Science.gov

Sample records for bypass model turbofan

  1. Medium bypass turbofan engine

    SciTech Connect

    Williams, S.B.; Jones, J.F.; Dorer, D.K.

    1986-07-08

    A gas turbine engine of the turbofan type is described which consists of: A. a generally tubular axially extending housing assembly defining a radially outer annular bypass duct extending from the inlet end of the housing assembly to the exhaust end thereof; B. an annular burner positioned within the housing assembly radially inwardly of the bypass duct and concentric to the central axis of the housing assembly; C. a low pressure spool assembly including a first shaft journaled on the central axis of the housing assembly, a fan on the first shaft disposed proximate the inlet end of the housing assembly, and a low pressure turbine on the first shaft disposed proximate the exhaust end of the housing assembly; and D. a high pressure spool assembly including a hollow second shaft telescopically received over the first shaft, a high pressure compressor on the second shaft positioned between the fan and the burner, a high pressure turbine on the second shaft positioned between the burner and the low pressure turbine, and an annular rotary slinger on the second shaft positioned between the high pressure compressor and the high pressure turbine and arranged to sling fuel radially outwardly into the burner.

  2. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  3. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  4. Jet noise from ultrahigh bypass turbofan engines

    NASA Astrophysics Data System (ADS)

    Posey, Joe W.; Norum, Thomas D.; Brown, Martha C.; Bhat, Thonse R. S.

    2002-05-01

    Modern commercial jet transport aircraft are powered by turbofan engines. Thrust from a turbofan engine is derived in part from the exhaust of a ducted fan, which may or may not be mixed with the core exhaust before exiting the nacelle. The historical trend has been toward ever higher bypass ratios (BPRs). The BPR is the ratio of air mass passing through the fan to that going through the core. The higher BPR engines can be more efficient and quieter. In general, a higher BPR results in lower average exhaust velocities and less jet noise. In order to address a scarcity of noise data for BPRs greater than 6, an extensive database collection effort was undertaken using the Jet Engine Simulator in NASA Langley's Low Speed Aeroacoustic Wind Tunnel. Forward flight simulations of Mach 0.1, 0.2, and 0.28 were used with BPRs of 5, 8, 11, and 14. Data was taken over the entire operating line of the simulated engines along with parametric deviations to provide a complete set of sensitivity measurements. The results will be used to develop an empirical jet noise prediction capability for ultrahigh bypass engines.

  5. Thrust reverser for high bypass turbofan engine

    SciTech Connect

    Matta, R.K.; Bhutiani, P.K.

    1990-05-08

    This patent describes a thrust reverser for a gas turbine engine of the type which includes an outer wall spaced from the center body of a core engine to define a bypass duct therebetween. The thrust reverser comprising: circumferentially displaced blocker doors, each of the doors being movable between a normal position generally aligned with the outer wall and a thrust reversing position extending transversely of the bypass duct for blocking the exhaust of air through the bypass duct and directing the air through an opening in the outer wall for thrust reversal; each of the blocker doors being of lightweight construction and including a pit in the inner surface thereof in the normal position; means for covering the pit during normal flow of air through the bypass duct to reduce the pressure drop in the bypass duct and to reduce noise. The covering means including a pit cover hingedly mounted at one end thereof on the blocker door and means of biasing the pit cover away from the blocker door to a position providing smooth flow of air through the bypass duct during normal operation.

  6. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  7. Navier-Stokes analysis of a very-high-bypass-ratio turbofan engine in reverse thrust

    NASA Astrophysics Data System (ADS)

    Brown, Jeffrey J.

    1987-06-01

    An algorithm based upon MacCormack's implicit line Gauss-Seidel Navier-Stokes scheme has been modified to model the flowfield in very-high-bypass-ratio turbofan engines under reverse-thrust conditions. It is assumed that reverse thrust is to be achieved through fan blade pitch changes. The physics at the fan blade is modeled using an actuator disk to simulate the fan pumping characteristics. The algorithm, including boundary conditions, is described, and three different flowfields are presented as illustrations of possible results.

  8. Inlet Acoustic Data from a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2017-01-01

    In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.

  9. Turbofan Duct Propagation Model

    NASA Technical Reports Server (NTRS)

    Lan, Justin H.; Posey, Joe W. (Technical Monitor)

    2001-01-01

    The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.

  10. High Bypass Turbofan Component Development. Phase II. Detailed Design.

    DTIC Science & Technology

    1979-08-01

    Selecting Blade Thickness for Bird Strike 46 27. Method for Selecting Blade Airfoil Attachment 49 AIRCRAF ENGINE GROUP IV GENERAL ELECTRIC COMPANY...reserves, the replacement aircraft must have a fuel efficient engine as the propulsion system, i. e., * modern turbofan engine . Technology in the large... turbofan engines has been well demonstrated, but little has been done in the size applicable to a twin- engine primary trainer aircraft . Today, there is

  11. Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.

    2014-01-01

    The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state

  12. Off-Design Analysis of a High Bypass Turbofan Using a Pulsed Detonation Combustor

    DTIC Science & Technology

    2010-03-01

    Caitlin R. Thorn, Captain, USAF AFIT/GAE/ENY/10- M26 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright...ENY/10- M26 OFF-DESIGN ANALYSIS OF A HIGH BYPASS TURBOFAN USING A PULSED DETONATION COMBUSTOR THESIS Presented to the Faculty Department...Captain, USAF March 2010 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED iv AFIT/GAE/ENY/10- M26

  13. Turbine bypass turbofan with mid-turbine reingestion and method of operating the same

    SciTech Connect

    Klees, G.W.

    1984-03-13

    A supersonic two spool turbofan engine is disclosed capable not only of developing sufficient power to accelerate up to supersonic cruise and maintain efficient operation at supersonic cruise, but also arranged to cruise at subsonic velocities with a relatively low specific fuel consumption. The engine is provided with a variable bypass passageway downstream of the compressor. Flow into the bypass passageway is controlled so that during low power setting the bypass passageway is closed so that all the gaseous flow is directed through the turbine. During higher power settings, the bypass passageway is opened to the extent that a selected portion of the gaseous flow is directed through the bypass passageway to bypass the first stage of the turbine section so that the corrected flow to the first turbine stage remains substantially constant for high and low power setting of the engine. The bypass flow is then directed into the area between the first and second turbine to combine with the gaseous flow passing through the first turbine and pass through the second turbine.

  14. Analytical evaluation of the impact of broad specification fuels on high bypass turbofan engine combustors

    NASA Technical Reports Server (NTRS)

    Taylor, J. R.

    1979-01-01

    Six conceptual combustor designs for the CF6-50 high bypass turbofan engine and six conceptual combustor designs for the NASA/GE E3 high bypass turbofan engine were analyzed to provide an assessment of the major problems anticipated in using broad specification fuels in these aircraft engine combustion systems. Each of the conceptual combustor designs, which are representative of both state-of-the-art and advanced state-of-the-art combustion systems, was analyzed to estimate combustor performance, durability, and pollutant emissions when using commercial Jet A aviation fuel and when using experimental referee board specification fuel. Results indicate that lean burning, low emissions double annular combustor concepts can accommodate a wide range of fuel properties without a serious deterioration of performance or durability. However, rich burning, single annular concepts would be less tolerant to a relaxation of fuel properties. As the fuel specifications are relaxed, autoignition delay time becomes much smaller which presents a serious design and development problem for premixing-prevaporizing combustion system concepts.

  15. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  16. High Bypass Turbofan Component Development. Amendment I. Small Fan Redesign.

    DTIC Science & Technology

    1980-02-01

    to Original Hub Section 22 15. Fan Rotor Load Distribution 23 16. Fan Disk Stress Model 24 17. Redesigned Fan Blisk 3/4 View 25 18. Comparison of...Initial & Redesigned Fan Blisk - Front View 26 19. Comparison of Initial & Redesigned Fan Blisk - Rear View 27 20. Comparison of Initial & Redesigned Fan ... blisk are covered by this Contract. -2- DESCRIPTIOH OF TECHNICRL WORK FAN ROTOR AERODYNAMIC DESIGN Method of Characteristics It is well known that the

  17. Developmental design, fabrication, and test of acoustic suppressors for fans of high bypass turbofan engines

    NASA Technical Reports Server (NTRS)

    Tucker, R. H.; Nelsen, M. D.; Gregg, G. E.; Palmer, F. I.

    1974-01-01

    An analysis procedure was developed for design of acoustically treated nacelles for high bypass turbofan engines. The plan was applied to the conceptual design of a nacelle for the quiet engine typical of a 707/DC-8 airplane installation. The resultant design was modified to a test nacelle design for the NASA Lewis quiet fan. The acoustic design goal was a 10 db reduction in effective perceived fan noise levels during takoff and approach. Detailed nacelle designs were subsequently developed for both the quiet engine and the quiet fan. The acoustic design goal for each nacelle was 15 db reductions in perceived fan noise levels from the inlet and fan duct. Acoustically treated nacelles were fabricated for the quiet engine and quiet fan for testing. Performance of selected inlet and fan duct lining configurations was experimentally evaluated in a flow duct. Results of the tests show that the linings perform as designed.

  18. Flow modeling in turbofan mixing duct

    SciTech Connect

    Tsui, Y.Y.; Wu, P.W. ); Liao, C.W. )

    1994-08-01

    A computational procedure is described to study the mixing flow in a multilobe turbofan mixer. The predictions have been obtained using a finite volume method to solve the density-weighted time-averaged Navier-Stokes equations. Turbulence is characterized by the [kappa]-[epsilon] eddy viscosity model. To fit the irregular boundaries of the flow field, the curvilinear nonorthogonal coordinates are employed. The robustness of the computational procedure is enhanced by making use of nonstaggered grids. Results show that the streamwise vortex generated at the exit of the lobes dominates the performance of the mixing process. Comparison with experimental data indicates that good predictions can be obtained provided that sufficient inlet conditions are given.

  19. A brief study of the effects of turbofan-engine bypass ratio on short and long haul cruise aircraft

    NASA Technical Reports Server (NTRS)

    Keith, A. L., Jr.

    1975-01-01

    A brief study of the effects of turbofan-engine bypass ratio on Breguet cruise range and take-off distance for subsonic cruise aircraft showed significant differences between short- and long-haul aircraft designs. Large thrust lapse rates at high bypass ratios caused severe reductions in cruise range for short-haul aircraft because of increases in propulsion system weight. Long-haul aircraft, with a higher fuel fraction (ratio of propulsion weight plus total fuel weight to gross take-off weight), are less sensitive to propulsion-system weight and, accordingly, were not significantly affected by bypass-ratio variations. Both types of aircraft have shorter take-off distances at higher bypass ratios because of higher take-off thrust-weight ratios.

  20. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  1. Enhanced Fan Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  2. Ultra High Bypass Integrated System Test

    NASA Image and Video Library

    2015-09-14

    NASA’s Environmentally Responsible Aviation Project, in collaboration with the Federal Aviation Administration (FAA) and Pratt & Whitney, completed testing of an Ultra High Bypass Ratio Turbofan Model in the 9’ x 15’ Low Speed Wind Tunnel at NASA Glenn Research Center. The fan model is representative of the next generation of efficient and quiet Ultra High Bypass Ratio Turbofan Engine designs.

  3. The Potential Benefits of Advanced Casing Treatment for Noise Attenuation in Utra-High Bypass Ratio Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Elliott, David

    2007-01-01

    In order to increase stall margin in a high-bypass ratio turbofan engine, an advanced casing treatment was developed that extracted a small amount of flow from the casing behind the fan and injected it back in front of the fan. Several different configurations of this casing treatment were designed by varying the distance of the extraction and injection points, as well as varying the amount of flow. These casing treatments were tested on a 55.9 cm (22 in.) scale model of the Pratt & Whitney Advanced Ducted Propulsor in the NASA Glenn 9 by 15 Low Speed Wind Tunnel. While all of the casing treatment configurations showed the expected increase in stall margin, a few of the designs showed a potential noise benefit for certain engine speeds. This paper will show the casing treatments and the results of the testing as well as propose further research in this area. With better prediction and design techniques, future casing treatment configurations could be developed that may result in an optimized casing treatment that could conceivably reduce the noise further.

  4. Propulsion Controls Modeling for a Small Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  5. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  6. Experimental clean combustor program, phase 3: Noise measurement addendum. [CF6-50 high bypass turbofan engine noise

    NASA Technical Reports Server (NTRS)

    Doyle, V. L.

    1978-01-01

    The acoustic characteristics of the double annular combustor in a CF6-50 high bypass turbofan engine were investigated. Internal fluctuating pressure measurements were made in the combustor region and in the core exhaust. The transmission loss across the turbine and nozzle was determined from the measurements and compared to previous component results and present theory. The primary noise source location in the combustor was investigated. Spectral comparisons of test rig results were made with the engine results. The measured overall power level was compared with component and engine correlating parameters.

  7. Effect of a part-span variable inlet guide vane on the performance of a high-bypass turbofan engine

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Soeder, R. H.; Burkardt, L. A.

    1981-01-01

    The ability of a part span variable inlet guide vane (VIGV) to modulate the thrust of a high bypass turbofan engine was evaluated at altitude/Mach number conditions of 4572 m/0.6 and 9144 m/0.93. Fan tip, gas generator and supercharger performance were also determined, both on operating lines and during fan duct throttling. The evaluation was repeated with the bypass splitter extended forward to near the fan blade trailing edge. Gross thrust attentuation of over 50 percent was achieved with 50 degree VIGV closure at 100 percent corrected fan speed. Gas generator supercharger performance fell off with VIGV closure, but this loss was reduced when a splitter extension was added. The effect of VIVG closure on gas generator performance was minimal.

  8. Noise predictions of a high bypass turbofan engine using the Lockheed Near-Field Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Rawls, J. W., Jr.

    1986-01-01

    The prediction of engine noise during cruise using the Near-Field Noise Prediction Program developed by Lockheed is examined. Test conditions were established which simulate the operation of a high bypass turbofan engine under a wide range of operating conditions. These test conditions include variations in altitude, flight Mach number and thrust setting. Based on the results of noise prediction made using the Lockheed program, an evaluation of the impact of these test conditions on the overall sound pressure level(OASPL)and the one-third octave band spectra is made. An evaluation of the sensitivity of flight condition parameters is also made. The primary noise source from a high bypass turbofan was determined to be fan broadband shock noise. This noise source can be expected to be present during normal cruising conditions. When present, fan broadband shock noise usually dominates at all frequencies and all directivity angles. Other noise sources of importance are broadband shock noise from the primary jet, fan noise, fan mixing noise and turbine noise.

  9. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  10. Optimal design and installation of ultra high bypass ratio turbofan nacelle

    NASA Astrophysics Data System (ADS)

    Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey

    2016-10-01

    The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.

  11. Conceptual study of an advanced supersonic technology transport (AST-107) for transpacific range using low-bypass-ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.; Foss, W. E., Jr.; Neubauer, M. J., Jr.

    1980-01-01

    An advanced supersonic technology configuration concept designated the AST-107, using a low bypass ratio turbofan engine, is described and analyzed. The aircraft had provisions for 273 passengers arranged five abreast. The cruise Mach number was 2.62. The mission range for the AST-107 was 8.48 Mm (4576 n.mi.) and an average lift drag ratio of 9.15 during cruise was achieved. The available lateral control was not sufficient for the required 15.4 m/s (30 kt) crosswind landing condition, and a crosswind landing gear or a significant reduction in dihedral effect would be necessary to meet this requirement. The lowest computed noise levels, including a mechanical suppressor noise reduction of 3 EPNdB at the flyover and sideline monitoring stations, were 110.3 EPNdB (sideline noise), 113.1 EPNdB (centerline noise) and 110.5 EPNdB (approach noise).

  12. Investigation of performance deterioration of the CF6/JT9D, high-bypass ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Ziemianski, J. A.; Mehalic, C. M.

    1980-01-01

    The aircraft energy efficiency program within NASA is developing technology required to improve the fuel efficiency of commercial subsonic transport aricraft. One segment of this program includes engine diagnostics which is directed toward determining the sources and causes of performance deterioration in the Pratt and Whitney Aircraft JT9D and General Electric CF6 high-bypass ratio turbofan engines and developing technology for minimizing the performance losses. Results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analysis of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.

  13. 75 FR 32262 - Airworthiness Directives; CFM International, S.A. Models CFM56-3 and -3B Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ..., S.A. Models CFM56-3 and -3B Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... International, S.A. models CFM56-3 and -3B turbofan engines. This AD requires initial and repetitive inspections... CFM International, S.A. models CFM56-3 and -3B turbofan engines. We published the proposed AD in...

  14. CFD simulations of the flow control performance applied for inlet of low drag high-bypass turbofan engine at cross flow regimes

    NASA Astrophysics Data System (ADS)

    Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.

    2016-10-01

    Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.

  15. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    SciTech Connect

    Wie, Y.S.; Collier, F.S. Jr.; Wagner, R.D. NASA, Langley Research Center, Hampton, VA )

    1991-09-01

    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption. 13 refs.

  16. Digital computer program for generating dynamic turbofan engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.; Szuch, J. R.; Westerkamp, E. J.

    1983-01-01

    This report describes DIGTEM, a digital computer program that simulates two spool, two-stream turbofan engines. The turbofan engine model in DIGTEM contains steady-state performance maps for all of the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. Altogether there are 16 state variables and state equations. DIGTEM features a backward-differnce integration scheme for integrating stiff systems. It trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off-design points and iterates to a balanced engine condition. Transients can also be run. They are generated by defining controls as a function of time (open-loop control) in a user-written subroutine (TMRSP). DIGTEM has run on the IBM 370/3033 computer using implicit integration with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is generalized in the aerothermodynamic treatment of components.

  17. Turbofan engine with a low pressure turbine driven supercharger in a bypass duct operated by a fuel rich combustor and an afterburner

    NASA Technical Reports Server (NTRS)

    Bartos, James W. (Inventor)

    1999-01-01

    A multiple bypass turbofan engine includes a core Brayton Cycle gas generator with a fuel rich burning combustor and is provided with a variable supercharged bypass duct around the gas generator with a supercharging means in the supercharged bypass duct powered by a turbine not mechanically connected to the gas generator. The engine further includes a low pressure turbine driven forward fan upstream and forward of an aft fan and drivingly connected to a low pressure turbine by a low pressure shaft, the low pressure turbine being aft of and in serial flow communication with the core gas generator. A fan bypass duct is disposed radially outward of the core engine assembly and has first and second inlets disposed between the forward and aft fans. An inlet duct having an annular duct wall is disposed radially inward of the bypass duct and connects the second inlet to the bypass duct. A supercharger means for compressing air is drivingly connected to the low pressure turbine and is disposed in the inlet duct. A secondary combustor or augmentor is disposed in an exhaust duct downstream of and in fluid flow communication with the bypass duct and the gas generator.

  18. Enhanced Core Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  19. Effect of combined pressure and temperature distortion orientation on high-bypass-ratio turbofan engine stability

    NASA Technical Reports Server (NTRS)

    Soeder, R. H.; Mehalic, C. M.

    1984-01-01

    Total-temperature, static-pressure and total-pressure distributions were measured in the inlet duct upstream of the engine inlet and within the fan and compressor of a YTF34 turbofan engine. Free-stream and boundary layer yaw angle variations were measured between a rotable screen assembly and the engine inlet. Total pressure distortions were generated using three 180 deg extent screens and total temperature distortions were generated using a rotatable hydrogen burner. Reynolds number index upstream of the rotatable screen assembly was maintained at 0.5 (based on the undistorted sectors at station 1, the inlet flow measuring station). The engine mechanical fan speed at sea level condition was rated at 7005 rpm. The engine was tested at a corrected fan speed of 90 percent of rated condition. Yaw angle increased between the rotatable screen assembly and the engine inlet. The largest variation in free-stream and boundary layer yaw angle occurs when the combined distortions are 180 deg out-of-phase. Static-pressure distortion increased exponentially as flow approached the engine. Total-pressure distortions were attenuated between the engine inlet and the compressor exit. Total-temperature distortion persisted through the compressor for all four combined distortions investigated.

  20. Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.

  1. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  2. Installation effects of wing-mounted turbofan nacelle-pylons on a 1/17-scale, twin-engine, low-wing transport model

    NASA Technical Reports Server (NTRS)

    Pendergraft, Odis C., Jr.; Ingraldi, Anthony M.; Re, Richard J.; Kariya, Timmy T.

    1992-01-01

    A twin-engine, low-wing transport model, with a supercritical wing of aspect ratio 10.8 designed for a cruise Mach number of 0.77 and a lift coefficient of 0.55, was tested in the Langley 16-Foot Transonic Tunnel. The purpose of this test was to compare the wing-nacelle interference effects of flow-through nacelles simulating superfan engines (very high bypass ratio (BPR is approx. = 18) turbofan engines) with the wing-nacelle interference effects of current-technology turbofans (BPR is approx. = 6). Forces and moments on the complete model were measured with a strain-gage balance, and extensive external static-pressure measurements (383 orifice locations) were made on the wing, nacelles, and pylons of the model. Data were taken at Mach numbers from 0.50 to 0.80 and at model angles of attack from -4 deg to 8 deg. Test results indicate that flow-through nacelles with a very high bypass ratio can be installed on a low-wing transport model with a lower installation drag penalty than for a conventional turbofan nacelle at a design cruise Mach number of 0.77 and lift coefficient of 0.55.

  3. Ramjet bypass duct and preburner configuration

    NASA Technical Reports Server (NTRS)

    Orlando, Robert J. (Inventor)

    1994-01-01

    A combined turbofan and ramjet aircraft engine includes a forward bypass duct which allows the engine to operate more efficiently during the turbofan mode of operation. By mounting a ramjet preburner in the forward duct and isolating this duct from the turbofan bypass air, a transition from turbofan operation to ramjet operation can take place at lower flight Mach numbers without incurring pressure losses or blockage in the turbofan bypass air.

  4. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  5. Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  6. Takeoff characteristics of turbofan engines

    SciTech Connect

    Suh, Y.B. )

    1990-05-01

    The present derivation of reliable formulas for the takeoff characteristics of turbofan-powered aircraft, encompassing ground-roll distance and time, fuel consumption, etc, incorporates ground effect-induced drag reduction. This drag reduction factor is varied according to type of aircraft; the turbofans in question may be of high-bypass transport-aircraft type or of low bypass and afterburner-employing configuration, as is typically the case in military aircraft. It is shown that bypass ratio variations have little influence on takeoff ground-rolling distance.

  7. Analytical Modeling of Herschel-Quincke Concept Applied to Inlet Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Hallez, Raphael F.; Burdisso, Ricardo A.; Gerhold, Carl H. (Technical Monitor)

    2002-01-01

    This report summarizes the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the period from January 1999 to December 2000 on the project 'Investigation of an Adaptive Herschel-Quincke Tube Concept for the Reduction of Tonal and Broadband Noise from Turbofan Engines', funded by NASA Langley Research Center. The Herschel-Quincke (HQ) tube concept is a developing technique the consists of circumferential arrays of tubes around the duct. The analytical model is developed to provide prediction and design guidelines for application of the HQ concept to turbofan engine inlets. An infinite duct model is developed and used to provide insight into attenuation mechanisms and design strategies. Based on this early model, the NASA-developed TBIEM3D code is modified for the HQ system. This model allows for investigation of the HQ system combined with a passive liner.

  8. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  9. The Aerodynamic Performance of an Over-The-Rotor Liner with Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Hughes, Christopher; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.

  10. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  11. The Aerodynamic Performance of an Over-The-Rotor Liner with Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Hughes, Christopher; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.

  12. Large Engine Technology (LET) Task XXXVII Low-Bypass Ratio Mixed Turbofan Engine Subsonic Jet Noise Reduction Program Test Report

    NASA Technical Reports Server (NTRS)

    Hauser, Joseph R.; Zysman, Steven H.; Barber, Thomas J.

    2001-01-01

    NASA Glenn Research Center supported a three year effort to develop the technology for reducing jet noise from low-bypass ratio engines. This effort concentrated on both analytical and experimental approaches using various mixer designs. CFD and MGB predictions are compared with LDV and noise data, respectively. While former predictions matched well with data, experiment shows a need for improving the latter predictions. Data also show that mixing noise can be sensitive to engine hardware upstream of the mixing exit plane.

  13. Numerical modeling of multi-mode active control of turbofan tonal noise using a boundary element method

    NASA Astrophysics Data System (ADS)

    Ireland, Laralee Gordon

    A numerical model was developed to investigate the possibility of implementing active control (ANC) to minimize noise radiation from high-bypass turbofan engines. Previous experimental work on the NASA Glenn Research Center active noise control fan (ANCF) was encouraging, but the question remained whether the modal approach investigated could be effective on real engines. The engine model developed for this research project uses an indirect boundary element method, implemented with Sysnoise, and a multi-mode Newton's algorithm, implemented with MATLAB(TM), to simulate the active control. Noise from the inlet was targeted. Both the experimental and numerical results based on the NASA ANCF simplified cylindrical engine geometry indicate overall reductions in the m = 2 component of the noise. Reductions obtained at the numerical sensor rings range from 17 dB to 63 dB and at a plane in the duct inlet, -8 dB to 33 dB. Rings mounted on the inlet duct are unable to accurately predict the total reduction of the inlet field, but the controller is still able to effectively reduce the total acoustic field. Generally, one sensor ring and one actuator ring per propagating mode were necessary to control the inlet field. At frequencies close to the cut-off frequency of a mode, an additional sensor and actuator ring were needed to adequately control the inlet field due to the evanescent mode. A more realistic, but still axisymmetric, engine geometry based on the GE CF6-80C engine was developed and the same algorithm used. Reductions obtained at the sensor rings range from 4 dB to 56 dB and at the duct inlet plane, from 12 dB to 26 dB. The overall far field noise radiation from the engine remained unchanged (0.4 dB) or decreased slightly (3.6 dB). The inlet noise was controlled at all frequencies but the noise from the exhaust was increased. The effect of inlet control on the exhaust radiation suggests the need for a controller that targets both the inlet and exhaust noise

  14. Modeling Sediment Bypassing around Rocky Headlands

    NASA Astrophysics Data System (ADS)

    George, D. A.; Largier, J. L.; Pasternack, G. B.; Erikson, L. H.; Storlazzi, C. D.; Barnard, P.

    2016-12-01

    Sediment bypassing rocky headlands remains understudied despite the importance of characterizing littoral processes and sediment budgets for erosion abatement, climate change adaptation, and beach management. This study was developed to identify controlling factors on and the mechanisms supporting sediment bypassing. Sediment flux around four idealized rocky headlands was investigated using the hydrodynamic model Delft3D and spectral wave model SWAN. The experimental design involved 120 simulations to explore the influence of headland morphology, substrate composition, sediment grain size, and oceanographic forcing. Headlands represented sizes and shapes found in natural settings, grain sizes ranged from fine to medium sand, and substrates from sandy beds to offshore bedrock reefs. The oceanography included a constructed representative tide, an alongshore background current, and four wave conditions derived from observational records in the eastern Pacific Ocean. A bypassing ratio was developed for alongshore flux between upstream and downstream cross-shore transects to determine the degree of blockage by a headland. Results showed that northwesterly oblique large waves (Hs = 7 m, Tp = 16 s) generated the most flux around headlands, whereas directly incident waves blocked flux across a headland apex. The headland shape heavily influenced the sediment fate by changing the relative angle between the shoreline and the incident waves. The bypassing ratio characterized each headland's capacity to allow alongshore flux under different wave conditions. All headlands may allow flux, although larger ones block sediment more effectively, promoting their ability to be littoral cell boundaries compared to smaller headlands. The controlling factors on sediment bypassing were determined to be wave angle, shape and size of the headland, and sediment grain size. This novel numerical modeling study advances headland modeling from the generic realm to broadly applicable classes of

  15. Luminescent Paints Used for Rotating Temperature and Pressure Measurements on Scale-Model High-Bypass-Ratio Fans

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1998-01-01

    NASA Lewis Research Center is a leader in the application of temperature- and pressuresensitive paints (TSP and PSP) in rotating environments. Tests were recently completed on several scale model, high-bypass-ratio turbofans in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel. Two of the test objectives were to determine the aerodynamic and acoustic performance of the fan designs. Using TSP and PSP, researchers successfully achieved fullfield aerodynamic loading profiles. The visualized loading profiles may help researchers identify factors contributing to the fans' performance and to the acoustic characteristics associated with the flow physics on the surface of the blades.

  16. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  17. Procedures for generation and reduction of linear models of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Cwynar, D. S.

    1978-01-01

    A real time hybrid simulation of the Pratt & Whitney F100-PW-F100 turbofan engine was used for linear-model generation. The linear models were used to analyze the effect of disturbances about an operating point on the dynamic performance of the engine. A procedure that disturbs, samples, and records the state and control variables was developed. For large systems, such as the F100 engine, the state vector is large and may contain high-frequency information not required for control. This, reducing the full-state to a reduced-order model may be a practicable approach to simplifying the control design. A reduction technique was developed to generate reduced-order models. Selected linear and nonlinear output responses to exhaust-nozzle area and main-burner fuel flow disturbances are presented for comparison.

  18. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  19. Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem

    NASA Technical Reports Server (NTRS)

    Roy, Indranil Danda; Eversman, Walter; Meyer, H. D.

    1993-01-01

    Improvements have been made in the finite element model of the acoustic radiated field from a turbofan engine inlet in the presence of a mean flow. The problem of acoustic radiation from a turbofan engine inlet is difficult to model numerically because of the large domain and high frequencies involved. A numerical model with conventional finite elements in the near field and wave envelope elements in the far field has been constructed. By employing an irrotational mean flow assumption, both the mean flow and the acoustic perturbation problem have been posed in an axisymmetric formulation in terms of the velocity potential; thereby minimizing computer storage and time requirements. The finite element mesh has been altered in search of an improved solution. The mean flow problem has been reformulated with new boundary conditions to make it theoretically rigorous. The sound source at the fan face has been modeled as a combination of positive and negative propagating duct eigenfunctions. Therefore, a finite element duct eigenvalue problem has been solved on the fan face and the resulting modal matrix has been used to implement a source boundary condition on the fan face in the acoustic radiation problem. In the post processing of the solution, the acoustic pressure has been evaluated at Gauss points inside the elements and the nodal pressure values have been interpolated from them. This has significantly improved the results. The effect of the geometric position of the transition circle between conventional finite elements and wave envelope elements has been studied and it has been found that the transition can be made nearer to the inlet than previously assumed.

  20. A Parametric Study of Actuator Requirements for Active Turbine Tip Clearance Control of a Modern High Bypass Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan L.; Chapman, Jeffryes W.; Guo, Ten-Huei

    2017-01-01

    The efficiency of aircraft gas turbine engines is sensitive to the distance between the tips of its turbine blades and its shroud, which serves as its containment structure. Maintaining tighter clearance between these components has been shown to increase turbine efficiency, increase fuel efficiency, and reduce the turbine inlet temperature, and this correlates to a longer time-on-wing for the engine. Therefore, there is a desire to maintain a tight clearance in the turbine, which requires fast response active clearance control. Fast response active tip clearance control will require an actuator to modify the physical or effective tip clearance in the turbine. This paper evaluates the requirements of a generic active turbine tip clearance actuator for a modern commercial aircraft engine using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software that has previously been integrated with a dynamic tip clearance model. A parametric study was performed in an attempt to evaluate requirements for control actuators in terms of bandwidth, rate limits, saturation limits, and deadband. Constraints on the weight of the actuation system and some considerations as to the force which the actuator must be capable of exerting and maintaining are also investigated. From the results, the relevant range of the evaluated actuator parameters can be extracted. Some additional discussion is provided on the challenges posed by the tip clearance control problem and the implications for future small core aircraft engines.

  1. Algorithms and analyses for stochastic optimization for turbofan noise reduction using parallel reduced-order modeling

    NASA Astrophysics Data System (ADS)

    Yang, Huanhuan; Gunzburger, Max

    2017-06-01

    Simulation-based optimization of acoustic liner design in a turbofan engine nacelle for noise reduction purposes can dramatically reduce the cost and time needed for experimental designs. Because uncertainties are inevitable in the design process, a stochastic optimization algorithm is posed based on the conditional value-at-risk measure so that an ideal acoustic liner impedance is determined that is robust in the presence of uncertainties. A parallel reduced-order modeling framework is developed that dramatically improves the computational efficiency of the stochastic optimization solver for a realistic nacelle geometry. The reduced stochastic optimization solver takes less than 500 seconds to execute. In addition, well-posedness and finite element error analyses of the state system and optimization problem are provided.

  2. Online Normalization Algorithm for Engine Turbofan Monitoring

    DTIC Science & Technology

    2014-10-02

    Online Normalization Algorithm for Engine Turbofan Monitoring Jérôme Lacaille 1 , Anastasios Bellas 2 1 Snecma, 77550 Moissy-Cramayel, France...understand the behavior of a turbofan engine, one first needs to deal with the variety of data acquisition contexts. Each time a set of measurements is...it auto-adapts itself with piecewise linear models. 1. INTRODUCTION Turbofan engine abnormality diagnosis uses three steps: reduction of

  3. Aircraft turbofans: new economic and environmental benefits

    SciTech Connect

    Sampl, F.R.; Shank, M.E.

    1985-09-01

    This article describes turbofan and turboprop engines. Advanced turbofans and turboprop engines, by continuing to reduce the velocities of the jet exhaust and fan tip speed, can provide significant noise reductions. New combustors incorporated into these engines have reduced smoke, hydrocarbons and carbon monoxide to levels below the current requirements. The third generation of turbofans will continue to increase fuel efficiency and reduce aircraft operating costs. They are more modular in design and consist of half as many parts as the earlier engines, reducing maintenance time by half. Some of the key features of the new turbofan concept include: a very high bypass ratio/compression ratio cycle; swept fan blades; a thin, low-loss nacelle; low-loss reduction gearing; new materials; advanced compressor/turbine airfoils; and high-speed rotors with improved clearance control.

  4. 77 FR 40822 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix, with...

  5. 78 FR 16620 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Division (PW) turbofan engine models PW4074, PW4074D, PW4077, PW4077D, PW4084D, PW4090, and PW4090-3 with a... proposed AD. Discussion We propose to adopt a new AD for all PW turbofan engine models PW4074, PW4074D...

  6. 77 FR 67763 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY..., PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This AD was prompted... PW4650 turbofan engines, including models with any dash number suffix, with 3rd stage low-pressure...

  7. Noise Benefits of Rotor Trailing Edge Blowing for a Model Turbofan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Fite, E. Brian; Podboy, Gary G.

    2007-01-01

    An advanced model turbofan was tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects associated with rotor Trailing-Edge-Blowing (TEB) for a modern, 1.294 stage pressure ratio turbofan model. The TEB rotor (Fan9) was designed to be aerodynamically similar to the previously tested Fan1, and used the same stator and nacelle hardware. Fan9 was designed with trailing edge blowing slots using an external air supply directed through the rotor hub. The TEB flow was heated to approximate the average fan exit temperature at each fan test speed. Rotor root blockage inserts were used to block TEB to all but the outer 40 and 20% span in addition to full-span blowing. A configuration with full-span TEB on alternate rotor blades was also tested. Far field acoustic data were taken at takeoff/approach conditions at 0.10 tunnel Mach. Far-field acoustic results showed that full-span blowing near 2.0% of the total flow could reduce the overall sound power level by about 2 dB. This noise reduction was observed in both the rotor-stator interaction tones and for the spectral broadband noise levels. Blowing only the outer span region was not very effective for lowering noise, and actually increased the far field noise level in some instances. Full-span blowing of alternate blades at 1.0% of the overall flow rate (equivalent to full-span blowing of all blades at 2.0% flow) showed a more modest noise decrease relative to full-span blowing of all blades. Detailed hot film measurements of the TEB rotor wake at 2.0% flow showed that TEB was not every effective for filling in the wake defect at approach fan speed toward the tip region, but did result in overfilling the wake toward the hub. Downstream turbulence measurements supported this finding, and support the observed reduction in spectral broadband noise.

  8. 78 FR 49111 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Pratt & Whitney Division (PW) turbofan...) Applicability This AD applies to all Pratt & Whitney Division (PW) turbofan engine models PW4074, PW4074D...

  9. 77 FR 16921 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY... PW4650 turbofan engines, including models with any dash number suffix. This AD was prompted by reports of... AD will affect 44 turbofan engines installed on airplanes of U.S. registry. We estimate that it will...

  10. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    NASA Technical Reports Server (NTRS)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  11. Comprehensive Report of Fan Performance From Duct Rake Instrumentation on 1.294 Pressure Ratio, 806 ft/sec Tip Speed Turbofan Simulator Models

    NASA Technical Reports Server (NTRS)

    Jeracki, Robert J.

    2006-01-01

    A large scale model representative of an advanced ducted propulsor-type, low-noise, very high bypass ratio turbofan engine was tested for acoustics, aerodynamic performance, and off-design operability in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel. The test was part of NASA s Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and un-powered core passage were simulated. As might be expected, the effect of stall management casing treatment was a performance penalty. Reducing the recirculating flow at the fan tip reduced the penalty while still providing sufficient stall margin. Two fans were tested with the same aerodynamic design; one with graphite composite material, and the other with solid titanium. There were surprising performance differences between the two fans, though both blades showed some indication of transitional flow near the tips. Though the pressure and temperature ratios were low for this fan design, the techniques used to improve thermocouple measurement accuracy gave repeatable data with adiabatic efficiencies agreeing within 1 percent. The measured fan adiabatic efficiency at simulated takeoff conditions was 93.7 percent and matched the design intent.

  12. Turbofan synchrophaser

    SciTech Connect

    Snow, B.H.

    1993-07-06

    A synchronizing system for an aircraft having a master turbofan engine and at least one slave turbofan engine, each of the engines having a fan rotor which rotates independently from a core rotor, the system is described comprising: fuel control means for modulating the fuel flow rate to the slave engine to synchronize the operation of the fan rotors; variable stator vane control means for modulating the position of variable stator vanes within the slave engine to synchronize the operation of the core rotors; means for synchronizing the fan rotors prior to synchronizing the core rotors; the variable rotor vane control means includes means responsive to a core rotor speed error signal having a magnitude indicative of the difference in the core rotor rotational speeds of the master engine and the slave engine to the rotational speed of the slave engine's core rotor through modulation of the position of variable stator vanes within the slave engine; the fuel control means further includes means for altering the phase relationship between the fan rotors of the slave engine and the master engine; the variable stator vane control means further includes means for altering the phase relationship between the core rotors of the slave engine and the master engine; and the means for altering the phase relationship between the core rotors is responsive to a core rotor vibrational phase signal having a magnitude indicative of the difference in the core rotor vibration of the master engine and slave engine to modulate the rotational speed of the drive engine's core rotor through modulation of the position of variable stator vanes within the slave engine.

  13. Development in Geared Turbofan Aeroengine

    NASA Astrophysics Data System (ADS)

    Mohd Tobi, A. L.; Ismail, A. E.

    2016-05-01

    This paper looks into the implementation of epicyclic gear system to the aeroengine in order to increase the efficiency of the engine. The improvement made is in the direction of improving fuel consumption, reduction in pollutant gasses and perceived noise. Introduction of epicyclic gear system is capable to achieve bypass ratio of up to 15:1 with the benefits of weight and noise reduction. Radical new aircraft designs and engine installation are being studied to overcome some of the challenges associated with the future geared turbofan and open-rotor engine.

  14. Potential improvements in turbofan engine fuel economy

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Gaffin, W. O.

    1976-01-01

    The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.

  15. Potential improvements in turbofan engine fuel economy

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Gaffin, W. O.

    1976-01-01

    The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.

  16. A Real-Time Simulator of a Turbofan Engine

    DTIC Science & Technology

    1989-03-01

    44j~ - i ~4 10 I’ Q Wk r7S~f~fNt4 0K - 4’ lt 4 .At .t’ 4--Q to Aa l A REAL-TIME SIMULATOR OF A TURBOFAN ENGINE Jonathan S. Litt n For Propulsion...error. "as" ,,,rmisu Mnim*& The F100 engine is a high performance, twin-spool, low by-pass ratio, turbofan engine . Figure 2 shows the locations of the...FORTRAN sim- ulation of a generalized turbofan engine . To create the simulator, the original HYTESS code was revised to incorporate F1O0 specific

  17. Application of frequency-domain linearized Euler solutions to the prediction of aft fan tones and comparison with experimental measurements on model scale turbofan exhaust nozzles

    NASA Astrophysics Data System (ADS)

    Özyörük, Y.; Tester, B. J.

    2011-08-01

    Although it is widely accepted that aircraft noise needs to be further reduced, there is an equally important, on-going requirement to accurately predict the strengths of all the different aircraft noise sources, not only to ensure that a new aircraft is certifiable and can meet the ever more stringent local airport noise rules but also to prioritize and apply appropriate noise source reduction technologies at the design stage. As the bypass ratio of aircraft engines is increased - in order to reduce fuel consumption, emissions and jet mixing noise - the fan noise that radiates from the bypass exhaust nozzle is becoming one of the loudest engine sources, despite the large areas of acoustically absorptive treatment in the bypass duct. This paper addresses this 'aft fan' noise source, in particular the prediction of the propagation of fan noise through the bypass exhaust nozzle/jet exhaust flow and radiation out to the far-field observer. The proposed prediction method is equally applicable to fan tone and fan broadband noise (and also turbine and core noise) but here the method is validated with measured test data using simulated fan tones. The measured data had been previously acquired on two model scale turbofan engine exhausts with bypass and heated core flows typical of those found in a modern high bypass engine, but under static conditions (i.e. no flight simulation). The prediction method is based on frequency-domain solutions of the linearized Euler equations in conjunction with perfectly matched layer equations at the inlet and far-field boundaries using high-order finite differences. The discrete system of equations is inverted by the parallel sparse solver MUMPS. Far-field predictions are carried out by integrating Kirchhoff's formula in frequency domain. In addition to the acoustic modes excited and radiated, some non-acoustic waves within the cold stream-ambient shear layer are also captured by the computations at some flow and excitation frequencies. By

  18. HYTESS 2: A Hypothetical Turbofan Engine Simplified Simulation with multivariable control and sensor analytical redundancy

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1986-01-01

    A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented.

