentals, thermodynamics, formal kinetics, idealized reactor types and operation modes

    SciTech Connect

    Schugeri, K.

    1987-01-01

    This volume, provides view of the current state of bioreaction engineering, the science of the reaction engineering of cells and microorganisms. Topics covered include the modus operandi of bioreactors, basic types, reactors circuits, formal kinetics of cell growth and product formation, growth in idealized reactors, substrate-limited growth, operation modes in stirred reactors, discontinuous (batch) operation, continuous operation, dynamic behavior of open and closed loop reactors, and more.

  2. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    SciTech Connect

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, the capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.

  3. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGESBeta

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  4. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect

    Not Available

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  5. Seismic responses of a pool-type fast reactor with different core support designs

    SciTech Connect

    Wu, Ting-shu; Seidensticker, R.W. )

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs.

  6. Fatigue and environmentally assisted cracking in light water reactors

    SciTech Connect

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Shack, W.J.

    1991-12-01

    Fatigue and environmentally assisted cracking of piping, pressure vessels, and core components in light water reactors (LWRs) are important concerns as extended reactor lifetimes are envisaged. The degradation processes include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or SCC cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Similar cracking has also occurred in upper shell-to-transition cone girth welds in pressurized water reactor (PWR) steam generator vessels. Another concern is failure of reactor-core internal components after accumulation of relatively high fluence, which has occurred in both BWRs and PWRs. Research during the past year focused on (1) fatigue and SCC of ferritic steels used in piping and in steam generator and reactor pressure vessels, (2) role of chromate and sulfate in simulated BWR water in SCC of sensitized Type 304 SS, and (3) irradiation-assisted SCC in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs. Failure after accumulation of relatively high fluence has been attributed to radiation-induced segregation (RIS) of elements such as Si, P, Ni, and Cr. This document provides a summary of research progress in these areas.

  7. Investigation of Burnup Credit Modeling Issues Associated with BWR Fuel

    SciTech Connect

    Wagner, J.C.

    2000-10-12

    Although significant effort has been dedicated to the study of burnup-credit issues over the past decade, U.S. studies to-date have primarily focused on spent pressurized-water-reactor (PWR) fuel. The current licensing approach taken by the U.S. Department of Energy for burnup credit in transportation seeks approval for PWR fuel only. Burnup credit for boiling-water-reactor (BWR) fuel has not yet been formally sought. Burnup credit for PWR fuel was pursued first because: (1) nearly two-thirds (by mass) of the total discharged commercial spent fuel in the United States is PWR fuel, (2) it can substantially increase the fuel assembly capacity with respect to current designs for PWR storage and transportation casks, and (3) fuel depletion in PWRs is generally less complicated than fuel depletion in BWRs. However, due to international needs, the increased enrichment of modern BWR fuels, and criticality safety issues related to permanent disposal within the United States, more attention has recently focused on spent BWR fuel. Specifically, credit for fuel burnup in the criticality safety analysis for long-term disposal of spent nuclear fuel enables improved design efficiency, which, due to the large mass of fissile material that will be stored in the repository, can have substantial financial benefits. For criticality safety purposes, current PWR storage and transportation canister designs employ flux traps between assemblies. Credit for fuel burnup will eliminate the need for these flux traps, and thus, significantly increase the PWR assembly capacity (for a fixed canister volume). Increases in assembly capacity of approximately one-third are expected. In contrast, current BWR canister designs do not require flux traps for criticality safety, and thus, are already at their maximum capacity in terms of physical storage. Therefore, benefits associated with burnup credit for BWR storage and transportation casks may be limited to increasing the enrichment capacity and

  8. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    SciTech Connect

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  9. [Effects of outer type and built-in type straw bio-reactors on tomato growth and photosynthetic performance].

    PubMed

    Bian, Zhong-Hua; Wang, Yu; Hu, Xiao-Hui; Zou, Zhi-Rong; Zhang, Jing; Yan, Fei

    2013-03-01

    Taking the tomato (Solanum lycopersicum) cultivar "Kuiguan108" as test object, a comparative study was made on the effects of outer type and built-in type straw bio-reactors on the CO2 concentration, air relative humidity , air vapor pressure deficit in the solar greenhouse during the tomato growth over autumn-delayed cultivation as well as the effects of the bio-reactors on the tomato growth and photosynthetic performance. As compared with that in CK, the average CO2 concentration in the greenhouse with outer type straw bio-reactor at 9:30-11:30 and 14:30-15:00 on sunny days was increased significantly by 207. 3 and 103 micromol . mol-1 , respectively, and the ave-rage CO2 concentration in the greenhouse with built-in straw bio-reactor at 9:30-11:30 on sunny days was raised by 19.0 micromol . mol-1. Both the outer type and the built-in type straw bio-reactors promoted the tomato plant height growth and early flowering, enhanced the plant net photosynthetic rate and the yield per plant and per unit area significantly, and decreased the plant transpiration rate at the stages of vegetative growth and fruit- bearing significantly. Nevertheless, as compared with built-in type straw bio-reactor, outer type straw bio-reactor was more suitable for the autumn- delayed cultivation of tomato in solar greenhouse. PMID:23755491

  10. The Development of the Evolutionary BWR

    SciTech Connect

    Murase, A.; Nakamaru, M.; Kuroki, M.; Kojima, Y.; Yokoyama, S.

    2006-07-01

    Considering the delay of the fast breeding reactor (FBR) development, it is expected that the light water reactor will still play the main role of the electric power generation in the 2030's. Accordingly, Toshiba has been developing a new conceptual ABWR as the near-term BWR. We tentatively call it AB1600. The AB1600 has introduced the hybrid active/passive safety system in order to improve countermeasure against severe accident (SA). At the same time, we have made the simplification of the overall plant systems in order to improve economy. The simplification of the AB1600 is based on the proven technologies. To retain the safety performance superior or equivalent to the current ABWR and to strengthen the countermeasure against SA, the AB1600 has introduced the passive systems such as the passive containment cooling system (PCCS), the gravity driven core cooling system (GDCS) and the isolation condenser (IC). While we retain the safety performance superior or equivalent to the current ABWR, we have made the simplification of the safety systems. We could eliminate the high pressure core flooder system (HPCF) and the reactor core isolation system (RCIC) by extending the height of reactor pressure vessel (RPV) two meters. To achieve simplification of reactor systems, we have reduced the number of fuel bundles and the number of control rods by adopting large bundle that has a bundle pitch 1.2 times wider than that of the current ABWR. In the 1600 MWe class, the number of fuel bundles could be reduced to 600 from 872 of the current ABWR, and the number of control rods could be reduced to 137 from 205 of the current ABWR. Because the reactor internal pump (RIP) of the current ABWR has sufficient performance capacity and the improvement of fuel characteristics from the current fuel enables the operation at lower core flow, the number of RIPs could be decreased from ten to eight. Furthermore, we have reduced the number of divisions of emergency core cooling system (ECCS

  11. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  12. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  13. BWR Source Term Generation and Evaluation

    SciTech Connect

    J.C. Ryman

    2003-07-31

    This calculation is a revision of a previous calculation (Ref. 7.5) that bears the same title and has the document identifier BBAC00000-01717-0210-00006 REV 01. The purpose of this revision is to remove TBV (to-be-verified) -41 10 associated with the output files of the previous version (Ref. 7.30). The purpose of this and the previous calculation is to generate source terms for a representative boiling water reactor (BWR) spent nuclear fuel (SNF) assembly for the first one million years after the SNF is discharged from the reactors. This calculation includes an examination of several ways to represent BWR assemblies and operating conditions in SAS2H in order to quantify the effects these representations may have on source terms. These source terms provide information characterizing the neutron and gamma spectra in particles per second, the decay heat in watts, and radionuclide inventories in curies. Source terms are generated for a range of burnups and enrichments (see Table 2) that are representative of the waste stream and stainless steel (SS) clad assemblies. During this revision, it was determined that the burnups used for the computer runs of the previous revision were actually about 1.7% less than the stated, or nominal, burnups. See Section 6.6 for a discussion of how to account for this effect before using any source terms from this calculation. The source term due to the activation of corrosion products deposited on the surfaces of the assembly from the coolant is also calculated. The results of this calculation support many areas of the Monitored Geologic Repository (MGR), which include thermal evaluation, radiation dose determination, radiological safety analyses, surface and subsurface facility designs, and total system performance assessment. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Disposal Container (Ref. 7.27, page 7). Therefore, this calculation is subject to the requirements of the

  14. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    SciTech Connect

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  15. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Marshall, William BJ J

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  16. Code System for Best-Estimate Analysis of LOCA in BWR.

    2001-07-23

    Version 00 TRAC-BD1 performs best estimate analyses of loss-of-coolant accidents (LOCA) and other transients in boiling water reactors (BWRs). The program provides LOCA analysis capability for BWRs and for many BWR-related thermal-hydraulic experimental facilities. The program features a three-dimensional treatment of the BWR pressure vessel, a detailed model of a BWR fuel bundle including multi-rod, multi-bundle, radiation heat transfer, and leakage path modeling capability; flow-regime-dependent constitutive equation treatment; reflood tracking capability both for falling filmsmore » and bottom flood quench fronts; and consistent treatment of the entire accident sequence. Dump/restart capabilities are also provided.« less

  17. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  18. Advanced BWR core component designs and the implications for SFD analysis

    SciTech Connect

    Ott, L.J.

    1997-02-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B{sub 4}C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities.

  19. Environmentally assisted cracking in light water reactors. Semiannual report July 1996--December 1996

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J.

    1997-10-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1996 to December 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, (c) EAC of Alloy 600, and (d) characterization of residual stresses in welds of boiling water reactor (BWR) core shrouds by numerical models. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated BWR water at 288 C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from a low-carbon content heat of Alloy 600 in high-purity oxygenated water at 289 C. Residual stresses and stress intensity factors were calculated for BWR core shroud welds.

  20. Convective cooling in a pool-type research reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  1. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    SciTech Connect

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  2. Recent performance experience with US light water reactor self-actuating safety and relief valves

    SciTech Connect

    Hammer, C.G.

    1996-12-01

    Over the past several years, there have been a number of operating reactor events involving performance of primary and secondary safety and relief valves in U.S. Light Water Reactors. There are several different types of safety and relief valves installed for overpressure protection of various safety systems throughout a typical nuclear power plant. The following discussion is limited to those valves in the reactor coolant systems (RCS) and main steam systems of pressurized water reactors (PWR) and in the RCS of boiling water reactors (BWR), all of which are self-actuating having a setpoint controlled by a spring-loaded disk acting against system fluid pressure. The following discussion relates some of the significant recent experience involving operating reactor events or various testing data. Some of the more unusual and interesting operating events or test data involving some of these designs are included, in addition to some involving a number of similar events and those which have generic applicability.

  3. Dependence of the characteristics of bubbles on types of sonochemical reactors.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Iida, Yasuo

    2005-01-01

    Computer simulations of bubble oscillations in liquid water irradiated by an ultrasonic wave have revealed that the characteristic of bubbles depends on types of sonochemical reactors: a horn-type reactor and a standing-wave type reactor. When the acoustic amplitude is large at 20 kHz, the bubble content is mostly water vapor even at the end of the bubble collapse and the temperature inside a bubble at the collapse is relatively low. On the other hand, when the acoustic amplitude is relatively low, the bubble content is mostly noncondensable gas at the end of the bubble collapse and the bubble temperature is relatively high. In a horn-type sonochemical reactor, the former type of bubbles are dominant because many bubbles exist near the horn-tip where the acoustic amplitude is large, while in a standing-wave type reactor the latter type of bubbles are dominant because the Bjerknes force gathers bubbles at a region where acoustic amplitude is relatively low.

  4. BWRVIP-101: BWR Vessel and Internals Project: Proceedings: BWRVIP Symposium, Orlando, Florida, December 6-7, 2001

    SciTech Connect

    2002-04-01

    The Boiling Water Reactor Vessel and Internals Project (BWRVIP), formed in June 1994, is an association of utilities focused exclusively on BWR vessel and internals issues. This BWRVIP symposium--held December 6-7, 2001--provided an overview of products completed to date and how they are being implemented at individual plants.

  5. TRACE/PARCS Core Modeling of a BWR/5 for Accident Analysis of ATWS Events

    SciTech Connect

    Cuadra A.; Baek J.; Cheng, L.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    The TRACE/PARCS computational package [1, 2] isdesigned to be applicable to the analysis of light water reactor operational transients and accidents where the coupling between the neutron kinetics (PARCS) and the thermal-hydraulics and thermal-mechanics (TRACE) is important. TRACE/PARCS has been assessed for itsapplicability to anticipated transients without scram(ATWS) [3]. The challenge, addressed in this study, is to develop a sufficiently rigorous input model that would be acceptable for use in ATWS analysis. Two types of ATWS events were of interest, a turbine trip and a closure of main steam isolation valves (MSIVs). In the first type, initiated by turbine trip, the concern is that the core will become unstable and large power oscillations will occur. In the second type,initiated by MSIV closure,, the concern is the amount of energy being placed into containment and the resulting emergency depressurization. Two separate TRACE/PARCS models of a BWR/5 were developed to analyze these ATWS events at MELLLA+ (maximum extended load line limit plus)operating conditions. One model [4] was used for analysis of ATWS events leading to instability (ATWS-I);the other [5] for ATWS events leading to emergency depressurization (ATWS-ED). Both models included a large portion of the nuclear steam supply system and controls, and a detailed core model, presented henceforth.

  6. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    SciTech Connect

    Takeda, T.; Shimazu, Y.; Hibi, K.; Fujimura, K.

    2012-07-01

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of this project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)

  7. Dismantling of Loop-Type Channel Equipment of MR Reactor in NRC 'Kurchatov Institute' - 13040

    SciTech Connect

    Volkov, Victor; Danilovich, Alexey; Zverkov, Yuri; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Fadin, Sergey; Shisha, Anatoly; Chesnokov, Alexander

    2013-07-01

    In 2009 the project of decommissioning of MR and RTF reactors was developed and approved by the Expert Authority of the Russian Federation (Gosexpertiza). The main objective of the decommissioning works identified in this project: - complete dismantling of reactor equipment and systems; - decontamination of reactor premises and site in accordance with the established sanitary and hygienic standards. At the preparatory stage (2008-2010) of the project the following works were executed: loop-type channels' dismantling in the storage pool; experimental fuel assemblies' removal from spent fuel repositories in the central hall; spent fuel assembly removal from the liquid-metal-cooled loop-type channel of the reactor core and its placement into the SNF repository; and reconstruction of engineering support systems to the extent necessary for reactor decommissioning. The project assumes three main phases of dismantling and decontamination: - dismantling of equipment/pipelines of cooling circuits and loop-type channels, and auxiliary reactor equipment (2011-2012); - dismantling of equipment in underground reactor premises and of both MR and RTF in-vessel devices (2013-2014); - decontamination of reactor premises; rehabilitation of the reactor site; final radiation survey of reactor premises, loop-type channels and site; and issuance of the regulatory authorities' de-registration statement (2015). In 2011 the decommissioning license for the two reactors was received and direct MR decommissioning activities started. MR primary pipelines and loop-type facilities situated in the underground reactor hall were dismantled. Works were also launched to dismantle the loop-type channels' equipment in underground reactor premises; reactor buildings were reconstructed to allow removal of dismantled equipment; and the MR/RTF decommissioning sequence was identified. In autumn 2011 - spring 2012 results of dismantling activities performed are: - equipment from underground rooms (No. 66, 66

  8. BWR Anticipated Transients Without Scram Leading to Instability

    SciTech Connect

    Cheng L. Y.; Baek J.; Cuadra, A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    Anticipated transients without scram (ATWS) in aboiling water reactor (BWR) were simulated in order to understand reactor response and determine the effectiveness of automatic and operator actions to mitigate this beyond-design-basis accident. The events of interest herein are initiated by a turbine trip when the reactor is operating in the expanded operating domainMELLLA+ [maximum extended load line limit plus]. In these events the reactor may initially be at up to 120% of the original licensed thermal power (OLTP) and at flow rates as low as 80% of rated.For these (and similar) ATWS events the concern isthat when the reactor power decreases in response to a dual recirculation pump trip, the core will become unstable and large amplitude oscillations will begin. The occurrence of these power oscillations, if left unmitigated, may result in fuel damage, and the amplitude of the poweroscillations may hamper the effectiveness of the injection of dissolved neutron absorber through the standby liquid control system (SLCS).

  9. BWR containments license renewal industry report; revision 1. Final report

    SciTech Connect

    Smith, S.; Gregor, F.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures, and components, in the license renewal technical Industry Reports (IR`s). License renewal applicants may choose to reference these IR`s in support of their plant-specific license renewal applications as an equivalent to the integrated plant assessment provisions of the license renewal rule (IOCFR54). The scope of the IR provides the technical basis for license renewal for U.S. Boiling Water Reactor (BWR) containments. The scope of the report includes containments constructed of reinforced or prestressed concrete with steel liners and freestanding stell containments. Those domestic BWR containments designated as Mark I, Mark II or Mark III are covered, but no containments are addressed before these designs. The report includes those items within the jurisdictional boundaries for metal and concrete containments defined by Section III of the ASME Boiler and Pressure Vessel Code, Division 1, Subsection NE (Class MC) and Division 2 (Class CC) and their supports, but excluding snubbers.

  10. Development of large-capacity main steam isolation valves and safety relief valves for next-generation BWR plant

    SciTech Connect

    Mitsugu Nishimura; Shin-ichi Furukawa; Gen Itoh; Kikuo Takeshima

    2002-07-01

    A study was made of high capacity main steam isolation valves (MSIV) and safety relief valves (SRV) for the main steam line of a boiling water reactor (BWR). The next-generation BWR plants, which are planned to have higher thermal power, have raised concerns relating to the main steam line of an increase in maintenance work to SRVs and erosion of the MSIV valve seat due to the increased main steam flow velocity. In this research project, the capacity of the MSIV and SRV was increased and the valve configuration was changed in an attempt to solve these problems. (authors)

  11. Plant heat cycles, vessel internal arrangement, and auxiliary systems. Volume five

    SciTech Connect

    Not Available

    1986-01-01

    This volume covers nuclear power plant heat cycles (type of nuclear power cycles, power cycle refinements, BWR/PWR power cycle, BWR/PWR reactor coolant system), reactor vessel internal arrangement (reactor vessel features, BWR/PWR reactor vessel and internals, BWR/PWR reactor core), reactor auxiliary systems (purpose of reactor auxiliary systems, PWR and BWR reactor auxiliary systems, PWR and BWR control rod drive mechanisms).

  12. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  13. Photoelectrochemical protection of stainless alloys from the stress-corrosion cracking in BWR primary coolant environment

    SciTech Connect

    Akashi, Masatsune; Iso-o, Hiroyuki; Kubota, Nobuhiko; Fukuda, Takanori; Ayabe, Muneo; Hirano, Kenji

    1995-12-31

    The feasibility of counteracting or preventing the stress-corrosion cracking in the BWR core internals by the photoelectrochemical method has been examined. For the purpose TiO{sub 2} semiconductor is noted for its capability of photo electrochemically inducing the water-oxidizing anodic reaction in low enough potential domain if supplied with a light of a wavelength shorter than 410 nm. This paper offers an empirical proof by showing that Type 304 stainless steel and Alloy 600 stainless alloy that have been plasma-spray coated with TiO{sub 2} film will do quite well in environments of BWR primary coolant.

  14. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  15. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  16. Continuous adsorption and recovery of Cr(VI) in different types of reactors.

    PubMed

    Bai, Sudha R; Abraham, T Emilia

    2005-01-01

    This study reports the results of experiments on continuous adsorption and desorption of Cr(VI) ions by a chemically modified and polysulfone-immobilized biomass of the fungus Rhizopus nigricans. A fixed quantity of polymer-entrapped biomass beads corresponding to 2 g of dry biomass powder was employed in packed bed, fluidized bed, and stirred tank reactor for monitoring the continuous removal and recovery of Cr(VI) ions from aqueous solution and synthetic chrome plating effluent. Parameters such as flow rate (5, 10 and 15 mL/min), inlet concentration of Cr(VI) ions (50, 100, 150 and 250 mg/L) and the depth of biosorbent packing (22.8, 11.2 and 4.9 cm) were evaluated for the packed bed reactor. The breakthrough time and the adsorption rates in the packed bed column were found to decrease with increasing flow rate and higher Cr inlet concentrations and to increase with higher depths of sorbent packing. To have a comparative analysis of Cr adsorption efficiency in different types of reactors, the fluidized bed reactor and stirred tank reactor were operated using the same quantities of biosorbent material. For the fluidized bed reactor, Cr(VI) solution of 100 mg/L was pumped at 5 mL/min and fluidized by compressed air at a flow rate of 0.5 kg/cm.(2) The stirred tank reactor had a working volume of 200 mL capacity and the inlet/outlet flow rate was 5 mL/min. The maximum removal efficiency (mg Cr/g biomass) was obtained for the stirred tank reactor (159.26), followed by the fluidized reactor (153.04) and packed bed reactor (123.33). In comparison to the adsorption rate from pure chromate solution, approximately 16% reduction was monitored for synthetic chrome plating effluent in the packed bed. Continuous desorption of bound Cr ions from the reactors was effective with 0.01 N Na(2)CO(3) and nearly 80-94% recoveries have been obtained for all the reactors. PMID:16321053

  17. Development of continuous flow type hydrothermal reactor for hemicellulose fraction recovery from corncob.

    PubMed

    Makishima, Satoshi; Mizuno, Masahiro; Sato, Nobuaki; Shinji, Kazunori; Suzuki, Masayuki; Nozaki, Kouichi; Takahashi, Fumihiro; Kanda, Takahisa; Amano, Yoshihiko

    2009-06-01

    The semi-pilot scale of continuous flow type hydrothermal reactor has been investigated to separate hemicellulose fraction from corncob. We obtained the effective recovery of hemicellulose using tubular type reactor at 200 degrees C for 10 min. From constituent sugar analysis of corncob, 82.2% of xylan fraction was recovered as mixture of xylose, xylooligosaccharides and higher-xylooligosaccharide which has more than DP 10. During purification of solubilized fraction by hydrothermal reaction such as ultrafiltration and ion exchange resin, higher-xylooligosaccharide was recovered as the precipitate. This precipitate was identified as non-blanched xylan fraction which has from DP 11 to DP 21 mainly. In this system, only a small amount of furfural has been generated. This tubular reactor has a characteristic controllability of thermal history, and seems to be effective for sugar recovery from soft biomass like corncob.

  18. Environmentally assisted cracking in light water reactors. Semiannual report, April--September 1991: Volume 13

    SciTech Connect

    Kassner, T F; Ruther, W E; Chung, H M; Hicks, P D; Hins, A G; Park, J Y; Soppet, W K; Shack, W J

    1992-03-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking in high water reactors during the six months from April 1991 through September 1991. Topics that have been investigated during this period include (1) fatigue and stress corrosion cracking (SCC) of low-alloy steel used in piping and in steam generator and reactor pressure vessels; (2) role of chromate and sulfate in simulated boiling water reactor (BWR) water on SCC of sensitized Type 304 SS; and (3) radiation-induced segregation (RIS) and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence. Fatigue data were obtained on medium-S-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor (PWR) water, and in air. Crack-growth-rates (CGRs) of composite specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B were determined under small- amplitude cyclic loading in HP water with {approx} 300 ppb dissolved oxygen. CGR tests on sensitized Type 304 SS indicate that low chromate concentrations in BWR water (25--35 ppb) may actually have a beneficial effect on SCC if the sulfate concentration is below a critical level. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain,rate- tensile tests were conducts on tubular specimens in air and in simulated BWR water at 289{degrees}C.

  19. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  20. Development of A Conservative Method for A Feedwater Pipe Break Analysis of An Integral Type Reactor

    SciTech Connect

    Young-Jong, Chung; Soo Hyoung Kim; Hee-Cheol, Kim; Sung-Quun, Zee

    2006-07-01

    The development of advanced small and medium sized nuclear power plants for multipurpose appears before the footlights, and some of them are ready for construction. The SMART, which is an integral pressurized water reactor is one of those advanced types of small sized nuclear reactors. The basic design of SMART was completed at the Korea Atomic Energy Research Institute. A new phase in order to test and verify the SMART design is currently underway in Korea. The results of these tests and verifications will be fed back into the SMART design for a further improvement of the safety and reliability. The integral type reactor can be mitigated design basis events by a reactor protection system, or engineered safety features. The consequences of design basis events must be less than the established acceptance limits and provide an acceptable margin to protect the health and safety. The design basis events are divided into general categories corresponding to their effect on a plant. One of these categories is a decrease in a heat removal by the secondary system. There are a turbine trip, a main steam isolation valve closure, a loss of the primary component cooling system, and a feedwater pipe break for the decrease in the heat removal by the secondary system. The feedwater pipe break accident is one of the most important accidents in the safety of the integral type reactor. Decrease in the feedwater supply to the steam generators causes a decrease in the heat extraction rate from the reactor coolant system, resulting in an increase of a primary coolant temperature and a pressure, and the nuclear power decreases due to a reactivity feedback. Performed sensitivity analysis to find parameters affecting seriously in the integral reactor's feedwater pipe break accident. According to these parametric analysis results, a power level, an initial system pressure, a moderator reactivity coefficient and a break size are major parameters for the maximum system pressure. The detailed

  1. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  2. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    SciTech Connect

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez-Gonzalez, Jesus S

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  3. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    SciTech Connect

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez, J. S.

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, and it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades

  4. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  5. SVBR-100 module-type fast reactor of the IV generation for regional power industry

    NASA Astrophysics Data System (ADS)

    Zrodnikov, A. V.; Toshinsky, G. I.; Komlev, O. G.; Stepanov, V. S.; Klimov, N. N.