  19. HYTESS 2: A Hypothetical Turbofan Engine Simplified Simulation with multivariable control and sensor analytical redundancy

    NASA Astrophysics Data System (ADS)

    Merrill, W. C.

    1986-06-01

    A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented.

  20. Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.; Nili, Samaun

    2017-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the turbine engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The PSL has been used to test a highly instrumented Honeywell ALF502R-5A (LF11) turbofan engine at simulated altitude operating conditions. Test data analysis with an engine cycle code and a compressor flow code was conducted to determine the values of key icing parameters, that can indicate the risk of ice accretion, which can lead to engine rollback (un-commanded loss of engine thrust). The full engine aerothermodynamic performance was modeled with the Honeywell Customer Deck specifically created for the ALF502R-5A engine. The mean-line compressor flow analysis code, which includes a code that models the state of the ice crystal, was used to model the air flow through the fan-core and low pressure compressor. The results of the compressor flow analyses included calculations of the ice-water flow rate to air flow rate ratio (IWAR), the local static wet bulb temperature, and the particle melt ratio throughout the flow field. It was found that the assumed particle size had a large effect on the particle melt ratio, and on the local wet bulb temperature. In this study the particle size was varied parametrically to produce a non-zero calculated melt ratio in the exit guide vane (EGV) region of the low pressure compressor (LPC) for the data points that experienced a growth of blockage there, and a subsequent engine called rollback (CRB). At data points where the engine experienced a CRB having the lowest wet bulb temperature of 492 degrees Rankine at the EGV trailing edge, the smallest particle size that produced a non-zero melt ratio (between 3 percent - 4 percent) was on the order of 1 micron. This value of melt ratio was utilized as the target for all other subsequent data points analyzed, while the particle size was varied from 1 micron - 9

  1. TF-34 turbofan quiet engine study

    NASA Technical Reports Server (NTRS)

    Edkins, D. P.; Hirschkron, R.; Lee, R.

    1972-01-01

    A study of high bypass turbofan engines in heavily sound-suppressed nacelles based on the TF-34 engine. The four-engine noise objective was 95 PNdb at four locations typical of takeoff and landing. Three engines were studied; these had fan pressure ratios, bypass ratios, and fan tip speeds respectively of 1.48/6.5/404 m/sec (1327 ft/sec), 1.25/13/305 (1000), 1.25/13/366(1200). The bypass 13 engines had a variable pitch fan, direct- and gear-driven. Noise suppressive treatment was identified which met 95 PNdb objective except for sideline liftoff at 6.5 bypass, full power, which was 2 PNdb noisier; at 90% power, 95 PNdb was achieved.

  2. Modelling of natural and bypass transition in aerodynamics

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří; Straka, Petr; Příhoda, Jaromír

    2014-03-01

    Most of transition models are proposed for modelling of the bypass transition common in the internal aerodynamics especially in turbomachinery where free stream turbulence is the dominant parameter affecting the transition onset. Free-stream turbulence level in the external aerodynamics is usually noticeably lower and so the natural transition often occurs in flows around airfoils. The transition model with the algebraic equation for the intermittency coefficient proposed originally by Straka and Příhoda [3] for the bypass transition was modified for modelling of the transition at low free-stream turbulence. The modification is carried out using experimental data of Schubauer and Skramstad [18]. Further, the three-equation k-kL-ω model proposed by Walters and Cokljat [10] was used for the modelling of the transition at low free-stream turbulence. Both models were tested by means of the incompressible flow around airfoils at moderate and very low free-stream turbulence.

  3. Parameterization of a Conventional and Regenerated UHB Turbofan

    NASA Astrophysics Data System (ADS)

    Oliveira, Fábio; Brójo, Francisco

    2015-09-01

    The attempt to improve aircraft engines efficiency resulted in the evolution from turbojets to the first generation low bypass ratio turbofans. Today, high bypass ratio turbofans are the most traditional type of engine in commercial aviation. Following many years of technological developments and improvements, this type of engine has proved to be the most reliable facing the commercial aviation requirements. In search of more efficiency, the engine manufacturers tend to increase the bypass ratio leading to ultra-high bypass ratio (UHB) engines. Increased bypass ratio has clear benefits in terms of propulsion system like reducing the specific fuel consumption. This study is aimed at a parametric analysis of a UHB turbofan engine focused on short haul flights. Two cycle configurations (conventional and regenerated) were studied, and estimated values of their specific fuel consumption (TSFC) and specific thrust (Fs) were determined. Results demonstrate that the regenerated cycle may contribute towards a more economic and friendly aero engines in a higher range of bypass ratio.

  4. 77 FR 13485 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for RB211- Trent 800 series turbofan engines. This AD requires...) Applicability This AD applies to Rolls-Royce plc (RR) RB211-Trent 800 turbofan engines, all models, all serial...

  5. 78 FR 17079 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... Ltd & Co KG (RRD) models Tay 620-15 and Tay 650-15 turbofan engines. This AD was prompted by RRD... turbofan engines with a low-pressure compressor (LPC) rotor disc assembly, part number (P/N) JR31198A or P...

  6. 78 FR 35574 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA... directive (AD) for all Rolls-Royce Deutschland Ltd & Co KG (RRD) model Tay 650-15 turbofan engines. This... that this proposed AD affects 52 Tay turbofan engines installed on airplanes of U.S. registry. We also...

  7. 76 FR 68660 - Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... 2120-AA64 Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines AGENCY... propose to adopt a new airworthiness directive (AD) for PW4000 series turbofan engines. This proposed AD..., PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models...

  8. Control Design for an Advanced Geared Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Litt, Jonathan

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  9. Turbofan engine cycle design selection - Year 2000

    SciTech Connect

    Steinmetz, R.B.; Wagner, M.J.

    1986-01-01

    To define the optimum turbofan engine cycle for the year 2000, a parametric study was undertaken to define candidate engine thermodynamic cycles for advanced long range aircraft. Performance comparisons are based on uninstalled cruise specific fuel consumption (SFC). A base cycle design with current state-of-the-art technology was established as a reference. A parametric study was then conducted where component technologies projected for the year 2000 were included in the cycle design process. As bypass ratio increased, the transition from direct drive to geared fans was accounted for. Separate versus mixed flow exhaust systems were also studied. An uninstalled SFC improvement of approximately 18 percent was found for the year 2000 turbofan relative to the baseline engine.

  10. Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)

    NASA Technical Reports Server (NTRS)

    Barber, T.

    1988-01-01

    A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.

  11. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  12. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage "FOD" Events

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Lawrence, Charles; Litt, Jonathan S.

    2007-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  13. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage "FOD" Events

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Lawrence, Charles; Litt, Jonathan S.

    2007-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  14. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage (FOD) Events

    NASA Technical Reports Server (NTRS)

    Turso, James; Lawrence, Charles; Litt, Jonathan

    2004-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  15. Modeling of Highly Instrumented Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.

    2016-01-01

    The Propulsion Systems Laboratory (PSL), an altitude test facility at NASA Glenn Research Center, has been used to test a highly instrumented turbine engine at simulated altitude operating conditions. This is a continuation of the PSL testing that successfully duplicated the icing events that were experienced in a previous engine (serial LF01) during flight through ice crystal clouds, which was the first turbofan engine tested in PSL. This second model of the ALF502R-5A serial number LF11 is a highly instrumented version of the previous engine. The PSL facility provides a continuous cloud of ice crystals with controlled characteristics of size and concentration, which are ingested by the engine during operation at simulated altitudes. Several of the previous operating points tested in the LF01 engine were duplicated to confirm repeatability in LF11. The instrumentation included video cameras to visually illustrate the accretion of ice in the low pressure compressor (LPC) exit guide vane region in order to confirm the ice accretion, which was suspected during the testing of the LF01. Traditional instrumentation included static pressure taps in the low pressure compressor inner and outer flow path walls, as well as total pressure and temperature rakes in the low pressure compressor region. The test data was utilized to determine the losses and blockages due to accretion in the exit guide vane region of the LPC. Multiple data points were analyzed with the Honeywell Customer Deck. A full engine roll back point was modeled with the Numerical Propulsion System Simulation (NPSS) code. The mean line compressor flow analysis code with ice crystal modeling was utilized to estimate the parameters that indicate the risk of accretion, as well as to estimate the degree of blockage and losses caused by accretion during a full engine roll back point. The analysis provided additional validation of the icing risk parameters within the LPC, as well as the creation of models for

  16. Experimental Program for the Evaluation of Turbofan/Turboshaft Conversion Technology

    DTIC Science & Technology

    1982-01-01

    Wenzel National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY -A TF34 turbofan engine is being modified to...of a Part-Span Variable Inlet Guide Vane on the Performance of a High-Bypass Turbofan Engine . NASA TM 82617, 1981. 5. Nieberding, W. C.; and Pollack...produce shaft power from an output coupling on the fan disk when variable inlet guide vanes are closed to reduce fan airflow. The engine , called a

  17. Research on performance requirements of turbofan engine used on carrier-based UAV

    NASA Astrophysics Data System (ADS)

    Zhao, Shufan; Li, Benwei; Zhang, Wenlong; Wu, Heng; Feng, Tang

    2017-05-01

    According to the mission requirements of the carrier-based unmanned aerial vehicle (UAV), a mode level flight was established to calculate the thrust requirements from altitude 9 km to 13 km. Then, the estimation method of flight profile was used to calculate the weight of UAV in each stage to get the specific fuel consumption requirements of the UAV in standby stage. The turbofan engine of carrier-based UAV should meet the thrust and specific fuel consumption requirements. Finally, the GSP software was used to verify the simulation of a small high-bypass turbofan engine. The conclusion is useful for the turbofan engine selection of carrier-based UAV.

  18. JT8D-100 turbofan engine, phase 1. [noise reduction

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The JT8D turbofan engine, widely used in short and medium range transport aircraft, contributes substantially to airport community noise. The jet noise is predominant in the JT8D engine and may be reduced in a modified engine, without loss of thrust, by increasing the airflow to reduce jet velocity. A configuration study evaluated the effects of fan airflow, fan pressure ratio, and bypass ratio on noise, thrust, and fuel comsumption. The cycle selected for the modified engine was based upon an increased diameter, single-stage fan and two additional core engine compressor stages, which replace the existing two-stage fan. Modifications were also made to the low pressure turbine to provide the increased torque required by the larger diameter fan. The resultant JT8D-100 engine models have the following characteristics at take-off thrust, compared to the current JT8D engine: Airflow and bypass ratio are increased, and fan pressure ratio and engine speed are reduced. The resultant engine is also longer, larger in diameter, and heavier than the JT8D base model, but these latter changes are compensated by the increased thrust and decreased fuel comsumption of the modified engine, thus providing the capability for maintaining the performance of the current JT8D-powered aircraft.

  19. A Portable Training Model for Deep Bypass Surgery.

    PubMed

    Ryu, Jiwook; Choi, Seok Keun; Chung, Yeongu; Lee, Sung Ho; Jeong, Bi-O

    2017-08-07

    Deep bypass surgery remains a challenging operative procedure. For novice trainees, there is a high barrier to improving the microsurgical skills needed for this procedure because of the relatively low number of cases and the high cost of microsurgical instruments. Here, the authors introduce a training model that includes highly accessible devices and does not require a microscope. The surgical environment consisted of two 15.5-cm straight serrated forceps with a 1-mm tip width (Medicon, Tuttlingen, Germany), 9-cm curved iris scissors (Medicon, Tuttlingen, Germany), 4-0 black silk suture, gauze, and a 15×10.5×3.5-cm-sized box with a transparent cover. These materials are affordable even in low-income countries. To understand and learn the hand positioning used in the deep surgical field, suturing practice was performed as follows: the forceps and a needle were placed in a slanted position, with hand position maintained at a 50° angle between the two forceps. This was also performed above the desk, without wrist support. Our training system will be helpful, especially for deep bypass surgery, since training with similar muscle effort and fatigue can improve surgical skills. This system is economic, highly accessible and available even for portable training. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Towards an Automated Full-Turbofan Engine Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.

    2003-01-01

    The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.

  1. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  2. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  3. An application of tensor ideas to nonlinear modeling of a turbofan jet engine

    NASA Technical Reports Server (NTRS)

    Klingler, T. A.; Yurkovich, S.; Sain, M. K.

    1982-01-01

    An application of tensor modelling to a digital simulation of NASA's Quiet, Clean, Shorthaul Experimental (QCSE) gas turbine engine is presented. The results show that the tensor algebra offers a universal parametrization which is helpful in conceptualization and identification for plant modelling prior to feedback or for representing scheduled controllers over an operating line.

  4. Airesearch QCGAT program. [quiet clean general aviation turbofan engines

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Norgren, W. M.

    1979-01-01

    A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.

  5. 77 FR 39157 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for...) models RB211-Trent 970-84, 970B-84, 972- 84, 972B-84, 977-84, 977B-84, and 980-84 turbofan engines. That...-Trent 970-84, 970B-84, 972-84, 972B-84, 977-84, 977B-84, and 980-84 turbofan engines. That AD requires...

  6. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  7. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  8. A Mode Detection Method Using the Azimuthal Directivity of a Turbofan Model

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; Farassat, F.; Clark, L. R.; Gerhold, C. H.; Kelly, J. J.; Becker, L. E.

    1999-01-01

    The azimuthal, far field directivity of a scale fan model was measured in high resolution. The model is a 12 inch diameter rotor with 16 blades followed by 40 stator vanes. The tests were conducted at the nominal 100% speed corresponding to a tip speed of 905 ft/sec. Measurement of the radiated sound field, forward of the fan, was made in an anechoic chamber with an inflow control device and a baffle separating the aft and forward radiated interaction noise. The acoustic field was surveyed with a circular hoop array of 16 microphones which was moved to 14 axial stations. At each axial station the hoop was rotated in half-degree increments to take 736 points in the azimuthal angle. In addition to sound pressure level, the phase angle relative to a reference microphone was measured at each point. The sound pressure level is shown to vary in patterns by 10-15 dB especially for the fundamental tone but also for the first and second harmonic. A far field mode detection method has been developed and used with the data which determines the modes generated by the fan and which then interact to form the azimuthal directivity.

  9. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  10. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake

    NASA Astrophysics Data System (ADS)

    Heidelberg, Laurence J.; Hall, David G.

    1993-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  11. Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  12. Comparison of Far-Field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9x15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2) These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  13. Comparison of Far-field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9 15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2). These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  14. Advanced turbofan blade refurbishment technique

    SciTech Connect

    Roberts, W.B.

    1995-10-01

    The purpose of the work reported here is to investigate whether the lessons learned from the work of Suder et al. can be used to reduce the in-service performance deterioration of a fan on a high bypass ratio turbofan engine. To this end, a back-to-back test was done on the fan of an RB211-22B engine with the cooperation of Delta Airlines. The fan and engine were first overhauled per normal airline practice and cell-tested to establish that the engine performance met flight acceptance standards. This test, which the engine passed, also established a performance baseline for the overhauled engine. At this point the fan blade leading edge had not been filed or scraped and the blade surfaces had not been polished because the leading edge damage and blade surface roughness fell within the acceptable limits specified by the manufacturer for normal overhaul practice. After the cell test, the fan was removed from the engine and sent to Sermatech International where the following additional operations were performed: (1) the blade surfaces were polished to a finish of 20 rms {micro}in; (2) leading edge roughness due to particle impact damage was removed and the leading edge was polished to a finish of 20 rms {micro}in; (3) the leading edge shape was rounded and the leading edge thickness was reduced over the first 5--10% of chord. Test results indicated a 0.7% drop in thrust specific fuel consumption (lb fuel/lb thrust/hr) relative to the baseline engine after the enhanced fan overhaul. Based on the results of Suder et al. (1995) it appears that 70--80% of this performance gain is due to the thin smooth leading edge and the remainder to the highly polished finish of the blade.

  15. Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models

    NASA Technical Reports Server (NTRS)

    Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.

  16. Combined pressure and temperature distortion effects on internal flow of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Braithwaite, W. M.; Soeder, R. H.

    1979-01-01

    An additional data base for improving and verifying a computer simulation developed by an engine manufacturer was obtained. The multisegment parallel compressor simulation was designed to predict the effects of steady-state circumferential inlet total-pressure and total-temperature distortions on the flows into and through a turbofan compression system. It also predicts the degree of distortion that will result in surge of the compressor. The effect of combined 180 deg square-wave distortion patterns of total pressure and total temperature in various relative positions is reported. The observed effects of the combined distortion on a unitary bypass ratio turbofan engine are presented in terms of total and static pressure profiles and total temperature profiles at stations ahead of the inlet guide vanes as well as through the fan-compressor system. These observed profiles are compared with those predicted by the complex multisegment model. The effects of relative position of the two components comprising the combined distortion on the degree resulting in surge are discussed. Certain relative positions required less combined distortion than either a temperature or pressure distortion by itself.

  17. Development of a Twin-Spool Turbofan Engine Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3% of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  18. Development of a Twin-spool Turbofan Engine Simulation Using the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Johathan S.

    2014-01-01

    The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  19. Analysis of an advanced technology subsonic turbofan incorporating revolutionary materials

    NASA Technical Reports Server (NTRS)

    Knip, Gerald, Jr.

    1987-01-01

    Successful implementation of revolutionary composite materials in an advanced turbofan offers the possibility of further improvements in engine performance and thrust-to-weight ratio relative to current metallic materials. The present analysis determines the approximate engine cycle and configuration for an early 21st century subsonic turbofan incorporating all composite materials. The advanced engine is evaluated relative to a current technology baseline engine in terms of its potential fuel savings for an intercontinental quadjet having a design range of 5500 nmi and a payload of 500 passengers. The resultant near optimum, uncooled, two-spool, advanced engine has an overall pressure ratio of 87, a bypass ratio of 18, a geared fan, and a turbine rotor inlet temperature of 3085 R. Improvements result in a 33-percent fuel saving for the specified misssion. Various advanced composite materials are used throughout the engine. For example, advanced polymer composite materials are used for the fan and the low pressure compressor (LPC).

  20. 77 FR 16917 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... ] Rolls-Royce Deutschland (RRD) Models Tay 611-8 and Tay 611-8C turbofan engines. This AD requires... plating. We are issuing this AD to prevent failure of the HP turbine stage 2 disc, uncontained engine...

  1. 77 FR 74123 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Rolls-Royce Deutschland Ltd & Co KG (RRD) models Tay 620-15 and Tay 650-15 turbofan engines. This... proposing this AD to prevent failure of the LPC rotor disc assembly, uncontained engine failure, and damage...

  2. 78 FR 2644 - Airworthiness Directives; CFM International, S.A. Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ..., S.A. Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... International, S. A. (CFM) model CFM56-5 and CFM56-5B series turbofan engines. This proposed AD was prompted by... AD to prevent seizure of the HMU, leading to failure of one or more engines and damage to the...

  3. Catabolic effects of gastric bypass in a diet-induced obese rat model.

    PubMed

    Guijarro, Ana; Kirchner, Henriette; Meguid, Michael M

    2006-07-01

    In the USA, 8-10 million people are morbidly obese, which is associated with a high frequency of comorbidities. The most effective treatment is surgery. Of around 180,000 bariatric operations performed in 2005, 80% were Roux-en-Y gastric bypass, consisting of a small gastric pouch to minimize food intake and a Roux-en-Y of distal small bowel bypassing the upper gastrointestinal tract. The precise mechanisms whereby Roux-en-Y gastric bypass achieves sustained weight loss remain unknown. To gain insight into the catabolic events of sustained weight loss we developed a diet-induced obese Roux-en-Y gastric bypass rat model. We review our rat model data from the novel viewpoint of the catabolic state, comparing it with the limited human data available and the catabolic events occurring in cancer anorexia/cachexia syndrome. Current data suggest the involvement of mechanisms other than restrictive and malabsorptive factors of the Roux-en-Y gastric bypass, classically thought of as the mechanisms responsible for weight loss. Based on available data, gastrointestinal hormones and cytokines play a key role in reducing food intake and regulating energy homeostasis. Because of the cross talk between peripheral modulators and the hypothalamus, a critical role for their interaction in the outcome of Roux-en-Y gastric bypass is emerging. In our Roux-en-Y gastric bypass rat model many of the changes in gastrointestinal hormones, adipokines and cytokines as well as in hypothalamic neuropeptides and neurotransmitters resemble the changes observed in the anorexia/cachexia rat model, suggesting that Roux-en-Y gastric bypass triggers a catabolic state responsible for loss of appetite and prolonged body weight reduction.

  4. Experimental investigations of the steady flow through an idealized model of a femoral artery bypass

    NASA Astrophysics Data System (ADS)

    Giurgea, Corina; Bode, Florin; Ioan Budiu, Octavian; Nascutiu, Lucian; Banyai, Daniel; Damian, Mihai

    2014-03-01

    The present paper presents the steps taken by the authors in the first stage of an experimental program within a larger national research project whose objective is to characterize the flow through a femoral artery bypass with a view to finding solutions for its optimization. The objective of the stage is to investigate by means of the PIV method the stationary flow through a bypass model with an idealized geometry. A bypass assembly which reunites the idealized geometry models of the proximal and distal anastomoses, and which respects the lengths of a femoral artery bypass was constructed on the basis of data for a real patient provided by medical investigations. With the aim of testing the model and the established experimental set-up with regard to their suitability for the assessment of the velocity field associated to the steady flow through the bypass, three zones that can restore the whole distal anastomosis were PIV investigated. The measurements were taken in the conditions of maintained inflow at the bypass entry of 0.9 l / min (Re = 600). The article presents comparatively the flow spectra and the velocity fields for each zone obtained in two situations: with the femoral artery completely occluded and completely open.

  5. DESIGN POINT PERFORMANCE OF TURBOJET AND TURBOFAN ENGINE CYCLES

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.

    1994-01-01

    This program is one designed for the calculation of design-point performance of turbojet and turbofan engine cycles. This program requires as input the airplane Mach number, the altitude-state equations, turbine-inlet temperature, afterburner temperature, duct burner temperature, bypass ratio, coolant flow, component efficiences, and component pressure ratios. The output yields specific thrust, specific fuel consumption, engine efficiency, and several component temperatures and pressures. The thermodynamic properties of the gas are expressed as functions of temperature and fuel-to-air ratio. The program is provided with an example case. The program has been implemented on the IBM 7094.

  6. Effect of flight loads on turbofan engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Jay, A.; Todd, E. S.; Kafka, P. G.; White, J. L.

    1978-01-01

    A significant percentage of high bypass ratio, turbofan engine performance deterioration was caused by an increase in operating clearance between fan/compressor and turbine blades and their outer air seals. These increased clearances resulted from rubs induced by a combination of engine power transients and aircraft flight loads. An analytical technique for predicting the effect of quasi-steady state aircraft flight loads on engine performance deterioration was developed and is presented. Thrust, aerodynamic and inertia loads were considered. Analytical results are shown and compared to actual engine test experience.

  7. Effect of flight loads on turbofan engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Jay, A.; Todd, E. S.; Kafka, P. G.; White, J. L.

    1979-01-01

    A significant percentage of high-bypass-ratio turbofan engine performance deterioration is caused by an increase in operating clearance between fan/compressor and turbine blades and their outer air seals. These increased clearances result from rubs induced by a combination of engine power transients and aircraft flight loads. An analytical technique for predicting the effect of quasi-steady state aircraft flight loads on engine performance deterioration has been developed and is presented. Thrust, aerodynamic and inertia loads are considered. Analytical results are shown and compared to actual engine test experience.

  8. Core noise measurements on a YF-102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Reshotko, M.; Karchmer, A. M.; Penko, P. F.; Mcardle, J. G.

    1977-01-01

    Core noise from a YF-102 high bypass ratio turbofan engine was investigated through the use of simultaneous measurements of internal fluctuating pressures and far field noise. Acoustic waveguide probes, located in the engine at the compressor exit, in the combustor, at the turbine exit, and in the core nozzle, were employed to measure internal fluctuating pressures. Spectra showed that the internal signals were free of tones, except at high frequency where machinery noise was present. Data obtained over a wide range of engine conditions suggest that below 60% of maximum fan speed the low frequency core noise contributes significantly to the far field noise.

  9. Study of Turbofan Engines Designed for Low Enery Consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.

  10. Preliminary Study of the Fuel Saving Potential of Regenerative Turbofans for Commercial Subsonic Transports. [engine tests

    NASA Technical Reports Server (NTRS)

    Kraft, G. A.

    1975-01-01

    The fuel savings potential of regenerative turbofans was calculated and compared with that of a reference turbofan. At the design altitude of 10.67 km and Mach 0.80, the turbine-inlet-temperature of the regenerative turbofan was fixed at 1700 K while the overall pressure ratio was varied from 10 to 20. The fan pressure ratio was fixed at 1.6 and the bypass ratio varied from 8 to 10. The heat exchanger design parameters such as pressure drop and effectiveness varied from 4 to 8 percent and from 0.80 to 0.90, respectively. Results indicate a fuel savings due to regeneration of 4.1 percent and no change in takeoff gross weight.

  11. Ribosome bypassing at serine codons as a test of the model of selective transfer RNA charging

    PubMed Central

    Lindsley, Dale; Bonthuis, Paul; Gallant, Jonathan; Tofoleanu, Teodora; Elf, Johan; Ehrenberg, Måns

    2005-01-01

    Recently, a model of the flux of amino acids through transfer RNAs (tRNAs) and into protein has been developed. The model predicts that the charging level of different isoacceptors carrying the same amino acid respond very differently to variation in supply of the amino acid or of the rate of charging. It has also been shown that ribosome bypassing is specifically stimulated at ‘hungry' codons calling for an aminoacyl-tRNA in short supply. We have constructed two reporters of bypassing, which differ only in the identity of the serine codon subjected to starvation. The stimulation of bypassing as a function of starvation differed greatly between the two serine codons, in good agreement with the quantitative predictions of the model. PMID:15678161

  12. Advanced Control Considerations for Turbofan Engine Design

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  13. Particles deposition induced by the magnetic field in the coronary bypass graft model

    NASA Astrophysics Data System (ADS)

    Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.

  14. Simulating Operation of a Large Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Frederick, Dean K.; DeCastro, Jonathan

    2008-01-01

    The Commercial Modular Aero- Propulsion System Simulation (C-MAPSS) is a computer program for simulating transient operation of a commercial turbofan engine that can generate as much as 90,000 lb (.0.4 MN) of thrust. It includes a power-management system that enables simulation of open- or closed-loop engine operation over a wide range of thrust levels throughout the full range of flight conditions. C-MAPSS provides the user with a set of tools for performing open- and closed-loop transient simulations and comparison of linear and non-linear models throughout its operating envelope, in an easy-to-use graphical environment.

  15. Turbofan gas turbine engine with variable fan outlet guide vanes

    NASA Technical Reports Server (NTRS)

    Wood, Peter John (Inventor); Zenon, Ruby Lasandra (Inventor); LaChapelle, Donald George (Inventor); Mielke, Mark Joseph (Inventor); Grant, Carl (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  16. The design and development of a mixer compound exhaust system for a quiet clean general aviation turbofan

    NASA Technical Reports Server (NTRS)

    Blackmore, W. L.; Thompson, C. E.

    1981-01-01

    Lower engine fuel consumption has become a dominant factor in turbofan engine design due to rapidly increasing fuel costs. One engine component with a large impact on engine performance is the exhaust system. Previous exhaust system studies have demonstrated the significant exhaust system efficiency gains available through mixing of the core and bypass flows. Typically, a large, costly rig and engine program are required to develop and optimize these gains. The purpose of this paper is to present the results of the low-cost design system used for the quiet, clean general aviation turbofan mixer nozzle design and development. The scale model and full-scale engine test results confirm the predicted 3 to 5% reduction in cruise fuel consumption. This unique design system, which is based on integrating advanced three-dimensional viscous numerical methods with empirical optimization techniques, is summarized and detailed comparisons with test data are presented. The ability to accurately predict relative performance of mixer systems with substantially reduced development time and cost savings is demonstrated.

  17. 78 FR 47235 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; General Electric... Electric Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines. This proposed AD was prompted by the... Federal holidays. For service information identified in this proposed AD, contact General Electric Company...

  18. Active Control of Inlet Noise on the JT15D Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.

    1999-01-01

    This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage

  19. Endoscopic intestinal bypass creation by using self-assembling magnets in a porcine model.

    PubMed

    Ryou, Marvin; Agoston, A Tony; Thompson, Christopher C

    2016-04-01

    A purely endoluminal method of GI bypass would be desirable for the treatment of obstruction, obesity, or metabolic syndrome. We have developed a technology based on miniature self-assembling magnets that create large-caliber anastomoses (Incisionless Anastomosis System [IAS]). The aim of this study was to evaluate procedural characteristics of IAS deployment and long-term anastomotic integrity and patency. We performed a 3-month survival study of Yorkshire pigs (5 interventions, 3 controls). Intervention pigs underwent simultaneous enteroscopy/colonoscopy performed with the animals under intravenous sedation. The IAS magnets were deployed and coupled with reciprocal magnets under fluoroscopy. Every 3 to 6 days pigs underwent endoscopy until jejunocolonic anastomosis (dual-path bypass) creation and magnet expulsion. Necropsies and histological evaluation were performed. The primary endpoints were technical success; secondary endpoints of anastomosis integrity, patency, and histological characteristics were weight trends. Under intravenous sedation, endoscopic bypass creation by using IAS magnets was successfully performed in 5 of 5 pigs (100%). Given porcine anatomy, the easiest dual-path bypass to create was between the proximal jejunum and colon. The mean procedure time was 14.7 minutes. Patent, leak-free anastomoses formed by day 4. All IAS magnets were expelled by day 12. All anastomoses were fully patent at 3 months with a mean diameter of 3.5 cm. The mean 3-month weight was 45 kg in bypass pigs and 78 kg in controls (P = .01). At necropsy, adhesions were absent. Histology showed full re-epithelialization across the anastomosis without fibrosis or inflammation. Large-caliber, leak-free, foreign body-free endoscopic intestinal bypass by using IAS magnets can be safely and rapidly performed in the porcine by model using only intravenous sedation. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  20. Turbofan Engine Simulated in a Graphical Simulation Environment

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2004-01-01

    Recently, there has been an increase in the development of intelligent engine technology with advanced active component control. The computer engine models used in these control studies are component-level models (CLM), models that link individual component models of state space and nonlinear algebraic equations, written in a computer language such as Fortran. The difficulty faced in performing control studies on Fortran-based models is that Fortran is not supported with control design and analysis tools, so there is no means for implementing real-time control. It is desirable to have a simulation environment that is straightforward, has modular graphical components, and allows easy access to health, control, and engine parameters through a graphical user interface. Such a tool should also provide the ability to convert a control design into real-time code, helping to make it an extremely powerful tool in control and diagnostic system development. Simulation time management is shown: Mach number versus time, power level angle versus time, altitude versus time, ambient temperature change versus time, afterburner fuel flow versus time, controller and actuator dynamics, collect initial conditions, CAD output, and component-level model: CLM sensor, CAD input, and model output. The Controls and Dynamics Technologies Branch at the NASA Glenn Research Center has developed and demonstrated a flexible, generic turbofan engine simulation platform that can meet these objectives, known as the Modular Aero-Propulsion System Simulation (MAPSS). MAPSS is a Simulink-based implementation of a Fortran-based, modern high pressure ratio, dual-spool, low-bypass, military-type variable-cycle engine with a digital controller. Simulink (The Mathworks, Natick, MA) is a computer-aided control design and simulation package allows the graphical representation of dynamic systems in a block diagram form. MAPSS is a nonlinear, non-real-time system composed of controller and actuator dynamics

  1. Turbofan Engine Simulated in a Graphical Simulation Environment

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2004-01-01

    Recently, there has been an increase in the development of intelligent engine technology with advanced active component control. The computer engine models used in these control studies are component-level models (CLM), models that link individual component models of state space and nonlinear algebraic equations, written in a computer language such as Fortran. The difficulty faced in performing control studies on Fortran-based models is that Fortran is not supported with control design and analysis tools, so there is no means for implementing real-time control. It is desirable to have a simulation environment that is straightforward, has modular graphical components, and allows easy access to health, control, and engine parameters through a graphical user interface. Such a tool should also provide the ability to convert a control design into real-time code, helping to make it an extremely powerful tool in control and diagnostic system development. Simulation time management is shown: Mach number versus time, power level angle versus time, altitude versus time, ambient temperature change versus time, afterburner fuel flow versus time, controller and actuator dynamics, collect initial conditions, CAD output, and component-level model: CLM sensor, CAD input, and model output. The Controls and Dynamics Technologies Branch at the NASA Glenn Research Center has developed and demonstrated a flexible, generic turbofan engine simulation platform that can meet these objectives, known as the Modular Aero-Propulsion System Simulation (MAPSS). MAPSS is a Simulink-based implementation of a Fortran-based, modern high pressure ratio, dual-spool, low-bypass, military-type variable-cycle engine with a digital controller. Simulink (The Mathworks, Natick, MA) is a computer-aided control design and simulation package allows the graphical representation of dynamic systems in a block diagram form. MAPSS is a nonlinear, non-real-time system composed of controller and actuator dynamics

  2. Design and evaluation of an integrated Quiet, Clean General Aviation Turbofan (QCGAT) engine and aircraft propulsion system

    NASA Technical Reports Server (NTRS)

    German, J.; Fogel, P.; Wilson, C.

    1980-01-01

    The design was based on the LTS-101 engine family for the core engine. A high bypass fan design (BPR=9.4) was incorporated to provide reduced fuel consumption for the design mission. All acoustic and pollutant emissions goals were achieved. A discussion of the preliminary design of a business jet suitable for the developed propulsion system is included. It is concluded that large engine technology can be successfully applied to small turbofans, and noise or pollutant levels need not be constraints for the design of future small general aviation turbofan engines.

  3. 78 FR 10501 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... & Co KG (RRD) BR700-710A1-10 and BR700- 710A2-20 turbofan engines, and certain BR700-710C4-11 model... the following new AD: 2013-03-17 Rolls-Royce Deutschland Ltd & Co KG (Formerly Rolls-Royce...

  4. Effect of Accessory Power Take-off Variation on a Turbofan Engine Performance

    DTIC Science & Technology

    2012-09-26

    electric power generators . For the engine model of Figure II. 1 , the torque conservation across engine shafts is governed by Eqs. 22...Background and Previous Work II. 1 Turbofan Engine Cycle Analysis and Performance For all types of gas turbine engine ( turbojet , turbofan, turboprop, and...the gas generator is to convert an air-fuel mixture into a hot gas having a high pressure and temperature. For a turbojet engine as an example,

  5. Mathematical Modeling of Outflow Facility Increase With Trabecular Meshwork Bypass and Schlemm Canal Dilation.

    PubMed

    Yuan, Fan; Schieber, Andrew T; Camras, Lucinda J; Harasymowycz, Paul J; Herndon, Leon W; Allingham, R Rand

    2016-04-01

    To mathematically model the conventional aqueous humor outflow system with trabecular meshwork (TM) bypass and Schlemm canal (SC) dilation. The SC was modeled as a rectangular channel with the TM modeled as a permeable membrane. The collector channels (CCs) were modeled as fluid sinks distributed along the outer wall of SC. Two different implants were investigated in this study. The Hydrus Microstent (scaffold) was modeled with a TM bypass and a dilated region in SC that was 7 or 15 mm long and approximately 5-fold larger than the normal height of SC (h0). The iStent trabecular microbypass was modeled with a similar structure except that the dilated region in SC was 1 mm long and 25% larger than h0. Creation of a TM bypass structure would increase the pressure in the surrounding regions inside the SC and make it close to the intraocular pressure. SC dilation would increase the pressure more uniformly in the dilated region. The pressure increase led to higher flow rates in SC and CCs, and subsequently increased outflow facility (C). If CCs were uniformly distributed, the increase in C was the smallest after implantation of 1 microbypass, compared with that after implantation of 2 microbypasses or 1 scaffold. If CCs were nonuniformly distributed, the magnitude of increase in C was sensitive to the location of implant, and the sensitivity was higher for the microbypass than the scaffold. The study showed that creation of TM bypass and SC dilation significantly increased outflow facility, and the amount of increase correlated with the length of dilated regions in SC.

  6. Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Jia, Hongfei; Ran, Bin; Li, Jun

    2016-07-01

    A bypassing behavior model was proposed, in which the local optimal decision behavior in the strategy level was modeled in velocity-time domain, to describe how pedestrians bypass the local obstacles considering the relative speed. The model contains (1) pedestrian visual and contact information acquisition; (2) motion state prediction of the local obstacles based on the visual and contact information; (3) pedestrian bypass strategy modeling in the velocity-time domain; (4) moving and overlapping solution. In the numerical solution, velocity domain was divided into n equal angle, the value of n ranges from 2 to infinity, the Manhattan space was refined gradually to Euclid Space accordingly, in which the movement of pedestrians was described. The model was applied to the analysis of pedestrian arching at the bottleneck in the emergent evacuation situation. (1) The results showed that the formation of the pedestrian arching at the bottleneck was deformation pressure, because many pedestrians try to pass through the bottleneck simultaneously, even in the absence of friction, the pedestrian arching still occurs; (2) In the emergent situation, we are more concerned about the bottleneck attribution of resistance to form the arching, the calculation and simulation results showed that the probability of an arching and the bottleneck width is an exponential function relationship, so when the stampede occurs in the middle of the bottleneck, the probability of arching will increase exponentially.

  7. Managing the inflammatory response after cardiopulmonary bypass: review of the studies in animal models

    PubMed Central

    Liguori, Gabriel Romero; Kanas, Alexandre Fligelman; Moreira, Luiz Felipe Pinho

    2014-01-01

    Objective To review studies performed in animal models that evaluated therapeutic interventions to inflammatory response and microcirculatory changes after cardiopulmonary bypass. Methods It was used the search strategy ("Cardiopulmonary Bypass" (MeSH)) and ("Microcirculation" (MeSH) or "Inflammation" (MeSH) or "Inflammation Mediators" (MeSH)). Repeated results, human studies, non-English language articles, reviews and studies without control were excluded. Results Blood filters, system miniaturization, specific primers regional perfusion, adequate flow and temperature and pharmacological therapies with anticoagulants, vasoactive drugs and anti-inflammatories reduced changes in microcirculation and inflammatory response. Conclusion Demonstrated efficacy in animal models establishes a perspective for evaluating these interventions in clinical practice. PMID:24896169

  8. Computational model of blood flow in the aorto-coronary bypass graft

    PubMed Central

    Sankaranarayanan, Meena; Chua, Leok Poh; Ghista, Dhanjoo N; Tan, Yong Seng

    2005-01-01

    Background Coronary artery bypass grafting surgery is an effective treatment modality for patients with severe coronary artery disease. The conduits used during the surgery include both the arterial and venous conduits. Long- term graft patency rate for the internal mammary arterial graft is superior, but the same is not true for the saphenous vein grafts. At 10 years, more than 50% of the vein grafts would have occluded and many of them are diseased. Why do the saphenous vein grafts fail the test of time? Many causes have been proposed for saphenous graft failure. Some are non-modifiable and the rest are modifiable. Non-modifiable causes include different histological structure of the vein compared to artery, size disparity between coronary artery and saphenous vein. However, researches are more interested in the modifiable causes, such as graft flow dynamics and wall shear stress distribution at the anastomotic sites. Formation of intimal hyperplasia at the anastomotic junction has been implicated as the root cause of long- term graft failure. Many researchers have analyzed the complex flow patterns in the distal sapheno-coronary anastomotic region, using various simulated model in an attempt to explain the site of preferential intimal hyperplasia based on the flow disturbances and differential wall stress distribution. In this paper, the geometrical bypass models (aorto-left coronary bypass graft model and aorto-right coronary bypass graft model) are based on real-life situations. In our models, the dimensions of the aorta, saphenous vein and the coronary artery simulate the actual dimensions at surgery. Both the proximal and distal anastomoses are considered at the same time, and we also take into the consideration the cross-sectional shape change of the venous conduit from circular to elliptical. Contrary to previous works, we have carried out computational fluid dynamics (CFD) study in the entire aorta-graft-perfused artery domain. The results reported here

  9. Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts.

    PubMed

    Ballarin, Francesco; Faggiano, Elena; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi; Ippolito, Sonia; Antona, Carlo; Scrofani, Roberto

    2017-08-01

    A fast computational framework is devised to the study of several configurations of patient-specific coronary artery bypass grafts. This is especially useful to perform a sensitivity analysis of the hemodynamics for different flow conditions occurring in native coronary arteries and bypass grafts, the investigation of the progression of the coronary artery disease and the choice of the most appropriate surgical procedure. A complete pipeline, from the acquisition of patient-specific medical images to fast parameterized computational simulations, is proposed. Complex surgical configurations employed in the clinical practice, such as Y-grafts and sequential grafts, are studied. A virtual surgery platform based on model reduction of unsteady Navier-Stokes equations for blood dynamics is proposed to carry out sensitivity analyses in a very rapid and reliable way. A specialized geometrical parameterization is employed to compare the effect of stenosis and anastomosis variation on the outcome of the surgery in several relevant cases.

  10. Simulating the Use of Alternative Fuels in a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan

    2013-01-01

    The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.

  11. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Wang, Xiaoyu; Du, Lin; Jing, Xiaodong

    2008-09-01

    This paper presents a unified model to study the effect of both locally and non-locally reacting liners on the sound radiation generated by fan blade rotating sources. This model is set up by the following steps. First, the spinning mode eigenfunction expansions are used to obtain the solution of sound field inside the duct, while the effect of duct liner is modeled by distributed monopole sources, thus effectively avoiding the solution of a difficult complex eigenvalue problem. Secondly, in order to avoid the estimation of the generalized impedances at the inlet and exhaust planes, a boundary element method is used to give the solution outside the duct. With the suitable boundary conditions imposed on the inlet and exhaust planes, a matrix equation is obtained, and the relevant numerical calculation shows this model can not only give a good agreement with existing results for locally reacting liner but also has a capability to predict the sound radiation from fan rotating blade sources with an arbitrary combination of locally and non-locally reacting liners.

  12. High Bypass Turbofan Component Development. Phase II. Fan Detail Design.

    DTIC Science & Technology

    1979-12-01

    Vane metal angles ........ ..................... ... 18 22 Vane conical airfoil sections ..... ............... ... 19 23 Principal blade stresses at...31.25 deg. The number of rotor airfoils is 20 while the stator has 42 vanes . The number of vanes and the vane - blade spacing were consequences of...effect of radius change are accounted for. Figure 16 shows the blade hub, mean, and tip conical airfoil sections in engine orientation. For

  13. Performance deterioration of commercial high-bypass ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Mehalic, C. M.; Ziemianski, J. A.

    1980-01-01

    The results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analyses of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.

  14. Multiscale modeling and simulation of blood flow in coronary artery bypass graft surgeries

    NASA Astrophysics Data System (ADS)

    Sankaran, Sethuraman; Esmaily Moghadam, Mahdi; Kahn, Andy; Marsden, Alison

    2011-11-01

    We present a computational framework for modeling and simulation of blood flow in patients who undergo coronary artery bypass graft (CABG) surgeries. We evaluate the influence of shape on the homeostatic state, cardiac output, and other quantities of interest. We present a case study on a patient with multiple CABG. We build a patient-specific model of the blood vessels comprised of the aorta, vessels branching from the top of the aorta (brachiocephalic artery and carotids) and the coronary arteries, in addition to bypass grafts. The rest of the circulatory system is modeled using lumped parameter 0D models comprised of resistances, compliances, inertances and elastance. An algorithm is presented that computes these parameters automatically given constraints on the flow. A Finite element framework is used to compute blood flow and pressure in the 3D model to which the 0D code is coupled at the model inlets and outlets. An adaptive closed loop BC is used to capture the coupling of the various outlets of the model with inlets, and is compared with a model with fixed inlet BC. We compare and contrast the pressure, flowrate, coronary perfusion, and PV curves obtained in the different cases. Further, we compare and contrast quantities of interest such as wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries and discuss implications of patient-specific optimization. I would like to acknowlege AHA for funding this work.

  15. Nacelle/pylon interference study on a 1/17th-scale, twin-engine, low-wing transport model

    NASA Technical Reports Server (NTRS)

    Pendergraft, Odis C., Jr.; Ingraldi, Anthony M.; Re, Richard J.; Kariya, Timmy T.

    1989-01-01

    NASA-Langley has conducted wind tunnel tests of a twin-engine, low-wing transport aircraft configuration with 10.8-aspect ratio supercritical wing, in order to ascertain and compare the wing/nacelle interference effects of through-flow nacelled simulating 'superfan' very high bypass ratio (BPR=20) turbofans and current-technology (BPR=6) turbofans. Measurements of model forces and moments have been obtained, together with extensive external static pressure measurement on the model's wings, nacelles, and pylons in the Mach 0.5-0.8 range, at angles of attack in the -4 to +8 deg range. The superfan nacelles exhibit a significant advantage over current-technology turbofan nacelles, when the superfan's SFC gains are taken into account.

  16. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery.

    PubMed

    Sankaran, Sethuraman; Esmaily Moghadam, Mahdi; Kahn, Andrew M; Tseng, Elaine E; Guccione, Julius M; Marsden, Alison L

    2012-10-01

    We present a computational framework for multiscale modeling and simulation of blood flow in coronary artery bypass graft (CABG) patients. Using this framework, only CT and non-invasive clinical measurements are required without the need to assume pressure and/or flow waveforms in the coronaries and we can capture global circulatory dynamics. We demonstrate this methodology in a case study of a patient with multiple CABGs. A patient-specific model of the blood vessels is constructed from CT image data to include the aorta, aortic branch vessels (brachiocephalic artery and carotids), the coronary arteries and multiple bypass grafts. The rest of the circulatory system is modeled using a lumped parameter network (LPN) 0 dimensional (0D) system comprised of resistances, capacitors (compliance), inductors (inertance), elastance and diodes (valves) that are tuned to match patient-specific clinical data. A finite element solver is used to compute blood flow and pressure in the 3D (3 dimensional) model, and this solver is implicitly coupled to the 0D LPN code at all inlets and outlets. By systematically parameterizing the graft geometry, we evaluate the influence of graft shape on the local hemodynamics, and global circulatory dynamics. Virtual manipulation of graft geometry is automated using Bezier splines and control points along the pathlines. Using this framework, we quantify wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries. We also compare pressures, flow rates and ventricular pressure-volume loops pre- and post-bypass graft surgery. We observe that PV loops do not change significantly after CABG but that both coronary perfusion and local hemodynamic parameters near the anastomosis region change substantially. Implications for future patient-specific optimization of CABG are discussed.

  17. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  18. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  19. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  20. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  1. Advanced Engine Cycles Analyzed for Turbofans With Variable-Area Fan Nozzles Actuated by a Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2002-01-01

    Con) Program, has the potential to enable the next generation of efficient, quiet, very high bypass ratio turbofans. NASA Glenn Research Center's Propulsion Systems Analysis Office, along with NASA Langley Research Center's Systems Analysis Branch, conducted an independent analytical assessment of this new technology to provide strategic guidance to UEET and RevCon. A 2010-technology-level high-spool engine core was designed for this evaluation. Two families of low-spool components, one with and one without VAFN's, were designed to operate with the core. This "constant core" approach was used to hold most design parameters constant so that any performance differences between the VAFN and fixed nozzle cycles could be attributed to the VAFN technology alone. In this manner, the cycle design regimes that offer a performance payoff when VAFN's are used could be identified. The NASA analytical model of a performance-optimized VAFN turbofan with a fan pressure ratio of 1.28 is shown. Mission analyses of the engines were conducted using the notional, long-haul, advanced commercial twinjet shown. A high wing design was used to accommodate the large high-bypassratio engines. The mission fuel reduction benefit of very high bypass shape-memory-alloy VAFN aircraft was calculated to be 8.3 percent lower than a moderate bypass cycle using a conventional fixed nozzle. Shape-memory-alloy VAFN technology is currently under development in NASA's UEET and RevCon Programs.

  2. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    SciTech Connect

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  3. A three-equation bypass transition model based on the intermittency function

    NASA Astrophysics Data System (ADS)

    Ge, Xuan

    An intermittency model that is formulated in local variables is proposed for representing bypass transition in Reynolds-Averaged Navier-Stokes (RANS) computations. No external data correlation is used to fix transition. Transition is initiated by diffusion and a source term carries it to completion. A sink term is created to predict the laminar region before transition and vanishes in turbulent region. The present model is implemented in OpenFOAM, a platform for computational fluid dynamics (CFD) codes with unstructured mesh. For validation of this model, a group of test cases based on flat plate experiments have been set up for numerical simulations in OpenFOAM. It turns out that the current model is capable to predict boundary layer transition on a flat plate both with and without pressure gradients when decent agreement with the available experiment data is observed.

  4. Design study of a dual-cycle turbofan-ramjet engine for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Suwanprasert, S.

    1983-01-01

    Computer modelling was used with two different designs of an advanced turbofan-ramjet in order to derive performance predictions. The engine would enable an aircraft to take-off, accelerate to Mach 5.0, and climb to 90,000 ft. The two concepts included a turbofan with a ramjet annularly wrapped around it and a side-by-side configuration with the ramjet having a rectangular shape and mounted alongside the turbofan. The studies were performed to model weight, length, fuel efficiency, and the requirements of the thrust/drag ratio to exceed unity over the entire flight path. LH2 would be used for fuel and to regeneratively cool the combustion chamber. Turbofan operation with and without afterburner and with and without the ramjet inlet open were examined, as were variable areas for the burners. A side-by-side configuration displayed the best performance predictions, with a ramjet mass flow being 75 percent that of the turbofan and maximum temperatures being equal.

  5. Overview of ERA Ultra High Bypass Propulsor Technology Development

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2011-01-01

    A review of the current research being conducted under the Environmentally Responsible Aviation (ERA) Ultra High Bypass (UHB) Testing subelement is presented. The four exiting tasks under the subelement, a description of each task, and the current status of each are given. The four tasks are: 1. Collaborate with P&W to design, fabricate and test a second generation of Geared Turbofan 2. Design, fabricate and test advanced Over the Rotor acoustic treatment and acoustically treated Soft Vanes 3. Develop a Shape Memory Alloy Variable Area Nozzle concept and demonstrate prototype 4. Refurbish and update the GRC Ultra High Bypass Drive Rig Following the current task updates, an overview of three proposed additional tasks to support the existing tasks is presented. The additional tasks would allow noise reduction and noise diagnostic testing technologies to be demonstrated at TRL 4 as part of existing planned fan model testing in the NASA Glenn 9 x15 Low Speed Wind Tunnel under the ERA UHB Testing subelement.

  6. Multi-Objective Optimization of a Turbofan for an Advanced, Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Guynn, Mark D.

    2012-01-01

    Considerable interest surrounds the design of the next generation of single-aisle commercial transports in the Boeing 737 and Airbus A320 class. Aircraft designers will depend on advanced, next-generation turbofan engines to power these airplanes. The focus of this study is to apply single- and multi-objective optimization algorithms to the conceptual design of ultrahigh bypass turbofan engines for this class of aircraft, using NASA s Subsonic Fixed Wing Project metrics as multidisciplinary objectives for optimization. The independent design variables investigated include three continuous variables: sea level static thrust, wing reference area, and aerodynamic design point fan pressure ratio, and four discrete variables: overall pressure ratio, fan drive system architecture (i.e., direct- or gear-driven), bypass nozzle architecture (i.e., fixed- or variable geometry), and the high- and low-pressure compressor work split. Ramp weight, fuel burn, noise, and emissions are the parameters treated as dependent objective functions. These optimized solutions provide insight to the ultrahigh bypass engine design process and provide information to NASA program management to help guide its technology development efforts.

  7. Minimum-time acceleration of aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum-time accelerations of the F100 turbofan engine are presented. A piecewise-linear engine model, having three state variables and four control variables, is used to obtain the minimum-time solutions. The linear model which applies at a given time in the trajectory is determined by calculating a normalized distance from the current state to the equilibrium state associated with each linear model. The linear model associated with the closest equilibrium point is then used. The control histories for the minimum-time solutions are used as input to a nonlinear simulation of the F100 engine to verify the accuracy of the piecewise linear solutions.

  8. A three-equation bypass transition model based on the intermittency function

    NASA Astrophysics Data System (ADS)

    Ge, Xuan; Durbin, Paul

    2013-11-01

    An intermittency model that is formulated in local variables is proposed for representing bypass transition in Reynolds-Averaged Navier-Stokes (RANS) computations. No external data correlation is used to fix transition. Transition is initiated by diffusion and a source term carries it to completion. A sink term is created to predict the laminar region before transition and vanishes in turbulent region. For validation of this model, a group of test cases based on flat plate experiments have been set up for numerical simulations in OpenFOAM. It turns out that the current model is capable to predict boundary layer transition on a flat plate both with and without pressure gradients. Decent agreement with the available experiment data is observed. Supported by NSF Award Number 1228195.

  9. Turbofans turn to UHB propulsion

    SciTech Connect

    Gray, D.E.; Conliffe, C.H. General Electric Co., Fairfield, CT )

    1990-07-01

    While ducted fan engines typical of current transport aircraft practice are able to achieve bypass ratios of the order of between 10 and 20 at most, the full benefits of bypass ratio maximization are only achievable at ratios of the order of 30 to 50, which require open-fan configurations. An account is presently given of the development status of the two fundamentally different ultrahigh bypass (UHB) engine designs currently undergoing testing: one of which uses a gearbox, while the other relies on a contrarotating turbine configuration to achieve the requisite speed reduction. Both engines have undergone flight testing on an MD-80 airliner. Additional advanced UHB engine development programs undertaken by foreign manufacturers are noted.

  10. Pressure distribution of a twin-engine upper-surface blown jet-flap model. [wind tunnel tests to determine chordwise and spanwise pressure distributions

    NASA Technical Reports Server (NTRS)

    Smith, C. C., Jr.; White, L. C.

    1974-01-01

    An investigation has been made to determine the chordwise and spanwise pressure distributions of a small-scale upper-surface blown jet-augmented flap STOL model. The model was powered by two simulated high-bypass-ratio turbofan engines mounted ahead of and above an unswept-untapered wing in a nacelle having a rectangular nozzle. The results of the investigation are presented as tabulated and plotted chordwise pressure distribution coefficients for nine spanwise stations.

  11. 78 FR 35747 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Engine Alliance GP7270 and GP7277 turbofan engines...) Applicability This AD applies to Engine Alliance GP7270 and GP7277 turbofan engines with a high-pressure...

  12. 76 FR 72353 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... Directives; Pratt & Whitney Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION...) turbofan engines. This proposed AD was prompted by reports of five engine in-flight shutdowns and seven..., and PW4462(-3) turbofan engines installed on airplanes of U.S. registry. We also estimate that it...

  13. 78 FR 9003 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... GP7270 and GP7277 turbofan engines. This proposed AD was prompted by damage to the high-pressure... turbofan engines with a high-pressure compressor (HPC) stage 6 disk, part number (P/N) 382-100-505-0...

  14. 77 FR 23637 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for certain Pratt & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a 1st... certain PW4000-94'' and PW4000-100'' turbofan engines. Pratt & Whitney's investigation has revealed that...

  15. 77 FR 57007 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY..., PW4152, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. That AD currently... applies to the following Pratt & Whitney Division (Pratt & Whitney) turbofan engines: (1) PW4000-94...

  16. 77 FR 30926 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. The existing AD currently requires initial..., PW4460, and PW4462 turbofan engines. That AD requires initial and repetitive FPI for cracks in the blade...

  17. 77 FR 51459 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY..., PW4164C/B, PW4168, and PW4168A turbofan engines with certain high- pressure turbine (HPT) stage 1 front.... (c) Applicability This AD applies to the following Pratt & Whitney Division turbofan engines: (1...

  18. 77 FR 16967 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., PW4164C, PW4164C/B, PW4168, and PW4168A turbofan engines with certain high- pressure turbine (HPT) stage 1... AD applies to the following Pratt & Whitney Division turbofan engines: (1) PW4052, PW4152, and PW4056...

  19. 77 FR 54791 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY...'' and PW4000-100'' turbofan engines having a 1st stage high-pressure turbine (HPT) seal support, part... affect 446 P&W PW4000-94'' and PW4000-100'' turbofan engines installed on airplanes of U.S. registry. We...

  20. 77 FR 42424 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are... turbofan engines. That AD currently requires removing the 15th stage high-pressure compressor (HPC) disk... to Pratt & Whitney Division PW4074 and PW4077 turbofan engines with 15th stage high-pressure...

  1. Failure detection and correction for turbofan engines

    NASA Technical Reports Server (NTRS)

    Corley, R. C.; Spang, H. A., III

    1977-01-01

    In this paper, a failure detection and correction strategy for turbofan engines is discussed. This strategy allows continuing control of the engines in the event of a sensor failure. An extended Kalman filter is used to provide the best estimate of the state of the engine based on currently available sensor outputs. Should a sensor failure occur the control is based on the best estimate rather than the sensor output. The extended Kalman filter consists of essentially two parts, a nonlinear model of the engine and up-date logic which causes the model to track the actual engine. Details on the model and up-date logic are presented. To allow implementation, approximations are made to the feedback gain matrix which result in a single feedback matrix which is suitable for use over the entire flight envelope. The effect of these approximations on stability and response is discussed. Results from a detailed nonlinear simulation indicate that good control can be maintained even under multiple failures.

  2. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  3. Procedure for Separating Noise Sources in Measurements of Turbofan Engine Core Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources like the fan and jet have been reduced. A multiple microphone and acoustic source modeling method to separate correlated and uncorrelated sources has been developed. The auto and cross spectrum in the frequency range below 1000 Hz is fitted with a noise propagation model based on a source couplet consisting of a single incoherent source with a single coherent source or a source triplet consisting of a single incoherent source with two coherent point sources. Examples are presented using data from a Pratt & Whitney PW4098 turbofan engine. The method works well.

  4. Mechanistic Comparison between Gastric Bypass vs. Duodenal Switch with Sleeve Gastrectomy in Rat Models

    PubMed Central

    Kodama, Yosuke; Johannessen, Helene; Furnes, Marianne W.; Zhao, Chun-Mei; Johnsen, Gjermund; Mårvik, Ronald; Kulseng, Bård; Chen, Duan

    2013-01-01

    Background Both gastric bypass (GB) and duodenal switch with sleeve gastrectomy (DS) have been widely used as bariatric surgeries, and DS appears to be superior to GB. The aim of this study was to better understand the mechanisms leading to body weight loss by comparing these two procedures in experimental models of rats. Methods Animals were subjected to GB, DS or laparotomy (controls), and monitored by an open-circuit indirect calorimeter composed of comprehensive laboratory animal monitoring system and adiabatic bomb calorimeter. Results Body weight loss was greater after DS than GB. Food intake was reduced after DS but not GB. Energy expenditure was increased after either GB or DS. Fecal energy content was increased after DS but not GB. Conclusion GB induced body weight loss by increasing energy expenditure, whereas DS induced greater body weight loss by reducing food intake, increasing energy expenditure and causing malabsorption in rat models. PMID:24039816

  5. Mortality risk prediction models for coronary artery bypass graft surgery: current scenario and future direction.

    PubMed

    Karim, Mohammed N; Reid, Christopher M; Cochrane, Andrew; Tran, Lavinia; Alramadan, Mohammed; Hossain, Mohammed N; Billah, Baki

    2017-12-01

    Many risk prediction models are currently in use for predicting short-term mortality following coronary artery bypass graft (CABG) surgery. This review critically appraised the methods that were used for developing these models to assess their applicability in current practice setting as well as for the necessity of up-gradation. Medline via Ovid was searched for articles published between 1946 and 2016 and EMBASE via Ovid between 1974 and 2016 to identify risk prediction models for CABG. Article selection and data extraction was conducted using the CHARMS checklist for review of prediction model studies. Association between model development methods and model's discrimination was assessed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U-test. A total of 53 risk prediction models for short-term mortality following CABG were identified. The review found a wide variation in development methodology of risk prediction models in the field. Ambiguous predictor and outcome definition, sub-optimum sample size, inappropriate handling of missing data and inefficient predictor selection technique are major issues identified in the review. Quantitative synthesis in the review showed "missing value imputation" and "adopting machine learning algorithms" may result in better discrimination power of the models. There are aspects in current risk modeling, where there is room for improvement to reflect current clinical practice. Future risk modelling needs to adopt a standardized approach to defining both outcome and predictor variables, rational treatment of missing data and robust statistical techniques to enhance performance of the mortality risk prediction.

  6. Ovine femoral artery bypass grafting using saphenous vein: a new model.

    PubMed

    El-Kurdi, Mohammed S; Soletti, Lorenzo; Nieponice, Alejandro; Abuin, Gustavo; Gross, Christina; Rousselle, Serge; Greisler, Howard; McGrath, Jonathan

    2015-01-01

    Saphenous vein grafts (SVGs) are frequently used for multi-vessel coronary artery bypass grafting and peripheral arterial bypasses; however, the estimated 40% failure rate within the first 5 y due to intimal hyperplasia (IH) and the subsequent failure rate of 2%-4% per year pose a significant clinical problem. Here, we report a surgical model in sheep intended to study IH development in SVGs, which can also be used for the evaluation of potential alternative treatments. Autologous bilateral SVGs were implanted as femoral artery interposition grafts using end-to-side anastomoses in adult sheep (n = 23), which were survived for 30 (n = 6), 90 (n = 7), 180 (n = 7), or 365 (n = 3) days. Post-implant, mid-term, and pretermination angiograms were quantified, and harvested SVGs were evaluated using quantitative histomorphometry. We describe a peripheral arterial surgical technique that models the progression of SVG pathology. Angiographic analysis showed a progressive dilation of SVGs leading to worsening diametrical matching to the target artery and reduced blood flow; and histomorphometry data showed an increase in IH over time. Multivariable regression analysis suggested that statistically significant (P < 0.05) time-dependent relationships exist between SVG dilation and both reduction in blood flow and IH development. Bilateral SVGs implanted onto the femoral arteries of sheep produced, controlled and consistent angiographic and histomorphometric results for which direct correlations could be made. This preclinical investigation model can be used as a robust tool to evaluate therapies intended for cardiovascular pathologies such as occlusive IH in SVGs. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  8. Role of Cytokine Hemoadsorption in Cardiopulmonary Bypass-Induced Ventricular Dysfunction in a Porcine Model

    PubMed Central

    Vocelka, Craig R.; Jones, Krystal M.; Mikhova, Krasimira M.; Ebisu, Ryan M.; Shar, Ashley; Kellum, John A.; Verrier, Edward D.; Rabkin, David G.

    2013-01-01

    Abstract: Little is known about the effect of cardiopulmonary bypass alone on cardiac function; in an attempt to illuminate this relationship and test a possible mechanism, we used Cytosorb™, a device capable of removing virtually all types of circulating cytokines to test the hypothesis that hemoadsorption of cytokines during bypass attenuates bypass-induced acute organ dysfunction. Twelve Yorkshire pigs (50–65 kg) were instrumented with a left ventricular conductance catheter. Baseline mechanics and cytokine expression (tumor necrosis factor [TNF], interleukin-6 [IL-6], and interleukin-10) were measured before and hourly after 1 hour of normothermic cardiopulmonary bypass. Animals underwent bypass without (cardiopulmonary bypass [CPB], n = 6) or with (CPB+HA, n = 6) the Cytosorb™ device. Data were compared with “historical” controls (n = 6) that were similarly instrumented but underwent observation instead of bypass. Five hours after separation from bypass (or observation), animals were euthanized. Myocardial water content was determined postmortem. Neither TNF nor IL-6 was significantly elevated in either experimental group versus controls at any time point. Preload recruitable stroke work and dP/dtmax were significantly depressed immediately after separation from bypass in both CPB+HA and CPB and remained depressed for the duration of the experiment. Although Tau remained unchanged, dP/dTmin was significantly diminished in both bypass groups at all time points after separation from bypass. Cytokine hemoadsorption had no effect on any measurable index of function. Differences in postmortem data were not evident between groups. One hour of normothermic CPB results in a significant and sustained decline in left ventricular function that appears unrelated to changes in cytokine expression. Because we did not appreciate a significant change in cytokine concentrations postbypass, the capacity of cytokine hemoadsorption to attenuate CPB-induced ventricular

  9. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  10. Cytoprotection by inhaled carbon monoxide before cardiopulmonary bypass in preclinical models.

    PubMed

    Loop, Torsten; Schlensak, Christian; Goebel, Ulrich

    2012-05-01

    Although a potentially toxic gaseous molecule, carbon monoxide recently gains rising scientifically and clinical interest as its beneficial effects and mechanisms of action are defined substantially in various in vitro and in vivo experiments. Its anti-inflammatory, anti-apoptotic and anti-proliferative properties but its increasing impact concerning numerous disease models in means of protection, well describe this gas as a new and challenging therapeutic alternative. In this review, we focus on the extensively analyzed advantageous value of pre- and postconditioning with inhaled carbon monoxide in the context of lung and kidney injury, induced by the low perfusion during and after cardiopulmonary bypass. Mechanisms like the heat shock response as well as an expanded view regarding toxicity and side effects are described broadly.

  11. Oxalobacter formigenes colonization normalizes oxalate excretion in a gastric bypass model of hyperoxaluria.

    PubMed

    Canales, Benjamin K; Hatch, Marguerite

    2017-07-01

    Hyperoxaluria and oxalate kidney stones frequently develop after Roux-en-Y gastric bypass (RYGB). Oxalobacter formigenes can degrade ingested oxalate. Examine the effect of O. formigenes wild rat strain (OXWR) colonization on urinary oxalate excretion and intestinal oxalate transport in a hyperoxaluric RYGB model. Basic Science Laboratory, United States. At 21 weeks of age, 28 obese male Sprague-Dawley rats survived Sham (n = 10) or RYGB (n = 18) surgery and were maintained on a 1.5% potassium oxalate, 40% fat diet. At 12 weeks postoperatively, half the animals in each group were gavaged with OXWR. At 16 weeks, percent dietary fat content was lowered to 10%. Urine and stool were collected weekly to determine oxalate and colonization status, respectively. At week 20, [14 C]-oxalate fluxes and electrical parameters were measured in vitro across isolated distal colon and jejunal (Roux limb) tissue mounted in Ussing Chambers. RYGB animals lost 22% total weight while Shams gained 5%. On a moderate oxalate diet, urinary oxalate excretion was 4-fold higher in RYGB than Sham controls. OXWR colonization, obtained in all gavaged animals, reduced urinary oxalate excretion 74% in RYGB and 39% in Sham and was further augmented by lowering the percentage of dietary fat. Finally, OXWR colonization significantly enhanced basal net colonic oxalate secretion in both groups. In our model, OXWR lowered urinary oxalate by luminal oxalate degradation in concert with promotion of enteric oxalate elimination. Trials of O. formigenes colonization and low-fat diet are warranted in calcium oxalate stone formers with gastric bypass and resistant hyperoxaluria. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  12. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  13. Establishment of a coculture model for studying inflammation after pediatric cardiopulmonary bypass: from bench to bedside.

    PubMed

    Wollersheim, Sonja; Fedarava, Katisaryna; Huebler, Michael; Schneiderhan-Marra, Nicole; Berger, Felix; Miera, Oliver; Schmitt, Katharina R

    2012-06-01

    Cardiopulmonary bypass (CPB) has been known to induce an inflammatory response that is influenced by various factors. Hypothermia is supposed to reduce inflammation after CPB. We developed an in vitro coculture model for CPB and compared the effects of hypothermia on the inflammatory response in the coculture model with results from a clinical prospective randomized trial. The coculture model consisted of endothelial cells and monocytes. Cells were stimulated with tumor necrosis factor (TNF)-α and exposed to deep hypothermia (20°C) or normothermia (37°C). In the clinical trial, 20 patients undergoing CPB for ventricular septum defect receive either normothermic (37°C) or mild hypothermic (32°C) CPB. We observed a significant interleukin (IL)-6 and IL-8 release in the coculture model 2 and 24 h after the experimental start. In the clinical trial, cytokines were significantly increased directly after weaning from CPB and remained elevated until 24 h. IL-8 and IL-6 secretions were similar in the hypothermic and normothermic group of the coculture model and the patients after 24 h. These results demonstrate that the inflammatory reaction observed in our coculture model is comparable with the cytokine increase in the blood of children undergoing CPB. Our coculture model could be useful for studies on the mechanisms of CPB-induced inflammation.

  14. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  15. Heart bypass surgery

    MedlinePlus

    Off-pump coronary artery bypass; OPCAB; Beating heart surgery; Bypass surgery - heart; CABG; Coronary artery bypass graft; Coronary artery bypass surgery; Coronary bypass surgery; Coronary artery disease - CABG; CAD - CABG; Angina - ...

  16. Nonlinearly stacked low noise turbofan stator

    NASA Technical Reports Server (NTRS)

    Schuster, William B. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  17. Impaired microcirculatory perfusion in a rat model of cardiopulmonary bypass: the role of hemodilution.

    PubMed

    Koning, Nick J; de Lange, Fellery; Vonk, Alexander B A; Ahmed, Yunus; van den Brom, Charissa E; Bogaards, Sylvia; van Meurs, Matijs; Jongman, Rianne M; Schalkwijk, Casper G; Begieneman, Mark P V; Niessen, Hans W; Baufreton, Christophe; Boer, Christa

    2016-03-01

    Although hemodilution is attributed as the main cause of microcirculatory impairment during cardiopulmonary bypass (CPB), this relationship has never been investigated. We investigated the distinct effects of hemodilution with or without CPB on microvascular perfusion and subsequent renal tissue injury in a rat model. Male Wistar rats (375-425 g) were anesthetized, prepared for cremaster muscle intravital microscopy, and subjected to CPB (n = 9), hemodilution alone (n = 9), or a sham procedure (n = 6). Microcirculatory recordings were performed at multiple time points and analyzed for perfusion characteristics. Kidney and lung tissue were investigated for mRNA expression for genes regulating inflammation and endothelial adhesion molecule expression. Renal injury was assessed with immunohistochemistry. Hematocrit levels dropped to 0.24 ± 0.03 l/l and 0.22 ± 0.02 l/l after onset of hemodilution with or without CPB. Microcirculatory perfusion remained unaltered in sham rats. Hemodilution alone induced a 13% decrease in perfused capillaries, after which recovery was observed. Onset of CPB reduced the perfused capillaries by 40% (9.2 ± 0.9 to 5.5 ± 1.5 perfused capillaries per microscope field; P < 0.001), and this reduction persisted throughout the experiment. Endothelial and inflammatory activation and renal histological injury were increased after CPB compared with hemodilution or sham procedure. Hemodilution leads to minor and transient disturbances in microcirculatory perfusion, which cannot fully explain impaired microcirculation following cardiopulmonary bypass. CPB led to increased renal injury and endothelial adhesion molecule expression in the kidney and lung compared with hemodilution. Our findings suggest that microcirculatory impairment during CPB may play a role in the development of kidney injury. Copyright © 2016 the American Physiological Society.

  18. Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 2: Aerodynamics and performance. [engine performance tests to define propulsion system performance on turbofan engines

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and testing of the over the wing engine, a high bypass, geared turbofan engine, are discussed. The propulsion system performance is examined for uninstalled performance and installed performance. The fan aerodynamic performance and the D nozzle and reverser thrust performance are evaluated.

  19. Factors which influence the behavior of turbofan forced mixer nozzles

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Povinelli, L. A.

    1981-01-01

    A finite difference procedure was used to compute the mixing for three experimentally tested mixer geometries. Good agreement was obtained between analysis and experiment when the mechanisms responsible for secondary flow generation were properly modeled. Vorticity generation due to flow turning and vorticity generated within the centerbody lobe passage were found to be important. Results are presented for two different temperature ratios between fan and core streams and for two different free stream turbulence levels. It was concluded that the dominant mechanisms in turbofan mixers is associated with the secondary flows arising within the lobe region and their development within the mixing section.

  20. Design of turbofan engine controls using output feedback regulator theory

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    A multivariable control design procedure based on output feedback regulator (OFR) theory is applied to the F100 turbofan engine. Results for the OFR design are compared to a design based on linear quadratic regulator (LQR) theory. The OFR feedback control is designed in the full order state space and thus eliminates any need for model reduction techniques. Using the performance measure and control structure of the LQR design, an equivalent OFR feedback control is obtained. The flexibility of the OFR as a control design procedure is demonstrated, and differing feedback control structures are evaluated.

  1. Pancreatic hyperplasia after gastric bypass surgery in a GK rat model of non-obese type 2 diabetes.

    PubMed

    Zhou, Xinrong; Qian, Bangguo; Ji, Ning; Lui, Conghui; Liu, Zhiyuan; Li, Bing; Zhou, Huarong; Yan, Caifeng

    2016-01-01

    Gastric bypass surgery produces clear antidiabetic effects in a substantial proportion of morbidly obese patients. In view of the recent trend away from 'bariatric' surgery and toward 'metabolic' surgery, it is important to elucidate the enhancing effect of bypass surgery on pancreatic β-cell mass, which is related to diabetes remission in non-obese patients. We investigated the effects of gastric bypass surgery on glycemic control and other pancreatic changes in a spontaneous non-obese type 2 diabetes Goto-Kakizaki rat model. Significant improvements in postprandial hyperglycemia and plasma c-peptide level were observed when glucose was administered orally post-surgery. Other important events observed after surgery were enhanced first phase insulin secretion in a in site pancreatic perfusion experiment, pancreatic hyperplasia, improved islet structure (revealed by immunohistochemical analysis), striking increase in β-cell mass, slight increase in ratio of β-cell area to total pancreas area, and increased number of small islets closely related to exocrine ducts. No notable changes were observed in ratio of β-cell to non-β endocrine cell area, β-cell apoptosis, or β-cell proliferation. These findings demonstrate that gastric bypass surgery in this rat model increases endocrine cells and pancreatic hyperplasia, and reflect the important role of the gastrointestinal system in regulation of metabolism. © 2016 Society for Endocrinology.

  2. Temperature control using a heat exchanger of a cardioplegic system in cardiopulmonary bypass model for rats.

    PubMed

    Kim, Won Gon; Choi, Se Hun; Kim, Jin Hyun

    2008-12-01

    Small animal cardiopulmonary bypass (CPB) model would be a valuable tool for investigating pathophysiological and therapeutic strategies on bypass. However, the rat CPB models have a number of technical limitations. Effective maintenance and control of core temperature by heat exchanger (HE) is among them. The purpose of this study was to confirm the effect of rectal temperature maintenance and hypothermic control using a HE of cardioplegia system in CPB model for rats. The miniature circuit consisted of a reservoir, HE, membrane oxygenator, and roller pump; the static priming volume was 40 cc. In the first stage of experiment, 10 male Sprague-Dawley rats were divided into two groups; HE group was subjected to CPB with HE from a cardioplegia system, and control group was subjected to CPB with warm water circulating around the reservoir. Partial CPB was conducted at a flow rate of 40 mg/kg/min for 20 min after venous cannulation (via the internal jugular vein) and arterial cannulation (via the femoral artery). Rectal temperature was measured after anesthetic induction, after cannulation, 5, 10, 15, and 20 min after CPB. Arterial blood gas with hematocrit was also analyzed, 5 and 15 min after CPB. In the second stage with the same experimental setting, rectal temperatures were lowered in 10 rats to the target temperature of 32 degrees C. After reaching the target temperature, animals were rewarmed. Rectal temperature was measured after cannulation, 5, 10, 15, 20, 25, and 30 min after CPB. Arterial blood gas with hematocrit was also analyzed, 5 and 15 min after CPB. Rectal temperature change differed between the two groups (P < 0.01). The temperatures of the HE group were well maintained during CPB, whereas the control group was under progressive hypothermia. Rectal temperature 20 min after CPB was 36.16 +/- 0.32 degrees C in the HE group and 34.22 +/- 0.36 degrees C in the control group. In the second set of experiments, the hypothermia targeted (32 degrees C) was

  3. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  4. Aero-acoustic tests of duct-burning turbofan exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1976-01-01

    The acoustic and aerodynamic characteristics of several exhaust systems suitable for duct burning turbofan engines are evaluated. Scale models representing unsuppressed coannular exhaust systems are examined statically under varying exhaust conditions. Ejectors with both hardwall and acoustically treated inserts are investigated.

  5. 78 FR 6749 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... all Rolls-Royce plc (RR) models RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines. This proposed AD was prompted by low-pressure (LP) compressor blade partial airfoil release events. This... for the specified products. The MCAI states: Low Pressure (LP) compressor partial aerofoil...

  6. 78 FR 37703 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... adopting a new airworthiness directive (AD) for all Rolls-Royce plc (RR) model RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines. This AD was prompted by low-pressure (LP) compressor blade partial...-Pressure (LP) compressor partial aerofoil blade release events have occurred in service on RR Trent...

  7. 78 FR 2197 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... Rolls-Royce Deutschland Ltd & Co KG (RRD) Model Tay 620-15 turbofan engines. This AD requires a one-time inspection of the low-pressure compressor (LPC) fan blades and if erosion is found their replacement before... specified products. The MCAI states: The Low Pressure Compressor (LPC) (fan) blades of certain Tay 620/...

  8. Modeling of the heat transfer in bypass transitional boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  9. Cortical and trabecular deterioration in mouse models of Roux-en-Y gastric bypass

    PubMed Central

    Yu, Elaine W.; Carmody, Jill S.; Brooks, Daniel J.; LaJoie, Scott; Kaplan, Lee M.; Bouxsein, Mary L

    2016-01-01

    Roux-en-Y gastric bypass (RYGB) is a profoundly effective treatment for severe obesity, but results in significant bone loss in patients. Developing a murine model that recapitulates this skeletal phenotype will provide a robust tool with which to study the physiologic mechanisms of this bone loss. We studied adult male C57BL/6J mice who underwent either RYGB or sham operation. Twelve weeks after surgery, we characterized biochemical bone markers (parathyroid hormone, PTH; C-telopeptide, CTX; and type 1 procollagen, P1NP) and bone microarchitectural parameters as measured by microcomputed tomography. RYGB-treated mice had significant trabecular and cortical bone deficits compared with sham-operated controls. Although adjustment for final body weight eliminated observed cortical differences, the trabecular bone volume fraction remained significantly lower in RYGB mice even after weight adjustment. PTH levels were similar between groups, but RYGB mice had significantly higher indices of bone turnover than sham controls. These data demonstrate that murine models of RYGB recapitulate patterns of bone loss and turnover that have been observed in human clinical studies. Future studies that exploit this murine model will help delineate the alterations in bone metabolism and mechanisms of bone loss after RYGB. PMID:26806052

  10. Sheep (Ovis aries) as a model for cardiovascular surgery and management before, during, and after cardiopulmonary bypass.

    PubMed

    DiVincenti, Louis; Westcott, Robin; Lee, Candice

    2014-09-01

    Because of its similarity to humans in important respects, sheep (Ovis aries) are a common animal model for translational research in cardiovascular surgery. However, some unique aspects of sheep anatomy and physiology present challenges to its use in these complicated experiments. In this review, we discuss relevant anatomy and physiology of sheep and discuss management before, during, and after procedures requiring cardiopulmonary bypass to provide a concise source of information for veterinarians, technicians, and researchers developing and implementing protocols with this model.

  11. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  12. An Australian risk prediction model for 30-day mortality after isolated coronary artery bypass: the AusSCORE.

    PubMed

    Reid, Christopher; Billah, Baki; Dinh, Diem; Smith, Julian; Skillington, Peter; Yii, Michael; Seevanayagam, Seven; Mohajeri, Morteza; Shardey, Gil

    2009-10-01

    Our objective was to identify risk factors associated with 30-day mortality after isolated coronary artery bypass grafting in the Australian context and to develop a preoperative model for 30-day mortality risk prediction. Preoperative risk associated with cardiac surgery can be ascertained through a variety of risk prediction models, none of which is specific to the Australian population. Recently, it was shown that the widely used EuroSCORE model validated poorly for an Australian cohort. Hence, a valid model is required to appropriately guide surgeons and patients in assessing preoperative risk. Data from the Australasian Society of Cardiac and Thoracic Surgeons database project was used. All patients undergoing isolated coronary artery bypass grafting between July 2001 and June 2005 were included for analysis. The data were divided into creation and validation sets. The data in the creation set was used to develop the model and then the model was validated in the validation set. Preoperative variables with a P value of less than .25 in chi(2) analysis were entered into multiple logistic regression analysis to develop a preoperative predictive model. Bootstrap and backward elimination methods were used to identify variables that are truly independent predictors of mortality, and 6 candidate models were identified. The Akaike Information Criteria (AIC) and prediction mean square error were used to select the final model (AusSCORE) from this group of candidate models. The AusSCORE model was then validated by average receiver operating characteristic, the P value for the Hosmer-Lemeshow goodness-of-fit test, and prediction mean square error obtained from n-fold validation. Over the 4-year period, 11,823 patients underwent cardiac surgery, of whom 65.9% (7709) had isolated coronary bypass procedures. The 30-day mortality rate for this group was 1.74% (134/7709). Factors selected as independent predictors in the preoperative isolated coronary bypass AusSCORE model

  13. A Numerical Multiscale Framework for Modeling Patient-Specific Coronary Artery Bypass Surgeries

    NASA Astrophysics Data System (ADS)

    Ramachandra, Abhay B.; Kahn, Andrew; Marsden, Alison

    2014-11-01

    Coronary artery bypass graft (CABG) surgery is performed to revascularize diseased coronary arteries, using arterial, venous or synthetic grafts. Vein grafts, used in more than 70% of procedures, have failure rates as high as 50% in less than 10 years. Hemodynamics is known to play a key role in the mechano-biological response of vein grafts, but current non-invasive imaging techniques cannot fully characterize the hemodynamic and biomechanical environment. We numerically compute hemodynamics and wall mechanics in patient-specific 3D CABG geometries using stabilized finite element methods. The 3D patient-specific domain is coupled to a 0D lumped parameter circulatory model and parameters are tuned to match patient-specific blood pressures, stroke volumes, heart rates and heuristic flow-split values. We quantify differences in hemodynamics between arterial and venous grafts and discuss possible correlations to graft failure. Extension to a deformable wall approximation will also be discussed. The quantification of wall mechanics and hemodynamics is a necessary step towards coupling continuum models in solid and fluid mechanics with the cellular and sub-cellular responses of grafts, which in turn, should lead to a more accurate prediction of the long term outcome of CABG surgeries, including predictions of growth and remodeling.

  14. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  15. Preliminary study of advanced turbofans for low energy consumption

    NASA Technical Reports Server (NTRS)

    Knip, G.

    1975-01-01

    This analysis determines the effect of higher overall engine pressure ratios (OPR's), bypass ratios (BPR's), and turbine rotor-inlet temperature on a Mach-0.85 transport having a range of 5556 km (3000 nmi) and carrying a payload of 18144 kg (40,000 lbs-200 passengers). Sideline noises (jet plus fan) of between 91 and 106 EPNdB (FAR36) are considered. Takeoff gross weight (TOGW), fuel consumption (kg/pass. km) and direct operating cost (DOC) are used at the figures of merit. Based on predicted 1985 levels of engine technology and a noise goal of 96 EPNdB, the higher-OPR engine results in an airplane that is 18 percent lighter in terms of TOGW, uses 22.3 percent less fuel, and has a 14.7 percent lower DOC than a comparable airplane powered by a current turbofan. Cooling the compressor bleed air and lowering the cruise Mach number appear attractive in terms of further improving the figures of merit.

  16. [An experimental model of pulmonary valve implantation: a percutaneous and transventricular approach without cardiopulmonary bypass].