    2011-08-01

    In the report the following is presented: basic conceptual provisions of the innovative nuclear power technology (NPT) based on modular fast reactors (FR) SVBR-100, summarized results of calculations of the reactor, analysis of the opportunities of multi-purpose application of such reactor facilities (RF) including export potentials with due account of nonproliferation requirements. The most important features of the proposed NPT analyzed in the report are as follows: (1) integral (monoblock) arrangement of the primary circuit equipment with entire elimination of the primary circuit pipelines and valves that considerably reduces the construction and assembly works period and coupling with high boiling point of lead-bismuth coolant (LBC) deterministically eliminates accidents of the LOCA type, (2) option for 100 MWe power and dimensions of the reactor provide: on the one hand, an opportunity to transport the reactor monoblock in factory-readiness by railway as well as other kinds of transport, on the other hand, core breeding ratio (CBR) exceeds 1 while MOX-fuel is used. The preferable area of application of RF SVBR-100 is regional and small power requiring power-units of electric power in a range of (100-600) MW, which could be used for cogeneration-based district heating while locating them nearby cities as well as for generation of electric power in a mode of load tracking in the regions with low network systems.

  6. The use of experimental data in an MTR-type nuclear reactor safety analysis

    NASA Astrophysics Data System (ADS)

    Day, Simon E.

    Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.

  7. Identification and Ranking of Phenomena Leading to Peak Cladding Temperatures in Boiling Water Reactors During Large Break Loss of Coolant Accident Transients

    SciTech Connect

    Ratnayake, Ruwan K.; Ergun, S.; Hochreiter, L.E.; Baratta, A.J.

    2002-07-01

    In the licensing and validation process of best estimate codes for the analysis of nuclear reactors and postulated accident scenarios, the identification and quantification of the calculational uncertainty is required. One of the most important aspects in this process is the identification and recognition of the crucial contributing phenomena to the overall code uncertainty. The establishment of Phenomena Identification and Ranking Tables (PIRT) provides a vehicle to assist in assessing the capabilities of the computer code, and to guide the uncertainty analysis of the calculated results. The process used in this work to identify the phenomena was reviewing both licensing and best estimate calculations, as well as experiments, which had been performed for BWR LOCA analyses. The initial PIRT was developed by a group of analysts and was compared to existing BWR LOCA PIRTs as well as BWR LOCA analyses. The initial PIRT was then independently reviewed by a second panel of experts for the selected ranking of phenomena, identification of phenomena which were ignored, as well as the basis and rationale for the ranking of the phenomena. The differences between the two groups were then resolved. PIRTs have been developed for BWR types 4 and 5/6 for the Large Break Loss of Coolant Accidents (LB-LOCA). The ranking and the corresponding rationale for each phenomenon is included in tables together with the assessed uncertainty of the code capability to predict the phenomena. (authors)

  8. Dryout of BWR fuel elements

    SciTech Connect

    Reisch, Frigyes

    2006-07-01

    To increase the power output of the presently operating power reactors is a worldwide trend. One limiting factor from the safety and commercial point of views is the maximum allowable thermal load of the fuel. The findings of the presented loop experiments are that the margin to the burnout of the fuel elements can be defined by a single parameter the void. (authors)

  9. Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids

    SciTech Connect

    Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.; Cimbala, J.M.

    2002-07-01

    Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained from operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces

  10. Kinetic study of copper precipitates under VVER-type reactor conditions

    NASA Astrophysics Data System (ADS)

    Gokhman, A.; Boehmert, J.; Ulbricht, A.

    2003-11-01

    The copper-rich cluster evolution in the neutron-irradiated VVER steels is investigated beginning at the nucleation stage. For this, typical VVER-type reactor conditions are considered. The cluster dynamics approach is used for calculation of the density distribution of copper precipitates related to the number of Cu-atoms or radius, mean radius, volume content, number density of precipitates and the concentration of free Cu-atoms in dependence on the irradiation time. The results for time of one year are compared with the results of small angle neutron scattering experiments which were carried out on specimens irradiated at the surveillance positions of VVER reactors. It has revealed the intermediate type of the evolution kinetics between diffusion and interfacial kinetics limited regimes. The duration of the nucleation and deterministic stages is estimated. The coarsening stage does not occur.

  11. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.

    PubMed

    Ren, N Q; Chua, H; Chan, S Y; Tsang, Y F; Wang, Y J; Sin, N

    2007-07-01

    In this study, the optimal fermentation type and the operating conditions of anaerobic process in continuous-flow acidogenic reactors was investigated for the maximization of bio-hydrogen production using mixed cultures. Butyric acid type fermentation occurred at pH>6, propionic acid type fermentation occurred at pH about 5.5 with E(h) (redox potential) >-278mV, and ethanol-type fermentation occurred at pH<4.5. The representative strains of these fermentations were Clostridium sp., Propionibacterium sp. and Bacteriodes sp., respectively. Ethanol fermentation was optimal type by comparing the operating stabilities and hydrogen production capacities between the fermentation types, which remained stable when the organic loading rate (OLR) reached the highest OLR at 86.1kgCOD/m(3)d. The maximum hydrogen production reached up to 14.99L/d.

  12. Synthesis of layered double hydroxide nanosheets by coprecipitation using a T-type microchannel reactor

    SciTech Connect

    Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming; Hou, Wanguo

    2014-02-15

    The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the best of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.

  13. Development of Regulatory Technical Requirements for the Advanced Integral Type Research Reactor

    SciTech Connect

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik; Kim, Hho Jung

    2004-07-01

    This paper presents the current status of the study on the development of regulatory technical requirements for the licensing review of an advanced integral type research reactor of which the license application is expected in a few years. According to the Atomic Energy Act of Korea, both research and education reactors are subject to the technical requirements for power reactors in the licensing review. But, some of the requirements may not be applicable or insufficient for the licensing reviews of reactors with unique design features. Thus it is necessary to identify which review topics or areas can not be addressed by the existing requirements and to develop the required ones newly or supplement appropriately. Through the study performed so far, it has been identified that the following requirements need to be developed newly for the licensing review of SMART-P: the use of proven technology, the interfacial facility, the non-safety systems, and the metallic fuels. The approach and basis for the development of each of the requirements are discussed. (authors)

  14. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  15. Bifurcation Analysis of Nuclear-Coupled Thermal Hydraulics of BWR Using BIFDD

    SciTech Connect

    Zhou, Quan; Uddin, Rizwan

    2002-07-01

    Stability and bifurcation analyses of nuclear-coupled thermal hydraulic instability in BWR has been performed using a semi-analytical method. The BWR model used in this study consists of three parts: neutron kinetics, fuel rod heat conduction and single and two-phase heated channel thermal hydraulics. Point reactor model is currently being used for neutron kinetics and will be extended in the future to higher order lambda or omega-mode. In the heat conduction part, a piecewise quadratic approximation to radial temperature distribution in fuel pellet and cladding is assumed. ODEs for the expansion coefficients of the quadratic spatial profiles are developed by applying variational principle. Similar to the heat conduction model, the spatial enthalpy distribution in the single phase region and steam quality in the two-phase region in the BWR core are approximated by quadratic polynomials. Two-phase flow is modeled using the homogeneous equilibrium model. A bifurcation analysis code, BIFDD, is then used to perform the analysis for the stability boundary (SB) and the nature of Poincar Andronov-Hopf bifurcation (PAH-B). Results in control-rod-induced-reactivity inlet-subcooling-number space show that both super or sub-critical bifurcation can occur along the SB he subcritical bifurcation occurs for very small or very large subcooling number values; super-critical PAH-B occurs for intermediate values of subcooling number. (authors)

  16. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    SciTech Connect

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff`s basis for issuing GL 94-03, as well as the staff`s assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date.

  17. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    PubMed

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.

  18. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  19. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi

    2016-06-01

    We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV) of a Boiling Water Reactor (BWR) by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au) and Nickel (Ni) at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  20. Reducing the cobalt inventory in light water reactors

    SciTech Connect

    Ocken, H.

    1985-01-01

    Reducing the cobalt content of materials used in nuclear power plants is one approach to controlling the radiation fields responsible for occupational radiation exposure; corrosion of steam generator tubing is the primary source in pressurized water reactors (PWRs). Wear of the cobalt-base alloys used to hardface valves (especially feedwater regulator valves) and as pins and rollers in control blades are the primary boiling water reactor (BWR) sources. Routine valve maintenance can also be a significant source of cobalt. Wear, mechanical property, and corrosion measurements led to the selection of Nitronic-60/CFA and PH 13-8 Mo/Inconel X-750 as low-cobalt alloys for use as pin/roller combinations. These alloys are currently being tested in two commercial BWRs. Measurements show that Type 440C stainless steel wears less than the cobalt-base alloys in BWR feedwater regulator valves. Sliding wear tests performed at room temperature in simulated PWR water showed that Colmonoy 74 and 84, Deloro 40, and Vertx 4776 are attractive low-cobalt hardfacing alloys if the applied loads are less than or equal to103 MPa. The cobalt-base alloys performed best at high loads (207 MPa). Ongoing laboratory studies address the development and evaluation of cobalt-free iron-base hardfacing alloys and seek to improve the wear resistance of cobalt-base alloys by using lasers. Reducing cobalt impurity levels in core components that are periodically discharged should also help reduce radiation fields and disposal costs.

  1. TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR

    SciTech Connect

    Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.

  2. Advanced light water reactor requirements document: Chapter 4, Reactor systems

    SciTech Connect

    Not Available

    1987-06-01

    The purpose of this chapter of the Advanced Light Water Reactor (ALWR) Plant Requirements Document is to establish utility requirements for the design of the Reactor Systems of Advanced LWR plants consistent with the objectives and principles of the ALWR program. The scope of this chapter covers the following for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR): reactor pressure vessel, nozzles and safe-ends, reactor internals, in-vessel portions of fluid systems (including reactor internal pumps (Emergency Core Cooling System (ECCS) piping and spargers), nuclear fuel, and the control rods and control rod drive system (including hydraulic supply and accumulators). Special tools required for reactor system maintenance, inspection and testing are also covered.

  3. Assessment of the GOTHIC and RELAP5/MOD3 computer codes against BWR-related experiments from the Full Scale Test Facility (FSTF)

    SciTech Connect

    Schor, L.; Yeung, W.S.; Goodwin, E.F.

    1995-12-31

    Many methods, or computer codes, are used for analyzing the thermal-hydraulic response of containments to postulated accident sequences. Among the codes generally available for this purpose are the GOTHIC and RELAP5 computer codes. However, these codes have not been tested well in the area of Boiling Water Reactor (BWR) containment responses. The purpose of this paper is to evaluate the limitations and capabilities of these two codes in analyzing BWR containment response. Test data from the Full Scale Test Facility (FSTF), which simulates accident response of BWR containments, are used. Assessment results of two tests (Tests M2 and M8) are presented. Comparison of the calculated and measured drywell and wetwell response (pressure, temperature) is made and capabilities and limitations of each code in being able to predict the test phenomena are discussed.

  4. Lattice Cell Calculations, Slowing Down Theory and Computer Code Wims; Vver Type Reactors

    NASA Astrophysics Data System (ADS)

    Moen, J.; Brekke, A.; Hall, C.

    1991-01-01

    The following sections are included: * INTRODUCTION * WIMS AS A TOOL FOR REACTOR CORE CALCULATIONS * GENERAL STRUCTURE OF THE WIMS CODE * WIMS APPROACH TO THE SLOWING DOWN CALCULATIONS * MULTIGROUP OSCOPIC CROSS SECTIONS, RESONANCE TREATMENT * DETERMINATION OF MULTIGROUP SPECTRA * PHYSICAL MODELS IN MAIN TRANSPORT CALCULATIONS * BURNUP CALCULATIONS * APPLICATION OF WIMSD-4 TO VVER TYPE LATTICES * FINAL REMARKS * REFERENCES * APPENDIX A: DANCOFF FACTOR - STANDARD APPROACH * APPENDIX B: FORMULAS FOR DANCOFF AND BELL FACTORS CALCULATIONS APPLIED IN PREWIM * APPENDIX C: CALCULATION OF ONE GROUP PROBABILITIES Pij IN AN ANNULAR SYSTEM * APPENDIX D: SCHAEFER'S METHOD

  5. Pre-Phase 1 Aging Assessment of the BWR and PWR Accumulators

    SciTech Connect

    Buckely, G. D.

    1995-08-01

    Accumulators are important components used in many systems at commercial boiling water reactors (BWRs) and pressurized water reactors in the United States. The accumulators are vessels attached to fluid systems to provide 1) a limited backup source of stored fluid energy for hydraulic/pneumatic mechanical equipment, 2) a damping effect on pressure pulses in fluid systems, and 3) a volume of fluid to be injected passively into a fluid system. Accumulators contain a gas that is compressed or expanded as the fluid from the system enters or exits the accumulator. The gas and fluid in accumulators are usually separated from each other by a piston or bladder. In support of the U.S. Nuclear Regulatory Commission's Nuclear Aging Research Program (NPAR), the Pacific Northwest Laboratory conducted an analysis of available industry databases to determine if accumulator components already had been studied in other NPAR assessments and to evaluate each accumulator type for applicable aging issues. The results of this preliminary study indicate that two critical uses of accumulators have been previously evaluated by the NPAR program. NUREGICR-5699, Aging and Service Wear of Control Rod Drive Mechanisms for BUT Nuclear Plants (Greene 199 I), identified two hydraulic control unit components subject to aging failures: accumulator nitrogen-charging cartridge valves and the scram water accumulator. In addition, NUREGICR-6001, Aging Assessment of BWR Standby Liquid Control Systems (Buckley et al. 1992), identified two predominant aging-related accumulator failures that result in a loss of the nitrogen blanket pressure: (charging) valve wear and failure of the gas bladder. The present study has identified five prevalent aging-related accumulator failures: rupture of the accumulator bladder separation of the metal disc from the bottom of the bladder leakage of the gas from the charging valve leakage past the safety injection tank manway cover gasket leakage past O-rings. An additional

  6. Proposal of rectifier type superconducting fault current limiter with non-inductive reactor (SFCL)

    NASA Astrophysics Data System (ADS)

    Mohammad Salim, Khosru; Muta, Itsuya; Hoshino, Tsutomu; Nakamura, Taketsune; Yamada, Masato

    2004-03-01

    A rectifier type superconducting fault current limiter (SFCL) with non-inductive reactor has been proposed. The concept behind this SFCL is the appearance of high impedance during non-superconducting state of the coil. In a hybrid bridge circuit, two superconducting coils connected in anti-parallel: a trigger coil and a limiting coil. Both the coils are magnetically coupled with each other and have same number of turns. There is almost zero flux inside the core and therefore the total inductance is small during normal operation. At fault time when the trigger coil current reaches to a certain level, the trigger coil changes from superconducting state to normal state. This super-to-normal transition of the trigger coil changes the current ratio of the coils and therefore the flux inside the reactor is no longer zero. So, the equivalent impedance of both the coils increased thus limits the fault current. We have carried out computer simulation using EMTDC and observed the results. A preliminary experiment has already been performed using copper wired reactor with simulated super-to-normal transition resistance and magnetic switches. Both the simulation and preliminary experiment shows good results. The advantage of using hybrid bridge circuit is that the SFCL can also be used as circuit breaker. Two separate bridge circuit can be used for both trigger coil and the limiter coil. In such a case, the trigger coil can be shutdown immediately after the fault to reduce heat and thus reduce the recovery time. Again, at the end of fault when the SFCL needs to re-enter to the grid, turning off the trigger circuit in the two-bridge configuration the inrush current can be reduced. This is because the current only flows through the limiting coil. Another advantage of this type of SFCL is that no voltage sag will appear during load increasing time as long as the load current stays below the trigger current level.

  7. Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case

    SciTech Connect

    D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

    2014-06-01

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

  8. Issues of intergranular embrittlement of VVER-type nuclear reactors pressure vessel materials

    NASA Astrophysics Data System (ADS)

    Zabusov, O.

    2016-04-01

    In light of worldwide tendency to extension of service life of operating nuclear power plants - VVER-type in the first place - recently a special attention is concentrated on phenomena taking place in reactor pressure vessel materials that are able to lead to increased level of mechanical characteristics degradation (resistibility to brittle fracture) during long term of operation. Formerly the hardening mechanism of degradation (increase in the yield strength under influence of irradiation) mainly had been taken into consideration to assess pressure vessel service life limitations, but when extending the service life up to 60 years and more the non-hardening mechanism (intergranular embrittlement of the steels) must be taken into account as well. In this connection NRC “Kurchatov Institute” has initiated a number of works on investigations of this mechanism contribution to the total embrittlement of reactor pressure vessel steels. The main results of these investigations are described in this article. Results of grain boundary phosphorus concentration measurements in specimens made of first generation of VVER-type pressure vessels materials as well as VVER-1000 surveillance specimens are presented. An assessment of non-hardening mechanism contribution to the total ductile-to- brittle transition temperature shift is given.

  9. Westinghouse BWR Fuel Reliability - Recent Experience and Analyses

    SciTech Connect

    Ryttersson, Kristina; Helmersson, Sture; Wright, Jonathan; Hallstadius, Lars

    2007-07-01

    Fuel reliability and failure free fuel has always been one of the most important objectives in the development work at Westinghouse Electric Sweden. An important step in tailoring remedies against both primary and secondary fuel failures is to understand the failure mechanisms. Studies of the mechanisms behind both primary and secondary failures have been performed. For primary failures the recent efforts have been focused on debris fretting failures, since this has been the only mechanism that causes failures in Westinghouse BWR fuel for several years. A statistical analysis of debris fretting failures was performed. The results showed a strong dependency on flow velocity which could be related to a working hypothesis coupling to the excitation of vibrations and the pressure drop over an object in a flow. To increase the understanding of the secondary degradation mechanism, two test reactor studies have been performed. Also, trends related to residence time in core, burnup and power have been evaluated based on the Westinghouse fuel failure database. No clear trends could be seen regarding residence time or burnup up to {approx}40 MWd/kgU. Beyond {approx}40 MWd/kgU the secondary degradation seems to be less severe. One trend that could be identified was an increase in the severity of secondary degradation with increasing rod power. (authors)

  10. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    DOE PAGESBeta

    Maljovec, D.; Liu, S.; Wang, B.; Mandelli, D.; Bremer, P. -T.; Pascucci, V.; Smith, C.

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less

  11. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    SciTech Connect

    Maljovec, D.; Liu, S.; Wang, B.; Mandelli, D.; Bremer, P. -T.; Pascucci, V.; Smith, C.

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated, where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.

  12. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    NASA Astrophysics Data System (ADS)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  13. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  14. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    SciTech Connect

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.; Gauld, Ian C.; Ilas, Germina; Marshall, William BJ J.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  15. TRAC-BF1/MOD1: An advanced best-estimate computer program for BWR accident analysis: User's guide

    SciTech Connect

    Rettig, W.H.; Wade, N.L. )

    1992-06-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory has developed versions of the Transient Reactor Analysis Code (TRAC) for the US Nuclear Regulatory Commission and the public. The TRAC-BF1/MODI version of the computer code provides a best-estimate analysis capability for analyzing the full range of postulated accidents in boiling water reactor (BWR) systems and related facilities. This version provides a consistent and unified analysis capability for analyzing all areas of a large- or small-break loss-of-coolant accident (LOCA), beginning with the blowdown phase and continuing through heatup, reflood with quenching, and, finally, the refill phase of the accident. Also provided is a basic capability for the analysis of operational transients up to and including anticipated transients without scram (ATWS). The TRAC-BF1/MOD1 version produces results consistent with previous versions. Assessment calculations using the two TRAC-BFI versions show overall improvements in agreement with data and computation times as compared to earlier versions of the TRAC-BWR series of computer codes.

  16. TRAC-BF1/MOD1: An advanced best-estimate computer program for BWR accident analysis, Model description

    SciTech Connect

    Borkowski, J.A.; Wade, N.L.; Giles, M.M.; Rouhani, S.Z.; Shumway, R.W.; Singer, G.L.; Taylor, D.D.; Weaver, W.L. )

    1992-08-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory has developed versions of the Transient Reactor Analysis Code (TRAC) for the US Nuclear Regulatory Commission and the public. The TRAC-BF1/MODl version of the computer code provides a best-estimate analysis capability for analyzing the full range of postulated accidents in boiling water reactor (BWR) systems and related facilities. This version provides a consistent and unified analysis capability for analyzing all areas of a large- or small-break loss-of-coolant accident (LOCA), beginning with the blowdown phase and continuing through heatup, reflood with quenching, and, finally, the refill phase of the accident. Also provided is a basic capability for the analysis of operational transients up to and including anticipated transients without scram (ATWS). The TRAC-BF1/MODI version produces results consistent with previous versions. Assessment calculations using the two TRAC-BF1 versions show overall improvements in agreement with data and computation times as compared to earlier versions of the TRAC-BWR series of computer codes.

  17. Identification and initial assessment of candidate BWR late-phase in-vessel accident management strategies

    SciTech Connect

    Hodge, S.A.

    1991-04-15

    Work sponsored by the United States Nuclear Regulatory Commission (USNRC) to identify and perform preliminary assessments of candidate BWR (boiling water reactor) in-vessel accident management strategies was completed at Oak Ridge National Laboratory (ORNL) during fiscal year 1990. Mitigative strategies for containment events have been the subject of a companion study at Brookhaven National Laboratory. The focus of this Oak Ridge effort was the development of new strategies for mitigation of the late phase events, that is, the events that would occur in-vessel after the onset of significant core damage. The work began with an investigation of the current status of BWR in-vessel accident management procedures and proceeded through a preliminary evaluation of several candidate new strategies. The steps leading to the identification of the candidate strategies are described. The four new candidate late-phase (in-vessel) accident mitigation strategies identified by this study and discussed in the report are: (1) keep the reactor vessel depressurized; (2) restore injection in a controlled manner; (3) inject boron if control blade damage has occurred; and (4) containment flooding to maintain core and structural debris in-vessel. Additional assessments of these strategies are proposed.

  18. Final results of the XR2-1 BWR metallic melt relocation experiment

    SciTech Connect

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs.

  19. TRACE/PARCS Analysis of ATWS with Instability for a MELLLA+BWR/5

    DOE PAGESBeta

    L. Y. Cheng; Baek, J. S.; Cuadra, A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2016-06-06

    A TRACE/PARCS model has been developed to analyze anticipated transient without SCRAM (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands allowable operation in the power/flow map of a BWR to low flow rates at high power conditions. Such operation exacerbates the likelihood of large amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural circulation flow in the reactor pressure vessel (RPV) after the trip of the recirculationmore » pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heat-up that could result in localized fuel damage. TRACE predicts the heat-up to occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet; and the fuel becomes “locked” into a film boiling regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.« less

  20. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    SciTech Connect

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  1. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  2. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  3. [Continuous operation of hydrogen bio-production reactor with ethanol-type fermentation].

    PubMed

    Ren, Nan-qi; Gong, Man-li; Xing, De-feng

    2004-11-01

    The natural response of a continuous stirred tank reactor (CSTR) for hydrogen bio-production using molasses wastewater as substrate was investigated. Emphasis was placed on assessing the operational controlling strategy on the stable operation of CSTR with high efficiency. It was found that at an initial biomass of 15g/L, an equilibrial microbial community in the ethanol-type fermentation and efficient stable operation of CSTR could be established with following conditions: temperature of 35 degrees C +/- 1 degrees C, COD organic loading rate (OLR) of 40kg/(m3 x d), hydraulic retention time (HRT) of 4h, pH value of 4.6 - 4.9 and oxidation reduction potential (ORP) of -450 - -470mV. Following that, hydrogen production in the reactor was relatively stable. The observed maximal hydrogen bio-production rate was 7.63m3/(m3 x d). The content of hydrogen in the biogas was about 40% - 58%. COD removal rate was between 22% - 26%. The total content of ethanol and acetic acid in the fermentative end products was above 80%.

  4. Boiling-Water Reactor internals aging degradation study. Phase 1

    SciTech Connect

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

  5. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  6. Effect of hydrogen injection on hydrogen uptake by BWR fuel cladding. Final report

    SciTech Connect

    Cox, B.

    1983-06-01

    The hydrogen uptake rates reported for zirconium alloys in BWRs, PWRs, HWRs and various experimental in-reactor loops have been surveyed. The scatter in the data is large and arises from a variety of sources: variability in material properties; variations in temperature, irradiation flux, and water chemistry at different points in the reactor; and a lack of accurate knowledge of the sources of hydrogen which ends up in the zirconium-alloy cladding. An attempt has been made to assess the significance of these sources of variability in order to estimate the baseline for hydrogen uptake from the outside of good-quality cladding under normal BWR operating conditions. The probable effect of continuous hydrogen injection on this baseline has been estimated. It is concluded that severe localized hydrogen uptake, which might lead to hydride blisters is very improbable, but that an increase in the uniform rate of hydrogen absorption at the outside of the cladding may be expected.

  7. A computer model for the transient analysis of compact research reactors with plate type fuel

    SciTech Connect

    Sofu, T.; Dodds, H.L.

    1994-03-01

    A coupled neutronics and core thermal-hydraulic performance model has been developed for the analysis of plate type U-Al fueled high-flux research reactor transients. The model includes point neutron kinetics, one-dimensional, non-homogeneous, equilibrium two-phase flow and beat transfer with provision for subcooled boiling, and spatially averaged one-dimensional beat conduction. The feedback from core regions other than the fuel elements is included by employing a lumped parameter approach. Partial differential equations are discretized in space and the combined equation set representing the model is converted to an initial value problem. A variable-order, variable-time-step time advancement scheme is used to solve these ordinary differential equations. The model is verified through comparisons with two other computer code results and partially validated against SPERT-II tests. It is also used to analyze a series of HFIR reactivity transients.