    PubMed

    Godart, F; Vincentelli, A; Bouzguenda, I; Juthier, F; Wautot, F; Mouquet, F; Prat, A; Rey, C; Corseaux, D; Ung, A; Jude, B

    2007-05-01

    Pulmonary valve replacement by a catheter procedure remains a therapeutic challenge. In this report, the authors demonstrate the possibility of implantation of a porcine xenograft specially prepared on an auto-expanding stent (valved stent) in a sheep model. The porcine xenograft was prepared with hypotonic non-enzymatic solutions. It was sewn onto an auto-expanding stent (Luminex Bard) and inserted into an introduction sheath of 22-24 F (Gore) calibre. In a preliminary approach, the catheter was inserted through the jugular vein. Out of 6 attempts, it was possible to position the valved stent in the pulmonary position in two cases but all the animals died of different causes: tamponade, arrhythmias, air embolism. Following this experience, two valves were implanted through the superior and inferior vena cavae. This first percutaneous approach has been modified to a mixed medico-surgical approach with a transventricular introduction without cardiopulmonary bypass. This was performed through a left thoracotomy with puncture of the pulmonary infundibulum using the same systems of introduction and valved stent. Three implantations were successfully performed. In addition, a reduction of the size of the pulmonary artery was realised to prevent embolisation of the valved stent to the pulmonary artery or one of its branches. The transventricular approach is feasible for implantation of pulmonary valve prosthesis on a stent. This technique could be adapted for correction of pulmonary regurgitation after correction of Tetralogy of Fallot associated with reduction of the pulmonary infundibulum.

  17. Drug disposition and modelling before and after gastric bypass: immediate and controlled-release metoprolol formulations

    PubMed Central

    Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick

    2015-01-01

    Aims The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. Methods A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6–8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. Results After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC0–24 h) was shown, although a tendency towards an increased oral exposure could be observed as the AUC0–24 h was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. Conclusions The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. PMID:25917170

  18. A Pre-operative Risk Model for Post-operative Pneumonia following Coronary Artery Bypass Grafting

    PubMed Central

    Strobel, Raymond J.; Liang, Qixing; Zhang, Min; Wu, Xiaoting; Rogers, Mary A. M.; Theurer, Patricia F.; Fishstrom, Astrid B.; Harrington, Steven D.; DeLucia, Alphonse; Paone, Gaetano; Patel, Himanshu J.; Prager, Richard L.; Likosky, Donald S.

    2016-01-01

    Background Post-operative pneumonia is the most prevalent of all hospital-acquired infections following isolated coronary artery bypass grafting (CAB). Accurate prediction of a patient’s risk of this morbid complication is hindered by its low relative incidence. In an effort to support clinical decision-making and quality improvement, we developed a pre-operative prediction model for post-operative pneumonia following CAB. Methods We undertook an observational study of 16,084 patients undergoing CAB between Q3 2011 – Q2 2014 across 33 institutions participating in the Michigan Society of Thoracic and Cardiovascular Surgeons – Quality Collaborative. Variables related to patient demographics, medical history, admission status, comorbid disease, cardiac anatomy and the institution performing the procedure were investigated. Logistic regression via forwards stepwise selection (p < 0.05 threshold) was utilized to develop a risk prediction model for estimating the occurrence of pneumonia. Traditional methods were employed to assess the model’s performance. Results Post-operative pneumonia occurred in 3.30% of patients. Multivariable analysis identified 17 pre-operative factors, including: demographics, laboratory values, comorbid disease, pulmonary and cardiac function, and operative status. The final model significantly predicted the occurrence of pneumonia, and performed well (C-statistic: 0.74). These findings were confirmed via sensitivity analyses by center and clinically important sub-groups. Conclusions We identified 17 readily obtainable pre-operative variables associated with post-operative pneumonia. This model may be used to provide individualized risk estimation and to identify opportunities to reduce a patient’s pre-operative risk of pneumonia through pre-habilitation. PMID:27261082

  19. 77 FR 15939 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are superseding an existing airworthiness directive (AD) for all Pratt & Whitney (PW) JT9D series turbofan engines..., -7Q, -7Q3, -7R4D, -7R4D1, -7R4E, - 7R4E1, -7R4E4, -7R4G2, and -7R4H1 series turbofan engines. (d...

  20. Does Homeostasis Model Assessment of Insulin Resistance have a predictive value for post-coronary artery bypass grafting surgery outcomes?

    PubMed Central

    Aydin, Ebuzer; Ozkokeli, Mehmet

    2014-01-01

    Objective This study aims to investigate whether pre-operative Homeostasis Model Assessment Insulin Resistance (HOMA-IR) value is a predictor in non-diabetic coronary artery bypass grafting patients in combination with hemoglobin A1c, fasting blood glucose and insulin levels. Methods Eighty one patients who were admitted to Cardiovascular Surgery Clinic at our hospital between August 2012 and January 2013 with a coronary artery bypass grafting indication were included. Patients were non-diabetic with <6.3% hemoglobin A1c and were divided into two groups including treatment and control groups according to normal insulin resistance (HOMA-IR<2.5, Group A; n=41) and high insulin resistance (HOMA-IR>2.5, Group B; n=40), respectively. Pre-operative fasting blood glucose and insulin were measured and serum chemistry tests were performed. The Homeostasis Model Assessment Insulin Resistance values were calculated. Statistical analysis was performed. Results There was a statistically significant difference in fasting blood glucose and HOMA-IR values between the groups. Cross-clamping time, and cardiopulmonary bypass time were longer in Group B, compared to Group A (P=0.043 and P=0.031, respectively). Logistic regression analysis revealed that hemoglobin A1c was not a reliable determinant factor alone for pre-operative glucometabolic evaluation of non-diabetic patients. The risk factors of fasting blood glucose and cardiopulmonary bypass time were more associated with high Homeostasis Model Assessment Insulin Resistance levels. Conclusion Our study results suggest that preoperative screening of non-diabetic patients with Homeostasis Model Assessment Insulin Resistance may improve both follow-up visit schedule and short-term outcomes, and may be useful in risk stratification of the high-risk population for impending health problems. PMID:25372910

  1. DYNGEN: A program for calculating steady-state and transient performance of turbojet and turbofan engines

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Daniele, C. J.

    1975-01-01

    The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.

  2. Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  3. Coronary Artery Bypass Grafting

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Coronary Artery Bypass Grafting? Coronary artery bypass grafting (CABG) is ... bypass multiple coronary arteries during one surgery. Coronary Artery Bypass Grafting Figure A shows the location of ...

  4. Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.

    2004-01-01

    A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.

  5. Microsurgical Bypass Training Rat Model, Part 1: Technical Nuances of Exposure of the Aorta and Iliac Arteries.

    PubMed

    Tayebi Meybodi, Ali; Lawton, Michael T; Mokhtari, Pooneh; Yousef, Sonia; Gandhi, Sirin; Benet, Arnau

    2017-06-21

    Animal models using rodents are frequently used for practicing microvascular anastomosis-an essential technique in cerebrovascular surgery. However, safely and efficiently exposing rat's target vessels is technically difficult. Such difficulty may lead to excessive hemorrhage and shorten animal survival. This limits the ability to perform multiple anastomoses on a single animal and may increase the overall training time and costs. We report our model for microsurgical bypass training in rodents in 2 consecutive articles. In part 1, we describe the technical nuances for a safe and efficient exposure of the rat abdominal aorta and common iliac arteries (CIAs) for bypass. Over a 2-year period, 50 Sprague-Dawley rats underwent inhalant anesthesia for practicing microvascular anastomosis on the abdominal aorta and CIAs. Lessons learned regarding the technical nuances of vessel exposure were recorded. Several technical nuances were important for avoiding intraoperative bleeding and preventing animal demise while preparing an adequate length of vessels for bypass. The most relevant technical nuances include (1) generous subcutaneous dissection; (2) use of cotton swabs for the blunt dissection of the retroperitoneal fat; (3) combination of sharp and blunt dissection to isolate the aorta and iliac arteries from the accompanying veins; (4) proper control of the posterior branches of the aorta; and (5) efficient division and mobilization of the left renal pedicle. Applying the aforementioned technical nuances enables safe and efficient preparation of the rat abdominal aorta and CIAs for microvascular anastomosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Perivascular nitric oxide delivery to saphenous vein grafts prevents graft stenosis after coronary artery bypass grafting: a novel sheep model.

    PubMed

    Abbasi, Kyomars; Shalileh, Keivan; Anvari, Maryam Sotudeh; Rabbani, Shahram; Mahdanian, Abolfazl; Ahmadi, Seyed Hosein; Moshtaghi, Naghmeh; Movahedi, Namvar; Karimi, Abbasali

    2011-01-01

    Graft stenosis is a major complication of coronary artery bypass grafting with autologous saphenous vein grafts. Nitric oxide (NO) is believed to prevent this phenomenon. We studied the effect of perivascular application of an NO donor on the degree of stenosis of such grafts in an ovine model. Twenty white Iranian ewes were randomized to coronary artery bypass grafting using autologous saphenous vein grafts with application of an elastomer gel containing diethylenetriamine NO adduct in 0.9% sodium chloride solution around the grafted vessel (intervention group) or with the gel containing the saline solution alone (controls). Graft vessels were studied after 1 year using spot angiography and histological examination. The mean degree of stenosis was significantly lower in the intervention group than in the controls as found by histology (92.3 ± 5.5 vs. 80.9 ± 8.3%; p = 0.004). Although the difference in the angiographic score was not significant, the mean score was still lower in the intervention group (9.5 ± 11.3 vs. 12.0 ± 11.8). Perivascular application of an NO donor was, at least histologically, effective in reducing graft stenosis in our ovine model. This can be a step toward the development of drug-eluting coronary artery bypass grafts. Copyright © 2011 S. Karger AG, Basel.

  7. Differential Neuronal Vulnerability varies according to Specific Cardiopulmonary Bypass Insult in a Porcine Survival Model

    PubMed Central

    Ishibashi, Nobuyuki; Iwata, Yusuke; Okamura, Toru; Zurakowski, David; Lidov, Hart G.W.; Jonas, Richard A.

    2010-01-01

    Objective We investigated whether the degree of vulnerability of different areas in the developing brain varies according to the specific mechanism of the insults caused by cardiopulmonary bypass. Methods A meta-analysis of two experimental studies (n = 80) was conducted. The end points of the otherwise identical studies were tissue oxygen index in experiment one while cerebral micro-vessel vasoconstriction and inflammatory response of endothelial cells were directly visualized in the second study. We assigned ultra-low flow bypass at 25°C for 60 min as Control; circulatory arrest at 25°C for 60 min as ischemic stress under circulatory arrest (Ischemia-CA); and ultra-low flow bypass at 34°C for 60 min as the stress under ultra-low flow bypass (Ischemia-ULF). Histological neuronal damage was the primary outcome. Secondary measures included neurological recovery. Results Vasoconstriction following ischemia and inflammation after bypass were independent predictors of severe histological damage. The caudate nucleus was significantly vulnerable to Ischemia-CA and was significantly influenced by vasoconstriction. In contrast, the hippocampus was significantly vulnerable to Ischemia-ULF. The different forms of ischemic insults did not influence Purkinje cells, while Purkinje damage significantly correlated with inflammation. Tissue oxygen index had the ability to differentiate accurately regional damage. Neurological recovery under Ischemia-CA was significantly worse compared with Ischemia-ULF. Neurological recovery correlated with neuronal damage in the caudate nucleus, but did not correlate with damage in the hippocampus. Conclusion Neuronal vulnerability in different areas of the developing brain varies according to mechanisms of bypass-induced ischemic stress. Certain regional damage may not be apparent in assessing acute neurological recovery. PMID:20434176

  8. Pharmacokinetics and a simulation model of colforsin daropate, new forskolin derivative inotropic vasodilator, in patients undergoing coronary artery bypass grafting.

    PubMed

    Kikura, Mutsuhito; Morita, Koji; Sato, Shigehito

    2004-03-01

    Colforsin daropate, a water-soluble forskolin derivative, is an adenyl cyclase activator with positive inotropic and vasodilatory effects that are useful in the treatment of ventricular dysfunction. We investigated the pharmacokinetics of colforsin daropate in cardiac surgery patients and performed simulations to determine the dosage necessary to maintain an effective plasma concentration following cardiopulmonary bypass. In six patients undergoing coronary artery bypass graft, colforsin daropate (0.01mgkg(-1)) was administered immediately after separation from cardiopulmonary bypass. Arterial blood was sampled over the next 16h and plasma concentrations of colforsin daropate and its initial active metabolite were determined by gas-chromatography. Extended nonlinear least-squares regression was used to fit a three-compartment model to each patient's data. Distribution half-life (t(1/2alpha)) was 3.9+/-1.1min, metabolic half-life (t(1/2beta)) was 1.9+/-0.7h, and elimination half-life (t(1/2gamma)) was 95.3+/-15.2h. Central-compartment volume was 591.0+/-42.8mlkg(-1), volume distribution was 2689.2+/-450.6mlkg(-1), and elimination clearance was 27.7+/-14.7mlkg(-1)min(-1). In the pharmacokinetic simulation model, 0.5, 0.75, and 1.0microgkg(-1)min(-1) continuous infusion of colforsin daropate produce effective concentration (5-10ngml(-1)) within 30, 20, and 10min, respectively following administration. An initial active metabolite of decreased rapidly to less than 1.0ngml(-1) within the first 10min.A colforsin daropate infusion of 0.7-1.0microgkg(-1)min(-1) for 10-20min followed by 0.5microgkg(-1)min(-1) continuous infusion is recommended to produce an effective concentration (5-10ngml(-1)) within 10-20min and to maintain a therapeutic concentration throughout the administration period after cardiopulmonary bypass.

  9. Noise Reduction Technologies for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2007-01-01

    Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.

  10. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  11. Impact of Distinct Oxygenators on Pulsatile Energy Indicators in an Adult Cardiopulmonary Bypass Model.

    PubMed

    Griep, Lonneke M; van Barneveld, Laurentius J M; Simons, Antoine P; Boer, Christa; Weerwind, Patrick W

    2017-02-01

    The quantification of pulse energy during cardiopulmonary bypass (CPB) post-oxygenator is required prior to the evaluation of the possible beneficial effects of pulsatile flow on patient outcome. We therefore, evaluated the impact of three distinctive oxygenators on the energy indicators energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) in an adult CPB model under both pulsatile and laminar flow conditions. The pre- and post-oxygenator pressure and flow were measured at room temperature using a 40% glycerin-water mixture at flow rates of 1, 2, 3, 4, 5, and 6 L/min. The pulse settings at frequencies of 40, 50, 60, 70, and 80 beats per minute were according to the internal algorithm of the Sorin CP5 centrifugal pump. The EEP is equal to the mean pressure, hence no SHE is present under laminar flow conditions. The Quadrox-i Adult oxygenator was associated with the highest preservation of pulsatile energy irrespective of flow rates. The low pressure drop-high compliant Quadrox-i Adult oxygenator shows the best SHE performance at flow rates of 5 and 6 L/min, while the intermediate pressure drop-low compliant Fusion oxygenator and the high pressure drop-low compliant Inspire 8F oxygenator behave optimally at flow rates of 5 L/min and up to 4 L/min, respectively. In conclusion, our findings contributed to studies focusing on SHE values post-oxygenator as well as post-cannula in clinical practice. In addition, our findings may give guidance to the clinical perfusionist for oxygenator selection prior to pulsatile CPB based on the calculated flow rate for the individual patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Insufflation of hydrogen gas restrains the inflammatory response of cardiopulmonary bypass in a rat model.

    PubMed

    Fujii, Yutaka; Shirai, Mikiyasu; Inamori, Shuji; Shimouchi, Akito; Sonobe, Takashi; Tsuchimochi, Hirotsugu; Pearson, James T; Takewa, Yoshiaki; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2013-02-01

    Systemic inflammatory responses in patients receiving cardiac surgery with the use of the cardiopulmonary bypass (CPB) significantly contribute to CPB-associated morbidity and mortality. We hypothesized that insufflated hydrogen gas (H₂) would provide systemic anti-inflammatory and anti-apoptotic effects during CPB, therefore reducing proinflammatory cytokine levels. In this study, we examined the protective effect of H₂ on a rat CPB model. Rats were divided into three groups: the sham operation (SHAM) group, received sternotomy only; the CPB group, which was initiated and maintained for 60 min; and the CPB + H₂ group in which H₂ was given via an oxygenator during CPB for 60 min. We collected blood samples before, 20 min, and 60 min after the initiation of CPB. We measured the serum cytokine levels of (tumor necrosis factor-α, interleukin-6, and interleukin-10) and biochemical markers (lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase). We also measured the wet-to-dry weight (W/D) ratio of the left lung 60 min after the initiation of CPB. In the CPB group, the cytokine and biochemical marker levels significantly increased 20 min after the CPB initiation and further increased 60 min after the CPB initiation as compared with the SHAM group. In the CPB + H₂ group, however, such increases were significantly suppressed at 60 min after the CPB initiation. Although the W/D ratio in the CPB group significantly increased as compared with that in the SHAM group, such an increase was also suppressed significantly in the CPB + H₂ group. We suggest that H₂ insufflation is a possible new potential therapy for counteracting CPB-induced systemic inflammation.

  13. A new model of centrifugal blood pump for cardiopulmonary bypass: design improvement, performance, and hemolysis tests.

    PubMed

    Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F

    2011-05-01

    A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Noise Benefits of Increased Fan Bypass Nozzle Area

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2004-01-01

    An advanced model turbofan (typical of current engine technology) was tested in the NASA Glenn 9 by 15 Foot Low Speed Wind Tunnel (9-by 15-Foot LSWT) to explore far field acoustic effects of increased bypass nozzle area. This fan stage test was part of the NASA Glenn Fan Broadband Source Diagnostic Test, second entry (SDT2) which acquired aeroacoustic results over a range of test conditions. The baseline nozzle was sized to produce maximum stage performance for the engine at a high altitude, cruise point condition. However, the wind tunnel testing is conducted near sea level conditions. Therefore, in order to simulate and obtain performance at other aircraft operating conditions, two additional nozzles were designed and tested-one with a +5 percent increase in weight flow (+5.4 percent increase in nozzle area compared with the baseline nozzle), sized to simulate the performance at the stage design point conditions, and the other with a +7.5 percent increase in weight flow (+10.9 percent increase in nozzle area), sized for maximum weight flow with a fixed nozzle at sea level conditions. Measured acoustic benefits with increased nozzle area were very encouraging, showing overall sound power level (OAPWL) reductions of 2 or more dB while the stage thrust actually increased by several percentage points except fro the most open nozzle at takeoff rotor speed where stage performance decreased. These noise reduction benefits were seen to primarily affect broadband noise, and were evident throughout the range of measured sideline angles.

  15. Aerothermodynamic cycle analysis of a dual-spool, separate-exhaust turbofan engine with an interstage turbine burner

    NASA Astrophysics Data System (ADS)

    Liew, Ka Heng

    This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance ( i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-state engine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel

  16. Supersonic STOVL aircraft with turbine bypass/turbo-compressor engines

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.; Luidens, R. W.

    1984-01-01

    Three propulsion systems for a Mach 2 STOVL fighter were compared. The three propulsion systems are: (1) turbine bypass engine with a turbocompressor used for STOVL only; (2) turbine bypass engine with a turbocompressor for both STOVL and thrust during forward flight; and (3) mixed flow afterburning turbofan with a remote burner lift system. In the first system, the main engines have afterburners and the turbocompressors use after burning during STOVL. In the second system, the turbine bypass engines are dry and the turbocompressors have afterburners. The mission used in the study is a deck launched intercept mission. It is indicated that large improvements in combat time are possible when the turbocompressors are used for both left and thrust for forward flight.

  17. Bypass Flow Study

    SciTech Connect

    Richard Schultz

    2011-09-01

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

  18. 77 FR 76977 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental... proposed airworthiness directive (AD) for certain General Electric Company (GE) CF6-80C2 series turbofan... information identified in this AD, contact General Electric Company, GE Aviation, Room 285, 1 Neumann Way...

  19. Study of turbofan engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    The near-term technology improvements which can reduce the fuel consumed in the JT9D, JT8D, and JT3D turbofans in commercial fleet operation through the 1980's are identified. Projected technology advances are identified and evaluated for new turbofans to be developed after 1985. Programs are recommended for developing the necessary technology.

  20. Sheep (Ovis aries) as a Model for Cardiovascular Surgery and Management before, during, and after Cardiopulmonary Bypass

    PubMed Central

    DiVincenti, Louis; Westcott, Robin; Lee, Candice

    2014-01-01

    Because of its similarity to humans in important respects, sheep (Ovis aries) are a common animal model for translational research in cardiovascular surgery. However, some unique aspects of sheep anatomy and physiology present challenges to its use in these complicated experiments. In this review, we discuss relevant anatomy and physiology of sheep and discuss management before, during, and after procedures requiring cardiopulmonary bypass to provide a concise source of information for veterinarians, technicians, and researchers developing and implementing protocols with this model. PMID:25255065

  1. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.

    PubMed

    Piskin, Senol; Ündar, Akif; Pekkan, Kerem

    2015-10-01

    Cardiopulmonary bypass (CPB) procedure is employed to repair most congenital heart defects (CHD). Cannulation is a critical component of this procedure where the location and diameter of cannula controls the hemodynamic performance. State-of-the-art computational studies of neonatal CPB employed an isolated aortic arch region by truncating the three-dimensional (3D) patient-specific cerebral system. The present work expanded these studies where the 3D patient-specific MRI reconstruction of the cerebral system, including the Circle of Willis (CoW), is integrated with a hypoplastic neonatal aortic arch. The inlet of the arterial cannula is assigned a steady velocity boundary condition of the CPB pump, while all outlets are modeled as resistance boundary conditions, thus allowing acute comparisons between different cannula configurations. Three-dimensional (3D) flow simulations in the aortic arch model are performed at a Reynolds number of 2150 using an experimentally validated commercial solver. Results demonstrate that the inclusion of 3D CoW is essential to predict the accurate head-neck blood perfusion and therefore critical in deciding the neonatal aortic cannulation strategy preoperatively. Using this integrated model two CPB configurations are studied, where the cannulas were placed at innominate artery (IA) (IA-cannula configuration) and ductus arteriosus (DA) (DA-cannula configuration). Configuration change produced significant differences in flow splits and local hemodynamics of blood flow throughout the whole aortic arch, neck and cerebral arteries. Percent flow rate differences between the IA- and DA-cannula configurations are computed to be: 19%, for descending aorta, 198% for ascending aorta (perfusing coronary arteries), 91% for right anterior cerebral artery, and 68% for left anterior cerebral artery. Another important finding is the retrograde flow at vertebral arteries for IA-cannula configuration, but not for DA-cannula. These results may help to

  2. Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  3. Technologies for Turbofan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis

    2005-01-01

    An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.

  4. A Parametric Cycle Analysis of a Separate-Flow Turbofan with Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Marek, C. J. (Technical Monitor); Liew, K. H.; Urip, E.; Yang, S. L.

    2005-01-01

    Today's modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. This study focuses on a parametric cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The JTB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, linear relation between high- and low-pressure turbines, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB.

  5. Preliminary evaluation of a heat pipe heat exchanger on a regenerative turbofan

    NASA Technical Reports Server (NTRS)

    Kraft, G. A.

    1975-01-01

    A preliminary evaluation was made of a regenerative turbofan engine using a heat pipe heat exchanger. The heat exchanger had an effectiveness of 0.70, a pressure drop of 3 percent on each side, and used sodium for the working fluid in the stainless steel heat pipes. The engine was compared to a reference turbofan engine originally designed for service in 1979. Both engines had a bypass ratio of 4.5 and a fan pressure ratio of 2.0. The design thrust of the engines was in the 4000 N range at a cruise condition of Mach 0.98 and 11.6 km. It is shown that heat pipe heat exchangers of this type cause a large weight and size problem for the engine. The penalties were too severe to be overcome by the small uninstalled fuel consumption advantage. The type of heat exchanger should only be considered for small airflow engines in flight applications. Ground applications might prove more suitable and flexible.

  6. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.

  7. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  8. Simulating Effects of High Angle of Attack on Turbofan Engine Performance

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.

  9. The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow

    NASA Astrophysics Data System (ADS)

    Sankaran, Sethuraman; Marsden, Alison L.

    2010-12-01

    It is well known that the fluid mechanics of bypass grafts impacts biomechanical responses and is linked to intimal thickening and plaque deposition on the vessel wall. In spite of this, quantitative information about the fluid mechanics is not currently incorporated into surgical planning and bypass graft design. In this work, we use a derivative-free optimization technique for performing systematic design of bypass grafts. The optimization method is coupled to a three-dimensional pulsatile Navier-Stokes solver. We systematically account for inevitable uncertainties that arise in cardiovascular simulations, owing to noise in medical image data, variable physiologic conditions, and surgical implementation. Uncertainties in the simulation input parameters as well as shape design variables are accounted for using the adaptive stochastic collocation technique. The derivative-free optimization framework is coupled with a stochastic response surface technique to make the problem computationally tractable. Two idealized numerical examples, an end-to-side anastomosis, and a bypass graft around a stenosis, demonstrate that accounting for uncertainty significantly changes the optimal graft design. Results show that small changes in the design variables from their optimal values should be accounted for in surgical planning. Changes in the downstream (distal) graft angle resulted in greater sensitivity of the wall-shear stress compared to changes in the upstream (proximal) angle. The impact of cost function choice on the optimal solution was explored. Additionally, this work represents the first use of the stochastic surrogate management framework method for robust shape optimization in a fully three-dimensional unsteady Navier-Stokes design problem.

  10. Tabulated pressure measurements on a large subsonic transport model airplane with high bypass ratio, powered, fan jet engines

    NASA Technical Reports Server (NTRS)

    Flechner, S. G.; Patterson, J. C., Jr.

    1972-01-01

    An experimental wind-tunnel investigation to determine the aerodynamic interference and the jet-wake interference associated with the wing, pylon, and high-bypass-ratio, powered, fan-jet model engines has been conducted on a typical high-wing logistics transport airplane configuration. Pressures were measured on the wing and pylons and on the surfaces of the engine fan cowl, turbine cowl, and plug. Combinations of wing, pylons, engines, and flow-through nacelles were tested, and the pressure coefficients are presented in tabular form. Tests were conducted at Mach numbers from 0.700 to 0.825 and angles of attack from -2 to 4 deg.

  11. Avco Lycoming quiet clean general aviation turbofan engine

    NASA Technical Reports Server (NTRS)

    Wilson, C. A.

    1980-01-01

    A fan module was developed using an existing turboshaft engine. The fan was designed using the latest in large engine noise control technology. A mixer was added to reduce the already low exhaust gas velocity. A nacelle incorporating sound treatment was provided for the test engine. A noise prediction model was used through the design process to evaluate the various design alternatives. Acoustic tests were then made to verify the prediction and identify the noise characteristics of the fan, core, jet, and sound treatment. Analysis of the recorded data yielded close agreement with the expected results. Core noise, as was expected, was the predominant source of noise for the quiet clean general aviation turbofan (QCGAT) engine. Flyover noise predictions were made which indicated that the Avco Lycoming QCGAT engine would meet the goals set for the QCGAT program.

  12. The Rolls Royce Allison RB580 turbofan - Matching the market requirement for regional transport

    SciTech Connect

    Sadler, J.H.R.; Peacock, N.J.; Snyder, L.

    1989-01-01

    The RB580 high bypass turbofan engine has a thrust growth capability to 10,000 lb and has been optimized for efficient operation in regional markets involving 50-70 seat airliners with higher-than-turboprop cruise speeds. The two-spool engine configuration achieves an overall pressure ratio of 24 and features a single-stage wide-chord fan for high efficiency/low noise operation. The highly modular design of the configuration facilitates maintenance and repair; a dual-redundant full-authority digital electronic control system is incorporated. An SFC reduction of the order of 10 percent at cruise thrust is achieved, relative to current engines of comparable thrust class.

  13. Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests

    NASA Technical Reports Server (NTRS)

    Mueller, A. W.

    1984-01-01

    As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.

  14. Development of a Turbofan Engine Simulation in a Graphical Simulation Environment

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Heui

    2003-01-01

    This paper presents the development of a generic component level model of a turbofan engine simulation with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A previously validated FORTRAN-based model of a modern, high-performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.

  15. Euler analysis of turbofan/superfan integration for a transport aircraft

    NASA Astrophysics Data System (ADS)

    Naik, D. A.; Chen, H. C.; Su, T. Y.; Kao, T. J.

    1992-09-01

    A three-dimensional general multi-block Euler solver (GMBE) has been developed to analyze the propulsion integration effects of turbofan/superfan installations. Either flow-through or powered nacelles can be modelled. The code is demonstrated on a generic NASA low wing transport model with an advanced turbofan flow-through nacelle. The results compare favorably with experimental data obtained in the NASA Langley 16-Foot (4.88 m) Transonic Tunnel. The computed pressure distributions are used to identify, in terms of pressure coefficient peaks (maximum negative values) and gradients, undesirable flow regions in the vicinity of the pylon and nacelle. The results suggest that a change in toe angle and pylon trailing edge closure geometry will improve the propulsion integration.

  16. Turbofan engine demonstration of sensor failure detection

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Abdelwahab, Mahmood

    1991-01-01

    In the paper, the results of a full-scale engine demonstration of a sensor failure detection algorithm are presented. The algorithm detects, isolates, and accommodates sensor failures using analytical redundancy. The experimental hardware, including the F100 engine, is described. Demonstration results were obtained over a large portion of a typical flight envelope for the F100 engine. They include both subsonic and supersonic conditions at both medium and full, nonafter burning, power. Estimated accuracy, minimum detectable levels of sensor failures, and failure accommodation performance for an F100 turbofan engine control system are discussed.

  17. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    PubMed

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  18. Gastric bypass surgery - discharge

    MedlinePlus

    Bariatric surgery - gastric bypass - discharge; Roux-en-Y gastric bypass - discharge; Gastric bypass - Roux-en-Y - discharge; Obesity ... Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic ...

  19. 76 FR 72348 - Airworthiness Directives; Pratt & Whitney Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... Directives; Pratt & Whitney Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Pratt & Whitney JT9D-7R4D, -7R4D1, -7R4E, -7R4E1, -7R4G2, -7R4H1, and - 7R4E4 turbofan engines. This..., -7R4E1, -7R4G2, -7R4H1, and -7R4E4 turbofan engines installed on airplanes of U.S. registry. We also...

  20. A study to estimate and compare the total particulate matter emission indices (EIN) between traditional jet fuel and two blends of Jet A/Camelina biofuel used in a high by-pass turbofan engine: A case study of Honeywell TFE-109 engine

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    and JT15D engines' families as representatives of other engines with rated thrust of 6000 pounds or below. The results of this study may be used to add to the knowledge of PM emission data that has been collected in other research studies. This study was quantitative in nature. Three factors were designated which were the types of fuels studied. The TFE-109 turbofan engine was the experimental subject. The independent variable was the engine thrust setting while the response variable was the emission index. Four engine runs were conducted for each fuel. In each engine run, four engine thrust settings were observed. The four engine thrust levels were 10%, 30%, 85%, and 100% rated thrusts levels. Therefore, for each engine thrust settings, there four replicates. The experiments were conducted using a TFE-109 engine test cell located in the Niswonger Aviation Technology building at the Purdue University Airport. The testing facility has the capability to conduct the aircraft PM emissions tests. Due to the equipment limitations, the study was limited to observe total PM emissions instead of specifically measuring the non-volatile PM emissions. The results indicate that the emissions indices of the blended biofuels were not statistically significantly lower compared to the emissions of the traditional jet fuel at rated thrust levels of 100% and 85% of TFE-109 turbofan engine. However, the emission indices for the 50%Jet A - 50%Camelina biofuel blend were statistically significantly lower compared to the emission indices of the 100% Jet A fuel at 10% and 30% engine rated thrusts levels of TFE-109 engine. The emission indices of the 50%-50% biofuel blend were lower by reductions of 15% and 17% at engine rated thrusts of 10% and 30% respectively compared to the emissions indices of the traditional jet fuel at the same engine thrust levels. Experimental modifications in future studies may provide estimates of the emissions indices range for this particular engine these

  1. Surgical Models of Roux-en-Y Gastric Bypass Surgery and Sleeve Gastrectomy in Rats and Mice

    PubMed Central

    Bruinsma, Bote G.; Uygun, Korkut; Yarmush, Martin L.; Saeidi, Nima

    2015-01-01

    Bariatric surgery is the only definitive solution currently available for the present obesity pandemic. These operations typically involve reconfiguration of gastrointestinal tract anatomy and impose profound metabolic and physiological benefits, such as substantially reducing body weight and ameliorating type II diabetes. Therefore, animal models of these surgeries offer unique and exciting opportunities to delineate the underlying mechanisms that contribute to the resolution of obesity and diabetes. Here we describe a standardized procedure for mouse and rat models of Roux-en-Y gastric bypass (80–90 minutes operative time) and sleeve gastrectomy (30–45 minutes operative time), which, to a high degree resemble operations in human. We also provide detailed protocols for both pre- and post-operative techniques that ensure a high success rate in the operations. These protocols provide the opportunity to mechanistically investigate the systemic effects of the surgical interventions, such as regulation of body weight, glucose homeostasis, and gut microbiome. PMID:25719268

  2. Effects of deep hypothermic circulatory arrest on the blood brain barrier in a cardiopulmonary bypass model--a pilot study.

    PubMed

    Bartels, Karsten; Ma, Qing; Venkatraman, Talaignair N; Campos, Christopher R; Smith, Lindsay; Cannon, Ronald E; Podgoreanu, Mihai V; Lascola, Christopher D; Miller, David S; Mathew, Joseph P

    2014-10-01

    Neurologic injury is common after cardiac surgery and disruption of the blood brain barrier (BBB) has been proposed as a contributing factor. We sought to study BBB characteristics in a rodent model of cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). Adult rats were subjected to CPB/DHCA or to sham surgery. Analysis included Western blotting of relevant BBB proteins in addition to in vivo brain magnetic resonance imaging (MRI) with a clinically used low-molecular contrast agent. While quantitative analysis of BBB proteins revealed similar expression levels, MRI showed evidence of BBB disruption after CPB/DHCA compared to sham surgery. Combining molecular BBB analysis and MRI technology in a rodent model is a highly translatable approach to study adverse neurologic outcomes following CPB/DHCA. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.

  3. Effects of Deep Hypothermic Circulatory Arrest on the Blood Brain Barrier in a Cardiopulmonary Bypass Model – A Pilot Study

    PubMed Central

    Bartels, Karsten; Ma, Qing; Venkatraman, Talaignair N.; Campos, Christopher R.; Smith, Lindsay; Cannon, Ronald E.; Podgoreanu, Mihai V.; Lascola, Christopher D.; Miller, David S.; Mathew, Joseph P.

    2014-01-01

    Background Neurologic injury is common after cardiac surgery and disruption of the blood brain barrier (BBB) has been proposed as a contributing factor. We sought to study BBB characteristics in a rodent model of cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). Methods Adult rats were subjected to CPB/DHCA or to sham surgery. Analysis included Western blotting of relevant BBB proteins in addition to in vivo brain magnetic resonance imaging (MRI) using a clinically used low-molecular contrast agent. Results While quantitative analysis of BBB proteins revealed similar expression levels, MRI showed evidence of BBB disruption after CPB/DHCA compared to sham surgery. Conclusions Combining molecular BBB analysis and MRI technology in a rodent model is a highly translatable approach to study adverse neurologic outcomes following CPB/DHCA. PMID:24931068

  4. Canadian Forces Experience with Turbofan HCF - Case Study

    DTIC Science & Technology

    2005-10-01

    Canadian Forces Experience with Turbofan HCF – Case Study Corey Kinart, P. Eng. Magellan Aerospace Corporation 3160 Derry Road East Mississauga...Ontario Canada , L4T 1A9 ckinart@orenda.com Maj. Pierre Theriault National Defence Headquarters 101 Colonel By Drive Ottawa, Ontario Canada ...K1A 0K2 theriault.pg@forces.gc.ca SUMMARY High Cycle Fatigue (HCF) cracking of a Canadian Forces (CF) turbofan engine fuel tube resulted in a six

  5. A comparative evaluation of risk-adjustment models for benchmarking amputation-free survival after lower extremity bypass.

    PubMed

    Simons, Jessica P; Goodney, Philip P; Flahive, Julie; Hoel, Andrew W; Hallett, John W; Kraiss, Larry W; Schanzer, Andres

    2016-04-01

    Providing patients and payers with publicly reported risk-adjusted quality metrics for the purpose of benchmarking physicians and institutions has become a national priority. Several prediction models have been developed to estimate outcomes after lower extremity revascularization for critical limb ischemia, but the optimal model to use in contemporary practice has not been defined. We sought to identify the highest-performing risk-adjustment model for amputation-free survival (AFS) at 1 year after lower extremity bypass (LEB). We used the national Society for Vascular Surgery Vascular Quality Initiative (VQI) database (2003-2012) to assess the performance of three previously validated risk-adjustment models for AFS. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL), Finland National Vascular (FINNVASC) registry, and the modified Project of Ex-vivo vein graft Engineering via Transfection III (PREVENT III [mPIII]) risk scores were applied to the VQI cohort. A novel model for 1-year AFS was also derived using the VQI data set and externally validated using the PIII data set. The relative discrimination (Harrell c-index) and calibration (Hosmer-May goodness-of-fit test) of each model were compared. Among 7754 patients in the VQI who underwent LEB for critical limb ischemia, the AFS was 74% at 1 year. Each of the previously published models for AFS demonstrated similar discriminative performance: c-indices for BASIL, FINNVASC, mPIII were 0.66, 0.60, and 0.64, respectively. The novel VQI-derived model had improved discriminative ability with a c-index of 0.71 and appropriate generalizability on external validation with a c-index of 0.68. The model was well calibrated in both the VQI and PIII data sets (goodness of fit P = not significant). Currently available prediction models for AFS after LEB perform modestly when applied to national contemporary VQI data. Moreover, the performance of each model was inferior to that of the novel VQI-derived model

  6. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    SciTech Connect

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    2012-11-01

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was found that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.

  7. Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass

    PubMed Central

    Bueter, Marco; Löwenstein, Christian; Ashrafian, Hutan; Hillebrand, Jacquelien; Bloom, Stephen R; Lutz, Thomas; Olbers, Torsten; le Roux, Carel W

    2013-01-01

    Introduction Gastric bypass surgery in rats has been shown to mimic the weight loss pattern seen in humans. The aim of this study was to evaluate whether two variations of the technique to create the gastric pouch resulted in a different outcome regarding body weight and food intake. Material and Methods Male Wistar rats underwent either gastric bypass (n=55) or sham-operation (n=27). In Group 1 the complete paraoesophageal neurovascular bundle including the dorsal vagal trunk and the left gastric vessels was completely ligated in all gastric bypass rats (n=17). In Group 2 the left gastric vessels were separated and selectively ligated while the paraoesophageal bundle itself was preserved in all gastric bypass rats (n=10), In Group 3 gastric bypass rats (n=28) were randomized for either one of the two techniques described above. Body weight and food intake of gastric bypass rats were compared to sham-operated controls in all three groups. Results Overall surgical mortality was 13.4% (11/82). Over an observation period of 60 days there was no difference in daily energy intake between gastric bypass rats and sham-operated rats in group 1 (sham: 97.4 ± 2.5 kcal vs. bypass: 89.3 ± 4.7 kcal, p=0.3), while gastric bypass rats in group 2 ate significantly less than their sham-operated counterparts (sham: 76.7 ± 2.2 kcal vs. bypass 52.5 ± 4.8 kcal, p<0.001). In group 3, gastric bypass rats with selectively ligated left gastric vessels showed a lower food intake than sham controls and bypass rats whose paraoesophageal bundle was completely ligated (sham: 118.7 ± 3.9 kcal vs. bypass with selective ligation: 85.5 ± 2.2 kcal vs. bypass with complete ligation 98.6 ± 2.8 kcal, p<0.001). Similar differences were observed for body weight with gastric bypass rats with a selective ligation of the left gastric vessels having the lowest body weight in comparison to sham controls and bypass rats whose paraoesophageal bundle was completely ligated (group 3 (day 75): sham: 608.1

  8. Ice crystal ingestion by turbofans

    NASA Astrophysics Data System (ADS)

    Rios Pabon, Manuel A.

    This Thesis will present the problem of inflight icing in general and inflight icing caused by the ingestion of high altitude ice crystals produced by high energy mesoscale convective complexes in particular, and propose a new device to prevent it based on dielectric barrier discharge plasma. Inflight icing is known to be the cause of 583 air accidents and more than 800 deaths in more than a decade. The new ice crystal ingestion problem has caused more than 100 flights to lose engine power since the 1990's, and the NTSB identified it as one of the causes of the Air France flight 447 accident in 1-Jun2008. The mechanics of inflight icing not caused by ice crystals are well established. Aircraft surfaces exposed to supercooled liquid water droplets will accrete ice in direct proportion of the droplet catch and the freezing heat transfer process. The multiphase flow droplet catch is predicted by the simple sum of forces on each spherical droplet and a droplet trajectory calculation based on Lagrangian or Eulerian analysis. The most widely used freezing heat transfer model for inflight icing caused by supercooled droplets was established by Messinger. Several computer programs implement these analytical models to predict inflight icing, with LEWICE being based on Lagrangian analysis and FENSAP being based on Eulerian analysis as the best representatives among them. This Thesis presents the multiphase fluid mechanics particular to ice crystals, and explains how it differs from the established droplet multiphase flow, and the obstacles in implementing the former in computational analysis. A new modification of the Messinger thermal model is proposed to account for ice accretion produced by ice crystal impingement. Because there exist no computational and experimental ways to fully replicate ice crystal inflight icing, and because existing ice protections systems consume vast amounts of energy, a new ice protection device based on dielectric barrier discharge plasma is

  9. Fan rotor blades of turbofan engines

    SciTech Connect

    Zipps, R.H.; Rynaski, C.H.; Fulton, G.B.

    1986-11-11

    This patent describes a fan blade of the type extending outwardly from a rotor disk across the annular flowpath for working medium gases in the fan section of a turbofan engine, including: an airfoil section having an arcuate cross section contour at the inner wall of the working medium flowpath; and a root section having an upstream end and a downstream end wherein the root section is formed to an arcuate contour which approximates the arcuate contour of the airfoil cross section at the inner wall of the working medium flowpath projected onto the root section, and wherein the root section is convergently tapered from the downstream end toward the upstream end of the blade.