  8. Bubbling Reactor Technology for Rapid Synthesis of Uniform, Small MFI-Type Zeolite Crystals

    SciTech Connect

    Liu, Wei; Rao, Yuxiang; Wan, Haiying; Karkamkar, Abhijeet J.; Liu, Jun; Wang, Li Q.

    2011-06-27

    MFI-type zeolite is an important family of materials used in today’s industries as catalysts and adsorbents. Preparation of this type of zeolite material as uniform and pure crystals of sizes from tens of nanometer to hundreds of nanometer are not only desired by current catalytic and adsorption processes for enhanced reaction kinetics and/or selectivity, but also much needed by some new applications, such as CO2 capture adsorbents and composite materials. However, it has been a major challenge in the zeolite synthesis field to prepare small crystals of MFI-type zeolite over a range of Si/Al ratio with very high throughput. In this work, a gas-bubbling flow reactor is used to conduct hydrothermal growth of the zeolite crystals with controllable Si/Al ratio and crystal sizes. Distinctive, uniform ZSM-5 crystals are successfully synthesized within two hours of reaction time, exceptionally short compared to the conventional synthesis process. The crystals are small enough to form a stable milk-like suspension in water. The Si/Al ratio can be controlled by adjusting the growth solution composition and reaction conditions over a range from about 9 to infinity. Characterization by SEM/EDS, XRD, TEM, N2 adsorption/desorption, and NMR confirms ZSM-5 crystal structures and reveals presence of meso-porosity in the resulting crystals.

  9. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - models and correlations

    SciTech Connect

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document describes the major modifications and improvements made to the modeling of the RAMONA-3B/MOD0 code since 1981, when the code description and assessment report was completed. The new version of the code is RAMONA-4B. RAMONA-4B is a systems transient code for application to different versions of Boiling Water Reactors (BWR) such as the current BWR, the Advanced Boiling Water Reactor (ABWR), and the Simplified Boiling Water Reactor (SBWR). This code uses a three-dimensional neutron kinetics model coupled with a multichannel, non-equilibrium, drift-flux, two-phase flow formulation of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients and instability issues. Chapter 1 is an overview of the code`s capabilities and limitations; Chapter 2 discusses the neutron kinetics modeling and the implementation of reactivity edits. Chapter 3 is an overview of the heat conduction calculations. Chapter 4 presents modifications to the thermal-hydraulics model of the vessel, recirculation loop, steam separators, boron transport, and SBWR specific components. Chapter 5 describes modeling of the plant control and safety systems. Chapter 6 presents and modeling of Balance of Plant (BOP). Chapter 7 describes the mechanistic containment model in the code. The content of this report is complementary to the RAMONA-3B code description and assessment document. 53 refs., 81 figs., 13 tabs.

  10. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    SciTech Connect

    Trianti, Nuri Nurjanah,; Su’ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-30

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  11. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    NASA Astrophysics Data System (ADS)

    Trianti, Nuri; Nurjanah, Su'ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-01

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid's temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  12. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  13. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor.

    PubMed

    Li, Jianzheng; Zheng, Guochen; He, Junguo; Chang, Sheng; Qin, Zhi

    2009-01-01

    A continuous stirred-tank reactor was used as an anaerobic sludge system and the hydrogen production capabilities of three typical fermentations, in terms of specific hydrogen production rates, were investigated under the same hydraulic retention times (8 h) and influent chemical oxygen demand (5000 mg/L) at 35 degrees C. The reactor was continuously fed with diluted molasses, while the pH and oxidation reduction potential in the reactor were regulated to control the type of fermentation. The specific hydrogen production rate of the anaerobic sludge reached 2.96 mol/kg mixed liquid volatile suspended solid (MLVSS)/day, (mol x kg MLVSS(-1) d(-1)), in ethanol-type fermentation, while 0.57 mol x kg MLVSS(-1) d(-1) in butyric acid-type fermentation, and 0.022 mol x kg MLVSS(-1) d(-1) in propionic acid-type fermentation. The hydrogen production capability of ethanol-type fermentation was 4.11 times greater than that of butyric acid-type fermentation and 148 times that of propionic acid-type fermentation.

  14. Monticello BWR spent fuel assembly decay heat predictions and measurements

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Heeb, C.M.; Creer, J.M.

    1986-06-01

    This report compares pre-calorimetry predictions of rates of six 7 x 7 boiling water reactor (BWR) spent fuel assemblies with measured decay heat rates. The assemblies were from Northern States Power Company's Monticello Nuclear Generating Plant and had burnups of 9 to 21 GWd/MTU and cooling times of 9 to 10 years. Conclusions are: The agreement between ORIGEN2 predictions and decay heat measurements of Monticello spent fuel is dependent on the method used to calibrate the calorimeter and to make the decay heat measurements. The agreement between predictions and measurements of decay heat rates of Monticello fuel is the same as that for Cooper and Dresden fuel if the same measurement method is used. The predictions are within a standard deviation of +-15 W of the measurements. Using a different measurement method, ORIGEN2 underpredicts the measured decay heat output of Monticello fuel assemblies by a constant 20 +- 2 W. The 20-W offset appears to be an artifact of the calibration procedure. The constant term in the calibration curve (i.e., q/sub DH/ = mx + b) can account for measurement differences of 40 W based on the 1983, 1984, and 1985 calibration curves. The difference between ORIGEN2 predictions and calorimeter decay heat measurements does not appear to be dependent on the magnitude of decay heat output. Predicted axial decay heat profiles are in good agreement with measured axial gamma radiation profiles. Recommendations are: Predictions using other decay heat codes should be compared to experimental data contained in this report, to evaluate prediction capabilities. The source of the differences that exist among calorimeter calibration curves needs to be determined. Calorimeter operational methods need to be investigated further to determine cause and effect relationships between operational method and calorimeter precision and accuracy.

  15. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    SciTech Connect

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  16. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    NASA Astrophysics Data System (ADS)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  17. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    SciTech Connect

    Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Mertyurek, Ugur; Radulescu, Georgeta

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  18. Physics concept on the constellation type fissile fuels and its application to the prospective Th-{sup 233}U reactor

    SciTech Connect

    Jiahua Zhange

    1994-12-31

    In contrast with the conventional nuclear reactor which usually fuelled with one single fissile nuclide, a constellation type fissile fuels reactor consists of a parent nuclide such as {sup 232}Th or {sup 238}U and its whole family of neutron generated daughter nuclides. All of them are regarded as fissile fuels but of quite different fission ability. The concentration of each daughter nuclide is determined by its saturate concentration ratio with the parent nuclide. In such fuel system, the whole fuel consumed by neutron reaction almost completely results in fission production. In this article, some interesting properties of such fuel system, determination of the saturate concentration of each daughter nuclide and applicability to Th-{sup 233}U reactor will be discussed.

  19. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    SciTech Connect

    Caira, M.; Gramiccia, L.; Naviglio, A.; Sorabella, L.; Bandini, G.

    1996-07-01

    The MARS nuclear plant is a 600 MWth PWR with completely passive core safeguards. The most relevant innovative safety system is the Emergency Core Cooling System (ECCS), which is based on natural circulation, and on a passive-type activation that follows a core flow decrease, whatever was the cause (only one component, 400% redundant, is not static). The main thermal hydraulic transients occurring as a consequence of design basis accidents for the MARS plant were presented at the ICONE 3 Conference. Those transients were analyzed in the first stage, with the aim at pointing out the capability of the innovative ECCS to intervene. So, they included only a short-time analysis (extended for a few hundreds of seconds) and the well known RELAP 5 computer program was used for this purpose. In the present paper, the long-term analyses (extended for several thousands of seconds) of the same transients are shown. These analyses confirmed that the performance of the Emergency Core Cooling System of the MARS reactor is guaranteed also in long-term scenarios.

  20. Numerical study of crude oil fouling in a Taylor-Couette-type reactor

    NASA Astrophysics Data System (ADS)

    Crastes, Misha; Lagkaditi, Lydia; Ball, Jonathan; Yang, Junfeng; Coletti, Francesco; Macchietto, Sandro; Matar, Omar

    2015-11-01

    We consider the non-isothermal flow of crude-oil mixtures in a Taylor-Couette-type reactor; this flow is accompanied by the deposition of soft-solid wall-layers, commonly referred to as ``fouling'', driven by chemical reactions and phase separation. Three-dimensional CFD simulations are carried out to resolve the flow and temperature fields, as well as the volume fraction of the foulant phase. The simulations also account for the effect of evolving deposit rheology. The CFD predictions are validated against published results for isothermal flow, in the absence of fouling, in terms of the characteristics of the vortical structures that accompany the flow. In the presence of fouling, we examine the spatial distribution of the wall stresses as a function of the Reynolds and Taylor numbers, and demonstrate that wall regions exposed to higher (lower) shear stresses tend to form thinner (thicker) fouling layers. The simulation results capture the trends observed experimentally. Skolkovo Foundation through the UNIHEAT Project.

  1. Mechanistic modeling of evaporating thin liquid film instability on a BWR fuel rod with parallel and cross vapor flow

    NASA Astrophysics Data System (ADS)

    Hu, Chih-Chieh

    This work has been aimed at developing a mechanistic, transient, 3-D numerical model to predict the behavior of an evaporating thin liquid film on a non-uniformly heated cylindrical rod with simultaneous parallel and cross flow of vapor. Interest in this problem has been motivated by the fact that the liquid film on a full-length boiling water reactor fuel rod may experience significant axial and azimuthal heat flux gradients and cross flow due to variations in the thermal-hydraulic conditions in surrounding subchannels caused by proximity to inserted control blade tip and/or the top of part-length fuel rods. Such heat flux gradients coupled with localized cross flow may cause the liquid film on the fuel rod surface to rupture, thereby forming a dry hot spot. These localized dryout phenomena can not be accurately predicted by traditional subchannel analysis methods in conjunction with empirical dryout correlations. To this end, a numerical model based on the Level Contour Reconstruction Method was developed. The Standard k-ε turbulence model is included. A cylindrical coordinate system has been used to enhance the resolution of the Level Contour Reconstruction Model. Satisfactory agreement has been achieved between the model predictions and experimental data. A model of this type is necessary to supplement current state-of-the-art BWR core thermal-hydraulic design methods based on subchannel analysis techniques coupled with empirical dry out correlations. In essence, such a model would provide the core designer with a "magnifying glass" by which the behavior of the liquid film at specific locations within the core (specific axial node on specific location within a specific bundle in the subchannel analysis model) can be closely examined. A tool of this type would allow the designer to examine the effectiveness of possible design changes and/or modified control strategies to prevent conditions leading to localized film instability and possible fuel failure.

  2. Structural behavior of a pool-type LMFBR reactor-vessel deck to beyond-design-basis loads

    SciTech Connect

    Kulak, R.F.; Fiala, C.; Pan, Y.C.; Seidensticker, R.W.

    1983-01-01

    A study of the structural response of the reactor vessel deck to loads resulting from a hypothetical energetic accident for a conceptual design of a pool-type LMFBR was presented. The size of the reactor was in the 1000 MWe range with a 22m reactor vessel diameter and a vessel depth of 21 m. The vessel contains the entire primary system which includes the primary pumps, intermediate heat exchangers (IHXs), reactor core, core support structure, a cylindrical internal vessel, called a redan, and the sodium pool. The redan serves as a separator between the hot sodium emerging from the top of the reactor and the cooler bulk sodium. The deck structure provides support to the rotatable plug assembly, primary pumps and IHXs. In order to evaluate the structural integrity of this deck during a 1000 MJ excursion, a three-dimensional finite element model was developed for a 45 degree sector of the deck. The model included the main structural elements or the deck and the conical support skirt. The triple rotatable plug (TRP), pumps, and IHXs were represented by concentrated masses.

  3. Vessel failure time for a low-pressure short-term station blackout in a BWR-4

    SciTech Connect

    Carbajo, J.J. )

    1993-01-01

    A low-pressure, short-term station blackout severe accident sequence has been analyzed using the MELCOR code, version 1.8.1, in a boiling water reactor (BWR)-4. This paper presents a sensitivity study evaluating the effect of several MELCOR input parameters on vessel failure time. Results using the MELCOR/CORBH package and the BWRSAR code are also presented and compared to the MELCOR results. These calculated vessel failure times are discussed, and a judgment is offered as to which is the most realistic.

  4. The Effect of Improved Water Chemistry on Corrosion Cracking of BWR Piping: Workshop Proceedings

    SciTech Connect

    1989-12-01

    Implementation of the EPRI BWR water chemistry guidelines by utilities has significantly improved the chemistry of BWRs. Water chemistry improvements extend the service life of BWR piping and provide a technical justification for increased intervals of in-service inspections of BWR piping.

  5. Enhancing BWR proliferation resistance fuel with minor actinides

    NASA Astrophysics Data System (ADS)

    Chang, Gray S.

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm 3) to the top (0.35 g/cm 3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ( 237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in

  6. Status update of the BWR cask simulator

    SciTech Connect

    Lindgren, Eric R.; Durbin, Samuel G.

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations of

  7. The BWR lower head response during a large-break LOCA with core damage

    SciTech Connect

    Alammar, M.A.

    1996-12-31

    Some of the important issues in severe accident management guidelines development deal with estimating the time to lower head vessel failure after core damage and the time window available for water injection that would prevent vessel failure. These issues are obviously scenario dependent, but bounding estimates are needed. The scenario chosen for this purpose was a design-basis accident (DBA) loss-of-coolant accident (LOCA) because it was one of the contributors to the Oyster Creek containment failure frequency. Oyster Creek is a 1930-MW(thermal) boiling water reactor (BWR)-2. The lower head response models have improved since the Three Mile Island unit 2 (TMI-2) vessel investigation project (VIP) results became known, specifically the addition of rapid- and slow-cooling models. These mechanisms were found to have taken place in the TMI-2 lower head during debris cooldown and were important contributors in preventing vessel failure.

  8. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    SciTech Connect

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z.

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  9. Calculation of MCPR (minimum critical power ratio) for BWR transients using the BNL plant analyzer

    SciTech Connect

    Horak, W.C.; Diamond, D.J.

    1987-06-01

    The critical power ratio (CPR) is used for determining the thermal limits of boiling water reactors. In this study, critical power ratios for a series of transients run on the Brookhaven Plant Analyzer (BPA) (1) have been calculated. The transients include nominal base case simulations, simulations with variations in relief valve setpoints and the number of failed feedwater heaters, simulations at the 100% power, 75% flow point on the extended load line of the MEOD, and a simulation with partial feedwater heating. The plant represented with the BPA is a BWR/4 rated at 3293 MW with a 6.38 m (251'') vessel. Data were obtained by the Plant Analyzer Development Group at BNL from a variety of sources describing the Browns Ferry Plant.

  10. Time constants and feedback transfer functions of EBR-II (Experimental Breeder Reactor) subassembly types

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel.

  11. Analysis of steam explosions in plate-type, uranium-aluminum fuel test reactors

    SciTech Connect

    Taleyarkhan, R.P. )

    1989-01-01

    The concern over steam explosions in nuclear reactors can be traced to prompt critical nuclear excursions in aluminum-clad/fueled test reactors, as well as to explosive events in aluminum, pulp, and paper industries. The Reactor Safety Study prompted an extensive analytical and experimental effort for over a decade. This has led to significant improvements in their understanding of the steam explosion issue for commercial light water reactors. However, little progress has been made toward applying the lessons learned from this effort to the understanding and modeling of steam explosion phenomena in aluminum-clad/fueled research and test reactors. The purposes of this paper are to (a) provide a preliminary analysis of the destructive events in test reactors, based on current understandings of steam explosions; (b) provide a proposed approach for determining the likelihood of a steam explosion event under scenarios in which molten U-Al fuel drops into a water-filled cavity; and (c) present a benchmarking study conducted to estimate peak pressure pulse magnitudes.

  12. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    SciTech Connect

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-12-31

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 {angstrom} to 304 {angstrom}) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner.

  13. Qualification of helium measurement system for detection of fuel failures in a BWR

    NASA Astrophysics Data System (ADS)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  14. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  15. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    SciTech Connect

    Haydary, J.; Susa, D.; Dudáš, J.

    2013-05-15

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  16. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment. PMID:16381764

  17. An overview of the BWR ECCS strainer blockage issues

    SciTech Connect

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R.

    1996-03-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, {open_quotes}Containment Emergency Sump Performance,{close_quotes} and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts.

  18. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  19. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    NASA Astrophysics Data System (ADS)

    Nishimura, Shun; Miyazato, Akio; Ebitani, Kohki

    2016-02-01

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H2O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, 13C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.

  20. Parametric Analysis of a Turbine Trip Event in a BWR Using a 3D Nodal Code

    SciTech Connect

    Gorzel, A.

    2006-07-01

    Two essential thermal hydraulics safety criteria concerning the reactor core are that even during operational transients there is no fuel melting and not-permissible cladding temperatures are avoided. A common concept for boiling water reactors is to establish a minimum critical power ratio (MCPR) for steady state operation. For this MCPR it is shown that only a very small number of fuel rods suffers a short-term dryout during the transient. It is known from experience that the limiting transient for the determination of the MCPR is the turbine trip with blocked bypass system. This fast transient was simulated for a German BWR by use of the three-dimensional reactor analysis transient code SIMULATE-3K. The transient behaviour of the hot channels was used as input for the dryout calculation with the transient thermal hydraulics code FRANCESCA. By this way the maximum reduction of the CPR during the transient could be calculated. The fast increase in reactor power due to the pressure increase and to an increased core inlet flow is limited mainly by the Doppler effect, but automatically triggered operational measures also can contribute to the mitigation of the turbine trip. One very important method is the short-term fast reduction of the recirculation pump speed which is initiated e. g. by a pressure increase in front of the turbine. The large impacts of the starting time and of the rate of the pump speed reduction on the power progression and hence on the deterioration of CPR is presented. Another important procedure to limit the effects of the transient is the fast shutdown of the reactor that is caused when the reactor power reaches the limit value. It is shown that the SCRAM is not fast enough to reduce the first power maximum, but is able to prevent the appearance of a second - much smaller - maximum that would occur around one second after the first one in the absence of a SCRAM. (author)

  1. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  2. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    NASA Astrophysics Data System (ADS)

    Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.

    2011-09-01

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  3. Possible Methods to Estimate Core Location in a Beyond-Design-Basis Accident at a GE BWR with a Mark I Containment Stucture

    SciTech Connect

    Walston, S; Rowland, M; Campbell, K

    2011-07-27

    It is difficult to track to the location of a melted core in a GE BWR with Mark I containment during a beyond-design-basis accident. The Cooper Nuclear Station provided a baseline of normal material distributions and shielding configurations for the GE BWR with Mark I containment. Starting with source terms for a design-basis accident, methods and remote observation points were investigated to allow tracking of a melted core during a beyond-design-basis accident. The design of the GE BWR with Mark-I containment highlights an amazing poverty of expectations regarding a common mode failure of all reactor core cooling systems resulting in a beyond-design-basis accident from the simple loss of electric power. This design is shown in Figure 1. The station blackout accident scenario has been consistently identified as the leading contributor to calculated probabilities for core damage. While NRC-approved models and calculations provide guidance for indirect methods to assess core damage during a beyond-design-basis loss-of-coolant accident (LOCA), there appears to be no established method to track the location of the core directly should the LOCA include a degree of fuel melt. We came to the conclusion that - starting with detailed calculations which estimate the release and movement of gaseous and soluble fission products from the fuel - selected dose readings in specific rooms of the reactor building should allow the location of the core to be verified.

  4. TRAC-BF1/MOD1: An advanced best-estimate computer program for BWR accident analysis, Model description. Volume 1

    SciTech Connect

    Borkowski, J.A.; Wade, N.L.; Giles, M.M.; Rouhani, S.Z.; Shumway, R.W.; Singer, G.L.; Taylor, D.D.; Weaver, W.L.

    1992-08-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory has developed versions of the Transient Reactor Analysis Code (TRAC) for the US Nuclear Regulatory Commission and the public. The TRAC-BF1/MODl version of the computer code provides a best-estimate analysis capability for analyzing the full range of postulated accidents in boiling water reactor (BWR) systems and related facilities. This version provides a consistent and unified analysis capability for analyzing all areas of a large- or small-break loss-of-coolant accident (LOCA), beginning with the blowdown phase and continuing through heatup, reflood with quenching, and, finally, the refill phase of the accident. Also provided is a basic capability for the analysis of operational transients up to and including anticipated transients without scram (ATWS). The TRAC-BF1/MODI version produces results consistent with previous versions. Assessment calculations using the two TRAC-BF1 versions show overall improvements in agreement with data and computation times as compared to earlier versions of the TRAC-BWR series of computer codes.

  5. TRAC-BF1/MOD1: An advanced best-estimate computer program for BWR accident analysis: User`s guide. Volume 2

    SciTech Connect

    Rettig, W.H.; Wade, N.L.

    1992-06-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory has developed versions of the Transient Reactor Analysis Code (TRAC) for the US Nuclear Regulatory Commission and the public. The TRAC-BF1/MODI version of the computer code provides a best-estimate analysis capability for analyzing the full range of postulated accidents in boiling water reactor (BWR) systems and related facilities. This version provides a consistent and unified analysis capability for analyzing all areas of a large- or small-break loss-of-coolant accident (LOCA), beginning with the blowdown phase and continuing through heatup, reflood with quenching, and, finally, the refill phase of the accident. Also provided is a basic capability for the analysis of operational transients up to and including anticipated transients without scram (ATWS). The TRAC-BF1/MOD1 version produces results consistent with previous versions. Assessment calculations using the two TRAC-BFI versions show overall improvements in agreement with data and computation times as compared to earlier versions of the TRAC-BWR series of computer codes.

  6. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    SciTech Connect

    Bodey, Isaac T

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  7. BWRSAR (Boiling Water Reactor Severe Accident Response) calculations of reactor vessel debris pours for Peach Bottom short-term station blackout

    SciTech Connect

    Hodge, S.A.; Ott, L.J.

    1988-01-01

    This paper describes recent analyses performed by the BWR Severe Accident Technology (BWRSAT) Program at Oak Ridge National Laboratory to estimate the release of debris from the reactor vessel for the unmitigated short-term station blackout accident sequence. Calculations were performed with the BWR Severe Accident Response (BWRSAR) code and are based upon consideration of the Peach Bottom Atomic Power Station. The modeling strategies employed within BWRSAR for debris relocation within the reactor vessel are briefly discussed and the calculated events of the accident sequence, including details of the calculated debris pours, are presented. 4 refs., 13 figs., 3 tabs.

  8. LWR (Light Water Reactor) power plant simulations using the AD10 and AD100 systems

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J.; Institute of Nuclear Energy Research, Lung-Tan; Tawian Power Co., Taipei; Brookhaven National Lab., Upton, NY; Institute of Nuclear Energy Research, Lung-Tan )

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab.

  9. Efficiency and accuracy of the perturbation response coefficient generation method for whole core comet calculations in BWR and CANDU configurations

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2013-07-01

    The coarse mesh transport method (COMET) is a highly accurate and efficient computational tool which predicts whole-core neutronics behaviors for heterogeneous reactor cores via a pre-computed eigenvalue-dependent response coefficient (function) library. Recently, a high order perturbation method was developed to significantly improve the efficiency of the library generation method. In that work, the method's accuracy and efficiency was tested in a small PWR benchmark problem. This paper extends the application of the perturbation method to include problems typical of the other water reactor cores such as BWR and CANDU bundles. It is found that the response coefficients predicted by the perturbation method for typical BWR bundles agree very well with those directly computed by the Monte Carlo method. The average and maximum relative errors in the surface-to-surface response coefficients are 0.02%-0.05% and 0.06%-0.25%, respectively. For CANDU bundles, the corresponding quantities are 0.01%-0.05% and 0.04% -0.15%. It is concluded that the perturbation method is highly accurate and efficient with a wide range of applicability. (authors)

  10. BWR primary coolant pressure boundary license renewal industry report; revision 1. Final report

    SciTech Connect

    Braden, D.; Stancavage, P.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). This IR provides the technical basis for license renewal for U.S. boiling water reactor (BWR) primary coolant pressure boundaries (PCPB). The report includes requirements on: carbon and stainless steel pipes and fittings; reactor circulation pumps; internal heat exchangers; pressure relief and in line valves; and component supports. These components are in the main steam, recirculation, feedwater, residual heat removal, reactor core isolation cooling, low and high pressure coolant injection, and low and high pressure core spray systems.

  11. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2008-07-01

    reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. We concluded that the concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy rennaissance.

  12. Nuclear reactor with internal thimble-type delayed neutron detection system

    DOEpatents

    Gross, Kenny C.; Poloncsik, John; Lambert, John D. B.

    1990-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  13. Steam Line Break and Station Blackout Transients for Proliferation Resistant Hexagonal Tight Lattice BWR

    SciTech Connect

    Upendra Rohatgi; Jae Jo; Bub Dong Chung; Hiroshi Takahashi; Downar, T.J.

    2002-07-01

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. A tight lattice BWR core has very narrow flow channels with a hydraulic diameter less than half of the regular BWR core. The tight lattice core presented a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with an Isolation Cooling System (ICS). The vessel is placed in a containment with a Gravity Driven Cooling System (GDCS) and a Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's (GE) Simplified Boiling Water Reactor (SBWR). The safety systems are similar to the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney. The buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel since the tight lattice configuration resulted in much larger friction in the core than the SBWR. A modified RELAP5 Code was used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the Station Blackout and the Main Steam Line Break events. The constitutive

  14. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    SciTech Connect

    Redding, J.R.

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  15. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    PubMed

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-01

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model.

  16. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    PubMed

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-01

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. PMID:24411440

  17. Development of a resonant-type microwave reactor and its application to the synthesis of positron emission tomography radiopharmaceuticals.

    PubMed

    Kimura, Hiroyuki; Yagi, Yusuke; Ohneda, Noriyuki; Odajima, Hiro; Ono, Masahiro; Saji, Hideo

    2014-10-01

    Microwave technology has been successfully applied to enhance the effectiveness of radiolabeling reactions. The use of a microwave as a source of heat energy can allow chemical reactions to proceed over much shorter reaction times and in higher yields than they would do under conventional thermal conditions. A microwave reactor developed by Resonance Instrument Inc. (Model 520/521) and CEM (PETWave) has been used exclusively for the synthesis of radiolabeled agents for positron emission tomography by numerous groups throughout the world. In this study, we have developed a novel resonant-type microwave reactor powered by a solid-state device and confirmed that this system can focus microwave power on a small amount of reaction solution. Furthermore, we have demonstrated the rapid and facile radiosynthesis of 16α-[(18)F]fluoroestradiol, 4-[(18)F]fluoro-N-[2-(1-methoxyphenyl)-1-piperazinyl]ethyl-N-2-pyridinylbenzamide, and N-succinimidyl 4-[(18)F]fluorobenzoate using our newly developed microwave reactor.

  18. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  19. Environmentally assisted cracking in Light Water Reactors: Semiannual report, April 1993--September 1993. Volume 17

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Karlsen, T.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K.

    1994-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRS) during the six months from April 1993 to September 1993. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels; (b) EAC of cast stainless steels (SSs); and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions in simulated boiling-water reactor (BWR) water at 289{degree}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section 11 of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy.

  20. Environmentally assisted cracking in light water reactors. Semiannual report, April 1994--September 1994, Volume 19

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J.

    1995-09-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors from April to September 1994. Topics that have been investigated include (a) fatigue of carbon and low-alloy steel used in piping and reactor pressure vessels, (b) EAC of austenitic stainless steels (SSs) and Alloy 600, and (c) irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests have been conducted on A106-Gr B and A533-Gr B steels in oxygenated water to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack growth data were obtained on fracture-mechanics specimens of SSs and Alloy 600 to investigate EAC in simulated boiling water reactor (BWR) and pressurized water reactor environments at 289{degrees}C. The data were compared with predictions from crack growth correlations developed at ANL for SSs in water and from rates in air from Section XI of the ASME Code. Microchemical changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  1. BWR drywell behavior under steam blowdown

    SciTech Connect

    NguyenLe, Q.A.; Ishii, Mamoru

    1998-12-31

    Historically, the focus of thermal-hydraulics analyses on large-break loss-of-coolant accidents (LOCAs) has been on the transients within the reactor or steam generator. Few have studied the effects of steam blowdown on the containment building. The authors present some numerical and experimental results of the blowdown tests performed at the Purdue University multidimensional integrated test assembly (PUMA).

  2. Effect of sonication conditions: solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles.

    PubMed

    Ali, Farman; Reinert, Laurence; Levêque, Jean-Marc; Duclaux, Laurent; Muller, Fabrice; Saeed, Shaukat; Shah, Syed Sakhawat

    2014-05-01

    The effects of temperature, time, solvent and sonication conditions under air and Argon are described for the preparation of micron and sub-micron sized vermiculite particles in a double-jacketed Rosett-type or cylindrical reactor. The resulting materials were characterized via X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared (FTIR) Spectroscopy, BET surface area analysis, chemical analysis (elemental analysis), Thermogravimetry analysis (TGA) and Laser Granulometry. The sonicated vermiculites displayed modified particle morphologies and reduced sizes (observed by scanning electron microscopy and laser granulometry). Under the conditions used in this work, sub-micron sized particles were obtained after 5h of sonication, whereas longer times promoted aggregation again. Laser granulometry data revealed also that the smallest particles were obtained at high temperature while it is generally accepted that the mechanical effects of ultrasound are optimum at low temperatures according to physical/chemical properties of the used solvent. X-ray diffraction results indicated a reduction of the crystallite size along the basal direction [001]; but structural changes were not observed. Sonication at different conditions also led to surface modifications of the vermiculite particles brought out by BET surface measurements and Infrared Spectroscopy. The results indicated clearly that the efficiency of ultrasound irradiation was significantly affected by different parameters such as temperature, solvent, type of gas and reactor type.

  3. Peach Bottom Turbine Trip Simulations with RETRAN Using INER/TPC BWR Transient Analysis Method

    SciTech Connect

    Kao Lainsu; Chiang, Show-Chyuan

    2005-03-15

    The work described in this paper is benchmark calculations of pressurization transient turbine trip tests performed at the Peach Bottom boiling water reactor (BWR). It is part of an overall effort in providing qualification basis for the INER/TPC BWR transient analysis method developed for the Kuosheng and Chinshan plants. The method primarily utilizes an advanced system thermal hydraulics code, RETRAN02/MOD5, for transient safety analyses. Since pressurization transients would result in a strong coupling effect between core neutronic and system thermal hydraulics responses, the INER/TPC method employs the one-dimensional kinetic model in RETRAN with a cross-section data library generated by the Studsvik-CMS code package for the transient calculations. The Peach Bottom Turbine Trip (PBTT) tests, including TT1, TT2, and TT3, have been successfully performed in the plant and assigned as standards commonly for licensing method qualifications for years. It is an essential requirement for licensing purposes to verify integral capabilities and accuracies of the codes and models of the INER/TPC method in simulating such pressurization transients. Specific Peach Bottom plant models, including both neutronics and thermal hydraulics, are developed using modeling approaches and experiences generally adopted in the INER/TPC method. Important model assumptions in RETRAN for the PBTT test simulations are described in this paper. Simulation calculations are performed with best-estimated initial and boundary conditions obtained from plant test measurements. The calculation results presented in this paper demonstrate that the INER/TPC method is capable of calculating accurately the core and system transient behaviors of the tests. Excellent agreement, both in trends and magnitudes between the RETRAN calculation results and the PBTT measurements, shows reliable qualifications of the codes/users/models involved in the method. The RETRAN calculated peak neutron fluxes of the PBTT

  4. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    SciTech Connect

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  5. A bifurcation analysis of boiling water reactor on large domain of parametric spaces

    NASA Astrophysics Data System (ADS)

    Pandey, Vikas; Singh, Suneet

    2016-09-01

    The boiling water reactors (BWRs) are inherently nonlinear physical system, as any other physical system. The reactivity feedback, which is caused by both moderator density and temperature, allows several effects reflecting the nonlinear behavior of the system. Stability analyses of BWR is done with a simplified, reduced order model, which couples point reactor kinetics with thermal hydraulics of the reactor core. The linear stability analysis of the BWR for steady states shows that at a critical value of bifurcation parameter (i.e. feedback gain), Hopf bifurcation occurs. These stable and unstable domains of parametric spaces cannot be predicted by linear stability analysis because the stability of system does not include only stability of the steady states. The stability of other dynamics of the system such as limit cycles must be included in study of stability. The nonlinear stability analysis (i.e. bifurcation analysis) becomes an indispensable component of stability analysis in this scenario. Hopf bifurcation, which occur with one free parameter, is studied here and it formulates birth of limit cycles. The excitation of these limit cycles makes the system bistable in the case of subcritical bifurcation whereas stable limit cycles continues in an unstable region for supercritical bifurcation. The distinction between subcritical and supercritical Hopf is done by two parameter analysis (i.e. codimension-2 bifurcation). In this scenario, Generalized Hopf bifurcation (GH) takes place, which separates sub and supercritical Hopf bifurcation. The various types of bifurcation such as limit point bifurcation of limit cycle (LPC), period doubling bifurcation of limit cycles (PD) and Neimark-Sacker bifurcation of limit cycles (NS) have been identified with the Floquet multipliers. The LPC manifests itself as the region of bistability whereas chaotic region exist because of cascading of PD. This region of bistability and chaotic solutions are drawn on the various

  6. Radionuclide characterization of reactor decommissioning waste and neutron-activated metals

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Haggard, D.L.

    1993-06-01

    This study is providing the NRC and licensees with a more comprehensive data base for regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. The radiological characterization studies of Shippingport decommissioning materials have now been completed, and analyses of dismantled piping and scabbled concrete have shown that neutron activation products, dominated by {sup 60}Co, comprised the residual radionuclide inventory. Waste classification assessment have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Spent fuel disassembly hardware from the Shippingport Core-3 was analyzed for long-lived activation products. {sup 94}Nb and {sup 63}Ni concentrations in Inconel-X750 and stainless steel components exceeded their Class C limits. Measurements and assessments of {sup 14}C in spent fuel disassembly hardware from three commercial nuclear power stations showed that this radionuclide never exceeded the Class C limit for all components. However, the {sup 63}Ni and {sup 94}Nb concentrations in some of these materials did exceed the Class C limits. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Three control rods, including a BWR cruciform control rod blade, a PWR control rod cluster assembly, and a PWR burnable poison rod assembly, have been characterized for their long-lived activation product concentrations and distribution by direct assay methods. These spent control rods could all be classified as Class C low-level waste.

  7. Radionuclide characterization of reactor decommissioning waste and neutron-activated metals

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Haggard, D.L.

    1993-06-01

    This study is providing the NRC and licensees with a more comprehensive data base for regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. The radiological characterization studies of Shippingport decommissioning materials have now been completed, and analyses of dismantled piping and scabbled concrete have shown that neutron activation products, dominated by Co-60, comprised the residual radionuclide inventory. Waste classification assessment have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Spent fuel disassembly hardware from the Shippingport Core-3 was analyzed for long-lived activation products. Nb-94 and Ni-63 concentrations in Inconel-X750 and stainless steel components exceeded their Class C limits. Measurements and assessments of C-14 in spent fuel disassembly hardware from three commercial nuclear power stations showed that this radionuclide never exceeded the Class C limit for al components. However, the Ni-63 and Nb-94 concentrations in some of these materials did exceed the Class C limits. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Three control rods, including a BWR cruciform control rod blade, a PWR control rod cluster assembly, and a PWR burnable poison rod assembly, have been characterized for their long-lived activation product concentrations and distribution by direct assay methods. These spent control rods could all be classified as Class C low-level waste. These rods are presently being sampled.

  8. Effect of different types of nanofluids on free convection heat transfer around spherical mini-reactor

    NASA Astrophysics Data System (ADS)

    Jayhooni, S. M. H.; Rahimpour, M. R.

    2013-06-01

    In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.

  9. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  10. BWR drywell behavior under steam blowdown.

    SciTech Connect

    NguyenLe, Q.

    1998-05-08

    Historically, thermal hydraulics analyses on Large Break Loss of Coolant Accidents (LOCA) have been focused on the transients within the reactor or steam generator. Few have studied the effects of steam blowdown on the containment building. This paper discusses some theoretical issues as well as presenting numerical and experimental results of the blowdown tests performed at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA).

  11. Bioregeneration of perchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor.

    PubMed

    Venkatesan, Arjun K; Sharbatmaleki, Mohamadali; Batista, Jacimaria R

    2010-05-15

    Selective ion-exchange resins are very effective to remove perchlorate from contaminated waters. However, these resins are currently incinerated after one time use, making the ion-exchange process incomplete and unsustainable for perchlorate removal. Resin bioregeneration is a new concept that combines ion-exchange with biological reduction by directly contacting perchlorate-laden resins with a perchlorate-reducing bacterial culture. In this research, feasibility of the bioregeneration of perchlorate-laden gel-type anion-exchange resin was investigated. Bench-scale bioregeneration experiments, using a fluidized bed reactor and a bioreactor, were performed to evaluate the feasibility of the process and to gain insight into potential mechanisms that control the process. The results of the bioregeneration tests suggested that the initial phase of the bioregeneration process might be controlled by kinetics, while the later phase seems to be controlled by diffusion. Feasibility study showed that direct bioregeneration of gel-type resin was effective in a fluidized-bed reactor, and that the resin could be defouled, reused, and repeatedly regenerated using the method applied in this research.

  12. Calculation of MCPR for BWR transients using the BNL plant analyzer

    SciTech Connect

    Horak, W.C.; Diamond, D.J.

    1987-01-01

    A class of transients of interest includes those from full power that involve some changes from the plant's technical specifications. These changes are allowed if it can be demonstrated that the effect on key parameters, such as the minimum critical power ratio (MCPR), is acceptable. Another class of transients is of interest for similar reasons, those that are initiated from the maximum extended operating domain (MEOD) or with partial feedwater heating. In the MEOD, the reactor conditions may be different from previous experience to increase the speed of the power ascension or obtain more power out of the core at end-of-cycle when the reactivity of the fuel is low. The critical power ratio (CPR) is used to determine the thermal limits of boiling water reactors (BWRs). In this study, CPRs for a series of transients run on the Brookhaven Plant Analyzer (BPA) have been calculated. The transients include nominal base case simulations; simulations with variations in relief valve setpoints and the number of failed feedwater heaters; simulations at the 100% power, 75% flow point on the extended load line of the MEOD; and a simulation with partial feedwater heating. The plant represented with the BPA is a BWR/4 rated at 3293 MW with a 6.38-m vessel.

  13. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  14. Development of advanced BWR fuel bundle with spectral shift rod - BWR core characteristics with SSR

    SciTech Connect

    Hino, T.; Kondo, T.; Chaki, M.; Ohga, Y.; Makigami, T.

    2012-07-01

    The neutron energy spectrum can be varied during an operation cycle to generate and utilize more plutonium from the non-fissile {sup 238}U by changing the void fraction in the core through control of the core coolant flow rate. This operation method, which is called a spectral shift operation, is practiced in BWRs to save natural uranium. A new component called a spectral shift rod (SSR), which is utilized instead of a conventional water rod, has been introduced to amplify the void fraction change and increase the spectral shift effect. In this study, fuel bundle design with the SSR and core design were carried out for the ABWR and the next generation BWR, HP-ABWR (High-Performance ABWR).The core characteristics with the SSR were evaluated and compared with those when using the conventional water rod. Influences of uncertainty of the water level in the SSR on the safety limit minimum critical power ratio (SLMCPR) were considered for evaluation of the uranium saving effect attained by the SSR. As a result, it was found that the amount of natural uranium needed for an operation cycle could be reduced more than 3% with 20% core coolant flow change and more than 5% with 30% core coolant flow change, in the form of increased discharge exposure by using the SSR compared with the conventional water rod use. (authors)

  15. Technical Specification action statements requiring shutdown. A risk perspective with application to the RHR/SSW systems of a BWR

    SciTech Connect

    Mankamo, T.; Kim, I.S.; Samanta, P.K.

    1993-11-01

    When safety systems fail during power operation, the limiting conditions for operation (LCOs) and associated action statements of technical specifications typically require that the plant be shut down within the limits of allowed outage time (AOT). However, when a system needed to remove decay heat, such as the residual heat removal (RHR) system, is inoperable or degraded, shutting down the plant may not necessarily be preferable, from a risk perspective, to continuing power operation over a usual repair time, giving priority to the repairs. The risk impact of the basic operational alternatives, i.e., continued operation or shutdown, was evaluated for failures in the RHR and standby service water (SSW) systems of a boiling-water reactor (BWR) nuclear power plant. A complete or partial failure of the SSW system fails or degrades not only the RHR system but other front-line safety systems supported by the SSW system. This report presents the methodology to evaluate the risk impact of LCOs and associated AOT; the results of risk evaluation from its application to the RHR and SSW systems of a BWR; the findings from the risk-sensitivity analyses to identify alternative operational policies; and the major insights and recommendations to improve the technical specifications action statements.

  16. Environmentally assisted cracking in light water reactors. Semiannual progress report, January 1996--June 1996

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1997-05-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1996 to June 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated boiling water reactor (BWR) water at 288{degrees}C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in air and high-purity, low-DO water. 83 refs., 60 figs., 14 tabs.

  17. Environmentally assisted cracking in light-water reactors: Semi-annual report, January--June 1997. Volume 24

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1998-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1997 to June 1997. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Types 304 and 304L SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during various portions of a tensile-loading cycle is equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated boiling water reactor (BWR) water at 288 C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in low-DO, simulated pressurized water reactor environments.

  18. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  19. Trace Assessment for BWR ATWS Analysis

    SciTech Connect

    Cheng, L.Y.; Diamond, D.; Arantxa Cuadra, Gilad Raitses, Arnold Aronson

    2010-04-22

    A TRACE/PARCS input model has been developed in order to be able to analyze anticipated transients without scram (ATWS) in a boiling water reactor. The model is based on one developed previously for the Browns Ferry reactor for doing loss-of-coolant accident analysis. This model was updated by adding the control systems needed for ATWS and a core model using PARCS. The control systems were based on models previously developed for the TRAC-B code. The PARCS model is based on information (e.g., exposure and moderator density (void) history distributions) obtained from General Electric Hitachi and cross sections for GE14 fuel obtained from an independent source. The model is able to calculate an ATWS, initiated by the closure of main steam isolation valves, with recirculation pump trip, water level control, injection of borated water from the standby liquid control system and actuation of the automatic depres-surization system. The model is not considered complete and recommendations are made on how it should be improved.

  20. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    SciTech Connect

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  1. Influence of steel type on the activation and decay of fusion-reactor first walls

    SciTech Connect

    Blink, J.A.; Lasche, G.P.

    1983-01-01

    Five steels (PCA, HT-9, thermally stabilized 2.25 Cr-1 Mo, Nb stabilized 2.25 Cr-1 Mo, and 2.25 Cr-1 V) are compared as a function of time from the viewpoints of activation, afterheat, inhalation biological hazard potential (bhp), ingestion bhp, and feasibility of disposal by shallow land burial. An additional case uses the 2.25 Cr-1 V steel with a metal wall (LMW) protective shield between the neutron source and the wall. (This geometry is feasible for inertial confinement fusion reactors.) The PCA steel is the worst choice and the LMW protected 2.25 Cr-1 V is the best choice by substantial margins from all five viewpoints. The HT-9 and two versions of 2.25 Cr-1 Mo are roughly the same at intermediate values. The 2.25 Cr-1 V has about the same afterheat as those three steels, but its waste disposal feasibility is considerably better. Under NRC's proposed low level waste disposal rule (10CFR61), only the 2.25 Cr-1 V could be considered low level waste suitable for shallow land burial.

  2. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  3. Electrochemical incineration of vinasse in filter-press-type FM01-LC reactor using 3D BDD electrode.

    PubMed

    Nava, J L; Recéndiz, A; Acosta, J C; González, I

    2008-01-01

    This work shows results obtained in the electrochemical incineration of a synthetic vinasse with initial chemical oxygen demand (COD) of 75.096 g L(-1) in aqueous media (which resembles vinasse industrial wastewater). Electrolyses in a filter-press-type FM01-LC electrochemical reactor equipped with a three-dimensional (3D) boron doped diamond electrode (BDD) were performed at Reynolds values between 22

  4. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    SciTech Connect

    PARMA JR.,EDWARD J.

    2000-01-01

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

  5. Effects of lateral separation of oxidic and metallic core debris on the BWR MK I containment drywell floor

    SciTech Connect

    Hyman, C.R.; Weber, C.F.; Hodge, S.A.

    1986-01-01

    In evaluating core debris/concrete interactions for a BWR MK I containment design, it is common practice to assume that at reactor vessel breach, the core debris is homogeneous and of low viscosity, so that it flows through the pedestal doorway and spreads in a radially uniform fashion throughout the drywell floor. In a recent study performed by the NRC-sponsored Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, calculations indicate that at reactor vessel bottom head failure, the debris temperature is such that the debris metals (Zr, Fe, Ni, Cr) are completely molten while the oxides (UO/sub 2/ ZrO/sub 2/, FeO) are completely frozen. Thus, the frozen oxides are expected to remain within the reactor pedestal while the molten metals radially separate from the frozen oxides, flow through the reactor pedestal doorway, and spread over the annular region of the drywell floor between the pedestal and the containment shell. This paper assesses the impact on calculated containment response and the production and release of fission product-laden aerosols for two different cases of debris distribution: uniform distribution and the laterally separated case of 95% oxides-5% metals inside the pedestal and 5% oxides-95% metals outside the pedestal. The computer codes used are CORCON-MOD2, MARCON 2.1B and VANESA.

  6. Analysis of high pressure boil-off situation during MSIV closure ATWS in a typical BWR/4

    SciTech Connect

    Neymotin, L.Y.; Slovik, G.C.; Saha, P.

    1986-01-01

    The objective of this paper is to provide a best-estimate analysis of the MSIV Closure ATWS in the Browns Ferry Unit 1 BWR with Mark 1 containment. The calculations have been performed using the RAMONA-3B code which has a three-dimensional neutron kinetics model coupled with one-dimensional (multi-channel core representation), four-equation, nonhomogeneous, nonequilibrium thermal hydraulics. The code also allows for one-dimensional neutronic core representation. The 1-D capability of the code has been employed in this calculation since a thorough sensitivity study showed that for a full ATWS, a one-dimensional (axial) neutron kinetics adequately describes the core behavior. (Note that the core steady-state symmetry in this case was preserved throughout the transient so that radial effects could be neglected.) The calculation described in the paper was started from a steady-state fuel condition corresponding to the end of Cycle 5 of the Browns Ferry reactor.

  7. 77 FR 64563 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ....-11:45 p.m.: Role of Filtered Venting Systems When Installed in BWR Mark I and Mark II Containments... staff regarding a proposed Commission Paper regarding the value of filtered venting systems when... the Advanced Boiling Water Reactor (ABWR) Design for South Texas Project Units 3 and 4 (STP 3 and...

  8. Design analysis of the molten core confinement within the reactor vessel in the case of severe accidents at nuclear power plants equipped with a reactor of the VVER type

    NASA Astrophysics Data System (ADS)

    Zvonaryov, Yu. A.; Budaev, M. A.; Volchek, A. M.; Gorbaev, V. A.; Zagryazkin, V. N.; Kiselyov, N. P.; Kobzar', V. L.; Konobeev, A. V.; Tsurikov, D. F.

    2013-12-01

    The present paper reports the results of the preliminary design estimate of the behavior of the core melt in vessels of reactors of the VVER-600 and VVER-1300 types (a standard optimized and informative nuclear power unit based on VVER technology—VVER TOI) in the case of beyond-design-basis severe accidents. The basic processes determining the state of the core melt in the reactor vessel are analyzed. The concept of molten core confinement within the vessel based on the idea of outside cooling is discussed. Basic assumptions and models, as well as the results of calculation of the interaction between molten materials of the core and the wall of the reactor vessel performed by means of the SOCRAT severe accident code, are presented and discussed. On the basis of the data obtained, the requirements on the operation of the safety systems are determined, upon the fulfillment of which there will appear potential prerequisites for implementing the concept of the confinement of the core melt within the reactor in cases of severe accidents at nuclear power plants equipped with VVER reactors.

  9. Combined numerical and experimental investigations of local hydrodynamics and coolant flow mass transfer in Kvadrat-type fuel assemblies of PWR reactors with mixing grids

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Samoilov, O. B.; Khrobostov, A. E.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Sorokin, V. D.

    2014-08-01

    Results of research works on studying local hydrodynamics and mass transfer for coolant flow in the characteristic zones of PWR reactor fuel assemblies in case of using belts of mixing spacer grids are presented. The investigations were carried out on an aerodynamic rig using the admixture diffusion method (the tracer-gas method). Certain specific features pertinent to coolant flow in the fuel rod bundles of Kvadrat-type fuel assemblies were revealed during the experiments. The obtained study results were included in the database for verifying computation fluid dynamics computer codes and detailed cell-wise calculations of reactor cores with Kvadrat-type fuel assemblies. The obtained results can also be used for more exact determination of local coolant flow hydrodynamic and mass transfer characteristics in assessing thermal reliability of PWR reactor cores.

  10. COBRA-SFS (Spent-Fuel Storage) thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.

    1986-12-01

    Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates.

  11. Improved fluid-structure coupling. [BWR

    SciTech Connect

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.

    1981-01-01

    In the computer code PELE-IC, an incompressible Eulerian hydrodynamic algorithm was coupled to a Lagrangian finite element shell algorithm for the analysis of pressure suppression in boiling water reactors. This effort also required the development of a free surface algorithm capable of handling expanding gas bubbles. These algorithms have been improved to strengthen the coupling and to add the capability for following the more complex free surfaces resulting from steam condensation. These improvements have also permitted more economical 2D calculations and have made it feasible to develop a 3D version. A compressible option using the acoustic approximation has also been added, furthering the usefulness of the code. The coupling improvements were made in three areas which are identified as (1) preferential coupling, (2) merged cell coupling, and (3) free surface-structure coupling, and are described. These algorithms have been additionally implemented in a three dimensional version of the code called PELE3D. This version has a free surface capability to follow expanding and contracting bubbles and is coupled to a curved rigid surface.

  12. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    SciTech Connect

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-12-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations.

  13. Advanced light water reactor requirements document: Chapter 3, Reactor coolant system and reactor non-safety auxiliary systems

    SciTech Connect

    Not Available

    1987-06-01

    The purpose of this chapter of the Advanced Light Water Reactor (ALWR) Plant Requirements Document is to establish utility requirements for the design of the Reactor Coolant System and the Reactor Non-safety Auxiliary Systems of Advanced LWR plants consistent with the objectives and principles of the ALWR program. The scope of this chapter covers the reactor coolant system and reactor non-safety auxiliary systems for Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Non-safety auxiliaries include systems which are required for normal operation of the plant but are not required to operate for accident mitigation or to bring the plant to a safe shutdown condition. For PWRs, the reactor coolant system, steam generator system, chemical and volume control system and boron recycle system are included. For BWRs, the reactor coolant system and reactor water cleanup system are included. The chapter also includes requirements for the above systems which are common to BWRs and PWRs and requirements for process sampling for BWRs and PWRs.