  10. Bird Ingestion into Large Turbofan Engines

    DTIC Science & Technology

    1992-05-01

    292 04/06/90 B767 CF6 80C2 SEMB FOR LD 268 05/ 23 /90 A320 CFM56 5 SEMB FOR TR 247 05/31/90 A300 JT9D 59A INVOLUNTARY POWER LOSS FOR TR 273 06/14/90 A320...OR MORE 1 0 0 1 6 TO 17 0 2 .0 2 4 TO 5 1 0 0 1 UNKNOWN 7 44 4 55 TOTALS 38 347 12 397 23 TABLE 4.2. BIRD SPECIES SPECIES MODAL WEIGHT MULTIPLE SPECIES...Gov.ernm.nt Accistton No, 3, Rec.p.ent’s Catalog No. DOT/FAA/CT-91/1 7 4. Title and Subtitle 5 . Report fote May 1992 BIRD INGESTION INTO LARGE TURBOFAN

  11. Comparison of advanced turboprop and turbofan airplanes

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.

    1983-01-01

    Results of a parametric study to determine the effects of design variables and penalties on the fuel efficiency of Mach 0.8, 125-passenger, advanced turboprop airplanes show that propeller-wing interference penalty has a major effect. Propeller tip speed has a minor effect, and could be decreased to alleviate the noise problem without significant effects on fuel efficiency. The anticipated noise levels produced by the propfan will require additional acoustical treatment for the fuselage; this additional weight can have a significant effect on fuel efficiency. The propfan advantage over an equivalent technology turbofan is strongly dependent on the interference penalty and acoustical treatment weight. Lowering the cruise Mach number to around 0.73 would result in greatly increased fuel efficiency.

  12. Turbofan aft duct suppressor study

    NASA Technical Reports Server (NTRS)

    Syed, A. A.; Motsinger, R. E.; Fiske, G. H.; Joshi, M. C.; Kraft, R. E.

    1983-01-01

    Suppressions due to acoustic treatment in the annular exhaust duct of a model fan were theoretically predicted and compared with measured suppressions. The predictions are based on the modal analysis of sound propagation in a straight annular flow duct with segmented treatment. Modal distributions of the fan noise source (fan-stator interaction only) were measured using in-duct modal probes. The flow profiles were also measured in the vicinity of the modal probes. The acoustic impedance of the single degree of freedom treatment was measured in the presence of grazing flow. The measured values of mode distribution of the fan noise source, the flow velocity profile and the acoustic impedance of the treatment in the duct were used as input to the prediction program. The predicted suppressions, under the assumption of uniform flow in the duct, compared well with the suppressions measured in the duct for all test conditions. The interaction modes generated by the rotor-stator interaction spanned a cut-off ratio range from nearly 1 to 7.

  13. 78 FR 6206 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for... 977B-84 and RB211-Trent 980-84 turbofan engines. This AD requires on-wing inspections of low-pressure...

  14. Noise-Reduction Benefits Analyzed for Over-the-Wing-Mounted Advanced Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2000-01-01

    As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Also, the large fan diameters of modern engines with increasingly higher bypass ratios pose significant packaging and aircraft installation challenges. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large diameters and high bypass ratio cycles to continue, this approach allows the wing to shield much of the engine noise from people on the ground. The Propulsion Systems Analysis Office at the NASA Glenn Research Center at Lewis Field conducted independent analytical research to estimate the noise reduction potential of mounting advanced turbofan engines above the wing. Certification noise predictions were made for a notional long-haul commercial quadjet transport. A large quad was chosen because, even under current regulations, such aircraft sometimes experience difficulty in complying with certification noise requirements with a substantial margin. Also, because of its long wing chords, a large airplane would receive the greatest advantage of any noise-shielding benefit.

  15. 78 FR 17080 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... Ltd & Co KG (RRD) BR700-710 series turbofan engines. This AD requires replacement of the affected fuel...) BR700-710A1-10 and BR700-710A2-20 turbofan engines, all serial numbers, and BR700-710C4-11 turbofan...

  16. 78 FR 54152 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... turbofan engines installed on airplanes of U.S. registry. We also estimate that it will take about 11 hours... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are..., and -535E4-B-75 turbofan engines, and all RB211-524G2-19; - 524G3-19; -524H2-19; and -524H-36 turbofan...

  17. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: A survival prediction model to facilitate clinical decision making.

    PubMed

    Bradbury, Andrew W; Adam, Donald J; Bell, Jocelyn; Forbes, John F; Fowkes, F Gerry R; Gillespie, Ian; Ruckley, Charles Vaughan; Raab, Gillian M

    2010-05-01

    An intention-to-treat analysis of the Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial showed that in patients with severe lower limb ischemia (SLI) due to infrainguinal disease who survived for 2 years after intervention, initial randomization to a bypass surgery (BSX)-first vs balloon angioplasty (BAP)-first revascularization strategy was associated with improvements in subsequent overall survival (OS) and amputation-free survival (AFS) of about 7 and 6 months, respectively. This study explored the value of baseline factors to estimate the likelihood of survival to 2 years for the trial cohort (Cox model) and for individual BASIL trial patients (Weibull model) as an aid to clinical decision making. Of 452 patients presenting to 27 United Kingdom hospitals, 228 were randomly assigned to a BSX-first and 224 to a BAP-first revascularization strategy. Patients were monitored for at least 3 years. Baseline factors affecting the survival of the entire cohort were examined with a multivariate Cox model. The chances of survival at 1 and 2 years for patients with given baseline characteristics were estimated with a Weibull parametric model. At the end of follow-up, 172 patients (38%) were alive without major limb amputation of the trial leg, and 202 (45%) were alive. Baseline factors that were significant in the Cox model were BASIL randomization stratification group, below knee Bollinger angiogram score, body mass index, age, diabetes, creatinine level, and smoking status. Using these factors to define five equally sized groups, we identified patients with 2-year survival rates of 50% to 90%. The factors that contributed to the Weibull predictive model were age, presence of tissue loss, serum creatinine, number of ankle pressure measurements detectable, maximum ankle pressure measured, a history of myocardial infarction or angina, a history of stroke or transient ischemia attack, below knee Bollinger angiogram score, body mass index, and smoking

  18. Seal Bypass Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.

    2009-12-01

    Joe Cartwright 3DLab, School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3YE, Wales, UK (cartwrightja@cf.ac.uk) A conceptual model for the analysis of the sealing potential of caprock sequences is summarised here based on the recognition that many high quality seals are breached episodically or semi-permanently by a range of geological structures that act as seal by-pass systems (SBS). We formally define SBS as seismically resolvable geological features embedded within sealing sequences that promote cross-stratal fluid migration and allow fluids to bypass the pore network. We advance the concept that if such bypass systems exist within a given sealing sequence sequence, then predictions of sealing capacity based exclusively on rock physical properties such as capillary entry pressure/hydraulic conductivity will be largely negated by the capacity of the bypass system to breach the grain and pore network. This model is based largely on observations of sealing sequences using 3D seismic data, in which there is direct evidence of highly focused vertical or sub-vertical fluid flow from subsurface reservoirs up through the sealing sequence with leakage internally at higher levels or to the surface as seeps or pockmarks. We classify SBS into three main classes based on seismic interpretational criteria: (1) fault related, (2) intrusion-related, and (3) pipe-related. Examples are presented of each class of SBS in a relevant context of a particular sealing sequence, and where seismic evidence of hydrocarbon leakage allows the role of the bypass features to be evaluated. These include mud volcano conduits, sandstone intrusions, normal and thrust faults, blowout pipes and igneous intrusions. We show how each class exhibits different modes of behaviour with potential for different scaling relationships between flux and dimensions, and different short and long-term impacts on seal behaviour. We conclude with an analysis of

  19. Tests and analysis of a vented D thrust deflecting nozzle on a turbofan engine. [conducted at the outdoor aerodynamic research facility of the Ames Research Center

    NASA Technical Reports Server (NTRS)

    Roseberg, E. W.

    1982-01-01

    The objectives were to: obtain nozzle performance characteristics in and out of ground effects; demonstrate the compatibility of the nozzle with a turbofan engine; obtain pressure and temperature distributions on the surface of the D vented nozzle; and establish a correlation of the nozzle performance between small scale and large scale models. The test nozzle was a boilerplate model of the MCAIR D vented nozzle configured for operation with a General Electric YTF-34-F5 turbofan engine. The nozzle was configured to provide: a thrust vectoring range of 0 to 115 deg; a yaw vectoring range of 0 to 10 deg; variable nozzle area control; and variable spacing between the core exit and nozzle entrance station. Compatibility between the YTF-34-T5 turbofan engine and the D vented nozzle was demonstrated. Velocity coefficients of 0.96 and greater were obtained for 90 deg of thrust vectoring. The nozzle walls remained cool during all test conditions.

  20. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  1. 78 FR 61171 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Rolls-Royce plc (RR) RB211-535E4-B-37 series turbofan... None. (c) Applicability This AD applies to all Rolls-Royce plc (RR) RB211-535E4-B-37 series turbofan...

  2. 77 FR 56760 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request...) RB211-Trent 800 series turbofan engines. This AD requires removing from service certain intermediate...-17, 892-17, 892B-17, and 895-17 turbofan engines that have an intermediate pressure (IP) turbine disc...

  3. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  4. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  5. 78 FR 48339 - Airworthiness Directives; Rolls-Royce Corporation Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Corporation Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... to certain Rolls-Royce Corporation (RRC) AE 3007A series turbofan engines. The existing AD currently..., and reduces their approved life limits. This proposed AD would clarify the AE 3007A turbofan engine...

  6. 78 FR 61168 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are..., RB211-535E4-C- 37, and RB211-535E4-B-75 turbofan engines. This AD requires removal of affected parts... turbofan engines. (d) Unsafe Condition This AD was prompted by RR updating the low-cycle-fatigue life...

  7. 78 FR 68360 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; correction.... That AD applies to all Rolls-Royce plc (RR) RB211-535E4-B-37 series turbofan engines. The AD number is... removal of affected parts using a drawdown plan for all RR RB211-535E4- B-37 series turbofan engines. As...

  8. 78 FR 22168 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule...), V2525-D5 and V2528-D5 turbofan engines, with a certain No. 4 bearing internal scavenge tube and a... International Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, serial numbers V20001 through...

  9. 75 FR 55459 - Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ...) PW4000 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule..., PW4168A, PW4460, and PW4462 turbofan engines. This AD requires initial and repetitive fluorescent... amend 14 CFR part 39 with a proposed AD. The proposed AD applies to PW PW4000 series turbofan engines...

  10. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  11. 75 FR 14375 - Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ...) PW4000 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., PW4156, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. This proposed AD..., PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. These engines are installed on, but not...

  12. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  13. 78 FR 1776 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain number (No.) 4 bearing... received a report of a fire warning on an IAE V2525 turbofan engine shortly after takeoff. The engine...

  14. 78 FR 79295 - Airworthiness Directives; CFM International S.A. Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ....A. Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY... CFM56-7B series turbofan engines with certain accessory gearboxes (AGBs) not equipped with a... from CFM56 series turbofan engines while in flight. This AD requires an independent inspection to...

  15. 78 FR 22180 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for..., RB211-Trent 977B-84, and RB211-Trent 980-84 turbofan engines. This AD requires inspection of the...-Trent 977B-84, and RB211-Trent 980-84 turbofan engines that incorporate RR production Modification 72...

  16. 78 FR 17297 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for...) RB211 Trent 500 series turbofan engines. That AD currently requires a one-time inspection of the fuel... all RR RB211 Trent 500 series turbofan engines. That AD requires a one-time inspection of the fuel...

  17. 77 FR 40820 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... turbofan engines. This proposed AD was prompted by an investigation by RR concluding that certain...; and RB211-535E4-C-37 turbofan engines. (d) Reason This AD was prompted by an investigation by RR...

  18. 75 FR 31330 - Airworthiness Directives; Pratt & Whitney PW4000 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    .... Discussion In August 2009, we received a report of a Pratt & Whitney PW4000 series turbofan engine failure... PW4000 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... & Whitney PW4000 series turbofan engines. This proposed AD would require a one-time visual inspection of the...

  19. Does a "continuous care model" affect the quality of life of patients undergoing coronary artery bypass grafting?

    PubMed

    Razmjoee, Nasrin; Ebadi, Abbas; Asadi-Lari, Mohsen; Hosseini, Marziyeh

    2017-03-01

    The physical and mental needs of patients with coronary heart disease are affected by both the disease and the heart surgery in different ways. Such diverse needs require different approaches. A continuous care model, which involves orientation, sensitization, control, and evaluation, may favorably influence patient outcomes following coronary artery bypass grafting (CABG). We were interested to ascertain whether a continuous care model might lead to improved quality of life, compared with a routine care model, in patients undergoing CABG. A total of 66 patients scheduled for CABG were identified and randomized to receive either continuous care (based on the continuous care model) or routine postoperative management for 2 months. The subjects' quality of life and its physical and mental dimensions were measured by the 12-item Short-Form Health Survey. Each dimension was scored between 0 and 100, and higher scores indicated better quality of life. One and 2 months after the intervention, the scores of quality of life and its two dimensions were significantly higher in the intervention group than in the control group (P < .001). The application of the continuous care model can promote health-related quality of life in patients after CABG.

  20. Impact of Cardiopulmonary Bypass on Respiratory Mucociliary Function in an Experimental Porcine Model

    PubMed Central

    Sánchez-Véliz, Rodrigo; Carmona, Maria José; Otsuki, Denise Aya; Freitas, Claudia; Benício, Anderson; Negri, Elnara Marcia; Malbouisson, Luiz Marcelo

    2015-01-01

    Background The impact of cardiac surgery using cardiopulmonary bypass (CPB) on the respiratory mucociliary function is unknown. This study evaluated the effects of CPB and interruption of mechanical ventilation on the respiratory mucociliary system. Methods Twenty-two pigs were randomly assigned to the control (n = 10) or CPB group (n = 12). After the induction of anesthesia, a tracheostomy was performed, and tracheal tissue samples were excised (T0) from both groups. All animals underwent thoracotomy. In the CPB group, an aorto-bicaval CPB was installed and maintained for 90 minutes. During the CPB, mechanical ventilation was interrupted, and the tracheal tube was disconnected. A second tracheal tissue sample was obtained 180 minutes after the tracheostomy (T180). Mucus samples were collected from the trachea using a bronchoscope at T0, T90 and T180. Ciliary beat frequency (CBF) and in situ mucociliary transport (MCT) were studied in ex vivo tracheal epithelium. Mucus viscosity (MV) was assessed using a cone-plate viscometer. Qualitative tracheal histological analysis was performed at T180 tissue samples. Results CBF decreased in the CPB group (13.1 ± 1.9 Hz vs. 11.1 ± 2.1 Hz, p < 0.05) but not in the control group (13.1 ± 1 Hz vs. 13 ± 2.9 Hz). At T90, viscosity was increased in the CPB group compared to the control (p < 0.05). No significant differences were observed in in situ MCT. Tracheal histology in the CPB group showed areas of ciliated epithelium loss, submucosal edema and infiltration of inflammatory cells. Conclusion CPB acutely contributed to alterations in tracheal mucocilliary function. PMID:26288020

  1. Mode detection in turbofan inlets from near field sensor arrays.

    PubMed

    Castres, Fabrice O; Joseph, Phillip F

    2007-02-01

    Knowledge of the modal content of the sound field radiated from a turbofan inlet is important for source characterization and for helping to determine noise generation mechanisms in the engine. An inverse technique for determining the mode amplitudes at the duct outlet is proposed using pressure measurements made in the near field. The radiated sound pressure from a duct is modeled by directivity patterns of cut-on modes in the near field using a model based on the Kirchhoff approximation for flanged ducts with no flow. The resulting system of equations is ill posed and it is shown that the presence of modes with eigenvalues close to a cutoff frequency results in a poorly conditioned directivity matrix. An analysis of the conditioning of this directivity matrix is carried out to assess the inversion robustness and accuracy. A physical interpretation of the singular value decomposition is given and allows us to understand the issues of ill conditioning as well as the detection performance of the radiated sound field by a given sensor array.

  2. Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model

    PubMed Central

    Stecher, David; Bronkers, Glenn; Noest, Jappe O.T.; Tulleken, Cornelis A.F.; Hoefer, Imo E.; van Herwerden, Lex A.; Pasterkamp, Gerard; Buijsrogge, Marc P.

    2014-01-01

    To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated. PMID:25490000

  3. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A genetically engineered human Kunitz protease inhibitor with increased kallikrein inhibition in an ovine model of cardiopulmonary bypass.

    PubMed

    Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M

    2001-05-01

    A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.

  5. The application of actuator disks to calculations of the flow in turbofan installations

    SciTech Connect

    Joo, W.G.; Hynes, T.P.

    1997-10-01

    This paper discusses the application of an actuator disk model to the problem of calculating the asymmetric performance of a turbofan operating behind a nonaxisymmetric intake and due to the presence of the engine pylon. Good agreement between predictions and experimental results is demonstrated. Further validation of the model is obtained by comparison with the results of a three-dimensional calculation of an isolated fan operating with a nonaxisymmetric inlet. Some justification of the neglect of unsteady aspects of the flow in the fan is presented. The quantitative features of the interaction of the pylon and fan flow fields are discussed.

  6. Turbofan forced mixer-nozzle internal flowfield. Volume 1: A benchmark experimental study

    NASA Technical Reports Server (NTRS)

    Paterson, R. W.

    1982-01-01

    An experimental investigation of the flow field within a model turbofan forced mixer nozzle is described. Velocity and thermodynamic state variable data for use in assessing the accuracy and assisting the further development of computational procedures for predicting the flow field within mixer nozzles are provided. Velocity and temperature data suggested that the nozzle mixing process was dominated by circulations (secondary flows) of a length scale on the order the lobe dimensions which were associated with strong radial velocities observed near the lobe exit plane. The 'benchmark' model mixer experiment conducted for code assessment purposes is discussed.

  7. Real-time simulation of an F110/STOVL turbofan engine

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Ouzts, Peter J.

    1989-01-01

    A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.

  8. Peripheral artery bypass - leg

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007394.htm Peripheral artery bypass - leg To use the sharing features on this page, please enable JavaScript. Peripheral artery bypass is surgery to reroute the blood supply ...

  9. Development and verification of a mouse model for Roux-en-Y gastric bypass surgery with a small gastric pouch.

    PubMed

    Hao, Zheng; Zhao, Zhiyun; Berthoud, Hans-Rudolf; Ye, Jianping

    2013-01-01

    Existing mouse models of Roux-en-Y gastric bypass (RYGB) surgery are not comparable to human RYGB in gastric pouch volume for a large or absent gastric volume. The aim of this study was to develop and characterize a mouse RYGB model that closely replicates gastric pouch size of human RYGB surgery of about 5% of total gastric volume. We established this model in diet-induced obese (DIO) mice of C57BL/6J. This surgery resulted in a sustained 30% weight loss, entirely accounted for by decreased fat mass but not lean mass, compared to sham-operated mice on the high fat diet. Compared to sham-operated mice, energy expenditure corrected for total body weight was significantly increased by about 25%, and substrate utilization was shifted toward higher carbohydrate utilization at 8 weeks after RYGB when body weight had stabilized at the lower level. The energy expenditure persisted and carbohydrate utilization was even more pronounced when the mice were fed chow diet. Although significantly increased during daytime, overall locomotor activity was not significantly different. In response to cold exposure, RYGB mice exhibited an improved capacity to maintain the body temperature. In insulin tolerance test, exogenous insulin-induced suppression of plasma glucose levels was significantly greater in RYGB mice at 4 weeks after surgery. Paradoxically, food intake measured at 5 weeks after surgery was significantly increased, possibly in compensation for increased fecal energy loss and energy expenditure. In conclusion, this new model is a viable alternative to existing murine RYGB models and the model matches human RYGB surgery in anatomy. This model will be useful for studying molecular mechanisms involved in the beneficial effects of RYGB on body weight and glucose homeostasis.

  10. Development and Verification of a Mouse Model for Roux-en-Y Gastric Bypass Surgery with a Small Gastric Pouch

    PubMed Central

    Hao, Zheng; Zhao, Zhiyun; Berthoud, Hans-Rudolf; Ye, Jianping

    2013-01-01

    Existing mouse models of Roux-en-Y gastric bypass (RYGB) surgery are not comparable to human RYGB in gastric pouch volume for a large or absent gastric volume. The aim of this study was to develop and characterize a mouse RYGB model that closely replicates gastric pouch size of human RYGB surgery of about 5% of total gastric volume. We established this model in diet-induced obese (DIO) mice of C57BL/6J. This surgery resulted in a sustained 30% weight loss, entirely accounted for by decreased fat mass but not lean mass, compared to sham-operated mice on the high fat diet. Compared to sham-operated mice, energy expenditure corrected for total body weight was significantly increased by about 25%, and substrate utilization was shifted toward higher carbohydrate utilization at 8 weeks after RYGB when body weight had stabilized at the lower level. The energy expenditure persisted and carbohydrate utilization was even more pronounced when the mice were fed chow diet. Although significantly increased during daytime, overall locomotor activity was not significantly different. In response to cold exposure, RYGB mice exhibited an improved capacity to maintain the body temperature. In insulin tolerance test, exogenous insulin-induced suppression of plasma glucose levels was significantly greater in RYGB mice at 4 weeks after surgery. Paradoxically, food intake measured at 5 weeks after surgery was significantly increased, possibly in compensation for increased fecal energy loss and energy expenditure. In conclusion, this new model is a viable alternative to existing murine RYGB models and the model matches human RYGB surgery in anatomy. This model will be useful for studying molecular mechanisms involved in the beneficial effects of RYGB on body weight and glucose homeostasis. PMID:23326365

  11. Interactive Educational Tool for Turbofan and Afterburning Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1997-01-01

    A workstation-based, interactive educational computer program has been developed at the NASA Lewis Research Center to aid in the teaching and understanding of turbine engine design and analysis. This tool has recently been extended to model the performance of two-spool turbofans and afterburning turbojets. The program solves for the flow conditions through the engine by using classical one-dimensional thermodynamic analysis found in various propulsion textbooks. Either an approximately thermally perfect or calorically perfect gas can be used in the thermodynamic analysis. Students can vary the design conditions through a graphical user interface; engine performance is calculated immediately. A variety of graphical formats are used to present results, including numerical results, moving bar charts, and student-generated temperature versus entropy (Ts), pressure versus specific volume (pv), and engine performance plots. The package includes user-controlled printed output, restart capability, online help screens, and a browser that displays teacher-prepared lessons in turbomachinery. The program runs on a variety of workstations or a personal computer using the UNIX operating system and X-based graphics. It is being tested at several universities in the midwestern United States; the source and executables are available free from the author.

  12. Computer method for design of acoustic liners for turbofan engines

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Rice, E. J.

    1976-01-01

    A design package is presented for the specification of acoustic liners for turbofans. An estimate of the noise generation was made based on modifications of existing noise correlations, for which the inputs are basic fan aerodynamic design variables. The method does not predict multiple pure tones. A target attenuation spectrum was calculated which was the difference between the estimated generation spectrum and a flat annoyance-weighted goal attenuated spectrum. The target spectrum was combined with a knowledge of acoustic liner performance as a function of the liner design variables to specify the acoustic design. The liner design method at present is limited to annular duct configurations. The detailed structure of the liner was specified by combining the required impedance (which is a result of the previous step) with a mathematical model relating impedance to the detailed structure. The design procedure was developed for a liner constructed of perforated sheet placed over honeycomb backing cavities. A sample calculation was carried through in order to demonstrate the design procedure, and experimental results presented show good agreement with the calculated results of the method.

  13. Interactive Educational Tool for Turbofan and Afterburning Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1997-01-01

    A workstation-based, interactive educational computer program has been developed at the NASA Lewis Research Center to aid in the teaching and understanding of turbine engine design and analysis. This tool has recently been extended to model the performance of two-spool turbofans and afterburning turbojets. The program solves for the flow conditions through the engine by using classical one-dimensional thermodynamic analysis found in various propulsion textbooks. Either an approximately thermally perfect or calorically perfect gas can be used in the thermodynamic analysis. Students can vary the design conditions through a graphical user interface; engine performance is calculated immediately. A variety of graphical formats are used to present results, including numerical results, moving bar charts, and student-generated temperature versus entropy (Ts), pressure versus specific volume (pv), and engine performance plots. The package includes user-controlled printed output, restart capability, online help screens, and a browser that displays teacher-prepared lessons in turbomachinery. The program runs on a variety of workstations or a personal computer using the UNIX operating system and X-based graphics. It is being tested at several universities in the midwestern United States; the source and executables are available free from the author.

  14. Type 2 diabetes mellitus control and atherosclerosis prevention in a non-obese rat model using duodenal-jejunal bypass.

    PubMed

    Chen, Xuan; Huang, Zhen; Ran, Wenhua; Liao, Gang; Zha, Lang; Wang, Ziwei

    2014-09-01

    Type 2 diabetes mellitus (T2DM) is a prevalent disease worldwide and during its conventional treatment, vascular complications remain unavoidable. Roux-en-Y gastric bypass (GBP) is able to induce the remission of T2DM. However, studies of duodenal-jejunal bypass (DJB), a modified procedure of GBP, are being carried out to investigate its ability to induce the remission of T2DM and protect the aorta from atherosclerosis. The present study aimed to investigate the effect of DJB on the rate of T2DM remission and the prevention of atherosclerosis in the aorta in rats with streptozotocin-induced diabetes without obesity, and to explore the mechanism of DJB in protecting the aorta from atherosclerosis. A T2DM rat model was established with a high-fat diet and low-dose streptozotocin. Surgery was performed to analyze its effects on glucose homeostasis, lipid metabolism, inflammation and pathological changes. Furthermore, changes in c-jun NH2-terminal kinase 1 (JNK1) and inhibitor of κB kinase (IKKβ) genes in the aorta following DJB surgery were examined. Levels of blood glucose, lipids, insulin and tumor necrosis factor (TNF)-α were significantly elevated in the T2DM diabetic model compared with the non-diabetic control. A gradual recovery was observed in the DJB group following surgery. Foam cells and atherosclerotic plaques appeared in the ascending aortic tissue in the sham-surgery and T2DM groups, whereas only slight lesions were observed in the DJB group. The expression levels of JNK1 and IKKβ genes in the aorta were significantly increased in the sham-operated and T2DM groups compared with those in the DJB and normal control groups. The present study demonstrated that DJB caused remission of T2DM without weight loss in non-obese rats. Thus, DJB may delay or prevent the occurrence and development of atherosclerosis in the aorta and this may occur through the JNK1 and nuclear factor κB (NF-κB) signaling pathways.

  15. Computation of noise radiation from turbofans: A parametric study

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1995-01-01

    This report presents the results of a parametric study of the turbofan far-field noise radiation using a finite element technique. Several turbofan noise radiation characteristics of both the inlet and the aft ducts have been examined through the finite element solutions. The predicted far-field principal lobe angle variations with duct Mach number and cut-off ratio compare very well with the available analytical results. The solutions also show that the far-field lobe angle is only a function of cut-off ratio, and nearly independent of the mode number. These results indicate that the finite element codes are well suited for the prediction of noise radiation characteristics of a turbofan. The effects of variations in the aft duct geometry are examined. The ability of the codes to handle ducts with acoustic treatments is also demonstrated.

  16. Computation of noise radiation from turbofans: A parametric study

    NASA Astrophysics Data System (ADS)

    Nallasamy, M.

    1995-07-01

    This report presents the results of a parametric study of the turbofan far-field noise radiation using a finite element technique. Several turbofan noise radiation characteristics of both the inlet and the aft ducts have been examined through the finite element solutions. The predicted far-field principal lobe angle variations with duct Mach number and cut-off ratio compare very well with the available analytical results. The solutions also show that the far-field lobe angle is only a function of cut-off ratio, and nearly independent of the mode number. These results indicate that the finite element codes are well suited for the prediction of noise radiation characteristics of a turbofan. The effects of variations in the aft duct geometry are examined. The ability of the codes to handle ducts with acoustic treatments is also demonstrated.

  17. The effect of selective gut stimulation on glucose metabolism after gastric bypass in the Zucker diabetic fatty rat model.

    PubMed

    Shimizu, Hideharu; Eldar, Shai; Heneghan, Helen M; Schauer, Philip R; Kirwan, John P; Brethauer, Stacy A

    2014-01-01

    Potential mechanisms underlying the antidiabetic effects of Roux-en-Y gastric bypass (RYGB) include altered nutrient exposure in the gut. The aim of this study was to evaluate the effects of selective gut stimulation on glucose metabolism in an obese diabetic rat model. Sixteen male Zucker diabetic fatty rats were randomly assigned to 1 of 2 groups: RYGB with gastrostomy tube (GT) insertion into the excluded stomach or a control group with GT insertion into the stomach. An insulin tolerance test (ITT), oral glucose tolerance test (OGTT), and mixed meal tolerance test (MMTT) were performed before and 14-28 days after surgery. A glucose tolerance test via GT (GTT-GT) and MMTT via GT were performed postoperatively. Postoperatively, the RYGB group had significant decreases in weight and food intake. Both the ITT and OGTT tests revealed significantly improved glucose tolerance after RYGB. The GTT-GT showed a reversal of the improved glucose tolerance in the RYGB group. In response to meal stimulation, postoperatively, the RYGB group increased glucagon-like peptide 1 (GLP-1) secretion via the oral route and peptide YY secretion by both oral and GT routes. When foregut exposure to nutrients was reversed after RYGB, the improvement in glucose metabolism was abrogated. This model can be extended to identify the role of gut in glucose homeostasis in type 2 diabetes. Copyright © 2014 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  18. Numerical investigation of haemodynamics in a helical-type artery bypass graft using non-Newtonian multiphase model.

    PubMed

    Wen, Jun; Liu, Kai; Khoshmanesh, Khashayar; Jiang, Wentao; Zheng, Tinghui

    2015-01-01

    The classic single-phase Newtonian blood flow model ignores the motion of red blood cells (RBCs) and their interaction with plasma. To address these issues, we adopted a multiphase non-Newtonian model to carry out a comparative study between a helical artery bypass graft (ABG) and a conventional ABG in which the blood flow is composed of plasma and RBCs. The investigation focused on the mechanism of RBC buildup in an ABG but the haemodynamic parameters obtained by single-phase and multiphase models were also compared. The aggregation of RBCs along the inside wall of a conventional ABG and at the heel of its distal anastomosis was predicted while a poor aggregation was observed along the helical ABG. In addition, RBCs were observed to gradually sediment along the gravity direction. However, the computed haemodynamic parameters by multiphase model qualitatively agreed well with those by single-phase model. It was concluded that (1) the single-phase computational fluid dynamics (CFD) is reasonable to do the computation of haemodynamic parameters in ABGs; (2) secondary flow does not definitely produce buildup of RBCs in the inside curvature, its configuration played an important role in the movement of RBCs and the dominating one-way rotating flow in a helical ABG guaranteed no buildup of RBCs on its inside wall and (3) gravity direction is important for the movement of RBCs which may help to explain why doing exercise is good for human health. This study helps to shed light on the migration of RBCs in ABGs, which cannot be explored by single-phase CFD models, and provides more understanding of the underlying flow mechanism for ABG failure.

  19. Study of turbine bypass remote augmentor lift system for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Sheridan, A. E.

    1985-01-01

    The airframe design and engine/aircraft integration were emphasized in a NASA comparative study of turbofan and turbine bypass engine (TBE) with remote augmentor lift systems (RALS) for supersonic V/STOL aircraft. Functional features of the TBE are reviewed, noting the enhanced cycle efficiency and reduced afterbody drag compared to the turbojets. The present studies examied performance levels for aircraft with fleet defense and secondary anti-surface warfare roles, carrying AMRAAM and AIM missiles. TBE engine cycles were configured for hover and up-and-away flight from deck launch, and all tests were done from a conceptual design viewpoint. The results indicate that the TBE-RALS is superior to turbofan-RALS aircraft in both gross take-off weight and life cycle cost.

  20. Robust multivariable turbofan engine control: A case study

    SciTech Connect

    Nordgren, R.E.; Nwokah, O.D.I.; Gastineau, Z.; Adibhatla, S.; Grewal, G.S.

    1994-12-31

    The application of robust controller design techniques to aircraft turbofan engine control problems has a long and intensive history. These applications have revealed many of the strengths and weaknesses of the many solution techniques. Quantitative Nyquist Array, are applied to the GE16 aircraft turbofan engine control problem for the purpose of designing a full flight envelope controller capable of meeting robust performance specifications. Performance and implementation issues of the two controllers are explored and compared to a control law based upon gain scheduling.

  1. Design and verification of a turbofan swirl augmentor

    NASA Technical Reports Server (NTRS)

    Egan, W. J., Jr.; Shadowen, J. H.

    1978-01-01

    The paper discusses the details of the design and verification testing of a full-scale turbofan 'swirl' augmentor at sea level and altitude. No flameholders are required in the swirl augmentor since the radial motion of the hot pilot gases and subsequent combustion products provides a continuous ignition front across the stream. Results of rig testing of this full-scale swirl augmentor on an F100 engine, which are very encouraging, and future development plans are presented. The results validate the application of the centrifugal-force swirling flow concept to a turbofan augmentor.

  2. Design and verification of a turbofan swirl augmentor

    NASA Technical Reports Server (NTRS)

    Egan, W. J., Jr.; Shadowen, J. H.

    1978-01-01

    The paper discusses the details of the design and verification testing of a full-scale turbofan 'swirl' augmentor at sea level and altitude. No flameholders are required in the swirl augmentor since the radial motion of the hot pilot gases and subsequent combustion products provides a continuous ignition front across the stream. Results of rig testing of this full-scale swirl augmentor on an F100 engine, which are very encouraging, and future development plans are presented. The results validate the application of the centrifugal-force swirling flow concept to a turbofan augmentor.

  3. Operating condition and geometry effects on low-frequency afterburner combustion instability in a turbofan at altitude

    NASA Technical Reports Server (NTRS)

    Cullom, R. R.; Johnsen, R. L.

    1979-01-01

    Three afterburner configurations were tested in a low-bypass-ratio turbofan engine to determine the effect of various fuel distributions, inlet conditions, flameholder geometry, and fuel injection location on combustion instability. Tests were conducted at simulated flight conditions of Mach 0.75 and 1.3 at altitudes from 11,580 to 14,020 m (38,000 to 46,000 ft). In these tests combustion instability with frequency from 28 to 90 Hz and peak-to-peak pressure amplitude up to 46.5 percent of the afterburner inlet total pressure level was encountered. Combustion instability was suppressed in these tests by varying the fuel distribution in the afterburner.

  4. Full-scale altitude engine test of a turbofan exhaust-gas-forced mixer to reduce thrust specific fuel consumption

    NASA Technical Reports Server (NTRS)

    Cullom, R. R.; Johnson, R. L.

    1977-01-01

    The specific fuel consumption of a low-bypass-ratio, confluent-flow, turbofan engine was measured with and without a mixer installed. Tests were conducted for flight Mach numbers from 0.3 to 1.4 and altitudes from 10,670 to 14,630 meters (35,000 to 48,000 ft) for core-stream-to-fan-stream temperature ratios of 2.0 and 2.5 and mixing-length-to-diameter ratios of 0.95 and 1.74. For these test conditions, the reduction in specific fuel consumption varied from 2.5 percent to 4.0 percent. Pressure loss measurements as well as temperature and pressure surveys at the mixer inlet, the mixer exit, and the nozzle inlet were made.

  5. Application of the MNA design method to a nonlinear turbofan engine. [multivariable Nyquist array method

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1981-01-01

    Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.

  6. An automated procedure for developing hybrid computer simulations of turbofan engines

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Krosel, S. M.; Bruton, W. M.

    1981-01-01

    This paper offers a systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines. The methodology that is presented makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all of the calculations and data manipulations that are needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self-contained engine model to match specified design point information. A test case is described and comparisons between hybrid simulation and specified engine performance data are presented.

  7. Turbofan engine control system design using the LQG/LTR methodology

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1989-01-01

    Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.

  8. Cerebral blood flow changes during rat cardiopulmonary bypass and deep hypothermic circulatory arrest model: a preliminary study.

    PubMed

    Yuan, Lu; Su, Diansan; Liu, Xiaohua; Lu, Hongyang; Li, Yao; Tong, Shanbao

    2013-01-01

    Cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) are important techniques often used in complex cardiac surgery for neonates and infants heart diseases. Cerebral blood flow (CBF) serves as an important physiological parameter and provides valuable hemodynamic information during the surgery. Laser speckle imaging (LSI), as an optical imaging technique, can provide full-field CBF information with a high spatiotemporal resolution. In this preliminary study, we acquired the real-time CBF images with a self-developed miniaturized head-mounted LSI system during the whole CPBillHCA rat model. Relative CBF velocity in veins and arteries in bilateral hemispheres dropped significantly during cooling period and reached to nearly zero during arrest period (n = 5). More interestingly, two rats showing more dramatic CBF variations in veins than in arteries during cooling period exhibited severe cerebral edema after surgery. The real-time full-field CBF imaging during the CPBillHCA surgery could add more insights into the operation and be utilized to study the surgical protocols with the ultimate goal ofreducing neurologic injury after surgery.

  9. 4C modeling of pulsed-load smoothing in the HELIOS facility using a controlled bypass valve

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Bonifetto, R.; Hoa, C.; Savoldi Richard, L.

    2013-10-01

    Large variations of the heat load coming from the superconducting magnets to the cryoplant in a tokamak are an undesired consequence of the intrinsically pulsed operation of the machine. In this paper, the cryogenic circuit module of the 4C (Cryogenic Circuit Conductor and Coil) code is used to analyze a subset of the results on pulsed load driven transients experimentally simulated in 2011 in the HELIOS facility (HElium Loop for hIgh lOads Smoothing) at CEA Grenoble, France. We focus on the tests where the smoothing of the pulsed heat load from the supercritical helium loop to the saturated helium bath was achieved by means of a controlled bypass valve. To address this issue, the modeling capability of the cryogenic circuit module of the 4C code is extended to include PI controllers. The computed evolution of temperature, pressure and mass flow rate at different circuit locations shows a good agreement with the measurements, both in the SHe loop and in the LHe bath. These results confirm the accuracy of 4C and contribute a needed step in the process of validation of the code.

  10. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  11. Poor Sleep Quality in Patients after Coronary Artery Bypass Graft Surgery: An Intervention Study Using the PRECEDE-PROCEED Model

    PubMed Central

    Ranjbaran, Soheila; Dehdari, Tahereh; Sadeghniiat-Haghighi, Khosro; Majdabadi, Mahmood Mahmoodi

    2015-01-01

    Abstract Background: Poor sleep quality (SQ) is common among patients after coronary artery bypass graft surgery (CABG). This study attempted to determine the status of SQ following an intervention based on the PRECEDE-PROCEED model in patients with poor SQ after CABG. Methods: This study was a randomized clinical trial. The study sample, including 100 patients referred to the Cardiac Rehabilitation Clinic of Tehran Heart Center, was assigned either to the intervention (recipient of exercise and lifestyle training plus designed intervention based on the PRECEDE-PROCEED model) or to the control group (recipient of exercise and lifestyle training). Eight training sessions over 8 weeks were conducted for the intervention group. Predisposing, enabling, and reinforcing factors as well as social support and SQ were measured in the intervention group before and one month after the intervention and compared to those in the control group at the same time points. Results: The mean age of the patients in the intervention (24% women) and control (24% women) groups was 59.3 ± 7.3 and 59.5 ± 9.3 years, respectively. The results showed that the mean scores of SQ (p value < 0.001), knowledge (p value < 0.001), beliefs (p value < 0.001), sleep self-efficacy (p value < 0.001), enabling factors (p value < 0.001), reinforcing factors (p value < 0.001), and social support (p value < 0.001) were significantly different between the intervention and control groups after the intervention. Conclusion: Adding an intervention based on the PRECEDE-PROCEED model to the cardiac rehabilitation program may further improve the SQ of patients. PMID:26157457

  12. Characterization and modeling of screen-printed metal insulator semiconductor tunnel junctions for integrated bypass functionality in crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Thaidigsmann, Benjamin; Lohmüller, Elmar; Fertig, Fabian; Clement, Florian; Wolf, Andreas

    2013-06-01

    This work investigates sintered, screen-printed silver contacts on lowly doped p-type silicon with different intermediate dielectric layer systems using scanning electron microscopy and dark current-voltage measurements. The data reveal electron tunneling through a thin insulating layer as the most probable transport mechanism. A model based on Fowler-Nordheim and direct tunneling is presented that allows for the description of reverse current-voltage characteristics and the extraction of effective contact properties. The investigated screen-printed metal insulator semiconductor structures are proposed as solar cell integrated bypass that reduces the risk of hot spot generation and power loss during partial shading of a module. Furthermore, the integrated bypass approach enables the fabrication of solar cells from silicon material that tends to show early breakdown of the p-n-junction.

  13. More About Detecting Sensor Failures In A Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1993-01-01

    Advanced Detection, Isolation, and Accommodation (ADIA) algorithm helps digital electronic multivariable-control system of advanced turbofan engine cope with failures of sensors in real time. Algorithm includes four major elements: hard-sensor-failure detection-and-isolation logic, soft-sensor-failure detection-and-isolation logic, accommodation filter, and interface switch matrix.

  14. 78 FR 5710 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... GP7277 turbofan engines. This AD requires initial and repetitive borescope inspections and removal from service before further flight if one or more burn holes are detected, in certain high-pressure turbine (HPT) stage 2 nozzles. This AD also requires mandatory removal from service of these HPT stage...

  15. 78 FR 19628 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; General Electric... Electric Company (GE) GE90-76B, -85B, -90B, -94B, - 110B1, and -115B turbofan engines. This proposed AD was... Electric Company, One Neumann Way, MD Y-75, Cincinnati, OH; phone: 513-552-2913; email: geae.aoc@ge.com...

  16. 78 FR 44899 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; General Electric... Electric Company (GE) GE90-110B1 and -115B turbofan engines. This proposed AD was prompted by multiple.... For service information identified in this proposed AD, contact General Electric Company, GE Aviation...

  17. 78 FR 38195 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ...; AD 2013-10-52] RIN 2120-AA64 Airworthiness Directives; General Electric Company Turbofan Engines... are adopting a new airworthiness directive (AD) for all General Electric Company (GE) GE90-110B1 and... information identified in this AD, contact General Electric Company, GE-Aviation, Room 285, 1 Neumann Way...

  18. 77 FR 48110 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; General Electric... certain General Electric Company (GE) CF6-80C2 series turbofan engines. The existing AD requires... Friday, except Federal holidays. For service information identified in this AD, contact General Electric...

  19. 78 FR 47534 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ...-17-AD; Amendment 39-17536; AD 2013-15-20] RIN 2120-AA64 Airworthiness Directives; General Electric... General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines with affected transfer gearbox... holidays. For service information identified in this AD, contact General Electric Company, One Neumann Way...

  20. 77 FR 9868 - Airworthiness Directives; Honeywell International Inc. Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... turbofan engines. This proposed AD was prompted by a report of a rim/web separation of a first stage low... uncontained disk separation, leading to fuel tank penetration, fire, personal injury, and damage to the... receive about this proposed AD. Discussion We received a report of a rim/web separation on an LPT1 rotor...

  1. 77 FR 74125 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for all General...

  2. State-of-the-art of turbofan engine noise control

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Groeneweg, J. F.

    1977-01-01

    The technology of turbofan engine noise reduction is surveyed. Specific topics discussed include: (1) new fans for low noise; (2) fan and core noise suppression; (3) turbomachinery noise sources; and (4) a new program for improving static noise testing of fans and engines.

  3. Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease.

    PubMed

    Seyrantepe, Volkan; Demir, Secil Akyildiz; Timur, Zehra Kevser; Von Gerichten, Johanna; Marsching, Christian; Erdemli, Esra; Oztas, Emin; Takahashi, Kohta; Yamaguchi, Kazunori; Ates, Nurselin; Demir, Buket Dönmez; Dalkara, Turgay; Erich, Katrin; Hopf, Carsten; Sandhoff, Roger; Miyagi, Taeko

    2017-09-30

    Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal β-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa(-/-) mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by β-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa(-/-)Neu3(-/-) mice were healthy at birth, but died at 1.5 to 4.5months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of Hexa(-/-)Neu3(-/-) mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa(-/-)Neu3(-/-) mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa(-/-)Neu3(-/-) mice. Thus, the Hexa(-/-)Neu3(-/-) mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition. Copyright © 2017. Published by Elsevier Inc.

  4. The impact of Roux-en-Y gastric bypass surgery on normal metabolism in a porcine model

    PubMed Central

    Lindqvist, Andreas; Ekelund, Mikael; Garcia-Vaz, Eliana; Ståhlman, Marcus; Pierzynowski, Stefan; Gomez, Maria F.; Rehfeld, Jens F.; Groop, Leif; Hedenbro, Jan

    2017-01-01

    Background A growing body of literature on Roux-en-Y gastric bypass surgery (RYGB) has generated inconclusive results on the mechanism underlying the beneficial effects on weight loss and glycaemia, partially due to the problems of designing clinical studies with the appropriate controls. Moreover, RYGB is only performed in obese individuals, in whom metabolism is perturbed and not completely understood. Methods In an attempt to isolate the effects of RYGB and its effects on normal metabolism, we investigated the effect of RYGB in lean pigs, using sham-operated pair-fed pigs as controls. Two weeks post-surgery, pigs were subjected to an intravenous glucose tolerance test (IVGTT) and circulating metabolites, hormones and lipids measured. Bile acid composition was profiled after extraction from blood, faeces and the gallbladder. Results A similar weight development in both groups of pigs validated our experimental model. Despite similar changes in fasting insulin, RYGB-pigs had lower fasting glucose levels. During an IVGTT RYGB-pigs had higher insulin and lower glucose levels. VLDL and IDL were lower in RYGB- than in sham-pigs. RYGB-pigs had increased levels of most amino acids, including branched-chain amino acids, but these were more efficiently suppressed by glucose. Levels of bile acids in the gallbladder were higher, whereas plasma and faecal bile acid levels were lower in RYGB- than in sham-pigs. Conclusion In a lean model RYGB caused lower plasma lipid and bile acid levels, which were compensated for by increased plasma amino acids, suggesting a switch from lipid to protein metabolism during fasting in the immediate postoperative period. PMID:28257455

  5. The effect of competitive flow on both the flow and the velocity in venous grafts in a bypass model.

    PubMed

    Bahçivan, Muzaffer; Elmali, Muzaffer; Kolbakir, Fersat; Göl, Kamil

    2009-04-01

    The term "competitive flow" defines the flow from a partially stenosed native artery that "competes" with the flow from a graft to perfuse the distal tissues. The purpose of our study is to investigate the effects of competitive flow at different degrees of stenosis at common carotid artery, in a rabbit model by measuring both the flow volume and velocity in the venous graft. This prospective experimental study included 33 rabbits, which were divided into three groups: in Group 1, the common carotid arteries were ligated to form a total occlusion, in Group 2, the common carotid arteries were externally incompletely ligated to achieve 50% stenosis, and in Group 3, common carotid arteries were fully patent. The jugular vein was reversed and anastomosed to proximal and distal common carotid arteries using end to side anastomosis technique. Mean arterial pressure, the total flow and velocity were measured in native carotid arteries prior to surgery and in venous grafts 2 months after surgery using Doppler ultrasonography. Statistical analysis was performed using Chi-square test and Kruskal Wallis analysis of variances. There were no differences in graft mean velocity (Group 1--16.8+/- 6.7 cm/sec, Group 2--14.1+/- 6.1 cm/sec and Group 3--12.1+/- 6.7 cm/sec), and mean flow volume (Group 1--33.9+/- 11.5 mL/min, Group 2--29.0+/- 8.3 mL/min, and Group 3--24.4+/- 12.8 mL/min) between groups after surgery (p>0.05 for both). As it was the case in this rabbit model, the reduction of flow volume or velocity in lesser degrees of stenosis in the carotid artery venous bypass grafts is not significant in a statistical perspective. Although in short-term this effect did not create a difference for graft patencies between the groups, it may be important in long-term.

  6. Ice Particle Transport Analysis With Phase Change for the E(sup 3) Turbofan Engine Using LEWICE3D Version 3.2

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin, S.

    2012-01-01

    Ice Particle trajectory calculations with phase change were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3.2 software. The particle trajectory computations were performed using the new Glenn Ice Particle Phase Change Model which has been incorporated into the LEWICE3D Version 3.2 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20, and 100 microns and a free stream particle concentration of 0.3 g/cu m. The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting and the amount of melting was relatively small with a maximum average melting fraction of 0.836. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22 percent).

  7. Coronary–Coronary Bypass

    PubMed Central

    Erdil, Nevzat; Ates, Sanser; Demirkilic, Ufuk; Tatar, Harun; Sag, Cemal

    2002-01-01

    There is increased risk of systemic embolism during cardiopulmonary bypass in patients with a severely atherosclerotic ascending aorta. We report a coronary–coronary bypass in a 74-year-old man with a porcelain aorta. He underwent a proximal right coronary–distal right coronary artery bypass with a saphenous vein graft, combined with a pedicled arterial graft (left internal mammary artery) to the left anterior descending artery, in the presence of a beating heart without cardiopulmonary bypass. The patient survived without evidence of perioperative myocardial infarction or cerebrovascular accident. One year later, follow-up angiography showed graft patency with good distal runoff. Coronary–coronary bypass on a beating heart without cardiopulmonary bypass can be performed safely in a patient with porcelain aorta. (Tex Heart Inst J 2002;29:54–5) PMID:11995853

  8. Investigation of risks for cerebral embolism associated with the hemodynamics of cardiopulmonary bypass cannula: a numerical model.

    PubMed

    Avrahami, Idit; Dilmoney, Benny; Azuri, Aliza; Brand, Moshe; Cohen, Oved; Shani, Liran; Nir, Rony-Reuven; Bolotin, Gil

    2013-10-01

    Cerebral emboli originating in the ascending aorta are a major cause of noncardiac complications following cardiac surgery. The hemodynamics of the aortic cannula has been proven to play a significant role in emboli generation and distribution. The aim of the current study was to perform a thorough numerical investigation in order to examine the effect of the design and orientation of the cannula used during cardiopulmonary bypass on the risk to develop cerebral embolism. Hemodynamic analyses compared numerical models of 27 cases consisting of six different cannula orientations, four aortic anatomies, and three cannula designs. The cannula designs included a straight-tip (ST) cannula, a moderately curved tip cannula (TIP1 ), and a sharp-angle curved cannula (TIP2 ). Outcome measures included hemodynamic parameters such as emanating jet velocity, jet velocity drop, maximal shear stress, aortic wall reaction, emboli pathlines and distribution between upper and lower vessels, and stagnation regions. Based on these parameters, the risks for hemolysis, atheroembolism, and cerebral embolism were evaluated and compared. On one hand, the jet emerging from the ST cannula generated large wall-shear stress at the aortic wall; this may have triggered the erosion and distribution of embolic atheromatous debris from the aortic arch. On the other hand, it diverted more emboli from the clamp region to the descending aorta and thus reduced the risk for cerebral embolism. The TIP1 cannula demonstrated less shear stress on the aortic wall and diverted more emboli from the clamp region toward the upper vessels. The TIP2 cannula exhibited a stronger emanating jet, higher shear stress inside the cannula, and highly disturbed flow, which was more stagnant near the clamp region. Current findings support the significant impact of the cannula design and orientation on emboli generation and distribution. Specifically, the straight tip cannula demonstrated a reduced risk of cerebral embolism

  9. The Impact of Peplau's Therapeutic Communication Model on Anxiety and Depression in Patients Candidate for Coronary Artery Bypass

    PubMed Central

    Zarea, Kourosh; Maghsoudi, Solmaz; Dashtebozorgi, Bahman; Hghighizadeh, Mohammad Hossin; Javadi, Mostafa

    2014-01-01

    Background and Objective: Anxiety and depression are among the psychological disorders in heart surgeries. Establishing a simple communication is essential to reduce anxiety and depression. Hence, the objective of the present studywas to examine the impact of Peplau therapeutic communication model on anxiety and depression in patients, who were candidate for coronary artery bypass in Al-Zahra Heart Hospital, Shiraz during 2012-2013. Methods: This is a clinical trial in which 74 patients were randomly divided into intervention and control groups, each consisted of 37 patients. Anxiety and depression levels were assessed before, and two and four months after intervention using the Hospital Anxiety and Depression Scale (HADS). Seven therapeutic communication sessions were held in four stages. Data were analyzed with the SPSS (version 16) using analysis of covariance. Results: The mean anxiety and depression levels decreased in the intervention group after the therapeutic communication (p<0.01). Anxiety scores in the intervention group before and after intervention were 10.23 and 9.38, respectively. While the corresponding scores in the control group were 10.26 and 11.62, respectively. Depression scores in the intervention group before and after intervention were 11 and 9.13, respectively. The corresponding scores in the control group were 11.30 and 12.08, respectively. Conclusion: The results demonstrated the positive role of therapeutic communication in reducing anxiety and depression of the patients. Therefore, the therapeutic communication is recommended as a simple, cost effective and efficient method in this area. PMID:25505931

  10. Body Composition, Food Intake, and Energy Expenditure in a Murine Model of Roux-en-Y Gastric Bypass Surgery.

    PubMed

    Hao, Zheng; Mumphrey, Michael B; Townsend, R Leigh; Morrison, Christopher D; Münzberg, Heike; Ye, Jianping; Berthoud, Hans-Rudolf

    2016-09-01

    The mechanisms by which Roux-en-Y gastric bypass surgery (RYGB) so effectively lowers body weight and improves glycemic control are not well understood, and murine models are essential for identifying the crucial signaling pathways involved. The aim of this study is to characterize the time course of RYGB on body weight, body composition, food intake, and energy expenditure in diet-induced obese mice and establish a tissue bank for global "omics" or targeted biochemical and structural analyses. High-fat diet-induced obese mice were subjected to RYGB using an improved surgical technique with a small gastric pouch. The effects on body weight, body composition, food intake, and energy expenditure were compared to sham surgery, high-fat diet-restricted weight-matched controls, and never-obese chow-fed controls. Without mortality or complications, RYGB surgery in high-fat diet-induced obese mice gradually decreased body weight to a plateau that was more or less sustained for up to 12 weeks (33 g, -18 %, p < 0.01) and significantly lower compared with sham-operated mice (51 g, +25 %, p < 0.01), but higher (+18 %, p < 0.01) than age-matched, chow-fed control mice (27 g). Energy intake after RYGB was significantly suppressed compared to sham only for the first 10 days, but significantly higher compared to weight-matched mice. Energy expenditure after RYGB was higher throughout the study compared with weight-matched, but not sham animals. RYGB surgery in diet-induced obese mice results in similar body weight and body composition changes as observed in humans, but in contrast with humans, this is achieved mainly through increased energy expenditure rather than decreased food intake.

  11. Lessons learned from gastric bypass operations in rats.

    PubMed

    Seyfried, Florian; le Roux, Carel W; Bueter, Marco

    2011-01-01

    Numerous studies using gastric bypass rat models have been recently conducted to uncover underlying physiological mechanisms of Roux-en-Y gastric bypass. Reflecting on lessons learned from gastric bypass rat models may thus aid the development of gastric bypass models in mice and other species. This review aims to discuss technical and experimental details of published gastric bypass rat models to understand advantages and limitations of this experimental tool. The review is based on PubMed literature using the search terms 'animal model', 'rodent model', 'bariatric surgery', 'gastric bypass', and 'Roux-en-Y gastric bypass'. All studies published up until February 2011 were included. 32 studies describing 15 different rat gastric bypass models were included. Description of surgical technique differs in terms of pouch size, limb lengths, preservation of the vagal nerve, and mortality rate. Surgery was carried out exclusively in male rats of different strains and ages. Pre- and postoperative diets also varied significantly. Technical and experimental variations in published gastric bypass rat models complicate comparison and identification of potential physiological mechanisms involved in gastric bypass. In summary, there is no clear evidence that any of these models is superior, but there is an emerging need for standardization of the procedure to achieve consistent and comparable data. Copyright © 2011 S. Karger AG, Basel.

  12. Results of an Advanced Fan Stage Operating Over a Wide Range of Speed and Bypass Ratio. Part 2; Comparison of CFD and Experimental Results

    NASA Technical Reports Server (NTRS)

    Celestina, Mark L.; Suder, Kenneth L.; Kulkarni, Sameer

    2010-01-01

    NASA and GE teamed to design and build a 57 percent engine scaled fan stage for a Mach 4 variable cycle turbofan/ramjet engine for access to space with multipoint operations. This fan stage was tested in NASA's transonic compressor facility. The objectives of this test were to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off; 2) transition over large swings in fan bypass ratio; 3) transition from turbofan to ramjet; and 4) fan wind-milling operation at high Mach flight conditions. This paper will focus on an assessment of APNASA, a multistage turbomachinery analysis code developed by NASA, to predict the fan stage performance and operability over a wide range of speeds (37 to 100 percent) and bypass ratios.

  13. Dispersion, dissipation and refraction of shock waves in acoustically treated turbofan inlets

    NASA Astrophysics Data System (ADS)

    Prasad, Dilip; Li, Ding; A. Topol, David

    2015-09-01

    This paper describes a numerical investigation of the effects of the inlet duct liner on the acoustics of a high-bypass ratio turbofan rotor operating at supersonic tip relative flow conditions. The near field of the blade row is then composed of periodic shocks that evolve spatially both because of the varying mean flow and because of the presence of acoustic treatment. The evolution of this shock system is studied using a Computational Fluid Dynamics-based method incorporating a wall impedance boundary condition. The configuration examined is representative of a fan operating near the takeoff condition. The behavior of the acoustic power and the associated waveforms reveal that significant dispersion occurs to the extent that there are no shocks in the perturbation field leaving the entrance plane of the duct. The effect of wave refraction due to the high degree of shear in the mean flow near the entrance plane of the inlet is examined, and numerical experiments are conducted to show that the incorporation of liners in this region can be highly beneficial. The implications of these results for the design of aircraft engine acoustic liners are discussed.

  14. Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2011-01-01

    A comprehensive exploration of the turbofan engine design space for an advanced technology single-aisle transport (737/A320 class aircraft) was conducted previously by the authors and is documented in a prior report. Through the course of that study and in a subsequent evaluation of the approach and results, a number of enhancements to the engine design ground rules and assumptions were identified. A follow-on effort was initiated to investigate the impacts of these changes on the original study results. The fundamental conclusions of the prior study were found to still be valid with the revised engine designs. The most significant impact of the design changes was a reduction in the aircraft weight and block fuel penalties incurred with low fan pressure ratio, ultra-high bypass ratio designs. This enables lower noise levels to be pursued (through lower fan pressure ratio) with minor negative impacts on aircraft weight and fuel efficiency. Regardless of the engine design selected, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  15. A novel small animal extracorporeal circulation model for studying pathophysiology of cardiopulmonary bypass.

    PubMed

    Fujii, Yutaka; Shirai, Mikiyasu; Inamori, Shuji; Takewa, Yoshiaki; Tatsumi, Eisuke

    2015-03-01

    Extracorporeal circulation (ECC) is indispensable for cardiac surgery. Despite the fact that ECCcauses damage to blood components and is non-physiologic, its pathophysiology has not been fully elucidated. This is because difficulty in clinical research and animal experiments keeps the knowledge insufficient. Therefore, it is desirable to have a miniature ECC model for small animals, which enables repetitive experiments, to study the mechanism of pathophysiological changes during ECC. We developed a miniature ECC system and applied it to the rat. We measured changes in hemodynamics, blood gases and hemoglobin (Hb) concentration, serum cytokines (TNF-α, IL-6, IL-10), biochemical markers (LDH, AST, ALT), and the wet-to-dry weight (W/D) ratio of the lung for assessing whether the rat ECC model is comparable to the human ECC. The ECC system consisted of a membranous oxygenator (polypropylene, 0.03 m(2)), tubing line (polyvinyl chloride), and roller pump. Priming volume of this system is only 8 ml. Rats (400-450 g) were divided into the SHAM group (n = 7) and the ECC group (n = 7). Blood samples were collected before, 60 and 120 min after initiation of ECC. During ECC, blood pressure and Hb were maintained around 80 mmHg and 10 g/dL, respectively. The levels of the inflammatory and biochemical markers and the W/D ratio were significantly elevated in the ECC group, indicating some organ damages and systemic inflammatory responses during ECC. We successfully established the ECC for the rat. This miniature ECC model could be a useful approach for studying the mechanism of pathophysiology during ECC and basic assessment of the ECC devices.

  16. Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2006-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the PDF (probability density function) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. The turbofan engine model contains 3 state variables, 11 measurements, and 10 component health parameters. It is also shown that the truncated Kalman filter may be a more accurate way of incorporating inequality constraints than other constrained filters (e.g., the projection approach to constrained filtering).

  17. Near-field sound radiation of fan tones from an installed turbofan aero-engine.

    PubMed

    McAlpine, Alan; Gaffney, James; Kingan, Michael J

    2015-09-01

    The development of a distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is reported. The key objective is to examine a canonical problem: how to predict the pressure field due to a distributed source located near an infinite, rigid cylinder. This canonical problem is a simple representation of an installed turbofan, where the distributed source is based on the pressure pattern generated by a spinning duct mode, and the rigid cylinder represents an aircraft fuselage. The radiation of fan tones can be modelled in terms of spinning modes. In this analysis, based on duct modes, theoretical expressions for the near-field acoustic pressures on the cylinder, or at the same locations without the cylinder, have been formulated. Simulations of the near-field acoustic pressures are compared against measurements obtained from a fan rig test. Also, the installation effect is quantified by calculating the difference in the sound pressure levels with and without the adjacent cylindrical fuselage. Results are shown for the blade passing frequency fan tone radiated at a supersonic fan operating condition.

  18. Separating Turbofan Engine Noise Sources Using Auto and Cross Spectra from Four Microphones

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources such as the fan and jet were reduced. A multiple-microphone and acoustic-source modeling method to separate correlated and uncorrelated sources is discussed. The auto- and cross spectra in the frequency range below 1000 Hz are fitted with a noise propagation model based on a source couplet consisting of a single incoherent monopole source with a single coherent monopole source or a source triplet consisting of a single incoherent monopole source with two coherent monopole point sources. Examples are presented using data from a Pratt& Whitney PW4098 turbofan engine. The method separates the low-frequency jet noise from the core noise at the nozzle exit. It is shown that at low power settings, the core noise is a major contributor to the noise. Even at higher power settings, it can be more important than jet noise. However, at low frequencies, uncorrelated broadband noise and jet noise become the important factors as the engine power setting is increased.

  19. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  20. Effects of Test Cell Recirculation on High-Bypass Turbofan Engines during Simulated Altitude Tests

    DTIC Science & Technology

    1986-08-01

    PSPS PSP IXPRP . . . . ~:(~ ONDA RY ~--’~- PS FN ’’-~" I ~. " ~, I.I FLOW ~ ...... l L TSAP ~- DTP I, 2, 3.4 ~ PSCW I-9 -- XNAP PSTS I-8...urL.menl~." AED(’-TR-73-5. I chruary 1973. "" U is Calculated at the Lov, End of the Amplitude for Each Range and Should b¢ Ik t ler with Increased Ampli

  1. Comparative Analysis of a High Bypass Turbofan Using a Pulsed Detonation Combustor

    DTIC Science & Technology

    2007-03-01

    Thrust Specific Fuel Consumption . . . . . . . . . . . . . 67 xiii List of Abbreviations Abbreviation Page PDE Pulsed Detonation Engine...past ten years to develop pulsed det- onation engines ( PDE ) as a means of aircraft propulsion. Detonation combustion holds the promise of a more...aviation engine, and detonation creates more of it than previous aircraft engines. It is hoped that a marriage of the PDE with traditional

  2. Analytical evaluation of the impact of broad specification fuels on high bypass turbofan engine combustors

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Szetela, E. J.; Vranos, A.

    1978-01-01

    The impact of the use of broad specification fuels on the design, performance durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines was assessed. Single stage, vorbix and lean premixed prevaporized combustors, in the JT9D and an advanced energy efficient engine cycle were evaluated when operating on Jet A and ERBS (Experimental Referee Broad Specification) fuels. Design modifications, based on criteria evolved from a literature survey, were introduced and their effectiveness at offsetting projected deficiencies resulting from the use of ERBS was estimated. The results indicate that the use of a broad specification fuel such as ERBS, will necessitate significant technology improvements and redesign if deteriorated performance, durability and emissions are to be avoided. Higher radiant heat loads are projected to seriously compromise liner life while the reduced thermal stability of ERBS will require revisions to the engine-airframe fuel system to reduce the thermal stress on the fuel. Smoke and emissions output are projected to increase with the use of broad specification fuels. While the basic geometry of the single stage and vorbix combustors are compatible with the use of ERBS, extensive redesign of the front end of the lean premixed prevaporized burner will be required to achieve satisfactory operation and optimum emissions.

  3. Figmop: a profile HMM to identify genes and bypass troublesome gene models in draft genomes.

    PubMed

    Curran, David M; Gilleard, John S; Wasmuth, James D

    2014-11-15

    Gene models from draft genome assemblies of metazoan species are often incorrect, missing exons or entire genes, particularly for large gene families. Consequently, labour-intensive manual curation is often necessary. We present Figmop (Finding Genes using Motif Patterns) to help with the manual curation of gene families in draft genome assemblies. The program uses a pattern of short sequence motifs to identify putative genes directly from the genome sequence. Using a large gene family as a test case, Figmop was found to be more sensitive and specific than a BLAST-based approach. The visualization used allows the validation of potential genes to be carried out quickly and easily, saving hours if not days from an analysis. Source code of Figmop is freely available for download at https://github.com/dave-the-scientist, implemented in C and Python and is supported on Linux, Unix and MacOSX. curran.dave.m@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. 78 FR 70487 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...; AD 2013-23-17] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY...-37, RB211Trent 768-60, 772-60, and 772B-60 turbofan engines. This AD requires removal of certain high..., RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines with turbine disc part numbers (P/Ns) and...

  5. 77 FR 16916 - Airworthiness Directives; Pratt & Whitney (PW)Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ...)Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for PW JT9D-7R4G2 and -7R4H1 turbofan engines. This AD was... and summary sections of the AD to limit applicability to only the PW JT9D-7R4G2 and -7R4H1 turbofan...

  6. 78 FR 20507 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...) RB211-535E4-37, RB211-535E4-B-37, RB211-535E4-C- 37, and RB211-535E4-B-75 turbofan engines. This..., and RB211-535E4-B-75 turbofan engines. (d) Reason This AD was prompted by RR updating the low-cycle...

  7. 78 FR 20505 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...; - 535E4-37; -535E4-B-37, and -535E4-B-75 turbofan engines, and all RB211- 524G2-19; -524G3-19; -524H2-19; and -524H-36 turbofan engines. This proposed AD was prompted by the discovery of a cracked and...

  8. 78 FR 5 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are...; RB211-535E4-37; RB211-535E4-B-37; RB211-535E4-B-75; and RB211-535E4-C-37 turbofan engines. This AD was...; RB211-535E4-B-75; and RB211-535E4-C-37 turbofan engines with intermediate-pressure (IP) discs listed in...

  9. 76 FR 82202 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... International Aero Engines AG (IAE) V2500-A1, V2525-D5 and V2528-D5 turbofan engines, and certain serial numbers (S/Ns) of IAE V2522-A5, V2524-A5, V2527-A5, V2527E-A5, V2527M-A5, V2530-A5, and V2533-A5 turbofan...

  10. 75 FR 57660 - Airworthiness Directives; Rolls-Royce Corporation (RRC) AE 3007A Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... series turbofan engines. That AD currently requires performing an eddy current inspection (ECI) or...' prefix Initial Eddy Current Inspection (ECI) or Surface Wave Ultrasonic Testing (SWUT) Inspection (g)...

  11. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  12. A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.

  13. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-03-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  14. Heart bypass surgery

    MedlinePlus Videos and Cool Tools

    Heart bypass surgery begins with an incision made in the chest, with the breastbone cut exposing the heart. Next, a portion of the saphenous vein is ... used to bypass the blocked arteries in the heart. The venous graft is sewn to the aorta ...

  15. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    NASA Technical Reports Server (NTRS)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  16. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  17. Turbofan engine having a contrarotating low-pressure compressor

    SciTech Connect

    Rohra, A.; Geidel, H.A.

    1994-01-04

    A turbofan engine includes two oppositely rotating fan rotors which are arranged upstream of the core engine, and has a booster with two contra-rotating coaxial rotors. The radially exterior booster rotor is arranged between the rearward fan rotor and the low-pressure turbine in a torque-transmitting manner. The gearless construction permits an almost uniform loading of the low-pressure shafts. 2 figs.

  18. Software Development for EECU Platform of Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk

    2017-04-01

    The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.

  19. Quiet Clean General Aviation Turbofan (QCGAT) technology study, volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The preliminary design of an engine which satisfies the requirements of a quiet, clean, general aviation turbofan (QCGAT) engine is described. Also an experimental program to demonstrate performance is suggested. The T700 QCGAT engine preliminary design indicates that it will radiate noise at the same level as an aircraft without engine noise, have exhaust emissions within the EPA 1981 Standards, have lower fuel consumption than is available in comparable size engines, and have sufficient life for five years between overhauls.

  20. Analysis of turbofan propulsion system weight and dimensions

    NASA Technical Reports Server (NTRS)

    Waters, M. H.; Schairer, E. T.

    1977-01-01

    Weight and dimensional relationships that are used in aircraft preliminary design studies are analyzed. These relationships are relatively simple to prove useful to the preliminary designer, but they are sufficiently detailed to provide meaningful design tradeoffs. All weight and dimensional relationships are developed from data bases of existing and conceptual turbofan engines. The total propulsion system is considered including both engine and nacelle, and all estimating relations stem from physical principles, not statistical correlations.

  1. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    A study of quiet turbofan short takeoff aircraft for short haul air transportation was conducted. The objectives of the study were to: (1) define representative aircraft configurations, characteristics, and costs associated with their development, (2) identify critical technology and technology related problems to be resolved in successful introduction of representative short haul aircraft, (3) determine relationships between quiet short takeoff aircraft and the economic and social viability of short haul, and (4) identify high payoff technology areas.

  2. Utilizing numerical techniques in turbofan inlet acoustic suppressor design

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1982-01-01

    Numerical theories in conjunction with previously published analytical results are used to augment current analytical theories in the acoustic design of a turbofan inlet nacelle. In particular, a finite element-integral theory is used to study the effect of the inlet lip radius on the far field radiation pattern and to determine the optimum impedance in an actual engine environment. For some single mode JT15D data, the numerical theory and experiment are found to be in a good agreement.

  3. System Noise Prediction of the DGEN 380 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2015-01-01

    The DGEN 380 is a small, separate-flow, geared turbofan. Its manufacturer, Price Induction, is promoting it for a small twinjet application in the emerging personal light jet market. Smaller, and producing less thrust than other entries in the industry, Price Induction is seeking to apply the engine to a 4- to 5-place twinjet designed to compete in an area currently dominated by propeller-driven airplanes. NASA is considering purchasing a DGEN 380 turbofan to test new propulsion noise reduction technologies in a relevant engine environment. To explore this possibility, NASA and Price Induction have signed a Space Act Agreement and have agreed to cooperate on engine acoustic testing. Static acoustic measurements of the engine were made by NASA researchers during July, 2014 at the Glenn Research Center. In the event that a DGEN turbofan becomes a NASA noise technology research testbed, it is in the interest of NASA to develop procedures to evaluate engine system noise metrics. This report documents the procedures used to project the DGEN static noise measurements to flight conditions and the prediction of system noise of a notional airplane powered by twin DGEN engines.

  4. 76 FR 20229 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 768-60 and Trent 772-60 Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ...) RB211-Trent 768-60 and Trent 772-60 Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for RR RB211-Trent 700 series turbofan engines. That AD currently requires, for the step aside... turbofan engines, to RB211-Trent 768-60 and Trent 772- 60 turbofan engines. This AD also eliminates the...

  5. 76 FR 72130 - Airworthiness Directives; Pratt & Whitney JT9D Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... JT9D Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... applies to all Pratt & Whitney (PW) JT9D series turbofan engines. The existing AD currently requires... critical life-limited rotating engine part failure, which could result in an uncontained engine failure and...

  6. 76 FR 76027 - Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain PW4000 turbofan engines. This AD was prompted by an... this AD to prevent failure of these parts, which could lead to an uncontained engine failure and damage...

  7. 77 FR 68714 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...-Royce Deutschland Ltd & Co KG (RRD) BR700-710A1-10 and BR700- 710A2-20 turbofan engines, and certain... uncontained failure of the engine and damage to the airplane. DATES: We must receive comments on this proposed...

  8. 77 FR 56756 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... Ltd & Co KG (RRD) BR700-715A1-30, BR700-715B1- 30, and BR700-715C1-30 turbofan engines. This AD was... LP compressor booster rotor, uncontained engine failure, and damage to the airplane. DATES: This AD...

  9. 77 FR 66771 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Rolls-Royce Deutschland Ltd & Co KG (RRD) BR700-710 series turbofan engines. This proposed AD was... Deutschland Ltd & Co KG, Eschenweg 11, Dahlewitz, 15827 Blankenfelde-Mahlow, Germany; telephone: 49 0...

  10. 78 FR 77382 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...-Royce Deutschland Ltd & Co KG (RRD) BR700-715A1-30, BR700-715B1- 30, and BR700-715C1-30 turbofan engines...-Royce Deutschland Ltd & Co KG, Eschenweg 11, Dahlewitz, 15827 Blankenfelde-Mahlow, Germany; phone: 49...

  11. 78 FR 35752 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...-Royce Deutschland Ltd & Co KG (RRD) BR700-725A1-12 turbofan engines with fuel pump tube part number... Deutschland Ltd & Co KG, Eschenweg 11, Dahlewitz, 15827 Blankenfelde-Mahlow, Germany; phone: 49 0...

  12. 76 FR 67591 - Airworthiness Directives; Rolls-Royce Corporation Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... 3007A1/3, AE 3007A1E, AE 3007A1P, and AE 3007A3 turbofan engines installed on 616 airplanes of U.S... Corporation Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request... engines. This AD requires initial and repetitive eddy current inspections (ECI) of certain 6th-through...

  13. 75 FR 77570 - Airworthiness Directives; General Electric Company CF6 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...) for General Electric (GE) CF6-45/-50 series and CF6-80A series turbofan engines with certain part... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; General Electric Company CF6 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice...

  14. Study of small turbofan engines applicable to general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.; Burnett, G. A.; Alsworth, C. C.

    1973-01-01

    The applicability of small turbofan engines to general aviation aircraft is discussed. The engine and engine/airplane performance, weight, size, and cost interrelationships are examined. The effects of specific engine noise constraints are evaluated. The factors inhibiting the use of turbofan engines in general aviation aircraft are identified.

  15. 75 FR 44725 - Airworthiness Directives; Pratt & Whitney PW4000 Series Turbofan Engines; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... PW4000 series turbofan engines. The docket number is incorrect in all three of its locations. This... PW4000 Series Turbofan Engines; Correction AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Engineer, Engine Certification Office, FAA, Engine and Propeller Directorate, 12 New England Executive...

  16. Validation of EuroSCORE II risk model for coronary artery bypass surgery in high-risk patients

    PubMed Central

    Adademir, Taylan; Tasar, Mehmet; Ecevit, Ata Niyazi; Karaca, Okay Guven; Salihi, Salih; Buyukbayrak, Fuat; Ozkokeli, Mehmet

    2014-01-01

    Introduction Determining operative mortality risk is mandatory for adult cardiac surgery. Patients should be informed about the operative risk before surgery. There are some risk scoring systems that compare and standardize the results of the operations. These scoring systems needed to be updated recently, which resulted in the development of EuroSCORE II. In this study, we aimed to validate EuroSCORE II by comparing it with the original EuroSCORE risk scoring system in a group of high-risk octogenarian patients who underwent coronary artery bypass grafting (CABG). Material and methods The present study included only high-risk octogenarian patients who underwent isolated coronary artery bypass grafting in our center between January 2000 and January 2010. Redo procedures and concomitant procedures were excluded. We compared observed mortality with expected mortality predicted by EuroSCORE (logistic) and EuroSCORE II scoring systems. Results We considered 105 CABG operations performed in octogenarian patients between January 2000 and January 2010. The mean age of the patients was 81.43 ± 2.21 years (80-89 years). Thirty-nine (37.1%) of them were female. The two scales showed good discriminative capacity in the global patient sample, with the AUC (area under the curve) being higher for EuroSCORE II (AUC 0.772, 95% CI: 0.673-0.872). The goodness of fit was good for both scales. Conclusions We conclude that EuroSCORE II has better AUC (area under the ROC curve) compared to the original EuroSCORE, but both scales showed good discriminative capacity and goodness of fit in octogenarian patients undergoing isolated coronary artery bypass grafting. PMID:26336431

  17. The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration

    NASA Technical Reports Server (NTRS)

    Hughes, Chris

    2011-01-01

    In this presentation, an overview of the research being conducted by the ERA Project in Ultra High Bypass aircraft propulsion and in partnership with Pratt & Whitney with their Geared TurboFan (GTF) is given. The ERA goals are shown followed by a discussion of what areas need to be addressed on the engine to achieve the goals and how the GTF is uniquely qualified to meet the goals through a discussion of what benefits the cycle provides. The first generation GTF architecture is then shown highlighting the areas of collaboration with NASA, and the fuel burn, noise and emissions reductions possible based on initial static ground test and flight test data of the first GTF engine. Finally, a 5 year technology roadmap is presented focusing on Ultra High Bypass propulsion technology research areas that are being pursued and being planned by ERA and P&W under their GTF program.

  18. Gastric Bypass Surgery

    MedlinePlus

    ... much you can eat or by reducing the absorption of nutrients, or both. Gastric bypass and other ... you can eat at one sitting and reducing absorption of nutrients. The surgeon cuts across the top ...

  19. Gastric bypass surgery

    MedlinePlus

    ... your legs to help prevent blood clots from forming. You will receive shots of medicine to prevent ... diversion with duodenal switch Dumping syndrome References Buchwald H. Laparoscopic Roux-en-Y gastric bypass. In: Buchwald ...

  20. Seizures Following Cardiopulmonary Bypass

    PubMed Central

    Brouwer, Monique E.; McMeniman, William J.

    2016-01-01

    Abstract: Seizures following cardiopulmonary bypass are an immediate and alarming indication that a neurologic event has occurred. A case report of a 67-year-old man undergoing aortic valve surgery who unexpectedly experiences seizures following cardiopulmonary bypass is outlined. Possible contributing factors including atheromatous disease in the aorta, low cerebral perfusion pressures, an open-chamber procedure, and the use of tranexamic acid are identified. PMID:27729707

  1. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  2. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  3. Computational investigation of the effects of casing treatments on the performance of a turbofan

    NASA Astrophysics Data System (ADS)

    Lin, Weiyang

    A computational survey focused on modifications to the casing near the rotor blade tip is carried out for the purpose of enhancing the performance and increasing the stall margin of a model turbofan stage in transonic operating conditions. The study is divided into three phases. During the first phase two types of casing treatments, inward protruding rings and circumferential grooves, were tested with relatively coarse grids. In the second phase, a grid resolution study is carried out with the results from this phase influencing the choices for the third stage. In the third phase, a comprehensive study is performed to examine the near-stall effects and stall-related behavior of the baseline case and a series of circumferential groove configurations.

  4. Analytical investigation of adaptive control of radiated inlet noise from turbofan engines

    NASA Technical Reports Server (NTRS)

    Risi, John D.; Burdisso, Ricardo A.

    1994-01-01

    An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.

  5. Automated procedure for developing hybrid computer simulations of turbofan engines. Part 1: General description

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Krosel, S. M.; Bruton, W. M.

    1982-01-01

    A systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines is presented. The methodology that is pesented makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all the calculations and data manipulations that are needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self-contained engine model to match specified design-point information. Part I contains a general discussion of the methodology, describes a test case, and presents comparisons between hybrid simulation and specified engine performance data. Part II, a companion document, contains documentation, in the form of computer printouts, for the test case.

  6. Core noise source diagnostics on a turbofan engine using correlation and coherence techniques

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.; Reshotko, M.

    1976-01-01

    Fluctuating pressure measurements at several locations within the core of a turbofan engine were made simultaneously with far field acoustic measurements. Correlation and coherence techniques were used to determine the relative amplitude and phase relationships between core pressures at these various locations and between the core pressures and far field acoustic pressure. The combustor is a low frequency source region for acoustic propagation through the core nozzle and out to the far field. The relation between source pressure and the resulting sound pressure involves a 180 degree phase shift and an amplitude transfer function which varies approximately as frequency squared. This is consistent with a simplified model using fluctuating entropy as a source term.

  7. Predicting reintubation, prolonged mechanical ventilation and death in post-coronary artery bypass graft surgery: a comparison between artificial neural networks and logistic regression models

    PubMed Central

    Mendes, Renata G.; de Souza, César R.; Machado, Maurício N.; Correa, Paulo R.; Di Thommazo-Luporini, Luciana; Arena, Ross; Myers, Jonathan; Pizzolato, Ednaldo B.

    2015-01-01

    Introduction In coronary artery bypass (CABG) surgery, the common complications are the need for reintubation, prolonged mechanical ventilation (PMV) and death. Thus, a reliable model for the prognostic evaluation of those particular outcomes is a worthwhile pursuit. The existence of such a system would lead to better resource planning, cost reductions and an increased ability to guide preventive strategies. The aim of this study was to compare different methods – logistic regression (LR) and artificial neural networks (ANNs) – in accomplishing this goal. Material and methods Subjects undergoing CABG (n = 1315) were divided into training (n = 1053) and validation (n = 262) groups. The set of independent variables consisted of age, gender, weight, height, body mass index, diabetes, creatinine level, cardiopulmonary bypass, presence of preserved ventricular function, moderate and severe ventricular dysfunction and total number of grafts. The PMV was also an input for the prediction of death. The ability of ANN to discriminate outcomes was assessed using receiver-operating characteristic (ROC) analysis and the results were compared using a multivariate LR. Results The ROC curve areas for LR and ANN models, respectively, were: for reintubation 0.62 (CI: 0.50–0.75) and 0.65 (CI: 0.53–0.77); for PMV 0.67 (CI: 0.57–0.78) and 0.72 (CI: 0.64–0.81); and for death 0.86 (CI: 0.79–0.93) and 0.85 (CI: 0.80–0.91). No differences were observed between models. Conclusions The ANN has similar discriminating power in predicting reintubation, PMV and death outcomes. Thus, both models may be applicable as a predictor for these outcomes in subjects undergoing CABG. PMID:26322087

  8. Aeroacoustic Analysis of Fan Noise Reduction With Increased Bypass Nozzle Area

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.; Podboy, Gary G.

    2005-01-01

    An advanced model turbofan was tested in the NASA Glenn 9-by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects of increased bypass nozzle area. This fan stage test was part of the NASA Glenn Fan Broadband Source Diagnostic Test, second entry (SDT2) which acquired aeroacoustic results over a range of test conditions. The baseline nozzle was sized to produce maximum stage performance at cruise condition. However, the wind tunnel testing is conducted near sea level condition. Therefore, in order to simulate and obtain performance at other operating conditions, two additional nozzles were designed and tested one with +5 percent increase in weight flow (+5.4 percent increase in nozzle area compared with the baseline nozzle), sized to simulate the performance at the stage design point (takeoff) condition, and the other with a +7.5 percent increase in weight flow (+10.9 percent increase in nozzle area) sized for maximum weight flow with a fixed nozzle at sea level condition. Measured acoustic benefits with increased nozzle area were very encouraging, showing overall sound power level (OAPWL) reductions of 2 or more dB while the stage thrust actually increased by 2 to 3 percent except for the most open nozzle at takeoff rotor speed where stage performance decreased. Effective perceived noise levels for a 1500 ft engine flyover and 3.35 scale factor showed a similar noise reduction of 2 or more EPNdB. Noise reductions, principally in the level of broadband noise, were observed everywhere in the far field. Laser Doppler Velocimetry measurements taken downstream of the rotor showed that the total turbulent velocity decreased with increasing nozzle flow, which may explain the reduced rotor broadband noise levels.