  14. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    SciTech Connect

    Orlov, Andrey; Degueldre, Claude; Kaufmann, Wilfried

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  15. An analysis of molten-corium-induced failure of drain pipes in BWR Mark 2 containments

    SciTech Connect

    Taleyarkhan, R.P. ); Podowski, M.Z. )

    1991-01-01

    This study has focused on mechanistic simulation and analysis of potential failure modes for inpedestal drywell drain pipes in the Limerick boiling water reactor (BWR) Mark 2 containment. Physical phenomena related to surface tension breakdown, heatup, melting, ablation, crust formation and failure, and core material relocation into drain pipes with simultaneous melting of pipe walls were modeled and analyzed. The results of analysis have been used to assess the possibility of drain pipe failure and the resultant loss of pressure-suppression capability. Estimates have been made for the timing and amount of molten corium released to the wetwell. The study has revealed that significantly different melt progression sequences can result depending upon the failure characteristics of the frozen metallic crust which forms over the drain cover during the initial stages of debris pour. Another important result is that it can take several days for the molten fuel to ablate the frozen metallic debris layer -- if the frozen layer has cooled below 1100 K before fuel attack. 10 refs., 3 figs., 4 tabs.

  16. Corrosion fatigue behavior of low alloy steels under simulated BWR coolant conditions

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Young, M. C.; Jeng, S. L.; Yeh, J. J.; Huang, J. S.; Kuo, R. C.

    2010-10-01

    The corrosion fatigue crack growth behavior of A533 and A508 low alloy steels under simulated boiling water reactor (BWR) coolant conditions was studied. Corrosion fatigue crack growth rates of A533B3 and A508 cl. 3 steels were significantly affected by the steel sulfur content, loading frequency and dissolved oxygen content of water environments. The data points outside the bound of Eason's model could be attributed to the low frequency, higher steel sulfur content and high dissolved oxygen in water environments. The sulfur dissolved in the water environment from the higher-sulfur steels was sufficiently concentrated to acidify the crack tip chemistry even in the hydrogen water chemistry (HWC). Therefore, nitrogenated or HWC water showed little or no beneficiary effect on the high-sulfur steels. For the steel specimens of the same sulfur level, their corrosion fatigue crack growth rates were comparable in different orientations, which could be related to the exposure of fresh sulfides to the water environment. The percentages of sulfides per unit area, by quantitative metallography, were comparable for the steel specimens of both orientations. When the steel sulfur content was decreased to a critical sulfur content 0.005 wt.%, the crack growth rates decreased remarkably.

  17. BWR spent-fuel measurements with the ION-1/fork detector and a calorimeter

    SciTech Connect

    Rinard, P.M.; Bosler, G.E.

    1986-08-01

    Gamma-ray and neutron measurements were made on about 50 irradiated boiling-water reactor (BWR) fuel assemblies using the Los Alamos National Laboratory ION-1/fork detector. The assemblies were placed in a dry storage cask (DOE's REA-2023) at the General Electric Morris Operation (GE-MO) as part of a program to evaluate the cask performance. Battelle Pacific Northwest Laboratory (PNL) conducted the program. PNL compared axial radiation profiles developed from ION-1/fork measurements with calculated profiles to interpret the temperature distributions within the cask. The gamma-ray profiles correlated with heat-emission rates measured with a calorimeter, which suggests that the ION-1/fork detector is much faster than the more direct calorimeter. In addition, the radiation profiles from the ION-1/fork detector can prevent cask loadings with undesirable heat source distributions. The detector also provides safeguards information by verifying the declared exposures and cooling times. The genuineness of the assemblies is thus confirmed just before the filling and sealing of a cask. The ION-1/fork detector was permanently installed in the GE-MO fuel storage pond for 1 year without any breakdowns or significant maintenance required. Data were gathered for 9 months and analyzed using techniques developed during previous measurement campaigns. A few anomalies were found in generally satisfactory results. The detector's ease of use, reliability, and reproducibility were excellent.

  18. THERMAL EVALUATION OF THE CONCEPTUAL 24 BWR UCF TUBE BASKET DESIGN DISPOSAL CONTAINER

    SciTech Connect

    T.L. Lotz

    1995-12-18

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24,5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 24 boiling water reactor (BWR) uncanistered fuel (UCF) waste package (WP) to show that the design is feasible for use in the MGDS environment. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the UCF waste package do not preclude UCF waste package compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual UCF WP design under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation and to provide the required guidance to determining the major design issues for future design efforts. Future design efforts will focus on UCF design changes as further design and operations information becomes available.

  19. Magnetic Field Required for Ignition in a Magnetically Confined Plasma in Reactor-Type Conditions

    NASA Astrophysics Data System (ADS)

    Panarella, Emilio

    1996-11-01

    A complete and rigorous analysis will be given of the ignition conditions for a pulsed DT plasma magnetically confined, where the conduction losses are introduced from heat transfer theory, rather than from the empirically defined energy confinement time. It will be shown that the magnetic field required for ignition greatly exceeds any of those presently considered for major machines. It will also be shown that ignition is independent of particle density. On the basis of these results it is argued that ignition is facilitated in an inertially confined plasma, both of the classical type with lasers, or with the Spherical Pinch, or the Magnetized Target Fusion concepts.

  20. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  1. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  2. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-20

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  3. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-01

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  4. Analysis of operation of filters for post-accident decontamination of pressurized rooms of a nuclear power plants with a type VVER-440 reactor

    NASA Astrophysics Data System (ADS)

    Zaichik, L. I.; Zeigarnik, Yu. A.; Rotinov, A. G.; Sidorov, A. S.; Silina, N. N.; Chalyi, R. F.

    2007-05-01

    Operation of filters of postaccident decontamination of pressurized rooms of a nuclear power plant with a type-VVER-440 reactor is analyzed. The distribution of radioactive nuclides over filter stages, the time variation of the thermal state of filter, and the characteristic features of the processes of sorption in the section of fine cleaning are considered.

  5. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  6. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  7. Are fast explorers slow reactors? Linking personality type and anti-predator behaviour.

    PubMed

    Jones, Katherine A; Godin, Jean-Guy J

    2010-02-22

    Response delays to predator attack may be adaptive, suggesting that latency to respond does not always reflect predator detection time, but can be a decision based on starvation-predation risk trade-offs. In birds, some anti-predator behaviours have been shown to be correlated with personality traits such as activity level and exploration. Here, we tested for a correlation between exploration behaviour and response latency time to a simulated fish predator attack in a fish species, juvenile convict cichlids (Amatitlania nigrofasciata). Individual focal fish were subjected to a standardized attack by a robotic fish predator while foraging, and separately given two repeated trials of exploration of a novel environment. We found a strong positive correlation between exploration and time taken to respond to the predator model. Fish that were fast to explore the novel environment were slower to respond to the predator. Our study therefore provides some of the first experimental evidence for a link between exploration behaviour and predator-escape behaviour. We suggest that different behavioural types may differ in how they partition their attention between foraging and anti-predator vigilance.

  8. Are fast explorers slow reactors? Linking personality type and anti-predator behaviour

    PubMed Central

    Jones, Katherine A.; Godin, Jean-Guy J.

    2010-01-01

    Response delays to predator attack may be adaptive, suggesting that latency to respond does not always reflect predator detection time, but can be a decision based on starvation–predation risk trade-offs. In birds, some anti-predator behaviours have been shown to be correlated with personality traits such as activity level and exploration. Here, we tested for a correlation between exploration behaviour and response latency time to a simulated fish predator attack in a fish species, juvenile convict cichlids (Amatitlania nigrofasciata). Individual focal fish were subjected to a standardized attack by a robotic fish predator while foraging, and separately given two repeated trials of exploration of a novel environment. We found a strong positive correlation between exploration and time taken to respond to the predator model. Fish that were fast to explore the novel environment were slower to respond to the predator. Our study therefore provides some of the first experimental evidence for a link between exploration behaviour and predator-escape behaviour. We suggest that different behavioural types may differ in how they partition their attention between foraging and anti-predator vigilance. PMID:19864291

  9. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  10. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; J. S. Herring

    2007-09-01

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

  11. Chemical decontamination of BWR fuel and core materials

    SciTech Connect

    Beauregard, R.J. )

    1989-09-01

    A previous EPRI project decontaminated two discharged BWR fuel assemblies using the AP-LOMI and AP-CAN-DECON processes at Commonwealth Edison's Quad-Cities Nuclear Power Site. The two decontaminated assemblies and a third control assembly were shipped to the B W Hot Cell Facility in Lynchburg, Virginia. The three assemblies were partially disassembled in the hot cells and several rods extracted for nondestructive oxide measurement and visual examination. Various components were removed from the two decontaminated fuel assemblies for destructive examination to search for possible deleterious effects of chemical cleaning. The AP-LOMI process removed essentially all of the crud which normally covers a BWR bundle and channel. The AP-CAN-DECON process removed most of the crud, but left a thin layer on the rods and components in the central region of the bundle between the top and bottom spacer grids. Neither decontamination process appeared to damage the Zircaloy-2 fuel and water rods, or the Zircaloy-4 channels and spacers. An adherent zirconium oxide layer still covered all of the Zircaloy surfaces which were examined. The increase in hydrogen content of the channels and fuel rods was low. The AP-LOMI process did not appear to damage the Inconel X-750 fuel rod expansion springs, spacer lantern springs or channel finger spring. A thin, adherent oxide layer was found on all components.

  12. [Influences of hydraulic retention time on the ethanol type fermentation hydrogen production system in a hybrid anaerobic baffled reactor].

    PubMed

    Liu, Xiao-Ye; Zhang, Hong; Li, Yong-Feng

    2014-06-01

    Effect of hydraulic retention time (HRT) on bio-hydrogen production and operational stability of ethanol-type fermentation was investigated in a hybrid anaerobic baffled reactor (HABR) using brown sugar as substrate. The results showed that five HRTs were examined, ranging from 8 to 36 h. At a HRT of 12 h, the highest hydrogen production rate was achieved [13.86 mmol x (h x L)(-1)], with a COD remove rate of 51.51%, and the pH value of five compartments was between 4.22-4.47. The ethanol and acetate were the predominant metabolites. The ratios of ethanol and acetic acid from the 1th compartment to the 5th compartment were 1.90, 1.94, 1.80, 1.77 and 1.91, respectively. The results demonstrated that the best energy production rate was 11.11 kJ x (h x L)(-1), occurred at a HRT of 12 h.

  13. Improvement of hydrogen production via ethanol-type fermentation in an anaerobic down-flow structured bed reactor.

    PubMed

    Anzola-Rojas, Mélida del Pilar; Zaiat, Marcelo; De Wever, Heleen

    2016-02-01

    Although a novel anaerobic down-flow structured bed reactor has shown feasibility and stable performance for a long-term compared to other anaerobic fixed bed systems for continuous hydrogen production, the volumetric rates and yields have so far been too low. In order to improve the performance, an operation strategy was applied by organic loading rate (OLR) variation (12-96 g COD L(-1) d(-1)). Different volumetric hydrogen rates, and yields at the same OLR indicated that the system was mainly driven by the specific organic load (SOL). When SOL was kept between 3.8 and 6.2 g sucrose g(-1) VSS d(-1), the volumetric rates raised from 0.1 to 8.9 L H2 L(-1) d(-1), and the yields were stable around 2.0 mol H2 mol(-1) converted sucrose. Furthermore, hydrogen was produced mainly via ethanol-type fermentation, reaching a total energy conversion rate of 23.40 kJ h(-1) L(-1) based on both hydrogen and ethanol production.

  14. STEAM LINE BREAK AND STATION BLACKOUT TRANSIENTS FOR PROLIFERATION RESISTANT HEXAGONAL TIGHT LATTICE BWR.

    SciTech Connect

    ROHATGI,U.S.; JO,J.; CHUNG,B.D.; TAKAHASHI,H.

    2002-06-09

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. The tight lattice core has a very narrow flow channels with a hydraulic diameter less than half of the regular BWR core and, thus, presents a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with Isolation Condenser System (ICs). The vessel is placed in containment with Gravity Driven Cooling System (GDCS) and Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's Simplified Boiling Water Reactor (SBWR). The safety systems are similar to SBWR; ICs and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney, since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration resulted in much larger friction in the core than the SBWR. The constitutive relationships for RELAP5 were assessed for narrow channels, and as a result the heat transfer package was modified. The modified RELAP5 was used to simulate and analyze two of the most limiting events for a tight

  15. Accumulation of radioactive corrosion products on steel surfaces of VVER type nuclear reactors. I. 110mAg

    NASA Astrophysics Data System (ADS)

    Hirschberg, Gábor; Baradlai, Pál; Varga, Kálmán; Myburg, Gerrit; Schunk, János; Tilky, Péter; Stoddart, Paul

    Formation, presence and deposition of corrosion product radionuclides (such as 60Co, 51Cr, 54Mn, 59Fe and/or 110mAg) in the primary circuits of water-cooled nuclear reactors (PWRs) throw many obstacles in the way of normal operation. During the course of the work presented in this series, accumulations of such radionuclides have been studied at austenitic stainless steel type 08X18H10T (GOST 5632-61) surfaces (this austenitic stainless steel corresponds to AISI 321). Comparative experiments have been performed on magnetite-covered carbon steel (both materials are frequently used in some Soviet VVER type PWRs). For these laboratory-scale investigations a combination of the in situ radiotracer `thin gap' method and voltammetry is considered to be a powerful tool due to its high sensitivity towards the detection of the submonolayer coverages of corrosion product radionuclides. An independent technique (XPS) is also used to characterize the depth distribution and chemical state of various contaminants in the passive layer formed on austenitic stainless steel. In the first part of the series the accumulation of 110mAg has been investigated. Potential dependent sorption of Ag + ions (cementation) is found to be the predominant process on austenitic steel, while in the case of magnetite-covered carbon steel the silver species are mainly depleted in the form of Ag 2O. The XPS depth profile of Ag gives an evidence about the embedding of metallic silver into the entire passive layer of the austenitic stainless steel studied.

  16. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  17. Neutronics Design and Fuel Cycle Analysis of a High Conversion BWR with Pu-Th Fuel

    SciTech Connect

    Xu, Yunlin; Downar, T.J.; Takahashi, H.; Rohatgi, U.S.

    2002-07-01

    As part of the U.S. Department of Energy's (DOE) Nuclear Energy Research Initiative (NERI), a 'Generation IV' high conversion Boiling Water Reactor design is being investigated at Purdue University and Brookhaven National Laboratory. One of the primary innovative design features of the core proposed here is the use of Thorium as fertile material. In addition to the advantageous nonproliferation and waste characteristics of thorium fuel cycles, the use of thorium is particularly important in a tight pitch, high conversion lattice in order to insure a negative void coefficient throughout the operating life of the reactor. The principal design objective of a high conversion light water reactor is to substantially increase the conversion ratio (fissile atoms produced per fissile atoms consumed) of the reactor without compromising the safety performance of the plant. Since existing LWRs have a relatively low conversion ratio they require relatively frequent refueling which limits the economic efficiency of the plant. Also, the high volume of spent fuel can pose a burden for waste storage and the accumulation of plutonium in the uranium fuel cycle can become a materials proliferation issue. The development of Fast Breeder Reactors (FBR) as an alternative technology to alleviate some of these concerns has been delayed for various reasons. An intermediate solution has been to examine tight pitch light water reactors which can provide significant improvements in the fuel cycle performance of the existing LWRs by taking advantage of the increased conversion ratios from the harder neutron spectrum in the tight pitch lattice, as well as the by taking advantage of the waste and nonproliferation benefits of the thorium fuel cycle. Several High Conversion BWR designs have been proposed by researchers in Japan and elsewhere during the past several years. One of the more promising HCR designs is the Reduced Moderation Water Reactor (RMWR) proposed by JAERI [1]. Their design was

  18. Period meter for reactors

    DOEpatents

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  19. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  20. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  1. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.

    1957-10-01

    A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.

  2. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  3. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.

  4. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. PMID:26612557

  5. Effects of some little noticed water impurities on stress corrosion cracking of BWR construction materials

    SciTech Connect

    Ljungberg, L.G.; Cubicciotti, D.; Trolle, M.

    1988-01-01

    The effects of some little noticed dissolved impurities in simulated BWR water on environmental cracking for some BWR pressure bearing construction materials were studied by constant elongation rate tensile (CERT) tests. Fluoride, silica and thiosulfate were found to be harmful. Phosphate and perchlorate in concentration up to 1 ppm had no effect in simulated hydrogen water chemistry. Organic acids and zinc were found to be generally beneficial, except when they occurred in combination.

  6. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    PubMed

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  7. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  8. BWR Full Integral Simulation Test (FIST). Phase I test results

    SciTech Connect

    Hwang, W S; Alamgir, M; Sutherland, W A

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report.

  9. BWR plant analyzer development at BNL (Brookhaven National Laboratory)

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1986-01-01

    An engineering plant analyzer has been developed at BNL for realistically and accurately simulating transients and severe abnormal events in BWR power plants. Simulations are being carried out routinely with high fidelity, high simulation speed, at low cost and with unsurpassed user convenience. The BNL Plant Analyzer is the only operating facility which (a) simulates more than two orders-of-magnitude faster than the CDC-7600 mainframe computer, (b) is accessible and fully operational in on-line interactive mode, remotely from anywhere in the US, from Europe or the Far East (Korea), via widely available IBM-PC compatible personal computers, standard modems and telephone lines, (c) simulates both slow and rapid transients seven times faster than real-time in direct access, and four times faster in remote access modes, (d) achieves high simulation speed without compromising fidelity, and (e) is available to remote access users at the low cost of $160 per hour.

  10. Use of scaled BWR lower plenum boron mixing tests to qualify the boron transport model used in TRACG

    SciTech Connect

    Cook, M. M.; Straka, M.; Chu, Y. C.; Heck, C. L.; Andersen, J. G. M.; Jacobs, R. H.

    2012-07-01

    In 2001 GEH applied best estimate methods combined with a statistical methodology to determine upper bound limits for key licensing parameters for anticipated operation occurrence (AOO) transient and anticipated transients without scram (ATWS) overpressure analyses for operating Boiling Water Reactors (BWRs). The methodology was subsequently extended for ESBWR AOO, ATWS, loss of coolant, and stability analyses. GEH is extending the methodology to long-term ATWS analyses for the operating BWRs. A long-term ATWS scenario uses injection of borated water to achieve reactor shutdown. Predicting the mixing and transport of boron is important for calculating the impact on the key licensing parameters. For the many operating BWRs where the denser boron solution is injected into the lower plenum, stratification may occur, delaying boron transport to the core region. CFD modeling can be used to model the stratification and mixing of the boron solution, but such calculations are extremely computer intensive and not cost effective; therefore, a more-empirical approach supported by a theoretical scaling of the dominant phenomena and backed by test data and benchmark calculations is used. The paper presents the TRACG lower plenum boron transport model qualification effort. The scaling basis used to implement the TRACG boron transport model for BWR applications is discussed. (authors)

  11. Environmentally assisted cracking in Light Water Reactors. Volume 16: Semiannual report, October 1992--March 1993

    SciTech Connect

    Chung, H.M.; Chopra, O.K.; Ruther, W.E.; Kassner, T.F.; Michaud, W.F.; Park, J.Y.; Sanecki, J.E.; Shack, W.J.

    1993-09-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1992 to March 1993. Fatigue and EAC of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (1) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels. (2) EAC of cast stainless steels (SSs), (3) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence, and (4) EAC of low-alloy steels. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions and chromium-nickel-plated A533-Gr B steel in simulated boiling-water reactor (BWR) water at 289{degrees}C. The data were compared with predictions based on crack growth correlations for ferritic steels in oxygenated water and correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy.

  12. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    SciTech Connect

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A.

    1997-08-01

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  13. Thermohydraulic model experiments on the transition from forced to natural circulation for pool-type fast reactors

    SciTech Connect

    Hoffmann, H.; Marten, K.; Weinberg, D. )

    1992-09-01

    In this paper, thermohydraulic studies on the transition from forced to natural convection are carried out using the 1:20 scale RAMONA three-dimensional reactor model with water as the simulant fluid. In the investigations, a scram from 40% load operation of a fast reactor is simulated. The core mass flows and the core as well as the hot plenum temperatures are measured as a function of time for various core power levels, coastdown curves of the primary- and secondary-side pumps, and for various delay times for the start of the immersion coolers after a scram. These parameters influence the onset of the natural circulation in the reactor tank. The main result is that the longer the intermediate heat exchanger coolability is ensured and the later the immersion coolers start to operate, the higher is the natural-circulation flow and, hence, the lower are the core temperatures.

  14. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  15. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  16. Thermohydraulic model experiments and calculations on the transition from forced to natural circulation for pool-type fast reactors

    SciTech Connect

    Hoffmann, H.; Marten, K.; Weinberg, D.; Kamide, H.

    1990-01-01

    After a reactor scram, the decay heat removal (DHR) is of decisive importance for the safety of the plant. A fully passive DHR system based on natural circulation alone is independent of any power source. The DHE system consists of immersion coolers (ICs) installed in the hot plenum and connected to air coolers, each via intermediate circuits. During the postscram phase, the decay heat is to be removed by natural circulation from the core into the hot plenum and via the ICs and intermediate loops to the air coolers. The function of this DHR system is investigated and demonstrated in model tests with a geometry similar to the reactor, though on a different scale RAMONA is such a three-dimensional model set up on a 1:20 scale. It is operated with water. The steady-state tests for natural-circulation DHR operations have been conducted over a wide range of operational and geometric parameters. To study the transition from nominal to DHR conditions, experiments were defined to investigate the onset of natural circulation in the postscram phase (transient tests). The experiments were analyzed using the one-dimensional LEDHER code. LEDHER is a network analysis code for the long-term DHR of a fast reactor developed at Power Reactor and Nuclear Fuel Development Corporation in Japan. The results of the experiments and conclusions are summarized.

  17. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    SciTech Connect

    Harvel, G.D.; Chang, J.S.; Krishnan, V.S.

    1997-05-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results.

  18. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  19. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation. PMID:27573503

  20. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    SciTech Connect

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy; Scaglione, John M.

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  1. Bimodal space nuclear power system with fast reactor and Topaz II-type single-cell TFE

    SciTech Connect

    Ponomarev-Stepnoi, N.N.; Usov, V.A.; Ogloblin, B.G.; Shalaev, A.I.; Klimov, A.V.; Kirillov, E.Y.; Shumov, D.P.; Radchenko, I.S.; Nicolaev, Y.V.

    1996-03-01

    The paper deals with characteristics and conceptual studies of a bimodal space thermionic system with a fast reactor and single-cell TFEs which is designed to operate in two modes: rated power mode providing power supply to space vehicle-mounted systems with energy consumption level of 10{endash}80 kW(e) and forced thermal propulsion mode with thrust of 2200 N. {copyright} {ital 1996 American Institute of Physics.}

  2. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    SciTech Connect

    Not Available

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

  3. Influence of the type and source of inoculum on the start-up of anammox sequencing batch reactors (SBRs).

    PubMed

    Guerrero, Lorna; Van Diest, Federico; Barahona, Andrea; Montalvo, Silvio; Borja, Rafael

    2013-01-01

    Anammox (anaerobic ammonium oxidation) is an attractive option for the treatment of wastewaters with a low carbon/nitrogen ratio. This is due to its low operating costs when compared to the classical nitrification-denitrification processes. However, one of the main disadvantages of the Anammox process is slow biomass growth, meaning a relatively slow reactor start-up. This becomes even more complicated when Anammox microorganisms are not present in the inoculum. Four inocula were studied for the start-up of Anammox sequencing batch reactors (SBRs) 2 L in volume agitated at 100 rpm, one of them using zeolite as a microbial support. Two inocula were taken from UASB reactors and two from aerobic reactors (activated sludge and SBR). The Anammox SBRs studied were operated at 36 ± 0.5°C. The results showed that the only inoculum that enabled the enrichment of the Anammox biomass came from an activated sludge plant treating wastewaters from a poultry slaughterhouse. This plant was designed for organic matter degradation and nitrogen removal (nitrification). This could explain the presence of Anammox microorganisms. This SBR operated without zeolite and achieved nitrite and ammonium removals of 96.3% and 68.4% respectively, at a nitrogen loading rate (NLR) of 0.1 kg N/m(3)/d in both cases. The lower ammonium removal was due to the fact that a sub-stoichiometric amount of nitrite (1 molar ratio) was fed. The specific Anammox activity (SAA) achieved was 0.18 g N/g VSS/d. PMID:23647121

  4. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  5. REACTOR CONTROL

    DOEpatents

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  6. TYPE A VERIFICATION REPORT FOR THE HIGH FLUX BEAM REACTOR STACK AND GROUNDS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK DCN 5098-SR-08-0

    SciTech Connect

    Evan Harpenau

    2011-11-30

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

  7. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    SciTech Connect

    Harpenau, Evan M.

    2012-01-13

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2X2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified

  8. Beta and gamma dose calculations for PWR and BWR containments

    SciTech Connect

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 /times/ 10/sup 8/ rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 /times/ 10/sup 8/ rad equipment qualification test region. 8 refs., 23 figs., 12 tabs.