  9. A Budget Impact Model of Hemophilia Bypassing Agent Prophylaxis Relative to Recombinant Factor VIIa On-Demand.

    PubMed

    Mehta, Darshan A; Oladapo, Abiola O; Epstein, Joshua D; Novack, Aaron R; Neufeld, Ellis J; Hay, Joel W

    2016-02-01

    Hemophilia patients use factor-clotting concentrates (factor VIII for hemophilia A and factor IX for hemophilia B) for improved blood clotting. These products are used to prevent or stop bleeding episodes. However, some hemophilia patients develop inhibitors (i.e., the patient's immune system develops antibodies against these factor concentrates). Hence, these patients do not respond well to the factor concentrates. A majority of hemophilia patients with inhibitors are managed on-demand with the following bypassing agents: recombinant factor VIIa (rFVIIa) and activated prothrombin complex concentrate (aPCC). The recently published U.S. registries Dosing Observational Study in Hemophilia (DOSE) and Hemostasis and Thrombosis Research Society (HTRS) reported higher rFVIIa on-demand use for bleed management than previously described. To estimate aPCC and rFVIIa prophylaxis costs relative to rFVIIa on-demand treatment cost based on rFVIIa doses reported in U.S. registries. A literature-based cost model was developed assuming a base case on-demand annual bleed rate (ABR) of 28.7 per inhibitor patient, which was taken from a randomized phase 3 clinical trial. The doses for rFVIIa on-demand were taken from the median dose per bleed reported by the DOSE and HTRS registries. Model inputs for aPCC and rFVIIa prophylaxis (i.e., dosing and efficacy) were derived from respective randomized clinical trials. Cost analysis was from the U.S. payer perspective, and only direct drug costs were considered. The drug cost was based on the Medicare Part B 2014 average sale price (ASP). Two-way sensitivity and threshold analyses were performed by simultaneously varying on-demand ABR, prophylaxis efficacy, and unit drug cost. In addition to studying relative costs associated with on-demand and prophylaxis treatments, relative cost per bleeding episode avoided were also calculated for aPCC and rFVIIa prophylaxis treatments. The prophylaxis efficacy reported in the trials were used to

  10. Nitrogen oxide emissions characteristics of augmented turbofan engines

    SciTech Connect

    Seto, S.P.; Lyon, T.F. )

    1994-07-01

    The exhaust plumes of modern military engines can be rendered visible at low augmentor power operation by the presence of nitrogen dioxide (NO[sub 2]). Visible plumes have also been observed from some industrial gas turbines that have duct burners downstream of the power turbines. In 1986, gaseous emissions measurements were taken behind two F101 turbofan engines to determine the effect of reheat level on the degree of conversion of nitric oxide (NO) to nitrogen dioxide and to relate the plume visibility to nitrogen dioxide concentration.

  11. Design technology for improved performance retention in turbofan engines

    SciTech Connect

    Seiwert, D.L.

    1981-01-01

    Advanced mechanical design programs have been launched to substantially improve the performance retention characteristics of turbofan engines. This paper addresses the general causes of performance loss and presents current programs whose objective is to minimize these losses. Areas addressed are: deterioration of clearances between rotating and static components during a typical engine's life, engine generated and externally applied loads, and operating technique effects. Several advanced mechanical design features which address these conditions with the intent of minimizing or eliminating resultant deterioration of performance are discussed, and evaluation techniques for design verification, including laser optics are described. 1 ref.

  12. The Design and Testing of a Miniature Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.; Murray, James E.

    2009-01-01

    Off-the-shelf jet propulsion in the 50 - 500 lb thrust class sparse. A true twin-spool turbofan in this range does not exist. Adapting an off-the-shelf turboshaft engine is feasible. However the approx.10 Hp SPT5 can t quite make 50 lbs. of thrust. Packaging and integration is challenging, especially the exhaust. Building on our engine using a 25 Hp turboshaft seems promising if the engine becomes available. Test techniques used, though low cost, adequate for the purpose.

  13. Quiet turbofan STOL aircraft for short haul transportation, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.

    1973-01-01

    The characteristics for a quiet turbofan short takeoff aircraft for short haul transportation applications are discussed. The following subjects are examined: (1) representative aircraft configurations, characteristics, and costs associated with the short haul aircraft development and operation, (2) critical technology and technology related problems to be resolved in successful introduction of representative short haul aircraft, (3) relationships between quiet short takeoff aircraft and the economic and social viability of short haul, and (4) identification of high payoff technology areas. In order to properly evaluate the candidate aircraft designs and to determine their economic viability and community acceptance, a real world scenario was developed and projected to 1990.

  14. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  15. The extended distributed microstructure model for gradient-driven transport: A two-scale model for bypassing effective parameters

    NASA Astrophysics Data System (ADS)

    Carr, E. J.; Perré, P.; Turner, I. W.

    2016-12-01

    Numerous problems involving gradient-driven transport processes-e.g., Fourier's and Darcy's law-in heterogeneous materials concern a physical domain that is much larger than the scale at which the coefficients vary spatially. To overcome the prohibitive computational cost associated with such problems, the well-established Distributed Microstructure Model (DMM) provides a two-scale description of the transport process that produces a computationally cheap approximation to the fine-scale solution. This is achieved via the introduction of sparsely distributed micro-cells that together resolve small patches of the fine-scale structure: a macroscopic equation with an effective coefficient describes the global transport and a microscopic equation governs the local transport within each micro-cell. In this paper, we propose a new formulation, the Extended Distributed Microstructure Model (EDMM), where the macroscopic flux is instead defined as the average of the microscopic fluxes within the micro-cells. This avoids the need for any effective parameters and more accurately accounts for a non-equilibrium field in the micro-cells. Another important contribution of the work is the presentation of a new and improved numerical scheme for performing the two-scale computations using control volume, Krylov subspace and parallel computing techniques. Numerical tests are carried out on two challenging test problems: heat conduction in a composite medium and unsaturated water flow in heterogeneous soils. The results indicate that while DMM is more efficient, EDMM is more accurate and is able to capture additional fine-scale features in the solution.

  16. Risk stratification analysis of operative mortality in isolated coronary artery bypass graft patients in Pakistan: comparison between additive and logistic EuroSCORE models.

    PubMed

    Qadir, Irfan; Perveen, Shazia; Furnaz, Shumaila; Shahabuddin, Syed; Sharif, Hasanat

    2011-08-01

    We compared the performances of the additive and logistic EuroSCORE in predicting mortality in patients undergoing isolated coronary artery bypass grafting at a single institution in Pakistan. Both models were applied to 2004 patients, operated upon at the Aga Khan University Hospital from January 2006 to July 2010. The actual mortality (3.8%) was significantly different from the additive (4.35%) and the logistic (6.41%) estimates. On the basis of degree of risk, actual mortality was 0.6% in the low-risk (additive EuroSCORE 0-4), 4.2% in the medium-risk (EuroSCORE 5-9) and 19.1% in the high-risk (EuroSCORE 10-19) group. With the low risks, both systems slightly overestimated mortality, with the logistic EuroSCORE being more accurate. At a EuroSCORE of between 10 and 19, the additive EuroSCORE underestimated and logistic EuroSCORE overestimated mortality. Both models satisfactorily discriminated outcomes (receiver operating characteristics areas of 0.866 and 0.859 for the additive and the logistic model, respectively). The Hosmer-Lemeshow test showed that calibration was good for the additive model (P=0.424) but turned out to be inadequate for the logistic model (P<0.001). We conclude that the additive EuroSCORE is a more accurate model for risk assessment compared to the logistics model in the Pakistani population.

  17. Perivenous application of cyanoacrylate tissue sealants reduces intimal and medial thickening of the vein graft and inflammatory responses in a rabbit model of carotid artery bypass grafting.

    PubMed

    Dai, Longsheng; Gao, Mingxin; Gu, Chengxiong; Zhang, Fan; Yu, Yang

    2016-02-01

    Effective therapies to prevent vein graft failure after coronary artery bypass grafting (CABG) are still lacking. α-Cyanoacrylate (α-CA, 99% n-octyl-α-cyanoacrylate + n-butyl-α-cyanoacrylate) has been increasingly used as a tissue sealant for wound closure because of its bacteriostatic, biodegradable and haemostatic properties. As a strong tissue adhesive, α-CA might prevent an arterial circulation-induced mechanical stretch on vein graft to attenuate intimal hyperplasia. Here, we investigated the effects of perivenous application of α-CA on the vein graft in a rabbit model of carotid artery bypass grafting. Healthy New Zealand white rabbits were randomized into no graft, graft or graft + α-CA group (n = 10 per group). Rabbit carotid artery was bypassed with the jugular vein. α-CA sealants were sprayed on the entire jugular graft including both anastomotic sites after completion of anastomoses. Blood flow parameters and histological characteristics of the vein grafts including vessel wall thickness, number of medial elastic lamina and proliferation index were evaluated 4 weeks after the surgery. The mRNA or protein levels of proinflammatory factors, chemokine (C-C motif) ligand-2 (CCL-2) and tumour necrosis factor-α (TNF-α) were measured 4 weeks after the operation by quantitative reverse transcription polymerase chain reaction or enzyme-linked immunosorbent assay. Compared with the untreated vein grafts at Week 4 after the operation, the α-CA spray significantly improved graft flow (39.4 ± 1.5 vs 27.8 ± 2.9 ml/min, P < 0.01), attenuated intimal and medial thickening (116.3 ± 1.0 vs 159.7 ± 0.9 μm, P < 0.01), reduced anti-proliferating cell nuclear antigen proliferation index of the vein grafts (15.0 ± 0.4 vs 23.6 ± 0.4%, P < 0.01), decreased the mRNA levels of plasminogen activator inhibitor-1 and CCL-2, and reduced the serum levels of TNF-α (92.9 ± 1.7 vs 102.7 ± 1.8 pg/ml, P < 0.01). Perivenous application of α-CA sealants exerts short

  18. Convection enhanced drug delivery of BDNF through a microcannula in a rodent model to strengthen connectivity of a peripheral motor nerve bridge model to bypass spinal cord injury.

    PubMed

    Martin Bauknight, W; Chakrabarty, Samit; Hwang, Brian Y; Malone, Hani R; Joshi, Shailendra; Bruce, Jeffrey N; Sander Connolly, E; Winfree, Christopher J; Cunningham, Miles G; Martin, John H; Haque, Raqeeb

    2012-04-01

    Models employing peripheral nerve to bypass spinal cord injury (SCI), although highly promising, may benefit from improved nerve regeneration and motor bridge connectivity. Recent studies have demonstrated that neuronal growth factor-induced enhancement of endogenous neurorestoration may improve neuronal connectivity after severe neurologic injury, particularly if delivered intraparenchymally with zero-order kinetics. We sought to investigate the effect of convection-enhanced delivery of brain-derived neurotrophic factor (BDNF), a neuronal growth factor, on the connectivity of a peripheral motor-nerve bridge in a rodent model using electrophysiology and immunohistochemistry (IHC). Spinal cords of 29 female rats were hemisected at the L1 level. Ipsilateral T13 peripheral nerves were dissected from their muscular targets distally, while maintaining their connections with the spinal cord, and inserted caudal to the injury site to establish the nerve bridge. A microcannula attached to a six-week mini-osmotic pump was used to deliver either BDNF (n=12), saline (n=14), or fluorescein dye (n=3) directly into the spinal cord parenchyma between the site of nerve insertion and hemisection to a depth of 2mm into the area of the lateral motor pool. After four weeks, gastrocnemius muscle activation was assessed electromyographically in five animals from each group. Spinal cords were harvested and analyzed with IHC for cannula-associated injury, and nerve regeneration. Strength of motor bridge connection was illustrated by electrophysiology data. Intraspinal BDNF levels were measured using enzyme-linked immunosorbent assay. IHC revealed increased intraparenchymal BDNF concentration at the nerve bridge insertion site with evidence of minimal trauma from cannulation. BDNF infusion resulted in stronger connections between bridge nerves and spinal motor axons. Bridge nerve electrical stimulation in BDNF-treated rats evoked hind leg electromyogram responses of shorter latency and

  19. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials: Model Comparison and Predictions.

    PubMed

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; van Duinkerken, Gert; Yu, Peiqiang

    2015-07-29

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more mechanistic model were compared with those of two other models, DVE1994 and NRC-2001, that are frequently used in common international feeding practice. DVE1994 predictions for intestinally digestible rumen undegradable protein (ARUP) for starchy concentrates were higher (27 vs 18 g/kg DM, p < 0.05, SEM = 1.2) than predictions by the NRC-2001, whereas there was no difference in predictions for ARUP from protein concentrates among the three models. DVE2010 and NRC-2001 had highest estimations of intestinally digestible microbial protein for starchy (92 g/kg DM in DVE2010 vs 46 g/kg DM in NRC-2001 and 67 g/kg DM in DVE1994, p < 0.05 SEM = 4) and protein concentrates (69 g/kg DM in NRC-2001 vs 31 g/kg DM in DVE1994 and 49 g/kg DM in DVE2010, p < 0.05 SEM = 4), respectively. Potential protein supplies predicted by tested models from starchy and protein concentrates are widely different, and comparable direct measurements are needed to evaluate the actual ability of different models to predict the potential protein supply to dairy cows from different feedstuffs.

  20. The impact of care management information technology model on quality of care after Coronary Artery Bypass Surgery: "Bridging the Divides".

    PubMed

    Weintraub, William S; Elliott, Daniel; Fanari, Zaher; Ostertag-Stretch, Jennifer; Muther, Ann; Lynahan, Margaret; Kerzner, Roger; Salam, Tabassum; Scherrer, Herbert; Anderson, Sharon; Russo, Carla A; Kolm, Paul; Steinberg, Terri H

    2017-06-21

    Reducing readmissions and improving metrics of care are a national priority. Supplementing traditional care with care management may improve outcomes. The Bridges program was an initial evaluation of a care management platform (CareLinkHub), supported by information technology (IT) developed to improve the quality and transition of care from hospital to home after Coronary Artery Bypass Surgery (CABG) and reduce readmissions. CareLink is comprised of care managers, patient navigators, pharmacists and physicians. Information to guide care management is guided by a middleware layer to gather information, PLR (ColdLight Solutions, LLC) and presented to CareLink staff on a care management platform, Aerial™ (Medecision). In addition there is an analytic engine to help evaluate and guide care, Neuron™ (Coldlight Solutions, LLC). The "Bridges" program enrolled a total of 716 CABG patients with 850 admissions from April 2013 through March 2015. The data of the program was compared with those of 1111 CABG patients with 1203 admissions in the 3years prior to the program. No impact was seen with respect to readmissions, Blood Pressure or LDL control. There was no significant improvement in patients' reported outcomes using either the CTM-3 or any of the SAQ-7 scores. Patient follow-up with physicians within 1week of discharge improved during the Bridges years. The CareLink hub platform was successfully implemented. Little or no impact on outcome metrics was seen in the short follow-up time. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Effect of Factor VIII Deficiencies and Replacement and Bypass Therapies on Thrombus Formation under Venous Flow Conditions in Microfluidic and Computational Models

    PubMed Central

    Onasoga-Jarvis, Abimbola A.; Leiderman, Karin; Fogelson, Aaron L.; Wang, Michael; Manco-Johnson, Marilyn J.; Di Paola, Jorge A.; Neeves, Keith B.

    2013-01-01

    Clinical evidence suggests that individuals with factor VIII (FVIII) deficiency (hemophilia A) are protected against venous thrombosis, but treatment with recombinant proteins can increase their risk for thrombosis. In this study we examined the dynamics of thrombus formation in individuals with hemophilia A and their response to replacement and bypass therapies under venous flow conditions. Fibrin and platelet accumulation were measured in microfluidic flow assays on a TF-rich surface at a shear rate of 100 s−1. Thrombin generation was calculated with a computational spatial-temporal model of thrombus formation. Mild FVIII deficiencies (5–30% normal levels) could support fibrin fiber formation, while severe (<1%) and moderate (1–5%) deficiencies could not. Based on these experimental observations, computational calculations estimate an average thrombin concentration of ∼10 nM is necessary to support fibrin formation under flow. There was no difference in fibrin formation between severe and moderate deficiencies, but platelet aggregate size was significantly larger for moderate deficiencies. Computational calculations estimate that the local thrombin concentration in moderate deficiencies is high enough to induce platelet activation (>1 nM), but too low to support fibrin formation (<10 nM). In the absence of platelets, fibrin formation was not supported even at normal FVIII levels, suggesting platelet adhesion is necessary for fibrin formation. Individuals treated by replacement therapy, recombinant FVIII, showed normalized fibrin formation. Individuals treated with bypass therapy, recombinant FVIIa, had a reduced lag time in fibrin formation, as well as elevated fibrin accumulation compared to healthy controls. Treatment of rFVIIa, but not rFVIII, resulted in significant changes in fibrin dynamics that could lead to a prothrombotic state. PMID:24236042

  2. The effect of factor VIII deficiencies and replacement and bypass therapies on thrombus formation under venous flow conditions in microfluidic and computational models.

    PubMed

    Onasoga-Jarvis, Abimbola A; Leiderman, Karin; Fogelson, Aaron L; Wang, Michael; Manco-Johnson, Marilyn J; Di Paola, Jorge A; Neeves, Keith B

    2013-01-01

    Clinical evidence suggests that individuals with factor VIII (FVIII) deficiency (hemophilia A) are protected against venous thrombosis, but treatment with recombinant proteins can increase their risk for thrombosis. In this study we examined the dynamics of thrombus formation in individuals with hemophilia A and their response to replacement and bypass therapies under venous flow conditions. Fibrin and platelet accumulation were measured in microfluidic flow assays on a TF-rich surface at a shear rate of 100 s⁻¹. Thrombin generation was calculated with a computational spatial-temporal model of thrombus formation. Mild FVIII deficiencies (5-30% normal levels) could support fibrin fiber formation, while severe (<1%) and moderate (1-5%) deficiencies could not. Based on these experimental observations, computational calculations estimate an average thrombin concentration of ∼10 nM is necessary to support fibrin formation under flow. There was no difference in fibrin formation between severe and moderate deficiencies, but platelet aggregate size was significantly larger for moderate deficiencies. Computational calculations estimate that the local thrombin concentration in moderate deficiencies is high enough to induce platelet activation (>1 nM), but too low to support fibrin formation (<10 nM). In the absence of platelets, fibrin formation was not supported even at normal FVIII levels, suggesting platelet adhesion is necessary for fibrin formation. Individuals treated by replacement therapy, recombinant FVIII, showed normalized fibrin formation. Individuals treated with bypass therapy, recombinant FVIIa, had a reduced lag time in fibrin formation, as well as elevated fibrin accumulation compared to healthy controls. Treatment of rFVIIa, but not rFVIII, resulted in significant changes in fibrin dynamics that could lead to a prothrombotic state.

  3. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass.

    PubMed

    Olson, Aaron K; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy; Rosiers, Christine Des; Portman, Michael A

    2012-03-01

    Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-(13)Carbon((13)C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-(13)C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and (13)C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, (13)C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion.

  4. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay-Sachs mouse models.

    PubMed

    Timur, Z K; Akyildiz Demir, S; Marsching, C; Sandhoff, R; Seyrantepe, V

    2015-09-01

    Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA(−/−) mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s). These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lactosylceramide. A previously identified ganglioside metabolizing neuraminidase, Neu4, is abundantly expressed in the mouse brain and has activity against gangliosides like GM2in vitro. Neu4(−/−) mice showed increased GD1a and decreased GM1 ganglioside in the brain suggesting the importance of the Neu4 in ganglioside catabolism. Mice with targeted disruption of both HexA and Neu4 genes showed accumulating GM2 ganglioside and epileptic seizures with 40% penetrance, indicating that the neuraminidase Neu4 is a modulatory gene, but may not be the only neuraminidase contributing to the metabolic bypass in HexA(−/−) mice. Therefore, we elucidated the biological role of neuraminidase-1 in ganglioside degradation in mouse. Analysis of HexA(−/−) Neu1(−/−) and HexA(−/−) Neu4(−/−) Neu1(−/−) mice models showed significant contribution of neuraminidase-1 on B-series ganglioside degradation in the brain. Therefore, we speculate that other neuraminidase/neuraminidases such as Neu2 and/or Neu3 might be also involved in the ganglioside degradation pathway in HexA(−/−) mice.

  5. Superior Vena Cava Bypass

    PubMed Central

    Trainini, Jorge Carlos; Auricchio, Renato; Del Bagno, Horacio Augusto; Federico, Vicente; Acrich, Mario Willie; Osorio, Julio Nestor

    1983-01-01

    A case of superior vena cava obstruction due to carcinoma of unknown origin is reported. A superior vena cava bypass with polytetrafluoroethylene was performed by suturing the prosthesis to the left innominate vein and the right atrium, respectively. Long-term satisfactory results were achieved. Images PMID:15227139

  6. Low speed test of a high-bypass-ratio propulsion system with an asymmetric inlet designed for a tilt-nacelle V/STOL airplane

    NASA Technical Reports Server (NTRS)

    Syberg, J.

    1978-01-01

    A large scale model of a lift/cruise fan inlet designed for a tilt nacelle V/STOL airplane was tested with a high bypass ratio turbofan. Testing was conducted at low freestream velocities with inlet angles of attack ranging from 0 deg to 120 deg. The operating limits for the nacelle were found to be related to inlet boundary layer separation. Small separations originating in the inlet diffuser cause little or no performance degradation. However, at sufficiently severe freestream conditions the separation changes abruptly to a lip separation. This change is associated with a significant reduction in nacelle net thrust as well as a sharp increase in fan blade vibratory stresses. Consequently, the onset of lip separation is regarded as the nacelle operating limit. The test verified that the asymmetric inlet design will provide high performance and stable operation at the design forward speed and angle of attack conditions. At some of these, however, operation near the lower end of the design inlet airflow range is not feasible due to the occurrence of lip separation.

  7. 77 FR 30371 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Flight Permits so that the airplane can be flown to a location where the work required by the AD can be..., V2527E-A5, V2527M-A5, V2528-D5, V2530-A5, and V2533-A5 turbofan engines installed on airplanes of U.S... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule...

  8. The Mission Defines the Cycle: Turbojet, Turbofan and Variable Cycle Engines for High Speed Propulsion

    DTIC Science & Technology

    2010-09-01

    RTO-EN-AVT-185 2 - 1 The Mission Defines the Cycle: Turbojet , Turbofan and Variable Cycle Engines for High Speed Propulsion Joachim Kurzke...different variable cycle engine configurations have been studied in the past. Ref. 4 gives an overview about the work done at General Electric Aircraft...Defines the Cycle: Turbojet , Turbofan and Variable Cycle Engines for High Speed Propulsion RTO-EN-AVT-185 2 - 23 • If VABI 1 is closed and VABI 2 open

  9. A model of cardiopulmonary bypass staged training integrating technical and non-technical skills dedicated to cardiac trainees.

    PubMed

    Fouilloux, V; Doguet, F; Kotsakis, A; Dubrowski, A; Berdah, S

    2015-03-01

    To develop a standardized simulation-based curriculum to teach medical knowledge and technical, communication and critical thinking skills necessary to initiate and wean from cardiopulmonary bypass (CPB) to junior cardiac trainees (CTs) in France. Performance on post-curricular tests was compared between CTs who participated in the new curriculum to those who did not. The simulation-based curriculum was developed by content and education experts. Simulations sequentially taught the skills necessary for initiating and weaning from CPB as well as managing crises by adding fidelity and complexity to scenarios. Nine CTs were randomly assigned to the new curriculum (n=5) or the traditional curriculum (n=4). Skills were assessed using tests of medical knowledge and technical, communication (GRS) and critical thinking (SCT) skills. A two-sample Wilcoxon rank-sum test compared average scores between the two groups. Alpha of 0.05 was set to indicate statistically significant differences. The resutls revealed that CTs in the new curriculum significantly outperformed CTs in the traditional curriculum on technical (18.2 vs 14.8, p=0.05) and communication (3.5 vs 2.2, p=0.013) skills. There was no significant difference between CTs in the new curriculum in the Script Concordance Test (16.5 vs 14.8, p=0.141) and knowledge tests (26.9 vs 24.6, p=0.14) compared to CTs in the traditional curriculum. Our new curriculum teaches communication and technical skills necessary for CPB. The results of this pilot study are encouraging and relevant. They give grounds for future research with a larger panel of trainees. Based on the current distribution of scores, a sample size of 12 CTs per group should yield significant results for all tests. © The Author(s) 2014.

  10. Turbofan noise generation. Volume 1: Analysis

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-01-01

    Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.

  11. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    DTIC Science & Technology

    2012-09-01

    accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on...This is followed by the presentation of example results from the application of the technique to a turbofan engine simulation. Finally, a...for a two-spool turbofan , is considered a suitable proxy for power level. Alternatively, engine command parameters, such as power lever angle, may

  12. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  13. The supersonic through-flow turbofan for high Mach propulsion

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.

    1987-01-01

    A study was done to evaluate the potential improvements in aircraft turbine engine performance by incorporating unique supersonic through-flow fans. Engine performance, weight, and mission studies were carried out for conventional turbofan engines using supersonic through-flow fans. A Mach 3 commercial transport mission was considered. The advantages of the supersonic fan engines were evaluated in terms of mission range comparisons between the supersonic fan engines and conventional engines. The installed specific fuel consumption of the supersonic fan engines was 12 percent better than the conventional engines and the installed weight was projected to be 25 percent lighter. For a takeoff gross weight of 550,000 lbs, the aircraft powered by supersonic fan engines had a range capability of 6600 nm compared to 5300 nm (a 25% improvement) for conventional engines.

  14. Pulmonary microRNA expression profiling in an immature piglet model of cardiopulmonary bypass-induced acute lung injury.

    PubMed

    Li, Wenlei; Ma, Kai; Zhang, Sen; Zhang, Hao; Liu, Jinping; Wang, Xu; Li, Shoujun

    2015-04-01

    After surgery performed under cardiopulmonary bypass (CPB), severe lung injury often occurs in infants. MicroRNAs (miRNAs) are potentially involved in diverse pathophysiological processes via regulation of gene expression. The objective of this study was to investigate differentially expressed miRNAs and their potential target genes in immature piglet lungs in response to CPB. Fourteen piglets aged 18.6 ± 0.5 days were equally divided into two groups that underwent sham sternotomy or CPB. The duration of aortic cross-clamping was 2 h, followed by 2 h reperfusion. Lung injury was evaluated by lung function indices, levels of cytokines, and histological changes. We applied miRNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analysis to determine miRNA expression. Meanwhile, qRT-PCR and enzyme-linked immunosorbent assay were used for validation of predicted mRNA targets. The deterioration of lung function and histopathological changes revealed the piglets' lungs were greatly impaired due to CPB. The levels of tumor necrosis factor alpha, interleukin 6, and interleukin 10 increased in the lung tissue after CPB. Using miRNA microarray, statistically significant differences were found in the levels of 16 miRNAs in the CPB group. Up-regulation of miR-21 was verified by PCR. We also observed down-regulation in the levels of miR-127, miR-145, and miR-204, which were correlated with increases in the expression of the products of their potential target genes PIK3CG, PTGS2, ACE, and IL6R in the CPB group, suggesting a potential role for miRNA in the regulation of inflammatory response. Our results show that CPB induces severe lung injury and dynamic changes in miRNA expression in piglet lungs. Moreover, the changes in miRNA levels and target gene expression may provide a basis for understanding the pathogenesis of CPB-induced injury to immature lungs.

  15. Aeroacoustic Analysis of Turbofan Noise Generation

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.; Envia, Edmane

    1996-01-01

    This report provides an updated version of analytical documentation for the V072 Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations used in the code and, where necessary, it documents the enhancements and changes made to the original code since its first release. V072 is a package of FORTRAN computer programs which calculate the in-duct acoustic modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated by the stator vanes interacting with the mean wakes of the rotor blades. In this updated version, only the tonal noise produced at the blade passing frequency and its harmonics, is described. The broadband noise component analysis, which was part of the original report, is not included here. The code provides outputs of modal pressure and power amplitudes generated by the rotor-wake/stator interaction. The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. The amplitude of each propagating mode is computed and summed to obtain the harmonics of sound power flux within the duct for both upstream and downstream propagating modes.

  16. Alongshore sediment bypassing as a control on river mouth morphodynamics

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Ashton, Andrew D.; Nardin, William; Fagherazzi, Sergio; Giosan, Liviu

    2016-04-01

    River mouths, shoreline locations where fluvial and coastal sediments are partitioned via erosion, trapping, and redistribution, are responsible for the ultimate sedimentary architecture of deltas and, because of their dynamic nature, also pose great management and engineering challenges. To investigate the interaction between fluvial and littoral processes at wave-dominated river mouths, we modeled their morphologic evolution using the coupled hydrodynamic and morphodynamic model Delft3D-SWAN. Model experiments replicate alongshore migration of river mouths, river mouth spit development, and eventual spit breaching, suggesting that these are emergent phenomena that can develop even under constant fluvial and wave conditions. Furthermore, we find that sediment bypassing of a river mouth develops though feedbacks between waves and river mouth morphology, resulting in either continuous bypassing pathways or episodic bar bypassing pathways. Model results demonstrate that waves refracting into the river mouth bar create a zone of low alongshore sediment transport updrift of the river mouth, which reduces sediment bypassing. Sediment bypassing, in turn, controls the river mouth migration rate and the size of the river mouth spit. As a result, an intermediate amount of river discharge maximizes river mouth migration. The fraction of alongshore sediment bypassing can be predicted from the balance between the jet and the wave momentum flux. Quantitative comparisons show a match between our modeled predictions of river mouth bypassing and migration rates observed in natural settings.

  17. A bovine hemoglobin-based oxygen carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral oxygen metabolism during low flow in a porcine model.

    PubMed

    McNeil, Jeffrey D; Propper, Brandon; Walker, Joshua; Holguin, Lauren; Evans, Lauren; Lee, Kihak; Fox, Peter T; Michalek, Joel E; Baisden, Clinton E

    2011-08-01

    Cerebral ischemia can occur during cardiopulmonary bypass, especially during low flow. HBOC-201 (OPK Biotech, Cambridge, Mass) is a hemoglobin-based oxygen-carrying solution that enhances oxygen delivery. This project evaluated the benefits on total body and cerebral oxygen delivery and consumption using HBOC-201 during cardiopulmonary bypass. Twelve immature swine were assigned to one of 2 groups. One group used HBOC-201 in pump prime, and the other used donor porcine blood. Cardiopulmonary bypass was initiated and then flow was serially decreased from 100% to 75%, to 50%, and then back to full flow. At each interval, (15)O positron emission tomographic analysis was performed, and blood was collected. Total body and cerebral oxygen delivery and consumption were calculated. Statistical analysis was performed with a Tukey-Kramer adjusted P value based on a repeated measures linear model on log-transformed data. Total and plasma hemoglobin levels were higher in the HBOC-201 group. Oxygen delivery and consumption were not statistically different but did tend to be higher in the HBOC-201 group. Mixed venous saturation was lower in the HBOC-201 group but not significant. Mild metabolic acidosis with increased lactate levels developed in the blood group. Mean cerebral blood flow decreased in both groups when total flow was 50%. In the HBOC-201 group cerebral oxygen metabolism was maintained. The addition of HBOC-201 for cardiopulmonary bypass appears to improve oxygen use and minimize anaerobic metabolism. Cerebral oxygen use was preserved in the HBOC-201 group, even during decrease in blood flow. These findings support the reported improved oxygen-unloading properties of HBOC-201 and might provide a benefit during cardiopulmonary bypass. Published by Mosby, Inc.

  18. Access to the bypassed stomach after gastric bypass.

    PubMed

    Fobi, M A; Chicola, K; Lee, H

    1998-06-01

    The gastric bypass (GBP) Operation is progressively being widely used to treat severe obesity. One problem with this operation is that it leaves the bypassed segment of the gastrointestinal tract not readily available for either mechanical, radiological or endoscopic evaluation. We have addressed this problem by putting a gastrostomy tube in the bypassed stomach at the time of the GBP. A radio-opaque marker placed around the gastrostomy site enables easy radiological localization of and thus easy percutaneous access to the bypassed stomach. The surgical technique is presented.

  19. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  20. Predicting emergency coronary artery bypass graft following PCI: application of a computational model to refer patients to hospitals with and without onsite surgical backup.

    PubMed

    Syed, Zeeshan; Moscucci, Mauro; Share, David; Gurm, Hitinder S

    2015-01-01

    Clinical tools to stratify patients for emergency coronary artery bypass graft (ECABG) after percutaneous coronary intervention (PCI) create the opportunity to selectively assign patients undergoing procedures to hospitals with and without onsite surgical facilities for dealing with potential complications while balancing load across providers. The goal of our study was to investigate the feasibility of a computational model directly optimised for cohort-level performance to predict ECABG in PCI patients for this application. Blue Cross Blue Shield of Michigan Cardiovascular Consortium registry data with 69 pre-procedural and angiographic risk variables from 68 022 PCI procedures in 2004-2007 were used to develop a support vector machine (SVM) model for ECABG. The SVM model was optimised for the area under the receiver operating characteristic curve (AUROC) at the level of the training cohort and validated on 42 310 PCI procedures performed in 2008-2009. There were 87 cases of ECABG (0.21%) in the validation cohort. The SVM model achieved an AUROC of 0.81 (95% CI 0.76 to 0.86). Patients in the predicted top decile were at a significantly increased risk relative to the remaining patients (OR 9.74, 95% CI 6.39 to 14.85, p<0.001) for ECABG. The SVM model optimised for the AUROC on the training cohort significantly improved discrimination, net reclassification and calibration over logistic regression and traditional SVM classification optimised for univariate performance. Computational risk stratification directly optimising cohort-level performance holds the potential of high levels of discrimination for ECABG following PCI. This approach has value in selectively referring PCI patients to hospitals with and without onsite surgery.

  1. Granulocyte colony stimulating factor reduces brain injury in a cardiopulmonary bypass-circulatory arrest model of ischemia in a newborn piglet

    PubMed Central

    Pastuszko, Peter; Schears, Gregory J.; Greeley, William J.; Kubin, Joanna; Wilson, David F.; Pastuszko, Anna

    2014-01-01

    Background Ischemic brain injury continues to be of major concern in patients undergoing cardiopulmonary bypass (CPB) surgery for congenital heart disease. Striatum and hippocampus are particularly vulnerable to injury during these processes. Our hypothesis is that the neuronal injury resulting from CPB and the associated circulatory arrest can be at least partly ameliorated by pre-treatment with granulocyte colony stimulating factor (G-CSF). Material and Methods Fourteen male newborn piglets were assigned to three groups: deep hypothermic circulatory arrest (DHCA), DHCA with G-CSF, and sham-operated. The first two groups were placed on CPB, cooled to 18°C, subjected to 60 min of DHCA, re-warmed and recovered for 8-9 hrs. At the end of experiment, the brains were perfused, fixed and cut into 10 μm transverse sections. Apoptotic cells were visualized by in-situ DNA fragmentation assay (TUNEL), with the density of injured cells expressed as a mean number ± SD per mm2. Results The number of injured cells in the striatum and CA1 and CA3 regions of the hippocampus increased significantly following DHCA. In the striatum, the increase was from 0.46±0.37 to 3.67±1.57 (p=0.002); in the CA1, from 0.11±0.19 to 5.16±1.57 (p=0.001), and in the CA3, from 0.28±0.25 to 2.98±1.82 (p=0.040). Injection of G-CSF prior to bypass significantly reduced the number of injured cells in the striatum and CA1 region, by 51% and 37%, respectively. In the CA3 region, injured cell density did not differ between the G-CSF and control group. Conclusion In a model of hypoxic brain insult associated with CPB, G-CSF significantly reduces neuronal injury in brain regions important for cognitive functions, suggesting it can significantly improve neurological outcomes from procedures requiring DHCA. PMID:25082120

  2. 75 FR 13045 - Airworthiness Directives; CFM International, S.A. CFM56-5, -5B, and -7B Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... Directives; CFM International, S.A. CFM56-5, -5B, and -7B Series Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for CFM International, S.A. CFM56-5, -5B, and -7B series turbofan engines. This... turbofan engines with stage 3 low-pressure turbine (LPT) disks installed with the following serial numbers...

  3. 75 FR 34924 - Airworthiness Directives; CFM International, S.A. CFM56-5, -5B, and -7B Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ..., S.A. CFM56-5, -5B, and -7B Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA... International, S.A. CFM56-5, -5B, and -7B series turbofan engines. This AD requires removing from service, nine..., and -7B series turbofan engines. We published the proposed AD in the Federal Register on March 18...

  4. Receptor for advanced glycation end products involved in lung ischemia reperfusion injury in cardiopulmonary bypass attenuated by controlled oxygen reperfusion in a canine model.

    PubMed

    Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai

    2013-01-01

    Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p < 0.001). RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p < 0.001). RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.

  5. Model-based causal closed-loop approach to the estimate of baroreflex sensitivity during propofol anesthesia in patients undergoing coronary artery bypass graft.

    PubMed

    Porta, Alberto; Bari, Vlasta; Bassani, Tito; Marchi, Andrea; Pistuddi, Valeria; Ranucci, Marco

    2013-10-01

    Cardiac baroreflex is a fundamental component of the cardiovascular control. The continuous assessment of baroreflex sensitivity (BRS) from spontaneous heart period (HP) and systolic arterial pressure (SAP) variations during general anesthesia provides relevant information about cardiovascular regulation in physiological conditions. Unfortunately, several difficulties including unknown HP-SAP causal relations, negligible SAP changes, small BRS values, and confounding influences due to mechanical ventilation prevent BRS monitoring from HP and SAP variabilities during general anesthesia. We applied a model-based causal closed-loop approach aiming at BRS assessment during propofol anesthesia in 34 patients undergoing coronary artery bypass graft (CABG) surgery. We found the following: 1) traditional time and frequency domain approaches (i.e., baroreflex sequence, cross-correlation, spectral, and transfer function techniques) exhibited irremediable methodological limitations preventing the assessment of the BRS decrease during propofol anesthesia; 2) Granger causality approach proved that the methodological caveats were linked to the decreased presence of bidirectional closed-loop HP-SAP interactions and to the increased incidence of the HP-SAP uncoupling; 3) our model-based closed-loop approach detected the significant BRS decrease during propofol anesthesia as a likely result of accounting for the influences of mechanical ventilation and causal HP-SAP interactions; and 4) the model-based closed-loop approach found also a diminished gain of the relation from HP to SAP linked to vasodilatation and reduced ventricular contractility during propofol anesthesia. The proposed model-based causal closed-loop approach is more effective than traditional approaches in monitoring cardiovascular control during propofol anesthesia and indicates an overall depression of the HP-SAP closed-loop regulation.

  6. A rat model of childhood diet-induced obesity: Roux-en-Y gastric bypass induced changes in metabolic parameters and gastric peptide ghrelin.

    PubMed

    Aprahamian, Charles J; Tekant, Gonça; Chen, Min; Yagmurlu, Ayden; Yang, Ying-Kui; Loux, Tara; Harmon, Carroll M

    2007-07-01

    Childhood morbid obesity is reaching epidemic proportions. Roux-en-Y gastric bypass (RYGB) results in many metabolic alterations, including changes in glucose and lipid metabolism, and changes in levels of the gastric hormone, ghrelin. As more children are undergoing RYGB, an animal model would be beneficial to further study RYGB and its subsequent metabolic effects. DIO Sprague Dawley rats underwent RYGB, sham jejunojejunostomy (SH), or no operation (HFC) after 6 weeks of high-fat diet. Non-obese rats fed standard chow (SC) were a final control group. Animals were post-operatively fed standard chow for 7 days before sacrifice. At sacrifice, venous blood and gastric mucosa was collected for metabolic parameters and ghrelin determination. RYGB rats weighed less than SH and HFC (361 +/- 8.8 vs. 437 +/- 9.3 and 443 +/- 6.2 g, P < 0.05). Compared to HFC, RYGB animals had decreased plasma glucose (292 +/- 23 vs. 141 +/- 10 mg/dL), cholesterol (80 +/- 12 vs. 45 +/- 5 mg/dL), triglycerides (138 +/- 37 vs. 52 +/- 7 mg/dL), HDL (43 +/- 5 vs. 20 +/- 3 mg/dL), and free fatty acids (0.72 +/- 0.14 vs. 0.23 +/- 0.02 mEq/L), all P < 0.05. Plasma ghrelin increased in RYGB rats compared to SC and HFC (116.22 +/- 32.27 vs. 31.60 +/- 2.66 and 31.75 +/- 0.75 pg/mL, P < 0.05). In a rat model of RYGB, we demonstrated improved metabolic parameters and increased plasma and gastric mRNA ghrelin levels. The rat model for RYBG appears to be a reasonable model for future study of the cellular and molecular regulatory pathways of obesity and its surgical treatment.

  7. Predictors of Health-Promoting Behaviors in Coronary Artery Bypass Surgery Patients: An Application of Pender’s Health Promotion Model

    PubMed Central

    Mohsenipoua, Hossein; Majlessi, Fereshteh; Shojaeizadeh, Davood; Rahimiforooshani, Abbas; Ghafari, Rahman; Habibi, Valiollah

    2016-01-01

    Background Advances in coronary artery surgery have reduced patient morbidity and mortality. Nevertheless, patients still have to face physical, psychological, and social problems after discharge from hospital. Objectives The objective of this study was to determine the efficacy of Pender’s health promotion model in predicting cardiac surgery patients’ lifestyles in Iran. Methods This cross-sectional study comprised 220 patients who had undergone coronary artery bypass graft (CABG) surgery in Mazandaran province (Iran) in 2015. The subjects were selected using a simple random sampling method. The data were collected via (1) the health-promoting lifestyle profile II (HPLP II) and (2) a self-designed questionnaire that included two main sections: demographic characteristics and questions based on the health-promoting model constructs. Results Spiritual growth (28.77 ± 5.03) and physical activity (15.79 ± 5.08) had the highest and lowest scores in the HPLP II dimensions, respectively. All the health promotion model variables were significant predictors of health-promoting behaviors and explained 69% of the variance in health-promoting behaviors. Three significant predictors were estimated using regression coefficients: behavioral feelings (β = 0.390, P < 0.001), perceived benefits (β = 0.209, P < 0.001), and commitment to a plan of action (β = 0.347, P < 0.001). Conclusions According to the results of the study, health-promoting model-based self-care behaviors can help identify and predict cardiac surgery patients’ lifestyles in Iran. This pattern can be used as a framework for discharge planning and the implementation of educational interventions to improve the lifestyles of CABG patients. PMID:28144467

  8. Spatial correlation in the ambient core noise field of a turbofan engine.

    PubMed

    Miles, Jeffrey Hilton

    2012-06-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NO(x) and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  9. Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2012-01-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  10. Protection of semiconductor converters for controlled bypass reactors

    SciTech Connect

    Dolgopolov, A. G.; Akhmetzhanov, N. G.; Karmanov, V. F.