  9. Comet solutions to a stylized BWR benchmark problem

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2012-07-01

    In this paper, a stylized 3-D BWR benchmark problem was used to evaluate the performance of the coarse mesh radiation transport method COMET. The benchmark problem consists of 560 fuel bundles at 3 different burnups and 3 coolant void states. The COMET solution was compared with the corresponding Monte Carlo reference solution using the same 2-group material cross section library for three control blade (rod) configurations, namely, all rods out (ARO), all rods in (ARI) and some rods in (SRJ). The differences in the COMET and MCNP eigenvalues were 43 pcm, 66 pcm and 32 pcm for the ARO, ARI and SRI cases, respectively. These differences are all within 3 standard deviations of the COMET uncertainty. The average relative differences in the bundle averaged fission densities for these three cases were 0.89%, 1.24%, and 1.05%, respectively. The corresponding differences in the fuel pin averaged fission densities were 1.24%, 1.84% and 1.29%, respectively. It was found that COMET is 3,000 times faster than Monte Carlo, while its statistical uncertainty in the fuel pin fission density is much lower than that of Monte Carlo (i.e., {approx}40 times lower). (authors)

  10. System Integral Test by BWR Drywell Cooler Applied as Phase-II Accident Management

    SciTech Connect

    Nagasaka, Hideo; Tobimatsu, Toshimi; Tahara, Mika; Yokobori, Seiichi; Akinaga, Makoto

    2002-07-01

    This paper deals with the system interaction performance using the BWR drywell local cooler (DWC) in combination with containment spray as a Japanese Phase-II accident management (AM). By using almost full height simulation test facility (GIRAFFE-DWC) with scaling ratio of 1/600, the system integral tests simulating BWR low pressure vessel failure sequence were accomplished during about 14 hours. In case of DWC application, the containment pressure increase was found milder due to DWC heat removal performance. Initial spray timing was delayed about 3 hours and each spray period was reduced almost by half. It was concluded that the application of a BWR DWC to Phase-II AM measure is quite promising from the point of delaying or preventing the containment venting. (authors)

  11. New innovative electrocoagulation (EC) treatment technology for BWR colloidal iron utilizing the seeding and filtration electronically (SAFET{sup TM}) system

    SciTech Connect

    Denton, Mark S.; Bostick, William D.

    2007-07-01

    The presence of iron (iron oxide from carbon steel piping) buildup in Boiling Water Reactor (BWR) circuits and wastewaters is decades old. In, perhaps the last decade, the advent of precoatless filters for condensate blow down has compounded this problem due to the lack of a solid substrate (e.g., Powdex resin pre-coat) to help drop the iron out of solution. The presence and buildup of this iron in condensate phase separators (CPS) further confounds the problem when the tank is decanted back to the plant. Iron carryover here is unavoidable without further treatment steps. The form of iron in these tanks, which partially settles and is pumped to a de-waterable high integrity container (HIC), is particularly difficult and time consuming to de-water (low shear strength, high water content). The addition upstream from the condensate phase separator (CPS) of chemicals, such as polymers, to carry out the iron, only produces an iron form even more difficult to filter and de-water (even less shear strength, higher water content, and a gel/slime consistency). Typical, untreated colloidal material contains both sub-micron particles up to, let's say 100 micron. It is believed that the sub-micron particles penetrate filters, or sheet filters, thus plugging the pores for what should have been the successful filtration of the larger micron particles. Like BWR iron wastewaters, fuel pools/storage basins (especially in the decon. phase) often contain colloids which make clarity and the resulting visibility nearly impossible. Likewise, miscellaneous, often high conductivity, waste streams at various plants contain such colloids, iron, salts (sometimes seawater intrusion and referred to as Salt Water Collection Tanks), dirt/clay, surfactants, waxes, chelants, etc. Such waste streams are not ideally suited for standard dead-end (cartridges) or cross-flow filtration (UF/RO) followed even by demineralizers. Filter and bed plugging are almost assured. The key to solving these dilemmas

  12. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  13. Verification Calculation Results to Validate the Procedures and Codes for Pin-by-Pin Power Computation in VVER Type Reactors with MOX Fuel Loading

    SciTech Connect

    Chizhikova, Z.N.; Kalashnikov, A.G.; Kapranova, E.N.; Korobitsyn, V.E.; Manturov, G.N.; Tsiboulia, A.A.

    1998-12-01

    One of the important problems for ensuring the VVER type reactor safety when the reactor is partially loaded with MOX fuel is the choice of appropriate physical zoning to achieve the maximum flattening of pin-by-pin power distribution. When uranium fuel is replaced by MOX one provided that the reactivity due to fuel assemblies is kept constant, the fuel enrichment slightly decreases. However, the average neutron spectrum fission microscopic cross-section for {sup 239}Pu is approximately twice that for {sup 235}U. Therefore power peaks occur in the peripheral fuel assemblies containing MOX fuel which are aggravated by the interassembly water. Physical zoning has to be applied to flatten the power peaks in fuel assemblies containing MOX fuel. Moreover, physical zoning cannot be confined to one row of fuel elements as is the case with a uniform lattice of uranium fuel assemblies. Both the water gap and the jump in neutron absorption macroscopic cross-sections which occurs at the interface of fuel assemblies with different fuels make the problem of calculating space-energy neutron flux distribution more complicated since it increases nondiffusibility effects. To solve this problem it is necessary to update the current codes, to develop new codes and to verify all the codes including nuclear-physical constants libraries employed. In so doing it is important to develop and validate codes of different levels--from design codes to benchmark ones. This paper presents the results of the burnup calculation for a multiassembly structure, consisting of MOX fuel assemblies surrounded by uranium dioxide fuel assemblies. The structure concerned can be assumed to model a fuel assembly lattice symmetry element of the VVER-1000 type reactor in which 1/4 of all fuel assemblies contains MOX fuel.

  14. KRAM, A lattice physics code for modeling the detailed depletion of gadolinia isotopes in BWR lattice designs

    SciTech Connect

    Knott, D.; Baratta, A. )

    1990-01-01

    Lattice physics codes are used to deplete the burnable isotopes present in each lattice design, calculate the buildup of fission products, and generate the few-group cross-section data needed by the various nodal simulator codes. Normally, the detailed depletion of gadolinia isotopes is performed outside the lattice physics code in a one-dimensional environment using an onion-skin model, such as the method used in MICBURN. Results from the onion-skin depletion, in the form of effective microscopic absorption cross sections for the gadolinia, are then used by the lattice physics code during the lattice-depletion analysis. The reactivity of the lattice at any point in the cycle depends to a great extent on the amount of gadolinia present. In an attempt to improve the modeling of gadolinia depletion from fresh boiling water reactor (BWR) fuel designs, the electric Power Research Institute (EPRI) lattice-physics code CPM-2 has been modified extensively. In this paper, the modified code KRAM is described, and results from various lattice-depletion analyses are discussed in comparison with results from standard CPM-2 and CASMO-2 analyses.

  15. Control Rod Pattern Planning of a BWR using Enhanced Nelder-Mead Method

    SciTech Connect

    Yoko Kobayashi; Eitaro Aiyoshi

    2004-07-01

    We propose a new optimization algorithm for the short-term planning of control rod patterns in an operating BWR. This algorithm is based on the enhanced Nelder-Mead simplex method in which convergence ability is improved for constrained problems in several ways. The main characteristic of this approach is it uses continuous values for the axial positions of control rods. Through calculations in an actual BWR plant, we showed that the new algorithm is effective for automation of short-term planning and reduction of the engineer's workload. (authors)

  16. The use of U/sub 3/Si/sub 2/ dispersed in aluminum in plate-type fuel elements for research and test reactors

    SciTech Connect

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U/sub 3/Si/sub 2/ dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U/sub 3/Si/sub 2/ fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U/sub 3/Si/sub 2/ particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U/sub 3/Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U/sub 3/Si/sub 2/-aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m/sup 3/ is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs.

  17. Reverse-Bumpy-Ball-Type-Nanoreactor-Loaded Nylon Membranes as Peroxidase-Mimic Membrane Reactors for a Colorimetric Assay for H2O2

    PubMed Central

    Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji

    2016-01-01

    Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H2O2. PMID:27043575

  18. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    SciTech Connect

    Broadhead, B.L.

    1991-08-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications.

  19. Computer program for automatic generation of BWR control rod patterns

    SciTech Connect

    Taner, M.S.; Levine, S.H.; Hsia, M.Y. )

    1990-01-01

    A computer program named OCTOPUS has been developed to automatically determine a control rod pattern that approximates some desired target power distribution as closely as possible without violating any thermal safety or reactor criticality constraints. The program OCTOPUS performs a semi-optimization task based on the method of approximation programming (MAP) to develop control rod patterns. The SIMULATE-E code is used to determine the nucleonic characteristics of the reactor core state.

  20. Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation

    SciTech Connect

    Jessee, Matthew Anderson

    2011-01-01

    Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k{sub eff}, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties.

  1. Industrial application of APOLLO2 to boiling water reactors

    SciTech Connect

    Marotte, V.; Clement, F.; Thareau, S.; Misu, S.; Zmijarevic, I.

    2006-07-01

    AREVA NP - a joint's subsidiary of AREVA and Siemens- decided to develop a new calculation scheme based on the multigroup neutron transport code APOLLO2, developed at CEA, for industrial application to Boiling Water Reactors. This scheme is based on the CEA93 library with the XMAS-172 energy mesh and the JEF2.2 evaluation. Microscopic cross-sections are improved by a self-shielding calculation that accounts for 2D geometrical effects and the overlapping of resonances. The flux is calculated with the Method of Characteristics. A best-estimate flux is found with the 172 energy group structure. In the industrial scheme, the computing time and the memory size are reduced by a simplified self-shielding and the calculation of the flux with 26 energy groups. The results are presented for three BWR assemblies. Several BWR operating conditions were simulated. Results are accurate compared to the Monte-Carlo code MCNP. A very good agreement is obtained between the best-estimate and the industrial calculations, also during depletion. These results show the high physical quality of the APOLLO2 code and its capability to calculate accurately BWR assemblies for industrial applications. (authors)

  2. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  3. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  4. Hybrid reactors. [Fuel cycle

    SciTech Connect

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  5. Reactor-specific spent fuel discharge projections, 1987-2020

    SciTech Connect

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  6. Reactor-specific spent fuel discharge projections: 1986 to 2020

    SciTech Connect

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs.

  7. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    SciTech Connect

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  8. Analysis of BWR OPRM plant data and detection algorithms with DSSPP

    SciTech Connect

    Yang, J.; Vedovi, J.; Chung, A. K.; Zino, J. F.

    2012-07-01

    All U.S. BWRs are required to have licensed stability solutions that satisfy General Design Criteria (GDC) 10 and 12 of 10 CFR 50 Appendix A. Implemented solutions are either detect and suppress or preventive in nature. Detection and suppression of power oscillations is accomplished by specialized hardware and software such as the Oscillation Power Range Monitor (OPRM) utilized in Option III and Detect and Suppress Solution - Confirmation Density (DSS-CD) stability Long-Term Solutions (LTSs). The detection algorithms are designed to recognize a Thermal-Hydraulic Instability (THI) event and initiate control rod insertion before the power oscillations increase much higher above the noise level that may threaten the fuel integrity. Option III is the most widely used long-term stability solution in the US and has more than 200 reactor years of operational history. DSS-CD represents an evolutionary step from the stability LTS Option III and its licensed domain envelopes the Maximum Extended Load Line Limit Analysis Plus (MELLLA +) domain. In order to enhance the capability to investigate the sensitivity of key parameters of stability detection algorithms, GEH has developed a new engineering analysis code, namely DSSPP (Detect and Suppress Solution Post Processor), which is introduced in this paper. The DSSPP analysis tool represents a major advancement in the method for diagnosing the design of stability detection algorithms that enables designers to perform parametric studies of the key parameters relevant for THI events and to fine tune these system parameters such that a potential spurious scram might be avoided. Demonstrations of DSSPPs application are also presented in this paper utilizing actual plant THI data. A BWR/6 plant had a plant transient that included unplanned recirculation pump transfer from fast to slow speed resulting in about 100% to {approx}40% rated power decrease and about 99% to {approx}30% rated core flow decrease. As the feedwater temperature

  9. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)

    SciTech Connect

    H. Wang

    1997-01-23

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

  10. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  11. Non Invasive Water Level Monitoring on Boiling Water Reactors Using Internal Gamma Radiation: Application of Soft Computing Methods

    SciTech Connect

    Fleischer, Sebastian; Hampel, Rainer

    2006-07-01

    To provide best knowledge about safety-related water level values in boiling water reactors (BWR) is essentially for operational regime. For the water level determination hydrostatic level measurement systems are almost exclusively applied, because they stand the test over many decades in conventional and nuclear power plants (NPP). Due to the steam generation especially in BWR a specific phenomenon occurs which leads to a water-steam mixture level in the reactor annular space and reactor plenum. The mixture level is a high transient non-measurable value concerning the hydrostatic water level measuring system and it significantly differs from the measured collapsed water level. In particular, during operational and accidental transient processes like fast negative pressure transients, the monitoring of these water levels is very important. In addition to the hydrostatic water level measurement system a diverse water level measurement system for BWR should be used. A real physical diversity is given by gamma radiation distribution inside and outside the reactor pressure vessel correlating with the water level. The vertical gamma radiation distribution depends on the water level, but it is also a function of the neutron flux and the coolant recirculation pump speed. For the water level monitoring, special algorithms are required. An analytical determination of the gamma radiation distribution outside the reactor pressure vessel is impossible due to the multitude of radiation of physical processes, complicated non-stationary radiation source distribution and complex geometry of fixtures. For creating suited algorithms Soft Computing methods (Fuzzy Sets Theory, Artificial Neural Networks, etc.) will be used. Therefore, a database containing input values (gamma radiation distribution) and output values (water levels) had to be built. Here, the database was established by experiments (data from BWR and from a test setup) and simulation with the authorised thermo

  12. Coupled thermohydraulic-neutronic instabilities in boiling water nuclear reactors: A review of the state of the art

    SciTech Connect

    March-Leuba, J. ); Rey, J.M. )

    1992-01-01

    This paper provides a review of the current state of the art on the topic of coupled neutronic-thermohydraulic instabilities in boiling water nuclear reactors (BWRs). The topic of BWR instabilities is of great current relevance since it affects the operation of a large number of commercial nuclear reactors. The recent trends towards introduction of high efficiency fuels that permit reactor operation at higher power densities with increased void reactivity feedback and decreased response times, has resulted in a decrease of the stability margin in the low-flow, high-power region of the operating map. This trend has resulted in a number of unexpected'' instability events. For instance, United States plants have experienced two instability events recently, one of them resulted in an automatic reactor scram; in Spain, two BWR plants have experienced unstable limit cycle oscillations that required operator action to suppress. Similar events have been experienced in other European countries. In recent years, BWR instabilities have been one of the more exciting topics of work in the area of transient thermohydraulics. As a result, significant advances in understanding the physics behind these events have occurred, and a new and improved'' state of the art has emerged recently.

  13. Coupled thermohydraulic-neutronic instabilities in boiling water nuclear reactors: A review of the state of the art

    SciTech Connect

    March-Leuba, J.; Rey, J.M.

    1992-05-01

    This paper provides a review of the current state of the art on the topic of coupled neutronic-thermohydraulic instabilities in boiling water nuclear reactors (BWRs). The topic of BWR instabilities is of great current relevance since it affects the operation of a large number of commercial nuclear reactors. The recent trends towards introduction of high efficiency fuels that permit reactor operation at higher power densities with increased void reactivity feedback and decreased response times, has resulted in a decrease of the stability margin in the low-flow, high-power region of the operating map. This trend has resulted in a number of ``unexpected`` instability events. For instance, United States plants have experienced two instability events recently, one of them resulted in an automatic reactor scram; in Spain, two BWR plants have experienced unstable limit cycle oscillations that required operator action to suppress. Similar events have been experienced in other European countries. In recent years, BWR instabilities have been one of the more exciting topics of work in the area of transient thermohydraulics. As a result, significant advances in understanding the physics behind these events have occurred, and a ``new and improved`` state of the art has emerged recently.

  14. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  15. Generic safety insights for inspection of boiling water reactors

    SciTech Connect

    Higgins, J.C.; Taylor, J.H.; Fresco, A.N.; Hillman, B.M.

    1987-01-01

    As the number of operating nuclear power plants (NPPs) increases, safety inspection has increased in importance. Over the last 2 yr, probabilistic risk assessment (PRA) techniques have been developed to aid in the inspection process. Broad interest in generic PRA-based methods has arisen in the past year, since only approx. 25% of the US nuclear power plants have completed PRAs, and also, inspectors want PRA-based tools for these plants. This paper describes the Brookhaven National Lab. program to develop generic boiling water reactor (BWR) PRA-based inspection insights or inspection guidance designed to be applied to plants without PRAs.

  16. Silicon carbide composite for light water reactor fuel assembly applications

    NASA Astrophysics Data System (ADS)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  17. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor.

    PubMed

    Sun, Lei; Wan, Shungang; Yu, Zebin; Wang, Yinghui; Wang, Shuangfei

    2012-01-01

    Anaerobic treatment of cassava starch wastewater using an up-flow multistage anaerobic reactor was investigated. The results showed that startup was successfully accomplished in 22d. The maximum 87.9% chemical oxygen demand (COD) was removed at hydraulic retention time (HRT) of 6.0 h at fixed concentration 4000 mg/L. In addition, 77.5-92.0% COD were removed as organic loading rates at 10.2-40.0 kg COD/(m(3) d) at fixed HRT of 6.0 h. The Grau second-order kinetic model and modified Stover-Kincannon model were successfully used to develop a kinetic model of the experimental data. Furthermore, the specific methanogenic activity were 0.31 and .73 g COD(CH(4))/(g VSS d) for the first and second feed, respectively. Finally, morphological examination of the sludge revealed Methanothrix spp. and Methanosarcina spp. were dominant microorganisms. All the results indicated that the UMAR could be used efficiently for treatment of wastewater containing high COD concentration from cassava starch processing.

  18. The case for the thorium molten salt reactor

    NASA Astrophysics Data System (ADS)

    Greaves, E. D.; Furukawa, K.; Sajo-Bohus, L.; Barros, H.

    2012-02-01

    Shortcomings of current PWR and BWR, solid uranium-fuel, nuclear power reactors are summarized. It is shown how the Molten Salt Reactor (MSR) created and operated at Oak Ridge National Laboratory (ORNL), USA (1960s-1970s) and developed as FUJI reactor by Furukawa and collaborators (1980s-1990s), addresses all of these shortcomings. Relevant properties of the MSR regarding to simplicity, its impact on capital and operating costs, safety, waste product production, waste reprocessing, power efficiency and non proliferation properties are reviewed. The Thorium MSR within the THORIMS-NES fuel cycle system is described concluding that the superior properties of the MSR make this the technology of choice to provide the required future energy in the South American region.

  19. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  20. Reactor-specific spent fuel discharge projections: 1985 to 2020

    SciTech Connect

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel.

  1. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal

  2. Conceptual design and thermal-hydraulic characteristics of natural circulation Boiling Water Reactors

    SciTech Connect

    Kataoka, Y.; Suzuki, H.; Murase, M. ); Horiuchi, T.; Miki, M. )

    1988-08-01

    A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW (electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is -- 50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (..delta..MCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.

  3. Prediction of the relative activity levels of the actinides in a fallout from a nuclear reactor accident.

    PubMed

    Friberg, I

    1999-02-01

    The relative activities of the actinides that can be expected in a fresh fallout from a nuclear reactor (BWR, PWR, RBMK) accident have been estimated from fuel composition calculations. The results can be used to (1) adapt analytical methods to better suit emergency situations, (2) estimate the activity levels of radionuclides not measured and (3) estimate the relative activities of nuclides in unresolved alpha-peaks. The latter two can be applied to investigations concerning the Chernobyl fallout, in addition to emergency situations.

  4. HSST pressurized-thermal-shock experiment, PTSE-1. [PWR; BWR

    SciTech Connect

    Bryan, R.H.; Bass, B.R.; Robinson, G.C.; Merkle, J.G.; Whitman, G.D.; Pugh, C.E.

    1984-01-01

    The first pressurized-thermal-shock experiment (PTSE-1) in the Heavy-Section Steel Technology (HSST) Program is the most recent of a long successtion of fracture-mechanics experiments that are on a scale that allows important aspects of fracture behavior of reactor pressure vessels to be simulated. Such experiments are the means by which theoretical models of fracture behavior can be evaluated for possible aplication to fracture analysis of vessels in nuclear plants. The principal issues of concern in the pressurized-thermal-shock experiments are: (1) warm prestressing phenomena, (2) crack propagation from brittle to ductile regions, (3) transient crack stabilization in ductile regions, and (4) crack shape changes in bimetallic zones of clad vessels. PTSE-1 was designed to investigate the first three issues under conditions relevant to a flawed reactor vessel during an overcooling accident.

  5. Stress-corrosion cracking in BWR and PWR piping

    SciTech Connect

    Weeks, R.W.

    1983-07-01

    Intergranular stress-corrosion cracking of weld-sensitized wrought stainless steel piping has been an increasingly ubiquitous and expensive problem in boiling-water reactors over the last decade. In recent months, numerous cracks have been found, even in large-diameter lines. A number of potential remedies have been developed. These are directed at providing more resistant materials, reducing weld-induced stresses, or improving the water chemistry. The potential remedies are discussed, along with the capabilities of ultrasonic testing to find and size the cracks and related safety issues. The problem has been much less severe to date in pressurized-water reactors, reflecting the use of different materials and much lower coolant oxygen levels.

  6. Test plan for thermogravimetric analyses of BWR spent fuel oxidation

    SciTech Connect

    Einziger, R.E.

    1988-12-01

    Preliminary studies indicated the need for additional low-temperature spent fuel oxidation data to determine the behavior of spent fuel as a waste form for a tuffy repository. Short-term thermogravimetric analysis tests were recommended in a comprehensive technical approach as the method for providing scoping data that could be used to (1) evaluate the effects of variables such as moisture and burnup on the oxidation rate, (2) determine operative mechanisms, and (3) guide long-term, low-temperature oxidation testing. The initial test series studied the temperature and moisture effects on pressurized water reactor fuel as a function of particle and grain size. This document presents the test matrix for studying the oxidation behavior of boiling water reactor fuel in the temperature range of 140 to 225{degree}C. 17 refs., 7 figs., 3 tabs.

  7. Compilation of corrosion data on CAN-DECON. Volume 1. General, galvanic, crevice, and pitting corrosion data from CANDU and BWR tests. Final report

    SciTech Connect

    Michalko, J.P.; Bonnici, P.J.; Smee, J.L.

    1985-10-01

    Nuclear power station ALARA radiation exposure criteria require, in many cases, decontamination of specific equipment or systems before maintenance, inspection, or work in an adjacent high radiation area. Chemical decontamination, which can be performed away from the high radiation fields, can often best satisfy these ALARA exposure criteria. CAN-DECON, a dilute chemical decontamination process was developed to meet the needs of the Canadian CANDU reactors. It was found to be effective in dissolving BWR oxide films that contain the entrapped radioactive species contributing to high radiation fields. During the development phase of the process and during subsequent field application, CAN-DECON has undergone extensive testing to determine the extent of oxide film dissolution and the degree of corrosion of materials used in construction of reactor components. This has been accomplished on many of the various materials of construction found in the components of the systems decontaminated. Materials tested include carbon steels with range of carbon content 0.1 to 0.4 wt %, 300 series, 400 series, and specialty stainless steels, low alloy steels, and gasket and seal materials. CAN-DECON caused little or no significant corrosion or deterioration on any of the materials tested when applied under conditions appropriate to that class of material. 2 figs., 63 tabs.

  8. Coupling Schemes for Multiphysics Reactor Simulation

    SciTech Connect

    Vijay Mahadeven; Jean Ragusa

    2007-11-01

    This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of a BWR core.

  9. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    SciTech Connect

    Wang, Jy-An John; Jiang, Hao

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  10. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  11. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides. PMID:16604724

  12. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  13. Target-induced nano-enzyme reactor mediated hole-trapping for high-throughput immunoassay based on a split-type photoelectrochemical detection strategy.

    PubMed

    Zhuang, Junyang; Tang, Dianyong; Lai, Wenqiang; Xu, Mingdi; Tang, Dianping

    2015-09-15

    Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO2 nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL(-1), with a low detection limit (LOD) of 0.32 pg mL(-1). Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B1) with a competitive-type assay format.

  14. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  15. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1957-09-17

    A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.

  16. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  17. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  18. CONTROL FOR NEUTRONIC REACTOR

    DOEpatents

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  19. COOLED NEUTRONIC REACTOR

    DOEpatents

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  20. Benchmark Validation of Tort Code Using Kkm Measurement and its Application to 800 Mwe Bwr

    NASA Astrophysics Data System (ADS)

    Tsukiyama, Toshihisa; Hayashi, Katsumi; Kurosawa, Masahiko; Hayashida, Yoshihisa; Asano, Kyoichi; Koyabu, Ken

    2003-06-01

    To estimate the applicability of the TORT code, a benchmark calculation was performed using the measured neutron flux in a 375MWe BWR in Switzerland. The calculated neutron flux was compared with the measured neutron fluxes at 27 locations between the shroud and the RPV. The reaction rates of thermal and fast dosimeters calculated by TORT agreed well with the measured data. As a next step, the TORT code was applied to estimate the neutron flux distribution in Japanese 800MWe BWR plants and compared with the measured radioactivity of a few pieces of the top guide beam, shroud and in-core monitor guide tube. Because a reasonable C/M value was obtained, we conclude that we can obtain reasonable neutron distribution profiles with TORT.

  1. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  2. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  3. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  4. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  5. BWR fuel rod performance evaluation program. Final report

    SciTech Connect

    Rowland, T.C.

    1986-05-01

    The joint EPRI/GE fuel performance program, RP510-1, involved thorough preirradiation characterization of fuel used in lead test assemblies, detailed surveillance of their operation, and interim site examinations of the assemblies during reactor outages. The program originally included four GE-5 lead test assemblies operating in the Peach Bottom-2 reactor. The program was later modified to include the pressurized fuel rod test assembly in the Peach Bottom-3 reactor (RP510-2). The program modification also included extending the operation of the Peach Bottom-2 and Peach Bottom-3 lead test assembly fuel beyond normal discharge exposures. Interim site examination results following the first four cycles of operation of the Peach Bottom-2 lead test assemblies up to 35 GWd/MT and the examination of the Peach Bottom-3 pressurized test assembly at 32 GWd/MT are presented in this report. Elements of the examinations included visual examination of the fuel bundles; individual fuel rod visual examinations, rod length measurements, ultrasonic and eddy current nondestructive testing, Zircaloy cladding oxide thickness measurements and fission gas measurements. Channel measurements were made on the PB-2 Lead Test Assemblies after each of the first three operating cycles. All of the bundles were found to be in good condition. Since the pressurized test assembly contained pressurized and nonpressurized fuel rods in symmetric positions, it was possible to make direct comparisons of the fission gas release from pairs of pressurized and nonpressurized fuel rods with identical power histories. With one exception, the release was less from the pressurized fuel rod of each pair. Fuel rod power histories were calculated using new physics methods for all of the fuel rods that were punctured for fission gas release measurements. 28 refs., 41 figs., 16 tabs.