    2010-05-15

    Possible ways of protecting thyristor converters in systems for magnetizing 110 - 500 kV controlled bypass reactors during switching and automatic reclosing are examined based on experience with the development of equipment, line tests, and mathematical modelling.

  11. Further development of a method for computing three-dimensional subsonic viscous flows in turbofan lobe mixers

    NASA Technical Reports Server (NTRS)

    Lin, S. J.; Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.

    1983-01-01

    Procedure for computing subsonic, turbulent flow in turbofan lobe mixers was extended to allow consideration of flow fields in which a swirl component of velocity may be present. Additional, an optional k-lambda turbulence model was added to the procedure. The method of specifying the initial flow field was also modified, allowing parametric specification or radial secondary flow velocities, and making it possible to consider initial flow fields which have significant inlet secondary flow vorticity. A series of example calculations was performed which demonstrate the various capabilities of the modified code. These calculations demonstrate the effects of initial secondary flows of various magnitudes, the effects of swirl, and the effects of turbulence model on the mixing process. The results of these calculations indicate that the initial secondary flows, presumed to be generated within the lobes, play a dominant role in the mixing process, and that the predicted results are relatively insensitive to the turbulence model used.

  12. Delirium in Children After Cardiac Bypass Surgery.

    PubMed

    Patel, Anita K; Biagas, Katherine V; Clarke, Eunice C; Gerber, Linda M; Mauer, Elizabeth; Silver, Gabrielle; Chai, Paul; Corda, Rozelle; Traube, Chani

    2017-02-01

    To describe the incidence of delirium in pediatric patients after cardiac bypass surgery and explore associated risk factors and effect of delirium on in-hospital outcomes. Prospective observational single-center study. Fourteen-bed pediatric cardiothoracic ICU. One hundred ninety-four consecutive admissions following cardiac bypass surgery, 1 day to 21 years old. Subjects were screened for delirium daily using the Cornell Assessment of Pediatric Delirium. Incidence of delirium in this sample was 49%. Delirium most often lasted 1-2 days and developed within the first 1-3 days after surgery. Age less than 2 years, developmental delay, higher Risk Adjustment for Congenital Heart Surgery 1 score, cyanotic disease, and albumin less than three were all independently associated with development of delirium in a multivariable model (all p < 0.03). Delirium was an independent predictor of prolonged ICU length of stay, with patients who were ever delirious having a 60% increase in ICU days compared with patients who were never delirious (p < 0.01). In our institution, delirium is a frequent problem in children after cardiac bypass surgery, with identifiable risk factors. Our study suggests that cardiac bypass surgery significantly increases children's susceptibility to delirium. This highlights the need for heightened, targeted delirium screening in all pediatric cardiothoracic ICUs to potentially improve outcomes in this vulnerable patient population.

  13. Bypass surgery for lower extremity limb salvage: vein bypass.

    PubMed

    El-Sayed, Hosam F

    2012-01-01

    Bypass surgery for limb salvage in cases of chronic limb ischemia is a well-established treatment modality. Use of an autogenous vein provides the best conduit for infrainguinal arterial bypass procedures, particularly for bypass to the infrapopliteal arteries. In this article, we discuss infrainguinal vein bypass surgery including indications, perioperative care, and long-term follow up. We also discuss the outcomes of the procedure with regard to patient survival and limb salvage. The autogenous vein continues to be the best available conduit with the highest patency rate and the best treatment option. Compared to all other revascularization options for infrainguinal disease, the vein bypass has the best limb salvage and long-term survival in patients appropriately selected for the procedure.

  14. 75 FR 12661 - Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... stage 3 rotor disks could have micro-cracking on the inner diameter surface forward cone body (forward... Company CF6-45 and CF6-50 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT...) for General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines with certain low-pressure...

  15. 75 FR 27973 - Airworthiness Directives; Rolls-Royce plc RB211-524C2 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... RB211-524C2 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice...-524C2-19 and RB211-524C2-B-19 turbofan engines. These engines are installed on, but not limited to...

  16. 77 FR 10355 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...) RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... 800 series turbofan engines. That AD currently requires removal from service of certain critical... uncontained failure of the engine and damage to the airplane. DATES: This AD is effective March 28, 2012...

  17. 75 FR 50945 - Airworthiness Directives; Pratt & Whitney JT8D-209, -217, -217A, -217C, and -219 Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... turbofan engines installed on airplanes of U.S. registry. We also estimate that it would take about 10 work... engine part failure, which could result in an uncontained engine failure and damage to the airplane... JT8D-209, -217, -217A, -217C, and -219 Turbofan Engines AGENCY: Federal Aviation Administration (FAA...

  18. 76 FR 6323 - Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... result in an uncontained engine failure and damage to the airplane. DATES: This AD is effective February... CF6-50 series turbofan engines installed on airplanes of U.S. registry. We also estimate that it will... Company CF6-45 and CF6-50 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT...

  19. 75 FR 51657 - Airworthiness Directives; Pratt & Whitney Canada Corp. (P&WC) PW615F-A Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ...-06] RIN 2120-AA64 Airworthiness Directives; Pratt & Whitney Canada Corp. (P&WC) PW615F-A Turbofan... adding the following new AD: 2010-17-06 Pratt & Whitney Canada Corp. (formerly Pratt & Whitney Canada.... Applicability (c) This AD applies to Pratt & Whitney Canada Corp. PW615F-A turbofan engines with fuel/oil...

  20. 76 FR 70382 - Airworthiness Directives; General Electric Company (GE) CF6-80C2B Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; General Electric Company (GE) CF6-80C2B Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... directive (AD) that applies to all GE CF6-80C2B series turbofan engines. The existing AD currently...

  1. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  2. System for Centering a Turbofan in a Nacelle During Tests

    NASA Technical Reports Server (NTRS)

    Cunningham, Cameron C.; Thompson, William K.; Hughes, Christopher E.; Shook, Tony D.

    2003-01-01

    A feedback position-control system has been developed for maintaining the concentricity of a turbofan with respect to a nacelle during acoustic and flow tests in a wind tunnel. The system is needed for the following reasons: Thermal and thrust loads can displace the fan relative to the nacelle; In the particular test apparatus (see Figure 1), denoted as a rotor-only nacelle (RAN), the struts, vanes, and other stator components of a turbofan engine that ordinarily maintain the required concentricity in the face of thermal and thrust loads are not present; and The struts and stator components are not present because it is necessary to provide a flow path that is acoustically clean in the sense that the measured noise can be attributed to the fan alone. The system is depicted schematically in Figure 2. The nacelle is supported by two struts attached to a two-axis traverse table located outside the wind-tunnel wall. Two servomotors acting through 100:1 gearboxes drive the table along the Y and Z axes, which are perpendicular to the axis of rotation. The Y and Z components of the deviation from concentricity are measured by four laser displacement sensors mounted on the nacelle and aimed at reflective targets on the center body, which is part of the fan assembly. The outputs of the laser displacement sensors are digitized and processed through a personal computer programmed with control software. The control output of the computer commands the servomotors to move the table as needed to restore concentricity. Numerous software and hardware travel limits and alarms are provided to maximize safety. A highly ablative rub strip in the nacelle minimizes the probability of damage in the event that a deviation from concentricity exceeds the radial clearance [<0.004 in. (<0.1 mm)] between the inner surface of the nacelle and the tips of the fan blades. To be able to prevent an excursion in excess of the tip clearance, the system must be accurate enough to control X and Y

  3. Effect on fuel efficiency of parameter variations in the cost function for multivariable control of a turbofan engine. Master's thesis

    SciTech Connect

    Dougherty, B.L.

    1981-09-01

    In modern turbofan engines, variable geometry has been incorporated to improve some off-design performance. Most control designs ignore this variable geometry and use fuel metering as the primary control input. This thesis investigates the use of variable geometry to control the engine and, thereby, reduce fuel consumption due to transients. Additionally, steady-state trim conditions are altered to reduce the static fuel consumption. The non-linear transient simualtion program is used to analyze the steady-state operating condition and develop small perturbation control limitations. Linear models, both large and reduced order, are used in analyzing the effect of controllers on system response. A computer program was generated to reduce a large order linear model to a usable size for control system development. This analysis shows the reduced-order regime dependent controllers to be viable and to favorably enhance the quest for reducing specific fuel consumption in existing engines.

  4. Heart bypass surgery incision (image)

    MedlinePlus

    ... the left part of the chest between the ribs. This incision is much less traumatic than the traditional heart bypass surgery incision which separates the breast bone. Minimally invasive heart bypass surgery allows the patient less pain and a faster recovery.

  5. Spiritual Bypass: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Cashwell, Craig S.; Glosoff, Harriet L.; Hammond, Cheree

    2010-01-01

    The phenomenon of spiritual bypass has received limited attention in the transpersonal psychology and counseling literature and has not been subjected to empirical inquiry. This study examines the phenomenon of spiritual bypass by considering how spirituality, mindfulness, alexithymia (emotional restrictiveness), and narcissism work together to…

  6. Spiritual Bypass: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Cashwell, Craig S.; Glosoff, Harriet L.; Hammond, Cheree

    2010-01-01

    The phenomenon of spiritual bypass has received limited attention in the transpersonal psychology and counseling literature and has not been subjected to empirical inquiry. This study examines the phenomenon of spiritual bypass by considering how spirituality, mindfulness, alexithymia (emotional restrictiveness), and narcissism work together to…

  7. Passive bypass valve assembly

    SciTech Connect

    Siedlecki, W.F. Jr.

    1992-05-19

    This patent describes a bypass valve assembly for controlling fluid flow in a gas turbine engine. It comprises an annular frame including an outer casing, an inner casing spaced from the outer casing to define a channel for channeling fluid flow and the outer casing including an annular opening therein; a plurality of circumferentially juxtaposed bypass valve doors disposed in the annular opening, each of the valve doors having an inner surface for facing the fluid flowable in the channel, an outer surface, a first end pivotally connected to the frame, and a second end, the doors being positionable in a first position generally parallel to the outer casing, and in a second position inclined relative to the outer casing, the fluid flow flowable against the door inner surface being effective for generating a fluid force on the door; and means for automatically positioning the doors in first and second positions in response to differential pressure across the door, the positioning means providing a torque on the doors for moving the door from the first to the second positions and including torque adjustment means for reducing the torque for at least a portion of travel of the doors from the second to the first positions.

  8. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.

    PubMed

    Kabinejadian, Foad; Ghista, Dhanjoo N

    2012-09-01

    We have recently developed a novel design for coronary arterial bypass surgical grafting, consisting of coupled sequential side-to-side and end-to-side anastomoses. This design has been shown to have beneficial blood flow patterns and wall shear stress distributions which may improve the patency of the CABG, as compared to the conventional end-to-side anastomosis. In our preliminary computational simulation of blood flow of this coupled sequential anastomoses design, the graft and the artery were adopted to be rigid vessels and the blood was assumed to be a Newtonian fluid. Therefore, the present study has been carried out in order to (i) investigate the effects of wall compliance and non-Newtonian rheology on the local flow field and hemodynamic parameters distribution, and (ii) verify the advantages of the CABG coupled sequential anastomoses design over the conventional end-to-side configuration in a more realistic bio-mechanical condition. For this purpose, a two-way fluid-structure interaction analysis has been carried out. A finite volume method is applied to solve the three-dimensional, time-dependent, laminar flow of the incompressible, non-Newtonian fluid; the vessel wall is modeled as a linearly elastic, geometrically non-linear shell structure. In an iteratively coupled approach the transient shell equations and the governing fluid equations are solved numerically. The simulation results indicate a diameter variation ratio of up to 4% and 5% in the graft and the coronary artery, respectively. The velocity patterns and qualitative distribution of wall shear stress parameters in the distensible model do not change significantly compared to the rigid-wall model, despite quite large side-wall deformations in the anastomotic regions. However, less flow separation and reversed flow is observed in the distensible models. The wall compliance reduces the time-averaged wall shear stress up to 32% (on the heel of the conventional end-to-side model) and somewhat

  9. Endothelial Dysfunction of Bypass Graft: Direct Comparison of In Vitro and In Vivo Models of Ischemia-Reperfusion Injury

    PubMed Central

    Veres, Gábor; Hegedűs, Péter; Barnucz, Enikő; Zöller, Raphael; Klein, Stephanie; Schmidt, Harald; Radovits, Tamás; Korkmaz, Sevil; Karck, Matthias; Szabó, Gábor

    2015-01-01

    Background Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A) ischemic storage and in-vitro reoxygenation (B) ischemic storage and in vitro reperfusion (C) ischemic storage and in-vivo reperfusion. Methods and Results Aortic arches from rats were stored for 2 hours in saline. Arches were then (A) in vitro reoxygenated (B) in vitro incubated in hypochlorite for 30 minutes (C) in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion). Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS) by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models. Conclusion Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model). In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described. PMID:25875813

  10. On the leading edge; Combining maturity and advanced technology on the F404 turbofan engine

    SciTech Connect

    Powel, S.F. IV )

    1991-01-01

    In this paper the overall design concept of the F404 afterburning turbofan engine is reviewed together with some of the lessons learned from over 2 million flight hours in service. GE Aircraft Engines' derivative and growth plans for the F404 family are then reviewed including the Building Block component development approach. Examples of advanced technologies under development for introduction into new F404 derivative engine models are presented in the areas of materials, digital and fiber optic controls systems, and vectoring exhaust nozzles. The design concept and details of the F404-GE-402, F412-GE-400, and other derivative engines under full-scale development are described. Studies for future growth variants and the benefits of the F404 derivative approach to development of afterburning engines in the 18,000-24,000 lb (80--107 kN) thrust class and non- afterburning engines in the 12,000--19,000 lb (53--85 kN) class are discussed.

  11. Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds

    NASA Astrophysics Data System (ADS)

    McAlpine, A.; Astley, R. J.; Hii, V. J. T.; Baker, N. J.; Kempton, A. J.

    2006-07-01

    Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the "rotor-alone" pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial mode orders, which are better absorbed by the lining.

  12. Aerodynamic and acoustic tests of duct-burning turbofan exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1976-01-01

    The static aerodynamic and acoustic characteristics of duct-burning turbofan (DBTF) exhaust nozzles are established. Scale models, having a total area equivalent to a 0.127 m diameter convergent nozzle, simulating unsuppressed coannular nozzles and mechanically suppressed nozzles with and without ejectors (hardwall and acoustically treated) were tested in a quiescent environment. The ratio of fan to primary area was varied from 0.75 to 1.2. Far field acoustic data, perceived noise levels, and thrust measurements were obtained for 417 test conditions. Pressure ratios were varied from 1.3 to 4.1 in the fan stream and from 1.53 to 2.5 in the primary stream. Total temperature varied from 395 to 1090 K in both streams. Jet noise reductions relative to synthesized prediction from 8 PNdB (with the unsuppressed coannular nozzle) to 15 PNdB (with a mechanically suppressed configuration) were observed at conditions typical of engines being considered under the Advanced Supersonic Technology program. The inherent suppression characteristic of the unsuppressed coannular nozzle is related to the rapid mixing in the jet wake caused by the velocity profiles associated with the DBTF. Since this can be achieved without a mechanical suppressor, significant reductions in aircraft weight or noise footprint can be realized.

  13. Roux-en-Y Gastric Bypass Operation in Rats

    PubMed Central

    Bueter, Marco; Abegg, Kathrin; Seyfried, Florian; Lutz, Thomas A.; le Roux, Carel W.

    2012-01-01

    Currently, the most effective therapy for the treatment of morbid obesity to induce significant and maintained body weight loss with a proven mortality benefit is bariatric surgery1,2. Consequently, there has been a steady rise in the number of bariatric operations done worldwide in recent years with the Roux-en-Y gastric bypass (gastric bypass) being the most commonly performed operation3. Against this background, it is important to understand the physiological mechanisms by which gastric bypass induces and maintains body weight loss. These mechanisms are yet not fully understood, but may include reduced hunger and increased satiation4,5, increased energy expenditure6,7, altered preference for food high in fat and sugar8,9, altered salt and water handling of the kidney10 as well as alterations in gut microbiota11. Such changes seen after gastric bypass may at least partly stem from how the surgery alters the hormonal milieu because gastric bypass increases the postprandial release of peptide-YY (PYY) and glucagon-like-peptide-1 (GLP-1), hormones that are released by the gut in the presence of nutrients and that reduce eating12. During the last two decades numerous studies using rats have been carried out to further investigate physiological changes after gastric bypass. The gastric bypass rat model has proven to be a valuable experimental tool not least as it closely mimics the time profile and magnitude of human weight loss, but also allows researchers to control and manipulate critical anatomic and physiologic factors including the use of appropriate controls. Consequently, there is a wide array of rat gastric bypass models available in the literature reviewed elsewhere in more detail 13-15. The description of the exact surgical technique of these models varies widely and differs e.g. in terms of pouch size, limb lengths, and the preservation of the vagal nerve. If reported, mortality rates seem to range from 0 to 35%15. Furthermore, surgery has been carried out

  14. Roux-en-Y gastric bypass operation in rats.

    PubMed

    Bueter, Marco; Abegg, Kathrin; Seyfried, Florian; Lutz, Thomas A; le Roux, Carel W

    2012-06-11

    Currently, the most effective therapy for the treatment of morbid obesity to induce significant and maintained body weight loss with a proven mortality benefit is bariatric surgery. Consequently, there has been a steady rise in the number of bariatric operations done worldwide in recent years with the Roux-en-Y gastric bypass (gastric bypass) being the most commonly performed operation. Against this background, it is important to understand the physiological mechanisms by which gastric bypass induces and maintains body weight loss. These mechanisms are yet not fully understood, but may include reduced hunger and increased satiation, increased energy expenditure, altered preference for food high in fat and sugar, altered salt and water handling of the kidney as well as alterations in gut microbiota. Such changes seen after gastric bypass may at least partly stem from how the surgery alters the hormonal milieu because gastric bypass increases the postprandial release of peptide-YY (PYY) and glucagon-like-peptide-1 (GLP-1), hormones that are released by the gut in the presence of nutrients and that reduce eating. During the last two decades numerous studies using rats have been carried out to further investigate physiological changes after gastric bypass. The gastric bypass rat model has proven to be a valuable experimental tool not least as it closely mimics the time profile and magnitude of human weight loss, but also allows researchers to control and manipulate critical anatomic and physiologic factors including the use of appropriate controls. Consequently, there is a wide array of rat gastric bypass models available in the literature reviewed elsewhere in more detail. The description of the exact surgical technique of these models varies widely and differs e.g. in terms of pouch size, limb lengths, and the preservation of the vagal nerve. If reported, mortality rates seem to range from 0 to 35%. Furthermore, surgery has been carried out almost exclusively in male

  15. Spatially resolved infrared spectra of F109 turbofan exhaust

    NASA Astrophysics Data System (ADS)

    Harley, Jacob L.; Rolling, August J.; Wisniewski, Charles F.; Gross, Kevin C.

    2012-06-01

    There is a strong interest in diagnosing engine performance problems and maintenance needs using optical techniques instead of expensive, time-consuming mechanical inspection. A Telops Hyper-Cam MWIR imaging Fourier-transform spectrometer collected spectrally-resolved images of jet exhaust from an F109 turbofan engine operating at 53%, 82%, and 88% of maximum RPM. This work attempts to discern what information content about the turbulent jet flow field is revealed in the measured spectra. The spectrum is examined and simulated, a radial and axial temperature mapping of the plume is presented, and a turbulent temporal and spatial analysis method is demonstrated. Spectral simulation of a pixel centered at nozzle exit finds volume mixing fractions of 3.3% H2O and 2.8% CO2 and an exhaust temperature of 560K with the engine at 82%. A single, high frequency turbulent feature is mapped and tracked over several frames. Velocity of this feature, based on the 2.86kHz camera frame rate and 0.067cm2 per pixel spatial resolution, is approximately 176m/s and compares favorably with an estimate based on the measured mass flow rate. This effort is a proof of concept and intended to justify qualitative analysis of a more controlled and characterized turbulent source in future work.

  16. Stall inception in the compressor system of a turbofan engine

    SciTech Connect

    Hoess, B.; Leinhos, D.; Fottner, L.

    2000-01-01

    Compressor flow instabilities have been the subject of a great number of investigations during the past decade. While most of this research work was done on isolated test-rig compressors, this paper presents stall inception measurements in the compressor system of a two-spool turbofan engine at various power settings. Several analyzing techniques such as temporal low-pass and band-pass filtering, temporal and spatial Fourier transforms including power-spectral-density calculations of the spatial coefficients, and a wavelet analyzing technique are applied. For the low-pressure compressor three different types of stall inception processes were observed depending on the rotor speed. At low speed, stall originates from spike-type precursors, while long wavy pressure fluctuations corresponding to modal waves were observed prior to stall at midspeed for undistorted inlet flow. At high speed, the rotor shaft unbalancing dominates the stall inception process as an external forcing function. In the case of distorted inlet flow spike-type stall inception behavior dominates throughout the speed range. While filtering and the Fourier spectra give a good insight into the physical background of the stall inception process (but with a very short warning time), the wavelet transform indicates the approach of the stalling process a few hundred rotor revolutions in advance independently of the type of precursor. Setting up a reliable stall avoidance control based on this analysis scheme seems to be promising.

  17. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  18. Program Predicts Broadband Noise from a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2004-01-01

    Broadband Fan Noise Prediction System (BFaNS) is a computer program that, as its name indicates, predicts the broadband noise generated by the fan stage of a turbofan engine. This noise is the sum of (1) turbulent-inflow noise, which is caused by turbulence impinging on leading edges of the fan and the fan exit guide vane and (2) self noise, which is caused by turbulence convecting past the corresponding trailing edges. The user provides input data on the fan-blade, vane, and flow-path geometries and on the mean and turbulent components of the flow field. BFaNS then calculates the turbulent-inflow noise by use of D. B. Hanson's theory, which relates sound power to the inflow turbulence characteristics and the cascade geometry. Hanson s program, BBCASCADE, is incorporated into BFaNS, wherein it is applied to the rotor and stator in a stripwise manner. The spectra of upstream and downstream sound powers radiated by each strip are summed to obtain the total upstream and downstream sound-power spectra. The self-noise contributions are calculated by S. A. L. Glegg's theory, which is also applied in a stripwise manner. The current version of BFaNS is limited to fans with subsonic tip speeds.

  19. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  20. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1994-01-01

    A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.

  1. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  2. Spectral Separation of the Turbofan Engine Coherent Combustion Noise Component

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine (Honeywell TECH977) were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. While adjusting the time delay to maximize the coherence and minimize the cross spectrum phase angle variation with frequency, the discovery was made that for the 130 microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Since the 0 to 200 Hz band signal took more time to travel the same distance, it is slower than the 200 to 400 Hz band signal. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to hot spots interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise.

  3. The effect of chemical carcinogens on DNA bypass replication and the development of in vitro and in vivo models for chemical mutagenesis

    SciTech Connect

    Yamanishi, D.T.

    1989-01-01

    This study with the testing of a hypothetical mechanism whereby mammalian cells are able to replicate their DNA past polycyclic aromatic hydrocarbon DNA adducts. The second objective of this thesis work was to develop both in vivo and in vitro models to study the induction of mutations in a target human gene by chemical carcinogens from two different classes, polycyclic aromatic hydrocarbons and nitrosamines. To approach the hypothetical mechanism of bypass replication in mammalian cells, synchronized Chinese hamster ovary cells were treated with benzo(a)pyrene, 7{beta}, 8{alpha}-dihydroxy-9{alpha}, 10{alpha}-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDEI). Using the pH step alkaline elution assay, it was found that the reduced rate of S phase progression was due to a delay in the appearance of multiple replicon size nascent DNA. It was determined using agarose gel electrophoresis that the ligation of Okazaki size replication intermediates was blocked in BPDE I-treated, synchronized CHO cells. To study mutagenesis of a specific sequence induced by chemical carcinogens, the human c-Ha-ras proto-oncogene was transfected into the mouse fibroblast cell line, NIH 3T3. Transfected NIH 3T3 cell lines (HHRN 1-4) were isolated that had a low copy number of the human c-Ha-ras proto-oncogene and a non-transformed phenotype. Treatment of the HHRN cell lines with the nitrosamine, N-methyl-nitroso-N{prime}-nitroguanidine (MNNG) resulted in transformed NIH 3T3 foci. In vitro MNNG treatment of the plasmid, z-6, and transfection into NIH 3T3 cells led to the isolation of transformed cell lines.

  4. The effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on blood viscoelasticity and cerebral blood flow in a neonatal piglet model.

    PubMed

    Undar, A; Vaughn, W K; Calhoon, J H

    2000-03-01

    The purpose of this study is to determine the effects of cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) on the viscoelasticity (viscosity and elasticity) of blood and global and regional cerebral blood flow (CBF) in a neonatal piglet model. After initiation of CPB, all animals (n = 3) were subjected to core cooling for 20 min to reduce the piglets' nasopharyngeal temperatures to 18 degrees C. This was followed by 60 min of DHCA, then 45 min of rewarming. During cooling and rewarming, the alpha-stat technique was used. Arterial blood samples were taken for viscoelasticity measurements and differently labeled microspheres were injected at pre-CPB, pre- and post-DHCA, 30 and 60 min after CPB for global and regional cerebral blood flow calculations. Viscosity and elasticity were measured at 2 Hz, 22 degrees C and at a strain of 0.2, 1, and 5 using a Vilastic-3 Viscoelasticity Analyzer. Elasticity of blood at a strain = 1 decreased to 32%, 83%, 57%, and 61% (p = 0.01, ANOVA) while the viscosity diminished 8.4%, 38%, 22%, 26% compared to the baseline values (p = 0.01, ANOVA) at pre-DHCA, post-DHCA, 30 and 60 min after CPB, respectively. The viscoelasticity of blood at a strain of 0.2 and 5 also had similar statistically significant drops (p < 0.05). Global and regional cerebral blood flow were also decreased 30%, 66%, 64% and 63% at the same experimental stages (p < 0.05, ANOVA). CPB procedure with 60 min of DHCA significantly alters the blood viscoelasticity, global and regional cerebral blood flow. These large changes in viscoelasticity may have a significant impact on organ blood flow, particularly in the brain.

  5. An analytical study on the performance of the organic Rankine cycle for turbofan engine exhaust heat recovery

    NASA Astrophysics Data System (ADS)

    Saadon, S.; Abu Talib, A. R.

    2016-10-01

    Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.

  6. Turbofan forced mixer-nozzle internal flowfield. Volume 3: A computer code for 3-D mixing in axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.

    1982-01-01

    A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.

  7. Full 3D Analysis of the GE90 Turbofan Primary Flowpath

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.

    2000-01-01

    The multistage simulations of the GE90 turbofan primary flowpath components have been performed. The multistage CFD code, APNASA, has been used to analyze the fan, fan OGV and booster, the 10-stage high-pressure compressor and the entire turbine system of the GE90 turbofan engine. The code has two levels of parallel, and for the 18 blade row full turbine simulation has 87.3 percent parallel efficiency with 121 processors on an SGI ORIGIN. Grid generation is accomplished with the multistage Average Passage Grid Generator, APG. Results for each component are shown which compare favorably with test data.

  8. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  9. A program for calculating turbofan-driven lift-fan propulsion system performance

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.; Fuhs, A. E.; Paterson, J. A.

    1976-01-01

    The performance of a turbofan-powered lift fan propulsion system for vertical takeoff and landing (VTOL) aircraft is calculated. The program formulation consists of taking bleed air from a turbofan engine, heating the bleed air in an interburner, and passing it through a tip turbine to drive a lift fan. Two options are available: bleed air from the engine exhaust, or bleed air that has passed through the engine fan only. This computer program will benefit persons unfamiliar with the thermodynamics of engine cycle analysis.

  10. Bypass diode integration

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Protective bypass diodes and mounting configurations which are applicable for use with photovoltaic modules having power dissipation requirements in the 5 to 50 watt range were investigated. Using PN silicon and Schottky diode characterization data on packaged diodes and diode chips, typical diodes were selected as representative for each range of current carrying capacity, an appropriate heat dissipating mounting concept along with its environmental enclosure was defined, and a thermal analysis relating junction temperature as a function of power dissipation was performed. In addition, the heat dissipating mounting device dimensions were varied to determine the effect on junction temperature. The results of the analysis are presented as a set of curves indicating junction temperature as a function of power dissipation for each diode package.

  11. Cardiopulmonary Bypass Without Heparin.

    PubMed

    Rehfeldt, Kent H; Barbara, David W

    2016-03-01

    Due to familiarity, short half-life, ease of monitoring, and the availability of a reversal agent, heparin remains the anticoagulant of choice for cardiac operations requiring cardiopulmonary bypass (CPB). However, occasionally patients require CPB but should not receive heparin, most often because of acute or subacute heparin-induced thrombocytopenia (HIT). In these cases, if it is not feasible to wait for the disappearance of HIT antibodies, an alternative anticoagulant must be selected. A number of non-heparin anticoagulant options have been explored. However, current recommendations suggest the use of a direct thrombin inhibitor such as bivalirudin. This review describes the use of heparin alternatives for the conduct of CPB with a focus on the direct thrombin inhibitors.

  12. The Effect of Utilizing Organizational Culture Improvement Model of Patient Education on Coronary Artery Bypass Graft Patients’ Anxiety and Satisfaction: Theory Testing

    PubMed Central

    Farahani, Mansoureh Ashghali; Ghaffari, Fatemeh; Norouzinezhad, Faezeh; Orak, Roohangiz Jamshidi

    2016-01-01

    Introduction Due to the increasing prevalence of arteriosclerosis and the mortality caused by this disease, Coronary Artery Bypass Graft (CABG) has become one of the most common surgical procedures. Utilization of patient education is approved as an effective solution for increasing patient survival and outcomes of treatment. However, failure to consider different aspects of patient education has turned this goal into an unattainable one. The objective of this research was to determine the effect of utilizing the organizational culture improvement model of patient education on CABG patients’ anxiety and satisfaction. Methods The present study is a randomized controlled trial. This study was conducted on eighty CABG patients. The patients were selected from the CCU and Post-CCU wards of a hospital affiliated with Iran University of Medical Sciences in Tehran, Iran, during 2015. Eshpel Burger’s Anxiety Inventory and Patients’ Satisfaction Questionnaire were used to collect the required information. Levels of anxiety and satisfaction of patients before intervention and at the time of release were measured. The intervention took place after preparing a programmed package based on the organizational culture improvement model for the following dimensions: effective communication, participatory decision-making, goal setting, planning, implementation and recording, supervision and control, and improvement of motivation. After recording the data, it was analyzed in the chi-square test, t-independent and Mann-Whitney U tests. The significance level of tests was assumed to be 0.05. SPSS version 18 was also utilized for data analysis. Results Research results revealed that variations in the mean scores of situational and personality anxiety of the control and experiment group were descending following the intervention, but the decrease was higher in the experiment group (p≤0.0001). In addition, the variations of the mean scores of patients’ satisfaction with

  13. The Effect of Utilizing Organizational Culture Improvement Model of Patient Education on Coronary Artery Bypass Graft Patients' Anxiety and Satisfaction: Theory Testing.

    PubMed

    Farahani, Mansoureh Ashghali; Ghaffari, Fatemeh; Norouzinezhad, Faezeh; Orak, Roohangiz Jamshidi

    2016-11-01

    Due to the increasing prevalence of arteriosclerosis and the mortality caused by this disease, Coronary Artery Bypass Graft (CABG) has become one of the most common surgical procedures. Utilization of patient education is approved as an effective solution for increasing patient survival and outcomes of treatment. However, failure to consider different aspects of patient education has turned this goal into an unattainable one. The objective of this research was to determine the effect of utilizing the organizational culture improvement model of patient education on CABG patients' anxiety and satisfaction. The present study is a randomized controlled trial. This study was conducted on eighty CABG patients. The patients were selected from the CCU and Post-CCU wards of a hospital affiliated with Iran University of Medical Sciences in Tehran, Iran, during 2015. Eshpel Burger's Anxiety Inventory and Patients' Satisfaction Questionnaire were used to collect the required information. Levels of anxiety and satisfaction of patients before intervention and at the time of release were measured. The intervention took place after preparing a programmed package based on the organizational culture improvement model for the following dimensions: effective communication, participatory decision-making, goal setting, planning, implementation and recording, supervision and control, and improvement of motivation. After recording the data, it was analyzed in the chi-square test, t-independent and Mann-Whitney U tests. The significance level of tests was assumed to be 0.05. SPSS version 18 was also utilized for data analysis. Research results revealed that variations in the mean scores of situational and personality anxiety of the control and experiment group were descending following the intervention, but the decrease was higher in the experiment group (p≤0.0001). In addition, the variations of the mean scores of patients' satisfaction with education were higher in the experiment group

  14. Scale model performance test investigation of mixed flow exhaust systems for an energy efficient engine /E3/ propulsion system

    NASA Technical Reports Server (NTRS)

    Kuchar, A. P.; Chamberlin, R.

    1983-01-01

    As part of the NASA Energy Efficient Engine program, scale-model performance tests of a mixed flow exhaust system were conducted. The tests were used to evaluate the performance of exhaust system mixers for high-bypass, mixed-flow turbofan engines. The tests indicated that: (1) mixer penetration has the most significant affect on both mixing effectiveness and mixer pressure loss; (2) mixing/tailpipe length improves mixing effectiveness; (3) gap reduction between the mixer and centerbody increases high mixing effectiveness; (4) mixer cross-sectional shape influences mixing effectiveness; (5) lobe number affects mixing degree; and (6) mixer aerodynamic pressure losses are a function of secondary flows inherent to the lobed mixer concept.

  15. Monitoring the conjunctiva for carbon dioxide and oxygen tensions and pH during cardiopulmonary bypass.

    PubMed

    Weiss, Irwin K; Isenberg, Sherwin J; McArthur, David L; Del Signore, Madeline; McDonald, John S

    2011-03-01

    The purpose of this study was to measure, for the first time, multiple physiologic parameters of perfusion (pH, PCO2, PO2, and temperature) from the conjunctiva of adult patients during cardiopulmonary bypass while undergoing cardiothoracic surgery. Ten patients who underwent either intracardiac valve repair, atrial septal defect repair, or coronary artery bypass graft surgery had placement of a sensor which directly measured pH, PCO2, PO2, and temperature from the conjunctiva. Data were stratified into seven phases (0-5 minutes prior to bypass; 0-5, 6-10, and 11-15 minutes after initiation of bypass; 0-5 minutes prior to conclusion of bypass; and 0-5 and 6-10 minutes after bypass) and analyzed using a mixed model analysis.The change in conjunctival pH over the course of measurement was not statistically significant (p = .56). The PCO2 level followed a quadratic pattern, decreasing from a mean pre-bypass level of 37.7 mmHg at baseline prior to the initiation of cardiopulmonary bypass to a nadir of 33.2 mmHg, then increasing to a high of 39.4 mmHg at 6-10 minutes post bypass (p < .01). The PO2 declined from a mean pre-bypass level of 79.5 mmHg to 31.3 mmHg by 6-10 minutes post bypass and even post-bypass, it never returned to baseline values (p < .01). Temperature followed a pattern similar to PCO2 by returning to baseline levels as the patient was re-warmed following bypass (p < .01). There was no evidence of any eye injury or inflammation following the removal of the sensor. In the subjects studied, the conjunctival sensor yielded reproducible measurements during the various phases of cardiopulmonary bypass without ocular injury. Further study is necessary to determine the role of conjunctival measurements in critical settings.

  16. Acoustic Detection of Faults and Degradation in a High-Bypass Turbofan Engine during VIPR Phase III Testing

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.

    2017-01-01

    The Vehicle Integrated Propulsion Research (VIPR) Phase III project was executed at Edwards Air Force Base, California, by the National Aeronautics and Space Administration and several industry, academic, and government partners in the summer of 2015. One of the research objectives was to use external radial acoustic microphone arrays to detect changes in the noise characteristics produced by the research engine during volcanic ash ingestion and seeded fault insertion scenarios involving bleed air valves. Preliminary results indicate the successful acoustic detection of suspected degradation as a result of cumulative exposure to volcanic ash. This detection is shown through progressive changes, particularly in the high-frequency content, as a function of exposure to greater cumulative quantities of ash. Additionally, detection of the simulated failure of the 14th stage stability bleed valve and, to a lesser extent, the station 2.5 stability bleed valve, to their fully-open fail-safe positions was achieved by means of spectral comparisons between nominal (normal valve operation) and seeded fault scenarios.

  17. Bypass surgery for chronic lower limb ischaemia.

    PubMed

    Antoniou, George A; Georgiadis, George S; Antoniou, Stavros A; Makar, Ragai R; Smout, Jonathan D; Torella, Francesco

    2017-04-03

    Bypass surgery is one of the mainstay treatments for patients with critical lower limb ischaemia (CLI). This is the second update of the review first published in 2000. To assess the effects of bypass surgery in patients with chronic lower limb ischaemia. For this update, the Cochrane Vascular Group searched its trials register (last searched October 2016) and the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library (last searched Issue 9, 2016). We selected randomised controlled trials of bypass surgery versus control or any other treatment. The primary outcome parameters were defined as early postoperative non-thrombotic complications, procedural mortality, clinical improvement, amputation, primary patency, and mortality within follow-up. For the update, two review authors extracted data and assessed trial quality. We analysed data using odds ratio (OR) and 95% confidence intervals (CIs). We applied fixed-effect or random-effects models. We selected 11 trials reporting a total of 1486 participants. Six trials compared bypass surgery with percutaneous transluminal angioplasty (PTA), and one each with remote endarterectomy, thromboendarterectomy, thrombolysis, exercise, and spinal cord stimulation. The quality of the evidence for the most important outcomes of bypass surgery versus PTA was high except for clinical improvement and primary patency. We judged the quality of evidence for clinical improvement to be low, due to heterogeneity between the studies and the fact that this was a subjective outcome assessment and, therefore, at risk of detection bias. We judged the quality of evidence for primary patency to be moderate due heterogeneity between the studies. For the remaining comparisons, the evidence was limited. For several outcomes, the CIs were wide.Comparing bypass surgery with PTA revealed a possible increase in early postinterventional non-thrombotic complications (OR 1.29, 95% CI 0.96 to 1.73; six studies; 1015 participants

  18. Separable fan strut for a gas turbofan power plant

    SciTech Connect

    Munroe, A.D.; Blume, K.D.; Gurney, R.E.

    1993-07-06

    An improved gas turbofan power plant of the type having an engine core circumferentially disposed about a longitudinal centerline, the engine core defining a primary flow passage having a radially inner flow surface, and a fan cowling circumferentially disposed outward of and concentric with the engine core to define a secondary flow passage therebetween, wherein the improvement is described comprising of: a plurality of through struts extending radially between the radially inner flow surface and the fan cowling, the plurality of struts joining the engine core and fan cowling and transferring the operational loads between the engine core and fan cowling, wherein each of the struts includes a joint having an engaged position and a disengaged position, each strut including; a radially inner portion having a radially inward end disposed on the engine core and a radially outward end with a first mating fixture; a radially outer portion having a radially outward end disposed on the fan cowling and a radially inward end with a second mating fixture, the second mating fixture adapted to cooperate with the first mating fixture to transfer the operational loads between the outer portion and the inner portion; and means to removably fasten the first mating fixture and the second mating fixture, the fastening means having an engaged position which corresponds with the engaged position of the joint and disengaged position which corresponds to the disengaged position of the joint; wherein the radially inner portion in conjunction with the engine core comprises a first module, the radially outer portion in conjunction with the fan cowling comprises a second module, and wherein the disengaged position of the joint facilitates separation of the first module from the second module by permitting divergent relative motion of the first module and the second module along the longitudinal centerline.

  19. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  20. Cerebral oxygenation during cardiopulmonary bypass

    PubMed Central

    Wardle, S; Yoxall, C; Weindling, A

    1998-01-01

    Cerebral fractional oxygen extraction (FOE) was monitored in 30 children, using near infrared spectroscopy during cardiopulmonary bypass, to investigate the effect of hypothermia and circulatory arrest. One group of children (n = 15) underwent profound hypothermia with total circulatory arrest (n = 8) or continuous flow (n =7). Another group (n = 15), of whom only one had circulatory arrest, underwent mild (n = 6) or moderate (n = 9) hypothermia.
 The mean FOE (SD) before bypass was 0.35 (0.12) and this correlated negatively with the preoperative arterial oxygen content (r=−0.58). Between the stage of cooling on bypass and cold bypass there was a reduction in FOE in all groups. Between cold bypass and rewarming there was an increase in FOE only in the groups with continuous flow. In the circulatory arrest group, the FOE remained low during rewarming and was significantly lower than that of the continuous flow group. No patients died and none had neurological abnormalities postoperatively.
 Apparent changes in oxidised cytochrome oxidase concentration were also monitored using near infrared spectroscopy. There was a fall in cytochrome aa3 on starting cardiopulmonary bypass, but there were no significant differences in the changes in cytochrome aa3 between any stage in any of the patient groups.
 Using this non-invasive technique, cooling was shown to reduce cerebral FOE. During rewarming on bypass there was an increase in cerebral FOE only in patients who had had continuous flow bypass. In contrast, the cerebral FOE in those with circulatory arrest remained constant after arrest and during the duration of the study. This may have implications for the timing of hypoxic brain injury.

 PMID:9534672