  6. Prediction of quench and rewet temperatures. [PWR; BWR

    SciTech Connect

    Gunnerson, F. S.

    1980-01-01

    Many postulated nuclear reactor accidents result in high-temperature dryout or film boiling within the nuclear core. In order to mitigate potential fuel rod damage or rod failure, safe or lower fuel rod temperatures must be reestablished by promoting coolant/cladding contact. This process is commonly referred to as quenching or rewetting, and often, these terms are not differentiated. All theoretical predictions of the cooling process by various models based on single or multidimensional analytical and numerical studies require a knowledge of either the quenching or the rewetting temperature. The purpose of this paper is to define quench and rewet temperatures and present a method whereby each may be estimated.

  7. KGK-2-type detector of gamma-radiation power for diagnosis of nuclear reactor radiation fields within the range from 1 µGy/s to 100 Gy/s

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Dovbysh, L. Ye.; Khoruzhy, V. Kh.; Chuklyaev, S. V.

    2015-12-01

    The construction of the KGK-2-type detector of γ-radiation power is briefly described. The diagnostic possibilities of the detector are shown by the example of results of the dose rate measurement in the energy start-ups of the BR-K1 and BR-1M reactors implemented in the mode of generating fission pulses on delayed neutrons. The possibilities of using the KGK-2 detector for postpulse γ diagnostics are demonstrated by the example of results of measurements in the fission pulse on prompt neutrons of the BR-1M reactor.

  8. KGK-2-type detector of gamma-radiation power for diagnosis of nuclear reactor radiation fields within the range from 1 µGy/s to 100 Gy/s

    SciTech Connect

    Koshelev, A. S. Dovbysh, L. Ye.; Khoruzhy, V. Kh.; Chuklyaev, S. V.

    2015-12-15

    The construction of the KGK-2-type detector of γ-radiation power is briefly described. The diagnostic possibilities of the detector are shown by the example of results of the dose rate measurement in the energy start-ups of the BR-K1 and BR-1M reactors implemented in the mode of generating fission pulses on delayed neutrons. The possibilities of using the KGK-2 detector for postpulse γ diagnostics are demonstrated by the example of results of measurements in the fission pulse on prompt neutrons of the BR-1M reactor.

  9. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    SciTech Connect

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data.

  10. Evolution of weld metals nanostructure and properties under irradiation and recovery annealing of VVER-type reactors

    NASA Astrophysics Data System (ADS)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Zabusov, O.; Prikhodko, K.; Zhurko, D.

    2013-03-01

    The results of VVER-440 steel Sv-10KhMFT and VVER-1000 steel SV-10KhGNMAA investigations by transmission electron microscopy, scanning electron microscopy, Auger-electron spectroscopy and mechanical tests are presented in this paper. The both types of weld metals with different content of impurities and alloying elements were studied after irradiations to fast neutron (E > 0.5 MeV) fluences in the wide range below and beyond the design values, after recovery annealing procedures and after re-irradiation following the annealing. The distinctive features of embrittlement kinetics of VVER-440 and VVER-1000 RPV weld metals conditioned by their chemical composition differences were investigated. It is shown that the main contribution into radiation strengthening within the design fluence can be attributed to radiation-induced precipitates, on reaching the design or beyond design values of fast neutron fluencies the main contribution into VVER-440 welds strengthening is made by radiation-induced dislocation loops, and in case of VVER-1000 welds - radiation-induced precipitates and grain-boundary phosphorous segregations. Recovery annealing of VVER-440 welds at 475 °C during 100 h causes irradiation-induced defects disappearance, transformation of copper enriched precipitates into bigger copper-rich precipitates with lower number density and leads to almost full recovery of mechanical properties followed by comparatively slow re-embrittlement rate. The recovery annealing temperature of VVER-1000 welds was higher - 565 °C during 100 h - to avoid temper brittleness. The annealing of VVER-1000 welds leads to almost full recovery of mechanical properties due to irradiation-induced defects disappearance and decrease in precipitates number density and grain-boundary segregation of phosphorus. The re-embrittlement rate of VVER-1000 weld during subsequent re-irradiation is at least not higher than the initial rate.

  11. The effects of aging on BWR core isolation cooling systems

    SciTech Connect

    Lee, B.S.

    1994-10-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling (RCIC) system in commercial Boiling Water Reactors (BWRs). This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The failure data from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failures causes. Current inspection, surveillance, and monitoring practices were also reviewed.

  12. Decay heat removal systems: design criteria and options. [PWR; BWR

    SciTech Connect

    Berry, D.L.

    1980-01-01

    Design criteria and alternate decay heat removal system concepts which have evolved in several different countries throughout the world were compared. The conclusion was reached that the best way to improve the reliability of pressurized water reactor (PWR) decay heat removal is first to focus on improving the reliability of the auxiliary feedwater and high pressure injection systems to cope with certain loss of feedwater transients and small loss of coolant accidents and then to assess how well these systems can handle special emergencies (e.g., sabotage, earthquake, airplane crash). For boiling water reactors (BWRs), it was concluded that emphasis should be placed first on improving the reliability of the residual heat removal and high pressure service water systems to cope with a loss of suppression pool cooling following a loss of feedwater transient and then to assess how well these systems can handle special emergencies. It was found that, for both PWRs and BWRs, a design objective for alternate decay heat removal systems should be at least an order of magnitude reduction in core meltdown probability.

  13. Enhanced elementary sulfur recovery with sequential sulfate-reducing, denitrifying sulfide-oxidizing processes in a cylindrical-type anaerobic baffled reactor.

    PubMed

    Huang, Cong; Zhao, Youkang; Li, Zhiling; Yuan, Ye; Chen, Chuan; Tan, Wenbo; Gao, Shuang; Gao, Lingfang; Zhou, Jizhong; Wang, Aijie

    2015-09-01

    Simultaneous removal of COD, SO4(2-) and NO3(-) and recovery of elemental sulfur (S(0)) were evaluated in a four-compartment anaerobic baffled reactor (ABR) with separated functional units of sulfate reduction (SR) and denitrifying sulfide removal (DSR). Optimal SO4(2-)-S/NO3(-)-N ratio was evaluated as 5:5, with a substantial improvement of S(0) recovery maintained at 79.1%, one of the highest level ever reported; meanwhile, removal rates of COD, SO4(2-) and NO3(-) were approached at 71.9%, 92.9% and 98.6%, respectively. Nitrate served as a key factor to control the shift of SR and DSR related populations, with the possible involvement of Thauera sp. during SR and Sulfurovum sp. or Acidiferrobacter sp. during DSR, respectively. DsrB and aprA genes were the most abundant during SR and DSR processes, respectively. Cylindrical-type ABR with the improved elemental sulfur recovery was recommended to deal with sulfate and nitrate-laden wastewater under the optimized SO4(2-)/NO3(-) ratio.

  14. Core structure heat-up and material relocation in a BWR short-term station blackout accident

    SciTech Connect

    Schmidt, R.C.; Dosanjh, S.S.

    1990-01-01

    This paper presents an analytical and numerical analysis which evaluates the core-structure heat-up and subsequent relocation of molten core materials during a NWR short-term station blackout accident with ADS. A simplified one-dimensional approach coupled with bounding arguments is first presented to establish an estimate of the temperature differences within a BWR assembly at the point when structural material first begins to melt. This analysis leads to the conclusions that the control blade will be the first structure to melt and that at this point in time, overall temperature differences across the canister-blade region will not be more than 200 K. Next, a three-dimensional heat-transfer model of the canister-blade region within the core is presented that uses a diffusion approximation for the radiation heat transfer. This is compared to the one-dimensional analysis to establish its compatibility. Finally, the extension of the three-dimensional model to include melt relocation using a porous media type approximation is described. The results of this analysis suggest that under these conditions significant amounts of material will relocate to the core plate region and refreeze, potentially forming a significant blockage. The results also indicate that a large amount of lateral spreading of the melted blade and canister material into the fuel rod regions will occur during the melt progression process. 22 refs., 18 figs., 1 tab.

  15. Electrochemistry of Water-Cooled Nuclear Reactors

    SciTech Connect

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  16. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  17. Modelling of molten fuel/concrete interactions. [PWR; BWR

    SciTech Connect

    Muir, J. F.; Benjamin, A. S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data.

  18. BWR Full Integral Simulation Test (FIST) program: facility description report

    SciTech Connect

    Stephens, A G

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented.

  19. Fire Protection Research Program at Sandia Laboratories. [BWR; PWR

    SciTech Connect

    Klamerus, L.J.

    1980-01-01

    Sandia Laboratories is executing a program for the Nuclear Regulatory Commission to provide data needed for confirmation of the suitability of current design standards and regulatory guides for fire protection and control in water reactor power plants. This paper summarizes the activities of this ongoing program through December 1979. Characterization of electrically initiated fires revealed a margin of safety in the separation criteria of Regulatory Guide 1.75 for such fires in IEEE-383 qualified cable. However, tests confirmed that these guidelines and standards are not sufficient, in themselves, to protect against exposure fires. This paper describes both small and full scale tests to assess the adequacy of fire retardant coatings and full scale tests on fire shields to determine their effectiveness. It also describes full scale tests to determine the effects of walls and ceilings on fire propagation between cable trays.

  20. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  1. Implementation of a source term control program in a mature boiling water reactor.

    PubMed

    Vargo, G J; Jarvis, A J; Remark, J F

    1991-06-01

    The implementation and results of a source term control program implemented at the James A. FitzPatrick Nuclear Power Plant (JAF), a mature boiling water reactor (BWR) facility that has been in commercial operation since 1975, are discussed. Following a chemical decontamination of the reactor water recirculation piping in the Reload 8/Cycle 9 refueling outage in 1988, hydrogen water chemistry (HWC) and feedwater Zn addition were implemented. This is the first application of both HWC and feedwater Zn addition in a BWR facility. The radiological benefits and impacts of combined operation of HWC and feedwater Zn addition at JAF during Cycle 9 are detailed and summarized. The implementation of hydrogen water chemistry resulted in a significant transport of corrosion products within the reactor coolant system that was greater than anticipated. Feedwater Zn addition appears to be effective in controlling buildup of other activated corrosion products such as 60Co on reactor water recirculation piping; however, adverse impacts were encountered. The major adverse impact of feedwater Zn addition is the production of 65Zn that is released during plant outages and operational transients. PMID:2032839

  2. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect

    Devgun, Jas S.; Laraia, Michele; Dinner, Paul

    2012-07-01

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new

  3. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  4. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  5. Reactor building

    SciTech Connect

    Hista, J. C.

    1984-09-18

    Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse

  6. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  7. Computer program for optimal BWR congtrol rod programming

    SciTech Connect

    Taner, M.S.; Levine, S.H.; Carmody, J.M.

    1995-12-31

    A fully automated computer program has been developed for designing optimal control rod (CR) patterns for boiling water reactors (BWRs). The new program, called OCTOPUS-3, is based on the OCTOPUS code and employs SIMULATE-3 (Ref. 2) for the analysis. There are three aspects of OCTOPUS-3 that make it successful for use at PECO Energy. It incorporates a new feasibility algorithm that makes the CR design meet all constraints, it has been coupled to a Bourne Shell program 3 to allow the user to run the code interactively without the need for a manual, and it develops a low axial peak to extend the cycle. For PECO Energy Co.`s limericks it increased the energy output by 1 to 2% over the traditional PECO Energy design. The objective of the optimization in OCTOPUS-3 is to approximate a very low axial peaked target power distribution while maintaining criticality, keeping the nodal and assembly peaks below the allowed maximum, and meeting the other constraints. The user-specified input for each exposure point includes: CR groups allowed-to-move, target k{sub eff}, and amount of core flow. The OCTOPUS-3 code uses the CR pattern from the previous step as the initial guess unless indicated otherwise.

  8. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  9. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  10. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  11. A theoretical and numerical investigation of turbulent steam jets in BWR steam blowdown.

    SciTech Connect

    NguyenLe, Q.

    1998-06-26

    The preliminary results of PHOENICS and RELAP5 show that the current numerical models are adequate in predicting steam flow and stratification patterns in the upper Drywell of a BWR containment subsequent to a blow-down event. However, additional modeling is required in order to study detailed local phenomena such as condensation with non-condensables, natural convection, and stratification effects. Analytically, the intermittence modified similarity solutions show great promise. Once {gamma} is accounted for, the jet's turbulent shear stress can be determined with excellent accuracy.

  12. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    SciTech Connect

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  13. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  14. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  15. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  16. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  17. Chemical Reactors.

    ERIC Educational Resources Information Center

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  18. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  19. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  20. Dynamic safety systems in U.S. light water reactors

    SciTech Connect

    Miller, D.W.; Adams, G.; Hajek, B.K.

    1995-12-31

    The use of dynamic rather than static logic in reactor safety function systems provides significant benefits in achieving a fail-safe design. Dynamic safety system (DSS) are based on such an approach that can be realized in hardware- and/or software-based products. AEA Technology has implemented a dynamic architecture in a number of systems licensed and used on commercial gas-cooled reactors, including those in Refs. 1, 2, and 3, where software elements are operationally verified by hardwired components. The principal software-based components in DSS are the trip algorithm computers (TACs) and vote algorithm computers (VACs). The TACs provide trip thresholds or trip requirements for individual plant variables or channels, The VACs provide voter requirements for groups of channels or plant variables as specified to initiate a trip condition. Continuous dynamic testing of instrument loops occurs by a programmed pattern of simulated trip/nontrip conditions, which exercise both software and hardware in the safety channel. The pattern recognition logic (PRL) is a hardware wired component programmed to maintain nontrip output only when this excepted time-dependent pattern is not changed. If a change occurs, as will happen if there is a plant trip condition or safety system failure - either hardware or software - then the PRL will initiate a trip condition. In summary, DSS provides for continuous dynamic testing of safety-related components and fail-safe operation. Through scenario testing of a DSS emulator on a boiling water reactor (BWR) plant training simulator it has been shown that DSS can provide a cost- effective safety system in BWR power plants. Experimental research has been completed that indicates the feasibility of extending DSS to include the plant nuclear instrumentation in the DSS test domain. This extension has the potential to decrease operating and maintenance (O&M) costs and improve fault diagnosis.

  1. Characterization of 14C in Swedish light water reactors.

    PubMed

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.

  2. Long-lived activation products in reactor materials

    SciTech Connect

    Evans, J.C.; Lepel, E.L.; Sanders, R.W.; Wilkerson, C.L.; Silker, W.; Thomas, C.W.; Abel, K.H.; Robertson, D.R.

    1984-08-01

    The purpose of this program was to assess the problems posed to reactor decommissioning by long-lived activation products in reactor construction materials. Samples of stainless steel, vessel steel, concrete, and concrete ingredients were analyzed for up to 52 elements in order to develop a data base of activatable major, minor, and trace elements. Large compositional variations were noted for some elements. Cobalt and niobium concentrations in stainless steel, for example, were found to vary by more than an order of magnitude. A thorough evaluation was made of all possible nuclear reactions that could lead to long lived activation products. It was concluded that all major activation products have been satisfactorily accounted for in decommissioning planning studies completed to date. A detailed series of calculations was carried out using average values of the measured compositions of the appropriate materials to predict the levels of activation products expected in reactor internals, vessel walls, and bioshield materials for PWR and BWR geometries. A comparison is made between calculated activation levels and regulatory guidelines for shallow land disposal according to 10 CFR 61. This analysis shows that PWR and BWR shroud material exceeds the Class C limits and is, therefore, generally unsuitable for near-surface disposal. The PWR core barrel material approaches the Class C limits. Most of the remaining massive components qualify as either Class A or B waste with the bioshield clearly Class A, even at the highest point of activation. Selected samples of activated steel and concrete were subjected to a limited radiochemical analysis program as a verification of the computer model. Reasonably good agreement with the calculations was obtained where comparison was possible. In particular, the presence of /sup 94/Nb in activated stainless steel at or somewhat above expected levels was confirmed.

  3. Characterization of 14C in Swedish light water reactors.

    PubMed

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units. PMID:18617793

  4. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  5. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Daniels, F.

    1957-10-15

    Gas-cooled solid-moderator type reactors wherein the fissionable fuel and moderator materials are each in the form of solid pebbles, or discrete particles, and are substantially homogeneously mixed in the proper proportion and placed within the core of the reactor are described. The shape of these discrete particles must be such that voids are present between them when mixed together. Helium enters the bottom of the core and passes through the voids between the fuel and moderator particles to absorb the heat generated by the chain reaction. The hot helium gas is drawn off the top of the core and may be passed through a heat exchanger to produce steam.

  6. THERMAL NUCLEAR REACTOR

    DOEpatents

    Fenning, F.W.; Jackson, R.F.

    1957-09-24

    Nuclear reactors of the graphite moderated air cooled type in which canned slugs or rods of fissile material are employed are discussed. Such a reactor may be provided with a means for detecting dust particles in the exhausted air. The means employed are lengths of dust absorbent cord suspended in vertical holes in the shielding structure above each vertical coolant flow channel to hang in the path of the cooling air issuing from the channels, and associated spindles and drive motors for hauling the cords past detectors, such as Geiger counters, for inspecting the cords periodically. This design also enables detecting the individual channel in which a fault condition may have occurred.

  7. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  8. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  9. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  10. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  11. Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels

    SciTech Connect

    Nakahara, Yoshinori; Suyama, Kenya; Inagawa, Jun; Nagaishi, Ryuji; Kurosawa, Setsumi; Kohno, Nobuaki; Onuki, Mamoru; Mochizuki, Hiroki

    2002-02-15

    To establish a nuclide composition benchmark data set for the verification of burnup codes, destructive analyses of light water reactor spent-fuel samples, which were cut out from several heights of spent-fuel rods, were carried out at the analytical laboratory at the Japan Atomic Energy Research Institute. The 16 samples from three kinds of pressurized water reactor (PWR) fuel rods and the 18 samples from two boiling water reactor (BWR) fuel rods were examined. Their initial {sup 235}U enrichments and burnups were from 2.6 to 4.1% and from 4 to 50 GWd/t, respectively. One PWR fuel rod and one BWR fuel rod contained gadolinia as a burnable poison. The measurements for more than 40 nuclides of uranium, transuranium, and fission product elements were performed by destructive analysis using mass spectrometry, and alpha-ray and gamma-ray spectrometry. Burnup for each sample was determined by the {sup 148}Nd method. The analytical methods and the results as well as the related irradiation condition data are compiled as a complete benchmark data set.

  12. BWR fuel design options for self-sustainable Th-{sup 233}U fuel cycle

    SciTech Connect

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2012-07-01

    In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-{sup 233}U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone 'sandwiched' between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of {sup 233}U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core. (authors)

  13. REACTOR AND NOVEL METHOD

    DOEpatents

    Young, G.J.; Ohlinger, L.A.

    1958-06-24

    A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.

  14. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    PubMed

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  15. Experimental studies of local coolant hydrodynamics using a scaled model of cassette-type fuel assembly of a KLT-40S reactor

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Barinov, A. A.; Varentsov, A. V.; Doronkov, D. V.; Solntsev, D. N.; Khrobostov, A. E.

    2016-08-01

    The results of experimental studies of local hydrodynamic and mass exchange characteristics of the coolant flow behind the spacer grid in the fuel assembly of a KLT-40S reactor are presented. The experiments were aimed at the investigation of representative domains of the fuel assembly with three tracer injection regions. The studies were performed at the aerodynamic test facility using the tracer gas diffusion method. According to the theory of hydrodynamic similarity, the obtained experimental results can be transferred to full-scale coolant flow conditions in standard fuel assemblies. The analysis of the tracer concentration propagation made it possible to determine in detail the flow pattern and find the main regularities and specific features of the coolant flow behind the plate spacer grid of KLT-40S fuel assembly. The hydraulic resistance coefficient of the spacer grid was experimentally determined. The coefficients of mass exchange between cells for representative cells of the displacer region in the KLT-40S fuel assembly were calculated for the first time; these results are presented in the form of the "mixing matrix." The results of studies of local coolant flow hydrodynamics in the KLT-40S fuel assembly are used at AO Afrikantov OKBM for estimation of thermotechnical reliability of active cores for reactors of floating nuclear power stations. The experimental data on hydrodynamic and mass exchange characteristics are included in the database for verification of CDF codes and detailed cell-wise calculation of the active core for KLT-40S reactor installation. The results of these studies can be used at FSUE RFNC-VNIIEF for testing and verification of domestic three-dimensional hydrodynamic CFD codes ("Logos") that are applied for substantiation of newly designed reactor installations. Practical recommendations on the application of the obtained results in thermohydraulic calculations of the active core for the KLT-40S reactor will be worked out. Proposals

  16. Relationship of fire protection research to plant safety. [PWR; BWR

    SciTech Connect

    Berry, D.L.

    1983-01-01

    For several years, Sandia National Laboratories has been responsible for numerous tests of fire protection systems and concepts. Tests of fire retardant cables, cable coatings, cable tray covers, penetration seals, fire barriers, and spatial separation have been reported and summarized. Other tests involving the effectiveness of suppression systems and the vulnerability of electrical cabinets have been completed with reports in preparation. The following questions constitute the central theme of current fire research by Sandia and the NRC: under what conditions is spatial separation of redundant safety systems adequate; what are the temperature, smoke, humidity, or corrosive vapor damage thresholds of cable and safety equipment exposed to fire or suppression activities; what is the safety significance of fires involving control room cabinets or remote shutdown panels; and what is the relative importance of fire to nuclear power plant safety, as compared to other types of anticipated or postulated accidents. Evidence of why these questions seem important and a description of work being undertaken to address each question are reviewed in the following paragraphs.

  17. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  18. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  19. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  20. Temperature effects on chemical reactor

    NASA Astrophysics Data System (ADS)

    Azzouzi, M.

    2008-06-01

    In this paper we had to study some characteristics of the chemical reactors, from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature, it is a mathematical processing of a chemical problem that was already studied, but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid-gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry, especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology, especially in our century.

  1. Using fast reactor component evaluation to pressurized water reactor life extension.

    SciTech Connect

    Allen, T. R.; Cole, J. I.; Kenik, E. A.; Tsai, H.; Ukai, S.; Mizuta, S.; Yoshitake, T.

    1999-10-01

    An understanding of the effects of long-term, low-dose-rate radiation on core components is critical to light-water reactor plant life extension. Following reactor shutdown, materials that had experienced long exposures to low-dose-rate irradiation were retrieved from the EBR-II research reactor for analysis. These components are being analyzed to provide insight into pressurized water reactor life extension. In this work, three examples of EBR-II materials analyses are highlighted: radiation-induced segregation in 304 stainless steel, stress relaxation in Inconel X750, and swelling in 316 stainless steel.;EVALUATION;FAST REACTORS;PWR TYPE REACTORS;

  2. DYNAMIC AND CLASSICAL PRA: A BWR SBO CASE COMPARISON

    SciTech Connect

    Mandelli, Diego; Smith, Curtis L; Ma, Zhegang

    2011-07-01

    As part of the Light-Water Sustainability Program (LWRS), the purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain the safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic (i.e., dynamic system simulators) and probabilistic (stochastic sampling strategies) approaches are combined in a dynamic PRA fashion in order to estimate safety margins. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power are lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and compare this with traditional risk analysis modeling for this type of accident scenario. In the RISMC approach the dataset obtained consists of set of simulation runs (performed by using codes such as RELAP5/3D) where timing and ordering of events is changed accordingly to the stochastic sampling strategy adopted. On the other side, classical PRA methods, which are based on event-tree (FT) and fault-tree (FT) structures, generate minimal cut sets and probability values associated to each ET branch. The comparison of the classical and RISMC approaches is performed not only in terms of overall core damage probability but also considering statistical differences in the actual sequence of events. The outcome of this comparison analysis shows similarities and dissimilarities between the approaches but also highlights the greater amount of information that can be generated by using the RISMC approach.

  3. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  4. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  5. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  6. Application of a droplet column type two-phase reactor for the epoxidation of cyclooctene in water as an alternative solvent

    SciTech Connect

    Shu, H.Y.; Perlmutter, H.D.; Shaw, H.

    1995-11-01

    Droplet columns are used for their ability to greatly enhance liquid-liquid interfacial areas. The use of a droplet column for the two-phase epoxidation of cyclooctene by oxone in aqueous solution was studied as an application of pollution prevention, i.e., the replacement of hazardous solvents with water. The dispersion of alkene droplets in aqueous oxone solution was generated by pumping the organic phase through a sparger at the bottom of the column. Then, organic droplets rise to the top of the aqueous phase. As the alkene droplets rise, they are oxidized by the oxone solution to form epoxide. The study of aqueous epoxidation in a droplet column shows that the epoxidation of alkenes can be represented as a first-order reaction in alkene and a first-order reaction in oxone under mass transfer limiting conditions. By recycling the cyclooctene, over 60% yield of cyclooctene epoxide can be achieved in 3 h. However, due to epoxide crystals formation, a second reactor is needed to remove the solid and to bring the yield up to 80%. The authors found that a stirred tank reactor, which avoids the need to put the crystallized mixture through the small holes of a sparger, performed well in this application as a second reactor.

  7. Development and validation of advanced CFD models for detailed predictions of void distribution in a BWR bundle

    NASA Astrophysics Data System (ADS)

    Neykov, Boyan

    In recent years, a commonly adopted approach is to use Computational Fluid Dynamics (CFD) codes as computational tools for simulation of different aspects of the nuclear reactor thermal-hydraulic performance where high-resolution and high-fidelity modeling is needed. Within the framework of this PhD work, the CFD code STAR-CD [1] is used for investigations of two phase flow in air-water systems as well as boiling phenomena in simple pipe geometry and in a Boiling Water Reactor (BWR) fuel assembly. Based on the two-fluid Eulerian solver, improvements of the STAR-CD code in the treatment of the drag, lift and wall lubrication forces in a dispersed two phase flow at high vapor (gas) phase fractions are investigated and introduced. These improvements constitute a new two phase modeling framework for STAR-CD, which has been shown to be superior as compared to the default models in STAR-CD. The conservation equations are discretized using the finite-volume method and solved using a solution procedure is based on Pressure Implicit with Splitting of Operators (PISO) algorithm, adapted to the solution of the two-fluid model. The improvements in the drag force modeling include investigation and integration of models with dependence on both void fraction and bubble diameter. The set of the models incorporated into STAR-CD is selected based on an extensive literature review focused on two phase systems with high vapor fractions. The research related to the modeling of wall lubrication force is focused on the validation of the already existing model in STAR-CD. The major contribution of this research is the development and implementation of an improved correlation for the lift coefficient used in the lift force formula. While a variety of correlations for the lift coefficient can be found in the open literature, most of those were derived from experiments conducted at low vapor (gas) phase fractions and are not applicable to the flow conditions existing in the BWRs. Therefore

  8. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE MULTI-PURPOSE CANISTER (MPC) WITH ACD DISPOSAL CONTAINER (SCPB: N/A)

    SciTech Connect

    T.L. Lotz

    1995-11-13

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24,5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond a concern that the long-term disposal thermal issues for the Multi-Purpose Canister (MPC) Subsystem Design, if used with SNF designed for a MOX fuel cycle, do not preclude MPC compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual MPC design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded MPC performance is similar to an MPC loaded with commercial BWR SNF. Future design efforts will focus on specific MPC vendor designs and BWR MOX SNF designs when they become available.

  9. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  10. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  11. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  12. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1962-12-25

    A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)

  13. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  14. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  15. Post irradiation examination of thermal reactor fuels

    NASA Astrophysics Data System (ADS)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  16. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  17. LOADING MACHINE FOR REACTORS

    DOEpatents

    Simon, S.L.

    1959-07-01

    An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.

  18. Study on acoustic resonance and its damping of BWR steam dome

    SciTech Connect

    Ohtsuka, Masaya; Fujimoto, Kiyoshi; Takahashi, Shirou; Hirokawa, Fumihito; Tsubaki, Masaaki

    2006-07-01

    Acoustic resonance characteristics in a BWR steam dome are investigated analytically and experimentally to evaluate the acoustic vibration of a steam dryer. Acoustic modes and frequencies of the ABWR, which represents the BWRs in this study, are calculated by the SYSNOISE code. The lowest mode (32 Hz) is a half stand wave anti-symmetric mode to the center line of the steam dome at normal condition. Acoustic pressure distributions and phases on the steam dryer surface are analyzed for evaluating the vibration driving force of the structure. Acrylic 1/11 scale model tests are performed to verify the acoustic analysis and to develop the acoustic damping system. The experimental frequencies and modes agree with analysis ones for low frequencies. Experimentally, the acoustic pressure amplitude is significantly lowered using the Helmholtz resonators after tuning up the acoustic resonant frequency of the resonator to the acoustic resonant frequency of the main system. (authors)

  19. Equipment environmental monitoring: Perspective from the BWR license renewal lead plant

    SciTech Connect

    Bailey, T.L.

    1991-06-01

    Northern States Power`s Monticello Nuclear Plant is the BWR License Renewal Lead Plant. NSP is currently evaluating plant components and programs such that a license renewal application may be submitted by the end of 1991. As part of the justification to extend the license of the plant, NSP will be required to demonstrate for components important to license renewal that either: evaluations show degradation of the component is not significant during the license renewal term or demonstrate that programs are in place which manage potentially significant degradation mechanisms. This paper identifies NSP`s perspective of the environmental monitoring activities which are expected to be utilized by the project to support the technical evaluations.

  20. Modeling of BWR core meltdown accidents - for application in the MELRPI. MOD2 computer code

    SciTech Connect

    Koh, B R; Kim, S H; Taleyarkhan, R P; Podowski, M Z; Lahey, Jr, R T

    1985-04-01

    This report summarizes improvements and modifications made in the MELRPI computer code. A major difference between this new, updated version of the code, called MELRPI.MOD2, and the one reported previously, concerns the inclusion of a model for the BWR emergency core cooling systems (ECCS). This model and its computer implementation, the ECCRPI subroutine, account for various emergency injection modes, for both intact and rubblized geometries. Other changes to MELRPI deal with an improved model for canister wall oxidation, rubble bed modeling, and numerical integration of system equations. A complete documentation of the entire MELRPI.MOD2 code is also given, including an input guide, list of subroutines, sample input/output and program listing.

  1. Procedure of recovery of pin-by-pin fields of energy release in the core of VVER-type reactor for the BIPR-8 code

    NASA Astrophysics Data System (ADS)

    Gordienko, P. V.; Kotsarev, A. V.; Lizorkin, M. P.

    2014-12-01

    The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.

  2. Procedure of recovery of pin-by-pin fields of energy release in the core of VVER-type reactor for the BIPR-8 code

    SciTech Connect

    Gordienko, P. V. Kotsarev, A. V.; Lizorkin, M. P.

    2014-12-15

    The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.

  3. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect

    Evan Harpenau

    2011-07-15

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  4. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  5. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  6. Strain-induced corrosion cracking behaviour of low-alloy steels under boiling water reactor conditions

    NASA Astrophysics Data System (ADS)

    Seifert, H. P.; Ritter, S.

    2008-09-01

    The strain-induced corrosion cracking (SICC) behaviour of different low-alloy reactor pressure vessel (RPV) and piping steels and of a RPV weld filler/weld heat-affected zone (HAZ) material was characterized under simulated boiling water reactor (BWR)/normal water chemistry (NWC) conditions by slow rising load (SRL) and very low-frequency fatigue tests with pre-cracked fracture mechanics specimens. Under highly oxidizing BWR/NWC conditions (ECP ⩾+50 mV SHE, ⩾0.4 ppm dissolved oxygen), the SICC crack growth rates were comparable for all materials (hardness <350 HV5) and increased (once initiated) with increasing loading rates and with increasing temperature with a possible maximum/plateau at 250 °C. A minimum KI value of 25 MPa m 1/2 had to be exceeded to initiate SICC in SRL tests. Above this value, the SICC rates increased with increasing loading rate d KI/d t, but were not dependent on the actual KI values up to 60 MPa m 1/2. A maximum in SICC initiation susceptibility occurred at intermediate temperatures around 200-250 °C and at slow strain rates in all materials. In contrast to crack growth, the SICC initiation susceptibility was affected by environmental and material parameters within certain limits.

  7. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  8. NRC (Nuclear Regulatory Commission) staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    SciTech Connect

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved.

  9. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  10. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  11. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  12. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  13. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  14. Neutronic reactor

    DOEpatents

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  15. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  16. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  17. NEUTRONIC REACTORS

    DOEpatents

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  18. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1961-01-24

    A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.

  19. CRC handbook of nuclear reactors calculations. Vol. II

    SciTech Connect

    Ronen, Y.

    1986-01-01

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.

  20. NEUTRONIC REACTOR CONSTRUCTION

    DOEpatents

    Vernon, H.C.; Goett, J.J.

    1958-09-01

    A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.

  1. Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments

    NASA Astrophysics Data System (ADS)

    Urquidi-Macdonald, Mirna

    2008-09-01

    In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Laboratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J. Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Chopra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published: May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data collected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concentration, hold time, down time, maximum stress intensity factor ( Kmax), stress intensity range (Δ Kmax), crack length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map clusters vectors of information by 'similarities.' Vectors of information were formed using the metal composition, followed by the environmental conditions used in each experiments, and finally followed by the crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the sample is cyclically loaded. Accordingly

  2. Reactor service life extension program

    SciTech Connect

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-01-01

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  3. Reactor service life extension program

    SciTech Connect

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-12-31

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  4. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris. Final report

    SciTech Connect

    Zigler, G.; Brideau, J.; Rao, D.V.; Shaffer, C.; Souto, F.; Thomas, W.

    1995-10-01

    This report documents a plant-specific study for a BWR/4 with a Mark I containment that evaluated the potential for LOCA generated debris and the probability of losing long term recirculation capability due ECCS pump suction strainer blockage. The major elements of this study were: (1) acquisition of detailed piping layouts and installed insulation details for a reference BWR; (2) analysis of plant specific piping weld failure probabilities to estimate the LOCA frequency; (3) development of an insulation and other debris generation and drywell transport models for the reference BWR; (4) modeling of debris transport in the suppression pool; (5) development of strainer blockage head loss models for estimating loss of NPSH margin; (6) estimation of core damage frequency attributable to loss of ECCS recirculation capability following a LOCA. Elements 2 through 5 were combined into a computer code, BLOCKAGE 2.3. A point estimate of overall DEGB pipe break frequency (per Rx-year) of 1.59E-04 was calculated for the reference plant, with a corresponding overall ECCS loss of NPSH frequency (per Rx-year) of 1.58E-04. The calculated point estimate of core damage frequency (per Rx-year) due to blockage related accident sequences for the reference BWR ranged from 4.2E-06 to 2.5E-05. The results of this study show that unacceptable strainer blockage and loss of NPSH margin can occur within the first few minutes after ECCS pumps achieve maximum flows when the ECCS strainers are exposed to LOCA generated fibrous debris in the presence of particulates (sludge, paint chips, concrete dust). Generic or unconditional extrapolation of these reference plant calculated results should not be undertaken.

  5. Refined multi-level methodology in parallel computing environment for BWR RIA analysis

    NASA Astrophysics Data System (ADS)

    Solis-Rodarte, Jorge

    2000-12-01

    Best-estimate methodologies in boiling water reactor can reduce the traditional conservative thermal margins imposed on the designs and during the operation of this type of nuclear reactors. Traditional operating thermal margins are obtained based on simplified modeling techniques that are supplemented with the required dose of conservatism. For instance, much more realistic transient pin peaking distributions can be predicted by applying a dehomogenization algorithm, based on a flux reconstruction scheme which uses nodal results during both steady state and transient calculation at each time step. A subchannel analysis module for obtaining thermal margins supplements the calculation approach used. A multi-level methodology to extend the TRAC-BF1/NEM coupled code capability to obtain the transient fuel rod response has been implemented. To fulfill the development requirements some improved neutronic models were implemented into the NEM solution algorithm, namely the pin power reconstruction capability, and the simulation of a dynamic scram. The obtained results were coupled to a subchannel analysis module: COBRA-TF T-H subchannel analysis code. The objective of the pin power reconstruction capability of NEM is to locate the most limiting node (axial region of assembly/channel) within the core. The power information obtained from the NEM 3D neutronic calculation is used by the hot channel analysis module (COBRA-TF). COBRA-TF needs also the T-H conditions at the boundary nodes. This information is provided by TRACBF1 T-H system analysis code. The Subchannel analysis module uses this information to re-calculate the fluid, thermal and hydraulics conditions in the most limiting node (axial region of assembly/channel) within the core.

  6. Camera Inspection Arm for Boiling Water Reactors - 13330

    SciTech Connect

    Martin, Scott; Rood, Marc

    2013-07-01

    Boiling Water Reactor (BWR) outage maintenance tasks can be time-consuming and hazardous. Reactor facilities are continuously looking for quicker, safer, and more effective methods of performing routine inspection during these outages. In 2011, S.A. Technology (SAT) was approached by Energy Northwest to provide a remote system capable of increasing efficiencies related to Reactor Pressure Vessel (RPV) internal inspection activities. The specific intent of the system discussed was to inspect recirculation jet pumps in a manner that did not require manual tooling, and could be performed independently of other ongoing inspection activities. In 2012, SAT developed a compact, remote, camera inspection arm to create a safer, more efficient outage environment. This arm incorporates a compact and lightweight design along with the innovative use of bi-stable composite tubes to provide a six-degree of freedom inspection tool capable of reducing dose uptake, reducing crew size, and reducing the overall critical path for jet pump inspections. The prototype camera inspection arm unit is scheduled for final testing in early 2013 in preparation for the Columbia Generating Station refueling outage in the spring of 2013. (authors)

  7. ENGINEERING TEST REACTOR

    DOEpatents

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  8. HOMOGENEOUS NUCLEAR REACTOR

    DOEpatents

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  9. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  10. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  11. Computational Modeling of Multiphase Reactors.

    PubMed

    Joshi, J B; Nandakumar, K

    2015-01-01

    Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling.

  12. Computational Modeling of Multiphase Reactors.

    PubMed

    Joshi, J B; Nandakumar, K

    2015-01-01

    Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling. PMID:26134737

  13. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  14. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  15. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  16. REACTOR COMPONETN

    DOEpatents

    Creutz, E.C.

    1959-10-27

    A reactor fuel element comprised of a slug of fissionable material disposed in a sheath of corrosion resistantmaterial is described. The sheath is in the form of a tubular container closed at one end and is in tight-fitting engagement with the peripheral sunface of the slug. An inner cap is insented into the open end of the sheath against the slug, which end is then bent around the inner cap and welded thereto. An outer cap is then welded around its peripheny to the bent portion of the container.

  17. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  18. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure.

  19. Thermal Reactor Code System for Reactor Design and Analysis.

    2003-04-21

    Version: 00 SRAC95 is a general purpose neutronics code system applicable to core analyses of various types of reactors, including cell calculation with burn up, core calculation for any type of thermal reactor; where core burn up calculation and fuel management were done by an auxiliary code. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications were made for nuclear data libraries and programs. In this version,more » many new functions and data are implemented to support nuclear design studies of advanced reactors. SRAC95 can be used for burnup credit analysis within the ORIGEN2 and SWAT (CCC-714) code system.« less

  20. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  1. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  2. NASA Reactor Facility Hazards Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.

  3. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  4. Reactor modeling of the oxidative coupling of methane in membranes reactors

    SciTech Connect

    Lu, Y.; Ramachandra, A.; Ma, Y.H.

    1994-12-31

    A reactor model has been developed to analyze the performance of membrane reactors for the high temperature oxidative coupling of methane and to compare their operation with fixed bed reactors. Three reactor configurations of the shell and tube type were this study: a conventional fixed bed reactor, a tubular porous membrane reactor, dense membrane reactor. For the membrane reactors, oxygen is fed on the shell side and methane into the tube side, and the catalyst is present only inside the tube. Both streams are diluted with helium and the feed ratio is maintained at a methane to oxygen ratio of 2:1 for all three configurations. The ratio of the volumetric flow rate of each reactant to the amount of catalyst is kept the same for the three configurations. Kinetic equations for the oxidative coupling of methane have been taken from the simplified mechanism on Li/MgO proposed by Tung and Lobban, where C{sub 2}H{sub 6}, CO{sub 2} and H{sub 2}O are the reaction products considered. The modeling study indicates an improved performance of the membrane reactors over the conventional packed bed reactor. For the porous membrane reactor, a 4 angstrom pore size membrane gives higher C{sub 2}H{sub 6} selectivities and C{sub 2}H{sub 6} yields than a 40 Angstrom pore size membrane. For the dense membrane reactor, a lower oxygen permeability gives higher C{sub 2}H{sub 6} yield. Of the three types of reactors, the dense membrane reactor offers the highest C{sub 2}H{sub 6} yields but a longer reactor length is needed because of the lower permeation rate of oxygen from the shell to the tube side, and hence the lower oxygen partial pressure and lower reaction rate on the tube side.

  5. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  6. BOILER-SUPERHEATED REACTOR

    DOEpatents

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  7. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  8. Thermomechanical analysis of fast-burst reactors

    SciTech Connect

    Miller, J.D.

    1994-08-01

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  9. Test plan for long-term, low-temperature oxidation of BWR spent fuel

    SciTech Connect

    Einziger, R.E.

    1988-12-01

    Preliminary studies indicated the need for more spent fuel oxidation data in order to determine the probable behavior of spent fuel in a tuff repository. Long-term, low-temperature testing was recommended in a comprehensive technical approach to (1) confirm the findings of the short-term thermogravimetric analysis tests; (2) evaluate the effects of variables such as burnup, atmospheric moisture,and fuel type on the oxidation rate; and (3) extend the oxidation data base to representative repository temperatures and better define the temperature dependence of the operative oxidation mechanisms. This document presents the test plan to study the effects of atmospheric moisture and temperature on oxidation rate and phase formation using a large number of boiling-water reactor fuel samples. Tests will run for up to two years, use characterized fragmented and pulverized fuel samples, cover a temperature range of 110{degree}C to 175{degree}C, and be conducted with an atmospheric moisture content ranging from <{minus}55{degree}C to {approximately}80{degree}C dew point. After testing, the samples will be examined and made available for leaching testing. 15 refs., 2 figs., 2 tabs.

  10. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  11. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  12. Generic BWR-4 degraded core in-vessel study. Status report

    SciTech Connect

    Not Available

    1984-11-01

    Original intent of this project was to produce a phenomenological study of the in-vessel degradation which occurs during the TQUX and TQUV sequences for a generic BWR-4 from the initiation of the FSAR Chapter 15 operational transient through core debris bed formation to the failure of the primary pressure boundary. Bounding calculations were to be performed for the two high pressure and low pressure non-LOCA scenarios to assess the uncertainties in the current state of knowledge regarding the source terms for containment integrity studies. Source terms as such were defined in terms of hydrogen generation, unreacted metal, and coolant inventroy, and in terms of the form, sequencing and mode of dispersal through the primary vessel boundary. Fission product release was not to be considered as part of this study. Premature termination of the project, however, led to the dicontinuation of work on an as is basis. Work on the in-core phase from the point of scram to core debris bed formation was largely completed. A preliminary scoping calculation on the debris bed phase had been initiated. This report documents the status of the study at termination.

  13. Environmentally assisted cracking behavior of dissimilar metal weldments in simulated BWR coolant environments

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Chiang, M. F.; Jeng, S. L.; Huang, J. S.; Kuo, R. C.

    2013-01-01

    The environmentally assisted cracking behavior of dissimilar metal (DM) welds, including Alloy 52-A 508 and Alloy 82-A508, under simulated BWR coolant conditions was studied. Effects of postweld heat treatment and sulfur content of the base metal on the corrosion fatigue and SCC growth rates of DM welds were evaluated. The crack growth rates for the DM weld heat-treated at 621 °C for 24 h were observed to be faster than those for the as-welded. But the DM weld heat-treated at 621 °C for 8 h + 400 °C for 200 h showed better SCC resistance than the as-welded. The longer the heat treatment at 621 °C, the higher the chromium carbides density along the grain boundary was observed. Sulfur could diffuse out of the base metal and segregate along the grain boundaries of the dilution zone, leading to weakening the grain boundary strength and the SCC resistance of the Alloy 52-A508 weld.

  14. Remote Gamma Scanning System for Characterization of BWR and PWR Fuel Rod Sections

    SciTech Connect

    Crowell, Shannon L.; Alzheimer, James M.

    2011-08-08

    Sometimes challenges with the design and deployment of automated equipment in remote environments deals more with the constraints imposed by the remote environment than it does with the details of the automation. This paper discusses the development of a scanning system used to provide gamma radiation profiles of irradiated fuel rod segments. The system needed the capability to provide axial scans of cut segments of BWR and PWR fuel rods. The scanning location is A-Cell at the Radiochemical Processing Laboratory (RPL) at the Hanford site in Washington State. The criteria for the scanning equipment included axial scanning increments of a tenth of an inch or less, ability to scan fuel rods with diameters ranging from 3/8 inch to 5/8 inch in diameter, and fuel rod segments up to seven feet in length. Constraints imposed by the environment included having the gamma detector and operator controls on the outside of the hot cell and the scanning hardware on the inside of the hot cell. This entailed getting a narrow, collimated beam of radiation from the fuel rod to the detector on the outside of the hot cell while minimizing the radiation exposure caused by openings for the wires and cables traversing the hot cell walls. Setup and operation of all of the in-cell hardware needed to accommodate limited access ports and use of hot cell manipulators. The radiation levels inside the cell also imposed constraints on the materials used.

  15. Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment.

    PubMed

    Lopez-Lopez, C; Martín-Pascual, J; González-Martínez, A; Calderón, K; González-López, J; Hontoria, E; Poyatos, J M

    2012-01-01

    At present, there is great concern about limited water resources and water quality, which require a more advanced technology. The Moving Bed Biofilm Reactor (MBBR) has been shown to be an efficient technology for removal of organic matter and nutrients in industrial and urban wastewater treatment. However, there are some pollutants which are more difficult to remove by biological processes, so this process can be improved with additional physical and chemical treatments such as electrocoagulation, which appears to be a promising technology in electrochemical treatments. In this research, urban wastewater was treated in an MBBR plant with an electrocoagulation pre-treatment. K1 from AnoxKaldnes and AQWISE ABC5 from Aqwise were the carriers studied under three different filling ratios (20, 35, and 50%). The experimental pilot plant had four bioreactors with 20 L of operation volume and a common feed tank with 100 L of operation volume. The movement of the carriers was generated by aeration and stirrer systems. Organic matter removal was studied by analysis of soluble chemical oxygen demand (sCOD). The maximum organic matter removal in this MBBR system was 65.8% ± 1.4% and 78.4% ± 0.1% for K1 and Aqwise ABC5 carriers, respectively. Moreover, the bacterial diversity of the biofilm was studied by temperature-gradient gel electrophoresis (TGGE) of PCR-amplified partial 16S rRNA genes. 20 prominent TGGE bands were successfully reamplified and sequenced, being the predominant population: β-Proteobacteria, α-Proteobacteria, and Actinobacteria. PMID:22755522

  16. Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment.

    PubMed

    Lopez-Lopez, C; Martín-Pascual, J; González-Martínez, A; Calderón, K; González-López, J; Hontoria, E; Poyatos, J M

    2012-01-01

    At present, there is great concern about limited water resources and water quality, which require a more advanced technology. The Moving Bed Biofilm Reactor (MBBR) has been shown to be an efficient technology for removal of organic matter and nutrients in industrial and urban wastewater treatment. However, there are some pollutants which are more difficult to remove by biological processes, so this process can be improved with additional physical and chemical treatments such as electrocoagulation, which appears to be a promising technology in electrochemical treatments. In this research, urban wastewater was treated in an MBBR plant with an electrocoagulation pre-treatment. K1 from AnoxKaldnes and AQWISE ABC5 from Aqwise were the carriers studied under three different filling ratios (20, 35, and 50%). The experimental pilot plant had four bioreactors with 20 L of operation volume and a common feed tank with 100 L of operation volume. The movement of the carriers was generated by aeration and stirrer systems. Organic matter removal was studied by analysis of soluble chemical oxygen demand (sCOD). The maximum organic matter removal in this MBBR system was 65.8% ± 1.4% and 78.4% ± 0.1% for K1 and Aqwise ABC5 carriers, respectively. Moreover, the bacterial diversity of the biofilm was studied by temperature-gradient gel electrophoresis (TGGE) of PCR-amplified partial 16S rRNA genes. 20 prominent TGGE bands were successfully reamplified and sequenced, being the predominant population: β-Proteobacteria, α-Proteobacteria, and Actinobacteria.

  17. Influence of operation factors on brittle fracture initiation and critical local normal stress in SE(B) type specimens of VVER reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Erak, A. D.; Kiselev, A. S.; Bubyakin, S. A.; Bandura, A. P.

    2015-12-01

    A complex of mechanical tests and fractographic studies of VVER-1000 RPV SE(B) type surveillance specimens was carried out: the brittle fracture origins were revealed (non-metallic inclusions and structural boundaries) and the correlation between fracture toughness parameters (CTOD) and fracture surface parameters (CID) was established. A computational and experimental method of the critical local normal stress determination for different origin types was developed. The values of the critical local normal stress for the structural boundary origin type both for base and weld metal after thermal exposure and neutron irradiation are lower than that for initial state due to the lower cohesive strength of grain boundaries as a result of phosphorus segregation.

  18. Microchannel Reactors for ISRU Applications

    NASA Astrophysics Data System (ADS)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  19. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    NASA Astrophysics Data System (ADS)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-05-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  20. Distribution of characteristics of LWR [light water reactor] spent fuel

    SciTech Connect

    Reich, W.J.; Notz, K.J.; Moore, R.S.

    1991-01-01

    The purpose of this report is to develop a collective description of the entire spent fuel inventory in terms of various fuel properties relevant to Approved Testing Materials (ATMs) using information available from the Characteristics Data Base (CBD), which is sponsored by the US Department of Energy`s (DOE`s) Office of Civilian Radioactive Waste Management. A number of light-water reactor (LWR) characteristics were analyzed including assembly class representation, fuel burnup, enrichment, fuel fabrication data, defective fuel quantities, and, at PNL`s specific request, linear heat generation rate (LHGR) and the utilization of burnable poisons. A quantitative relationships was developed between burnup and enrichment for BWRs and PWRs. The relationship shows that the existing BWR ATM is near the center of the burnup-enrichment distribution, while the four PWR ATMs bracket the center of the burnup range but are on the low side of the enrichment range. Fuel fabrication data are based on vendor specifications for new fuel. Defective fuel distributions were analyzed in terms of assembly class and vendor design. LHGR values were calculated from utility data on burnup and effective full-power days; these calculations incorporate some unavoidable assumptions which may compromise the value of the results. Only a limited amount of data are available on burnable poisons at this time. Based on this distribution study, suggestions for additional ATMs are made. These are based on the class and design concepts and include BWR/2,3 barrier fuel, and the WE 17 {times} 17 class with integral burnable poison. Both should be at relatively high burnups. 16 refs., 5 figs., 15 tabs.